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Abstract

Multiscale modeling of plasticity in polycrystalline metals is a long-standing challenge in part
because of the lack of an accepted grain boundary descriptor, which has hindered the bridging of
scales between atomistic simulations and meso-scale discrete dislocation dynamics (DDD)
models. While grain boundary dislocations (GBDs) for low angle grain boundaries can be
ascertained by Burgers circuit analyses, the dislocation structures of high angle grain boundaries
have remained elusive because of overlapping dislocation core fields. Here, we use convolutional
neural networks (CNNs) to establish the locations of GBDs responsible for the misorientations of
<001> symmetrical-tilt Cu grain boundaries, from the local atomistic stress fields modeled with
molecular dynamics (MD) simulations. We achieve accurate CNN predictions of GBDs with sub-
angstrom resolution across an extensive set of low- to high-tilt-angle grain boundaries through a
training dataset, generated from superposing continuum-representations of the MD stress fields of
single dislocations that consider the contributions of both the Volterra and dislocation core fields.
The approach paves the way for dislocation representations of the atomistic grain boundary
structures modeled by MD simulations or density functional theory (DFT) calculations in

mesoscale DDD models to elucidate multiscale plasticity effects.
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1. Introduction

Grain boundaries of polycrystalline metals are among the most well studied but least
understood material interfaces. It is now well accepted that plasticity at the macroscale originates
from the motion and interaction of dislocations across grains through atomistic mechanisms, such
as dislocation absorption, transmission, emission or pile-up at the grain boundaries [1-3]. Each of
these mechanisms is highly sensitive to the atomistic structure of the grain boundary, and the
structure of the boundary is in turn altered by the ensuing dislocation-grain boundary interactions
[4-10]. Molecular dynamics (MD) simulations can capture this continuously evolving atomistic
structure of the grain boundary, but upscaling these simulations to the meso-scale through discrete
dislocation dynamics (DDD) models poses a significant challenge since treatment of the
dislocation-grain boundary interactions often rely on a predefined set of phenomenological rules

[11-16].

Studies show that the evolving atomistic structure of the grain boundary with dislocation
emission, absorption or transmission can be attributed to its evolving dislocation content [17-19].
This supports the early notion that the tilt and twist misorientation between two crystalline lattices
are fundamentally created by arrays of intrinsic grain boundary dislocations (GBDs) adjoining the
boundary [20,21]. Such dislocation-based grain boundary descriptors, however, are problematic
for higher angle grain boundaries. While the atomistic structures of low angle grain boundaries are
reasonably well-defined by their linear elastic displacement fields, the close proximity between
GBDs in higher angle grain boundaries result in overlapping cores, which clouds the relationship

between the linear elastic fields and the dislocation structure of the boundary [19]. In addition,



resolution of the net or resultant Burgers vector about these high angle grain boundaries into
Burgers vectors of discrete dislocations is not unique, since one could potentially achieve the same
misorientation angle with alternative sets of GBDs [20,21]. Because of these issues, later studies
have described the grain boundary as a combination of building blocks or structural units (SUs),
with each SU representing particular arrangements of a limited number of atoms [22-26].
Fundamental properties of the boundary have been linked to the presence of certain SUs — for
example, the propensity to emit Shockley partials under tension and compression has been
attributed to the presence of E- and A-type SUs, respectively, along symmetrical-tilt <110> grain
boundaries [27,28]. More recently, studies have established the local atomistic stress state along a
grain boundary as a representation of the Cauchy stress tensor for the calculation of continuum
traction fields, which ultimately governs the ability of grain boundaries to emit, absorb, or transmit
dislocations [28-30]. Nevertheless, tracking the continuously evolving SUs or traction signatures
along each boundary poses a challenge in DDD simulations. In contrast, a dislocation-based
descriptor provides a representation of the grain boundary in terms of fundamental entities (i.e.,

dislocations) already explicitly modeled in DDD simulations.

In the presence of a dislocation, the distortion resulting from displacement of atoms in a
crystal from their perfect lattice sites produces an elastic Volterra stress field outside the core of
the dislocation [31,32]. Within a radius of ~10 to 50 burgers vector, A, from the dislocation line,
nonlinear dislocation core configurations give rise to an additional linear elastic dislocation core
field, which is superposed onto the Volterra field [33,34]. Although the core-field is shorter range
than the Volterra field, it significantly influences the forces between dislocations at close range,
such as during dislocation pile-up, and is conceivably the dominant component in high angle grain

boundaries with closely-spaced GBDs. By extension, a GBD therefore acts as a source of internal



stress along the grain boundary, with its stress signature arising from its core and Volterra fields.
The combined interaction of an array of GBDs constituting a grain boundary is ultimately

responsible for the internal stress field (Ag) near a grain boundary [28-30].

Elucidating the dislocation structure of a grain boundary from its atomistic stress field is a
non-trivial inverse problem, particularly in the presence of overlapping dislocation core fields.
Recent studies in machine learning show that deep neural network architectures are capable of
solving a wide variety of inverse problems. For example, neural networks have been used to predict
phase diagrams and phase transitions [35], grain boundary energy [36], grain boundary
segregations [37], grain boundary damage [38], atomistic stresses [39], deformation constitutive
behavior of materials [40-44], as well as the potential energy and atomic force of metals modeled
in density functional theory (DFT) [45]. Here, we adopt a convolutional neural network (CNN) for
machine learning to detect the presence, and predict the locations, of GBDs (output) from atomistic
stress information (input) across an extensive range of low to high angle <001> symmetrical-tilt
grain boundaries. Section 2 details the modeling of the grain boundaries with MD simulations.
Section 3 describes the CNN architecture, along with the training datasets of the neural network
generated from the superposition of single (isolated) dislocation stress fields. We present results
for our neural network predictions of GBDs in Section 4, and introduce a continuum representation
of the stress fields of discrete dislocations to improve training of our neural network for high-tilt-
angle boundaries. In Section 5, we discuss the implications of our neural network in obtaining
dislocation representations of grain boundaries, especially in the bridging of scales between
atomistic (MD, DFT) simulations and DDD models at the meso-scale. Section 6 concludes with a

summary.

