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Abstract—The hierarchical control of the DC microgrid
regulates the terminal voltages of the interfacing converter to
achieve proportional load sharing and good voltage regulation at
the DC bus. In doing so, the difference of the voltage at different
nodes increases which results in higher circulating current and
leads to higher losses. In this paper, a Reinforcement Learning
Based Integrated Control (RLIC) is proposed which will mini-
mize the circulating current and power losses in the transmission.
The proposed RLIC consists of a primary and secondary con-
troller. The primary controller is a robust sliding mode controller
which receives the voltage references from secondary controller
and regulates the terminal voltage and source current accord-
ingly. The secondary control consists of a proportional integral
control (PI), and a Deep Neural Network (DNN) surrogate model
with implementation of Q-Learning as reinforcement method. A
novel DNN based surrogate model uses the droop value from
the PI controller and estimates the power loss and the local and
global loading difference for a particular node, for a set of oper-
ating condition. This surrogate model is used by the Q-Learning
based reinforcement technique which adjusts the droop constants
and provide the voltage reference to primary controller to main-
tain load sharing and reduce the power losses, there-by leading
to an improved overall efficiency. The proposed control struc-
ture is verified to improve efficiency while maintaining the load
sharing and bus voltage regulation.

Index Terms—DC microgrid, power management, droop con-
trol, dynamic droop control, proportional load sharing, artificial
intelligence and DC microgrid, efficiency, energy distribution, DC
microgrid operation, microgrid energy planning, Q-learning, sur-
rogate model for DC microgrid, reinforcement learning in DC
microgrid, machine learning in DC microgrid.

I. INTRODUCTION

R
ECENTLY, there has been an increase in demand for

an alternate method of energy generation to replace or

support the conventional non-renewable sources of energy.

The DC microgrids are considered as a viable solution in

this aspect. A DC microgrid incorporates a photo-voltaic,

fuel cell or wind turbine based source for energy generation.

These sources are connected to a common bus by means of
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interfacing buck or a boost converter. These converters are

used to regulate the DC bus voltage. A DC microgrid con-

trol usually consists of a hierarchical structure. It consists of

a primary control which is responsible for local voltage and

current regulations of a particular interfacing converter, a sec-

ondary control which is responsible to achieve characteristics

like proportional load sharing among the source nodes, and

a tertiary control which regulates a nodes as per the cost

of energy generations. The hierarchical control is designed

to achieve proportional load sharing and maintaining the DC

bus voltage regulation during different load transitions [1]. In

order to achieve proportional load sharing, the voltage ref-

erence to a node is varied such that if a source node is

less loaded, its voltage reference to the primary controller

is increased. On the other hand, if it is more loaded, the

voltage reference must be reduced. The objective is to bring

all the nodes in consensus for equal load sharing [2], [3].

In order to achieve the load sharing, different droop and

dynamic droop methodologies have been proposed in liter-

ature. Droop control does not require any data exchange

among the interfacing converter control nodes [4]. However,

the droop value is to be calculated depending on the accept-

able DC bus voltage regulation. Different dynamic droop based

methodologies have been proposed in literature. A virtual

resistance is proposed in [5] which is regulated based on the

desired efficiency. Similar non-linear droop control is proposed

in [6] to improve the load current sharing in microgrids. A

secondary control with good voltage regulation is proposed

in [7]. In [8], authors propose a low bandwidth communi-

cation in order to exchange the current and voltage values

of nodes among the neighboring nodes. The local voltage

and current values are compared with the communicated val-

ues and adequate changes in operating conditions are made.

A team oriented load sharing method is proposed in [9], to

improve load sharing and also reduce the circulating currents

among the interfaced nodes. In [10], authors propose a control

methodology which incorporates slope-adjusting approach to

adjust the droop constant values as per the commands from

the secondary control. Similarly, authors in [11], [12], [13]

have proposed a scheme to improve the secondary control

and plug and play operations. Different parallel computing

methods have also been proposed to improve the microgrid

dynamic performance [14], [15], [16]. However, these method-

ologies do not consider the distance of source nodes from the

load nodes while assigning the droop constants. Under dif-

ferent loading conditions the droop constants can be assigned
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such that, a high rated source node which is at farther dis-

tance from the load node can be more loaded than a less

loaded node which is closer to the load node. This will

inevitably result in a higher loss in transmission lines and

reduce the overall efficiency of the microgrid system. On

the other hand, if the references are further changed such

that the droop is derived taking both the load sharing and

transmission power efficiency, then a higher efficiency can be

achieved.

