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Abstract

Unlike micromechanics failure models that have a well-defined crack path, phase-field fracture
models are capable of predicting the crack path in arbitrary geometries and dimensions by
utilizing a diffuse representation of cracks. However, such models rely on the calibration of a
fracture energy (G.) and a regularization length-scale (l.) parameter, which do not have a strong
micromechanical basis. Here, we construct the equivalent crack-tip cohesive zone laws
representing a phase-field fracture model, to elucidate the effects of G, and [, on the fracture
resistance and crack growth mechanics under mode 1 K-field loading. Our results show that the
cohesive zone law scales with increasing G, while maintaining the same functional form. In
contrast, increasing [. broadens the process zone, and results in a flattened traction-separation
profile with a decreased but sustained peak cohesive traction over longer separation distances.
While G, quantitatively captures the fracture initiation toughness, increasing G, coupled with
decreasing [, contributes to a rising fracture resistance curve and a higher steady-state toughness
— both these effects cumulate in an evolving cohesive zone law with crack progression. We
discuss the relationship between these phase field parameters and process zone characteristics in

the material.
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1. Introduction

The ability to model and predict crack initiation and propagation in both brittle and ductile
solids is pivotal to achieving optimal structural design for fracture resistance. This is especially
apparent with the advancement of additive manufacturing technologies which are now capable of
rapidly producing material structures of varying complexities [1-3]. Micromechanical failure
models typically rely on a local approach, where the fracture event is localized within a well-
defined fracture process zone, which is embedded within a continuum constitutive model
representing the background material [4,5]. The micromechanisms for fracture, such as void
growth and coalescence within the fracture process zone, are modeled either discretely, or
through damage constitutive models, such as the Gurson model or cohesive zone laws [6-8].
Such micromechanical models have enabled fundamental studies to elucidate the coupling
between complex mechanisms of fracture within the process zone and plastic deformation of the
background material [9-11]. A major limitation, however, is that the process zone (and hence the
crack path) has to be established a priori [12-17], which complicates the modeling of convoluted

crack patterns, including crack branching and merging.

The phase-field approach to fracture departs from the discontinuous description of failure
in local micromechanics-based models. The formulation is based on the variational approach of
the classical Griffith energy balance for brittle fracture and regularizes the topology of the sharp
crack as a diffuse damage zone instead of a discontinuity [18-23]. As such, the model is able to
handle topologically complex fractures, and has been widely adopted to solve challenging
fracture problems, including hydrogen assisted cracking [24,25], fracture in viscoelastic
materials, biomaterials, or anisotropic solids with different material symmetry [26-30], as well as

dynamic brittle fracture with complex branching [31,32].



To-date, there is no clear micromechanical basis for the parameters used in the phase-field
fracture models. In particular, the amount of crack regularization is controlled through a
prescribed length-scale parameter, [., which some have perceived as purely a mathematical
construct to allow the Griffin crack (Fig. 1a-left) to be smeared over a diffused continuum zone
(Fig. 1a-right) [33,34]. In the phase field formulation, [, arises through a degradation function to
describe the material behavior as it transistions between fully intact and damage states. Classical
approach for phase field assumes a stifffness-based degradation function, usually in the form of a
hyperbole function, as it allows for an accurate reproduction of linear elastic fracture mechanics
response [35-37]. In recent years, an energy-based degradation function has been proposed
where certain mechanisms of damage can be incorporated directly into the phase field model
[38]. For all these degradation functions, the phase field solution should converge to a discrete
crack solution in the limit as [, approaches zero [33]. Others have argued that [. represents a
specific material property that is closely connected to the critical stress for crack nucleation [39-
42]. Because of this diffuse crack representation, the fracture energy density term G, in the
phase-field model only approximately relates to the classical Griffith critical energy release rate

in the limit of [, — 0 [43].