2.  Grain Boundary Modeling



While edge dislocations tend to dissociate to form partial dislocations along <110> grain
boundaries [28], dislocations along <001> grain boundaries retain their distinctive edge character
and have Burgers vector perpendicular to the plane of the grain boundary. We create a series of
<001> symmetrical-tilt Cu grain boundary model structures using the classical MD simulator
LAMMPS [46], where the Embedded Atom Method (EAM) potential governs the interatomic
interactions between Cu atoms [47]. This potential closely reproduces the bulk lattice (3.615 A)
and elastic constants (C;; = 167 GPa, C;, = 124 GPa, C4y = 76 GPa) of Cu, which are
comparable to experimental measurements and tight-binding calculations [48-50]. We create each

bicrystal model structure by first rotating two perfect face-centered-cubic (FCC) Cu single crystals
by a tilt angle i% about the [001] direction (As-axis), with the grain boundary located along the

A -axis. We displace the top crystal laterally with respect to the bottom crystal in 1% increments
of the unit structural length of the grain boundary along the A; direction, and remove any
overlapping atoms. This process is iteratively repeated to generate a multiplicity of possible

metastable grain boundary states with the same A.

Each resulting grain boundary configuration is subjected to energy minimization in MD, and
the model configuration with the lowest energy is selected as the representative Cu grain boundary
structure with that particular tilt angle. A total of 18 minimum energy grain boundary structures
are generated through this process, with tilt angles varying from A = 3.28° to 53.13°, to cover the
spectrum of low- (A < 14.25°), moderate- (16.26° < A < 22.62°), and high-tilt-angle (A >
28.06°) grain boundaries (Fig. 1). Additionally, a grain boundary structure with a very low tilt
angle of A = 0.818° is also created, and is considered as an “isolated” edge dislocation structure

— the periodic spacing between these “isolated” edge dislocations is ~25 nm, which is sufficiently



far for the MD stress fields of these periodic dislocation images (constructed from virial theorem)

to be treated as non-interacting (see Fig. S1 of the Supplementary Materials).

3.  Convolution Neural Network
The dislocation content of a grain boundary with tilt rotation A can be quantified by the classical

Frank-Bilby equation [51],
Az = A/ (2sin%) 1)

where Aj is the mean separation between dislocations in the boundary, and A is the magnitude of
a Burgers vector of a perfect dislocation in the crystal. This equation suggests that the tilt angle of
each grain boundary must be partitioned among several sets of parallel edge dislocations. In
atomistic simulations and microscopy experiments, one can perform a Burgers circuit analysis
(black circles in Fig. 1b-top) to confirm the Burgers vector and hence the presence of individual
GBDs. By constructing multiple non-overlapping Burgers circuits, and identifying those that
contain a dislocation, one can further pinpoint the location of individual GBDs with atomic
precision. Analysis tools based on this approach, such as the dislocation extraction algorithm
(DXA) and the on-the-fly dislocation detection algorithm (ODDA), are able to quantify the
approximate dislocation locations from atomic position information [52,53]. We include the DXA-
predicted GBD locations along our low- to moderate-tilt-angle grain boundaries in Fig. la,b.
Predictions from the Burgers circuit analysis, however, fall short for high angle grain boundaries
(e.g. Fig. 1¢) — the GBDs are no longer distinct defects due to overlapping dislocation cores and
the absence of perfect FCC crystal lattice separating the disordered regimes. Nevertheless, since
the GBDs are fundamental elements of a grain boundary structure that create the tilt (and twist)

misorientation between two crystalline lattices adjoining the boundary, the observed atomistic



grain boundary field stresses and associated grain boundary tractions [28,29] should originate from
these intrinsic GBDs. Here, we detail the training, validation and testing of a convolutional neural
network (CNN) to establish the dislocation structures of low- to high-tilt-angle grain boundaries

(output) from the grain boundary field stresses (input).
3.1 Neural network architecture

The nonlinear stress fields (A1, A;,, Ay;) near the grain boundaries are fed to a CNN to detect the
presence of a GBD within the input images and to predict its (A, A,) location. In between the input
and output layers are the hidden layers starting with a convolutional tool made up of many repeated
convolution, ReLU activation, and max pooling layers for feature extraction, as depicted in Fig. 2.
Similar to previously employed CNNs for image classification [54], each convolution layer is a
filter represented by a matrix of weights, which convolves over the mappings in the previous layer.
The ReLU activation layer after each convolution enables the CNN to learn complex functions
more efficiently by introducing nonlinearities to the numerical mappings, while the maxpool layers
reduce the spatial dimensions of the mappings by selecting the maximum values and provide the
translation invariance characteristic of the CNN. In the final layer of the convolutional tool, we
forgo the maxpool layer because of the limited spatial dimensions of its preceding input, and
separately connect the final ReLU activation layer to two parallel and independent fully-connected
(FC) layers for dimensionality reduction and feature combination. The first FC layer is subjected
to a softmax activation function, which provides a probabilistic interpretation of output values
through a 2x1 vector with probabilities denoting the presence (A,) and absence (A;) of a
dislocation (Ay + A; = 1). The second FC layer outputs a 2x1 vector representing the (A;, A)
location of the detected GBD; its output is set to a location of (0,0) and ignored in the absence of

a dislocation. During training of the CNN, the initially randomized weights of the model are



optimized through backpropagation using the Adam’s optimizer to minimize a two-part loss
function, comprising of a cross-entropy loss for the classification problem of dislocation detection
from the first FC layer, and a smooth L1 loss for the (A;, A;) dislocation location prediction from

the second FC layer, with equal weights assigned to the respective loss components.
3.2 Training dataset generation

Our input-output training dataset for the CNN is generated by superposing the stress field of
individual edge dislocations with random spatial arrangements along the A, -axis (Fig. 3-top) to
create multiple instantiations of possible “grain boundary” stress fields (Fig. 3-bottom). The
analytical expression for the linear elastic Volterra stress field of isolated edge dislocations is
commonly used to describe dislocation interactions in DDD simulations [31,32]. Aside from the
Volterra field, however, dislocations possess a core field, which can be significant up to a distance
of ten Burgers vector from the dislocation line [33]. We note that the periodic spacing between
GBDs, Aj, falls below twice this distance even for very low angle grain boundaries (Table 1),
suggesting the importance of core field effects. We further illustrate this by comparing the stress
distributions associated with the Volterra field versus MD field (which incorporates core effects)
of an isolated edge dislocation, centered along the A;-axis, in Figs. S1 and S2 of the Supplementary
Materials. We observe that the stress contours are generally well-described by the Volterra field
after a certain distance from the dislocation line, but the stress distributions are very different

within the core region.