Further, Reinforcement learning (RL) methodologies are

being continuously used in different applications related to

power conversions. The control methodologies for hybrid

energy storage in microgrid has been proposed in [17], [18].

Deep reinforcement learning has been used for volts-var com-

pensation in distribution systems in [19]. Agent based learning

has also been applied for power flow solvers with volt-var

compensation in [20]. Reinforcement methodologies has also

been used to deriving an optimal power converter design

in [21]. Hence, RL based methodologies are continuously find-

ing applications in energy sector and these can be used to make

the control scheme more optimal.

In this manuscript, a Reinforcement Learning based

Integrated Control (RLIC) method is proposed to improve the

efficiency of DC microgrid. The control is designed such that

in low loading conditions, the load current is drawn from the

sources which are closer to the load, while at higher loading

conditions, the load current is drawn from the source nodes

which have higher ratings. This leads to a dynamic variation

of the voltage difference between the nodes, leading to bet-

ter efficiency compared to traditional droop methodologies.

The proposed RLIC consists of a sliding mode control based

primary control and an integrated secondary control which

consists of Proportional integral (PI) control, DNN surrogate

model and Q-Learning algorithm. The sliding mode based

primary control consists of dynamic surface which adapts

according to the voltage and current conditions to achieve

the reference obtained from the secondary controller. The sec-

ondary control of RLIC consist of PI control which provides

the droop constants which will result in proportional load shar-

ing among the nodes. This droop value is used by the DNN

based surrogate model to predict the power loss and estimate

the difference between the local node loading and the over-

all microgrid loading. The Q-Learning algorithm learns from

the surrogate model and then dynamically varies the droop

constants to achieve the desired objective of low losses while

maintaining load sharing among the nodes. The output of the

algorithm is the optimal droop which varies based on the

desired objectives. The salient features of the proposed control

are as follows:

1. The secondary control of the proposed RLIC ensures min-

imal losses by minimizing the voltage difference between the

nodes. This leads to an improved efficiency.

2. The robust sliding mode based primary control of RLIC

consists of dynamic surface, which ensures stability on a wide

range of operating conditions.

3. The DNN based surrogate model is implemented to esti-

mate the power losses and local and global current loading

with respect to the droop values for individual nodes.

4. Proportional load sharing is maintained at high loading

conditions, and distance based load sharing is achieved at low

loading conditions.

The paper is organized as follows: Section II consists of

derivation of the relation between the droop constant and

power loss. Section III consists of modelling the boost con-

verters connected to the microgrid. The derivation primary

control law using the robust sliding mode control is presented

in Sections IV and V. The stability of the proposed control

is proved using the Lyapunov function is also presented in

Section V. Integration of the PI control in secondary control

is discussed in Section VI-A. Further, derivation of surrogate

model and Q-Learning algorithm in presented in Sections VI-B

and VI-C. These Sections also show corresponding waveform

which verify the convergence to the required droop values.

Finally, simulation results are shown in Section VII to verify

the proposed control structure. Conclusion of the presented

work and some future aspects are discussed in Section VIII.

II. RELATION BETWEEN THE DROOP CONSTANT

AND POWER LOSS

The droop control facilitates proportional load sharing by

varying the voltage reference to a node in microgrid. The value

of droop leads to some variation of a node voltage with respect

to the DC bus voltage. Let us consider the DC bus voltage to

be Vdc, the node voltage reference for ith node to be Vrefi, the

droop constant for this node to be Di and load current drawn

from this node to be ILoadi. The voltage reference for the ith

node can be derived as,

Vrefi = Vref − ILoadiDi (1)

In the above equation, Vref is the global desired reference of

the DC bus voltage, which is common for all the nodes. The

secondary control varies the voltage reference of a node to be

less than or greater than this global reference voltage, depend-

ing on the loading condition for that particular node. Let’s

consider that the primary control of the node drives the volt-

age equal to the desired reference, then the load current drawn

from the node can be derived as,

ILoadi =
Vrefi − Vdc

RLi

(2)

where, RLi is the line resistance of the cable connecting the

node to the DC bus. Substitute (1) in (2), and simplify to

obtain (3),

ILoadi =

(

Vref − Vdc

)