To provide mechanistic insights into the above phase field parameters, one approach is to
extract a micromechanics representation of an equivalent fracture process zone of the phase field
fracture model through a cohesive zone law. This cohesive zone law constitutes the relationship
between interfacial tractions in equilibrium with the surrounding body and the cohesive
separations compatible with the deformation fields of the surrounding body [9,10]. A general
view is that the cohesive strength (peak traction) and the cohesive energy (area under the

traction-separation relation) are the two primary material parameters governing the macroscopic



fracture behavior [13-16]. However, the functional form of the cohesive zone law has been
reported to reflect the fracture micromechanisms [44,45]. This has led to the development of
inverse techniques to systematically uncover the exact functional form of the cohesive zone laws
governed by different failure processes under both monotonic fracture and cyclic fatigue [7,46-

49].

In this paper, we explore the relationship between parameters of a phase-field fracture
model, and the fracture resistance and crack growth mechanics under mode I loading by
investigating the equivalent crack-tip cohesive zone laws representing the phase-field fracture
model based on a hyperbole stiffness degradation function. Section 2 describes the finite element
implementation of the phase-field fracture model, along with the formulation of a small-scale
yielding, modified boundary layer model with imposed monotonic K; remote displacement
loading. In Section 3, we systematically study the influence of G, and [, on both the macroscopic
fracture resistance and microscopic fracture processes as quantified through an equivalent crack-
tip cohesive zone law. Section 4 discusses the relationship between these phase field parameters

and key process zone characteristics in the material and concludes with a summary.
2. Problem Formulation
2.1  Phase-field fracture modeling

As aforementioned, the formulation of phase field fracture stems from the classical
fracture theory of Griffith for a sharp crack with crack surface S in a deformable solid body ()

(Fig. 1a-left), where the energy balance can be formulated in a variational form as

M= [ $(u)dQ+ [ G, dS (1)



where ¥ (u) is the elastic strain energy density as a function of displacement, and G, is the
critical energy release rate characterizing the fracture resistance of the material. Minimizing (1)
is not mathematically feasible because of the unknown nature of S. The phase field model
overcomes this obstacle by smearing the crack’s topology as a diffuse damage zone instead of a
discontinuity (Fig. la-right). Specifically, the sharp crack is regularized through a diffuse
damage variable, ¢, representing the damage extent caused by the presence of the crack in the
surrounding neighborhood, with the limits ¢ = 0 and 1 representing the intact and fully-cracked

regions, respectively [50-52]. Accordingly, (1) can be approximated as [34,53]
0= [, 9@p@dQ+ [, GT(p,Vp)dQ )

where g(¢) is a continuous degradation function that monotonically degrades the stiffness of the

material as the phase field approaches the crack phase (¢p = 1), and is commonly taken as

g9(¢) = (1 - ¢)? 3)
which allows for an accurate reproduction of linear elastic fracture mechanics response [35-37].
The term I[.(¢p, Vg) in (2) represents the crack density functional, which enables tracking of the
evolving crack surface S. Several crack density functionals have been proposed [35,54,55], and

we adopt the form [34]

L= 502 +51V¢I° O
where [ is a regularization length-scale parameter, ensuring that (2) converges to (1) in the limit
I, = 07; I, can be interpreted as a material property in the case of [, > 0%,

From (2)-(4), the macroscopic equilibrium condition and evolution of phase field equations

can be derived, leading to a coupling between the displacement field (1) and the phase field (¢)



oijj(u, ) +b; =0

G~ V29) - 2(1 - p)p(uw) = 0 )

where b; is the body force term, with the Cauchy stress, oy, related to the elastic strain, ;;, and

the 4" order elasticity (stiffness) tensor, C; jki» DY

ar
i = ey = 9(D)Cijkir (6)