Prior studies have represented the contribution of core effects using linear anisotropic
elasticity theory with force and dislocation dipoles; this contribution is superposed on the Volterra
field to describe the overall dislocation field stresses and strains [33,34]. Here, we directly account
for both the core and Volterra fields using the MD stress field of an isolated edge dislocation

8



computed from Virial theorem (Fig. S1b of the Supplementary Materials), with Voronoi
tessellation cells over each atom. We subdivide this Voronoi stress field into 0.5 x 0.5 A% pixels,
and average the Az stresses within each pixel. For each 200 x 200 A% simulated “grain boundary”

structure represented by random spatial distributions of edge dislocations along the A, -axis (Fig.
3-top), we superpose the pixelated stresses centered about each edge dislocation to obtain the
“grain boundary” stress field (Fig. 3-bottom). We train our CNN to predict the presence of a
dislocation, and its subsequent location, if its center core lies within a 20 X 20 pixel® (10 x 10 A?)
sample representing a detection window (Fig. 3-bottom). We also ensure that no more than one
dislocation is present within each detection window in our training dataset. We remark that the
pixel size selected has to be sufficiently small to capture the features of the object (GBD) being
detected, since too large of a pixel would average out the heterogeneous stress distributions and
cause issues with localization of the GBDs. However, too small of a pixel would significantly
increase the computational expense to train the CNN. Our heuristic choice of a pixel size of
0.5x0.5A2, which is several-folds smaller than the Voronoi cell area, allows the large stress field
variations within the core of each GBD to be adequately captured. The localization predictions are

expected to have an intrinsic uncertainty of ~0.5A.

3.3 Hyperparameter testing

We generate 9,000 samples, with an equal split between samples with and without dislocations to
ensure a balanced dataset. We subdivide 60%, 20%, and 20% of these samples into training,
validation, and testing datasets, respectively. To optimize the CNN architecture, we perform
hyperparameter testing by systematically varying the learning rate, number of convolutional
layers, and the type of activation layers; we also perform a limited study on the effects of the max

pooling layer by changing the default kernel (size 2 X 2 and stride 2) only for the third convolution



layer (if applicable). We quantify the CNN performance based on its ability to (a) correctly detect
the presence or absence of dislocations within the sampling image (detection accuracy), as well as
(b) predict the dislocation location within a 4 x 4 pixel® (2 x 2 A?) square grid from its core center
for samples containing dislocations (localization accuracy). We train each model on the training
dataset for 100 epochs and we select the epoch with the lowest validation loss from the validation
dataset. We further confirm that this validation loss is similar to the loss from the testing dataset
at the 100 epoch, which suggests generalizability of the CNN to unseen data. Results of the
hyperparameter study are summarized in Table S1 of the Supplementary Materials. Our studies
show that the learning rate is the most critical hyperparameter (optimal at 1e-5), followed by the
number of convolutional layers (= 3 layers are necessary). Our final CNN architecture has a
learning rate of le-5, with 4 convolutional layers, each coupled to a ReLU activation layer,
followed by a max pooling kernel of size 2 X 2 and stride 2, except for the final convolutional
layer where the activation layer is separately coupled to two parallel FC layers. Because of the low
computational cost of training the neural network (longest runtime to train a CNN for 100 epochs
with a batch size of one is 170.18 minutes on a 3.70 GHz Intel 19-10900X processor with 10 cores)
and the near-perfect predictive accuracies already achieved with this neural network architecture,
we did not further optimize the remaining hyperparameters, such as the type of optimizer, training
step size, and accuracy variance in the training cycle.

4.  Results

4.1 Low to moderate angle grain boundaries

Our CNN architectures in Section 3.3 are trained on datasets generated by randomly positioning
edge dislocations along the A;-axis (generally, A; # A, # A5 ... ... in Fig. 3-top), and superposing

the discrete (pixelated) MD stress fields for isolated edge dislocations (Fig. 3-bottom).
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Recognizing that the <001> symmetrical-tilt Cu grain boundary structures of interest comprise of
only periodic arrays of GBDs with fixed periodicity Az, we repeat the training process outlined in

Section 3.3 to train a new CNN based on periodically-distributed edge dislocations along the A -
axis — each training data has random but equal GBD spacings (A; = A, = A5 ... ... in Fig. 3-top).
We find that this new CNN, trained on the periodic dataset, outperforms the previous CNN trained
on the non-periodic dataset (Section 3.3). We then elucidate the ability of this newly-trained CNN
to accurately detect and quantify the dislocation structures of <001> symmetrical-tilt grain
boundaries of varying tilt angles, based on the MD-computed grain boundary stresses as the input

to the CNN.

We first focus on low- to moderate-tilt-angle grain boundaries of A = 3.28° to 22.62° where
the location of GBDs can still be ascertained by DXA analysis. However, the resolution of DXA
analysis is limited to the size of the smallest possible Burgers circuit that can be constructed; a
more accurate assessment of the ground truth location for these GBDs can be estimated from the
inflection point between the maximum tensile and compressive A and A,, stresses along A, = 0
(Figs. S1 and S2 of the Supplementary Materials). Based on this “ground truth” representation of
the GBD locations, we quantify the true positive and true negative dislocation detection accuracies
by sliding a 10 x 10 A? detection window in single pixel (0.5 x 0.5 A?) increments along the A -
and A,-axis of each grain boundary structure. For samples where a dislocation is present within
the detection window, we also compute the localization error as the average difference between
the predicted dislocation location and its “actual” ground truth location. As summarized in Table
1, our CNN trained on the discrete (pixelated) superposed stress field of dislocation arrays is able
to detect with 100% accuracy the presence of an edge dislocation across these grain boundary

structures, albeit with an observable false positive prediction (~15%). The localization predictions
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are surprisingly accurate, with mean location predictions residing well within a single 0.5 X 0.5 A?

pixel from the ground truth location, which is the current limit of our localization resolution.