(RLi + Di)
(3)

The inverse relation between the node load current ILoadi and

the droop constant Di can be observed from (3). Hence, higher

the value of droop, lesser will be the load current drawn

from the ith node. The power loss occurs through the resistive

component of the interfacing line which connects the node

to the DC bus. Higher the difference between the node volt-

age and the DC bus voltage, higher will be the current and

higher will be the power loss. The power loss (PLossi) in the
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line connecting the ith node to the common DC bus can be

derived as,

PLossi =

(

Vref − Vdc

RLi + Di

)2

RLi (4)

It can be observed from (4) that the power loss and droop

constants are again inversely related. Hence, if the secondary

control varies the droop constant value to maintain the propor-

tional load sharing then it indirectly affects the power loss in

the line interfacing the node to the DC bus. This will lead to

degradation of the overall efficiency of the microgrid system.

III. MODELING OF THE DC MICRO-GRID

The averaged model for ith boost converter in a DC

microgrid is derived as [22]:

Li i̇Li = −rLi iLi − (1 − di)vci + Vsi (5)

Civ̇ci = (1 − di)iLi − ioi −
∑

jεNi

Iij (6)

where, Ni is the number of neighbors to the ith converter, vci

is the output voltage of converter across the capacitor C, iLi is

the current through the inductor L of the converter, Vsi is the

voltage of the source of ith converter, rLi is series resistance

of the inductor L, ioi is the output current of the converter, Iij

is the current between the node-i and node-j, and di the duty

of ith converter. Suppose the voltage and current references

are V
ref
i and I

ref
i respectively, the voltage error Evi and current

error Eii for ith node can be derived as:

Eii = iLi − I
ref
i , Evi = vci − V

ref
i (7)

Eq.(5) in error co-ordinates is derived as:

LiĖii = −rLi

(

Eii + I
ref
i

)

− ui

(

Evi + V
ref
i

)

+ Vsi (8)

CiĖvi = ui

(

Eii + I
ref
i

)

− ioi −
∑

jεNi

Iij (9)

where, ui = (1−di). The network topology can be represented

by incidence matrix BεIR(N×M) where N is number of electri-

cal nodes and M are the number of resistance edges between

nodes. The overall dynamic model of DC microgrid in error

co-ordinates will be:

LĖi = −R
(

Ei + Iref
)

− u ∗
(

Ev + Vref
)

+ Vs (10)

CĖv = u ∗
(

Ei + Iref
)

− Io − BR−1
L BT

(

Ev + Vref
)

(11)

where, ‘*’ denotes Hadamard product and LεIR(N×N),

CεIR(N×N), RεIR(N×N), RLεIR(N×N) are positive defi-

nite diagonal matrices of inductor, capacitor, inductor

resistances, and interfacing line resistance respec-

tively. Also, VsεIR(1×N), EiεIR(1×N), EvεIR(1×N),

Iref εIR(1×N), uεIR(1×N), Vref εIR(1×N) are matrices of supply

voltage, current error, voltage error, reference current, duty

cycle difference from unity and reference voltage respectively.

Fig. 1. Variation of ρi with p.u. loading of a converter.

IV. PROPOSED CURRENT REFERENCE ADJUSTMENT

The proposed control consists of two types of current

references, a local reference and a global reference. The local

reference is calculated by local voltage values while the global

current reference is the mean of all the current supplied by the

converters in the microgrid. Under low loading condition, the

local reference is followed. While in high loading global load-

ing will be followed. A constant ρi is used to smoothly vary

the current reference.

I
ref
iL =

V
ref
i ioi

Vsi

, I
ref

iG =
�N

i=1IiL

N
(12)

where, I
ref
iL is the local current reference, IiL is the per unit

current of the ith node, I
ref

iG is the global current reference,

and N is the total number of nodes in microgrid. The overall

current reference is given by:

I
ref
i = ρiI

ref

iG + (1 − ρi)I
ref
iL

(13)

The constant ρi depends on loading of ith converter as:

ρi = (iLi/Imi)
n (14)

where n ∈ R
+, and Imi is the rated current of the interfacing

converter. By choosing n, we can regulate the variation from

local to global reference. The variation of ρi with respect to

per-unit loading is shown in Fig. 1.

