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Abstract 

Unlike micromechanics failure models that have a well-defined crack path, phase-field fracture 

models are capable of predicting the crack path in arbitrary geometries and dimensions by 

utilizing a diffuse representation of cracks. However, such models rely on the calibration of a 

fracture energy (𝐺𝐺𝑐𝑐) and a regularization length-scale (𝑙𝑙𝑐𝑐) parameter, which do not have a strong 

micromechanical basis. Here, we construct the equivalent crack-tip cohesive zone laws 

representing a phase-field fracture model, to elucidate the effects of 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐 on the fracture 

resistance and crack growth mechanics under mode I 𝐾𝐾-field loading. Our results show that the 

cohesive zone law scales with increasing 𝐺𝐺𝑐𝑐 while maintaining the same functional form. In 

contrast, increasing 𝑙𝑙𝑐𝑐 broadens the process zone, and results in a flattened traction-separation 

profile with a decreased but sustained peak cohesive traction over longer separation distances. 

While 𝐺𝐺𝑐𝑐 quantitatively captures the fracture initiation toughness, increasing 𝐺𝐺𝑐𝑐 coupled with 

decreasing 𝑙𝑙𝑐𝑐 contributes to a rising fracture resistance curve and a higher steady-state toughness 

– both these effects cumulate in an evolving cohesive zone law with crack progression. We 

discuss the relationship between these phase field parameters and process zone characteristics in 

the material.  

Keywords: Phase-field fracture; cohesive zone law; process zone; crack growth; finite element 
method 
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1. Introduction 

 The ability to model and predict crack initiation and propagation in both brittle and ductile 

solids is pivotal to achieving optimal structural design for fracture resistance. This is especially 

apparent with the advancement of additive manufacturing technologies which are now capable of 

rapidly producing material structures of varying complexities [1-3]. Micromechanical failure 

models typically rely on a local approach, where the fracture event is localized within a well-

defined fracture process zone, which is embedded within a continuum constitutive model 

representing the background material [4,5]. The micromechanisms for fracture, such as void 

growth and coalescence within the fracture process zone, are modeled either discretely, or 

through damage constitutive models, such as the Gurson model or cohesive zone laws [6-8]. 

Such micromechanical models have enabled fundamental studies to elucidate the coupling 

between complex mechanisms of fracture within the process zone and plastic deformation of the 

background material [9-11]. A major limitation, however, is that the process zone (and hence the 

crack path) has to be established a priori [12-17], which complicates the modeling of convoluted 

crack patterns, including crack branching and merging.   

 The phase-field approach to fracture departs from the discontinuous description of failure 

in local micromechanics-based models. The formulation is based on the variational approach of 

the classical Griffith energy balance for brittle fracture and regularizes the topology of the sharp 

crack as a diffuse damage zone instead of a discontinuity [18-23]. As such, the model is able to 

handle topologically complex fractures, and has been widely adopted to solve challenging 

fracture problems, including hydrogen assisted cracking [24,25], fracture in viscoelastic 

materials, biomaterials, or anisotropic solids with different material symmetry [26-30], as well as 

dynamic brittle fracture with complex branching [31,32].  
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 To-date, there is no clear micromechanical basis for the parameters used in the phase-field 

fracture models. In particular, the amount of crack regularization is controlled through a 

prescribed length-scale parameter, 𝑙𝑙𝑐𝑐, which some have perceived as purely a mathematical 

construct to allow the Griffin crack (Fig. 1a-left) to be smeared over a diffused continuum zone 

(Fig. 1a-right) [33,34]. In the phase field formulation, 𝑙𝑙𝑐𝑐 arises through a degradation function to 

describe the material behavior as it transistions between fully intact and damage states. Classical 

approach for phase field assumes a stifffness-based degradation function, usually in the form of a 

hyperbole function, as it allows for an accurate reproduction of linear elastic fracture mechanics 

response [35-37]. In recent years, an energy-based degradation function has been proposed 

where certain mechanisms of damage can be incorporated directly into the phase field model 

[38]. For all these degradation functions, the phase field solution should converge to a discrete 

crack solution in the limit as 𝑙𝑙𝑐𝑐 approaches zero [33]. Others have argued that 𝑙𝑙𝑐𝑐 represents a 

specific material property that is closely connected to the critical stress for crack nucleation [39-

42]. Because of this diffuse crack representation, the fracture energy density term 𝐺𝐺𝑐𝑐 in the 

phase-field model only approximately relates to the classical Griffith critical energy release rate 

in the limit of 𝑙𝑙𝑐𝑐 → 0 [43].  

