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Abstract—The hierarchical control of the DC microgrid
regulates the terminal voltages of the interfacing converter to
achieve proportional load sharing and good voltage regulation at
the DC bus. In doing so, the difference of the voltage at different
nodes increases which results in higher circulating current and
leads to higher losses. In this paper, a Reinforcement Learning
Based Integrated Control (RLIC) is proposed which will mini-
mize the circulating current and power losses in the transmission.
The proposed RLIC consists of a primary and secondary con-
troller. The primary controller is a robust sliding mode controller
which receives the voltage references from secondary controller
and regulates the terminal voltage and source current accord-
ingly. The secondary control consists of a proportional integral
control (PI), and a Deep Neural Network (DNN) surrogate model
with implementation of Q-Learning as reinforcement method. A
novel DNN based surrogate model uses the droop value from
the PI controller and estimates the power loss and the local and
global loading difference for a particular node, for a set of oper-
ating condition. This surrogate model is used by the Q-Learning
based reinforcement technique which adjusts the droop constants
and provide the voltage reference to primary controller to main-
tain load sharing and reduce the power losses, there-by leading
to an improved overall efficiency. The proposed control struc-
ture is verified to improve efficiency while maintaining the load
sharing and bus voltage regulation.

Index Terms—DC microgrid, power management, droop con-
trol, dynamic droop control, proportional load sharing, artificial
intelligence and DC microgrid, efficiency, energy distribution, DC
microgrid operation, microgrid energy planning, Q-learning, sur-
rogate model for DC microgrid, reinforcement learning in DC
microgrid, machine learning in DC microgrid.

I. INTRODUCTION

ECENTLY, there has been an increase in demand for
Ran alternate method of energy generation to replace or
support the conventional non-renewable sources of energy.
The DC microgrids are considered as a viable solution in
this aspect. A DC microgrid incorporates a photo-voltaic,
fuel cell or wind turbine based source for energy generation.
These sources are connected to a common bus by means of
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interfacing buck or a boost converter. These converters are
used to regulate the DC bus voltage. A DC microgrid con-
trol usually consists of a hierarchical structure. It consists of
a primary control which is responsible for local voltage and
current regulations of a particular interfacing converter, a sec-
ondary control which is responsible to achieve characteristics
like proportional load sharing among the source nodes, and
a tertiary control which regulates a nodes as per the cost
of energy generations. The hierarchical control is designed
to achieve proportional load sharing and maintaining the DC
bus voltage regulation during different load transitions [1]. In
order to achieve proportional load sharing, the voltage ref-
erence to a node is varied such that if a source node is
less loaded, its voltage reference to the primary controller
is increased. On the other hand, if it is more loaded, the
voltage reference must be reduced. The objective is to bring
all the nodes in consensus for equal load sharing [2], [3].
In order to achieve the load sharing, different droop and
dynamic droop methodologies have been proposed in liter-
ature. Droop control does not require any data exchange
among the interfacing converter control nodes [4]. However,
the droop value is to be calculated depending on the accept-
able DC bus voltage regulation. Different dynamic droop based
methodologies have been proposed in literature. A virtual
resistance is proposed in [5] which is regulated based on the
desired efficiency. Similar non-linear droop control is proposed
in [6] to improve the load current sharing in microgrids. A
secondary control with good voltage regulation is proposed
in [7]. In [8], authors propose a low bandwidth communi-
cation in order to exchange the current and voltage values
of nodes among the neighboring nodes. The local voltage
and current values are compared with the communicated val-
ues and adequate changes in operating conditions are made.
A team oriented load sharing method is proposed in [9], to
improve load sharing and also reduce the circulating currents
among the interfaced nodes. In [10], authors propose a control
methodology which incorporates slope-adjusting approach to
adjust the droop constant values as per the commands from
the secondary control. Similarly, authors in [11], [12], [13]
have proposed a scheme to improve the secondary control
and plug and play operations. Different parallel computing
methods have also been proposed to improve the microgrid
dynamic performance [14], [15], [16]. However, these method-
ologies do not consider the distance of source nodes from the
load nodes while assigning the droop constants. Under dif-
ferent loading conditions the droop constants can be assigned
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such that, a high rated source node which is at farther dis-
tance from the load node can be more loaded than a less
loaded node which is closer to the load node. This will
inevitably result in a higher loss in transmission lines and
reduce the overall efficiency of the microgrid system. On
the other hand, if the references are further changed such
that the droop is derived taking both the load sharing and
transmission power efficiency, then a higher efficiency can be
achieved.