V. PROPOSED ROBUST SLIDING MODE CONTROL

BASED PRIMARY CONTROL LAW

The primary control consists of a robust sliding mode con-

trol. The sliding manifold of the proposed control consists

of the current and voltage error terms. The proposed sliding

surface for ith converter is:

si =
(

iLi − I
ref
i

)

+ αi

(

vci − V
ref
i

)

(15)

where, αi = γiE
βi

vi and I
ref
i = (ρiI

ref

iG +(1−ρi)I
ref
iL ). Hence, (15)

I
ref
i is a combination of local and global current reference val-

ues. The constants αi and γi ∈ R
+ [23]. These two parameters

are used to control voltage deviation within acceptable range

when load variation occurs. The value of αi varies when volt-

age deviation is above ± 5%, and it is negligible when voltage

is within ± 5% range of the base voltage.
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Fig. 2. Phase-plane plots for convergence of voltage and current errors
(a) Phase plane for n=1, (b) Convergence with respect to time t in sec for
n=1, (c) Phase plane for n=4, and (d) Convergence with respect to time
for n=4.

A. Control Law

The proposed controller can be derived to obtain the

reaching dynamics as [24]:

ṡi = −Aisi − Bisign(si) (16)

where, Ai and Bi ε IR(+). Such dynamics would ensure that

each converter’s dynamics reach the sliding surface in finite

time. By solving (8), (15) and (16) the control law can be

derived to be:

ui =

(−αiµi

(

Ioi +
∑

Iij

)

− ρirLi

(

Eii + I
ref
i

)

+ ρiVsi

ρi

(

Evi + V
ref
i

)

− αiµi

(

Eii + I
ref
i

)

)

+

(

Li(Aisi + Bisign(si))

ρi

(

Evi + V
ref
i

)

− αiµi

(

Eii + I
ref
i

)

)

(17)

where, µi =
Li(βi+1)

Ci
. From the above (17) it is observable that

the branch currents affect the duty cycle but, these currents can

be made limited by secondary control by choosing the voltage

levels between two nodes.

B. Existence and Stability of Sliding Mode

Existence of sliding mode is guaranteed by η-reachability

condition as [25]:

siṡi < η|si| η > 0 (18)

from (16),

siṡi = si(−Aisi − Bisgn(si))

siṡi = (−Ai|si| − Bi)|si| sisign(si) = |si|

As, Ai and Bi are both chosen to be negative hence, (−Ai|si|−

Bi) < η and the dynamics will reach the designed sliding man-

ifold. Stability of sliding mode is proved by Lyapunov stability.

The convergence of the voltage error Ev will lead to conver-

gence of the current error Ei and the current reference term

depends on the voltage reference to a particular node. Hence,

Lyapunov function will consists of Ev’s and its convergence

will be analysed. However, since we have multiple converters,

there will be multiple functions each consisting of individual

converters. For simplicity consider Lyapunov function for two

converters:

V =
E2

v1

2
+

E2
v2

2
(19)

On differentiating above with respect to time,

V̇ = ˙Ev1Ev1 + ˙Ev2Ev2 (20)

For stability V̇ < 0 at all the operating conditions between

two converter. From (9):

V̇ = V̇1 + V̇2 (21)

where,

V̇1 = Ev1

(

1

C1

(

u1

(

Ei1 + I
ref

1

)

− io1 −
∑

jεN

I1j

)

)

V̇2 = Ev2

(

1

C2

(

u2

(

Ei2 + I
ref

2

)

− io2 −
∑

jεN

I2j

)

)

When the dynamics are at the sliding manifold, then s=0

which implies Eii = −αiEvi. The terms of V̇1 and V̇2 can

be proved to be negative as in [23].

V̇c = −Ev1

∑

jεN

I1j − Ev2

∑

jεN

I2j (22)

As we have two parallel connected converters, I12 = −I21.