By expressing (5) in a weak form, we discretize (u, ¢) in a standard finite element scheme, and
formulate the residuals and the stiffness matrices. This numerical implementation is described in
detail in [24], and is conducted within a user element subroutine in the commercial finite element

software, Abaqus.
2.2 Boundary value problem

Our small-scale yielding finite element model contains a semi-infinite “centerline crack”
in an isotropic, homogeneous material governed by the phase-field constitutive relation in (6),
with elastic modulus E and Poisson’s ratio v, and subjected to remote mode I (Kj) loading under
plane strain conditions (Fig. 1b). Due to geometrical-symmetry about the x,-axis, we model only
one-half of the geometry, as shown by the finite element mesh in Fig. 1c. Rather than creating a
physical crack, we introduce the crack by setting the phase-field parameter ¢ = 1 on the row of
elements along x; < 0,x, = 0. The initial crack-tip, located at x; = x, = 0, is within a highly
refined mesh comprising of uniformly-sized elements, each of dimensions DXD, as shown by
close-up view of the finite element mesh in Fig. 1d. We impose roller boundary conditions at the
start of the dense mesh region (i.e., x; = —20D) along x, = 0. Along the remote semi-circular
boundary of the finite element mesh (Fig. lc), we prescribe the elastic asymptotic in-plane

displacement fields



u,(R,0) =K11Eﬂ Z(3—4v—cos@)cos§
7
1+v | R ( )

u,(R,0) = KIT 5(3 — 4v — cos H)Sing

where R? = x# + x5 ~ 40,000D and 0 = tan‘1(§) for points on the remote boundary. The
1

energy release rate or J-integral is related to the mode I stress intensity factor K; by

K¢ ()
3. Results

From dimensional analysis, both the macroscopic fracture resistance, I', in (8), and the

spatial distribution of microscopic field quantities, o;;/E and ¢, depend on the following

) ) ) ) r Ge 1 )

dimensionless geometric-material parameters (5,1/,;,35). In this study, we set v = 0.3, and
. . l .
direct attention to the phase-field related parameters (;—;,EC). Note that [, was originally

introduced as a mathematical construct to transform a discrete crack surface into smooth
continuum gradient parameters to represent a smeared (diffuse) crack (Fig. 1a), implying that
(2)=(1) and G, approaches the fracture toughness only in the limit of [. — 0. However,
convergence studies show that larger (finite) values of /. are often required for the phase-field
fracture models to match experimental results [24-28,56-58], suggesting that (l., G.) can be
regarded as phenomenological material properties. In the following, we will parametrically vary
G./(ED) from 0.005 to 0.03, and [./D from 4 to 14, to elucidate the effects of these phase-field
parameters on both the microscopic crack growth processes and the macroscopic fracture
resistance. For all our calculations, we define the current crack-tip location as the furthest

distance along x, = 0 where ¢ = 1.



3.1 Fracture resistance and crack growth process

Fig. 2 shows the effects of G, and [ on the fracture resistance (R-) curves. For all cases, G,
(value denoted by square symbols) quantitatively captures the fracture initiation toughness, [iy;,
as defined by the energy release rate or J-integral (I" in (8)) at the first instance of crack growth
(Aa = D). The initial crack growth is characterized by the rapid rise in I'. The rate of increase of
[" slows down significantly for crack growth beyond about 10D, but the continued rise of I' with
Aa beyond this point suggests the continued toughening of the background material, albeit at
rates that depend on both {./D and G./(ED). As shown in Fig. 2b, increasing [./D from 4 to 14
at a prescribed G./(ED) = 0.015 decreases the rate of increase of I' by ~50%. Comparatively,
reducing G./(ED), and hence [j,;, from 0.03 to 0.005 at a fixed [./D = 4 in Fig. 2a, decreases

the rate of increase of I' by several-folds.

To elucidate the toughening mechanisms associated with the phase-field parameters, G,
and [., we show in Fig. 3 contours of the von Mises stress, g,, and the phase-field damage
variable, ¢, for three combinations of G./(ED) and l./D, and at three crack growth instances,
Aa/D =5, 40, and 80. Comparison between G./(ED) = 0.03 versus 0.015 at [./D = 4 shows
that the stresses at the crack-tip are notably larger at higher G./(ED) across all Aa/D, with the
maximum von Mises stress increasing by nearly two-fold. Interestingly, the contours for ¢
remain almost unchanged. By contrast, increasing [./D from 4 to 14 but at a fixed G./(ED) =
0.015 dramatically increases the width of the diffuse damage zone ¢. This smearing of damage
over a wider region also corresponds with an almost two-fold decrease in the maximum von

Mises stress.