Further, Reinforcement learning (RL) methodologies are
being continuously used in different applications related to
power conversions. The control methodologies for hybrid
energy storage in microgrid has been proposed in [17], [18].
Deep reinforcement learning has been used for volts-var com-
pensation in distribution systems in [19]. Agent based learning
has also been applied for power flow solvers with volt-var
compensation in [20]. Reinforcement methodologies has also
been used to deriving an optimal power converter design
in [21]. Hence, RL based methodologies are continuously find-
ing applications in energy sector and these can be used to make
the control scheme more optimal.

In this manuscript, a Reinforcement Learning based
Integrated Control (RLIC) method is proposed to improve the
efficiency of DC microgrid. The control is designed such that
in low loading conditions, the load current is drawn from the
sources which are closer to the load, while at higher loading
conditions, the load current is drawn from the source nodes
which have higher ratings. This leads to a dynamic variation
of the voltage difference between the nodes, leading to bet-
ter efficiency compared to traditional droop methodologies.
The proposed RLIC consists of a sliding mode control based
primary control and an integrated secondary control which
consists of Proportional integral (PI) control, DNN surrogate
model and Q-Learning algorithm. The sliding mode based
primary control consists of dynamic surface which adapts
according to the voltage and current conditions to achieve
the reference obtained from the secondary controller. The sec-
ondary control of RLIC consist of PI control which provides
the droop constants which will result in proportional load shar-
ing among the nodes. This droop value is used by the DNN
based surrogate model to predict the power loss and estimate
the difference between the local node loading and the over-
all microgrid loading. The Q-Learning algorithm learns from
the surrogate model and then dynamically varies the droop
constants to achieve the desired objective of low losses while
maintaining load sharing among the nodes. The output of the
algorithm is the optimal droop which varies based on the
desired objectives. The salient features of the proposed control
are as follows:

1. The secondary control of the proposed RLIC ensures min-
imal losses by minimizing the voltage difference between the
nodes. This leads to an improved efficiency.

2. The robust sliding mode based primary control of RLIC
consists of dynamic surface, which ensures stability on a wide
range of operating conditions.

3. The DNN based surrogate model is implemented to esti-
mate the power losses and local and global current loading
with respect to the droop values for individual nodes.
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4. Proportional load sharing is maintained at high loading
conditions, and distance based load sharing is achieved at low
loading conditions.

The paper is organized as follows: Section II consists of
derivation of the relation between the droop constant and
power loss. Section III consists of modelling the boost con-
verters connected to the microgrid. The derivation primary
control law using the robust sliding mode control is presented
in Sections IV and V. The stability of the proposed control
is proved using the Lyapunov function is also presented in
Section V. Integration of the PI control in secondary control
is discussed in Section VI-A. Further, derivation of surrogate
model and Q-Learning algorithm in presented in Sections VI-B
and VI-C. These Sections also show corresponding waveform
which verify the convergence to the required droop values.
Finally, simulation results are shown in Section VII to verify
the proposed control structure. Conclusion of the presented
work and some future aspects are discussed in Section VIII.

II. RELATION BETWEEN THE DROOP CONSTANT
AND POWER LOSS

The droop control facilitates proportional load sharing by
varying the voltage reference to a node in microgrid. The value
of droop leads to some variation of a node voltage with respect
to the DC bus voltage. Let us consider the DC bus voltage to
be Vg, the node voltage reference for i node to be Vrefi» the
droop constant for this node to be D; and load current drawn
from this node to be Ir,44;- The voltage reference for the it
node can be derived as,

Viefi = Vref — I10adiDi (])

In the above equation, V. is the global desired reference of
the DC bus voltage, which is common for all the nodes. The
secondary control varies the voltage reference of a node to be
less than or greater than this global reference voltage, depend-
ing on the loading condition for that particular node. Let’s
consider that the primary control of the node drives the volt-
age equal to the desired reference, then the load current drawn
from the node can be derived as,

Viefi — Vac
Ioadi = —2—= 2)