V̇c = −Ev1I12 − Ev2I21 (23)

V̇c = I12(Ev2 − Ev1) (24)

Substitute the value from (7) to obtain (25) as:

V̇c = I12

(

V
ref

1 − V
ref

2

)

(25)

Consider the following cases:

Case 1: Branch current flows from node 2 to node 1. In this

case I12 is positive and I21 is negative. This would happen if

V2 > V1, which in turn would happen if V
ref

2 > V
ref

1 . This volt-

age reference is controlled by secondary dynamic consensus

control. Hence, (25) will be negative definite.

Case 2: Similarly, if current flows from node 1 to node 2,

I12 is negative definite and I21 is positive. This would hap-

pen if V1 > V2, which in turn would happen if V
ref

1 > V
ref

2 .

Hence, (25) becomes,

V̇c = I12

(

V
ref

2 − V
ref

1

)

(26)

This also remains negative definite.

Case 3: When there is no voltage difference between nodes

then branch current is zero. Hence, V̇c is zero. It can be

observed that V̇c is either negative of zero. This can be proved

for all the converters in the microgrid. Hence, the system is

stable. The convergence to zero voltage and current errors is

shown in Fig. 2, for n=1 and n=4 with 80% loading. It can

be seen that higher value of n will result in faster convergence.

Convergence time for n=1 is about 0.08s while that for n=4

is less than 0.02s.
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Fig. 3. Proposed RLIC control strategy with different layers of microgrid.

VI. SECONDARY CONTROL

The secondary control consist of the proportional integral

control, DNN surrogate model and Q-Learning algorithm. The

per-unit current values from all the nodes are communicated

and then processed by the proposed secondary control to derive

the optimal droop constant which will result in minimal losses

in the microgrid. Different sections of the proposed secondary

control are discussed in the following sub-sections.

A. Proportional Integral Controller

The input to the PI control consists of the difference

between the global loading reference and the local loading.

The output of the PI control is the droop value which will

result in reduction of the loading and make all the nodes share

the load proportionally. The droop value Di is obtained as:

Di =
(

I
ref

iG − IiL

)

(

kp + ki/s
)

(27)

The constants kp and ki are the proportional and integral

gains of the PI controller. The global loading reference I
ref

iG

is found by averaging the per-unit current quantities from the

other nodes, i.e., I
ref

iG =
∑N

i=1(IiL/N) as discussed earlier, and

IiL = iLi/Imi such that Imi is the maximum current that can

be drawn from the ith nodes. The droop Di is usually given

to the primary controller as in [26], [27], [28], but it results

in significant power losses as discussed in previous sections.

In order to make the droop optimal to achieve low power

losses, the droop value is fed to the DNN surrogate model in

order to estimate the power losses and the difference between

the local and global loading, and then these values are used

by the Q-Learning algorithm to derive the optimal droop, as

shown in Fig. 3. The formulation of DNN surrogate model and

Q-Learning algorithm is discussed in the following sections.

B. Derivation of Surrogate Model

The surrogate models are usually used to reduce the com-

plexity, and computation of the system. Surrogate models are

Fig. 4. Functional block diagram of the surrogate model, the data-set consists
of the 75% train set, 15% validation set and 10% as test set.

TABLE I
METRICS FOR DNN SURROGATE EVALUATION

used where the output of a system is not easily measurable

or when it takes a larger time for estimations, in the case of

the DC microgrids [29]. In this work, a Deep-Neural Network

(DNN) based surrogate model is used to estimate the differ-

ence between the actual loading and the average loading of

the microgrid and also estimate the power loss.

1) Data-Set Generation: The proposed DNN based sur-

rogate model consists of two stages, the first stage is data

collection and the second phase is training, validation and test-

ing of the DNN model, as shown in Fig. 4. During the first

phase, a three node DC microgrid is simulated in MATLAB

Simulink for different operating conditions and the corre-

sponding quantities of interest such as the average microgrid

loading, DC bus voltage, power loss estimation and different

droop constant values are obtained. In total, 50,000 data sam-

ples are obtained to derive the DNN surrogate model. These

data-sets are further divided in three data-sets used for train-

ing, validation and testing phases. The output of the surrogate

model is further used by the Q-Learning algorithm to regulate

the droop value.