As previously shown in Fig. 2, G./(ED) is a quantitative measure of the fracture initiation
toughness. In addition, the higher von Mises stress-fields surrounding the propagating crack at
higher G, in Fig. 3 suggests that increasing G, also increases the stress-carrying capacity ahead
of the growing crack, which ultimately leads to improved fracture resistance over the entire
transient crack growth regime. On the other hand, [./D can be interpreted as a measure of the
thickness of the fracture process zone defined by ¢ > 0. As shown in Fig. 3, a larger [./D
corresponds to a larger and more diffused process zone, while a smaller [./D results in a
narrower process zone. Since the material stiffness monotonically degrades with g(¢) in (3) for
¢ > 0, the reduced stress-carrying capacity in the process zone ahead of the crack-tip at higher
[./D results in lower fracture resistance. These effects of G, and [, are qualitatively in agreement

with the stress-strain response of a homogeneously-deformed 1D material with V¢p = 0, which

shows that the failure stress scales with /G /L. [23,42,59].

Both the contours of g, and ¢ in Fig. 3 are evolving with Aa/D, inferring that the process
zone is still developing with crack propagation. This change in near-tip condition with the
transition from crack initiation to crack growth is responsible for the rising R-curves in Fig. 2.
We show in Fig. 4 the evolution of the near-tip process zone by centering the contours of ¢
about the current crack-tip. Similar contours of ¢ (process zone sizes) are observed between
G./(ED) = 0.03 and 0.015 with [./D = 4. In both cases, the damage contours are continuously
expanding at a near constant rate as the crack propagates from Aa = 5D to 80D. In contrast, the
contours of ¢ for G./(ED) = 0.015 with l./D = 14 are nearly two- to three-fold larger. A
comparatively smaller increase in process zone size is also observed as the crack grows from
Aa/D = 5D to 40D versus Aa/D = 40D to 80D, indicating that the crack growth is reaching its

steady-state.



3.2 Crack-tip cohesive zone laws

Unlike local micromechanics models where damage is confined to a narrow process zone
ahead of the crack [5], diffuse nonlocal approaches such as the phase-field fracture model
dissipate damage over a wider region and across many elements as shown in Figs. 3 and 4
[12,60,61]. To provide a homogenized view of the diffuse crack-tip process in the phase-field
fracture model, we construct the equivalent local traction-separation relationship constituting the
cohesive zone law embedded within a linear elastic background material. Figs. 5 and 6 show the
effects of G./(ED) and l./D on the distributions of the crack-tip cohesive tractions, t,, cohesive
separations, §,, and the phase-field damage parameter, ¢, at Aa/D = 25. Both t,(x;) and ¢(x;)
are obtained directly from the phase-field finite element calculations along x, = 0. To obtain the
equivalent cohesive separation distributions in a linear elastic background material, we impose
the measured t,(x;) along x, = 0 of the same finite element mesh with the same K-field
displacements as boundary conditions, albeit with a linear elastic (i.e., non-phase-field)
constitutive relationship of the same E and v, and compute &,(x;) = 2u,(x,) along x, = 0. In
this fashion, we effectively project the diffuse damage ¢ within the finite process zone onto a
zero-thickness cohesive zone embedded within a linear elastic body, as shown schematically in

the inset of Fig. 5b.

Increasing [./D with the same G./(ED) (Fig. 6a) is found to reduce the peak cohesive
tractions. All post-peak traction distributions, however, converge to the same path further ahead
of the crack-tip. In contrast, increasing G./(ED) with the same [./D (Fig. 5a) proportionally
increases both the peak and post-peak traction distributions, while maintaining the same traction
distribution profile. Increasing G./(ED) causes a pronounced increase in the crack-tip

separations versus the effects of [./D (compare Fig. 5b versus Fig. 6b). However, increasing

10



l./D also increases the length of the crack-tip cohesive zone, as evidenced by both the larger
non-zero separations (Fig. 6b) and the slower decay of damage (Fig. 6¢) further ahead of the
crack-tip. In comparison, increasing G./(ED) has negligble influence on the cohesive zone size
— the separation and damage distributions (Figs. 5b and 5c¢) both decay to zero at nearly-identical

distances ahead of the crack-tip.