  To provide mechanistic insights into the above phase field parameters, one approach is to 

extract a micromechanics representation of an equivalent fracture process zone of the phase field 

fracture model through a cohesive zone law. This cohesive zone law constitutes the relationship 

between interfacial tractions in equilibrium with the surrounding body and the cohesive 

separations compatible with the deformation fields of the surrounding body [9,10]. A general 

view is that the cohesive strength (peak traction) and the cohesive energy (area under the 

traction-separation relation) are the two primary material parameters governing the macroscopic 
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fracture behavior [13-16]. However, the functional form of the cohesive zone law has been 

reported to reflect the fracture micromechanisms [44,45]. This has led to the development of 

inverse techniques to systematically uncover the exact functional form of the cohesive zone laws 

governed by different failure processes under both monotonic fracture and cyclic fatigue [7,46-

49]. 

 In this paper, we explore the relationship between parameters of a phase-field fracture 

model, and the fracture resistance and crack growth mechanics under mode I loading by 

investigating the equivalent crack-tip cohesive zone laws representing the phase-field fracture 

model based on a hyperbole stiffness degradation function. Section 2 describes the finite element 

implementation of the phase-field fracture model, along with the formulation of a small-scale 

yielding, modified boundary layer model with imposed monotonic 𝐾𝐾I remote displacement 

loading. In Section 3, we systematically study the influence of 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐 on both the macroscopic 

fracture resistance and microscopic fracture processes as quantified through an equivalent crack-

tip cohesive zone law. Section 4 discusses the relationship between these phase field parameters 

and key process zone characteristics in the material and concludes with a summary.  

2. Problem Formulation 

2.1 Phase-field fracture modeling 

As aforementioned, the formulation of phase field fracture stems from the classical 

fracture theory of Griffith for a sharp crack with crack surface S in a deformable solid body Ω 

(Fig. 1a-left), where the energy balance can be formulated in a variational form as  

Π = ∫Ω 𝜓𝜓(𝑢𝑢) 𝑑𝑑Ω + ∫S 𝐺𝐺𝑐𝑐  𝑑𝑑S                                                               (1) 
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where 𝜓𝜓(𝑢𝑢) is the elastic strain energy density as a function of displacement, and 𝐺𝐺𝑐𝑐 is the 

critical energy release rate characterizing the fracture resistance of the material. Minimizing (1) 

is not mathematically feasible because of the unknown nature of S. The phase field model 

overcomes this obstacle by smearing the crack’s topology as a diffuse damage zone instead of a 

discontinuity (Fig. 1a-right). Specifically, the sharp crack is regularized through a diffuse 

damage variable, 𝜙𝜙, representing the damage extent caused by the presence of the crack in the 

surrounding neighborhood, with the limits 𝜙𝜙 = 0 and 1 representing the intact and fully-cracked 

regions, respectively [50-52]. Accordingly, (1) can be approximated as [34,53]  

 Π = ∫Ω 𝑔𝑔(𝜙𝜙)𝜓𝜓(𝑢𝑢)𝑑𝑑Ω+ ∫Ω 𝐺𝐺𝑐𝑐Γ𝑐𝑐(𝜙𝜙,∇𝜙𝜙)𝑑𝑑Ω                                        (2) 

where 𝑔𝑔(𝜙𝜙) is a continuous degradation function that monotonically degrades the stiffness of the 

material as the phase field approaches the crack phase (𝜙𝜙 = 1), and is commonly taken as 

𝑔𝑔(𝜙𝜙) = (1− 𝜙𝜙)2                     (3) 

which allows for an accurate reproduction of linear elastic fracture mechanics response [35-37]. 

The term Γ𝑐𝑐(𝜙𝜙,∇𝜙𝜙) in (2) represents the crack density functional, which enables tracking of the 

evolving crack surface S. Several crack density functionals have been proposed [35,54,55], and 

we adopt the form [34] 

 Γ𝑐𝑐 = 1
2𝑙𝑙𝑐𝑐
𝜙𝜙2 + 𝑙𝑙𝑐𝑐

2
|∇𝜙𝜙|2                                (4) 

where 𝑙𝑙𝑐𝑐 is a regularization length-scale parameter, ensuring that (2) converges to (1) in the limit 

𝑙𝑙𝑐𝑐 → 0+; 𝑙𝑙𝑐𝑐 can be interpreted as a material property in the case of 𝑙𝑙𝑐𝑐 > 0+.  

 From (2)-(4), the macroscopic equilibrium condition and evolution of phase field equations 

can be derived, leading to a coupling between the displacement field (𝑢𝑢) and the phase field (𝜙𝜙) 
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𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗(𝑢𝑢,𝜙𝜙) + 𝑏𝑏𝑖𝑖 = 0

𝐺𝐺𝑐𝑐(𝜙𝜙
𝑙𝑙𝑐𝑐
− ∇2𝜙𝜙) − 2(1− 𝜙𝜙)𝜓𝜓(𝑢𝑢) = 0                                                    (5)  

where 𝑏𝑏𝑖𝑖 is the body force term, with the Cauchy stress, 𝜎𝜎𝑖𝑖𝑖𝑖, related to the elastic strain, 𝜀𝜀𝑖𝑖𝑖𝑖, and 

the 4th order elasticity (stiffness) tensor, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, by 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜕𝜕Π
𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖

= 𝑔𝑔(𝜙𝜙)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘                                                  (6) 

By expressing (5) in a weak form, we discretize (𝑢𝑢,𝜙𝜙) in a standard finite element scheme, and 

formulate the residuals and the stiffness matrices. This numerical implementation is described in 

detail in [24], and is conducted within a user element subroutine in the commercial finite element 

software, Abaqus.  