2) Training and Testing of Surrogate Model: The DNN

surrogate model is trained, validated and tested in order to esti-

mate the output as close as possible to the actual simulation

value. The metric on which the surrogate model in evaluated

is shown in Table I. The 50,000 data-set obtained from sim-

ulation are further divided into three parts, which consists of

75% of data-set (i.e., train set with 37,500 samples), 15% of

data-set (i.e., validation set with 7,500 samples), and 10% of

data-set (i.e., test set with 5,000 samples). The methodology

used for surrogate model is shown in Fig. 5. First the values

which are to be fed to the DNN based surrogate model is

normalized such that the maximum and minimum values of

a parameter is mapped in the range of 0 to 1. These values

are normalized within their maximum and minimum ranges

such that droop ranges is considered from [−8, 8], the O1

range is taken between [0, 7] and the O2 is taken between

[0, 400e3]. The three parameters are generated randomly in
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Fig. 5. Surrogate model derivation.

this range and the relation between all of them is derived

through DNN. The parameters which are to be fed to the

DNN model are the droop values, the difference of present

loading to the global loading, and the estimated power loss.

The DNN based surrogate model is trained when its output

matches with the simulation result for the same input param-

eters. The output consist of the difference between the local

and global loading and the total power loss. The training pro-

cess of DNN is shown in Fig. 6 and for the loading condition

and Fig. 7 for the total power loss. The Fig. 6a shows the loss

with train set (75% of the total data-sets) and validation set

(15% of the total data-sets). In order to test the accuracy of

the proposed DNN surrogate model, 5,000 samples of test set

(10% of the data-set) are used. The prediction error, which

is the difference of the simulation and DNN output for O1,

remains within 0.3 and most of the times around zero, as

can be seen from Fig. 6b. The actual and predicted values

for test data-set inputs are shown in Fig. 6c. The prediction

error is computed on the test set, as shown in Fig. 6d. It can

be observed that the prediction error remains zero which rep-

resents a high co-relation between the simulated value of O1

and the predicted value of O1. Similarly, for objective O2,

the actual and predicted values for the test data-set shown in

Fig. 7a. The prediction error for values of O2 can be seen to be

around zero which again signifies that there is negligible dif-

ference between the actual and predicted values, as shown in

Fig. 7b. The actual and predicted values of O2 for 5,000 sam-

ples of test set (10% of the data-set) are shown in Fig. 7c,

showing that they are co-related. Finally, the frequency verses

error plot is shown in Fig. 7d. Hence, the proposed DNN based

surrogate model has been trained to provide the power loss

estimation and the local and global loading difference for a

particular droop value. This derived model is now used for

secondary control support and also power loss reduction by

manipulating the droop constant for a typical loading of a

node in the microgrid network.

C. Implementation of Q-Learning Based Secondary

Controller

The Q-Learning is a form of re-enforcement learning

method which does not require intensive modelling of the

environment or the plant [30]. It can be helpful for the case of

DC microgrid as it consists of large amount of uncertainties

in operation. The Q-Learning can handle different stochastic

Fig. 6. DNN Surrogate model validation for Objective O1, the data-set
consists of the 75% train set, 15% validation set and 10% as test set.

Fig. 7. DNN Surrogate model validation for Objective O2, the data-set
consists of the 75% train set, 15% validation set and 10% as test set.

based changes without the need of adaptations. It consist of a

Q-table which will show the knowledge of a particular agent

about its operating environment [31], [32]. The pair of a state

and its action corresponds to a Q-value, which will signify

how good or bad a particular action is. This is also termed as

the reward of the action. A typical application of Q-Learning

in the proposed methodology is shown in Fig. 8. The actions

of Q-Learning algorithm consists of changing the droop val-

ues for all the three nodes and its corresponding output is the

changes in the power loss and the local and global loading

difference for all the nodes. The algorithm will compute the

optimal droop values which results in minimal power loss with

acceptable loading of all nodes. In the proposed methodol-

ogy, the reward for a particular action is computed under three

different case.

Case a: The first case consist of minimizing the differ-

ence between the local loading IiL and global loading IiG

of every node. In this case, the power loss is not taken
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Algorithm 1 Implemented Q-Learning Algorithm

Arbitrarily initialize Q(S,A), where S is present state and A is

corresponding action

Repeat the following for every episode:

Initialize the state S

Select A from S using the Epsilon greedy policy

Perform action A and observe its corresponding response R and its

new state S’

Update Q using, Q(S,A)←Q(S,A)+β[R+γ maxA Q(S’,A’)-Q(S,A)],

S←S’

where, γ is rate reward and β is the rate of learning

Fig. 8. Proposed Q-Learning algorithm with application to DC Microgrid.