We show in Fig. 4 a sampling of detection windows for grain boundaries with varying tilt
angles where true positive (colored boxes) dislocations are detected, along with the predicted
locations (corresponding colored dislocation symbols) of these detections. We remark that the false
positive detections are consistently associated with sampling windows just outside the +1 A error
bound (solid black box) centered at the core of the GBD (black cross). Interestingly, the
localization predictions are very accurate, providing a mean GBD location (green dislocation
symbol) that almost overlaps with the actual ground truth predictions, even at moderate grain
boundary tilt angles of A = 16.26° and 22.62° (Fig. 4c and 4d). This high accuracy can be
attributed to the generally similar grain boundary stress fields from MD simulations versus the
reconstructed stress fields from superposing the pixelated MD stress fields of isolated edge
dislocations, as shown in Fig. 5, since the superposed fields are used for the training of our CNN.
We observe minor variations in the localization predictions (green dislocation symbols) among
neighboring GBDs along each of the symmetrical-tilt grain boundaries, which we attribute to small
translation of pixels because the grain boundaries modeled in MD do not have periodicities that
are exactly divisible by the pixel dimension of 0.5A. Close examination also shows that the
dislocation cores of these superposed fields are slightly more diffused compared to the actual MD
grain boundaries, and have a distinct neutral zone within its compressive core. Our MD simulations
show that this neutral zone dissipates for tilt angles of A = 5.45° and beyond, suggesting some
structural changes to the core even at these low tilt angles. The presence of this neutral zone,

however, has little apparent bearing on the CNN’s ability to detect and localize the GBDs.
4.2 High angle grain boundaries
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DXA analysis cannot identify the dislocation structures of high angle grain boundaries beyond
A > 22.62°, since the cores of the closely-spaced GBDs are now overlapping. In contrast, our
trained CNN is able to detect the presence of GBDs in both the A = 28.06° and 36.85° grain
boundaries with very high accuracy, as shown in Table 1. While the exact GBD location can be
ascertained with high confidence for the A = 28.06° grain boundary, poor localization predictions
are obtained for the A = 36.85° grain boundary. Figure 6a and 6b shows the sampling of true
positive detection windows (colored boxes) for both these high-tilt-angle grain boundaries, along
with the corresponding locations of these detected dislocations (colored dislocation symbols). For
the A = 28.06° grain boundary, there is surprisingly very limited spread in the predicted GBD
locations, suggesting high accuracy of the CNN even when the cores are overlapping. In contrast,
we observe a huge scatter in dislocation location predictions for the A = 36.86° grain boundary
with average predictions (green dislocation symbol) falling well outside of the +1 A error bound
(solid black box) centered at the core of the GBD, which suggests a lack of confidence in the CNN

predictions.

To elucidate the contrasting performance of the CNN towards both these high-tilt-angle
boundaries, we compare the reconstructed stress fields of these boundaries from superposition of
the periodic GBDs versus the actual MD stress fields (Fig. 6¢ and 6d). Unlike low- to moderate-
tilt-angle grain boundaries, distinct differences are now observed between the superposed and
actual MD grain boundary fields for both these high-tilt-angle grain boundaries. For the A =
28.06° grain boundary, there is still good general agreement between the superposed and actual
MD stress fields within the core of the GBDs, which allows the neural network to correctly localize
the GBDs, but the reconstructed field increasingly deviates from the actual MD stress field with

radial distance from the center cores of these GBDs. For the A = 36.86° grain boundary, there is
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now complete lack of correlation between the superposed stress field used in the training dataset
of the CNN and the actual MD grain boundary field, which explains the poor predictive
localization performance of the CNN. We attribute the discrepancies between the superposed and
MD fields to: (a) changes to the dislocation core structure with increasing proximity/overlap of the
GBDs, and (b) numerical errors associated with superposition of the discrete stress fields for
isolated edge dislocations used for the training of the CNN. The former could warrant
incorporating the MD fields of closely-spaced but clearly identifiable dislocation structures within
the training dataset, and is discussed in Section 5. The latter contributes to an accumulation of
error with increasing density of superposed GBDs, and hence is exacerbated for high-tilt-angle

grain boundaries with shorter grain boundary period, Az.

One distinct characteristic of GBDs is the clear demarcation between tension and
compression zones. We theorize that the distinct patterns associated with positive and negative
contours of individual Ag stress components near the grain boundary is, to a first order, the key
feature that enables the neural network to pinpoint the exact location of GBDs. Accordingly, we
delineate the grain boundary stress field into tension (Ag > 1 GPa), neutral (|Ag| < 1 GPa), and
compression (Ag < —1 GPa) zones. For grain boundaries with low- and moderate-tilt-angles in
Fig. 7, we can clearly identify unique stress signatures associated with individual GBDs along the
boundary which are exhibited by both the MD and superposed fields. For the high-tilt-angle grain
boundary with A = 28.06° in Fig. 8, distinctive tension, neutral and compression zones are still
exhibited by both the MD and superposed Ay field, though some background noise is now
observed for the latter. This background noise permeates the entire superposed stress field for the

A = 36.86° grain boundary, which clouds the compression-tension stress patterns and the ability

of a CNN to identify the GBD signatures for these high-tilt-angle boundaries.
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4.3 Continuum field representation of dislocations