2.2 Boundary value problem 

Our small-scale yielding finite element model contains a semi-infinite “centerline crack” 

in an isotropic, homogeneous material governed by the phase-field constitutive relation in (6), 

with elastic modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈, and subjected to remote mode I (𝐾𝐾I) loading under 

plane strain conditions (Fig. 1b). Due to geometrical-symmetry about the 𝑥𝑥2-axis, we model only 

one-half of the geometry, as shown by the finite element mesh in Fig. 1c. Rather than creating a 

physical crack, we introduce the crack by setting the phase-field parameter 𝜙𝜙 = 1 on the row of 

elements along 𝑥𝑥1 < 0, 𝑥𝑥2 = 0. The initial crack-tip, located at 𝑥𝑥1 = 𝑥𝑥2 = 0, is within a highly 

refined mesh comprising of uniformly-sized elements, each of dimensions D×D, as shown by 

close-up view of the finite element mesh in Fig. 1d. We impose roller boundary conditions at the 

start of the dense mesh region (i.e., 𝑥𝑥1 ≥ −20𝐷𝐷) along 𝑥𝑥2 = 0. Along the remote semi-circular 

boundary of the finite element mesh (Fig. 1c), we prescribe the elastic asymptotic in-plane 

displacement fields  
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𝑢𝑢1(𝑅𝑅, 𝜃𝜃) = 𝐾𝐾I

1+𝜈𝜈
𝐸𝐸
� 𝑅𝑅
2𝜋𝜋

(3− 4𝜈𝜈 − cos 𝜃𝜃)cos 𝜃𝜃
2

𝑢𝑢2(𝑅𝑅,𝜃𝜃) = 𝐾𝐾I
1+𝜈𝜈
𝐸𝐸
� 𝑅𝑅
2𝜋𝜋

(3− 4𝜈𝜈 − cos 𝜃𝜃)sin 𝜃𝜃
2

 (7) 

where 𝑅𝑅2 = 𝑥𝑥12 + 𝑥𝑥22 ≈ 40,000𝐷𝐷 and 𝜃𝜃 = tan−1(𝑥𝑥2
𝑥𝑥1

) for points on the remote boundary. The 

energy release rate or 𝐽𝐽-integral is related to the mode I stress intensity factor 𝐾𝐾I by 

Γ = 1−𝜈𝜈2

𝐸𝐸
𝐾𝐾I2                        (8) 

3. Results  

From dimensional analysis, both the macroscopic fracture resistance, Γ, in (8), and the 

spatial distribution of microscopic field quantities, 𝜎𝜎𝑖𝑖𝑖𝑖/𝐸𝐸 and 𝜙𝜙, depend on the following 

dimensionless geometric-material parameters � Γ
𝐸𝐸𝐸𝐸

, 𝜈𝜈, 𝐺𝐺𝑐𝑐
𝐸𝐸𝐸𝐸

, 𝑙𝑙𝑐𝑐
𝐷𝐷
�. In this study, we set 𝜈𝜈 = 0.3, and 

direct attention to the phase-field related parameters �𝐺𝐺𝑐𝑐
𝐸𝐸𝐸𝐸

, 𝑙𝑙𝑐𝑐
𝐷𝐷
�. Note that 𝑙𝑙𝑐𝑐 was originally 

introduced as a mathematical construct to transform a discrete crack surface into smooth 

continuum gradient parameters to represent a smeared (diffuse) crack (Fig. 1a), implying that 

(2)→(1) and 𝐺𝐺𝑐𝑐 approaches the fracture toughness only in the limit of 𝑙𝑙𝑐𝑐 → 0. However, 

convergence studies show that larger (finite) values of 𝑙𝑙𝑐𝑐 are often required for the phase-field 

fracture models to match experimental results [24-28,56-58], suggesting that (𝑙𝑙𝑐𝑐,𝐺𝐺𝑐𝑐) can be 

regarded as phenomenological material properties. In the following, we will parametrically vary 

𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) from 0.005 to 0.03, and 𝑙𝑙𝑐𝑐/𝐷𝐷 from 4 to 14, to elucidate the effects of these phase-field 

parameters on both the microscopic crack growth processes and the macroscopic fracture 

resistance. For all our calculations, we define the current crack-tip location as the furthest 

distance along 𝑥𝑥2 = 0 where 𝜙𝜙 = 1.  
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3.1 Fracture resistance and crack growth process 