Fig. 9. Waveforms for achieving the minimization of objective O1,
(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops D1, D2, D3 all the nodes, and
(d) Minimization of reward function.

into consideration. The objective function O1 taken into

consideration is given as,

O1 =

3
∑

i=1

|IiL − IiG|. (28)

In this objective, the agent varies the value of droop for

large number of episodes and performs the actions such that

the objective O1 is minimized. The corresponding waveforms

of cumulative reward, droop set points, epsilon and reward

minimization’s are shown in Fig. 9. It can be seen that three

droop values are obtained which will lead to a minimal dif-

ference between the local and global loading set-points. These

values are normalized and must be re-scaled between the

[−8, 8] value to attain the actual droop values. The value

epsilon decides how a particular action is selected. Higher

the value of epsilon, higher will be the random action of the

Fig. 10. Waveforms for achieving the minimization of objective O2,
(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops D1, D2, D3 all the nodes, and
(d) Minimization of reward function.

agent. As the value of epsilon reduces, the agent will become

more and more knowledgeable about how to vary the droops

to achieve the desired reduction of the objective.

Case b: In this case, the single objective is chosen which

targets on minimizing the power loss. Hence, the action will

converge towards having such a droop value for each of

the node such that the power loss is minimal. The objective

function O2 is as follows:

O2 =

3
∑

i=1

|PLossi| (29)

where, PLossi is the loss in the terminal connecting the node

to the DC bus. This loss is to be minimized. Similar to the

previous case, the waveforms corresponding the action and

convergence to optimal droops which lead to minimal power

loss is shown in Fig. 10.

Case c: Finally, a multi-objective reward function is cho-

sen which consists of both minimizing of the global and local

loading difference and also the power losses. The objective

function consist of the summation of objectives O1 and O2.

This will lead to a droop value which corresponds to a

consensus in local and global loading and lesser power loss.

O3 =

3
∑

i=1

|IiL − IiG| +

3
∑

i=1

|PLossi| (30)

The corresponding waveforms are shown in Fig. 11. It can

be inferred that the droop values will lead to minimal loss

and minimal possible difference between the local and global

loading. The overall proposed control with the primary and

physical layers is shown in Fig. 3.

VII. SIMULATION RESULTS

The proposed RLIC has been validate through a MATLAB

simulation of a 4.5kW three node DC microgrid. The input

voltages of source is 60V and the rated currents are (a) 40A

for all nodes in all cases and, (b) 10A for nodes-1 and 2

and 40A for node-3 when testing for proportional load shar-

ing. The line resistance between the nodes to the DC bus is
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SIMULATION PARAMETERS

Fig. 11. Waveforms for achieving the minimization of objective O3,
(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops D1, D2, D3 all the nodes, and
(d) Minimization of reward function.

Fig. 12. Waveforms without droop control, RLoad = 5	.

1	, 2	 and 3	 for nodes −1, 2 and 3 respectively. The pri-

mary control consist of a robust sliding mode control and the

secondary control consists of the integrated proportional inte-

gral control assisted by the DNN surrogate and Q learning

algorithm. The simulation results has been classified into the

following subsections.

A. Without Droop and Secondary Control

The voltage, current and power loss waveforms has been

shown in Fig. 12. It can be seen that in the absence of any

droop, the voltage of DC bus remains 120V, but the current

is not shared proportionally. It can be seen that the node-1 is

more loaded compared to the nodes-2 and 3. The total power

loss is about 750W as the terminal voltage of all nodes is the

same.

Fig. 13. Waveforms with constant droop in all nodes: Droop increased
simultaneously, and DC bus voltage degrades.

B. With Constant Droop in All the Nodes

In order to achieve equal load sharing, the droop at all the

nodes is increased simultaneously. The higher the droop con-

stant, more proportional can be the load sharing at the cost of

degrading DC bus voltage, as can be observed from Fig. 13.

The power loss also reduces because of the terminal DC bus

voltage reduction. The degradation of the DC bus voltage puts

a limit to the droop value used.