Ry;
where, Ry; is the line resistance of the cable connecting the
node to the DC bus. Substitute (1) in (2), and simplify to
obtain (3),

(Vref - Vdc)

(Ri + D)) ©)

I10adi =
The inverse relation between the node load current Ij,,4; and
the droop constant D; can be observed from (3). Hence, higher
the value of droop, lesser will be the load current drawn
from the i node. The power loss occurs through the resistive
component of the interfacing line which connects the node
to the DC bus. Higher the difference between the node volt-
age and the DC bus voltage, higher will be the current and
higher will be the power loss. The power loss (Pr,ssi) in the
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line connecting the i’ node to the common DC bus can be
derived as,

Vief — Vae \*
PLossi = <L> RLi (4)

Rri + D;

It can be observed from (4) that the power loss and droop
constants are again inversely related. Hence, if the secondary
control varies the droop constant value to maintain the propor-
tional load sharing then it indirectly affects the power loss in
the line interfacing the node to the DC bus. This will lead to
degradation of the overall efficiency of the microgrid system.

III. MODELING OF THE DC MICRO-GRID

The averaged model for i boost converter in a DC
microgrid is derived as [22]:

(&)
(6)

Liig; = —rpiri — (1 — di)vei + Vi

Civei = (1 = dy)ii — ioi — ) _ I
J€N;

where, N; is the number of neighbors to the i converter, v,
is the output voltage of converter across the capacitor C, iy; is
the current through the inductor L of the converter, Vj; is the
voltage of the source of i converter, rr; 1s series resistance
of the inductor L, i,; is the output current of the converter, I;;
is the current between the node-i and node-j, and d; the duty
of i" converter. Suppose the voltage and current references
are Vir  and Iir o respectively, the voltage error E,; and current
error Ej; for i node can be derived as:

Ei=ip—17, Ei=vi—V" (7)

Eq.(5) in error co-ordinates is derived as:
LiEi = —ry, (Eii + Ifef) - ui(Evi + Viref> +Vi (8

Cibhyi = Lti(Eii +1,-r€f) —ioi — Y _1Ij 9
J€EN;

where, #; = (1—d;). The network topology can be represented
by incidence matrix BeIRV*M) where N is number of electri-
cal nodes and M are the number of resistance edges between
nodes. The overall dynamic model of DC microgrid in error
co-ordinates will be:

LE; = —R(Ei n I’Ef) —ux (Ev n V’ef> YV, (10)

CE, = u * (Ei +1’ef) I, - BRZIBT(EV + V”f) (11)

where, ‘*’ denotes Hadamard product and LeIRNXN)

CeIRNV*M) - ReIRV*N) - Ry eIRNV*M)  are  positive  defi-

nite diagonal matrices of inductor, capacitor, inductor
resistances, and interfacing line resistance respec-
tively.  Also, VeIRM  E IRV F IRV

1" e IRV e IRUXN) yref IRUXN) are matrices of supply
voltage, current error, voltage error, reference current, duty
cycle difference from unity and reference voltage respectively.
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Fig. 1. Variation of p; with p.u. loading of a converter.

IV. PROPOSED CURRENT REFERENCE ADJUSTMENT

The proposed control consists of two types of current
references, a local reference and a global reference. The local
reference is calculated by local voltage values while the global
current reference is the mean of all the current supplied by the
converters in the microgrid. Under low loading condition, the
local reference is followed. While in high loading global load-
ing will be followed. A constant p; is used to smoothly vary
the current reference.

7Y ViZigi oy =¥
iL T Ty G T TN

12)

where, ]irzf is the local current reference, /;; is the per unit
current of the i node, Il.r(e;f is the global current reference,
and N is the total number of nodes in microgrid. The overall
current reference is given by:

17 = plig + (1= pliy (13)
The constant p; depends on loading of i converter as:
pi = GLi/Imd)" (14)

where n € R™, and I,,; is the rated current of the interfacing
converter. By choosing n, we can regulate the variation from
local to global reference. The variation of p; with respect to
per-unit loading is shown in Fig. 1.