Together, the above cohesive traction (Figs. 5a and 6a) and separation (Figs. 5b and 6b)
distributions are used to construct the traction-separation relationships in Fig. 7 constituting the
crack-tip cohesive zone laws in a linear elastic background material. Generally, the cohesive
strength (peak cohesive traction) and the cohesive energy [area under the (t,, §,) envelope] are
two important variables which control the fracture resistance. While G./(ED) corresponds to the
fracture initiation toughness, [j,;, the cohesive energy here quantitatively corresponds to the
fracture resistance I' at the specific crack instant where the cohesive zone law was constructed
(Aa/D = 25). As shown in Fig. 7a, increasing G./(ED) increases both the cohesive strength and
energy, but the functional form of the cohesive traction-separation relationship remains the same.
Increasing [./D in Fig. 7b decreases the cohesive strength, and to a lesser extent, the cohesive
energy. More importantly, a significant change in the functional form of the cohesive zone law is
observed — from a rapid increase and subsequent decrease in cohesive tractions at short
separation distances for [./D = 4 to the flattening of the cohesive zone law resulting in a
sustained, but lower, peak traction over longer separation distances (i.e., longer cohesive zone)
for l./D = 14. These changes in shape of the cohesive zone law with [./D can be used to

represent changes in the fracture micromechanisms.

In the phase field model, the damage parameter ¢ provides a measure of the transition from
an undamaged (¢ = 0) to a fully-cracked (¢p = 1) material. An alternative “cohesive zone”

11



approach to quantify crack growth is to consider the cohesive energy dissipated as the separation

progresses, as quantified by the evolving area encompassed by the traction-separation response,
ie., T4(8,) = f062 t,(65) ds,’, relative to the separation energy I'. Thus, I/T =0 at 6, =0
represents a fully-intact material, while I['i/I' = 1 when the cohesive zone is fully-developed at
6, = Oy (inset in Fig. 5b) denotes a fully-separated material. A comparison of the evolution of ¢
(red) and I/T (black) with &, across various (I, G.) combinations in Fig. 8 demonstrates that

the damage or crack growth assessment from both approaches are in good quantitative

agreement.

The rising R-curves in Fig. 2 suggest that the cohesive zone law is evolving as the crack
propagates. Accordingly, we show in Fig. 9 the evolving cohesive zone laws reconstructed from
the traction and separation distributions at increasing Aa/D across various [. and G,
combinations. Note that the cohesive energy of each of these (l., G.,Aa) combinations are
quantitatively in perfect agreement with the calculated energy releases rate, I'(Aa/D), in Fig. 2,
since all of the dissipation energy in the process zone is projected onto an equivalent zero-
thickness cohesive zone. While the shape of the cohesive zone law generally remains unchanged,
increasing Aa/D increases both the peak cohesive traction as well as the total separation, &,
particularly at high G./(ED) of 0.025 where a 16% increase in the cohesive strength is observed
as the crack propagates from Aa/D = 10 to 115. At higher [./D, the cohesive zone laws rapidly

converge with Aa/D, indicating a transition to steady-state crack growth.

4. Discussions and Conclusion

In the micromechanics modeling of fracture, a brittle or ductile fracture response often

correlates with the extent of plastic dissipation in the background material. In the case of brittle
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fracture, damage is often confined to the thin process zone ahead of the crack, and the limited
plastic dissipation results in a flat R-curve representing rapid and unstable crack propagation. In
the case of ductile fracture, the development of significant background plastic dissipation results
in a rising R-curve. The phase-field fracture model we have adopted is widely considered to be
“brittle” as we have assumed an elastic background material. We remark that “ductile” phase-
field fracture models based on elasto-plastic background materials have also been proposed in
the open literature [36,56,57,62,63]. However, our crack growth simulations for this “brittle”
phase-field fracture model demonstrate a rising R-curve in cases with large G, and/or small [,
suggesting that this seemingly “brittle” model can effectively simulate the fracture response of

ductile materials.