Fig. 2 shows the effects of 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐 on the fracture resistance (𝑅𝑅-) curves. For all cases, 𝐺𝐺𝑐𝑐 

(value denoted by square symbols) quantitatively captures the fracture initiation toughness, Γini, 

as defined by the energy release rate or 𝐽𝐽-integral (Γ in (8)) at the first instance of crack growth 

(Δ𝑎𝑎 = 𝐷𝐷). The initial crack growth is characterized by the rapid rise in Γ. The rate of increase of 

Γ slows down significantly for crack growth beyond about 10𝐷𝐷, but the continued rise of Γ with 

Δ𝑎𝑎 beyond this point suggests the continued toughening of the background material, albeit at 

rates that depend on both 𝑙𝑙𝑐𝑐/𝐷𝐷 and 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸). As shown in Fig. 2b, increasing 𝑙𝑙𝑐𝑐/𝐷𝐷 from 4 to 14 

at a prescribed 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) = 0.015 decreases the rate of increase of Γ by ~50%. Comparatively, 

reducing 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸), and hence Γini, from 0.03 to 0.005 at a fixed 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 in Fig. 2a, decreases 

the rate of increase of Γ by several-folds. 

To elucidate the toughening mechanisms associated with the phase-field parameters, 𝐺𝐺𝑐𝑐 

and 𝑙𝑙𝑐𝑐, we show in Fig. 3 contours of the von Mises stress, 𝜎𝜎𝑒𝑒, and the phase-field damage 

variable, 𝜙𝜙, for three combinations of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) and 𝑙𝑙𝑐𝑐/𝐷𝐷, and at three crack growth instances, 

Δ𝑎𝑎/𝐷𝐷 = 5, 40, and 80. Comparison between 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸)  = 0.03 versus 0.015 at 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 shows 

that the stresses at the crack-tip are notably larger at higher 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) across all Δ𝑎𝑎/𝐷𝐷, with the 

maximum von Mises stress increasing by nearly two-fold. Interestingly, the contours for 𝜙𝜙 

remain almost unchanged. By contrast, increasing 𝑙𝑙𝑐𝑐/𝐷𝐷 from 4 to 14 but at a fixed 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) =

0.015 dramatically increases the width of the diffuse damage zone 𝜙𝜙. This smearing of damage 

over a wider region also corresponds with an almost two-fold decrease in the maximum von 

Mises stress. 
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As previously shown in Fig. 2, 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) is a quantitative measure of the fracture initiation 

toughness. In addition, the higher von Mises stress-fields surrounding the propagating crack at 

higher 𝐺𝐺𝑐𝑐 in Fig. 3 suggests that increasing 𝐺𝐺𝑐𝑐 also increases the stress-carrying capacity ahead 

of the growing crack, which ultimately leads to improved fracture resistance over the entire 

transient crack growth regime. On the other hand, 𝑙𝑙𝑐𝑐/𝐷𝐷 can be interpreted as a measure of the 

thickness of the fracture process zone defined by 𝜙𝜙 > 0. As shown in Fig. 3, a larger 𝑙𝑙𝑐𝑐/𝐷𝐷 

corresponds to a larger and more diffused process zone, while a smaller 𝑙𝑙𝑐𝑐/𝐷𝐷 results in a 

narrower process zone. Since the material stiffness monotonically degrades with 𝑔𝑔(𝜙𝜙) in (3) for 

𝜙𝜙 > 0, the reduced stress-carrying capacity in the process zone ahead of the crack-tip at higher 

𝑙𝑙𝑐𝑐/𝐷𝐷 results in lower fracture resistance. These effects of 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐 are qualitatively in agreement 

with the stress-strain response of a homogeneously-deformed 1D material with ∇𝜙𝜙 = 0, which 

shows that the failure stress scales with �𝐺𝐺𝑐𝑐/𝑙𝑙𝑐𝑐 [23,42,59]. 

Both the contours of 𝜎𝜎𝑒𝑒 and 𝜙𝜙 in Fig. 3 are evolving with Δ𝑎𝑎/𝐷𝐷, inferring that the process 

zone is still developing with crack propagation. This change in near-tip condition with the 

transition from crack initiation to crack growth is responsible for the rising 𝑅𝑅-curves in Fig. 2. 