V. PROPOSED ROBUST SLIDING MODE CONTROL
BASED PRIMARY CONTROL LAW

The primary control consists of a robust sliding mode con-
trol. The sliding manifold of the proposed control consists
of the current and voltage error terms. The proposed sliding
surface for i converter is:

si = (iu - Il-re‘f) + Oti(vci - V,-mf)

where, o; = yiEvﬁi” and Iiref = (pilfg—i-(l —p,')Il-er). Hence, (15)
Il-r % is a combination of local and global current reference val-
ues. The constants «; and y; € R™ [23]. These two parameters
are used to control voltage deviation within acceptable range
when load variation occurs. The value of «; varies when volt-
age deviation is above £ 5%, and it is negligible when voltage

is within £ 5% range of the base voltage.

15)
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Fig. 2. Phase-plane plots for convergence of voltage and current errors
(a) Phase plane for n=1, (b) Convergence with respect to time t in sec for
n=1, (c) Phase plane for n=4, and (d) Convergence with respect to time
for n=4.

A. Control Law

The proposed controller can be derived to obtain the
reaching dynamics as [24]:

§; = —A;s; — B;sign(s;) (16)

where, A; and B; € IR Such dynamics would ensure that
each converter’s dynamics reach the sliding surface in finite
time. By solving (8), (15) and (16) the control law can be
derived to be:

<—ai/u(1m + 2 1) — piri (Eii + Il'ref> + insi>
uy =
pi (Evi + Vimf) - aiﬂi<Eii + Il-re‘f)
n ( Li(A;s; + Bjsign(s;)) )
pi (Evi + Vlref) - OtiMi(Eii + Iiref>
where, u; = L'(ﬁc+l+l) From the above (17) it is observable that
the branch currents affect the duty cycle but, these currents can

be made limited by secondary control by choosing the voltage
levels between two nodes.

a7

B. Existence and Stability of Sliding Mode

Existence of sliding mode is guaranteed by n-reachability
condition as [25]:

siSi < nlsil n>0 (18)

from (16),
siS; = 8i(—A;s; — Bisgn(s;))

sisi = (=Ajlsil = Bplsi|  sisign(s;) = |si]

As, A; and B; are both chosen to be negative hence, (—A;|s;| —
B;) < n and the dynamics will reach the designed sliding man-
ifold. Stability of sliding mode is proved by Lyapunov stability.
The convergence of the voltage error E, will lead to conver-
gence of the current error E; and the current reference term
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depends on the voltage reference to a particular node. Hence,
Lyapunov function will consists of E,’s and its convergence
will be analysed. However, since we have multiple converters,
there will be multiple functions each consisting of individual
converters. For simplicity consider Lyapunov function for two
converters:

E2, E?
V= vl 2 19
) (19)
On differentiating above with respect to time,
V =EyEy + EnEp (20)

For stability V < 0 at all the operating conditions between
two converter. From (9):

V=Vi+V 2n
where,

. 1
Vi= Evl(a(ul(Eil +11ref> —lol — lej))

JjeN
. 1 '
Vo = Ev2<c—(u2 (Ei2 + Iff) — 2 — ij))
2 jeN
When the dynamics are at the sliding manifold, then s=0

which implies E; = —o;E,;. The terms of Vi and V, can
be proved to be negative as in [23].

Ve=—En Y Nij—En ) by (22)
JjeN JjeN
As we have two parallel connected converters, /1o = —Ip1.
Ve = —Eyli2 — Ennly (23)
Ve = ha(Ev, — Ev) (24)
Substitute the value from (7) to obtain (25) as:
Ve =tV = v57) (25)

Consider the following cases:

Case 1: Branch current flows from node 2 to node 1. In this
case I17 is positive and I»; is negative. This would happen if
V> > V1, which in turn would happen if V;ef > erf . This volt-
age reference is controlled by secondary dynamic consensus
control. Hence, (25) will be negative definite.

Case 2: Similarly, if current flows from node 1 to node 2,
11> is negative definite and I>; is positive. This would hap-
pen if V| > V,, which in turn would happen if Vlref > V;ef .
Hence, (25) becomes,

V. = Ilz(vff —v )

This also remains negative definite.

Case 3: When there is no voltage difference between nodes
then branch current is zero. Hence, VC is zero. It can be
observed that V.. is either negative of zero. This can be proved
for all the converters in the microgrid. Hence, the system is
stable. The convergence to zero voltage and current errors is
shown in Fig. 2, for n=1 and n=4 with 80% loading. It can
be seen that higher value of n will result in faster convergence.
Convergence time for n=1 is about 0.08s while that for n=4
is less than 0.02s.