Akin to crack growth in an elasto-plastic material, the macroscopic fracture resistance I' in
our phase-field model can be delineated into two primary contributions: the fracture initiation
toughness, [Gy,;, and phase-field dissipation energy, I},. Our simulation results in Fig. 2 show that
G, 1s a direct quantitative measure of [, in agreement with prior studies [42,53], while both G,
and [ have profound effects on I},. Similar to the growth of the plastic zone size during transient
crack growth, the transition from crack initiation to steady-state crack growth in our phase-field
fracture model is marked by the development of a diffuse damage zone which evolves with Aa
(Figs. 3 and 4). This diffuse zone can be treated as an evolving fracture process zone in the
transient crack growth regime, and is distinct from micromechanics fracture models which

almost always assume a fixed process zone size.

One approach to quantify the phase-field fracture process is to project the diffuse damage
into an equivalent crack-tip cohesive zone law which evolves with crack growth. In doing so, the

cohesive energy quantitatively equates to the total fracture resistance, I'(Aa), which
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encompasses both the contributions of IG; and I},(Aa). Our results in Figs. 5-7 show that G, has
a strong influence on both the cohesive strength and cohesive energy, but has negligible effects
on the shape of the cohesive zone law — this suggests that the underlying crack growth mechanics
remain unchanged with G.. In contrast, [. significantly changes the functional form of the
cohesive zone law, and a transition from a sharp traction-separation profile resembling a bilinear
cohesive zone model to a flattened traction-separation profile resembling a trapezoidal cohesive
zone model is observed with increasing l.. This change in the shape of the traction-separation
relationship is associated with the increasing size of the diffuse damage zone with [, — a larger [,
creates both a thicker and longer fracture process zone with reduced cohesive strength. By

comparison, increasing G, has negligible influence on the process zone size.

Our studies, therefore, demonstrate that [. quantitatively relates to the size of the fracture
process zone. In the limit of [, = 0, the process zone physically collapses to a zero-thickness
cohesive zone, and the phase-field fracture model would indeed be equivalent to a sharp crack
propagating within an elastic medium. The fracture process would always be brittle with ' = G,
since there would be no energy dissipation in the background material. However, convergence
studies often lead to the adoption of relatively large values of [./D > 10 [24,25,29,62], which
introduces a finite thickness fracture process zone. Differing from these numerical studies, our
results suggest that [, should be calibrated and selected based on the physical thickness of the
fracture process zone. For example, a small value of [./D should be used to represent the narrow
process zone for cracking in a brittle rock-like material such as shale or concrete [64,65], while a
larger . /D will better represent the more diffused process zone associated with micro-crazing in
polymers [66,67]. This would provide [./D with a stronger physical basis. The “brittle” phase-

field fracture model we adopt does not account for background plasticity. Without loss of
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generality, our simulations suggest that the background plastic dissipation in elasto-plastic
materials constituting I, can heuristically be treated as a diffuse damage zone represented by

appropriately calibrated values of [./D.

The cohesive strength within the process zone depends on both G, and [.. Uniform

deformation studies show that the critical strength in the stress-strain response of a phase-field

element scales with /G./l. [23,42,59], and the cohesive strength of our equivalent crack-tip
cohesive zone laws appear to follow similar trends. Conceivably, once [. is calibrated to
represent the size of the fracture process zone, G, can in turn be calibrated to fit the cohesive
strength representing the appropriate crack growth mechanisms, such as void growth and

coalescence, fiber pull-out, and phase transformation.