We show in Fig. 4 the evolution of the near-tip process zone by centering the contours of 𝜙𝜙 

about the current crack-tip. Similar contours of 𝜙𝜙 (process zone sizes) are observed between 

𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) = 0.03 and 0.015 with 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4. In both cases, the damage contours are continuously 

expanding at a near constant rate as the crack propagates from Δ𝑎𝑎 = 5𝐷𝐷 to 80𝐷𝐷. In contrast, the 

contours of 𝜙𝜙 for 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) = 0.015 with 𝑙𝑙𝑐𝑐/𝐷𝐷 = 14 are nearly two- to three-fold larger. A 

comparatively smaller increase in process zone size is also observed as the crack grows from 

Δ𝑎𝑎/𝐷𝐷 = 5𝐷𝐷 to 40𝐷𝐷 versus Δ𝑎𝑎/𝐷𝐷 = 40𝐷𝐷 to 80𝐷𝐷, indicating that the crack growth is reaching its 

steady-state. 
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3.2 Crack-tip cohesive zone laws 

 Unlike local micromechanics models where damage is confined to a narrow process zone 

ahead of the crack [5], diffuse nonlocal approaches such as the phase-field fracture model 

dissipate damage over a wider region and across many elements as shown in Figs. 3 and 4 

[12,60,61]. To provide a homogenized view of the diffuse crack-tip process in the phase-field 

fracture model, we construct the equivalent local traction-separation relationship constituting the 

cohesive zone law embedded within a linear elastic background material. Figs. 5 and 6 show the 

effects of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) and 𝑙𝑙𝑐𝑐/𝐷𝐷 on the distributions of the crack-tip cohesive tractions, 𝑡𝑡2, cohesive 

separations, 𝛿𝛿2, and the phase-field damage parameter, 𝜙𝜙, at Δ𝑎𝑎/𝐷𝐷 = 25. Both 𝑡𝑡2(𝑥𝑥1) and 𝜙𝜙(𝑥𝑥1) 

are obtained directly from the phase-field finite element calculations along 𝑥𝑥2 = 0. To obtain the 

equivalent cohesive separation distributions in a linear elastic background material, we impose 

the measured 𝑡𝑡2(𝑥𝑥1) along 𝑥𝑥2 = 0 of the same finite element mesh with the same 𝐾𝐾-field 

displacements as boundary conditions, albeit with a linear elastic (i.e., non-phase-field) 

constitutive relationship of the same 𝐸𝐸 and 𝜈𝜈, and compute 𝛿𝛿2(𝑥𝑥1) = 2𝑢𝑢2(𝑥𝑥1) along 𝑥𝑥2 = 0. In 

this fashion, we effectively project the diffuse damage 𝜙𝜙 within the finite process zone onto a 

zero-thickness cohesive zone embedded within a linear elastic body, as shown schematically in 

the inset of Fig. 5b.   

 Increasing 𝑙𝑙𝑐𝑐/𝐷𝐷 with the same 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) (Fig. 6a) is found to reduce the peak cohesive 

tractions. All post-peak traction distributions, however, converge to the same path further ahead 

of the crack-tip. In contrast, increasing 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) with the same 𝑙𝑙𝑐𝑐/𝐷𝐷 (Fig. 5a) proportionally 

increases both the peak and post-peak traction distributions, while maintaining the same traction 

distribution profile. Increasing 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) causes a pronounced increase in the crack-tip 

separations versus the effects of 𝑙𝑙𝑐𝑐/𝐷𝐷 (compare Fig. 5b versus Fig. 6b). However, increasing 



11 
 

𝑙𝑙𝑐𝑐/𝐷𝐷 also increases the length of the crack-tip cohesive zone, as evidenced by both the larger 

non-zero separations (Fig. 6b) and the slower decay of damage (Fig. 6c) further ahead of the 

crack-tip. In comparison, increasing 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) has negligble influence on the cohesive zone size 

– the separation and damage distributions (Figs. 5b and 5c) both decay to zero at nearly-identical 

distances ahead of the crack-tip. 

 Together, the above cohesive traction (Figs. 5a and 6a) and separation (Figs. 5b and 6b) 

distributions are used to construct the traction-separation relationships in Fig. 7 constituting the 

crack-tip cohesive zone laws in a linear elastic background material. Generally, the cohesive 

strength (peak cohesive traction) and the cohesive energy [area under the (𝑡𝑡2, 𝛿𝛿2) envelope] are 

two important variables which control the fracture resistance. While 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) corresponds to the 

fracture initiation toughness, Γini, the cohesive energy here quantitatively corresponds to the 

fracture resistance Γ at the specific crack instant where the cohesive zone law was constructed 

(Δ𝑎𝑎/𝐷𝐷 = 25). As shown in Fig. 7a, increasing 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) increases both the cohesive strength and 

energy, but the functional form of the cohesive traction-separation relationship remains the same. 

Increasing 𝑙𝑙𝑐𝑐/𝐷𝐷 in Fig. 7b decreases the cohesive strength, and to a lesser extent, the cohesive 

energy. More importantly, a significant change in the functional form of the cohesive zone law is 

observed – from a rapid increase and subsequent decrease in cohesive tractions at short 

separation distances for 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 to the flattening of the cohesive zone law resulting in a 

sustained, but lower, peak traction over longer separation distances (i.e., longer cohesive zone) 

for 𝑙𝑙𝑐𝑐/𝐷𝐷 = 14. These changes in shape of the cohesive zone law with 𝑙𝑙𝑐𝑐/𝐷𝐷 can be used to 

represent changes in the fracture micromechanisms. 