(26)
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Fig. 3. Proposed RLIC control strategy with different layers of microgrid.

VI. SECONDARY CONTROL

The secondary control consist of the proportional integral
control, DNN surrogate model and Q-Learning algorithm. The
per-unit current values from all the nodes are communicated
and then processed by the proposed secondary control to derive
the optimal droop constant which will result in minimal losses
in the microgrid. Different sections of the proposed secondary
control are discussed in the following sub-sections.

A. Proportional Integral Controller

The input to the PI control consists of the difference
between the global loading reference and the local loading.
The output of the PI control is the droop value which will
result in reduction of the loading and make all the nodes share
the load proportionally. The droop value D; is obtained as:

D; = (I{éf - iL) (kp + ki/s)

The constants k, and k; are the proportional and integral
e
iG

27

gains of the PI controller. The global loading reference
is found by averaging the per-unit current quantities from the
other nodes, i.e., Ilrgf = Z?’Zl(liL/N) as discussed earlier, and
Ii;, = iri/Ly such that I,;; is the maximum current that can
be drawn from the i’ nodes. The droop D; is usually given
to the primary controller as in [26], [27], [28], but it results
in significant power losses as discussed in previous sections.
In order to make the droop optimal to achieve low power
losses, the droop value is fed to the DNN surrogate model in
order to estimate the power losses and the difference between
the local and global loading, and then these values are used
by the Q-Learning algorithm to derive the optimal droop, as
shown in Fig. 3. The formulation of DNN surrogate model and
Q-Learning algorithm is discussed in the following sections.

B. Derivation of Surrogate Model

The surrogate models are usually used to reduce the com-
plexity, and computation of the system. Surrogate models are
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Fig. 4. Functional block diagram of the surrogate model, the data-set consists
of the 75% train set, 15% validation set and 10% as test set.

TABLE I
METRICS FOR DNN SURROGATE EVALUATION

Parameters

Input layer
Output layer
Two hidden layer

Description

Three Nodes for three Droop values

Two Nodes for current difference and power losses
With 32 nodes/16 nodes

Activation function RELU
Optimizer Adam
Loss MSE

used where the output of a system is not easily measurable
or when it takes a larger time for estimations, in the case of
the DC microgrids [29]. In this work, a Deep-Neural Network
(DNN) based surrogate model is used to estimate the differ-
ence between the actual loading and the average loading of
the microgrid and also estimate the power loss.

1) Data-Set Generation: The proposed DNN based sur-
rogate model consists of two stages, the first stage is data
collection and the second phase is training, validation and test-
ing of the DNN model, as shown in Fig. 4. During the first
phase, a three node DC microgrid is simulated in MATLAB
Simulink for different operating conditions and the corre-
sponding quantities of interest such as the average microgrid
loading, DC bus voltage, power loss estimation and different
droop constant values are obtained. In total, 50,000 data sam-
ples are obtained to derive the DNN surrogate model. These
data-sets are further divided in three data-sets used for train-
ing, validation and testing phases. The output of the surrogate
model is further used by the Q-Learning algorithm to regulate
the droop value.

2) Training and Testing of Surrogate Model: The DNN
surrogate model is trained, validated and tested in order to esti-
mate the output as close as possible to the actual simulation
value. The metric on which the surrogate model in evaluated
is shown in Table I. The 50,000 data-set obtained from sim-
ulation are further divided into three parts, which consists of
75% of data-set (i.e., train set with 37,500 samples), 15% of
data-set (i.e., validation set with 7,500 samples), and 10% of
data-set (i.e., test set with 5,000 samples). The methodology
used for surrogate model is shown in Fig. 5. First the values
which are to be fed to the DNN based surrogate model is
normalized such that the maximum and minimum values of
a parameter is mapped in the range of 0 to 1. These values
are normalized within their maximum and minimum ranges
such that droop ranges is considered from [—8, 8], the O
range is taken between [0, 7] and the O is taken between
[0, 400e3]. The three parameters are generated randomly in
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Fig. 5. Surrogate model derivation.