In conclusion, we have obtained new physical insights into the role of the energy and
length-scale parameters, G, and [, in phase-field fracture models, by constructing the equivalent
crack-tip cohesive zone laws representative of the diffuse damage process. We demonstrate that
G, can be perceived as the fracture initiation toughness, and quantitatively controls both the
cohesive strength and energy. While [. was initially introduced as a mathematical construct, we
show that [. should be physically interpreted as a measure of the thickness of the diffuse damage
(fracture process) zone. By adopting finite values of [., together with appropriately-calibrated
values of G, the “brittle” phase-field fracture model can be used to simulate a wide variety of
material systems, from brittle rock materials with narrow process zones to ductile metals with
diffuse background plastic dissipation. We remark that a commonly used stiffness-based
hyperbole degradation function is considered in this study. Extracting the equivalent cohesive

zone laws for other degradation functions is a subject of future work.
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Figure Captions

Figure 1: (a) Schematic of a sharp crack (left) versus a diffuse crack (right), S, in a deformable
body Q. (b) Schematic of a small-scale yielding, boundary layer model, governed by a phase-
field constitutive relation, with a centerline crack (red) introduced through the phase-field
damage parameter ¢p = 1. (¢) Finite element mesh of the small-scale yielding model. (d) Close-
up view of the highly refined mesh close to the initial crack-tip.

Figure 2: Effects of G./(ED) with l./D = 4 (a) and l./D with G./(ED) = 0.015 (b) on the
fracture resistance (R-) curves. Values of G./(ED) corresponds to the fracture initiation
toughness and are denoted by square symbols.

Figure 3: Contours of the von Mises stress, g,, and the phase-field damage variable, ¢, for three
combinations of G./(ED) and l./D, and at three crack growth instances, Aa/D =5, 40, and 80.

Figure 4: Evolution of the process zone size, as quantified by ¢, centered on the current crack-
tip for three combinations of G./(ED) and l./D, and at three crack growth instances, Aa/D =5,
40, and 80.

Figure 5: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c¢)
at Aa/D = 25 with [./D = 4 for various G./(ED). Schematic of an equivalent zero-thickness
cohesive zone law embedded within a linear elastic body in inset in (b).

Figure 6: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c¢)
at Aa/D = 25 with G./(ED) = 0.015 for various [./D.

Figure 7: Equivalent crack-tip cohesive zone laws in a linear elastic body representing the
phase-field damage at Aa/D = 25 for various G./(ED) with l./D = 4 (a) and various l./D with
G./(ED) = 0.015 (b).

Figure 8: Evolution of phase field damage variable (red), ¢, versus proportion of cohesive
energy dissipated (black), I';/T, as a function of cohesive separation, §,/D, across various [./D
and G./(ED).

Figure 9: Evolution of the equivalent crack-tip cohesive zone laws with increasing Aa/D across
various combinations of [./D and G./(ED).
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Figure 1: (a) Schematic of a sharp crack (left) versus a diffuse crack (right), S, in a deformable
body (. (b) Schematic of a small-scale yielding, boundary layer model, governed by a phase-field
constitutive relation, with a centerline crack (red) introduced through the phase-field damage
parameter ¢p = 1. (¢) Finite element mesh of the small-scale yielding model. (d) Close-up view of
the highly refined mesh close to the initial crack-tip.
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Figure 2: Effects of G./(ED) with l./D = 4 (a) and l./D with G./(ED) = 0.015 (b) on the
fracture resistance (R-) curves. Values of G./(ED) corresponds to the fracture initiation toughness
and are denoted by square symbols.
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Figure 3: Contours of the von Mises stress, g,, and the phase-field damage variable, ¢, for three
combinations of G./(ED) and l./D, and at three crack growth instances, Aa/D =5, 40, and 80.
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Figure 5: Cohesive traction (a), cohesive separation (b), and phase-field damage distributions (c¢)
at Aa/D = 25 with [./D = 4 for various G./(ED). Schematic of an equivalent zero-thickness
cohesive zone law embedded within a linear elastic body in inset in (b).
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Figure 9: Evolution of the equivalent crack-tip cohesive zone laws with increasing Aa/D across
various combinations of [./D and G./(ED).
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