 In the phase field model, the damage parameter 𝜙𝜙 provides a measure of the transition from 

an undamaged (𝜙𝜙 = 0) to a fully-cracked (𝜙𝜙 = 1) material. An alternative “cohesive zone” 
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approach to quantify crack growth is to consider the cohesive energy dissipated as the separation 

progresses, as quantified by the evolving area encompassed by the traction-separation response, 

i.e., Γ𝑠𝑠(𝛿𝛿2) = ∫ 𝑡𝑡2(𝛿𝛿2′)
𝛿𝛿2
0 𝑑𝑑𝛿𝛿2′, relative to the separation energy Γ. Thus, Γ𝑠𝑠/Γ = 0 at 𝛿𝛿2 = 0 

represents a fully-intact material, while Γ𝑠𝑠/Γ = 1 when the cohesive zone is fully-developed at 

𝛿𝛿2 = 𝛿𝛿0 (inset in Fig. 5b) denotes a fully-separated material. A comparison of the evolution of 𝜙𝜙 

(red) and Γ𝑠𝑠/Γ (black) with 𝛿𝛿2 across various (𝑙𝑙𝑐𝑐,𝐺𝐺𝑐𝑐) combinations in Fig. 8 demonstrates that 

the damage or crack growth assessment from both approaches are in good quantitative 

agreement. 

 The rising 𝑅𝑅-curves in Fig. 2 suggest that the cohesive zone law is evolving as the crack 

propagates. Accordingly, we show in Fig. 9 the evolving cohesive zone laws reconstructed from 

the traction and separation distributions at increasing Δ𝑎𝑎/𝐷𝐷 across various 𝑙𝑙𝑐𝑐 and 𝐺𝐺𝑐𝑐 

combinations. Note that the cohesive energy of each of these (𝑙𝑙𝑐𝑐,𝐺𝐺𝑐𝑐,Δ𝑎𝑎) combinations are 

quantitatively in perfect agreement with the calculated energy releases rate, Γ(Δ𝑎𝑎/𝐷𝐷), in Fig. 2, 

since all of the dissipation energy in the process zone is projected onto an equivalent zero-

thickness cohesive zone. While the shape of the cohesive zone law generally remains unchanged, 

increasing Δ𝑎𝑎/𝐷𝐷 increases both the peak cohesive traction as well as the total separation, 𝛿𝛿0, 

particularly at high 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) of 0.025 where a 16% increase in the cohesive strength is observed 

as the crack propagates from Δ𝑎𝑎/𝐷𝐷 = 10 to 115. At higher 𝑙𝑙𝑐𝑐/𝐷𝐷, the cohesive zone laws rapidly 

converge with Δ𝑎𝑎/𝐷𝐷, indicating a transition to steady-state crack growth.   

4. Discussions and Conclusion 

 In the micromechanics modeling of fracture, a brittle or ductile fracture response often 

correlates with the extent of plastic dissipation in the background material. In the case of brittle 
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fracture, damage is often confined to the thin process zone ahead of the crack, and the limited 

plastic dissipation results in a flat 𝑅𝑅-curve representing rapid and unstable crack propagation. In 

the case of ductile fracture, the development of significant background plastic dissipation results 

in a rising 𝑅𝑅-curve. The phase-field fracture model we have adopted is widely considered to be 

“brittle” as we have assumed an elastic background material. We remark that “ductile” phase-

field fracture models based on elasto-plastic background materials have also been proposed in 

the open literature [36,56,57,62,63]. However, our crack growth simulations for this “brittle” 

phase-field fracture model demonstrate a rising 𝑅𝑅-curve in cases with large 𝐺𝐺𝑐𝑐 and/or small 𝑙𝑙𝑐𝑐, 

suggesting that this seemingly “brittle” model can effectively simulate the fracture response of 

ductile materials.  

 Akin to crack growth in an elasto-plastic material, the macroscopic fracture resistance Γ in 

our phase-field model can be delineated into two primary contributions: the fracture initiation 

toughness, Γini, and phase-field dissipation energy, Γ𝑝𝑝. Our simulation results in Fig. 2 show that 

𝐺𝐺𝑐𝑐 is a direct quantitative measure of Γini, in agreement with prior studies [42,53], while both 𝐺𝐺𝑐𝑐 

and 𝑙𝑙𝑐𝑐 have profound effects on Γ𝑝𝑝. Similar to the growth of the plastic zone size during transient 

crack growth, the transition from crack initiation to steady-state crack growth in our phase-field 

fracture model is marked by the development of a diffuse damage zone which evolves with ∆𝑎𝑎 

(Figs. 3 and 4). This diffuse zone can be treated as an evolving fracture process zone in the 

transient crack growth regime, and is distinct from micromechanics fracture models which 

almost always assume a fixed process zone size.  