this range and the relation between all of them is derived
through DNN. The parameters which are to be fed to the
DNN model are the droop values, the difference of present
loading to the global loading, and the estimated power loss.
The DNN based surrogate model is trained when its output
matches with the simulation result for the same input param-
eters. The output consist of the difference between the local
and global loading and the total power loss. The training pro-
cess of DNN is shown in Fig. 6 and for the loading condition
and Fig. 7 for the total power loss. The Fig. 6a shows the loss
with train set (75% of the total data-sets) and validation set
(15% of the total data-sets). In order to test the accuracy of
the proposed DNN surrogate model, 5,000 samples of test set
(10% of the data-set) are used. The prediction error, which
is the difference of the simulation and DNN output for Oy,
remains within 0.3 and most of the times around zero, as
can be seen from Fig. 6b. The actual and predicted values
for test data-set inputs are shown in Fig. 6¢c. The prediction
error is computed on the test set, as shown in Fig. 6d. It can
be observed that the prediction error remains zero which rep-
resents a high co-relation between the simulated value of O
and the predicted value of O;. Similarly, for objective O»,
the actual and predicted values for the test data-set shown in
Fig. 7a. The prediction error for values of O; can be seen to be
around zero which again signifies that there is negligible dif-
ference between the actual and predicted values, as shown in
Fig. 7b. The actual and predicted values of O, for 5,000 sam-
ples of test set (10% of the data-set) are shown in Fig. 7c,
showing that they are co-related. Finally, the frequency verses
error plot is shown in Fig. 7d. Hence, the proposed DNN based
surrogate model has been trained to provide the power loss
estimation and the local and global loading difference for a
particular droop value. This derived model is now used for
secondary control support and also power loss reduction by
manipulating the droop constant for a typical loading of a
node in the microgrid network.

C. Implementation of Q-Learning Based Secondary
Controller

The Q-Learning is a form of re-enforcement learning
method which does not require intensive modelling of the
environment or the plant [30]. It can be helpful for the case of
DC microgrid as it consists of large amount of uncertainties
in operation. The Q-Learning can handle different stochastic
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Fig. 6.  DNN Surrogate model validation for Objective Oj, the data-set
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Fig. 7. DNN Surrogate model validation for Objective O, the data-set

consists of the 75% train set, 15% validation set and 10% as test set.

based changes without the need of adaptations. It consist of a
Q-table which will show the knowledge of a particular agent
about its operating environment [31], [32]. The pair of a state
and its action corresponds to a Q-value, which will signify
how good or bad a particular action is. This is also termed as
the reward of the action. A typical application of Q-Learning
in the proposed methodology is shown in Fig. 8. The actions
of Q-Learning algorithm consists of changing the droop val-
ues for all the three nodes and its corresponding output is the
changes in the power loss and the local and global loading
difference for all the nodes. The algorithm will compute the
optimal droop values which results in minimal power loss with
acceptable loading of all nodes. In the proposed methodol-
ogy, the reward for a particular action is computed under three
different case.

Case a: The first case consist of minimizing the differ-
ence between the local loading /;;, and global loading [;g
of every node. In this case, the power loss is not taken
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Algorithm 1 Implemented Q-Learning Algorithm
Arbitrarily initialize Q(S,A), where S is present state and A is
corresponding action

Repeat the following for every episode:

Initialize the state S

Select A from S using the Epsilon greedy policy

Perform action A and observe its corresponding response R and its
new state S’

Update Q using, Q(S,A)<—Q(S,A)+B[R+y maxy Q(S’,A’)-Q(S,A)],
S<S’

where, y is rate reward and B is the rate of learning

_‘u . Actions RL agent 1 rewards /
N (QL-based model) / /

Change Droops D1, D2, D3 Compute | li-lis| and Power Loss

Fig. 8. Proposed Q-Learning algorithm with application to DC Microgrid.
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Fig. 9. Waveforms for achieving the minimization of objective Oq,

(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops D, D, D3 all the nodes, and
(d) Minimization of reward function.

into consideration. The objective function O; taken into
consideration is given as,

3
O =Yl —Iigl.

i=1

(28)

In this objective, the agent varies the value of droop for
large number of episodes and performs the actions such that
the objective O; is minimized. The corresponding waveforms
of cumulative reward, droop set points, epsilon and reward
minimization’s are shown in Fig. 9. It can be seen that three
droop values are obtained which will lead to a minimal dif-
ference between the local and global loading set-points. These
values are normalized and must be re-scaled between the
[—8, 8] value to attain the actual droop values. The value
epsilon decides how a particular action is selected. Higher
the value of epsilon, higher will be the random action of the
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Fig. 10.  Waveforms for achieving the minimization of objective Oj,

(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops Dj, D, D3 all the nodes, and
(d) Minimization of reward function.

agent. As the value of epsilon reduces, the agent will become
more and more knowledgeable about how to vary the droops
to achieve the desired reduction of the objective.