To increase the accuracy of our superposed stress fields in our training dataset for the CNN, we
introduce a spectral (field projection) method [28-30] to obtain a continuum-representation of the

stress-field (A{‘_&) of a single isolated edge dislocation from the discrete atomistic stress field

modeled in MD ( ) The 2D continuum stress field can be represented by a Fourier series,

=yA_,vA_ AR sm( AAA )sm(AAAZ) + AR sin (AIZAl) cos (AiAZ) +

AR cos (AI_}Al) sin (A 1;1&2) + A% cos (i[fl) cos (A 1;1&2) (2)

where (Air , Any , Ars , Ais ) are the unknown coefficients to be determined using the orthogonality

rule. By approximating Af}-\ = AQ\A when averaged over the periodic domain,

=~ M 1 A = AA AAA -

AR —Eff_AAﬁ}\A sm( Al cos( AZ)AAlAAZ o
~ M 1 A =3 AAA A AA

Ay = [ AR cos (=) sin(-2)AR AR,

Based on equilibrium conditions, the average normal and shear tractions along each cross-sectional
cut parallel to the A; - or A,-axis should be zero for a single edge dislocation with its core centered
about the A;-axis — a condition that is clearly not satisfied by our superposed discrete (pixelated)
Ay stress fields, particularly for the high-tilt-angle grain boundaries in Fig. 8. In addition, the A;;
field for a single isolated edge dislocation with Burgers vector normal to the A;-axis generally has
equal magnitude but opposite sign about the A,-axis (Figs. S1 and S2 of the Supplementary
Materials), except at distances very close to the dislocation core. This lack of strict enforcement

of equilibrium and symmetry constraints for the atomistic (virial) stress fields of an isolated
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dislocation results in significant accumulation of error once we superpose these discrete fields for
the training of the CNN, as shown by the increasing background noise of the superposed fields
with grain boundary tilt-angle in Figs. 7 and 8. Here, we set A}z = Alt = 0, A2% = A?% = 0, and
Al =A% =Af =A% =0 in (2) and (3) to enforce the equilibrium constraints of
[ A1 AA, =0, [Ay), AA, =0, and [ Ay, AA; = [ A, AA, =0, respectively. In addition, we
enforce the symmetry constraint resulting in [ A;; AA; ~ 0 by setting A}}) = At} = 0in (2) and
(3). We find that the AZ field convergences between A = A = ~150 to 250 terms, and we select

A = A =250 terms in our Fourier construction of A%. Since A} is continuous and satisfies the

equilibrium equations, we consider (2) to provide a continuum-equivalent representation of the

combined core and Volterra field of an isolated edge dislocation.

The periodicity of our Fourier series is defined on the interval (—A, A) along both the A, - and
A,-directions. As such, A has to be sufficiently large for AIQ\A to dissipate so that periodic images
of the edge dislocation through the Fourier series will not influence the stress field in the A,-
direction. Along the A;-axis, however, we seek to superimpose multiple equally-spaced edge
dislocations (representing the periodic grain boundary spacing Az) to generate training sets for our
CNN. These periods will necessarily be significantly shorter than the Fourier period of 2A, and we
carefully select the value of A for each training data so that the Fourier representation of the edge
dislocation period A; will be approximately in discrete multiples of A. This approach allows us to
superpose the continuum stress field AA‘% of a significantly reduced set of discrete edge dislocations
within the bounds of —A < A; < A, since the stress fields of the edge dislocations beyond |4 | =

A are implicitly accounted for with the periodic Fourier representation of A,%.
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We elucidate the improved accuracy of (2) by comparing the compression-neutral-tension
stress patterns for this continuum field versus the MD field across the low- to high-tilt-angle grain
boundaries in Figs. 7 and 8. We observe a significant improvement in the GBD field representation
even for the low- and moderate-tilt-angle boundaries of A = 11.42° and 16.26° in Fig. 7 — the
features associated with the superposed continuum field are in much better agreement with the
MD field compared to the superposed discrete field. Even for the high-tilt-angle boundaries of
A =28.06° and 36.86° in Fig. 8, the background noise in the respective superposed atomistic stress
field is now completely suppressed for the superposed continuum field due to the enforced
equilibrium and symmetry constraints in the spectral treatment, which allows the distinctive

tension-compression features associated with the GBDs to re-emerge.

Following the procedure outlined in Section 3, we generate 9,000 samples of the continuum-
equivalent stress fields of periodically-spaced edge dislocations for the training, validation, and
testing of our CNN, and apply this CNN towards the MD grain boundary models across the range
of A. Our results summarized in Table 1 show that re-training of the CNN based on the continuum
stress fields of superposed edge dislocations significantly improves the true negative dislocation
detections (by ~13%) while maintaining high true positive dislocation detection accuracies. The
mean localization errors are still mostly within one or two pixels from the core, but the localization
predictions for A = 36.86°, which is the highest tilt angle in Table 1, is markedly improved: ~94%
of the correctly predicted dislocations now reside within +1 A of the actual GBD, compared to a

mere ~2% when the CNN was trained on the discrete dislocation field.

With this improved quality of the training dataset, we show a sampling of the predictions for
various sliding detection widows for both A = 28.06° and 36.86° in Fig. 9. We now obtain very

consistent localization predictions with limited scatter for both boundaries; the average localization
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predictions of the CNN (green dislocation symbols) are now very close to the actual dislocation
location (cross symbol) at the center of the error bounding box (black). We further push the limits
our CNN predictions by examining the localization capabilities when applied to a grain boundary
with a very high tilt angle of A = 53.13°. While we cannot ascertain with high confidence the
ground truth location of the GBDs along this particular grain boundary, the scatter in predictions
(magenta) across all sliding detection windows is still within reasonable limits, lending confidence
to the average predictions (green dislocation symbols) as representative of the grain boundary

dislocation structure.