 One approach to quantify the phase-field fracture process is to project the diffuse damage 

into an equivalent crack-tip cohesive zone law which evolves with crack growth. In doing so, the 

cohesive energy quantitatively equates to the total fracture resistance, Γ(Δ𝑎𝑎), which 
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encompasses both the contributions of Γini and Γ𝑝𝑝(Δ𝑎𝑎). Our results in Figs. 5-7 show that 𝐺𝐺𝑐𝑐 has 

a strong influence on both the cohesive strength and cohesive energy, but has negligible effects 

on the shape of the cohesive zone law – this suggests that the underlying crack growth mechanics 

remain unchanged with 𝐺𝐺𝑐𝑐. In contrast, 𝑙𝑙𝑐𝑐 significantly changes the functional form of the 

cohesive zone law, and a transition from a sharp traction-separation profile resembling a bilinear 

cohesive zone model to a flattened traction-separation profile resembling a trapezoidal cohesive 

zone model is observed with increasing 𝑙𝑙𝑐𝑐. This change in the shape of the traction-separation 

relationship is associated with the increasing size of the diffuse damage zone with 𝑙𝑙𝑐𝑐 – a larger 𝑙𝑙𝑐𝑐 

creates both a thicker and longer fracture process zone with reduced cohesive strength. By 

comparison, increasing 𝐺𝐺𝑐𝑐 has negligible influence on the process zone size.  

 Our studies, therefore, demonstrate that 𝑙𝑙𝑐𝑐 quantitatively relates to the size of the fracture 

process zone. In the limit of 𝑙𝑙𝑐𝑐 → 0, the process zone physically collapses to a zero-thickness 

cohesive zone, and the phase-field fracture model would indeed be equivalent to a sharp crack 

propagating within an elastic medium. The fracture process would always be brittle with Γ = 𝐺𝐺𝑐𝑐, 

since there would be no energy dissipation in the background material. However, convergence 

studies often lead to the adoption of relatively large values of 𝑙𝑙𝑐𝑐/𝐷𝐷 > 10 [24,25,29,62], which 

introduces a finite thickness fracture process zone. Differing from these numerical studies, our 

results suggest that 𝑙𝑙𝑐𝑐 should be calibrated and selected based on the physical thickness of the 

fracture process zone. For example, a small value of 𝑙𝑙𝑐𝑐/𝐷𝐷 should be used to represent the narrow 

process zone for cracking in a brittle rock-like material such as shale or concrete [64,65], while a 

larger 𝑙𝑙𝑐𝑐/𝐷𝐷 will better represent the more diffused process zone associated with micro-crazing in 

polymers [66,67]. This would provide 𝑙𝑙𝑐𝑐/𝐷𝐷 with a stronger physical basis. The “brittle” phase-

field fracture model we adopt does not account for background plasticity. Without loss of 
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generality, our simulations suggest that the background plastic dissipation in elasto-plastic 

materials constituting Γ𝑝𝑝 can heuristically be treated as a diffuse damage zone represented by 

appropriately calibrated values of 𝑙𝑙𝑐𝑐/𝐷𝐷.  

 The cohesive strength within the process zone depends on both 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐. Uniform 

deformation studies show that the critical strength in the stress-strain response of a phase-field 

element scales with �𝐺𝐺𝑐𝑐/𝑙𝑙𝑐𝑐 [23,42,59], and the cohesive strength of our equivalent crack-tip 

cohesive zone laws appear to follow similar trends. Conceivably, once 𝑙𝑙𝑐𝑐 is calibrated to 

represent the size of the fracture process zone, 𝐺𝐺𝑐𝑐 can in turn be calibrated to fit the cohesive 

strength representing the appropriate crack growth mechanisms, such as void growth and 

coalescence, fiber pull-out, and phase transformation. 

 In conclusion, we have obtained new physical insights into the role of the energy and 

length-scale parameters, 𝐺𝐺𝑐𝑐 and 𝑙𝑙𝑐𝑐, in phase-field fracture models, by constructing the equivalent 

crack-tip cohesive zone laws representative of the diffuse damage process. We demonstrate that 

𝐺𝐺𝑐𝑐 can be perceived as the fracture initiation toughness, and quantitatively controls both the 

cohesive strength and energy. While 𝑙𝑙𝑐𝑐 was initially introduced as a mathematical construct, we 

show that 𝑙𝑙𝑐𝑐 should be physically interpreted as a measure of the thickness of the diffuse damage 

(fracture process) zone. By adopting finite values of 𝑙𝑙𝑐𝑐, together with appropriately-calibrated 

values of 𝐺𝐺𝑐𝑐, the “brittle” phase-field fracture model can be used to simulate a wide variety of 

material systems, from brittle rock materials with narrow process zones to ductile metals with 

diffuse background plastic dissipation. We remark that a commonly used stiffness-based 

hyperbole degradation function is considered in this study. Extracting the equivalent cohesive 

zone laws for other degradation functions is a subject of future work.  
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Figure Captions 
Figure 1: (a) Schematic of a sharp crack (left) versus a diffuse crack (right), S, in a deformable 
body Ω. (b) Schematic of a small-scale yielding, boundary layer model, governed by a phase-
field constitutive relation, with a centerline crack (red) introduced through the phase-field 
damage parameter 𝜙𝜙 = 1. (c) Finite element mesh of the small-scale yielding model. (d) Close-
up view of the highly refined mesh close to the initial crack-tip. 