Case b: In this case, the single objective is chosen which
targets on minimizing the power loss. Hence, the action will
converge towards having such a droop value for each of
the node such that the power loss is minimal. The objective
function O; is as follows:

3
01=" " |PLossil
i=1

where, P, 18 the loss in the terminal connecting the node
to the DC bus. This loss is to be minimized. Similar to the
previous case, the waveforms corresponding the action and
convergence to optimal droops which lead to minimal power
loss is shown in Fig. 10.

Case c: Finally, a multi-objective reward function is cho-
sen which consists of both minimizing of the global and local
loading difference and also the power losses. The objective
function consist of the summation of objectives O; and O».
This will lead to a droop value which corresponds to a
consensus in local and global loading and lesser power loss.

3 3
03 =Y i = lig) + Y |PLossl
i=1 j

i=1

(29)

(30)

The corresponding waveforms are shown in Fig. 11. It can
be inferred that the droop values will lead to minimal loss
and minimal possible difference between the local and global
loading. The overall proposed control with the primary and
physical layers is shown in Fig. 3.

VII. SIMULATION RESULTS

The proposed RLIC has been validate through a MATLAB
simulation of a 4.5kW three node DC microgrid. The input
voltages of source is 60V and the rated currents are (a) 40A
for all nodes in all cases and, (b) 10A for nodes-1 and 2
and 40A for node-3 when testing for proportional load shar-
ing. The line resistance between the nodes to the DC bus is
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TABLE II
SIMULATION PARAMETERS
Symbol Quantity Value
Viess Vie Desired DC Bus Voltage 120V
Vs Input Source Voltage 60V
L Inductance of the converter 2mH
C Capacitance of converter 100pF
Ry; (i=1,3) |Line resistances for node-1,2 and 3 19,29, 30Q
i, Bi Sliding mode reaching dynamics 17000, 2000
Bi, i Surface parameters 6, 10~8
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Fig. 11.  Waveforms for achieving the minimization of objective O3,

(a) Cumulative reward, (b) Variation of epsilon with respect to the episodes,
(c) Corresponding values of droops D, D, D3 all the nodes, and
(d) Minimization of reward function.
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Fig. 12.  Waveforms without droop control, Rj,.,q = 5.

192, 22 and 322 for nodes —1, 2 and 3 respectively. The pri-
mary control consist of a robust sliding mode control and the
secondary control consists of the integrated proportional inte-
gral control assisted by the DNN surrogate and Q learning
algorithm. The simulation results has been classified into the
following subsections.

A. Without Droop and Secondary Control

The voltage, current and power loss waveforms has been
shown in Fig. 12. It can be seen that in the absence of any
droop, the voltage of DC bus remains 120V, but the current
is not shared proportionally. It can be seen that the node-1 is
more loaded compared to the nodes-2 and 3. The total power
loss is about 750W as the terminal voltage of all nodes is the
same.
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Fig. 13. Waveforms with constant droop in all nodes: Droop increased
simultaneously, and DC bus voltage degrades.

B. With Constant Droop in All the Nodes

In order to achieve equal load sharing, the droop at all the
nodes is increased simultaneously. The higher the droop con-
stant, more proportional can be the load sharing at the cost of
degrading DC bus voltage, as can be observed from Fig. 13.
The power loss also reduces because of the terminal DC bus
voltage reduction. The degradation of the DC bus voltage puts
a limit to the droop value used.

C. Dynamic Droop Control and All Nodes Are of Same
Rating

In this case, the proportional integral secondary control is
implemented to regulate the droop values. Hence, the value of
droop constants can either be positive or negative. The sec-
ondary control is activated after T=0.125s. Hence, the load
sharing becomes equal and the terminal voltage change due
to dynamic droop as shown in Fig. 14. But it should also
be seen that the losses increases from about 800W initially
to 960W. This is about 20% more losses compared to the
implementation without dynamic droop.