5. Discussions

The multiscale plastic deformation of polycrystalline metals typically initiates from dislocation
mechanisms at the grain boundary [55-60]. One of the best approaches for establishing dislocation
theories of plasticity is through atomistic and TEM studies on the interaction between dislocations
and a single grain boundary [30,61]. However, scaling these dislocation-grain boundary interaction
mechanisms to the meso-scale (i.e., polycrystalline grain level) with DDD models has been
challenging, because of the lack of an appropriate descriptor of the grain boundary interface.
Traditionally, DDD models rely on empirical or phenomenological rules from lower-scale
atomistic calculations and experiments to govern the pile-up of dislocations at grain boundaries
and the transmission of dislocations through grain boundaries, as well as the dependence of these
mechanisms on the orientation and character of the grain boundaries [11-16]. Here, the
representation of a grain boundary with GBDs allows for the explicit modeling of unit dislocation-
grain boundary interactions in DDD models, and is a critical step towards plasticity modeling of

polycrystalline metals across scales.
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The notion of GBDs as fundamental elements of a grain boundary structure that create the
tilt and twist misorientation adjoining the boundary of two crystalline lattices has been well
demonstrated by way of atomistic simulations and transmission electron microscopy (TEM)
experiments [19,28,30]. These GBDs in turn generate the atomistic field stresses near the grain
boundary, which control fundamental mechanistic processes of dislocation emission, absorption,
and pile-up [28-30]. Elucidating the dislocation structure of a boundary from the grain boundary
field stresses is therefore an inverse problem, which is particularly challenging for high-tilt-angle
grain boundaries due to the overlapping core fields of adjacent GBDs. Our results show that the
presence and location of these GBDs across low- to high-tilt-angle grain boundaries can be
established with high confidence using CNNss, trained on a dataset generated by superposing the
continuum stress fields of unit dislocations. Our predictions capture the transition from sparsely-
separated dislocations in low angle grain boundaries, to dislocation clusters with overlapping

polymorphic cores in high angle grain boundaries.

Discrete dislocation dynamics (DDD) simulations almost universally ignore core effects, and
base the stress field around a dislocation on the analytical linear elastic Volterra solution [11-16].
However, studies have shown that core effects can be significant ~10 to 50A (~30 to 150 A) from
the dislocation line [33]. This has motivated the development of analytical solutions for the
dislocation core field as cylindrical dilatations caused by a line defect represented by unequal force
dipoles, which are in turn superposed on the Volterra field [34]. We have instead obtained a
continuum representation of the combined core and Volterra field of an isolated edge dislocation
modeled in MD through a spectral method. We find that a CNN, trained on a dataset generated by
superposing the continuum fields of randomly-spaced GBDs, is able to accurately quantify the

locations of the GBDs even for very high angle grain boundaries with overlapping core fields.
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Conversely, we have also trained a CNN based only on the Volterra analytical fields of superposed
GBDs, and our results show dramatically reduced true positive detection predictions even for low-
tilt-angle grain boundaries, with an inability of the CNN to localize the GBDs (Table S2 of the

Supplementary Materials).

Our basic assumption in generating the training dataset is that the principle of superposition
holds, and the stress field of the combined grain boundary structure can be well-represented by the
superposed stress fields of isolated edge dislocations. This simple assumption appears to be valid
for low- to moderate-tilt-angle grain boundaries, where the superposed stress fields of the isolated
dislocations closely resemble the actual virial stresses of the grain boundaries from MD
simulations (Fig. 5). For high-tilt-angle grain boundaries, however, the superposed stress field
increasingly deviates from the actual MD stress field with increasing proximity of the GBDs (Fig.
6¢,d), which suggests some levels of core structure changes associated with core-to-core
interactions. Nevertheless, the CNN is still able to predict, with high consistency, the location of
these closely-spaced GBDs in very high-tilt-angle grain boundaries (Fig. 9). Conceivably, the
neural network predictions can be further improved by incorporating the effects of core structural
changes (as a function of the tilt angle) into the training dataset. To this end, one possibility is to
train the CNN based on the MD stress fields of actual grain boundaries, although this necessitates
identifying the dislocation structures of these grain boundaries a priori. We show in Table 2 the
ability of CNNs, trained on lower tilt-angle grain boundaries (red entries) to predict the dislocation
structures of higher tilt-angle grain boundaries (black entries). Interestingly, the CNN is able to
extrapolate its detection of GBDs in high-tilt-angle grain boundaries with high accuracy, but its
localization extrapolation capabilities are limited only to the nearest few (at times, one or two)

grain boundary models ranked in ascending order of A. Conversely, training the CNN on very
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much fewer grain boundary models, but encompassing grain boundaries over a wider range of A,
allows for excellent interpolative detection and localization capabilities, as shown in Table 3. Even
with just three grain boundaries within the training dataset (red entries for CNN-2), the localization
predictions on the remaining MD grain boundaries in the testing dataset (black entries) well

exceeds 80% within the interpolative range of A.

While we base our training/testing datasets in this work on dislocation/grain boundary
structures modeled with MD simulations, we can similarly train or apply the same neural network
architecture to other atomistic models of grain boundaries to predict the corresponding GBD
structures, as long as a quantifiable measure of the atomistic stress tensor (stress-per-atom) near
the grain boundary exists. In DFT calculations, a numerical technique termed the sequential atom
removal (SAR) method was developed to reconstruct the equivalent atomistic (quantum-
mechanical) stresses near a grain boundary, in which individual atoms near the boundary were
sequentially removed to compute the pair force between atoms, while correcting for changes to the
local electron density caused by atom removal [62]. We have reproduced these atomistic stresses
from a DFT model of a symmetrical-tilt £5(310)[001] Cu grain boundary (A = 36.86°) in Fig.
10a, which are fed as inputs to our CNN trained on the superposed continuum dislocation fields in
Section 4.3. We show that this CNN is able to detect the presence of GBDs with true positive and
true negative accuracies of 100% and 90%, respectively, along with localization accuracies of
95%. We include in Fig. 10a a sampling of the true positive detection windows, along with the
corresponding location of the predicted GBDs from the DFT stress field. Results show that the
average GBD location established from the DFT stress field (green dislocation symbol) is within
~0.14 A of the average location predicted from the MD stress field in Fig. 9b — we superimpose

both these GBD predictions (denoted by red and green dislocation symbols, respectively) on a high
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resolution TEM image of the same boundary [63] in Fig. 10b. In addition to elucidating the stress
state of the grain boundary with atomistic models, experimental techniques have utilized moving
dislocations as mechanical probes, digital image correlation, or dark field in-line holography, to
achieve sub-nanometer resolution image-based local strain and stress measurements [64-67].
Recent studies have proposed a hybrid MD-TEM approach, using an artificial neural network
(ANN) trained on MD data, to quantify the atomistic stresses of a grain boundary from atomic
position information provided by TEM imaging [39]. Through our neural network approach, one
can conceivably predict the GBD structures from the experimental local stress information of these

boundaries.