Figure 2: Effects of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐷𝐷) with 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 (a) and 𝑙𝑙𝑐𝑐/𝐷𝐷 with 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸)  = 0.015 (b) on the 
fracture resistance (𝑅𝑅-) curves. Values of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) corresponds to the fracture initiation 
toughness and are denoted by square symbols. 

Figure 3: Contours of the von Mises stress, 𝜎𝜎𝑒𝑒, and the phase-field damage variable, 𝜙𝜙, for three 
combinations of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) and 𝑙𝑙𝑐𝑐/𝐷𝐷, and at three crack growth instances, Δ𝑎𝑎/𝐷𝐷 = 5, 40, and 80. 

Figure 4: Evolution of the process zone size, as quantified by 𝜙𝜙, centered on the current crack-
tip for three combinations of 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) and 𝑙𝑙𝑐𝑐/𝐷𝐷, and at three crack growth instances, Δ𝑎𝑎/𝐷𝐷 = 5, 
40, and 80. 
Figure 5: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c) 
at Δ𝑎𝑎/𝐷𝐷 = 25 with 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 for various 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸). Schematic of an equivalent zero-thickness 
cohesive zone law embedded within a linear elastic body in inset in (b). 

Figure 6: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c) 
at Δ𝑎𝑎/𝐷𝐷 = 25 with 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸)  = 0.015  for various 𝑙𝑙𝑐𝑐/𝐷𝐷.  

Figure 7: Equivalent crack-tip cohesive zone laws in a linear elastic body representing the 
phase-field damage at Δ𝑎𝑎/𝐷𝐷 = 25 for various 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸) with 𝑙𝑙𝑐𝑐/𝐷𝐷 = 4 (a) and various 𝑙𝑙𝑐𝑐/𝐷𝐷 with 
𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸)  = 0.015 (b). 

Figure 8: Evolution of phase field damage variable (red), 𝜙𝜙, versus proportion of cohesive 
energy dissipated (black), Γs Γ⁄ , as a function of cohesive separation, 𝛿𝛿2/𝐷𝐷, across various 𝑙𝑙𝑐𝑐/𝐷𝐷 
and 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸). 

Figure 9: Evolution of the equivalent crack-tip cohesive zone laws with increasing Δ𝑎𝑎/𝐷𝐷 across 
various combinations of 𝑙𝑙𝑐𝑐/𝐷𝐷 and 𝐺𝐺𝑐𝑐/(𝐸𝐸𝐸𝐸). 
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Figure 2: Effects of 𝐺௖/ሺ𝐸𝐷ሻ with 𝑙௖/𝐷 ൌ 4 (a) and 𝑙௖/𝐷 with 𝐺௖/ሺ𝐸𝐷ሻ  ൌ 0.015 (b) on the 
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Figure 4: Evolution of the process zone size, as quantified by 𝜙, centered on the current crack-tip 
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Figure 5: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c) 
at Δ𝑎/𝐷 ൌ 25 with 𝑙௖/𝐷 ൌ 4 for various 𝐺௖/ሺ𝐸𝐷ሻ. Schematic of an equivalent zero-thickness 
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Figure 6: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c) 
at Δ𝑎/𝐷 ൌ 25 with 𝐺௖/ሺ𝐸𝐷ሻ  ൌ 0.015  for various 𝑙௖/𝐷.  



  

 

 

Figure 7: Equivalent crack-tip cohesive zone laws in a linear elastic body representing the phase-
field damage at Δ𝑎/𝐷 ൌ 25 for various 𝐺௖/ሺ𝐸𝐷ሻ with 𝑙௖/𝐷 ൌ 4 (a) and various 𝑙௖/𝐷 with 
𝐺௖/ሺ𝐸𝐷ሻ  ൌ 0.015 (b). 

 

  



 

Figure 8: Evolution of phase field damage variable (red), 𝜙, versus proportion of cohesive energy 
dissipated (black), Γୱ Γ⁄ , as a function of cohesive separation, 𝛿ଶ/𝐷, across various 𝑙௖/𝐷 and 
𝐺௖/ሺ𝐸𝐷ሻ. 

 

  



 

Figure 9: Evolution of the equivalent crack-tip cohesive zone laws with increasing Δ𝑎/𝐷 across 
various combinations of 𝑙௖/𝐷 and 𝐺௖/ሺ𝐸𝐷ሻ. 
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