D. Dynamic Droop With the Farther Node Is Higher Rating

The losses further increase if we consider that the node
which is farther from the load has higher rating. In this case,
the farther node has to provide more current, for proportional
load sharing and this will cause an increase of losses. In this
case we consider that the Node-3 is 2.5kW while nodes 1 and
2 are 600W. The increase in losses are shown in Fig. 15.

Case a (Optimized droop for equal load sharing-O1): The
proposed control is implemented with optimized droops to
achieve equal load sharing. The currents from all the nodes
are almost the same. The highly loaded node becomes less
loaded and the load of node-3 is increased. The correspond-
ing waveforms are shown in Fig. 16. It can be observed that
the current from each node is about 12A and the power loss
is 825W.

Case b (Optimized droop for least power loss-Objective
0,): The objective O; is to achieve least power loss during
power distribution. This is achieved by the proposed control by
making the Q-Learning algorithm’s objective to minimize O5.
The waveforms are shown in Fig. 17. It must be observed that
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implemented after t=0.12s, the currents are shared equally but power loss
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Fig. 16. Waveforms for Case a, optimized droop to achieve objective O1,

RLIC implemented at t=0.1s, Ry ,qq = 5.

the power loss is the least among all the simulation have con-
ducted so far, which is about 700W. Now, in order to achieve
load sharing along with minimal power loss, the objective O3
is used.

Case c¢ (Optimized droop for equal load sharing and
reduced power loss-Objective O3z ): This is the simulation for
case c. In this, the objective for Q-Learning is O3, which
is reduced loss and improved load sharing. The simulation
waveforms are shown in Fig. 18. It must be observed that the
load sharing is improved than case b, and losses have reduced
than case-a. The current from node-1 is 14A, from node-2
is 13A and from node-3 is 10A. The power loss is 760W.
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0O,-least power loss, minimal power loss must be observed, RLIC imple-
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Hence, depending on the usage, the objective function can be
chosen. The proposed control has been proved to reduce the
distribution power loss while maintaining load sharing the DC
microgrids. A comparison of the proposed RLIC with different
other methods in literature is presented in Table III.

VIII. CONCLUSION

The efficiency of DC microgrid largely depends on the
droop constants as it leads to different node voltages which
leads to circulating currents among the nodes. In order to
reduce the losses, a RLIC has been proposed which con-
sists of a DNN based surrogate model to mimic the behavior
of global nodes, and Q-Learning algorithm which optimizes
the values of droop constants to the node. This integrated
secondary control provides reference to the proposed robust
sliding mode control based primary control, which is robust
and drives the nodes to desired voltage reference. Several cases
have been verified and it can be concluded that the power
loss reduces significantly from 970W to 760W for the same
operating conditions. Hence, the power loss of about 210W is
mitigated, which is about 21% reduction of losses. Hence, the
proposed RLIC has been proved to be effective in improving
the efficiency of the microgrid as a whole. As a future work,
the proposed control can be extended to switch between the
optimized droop and consensus based droop value based on
the loading and the DC bus voltage regulation conditions.
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TABLE III
COMPARISON
Parameter [33] [34] [35] [36] Proposed RLIC
Primary Controller Droop based Sliding | Multi-Objective Dual-Loop PI control and Droop | Robust Sliding mode
Mode Controller Droop Proportional Integral control
Secondary Not available No Proportional Integral Consensus Control Q-Learning
Controller
Distribution Not considered Degrades with load- | Degrades with load- | Not estimated Highly improved
efficiency ing ing
Node voltage differ- | Increases with load- | Increases depending | Increases as an aver- | Will increase with | Varied to get the best
ence ing on droop gains age of the microgrid | loading efficiency
cluster
Proportional load | Not achieved Achieved Achieved Achieved Achieved during
sharing peak loading
conditions

Ease of implementa-
tion

Easier- no communi-
cation

Challenging to keep
good voltage regula-
tion

Complex to tune sec-
ondary control when
the number of node
increases

Designing consensus
control can be com-
plex when scaled up

Easy deployment to
existing systems.
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