The present analysis for GBD detection and localization is based on minimum energy
symmetrical-tilt <001> grain boundaries, where the GBDs are known to retain their distinctive
edge character with Burgers vector oriented perpendicular to the plane of the grain boundary — this
significantly simplifies the training dataset. Nevertheless, the study demonstrates for the first time
the unique ability of CNNs to predict and localize GBDs in high-tilt-angle grain boundaries, which
have eluded well-established approaches based on Burgers circuit analysis [52,53]. Conceivably,
the neural network can be extended to also predict the Burgers vectors of GBDs in asymmetrical
or metastable grain boundaries [68], localize partial dislocations formed by dissociated GBDs
along grain boundaries with different rotation axes (e.g. <110>) [28], or even quantify the mixed
screw and edge character of GBDs in 3D microstructures, by incorporating the relevant full/partial
and edge/screw dislocation fields within the training dataset. This systematic extension of the CNN

towards more realistic microstructures is a subject of future work.

6. Conclusion
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We have demonstrated the high accuracy of CNNs in quantifying the edge dislocation structures
across a series of <001> symmetrical-tilt Cu grain boundaries. We show that a training dataset
generated from the superposed MD stress fields of individual dislocations allows the CNN to
predict the GBD structures across a wide range of tilt angles. Training the CNN on continuum
representations of the superposed dislocation field, constrained to satisfy equilibrium and
symmetry conditions, further improves the localization accuracy, particularly when applied to
high-tilt-angle grain boundaries with overlapping core fields. This machine learning approach of
detecting the presence and identifying the locations of dislocations with sub-angstrom accuracies
is a significant improvement over prior approaches based on Burgers circuit analysis, which is
typically limited to low- and moderate-tilt-angle grain boundaries with no overlapping cores. This
representation of the atomistic structures of grain boundaries, in terms of unit dislocations as
fundamental elements of the boundary, paves the way for the bridging of scales between MD or
DFT models of grain boundaries and mesoscale DDD calculations. Such accurate quantification
of the dislocation structures of grain boundaries, and hence the local strain distributions, provides
rich fundamental insights into the underpinning dislocation mechanics to enable grain boundary
engineering.
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Table 1: Detection and localization testing accuracies across grain boundaries with various tilt-
angles (A) of a CNN trained on (a) superposed discrete dislocation stress field and (b) superposed
continuum dislocation stress field.

Train: Discrete Dislocation Stress Field Train: Continuum Dislocation Stress Field
_ Detect (%) Localize Detect (%) Localize
AC) | Ba(A) 1 A R A 2 :
True True AN AA,y True True AN AA,
positive | negative £ (A) | (A) | positive | negative Box (A) (A)
(%) (%)

3.28 63.3 100 81 95 -0.24 | 0.32 100 99 100 026 | -0.11
3.95 524 100 82 95 -0.24 | 0.33 100 99 100 0.26 | -0.11
4.24 48.8 100 81 95 -0.24 | 0.33 100 99 100 0.26 | -0.10
5.45 38.0 100 81 86 -0.02 | -0.14 99 99 81 0.12 -0.16
5.73 36.2 100 82 85 -0.06 | -0.08 97 99 83 0.14 | -0.05
6.73 30.8 100 84 85 -0.05 | -0.21 99 98 86 0.14 | -0.06
8.17 25.4 100 83 86 -0.02 | -0.13 98 98 85 0.14 | -0.05
8.80 23.6 100 83 90 0.03 | -0.09 100 98 85 0.07 | -0.10
1039 | 20.0 100 82 90 0.03 | -0.10 95 99 86 0.19 -0.14
11.42 18.2 100 83 90 0.09 | -0.02 96 99 84 0.16 | -0.10
12.68 16.4 100 84 91 0.14 | 0.03 96 99 86 0.10 | -0.02
14.25 14.6 100 85 96 0.20 | 0.01 92 99 85 0.21 -0.12
16.26 12.8 100 86 94 0.23 | 0.01 84 99 81 0.18 -0.20
18.93 11.0 100 89 89 0.08 | 0.22 87 99 80 0.10 -0.01
22.62 92 100 91 89 024 | 0.22 95 98 80 0.20 | -0.01

28.06 75 100 93 93 -0.27 | -0.14 100 97 95 0.34 0.08
36.86 57 100 97 2 -2.01 | -1.30 100 97 94 -0.04 | -0.21
Average 100 85 85 -0.12 | 0.25 96 98 88 0.17 | -0.09




Table 2: Extrapolative capabilities of a CNN trained on the stress field of actual MD grain
boundaries: Detection and localization training and testing accuracies across grain boundaries with
various tilt-angles (A). Red, bold: training dataset. Black: testing dataset.