C. Dynamic Droop Control and All Nodes Are of Same

Rating

In this case, the proportional integral secondary control is

implemented to regulate the droop values. Hence, the value of

droop constants can either be positive or negative. The sec-

ondary control is activated after T=0.125s. Hence, the load

sharing becomes equal and the terminal voltage change due

to dynamic droop as shown in Fig. 14. But it should also

be seen that the losses increases from about 800W initially

to 960W. This is about 20% more losses compared to the

implementation without dynamic droop.

D. Dynamic Droop With the Farther Node Is Higher Rating

The losses further increase if we consider that the node

which is farther from the load has higher rating. In this case,

the farther node has to provide more current, for proportional

load sharing and this will cause an increase of losses. In this

case we consider that the Node-3 is 2.5kW while nodes 1 and

2 are 600W. The increase in losses are shown in Fig. 15.

Case a (Optimized droop for equal load sharing-O1): The

proposed control is implemented with optimized droops to

achieve equal load sharing. The currents from all the nodes

are almost the same. The highly loaded node becomes less

loaded and the load of node-3 is increased. The correspond-

ing waveforms are shown in Fig. 16. It can be observed that

the current from each node is about 12A and the power loss

is 825W.

Case b (Optimized droop for least power loss-Objective

O2): The objective O2 is to achieve least power loss during

power distribution. This is achieved by the proposed control by

making the Q-Learning algorithm’s objective to minimize O2.

The waveforms are shown in Fig. 17. It must be observed that
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Fig. 14. Waveforms with consensus based droop control for all nodes: Control
implemented after t=0.12s, the currents are shared equally but power loss
increases, RLoad = 5	.

Fig. 15. Waveforms with different source ratings: Node-1 and 2 are rated at
600W and Node-3 is rated at 2400W. Node-3 has highest rating but the line
connecting it to DC bus has highest resistance, hence highest loss, dynamic
control implemented at t=0.12s, RLoad = 30	.

Fig. 16. Waveforms for Case a, optimized droop to achieve objective O1,
RLIC implemented at t=0.1s, RLoad = 5	.

the power loss is the least among all the simulation have con-

ducted so far, which is about 700W. Now, in order to achieve

load sharing along with minimal power loss, the objective O3

is used.

Case c (Optimized droop for equal load sharing and

reduced power loss-Objective O3): This is the simulation for

case c. In this, the objective for Q-Learning is O3, which

is reduced loss and improved load sharing. The simulation

waveforms are shown in Fig. 18. It must be observed that the

load sharing is improved than case b, and losses have reduced

than case-a. The current from node-1 is 14A, from node-2

is 13A and from node-3 is 10A. The power loss is 760W.

Fig. 17. Waveforms for Case b, optimized droop to achieve objective
O2-least power loss, minimal power loss must be observed, RLIC imple-
mented at t=0.2s, RLoad = 5	.

Fig. 18. Waveforms for Case c, optimized droop to achieve objective O3-less
power loss with improved load sharing, power loss lesser than case a. RLIC
implemented at t=0.12s, RLoad = 5	.

Hence, depending on the usage, the objective function can be

chosen. The proposed control has been proved to reduce the

distribution power loss while maintaining load sharing the DC

microgrids. A comparison of the proposed RLIC with different

other methods in literature is presented in Table III.

VIII. CONCLUSION

The efficiency of DC microgrid largely depends on the

droop constants as it leads to different node voltages which

leads to circulating currents among the nodes. In order to

reduce the losses, a RLIC has been proposed which con-

sists of a DNN based surrogate model to mimic the behavior

of global nodes, and Q-Learning algorithm which optimizes

the values of droop constants to the node. This integrated

secondary control provides reference to the proposed robust

sliding mode control based primary control, which is robust

and drives the nodes to desired voltage reference. Several cases

have been verified and it can be concluded that the power

loss reduces significantly from 970W to 760W for the same

operating conditions. Hence, the power loss of about 210W is

mitigated, which is about 21% reduction of losses. Hence, the

proposed RLIC has been proved to be effective in improving

the efficiency of the microgrid as a whole. As a future work,

the proposed control can be extended to switch between the

optimized droop and consensus based droop value based on

the loading and the DC bus voltage regulation conditions.
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