CNN-1 CNN-2 CNN-3 CNN-4

B Detect and Localize (%) Detect and Localize (%) Detect and Localize (%) Detect and Localize (%)
AC) [ True True | £1 A | True True | £1A | True True | 1A | True True | 1A

positive | negative | Box | positive | negative | Box | positive | negative | Box | positive | negative | Box
3.28 100 100 95 100 100 88 100 100 95 100 100 100
3.95 100 100 95 100 100 89 100 100 95 100 100 100
4.24 100 100 95 100 100 90 100 100 95 100 100 100
545 99 100 97 100 100 91 100 100 96 100 100 99
5.73 99 100 93 100 100 90 100 100 96 100 100 98
6.73 100 100 96 100 100 94 100 100 97 100 100 100
8.17 100 100 94 99 100 92 100 100 926 100 100 99
8.80 94 100 94 97 100 95 100 100 100 99 100 100
10.39 93 100 87 96 100 92 99 100 99 99 100 99
11.42 99 100 90 95 100 89 100 100 98 100 100 99
12.68 99 100 88 93 100 86 100 100 96 100 100 100
14.25 93 99 79 96 100 79 91 99 95 100 100 99
16.26 89 99 47 88 100 66 81 99 75 96 100 99
18.93 93 100 32 74 100 67 83 100 52 100 100 100
22.62 96 100 17 74 100 49 78 100 33 100 100 99
28.06 94 98 13 78 100 46 82 99 3 95 99 87
36.86 97 99 21 71 100 20 79 100 1 97 100 10




Table 3: Interpolative capabilities of a CNN trained on the stress field of actual MD grain
boundaries: Detection and localization training and testing accuracies across grain boundaries with
various tilt-angles (A). Red, bold: training dataset. Black: testing dataset.

CNN-1 CNN-2 CNN-3

_ Detect and Localize (%) Detect and Localize (%) Detect and Localize (%)
AC) [ True True | +1A | True True | £1A | True True | £1A

positive | negative | Box | positive | negative | Box | positive | negative | Box
3.28 100 100 94 100 100 94 100 100 95
3.95 100 100 94 100 100 95 100 100 96
4.24 100 100 94 100 100 95 100 100 96
5.45 85 100 57 92 100 91 100 100 95
5.73 84 100 55 89 100 91 100 100 95
6.73 88 100 60 93 100 93 100 100 93
8.17 88 100 65 94 100 93 97 100 95
8.80 84 100 68 100 100 94 100 100 95
10.39 85 100 74 99 100 92 929 100 99
11.42 88 100 75 94 100 94 95 100 98
12.68 91 100 80 94 100 94 95 100 96
14.25 88 100 76 98 100 90 100 100 99
16.26 94 97 65 94 97 84 96 100 93
18.93 100 99 80 99 99 85 95 100 91
22.62 100 100 100 100 100 100 100 100 100
28.06 95 99 97 95 99 88 95 99 91
36.86 95 100 6 89 100 10 94 100 23




1_“:‘ s‘:u -‘:- 'l,.- }._'

e I'. .I" '-.. .

Fig. 1: Atomistic configurations of low- (a), moderate- (b), and high-tilt-angle (¢) <001> Cu grain
boundaries constructed by MD simulations. Atoms are colored according to the common neighbor
analysis: green — FCC, white — other coordination structure. Outlined atoms in (b-top) depict
example of a Burgers circuit. Dislocation symbols in (a) and (b) denote predicted dislocation
locations from DXA analysis.
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Fig. 2: Architecture of a convolutional neural network (CNN) to detect the presence or absence of
dislocations with probability Ay or Ay = 1 — A and predict its corresponding (A;, A;) location,
from the atomistic (A;1, A2, Ay,) stress images within the sliding detection window (red outline).
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Fig. 3: Training of a CNN with pseudo GBD structures. Top: instantiation of randomly-spaced
edge dislocations along a grain boundary. Bottom: pseudo grain boundary stress field from
superposing the discrete stress fields of isolated edge dislocations from MD simulations.



Fig. 4: Sampling of detection windows (colored boxes) where true positive edge dislocations are
detected for low- (a,b) and moderate-tilt-angle (c¢,d) grain boundaries, along with the predicted
dislocation locations (corresponding colored dislocation symbols). Green dislocation symbol:
average predicted dislocation location across all positive detection windows. Black box: +2 pixel
error bound centered about the actual dislocation location (black cross).
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Fig. 5: Comparison of the superposed stress fields of isolated dislocations versus the actual grain
boundary stress fields from MD simulations for low- and moderate-tilt-angle grain boundaries.
Green dislocation symbol: predicted dislocation location. Black cross: actual dislocation location.
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Fig. 6: High-tilt-angle grain boundaries: (a,b) Sampling of detection windows (colored boxes)
where true positive edge dislocations are detected, along with the predicted dislocation locations
(corresponding colored dislocation symbols). Green dislocation symbol: average predicted
dislocation location across all positive detection windows; black box: +2 pixel error bound
centered about the actual dislocation location (black cross). (¢,d) Comparison of the superposed
stress fields of isolated dislocations versus the actual grain boundary stress fields from MD
simulations.
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Fig. 7: Tension and compression contours of the grain boundary stress fields from MD versus the
superposed discrete and continuum stress fields of isolated dislocations for low- and moderate-tilt-
angle grain boundaries. Yellow: Ag > 1 GPa; blue: Ay < —1 GPa; pale green: [Ag| < 1 GPa.
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Fig. 8: Tension and compression contours of the grain boundary stress fields from MD versus the
superposed discrete and continuum stress fields of isolated dislocations for high-tilt-angle grain

boundaries. Yellow: A > 1 GPa; blue: A < —1 GPa; pale green: |Ag| < 1 GPa.
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Fig. 9: Dislocation structures of high-tilt-angle grain boundaries from CNN trained on the
superposed continuum stress fields of isolated dislocations. Colored boxes and dislocation
symbols: sampling of detection windows for true positive edge dislocation with corresponding
dislocation locations; black box: +2 pixel error bound centered about the actual dislocation location
(black cross); green dislocation symbol: average predicted dislocation location across all positive
detection windows.
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Fig. 10: DFT computations of GBDs for high-tilt-angle grain boundary with A = 36.86°. (a)
Stress-per-atom computations, with colored boxes and dislocation symbols denoting sampling of
detection windows for true positive edge dislocations with corresponding dislocation locations;
black box: £2 pixel error bound centered about the actual dislocation location (black cross). (b)
Comparison of DFT, TEM, and MD grain boundary structures; green and red dislocation symbols:
average predicted dislocation location from DFT- and MD-generated grain boundaries across all
positive detection windows.



	Dislocation_GB_detection_r9
	Dislocation_GB_detection_Figure_r9

