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Open systems with balanced gain and loss, described by parity-time (PT -symmetric) Hamiltoni-
ans have been deeply explored over the past decade. Most explorations are limited to finite discrete
models (in real or reciprocal spaces) or continuum problems in one dimension. As a result, these
models do not leverage the complexity and variability of two-dimensional continuum problems on
a compact support. Here, we investigate eigenvalues of the Schrödinger equation on a disk with
zero boundary condition, in the presence of constant, PT -symmetric, gain-loss potential that is
confined to two mirror-symmetric disks. We find a rich variety of exceptional points, re-entrant
PT -symmetric phases, and a non-monotonic dependence of the PT -symmetry breaking threshold
on the system parameters. By comparing results of two model variations, we show that this simple
model of a multi-core fiber supports propagating modes in the presence of gain and loss.

I. INTRODUCTION

Over the past 25 years, research on non-Hermitian
Hamiltonians with real spectra has burgeoned across
disparate topics in physics, spanning mathemati-
cal physics [1–4], optics and photonics [5–7], meta-
materials [8], acoustics [9], electrical circuits [10–
13], condensed matter physics [14, 15], and open
quantum systems [16–21]. It started with Bender
and Boettcher’s discovery [22] that the Schrödinger
eigenvalue problem for a non-relativistic particle on
an infinite line with complex potentials V (x) =
VR(x) + iVI(x) has purely real spectrum that is
bounded below. Similar results are obtained for
non-relativistic particle on a line with compact sup-
port [23–25], discrete tight-binding models on fi-
nite or infinite lattices [26–29], and even minimal
models with 2 × 2 Hamiltonians. In each case, the
non-Hermitian Hamiltonian H — a continuum, un-
bounded operator or a matrix — is invariant under
combined operations of parity P and time-reversal
T . This antilinear PT -symmetry guarantees purely
real or complex conjugate eigenvalues [30].
After their experimental realizations in numerous

platforms, it has become clear that PT -symmetric
Hamiltonians accurately model open systems with
balanced, spatially separated gain (VI > 0) and loss
(VI < 0) [31]. Their standard phenomenology is as
follows: starting from the Hermitian Hamiltonian
H0 with real spectrum and Dirac-orthogonal eigen-
functions, as the imaginary part of the potential
VI(x) is increased, two or more real eigenvalues un-
dergo level attraction, become degenerate, and then
develop into complex-conjugate pairs. This eigen-
value degeneracy, called exceptional point (EP) de-
generacy [32–34], is characterized by the coalescence
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of corresponding eigenfunctions and lowering of the
rank of the Hamiltonian operator. Due to the anti-
linearity of the PT -operator, an eigenfunction fn(x)
is simultaneously an eigenfunction of the PT op-
erator with unit eigenvalue if and only if the cor-
responding eigenvalue λn is real; if λn is complex,
then it follows that PT fn(x) is an eigenfunction
with complex-conjugate eigenvalue λ∗n. The tran-
sition across the EP from a real spectrum to one
with complex-conjugate eigenvalues is called PT -
symmetry breaking transition, since the correspond-
ing eigenfunctions lose that symmetry, PT fn(x) ̸=
fn(x).

Here, we investigate a two-dimensional contin-
uum model on a compact domain subject to hard-
wall (vanishing eigenfunctions) boundary condition
in the presence of constant PT -symmetric complex-
valued potentials. In one dimension, such poten-
tial leads to a single PT -symmetry breaking tran-
sition when the strength of the imaginary part of
the potential, γ, exceeds a threshold γPT set by the
Hermitian Hamiltonian H0. We will show that the
two-dimensional case differs dramatically. It leads to
multiple transitions where pairs of stable modes (real
spectra) change into amplifying and leaky modes
(complex conjugate eigenvalues) as γ is increased.
More surprisingly, we also find PT -restoring tran-
sitions where, as the pure gain-loss potential VI is
increased, amplifying and leaky modes are pairwise
stabilized. We argue that this unusual behavior
arises due to complex interplay between the size of
the modes in the Hermitian limit, and the size of the
gain-loss region.

The plan of the paper is as follows. In Sec. I
we introduce the model and recall the Hermitian-
limit results for a cylindrical waveguide. Section III
contains the outline of the numerical procedure
we use for discretization. Results for eigenspectra
and eigenfunctions across multiple PT -breaking and
restoring transitions are shown in Sec. IV. Section V
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concludes the paper.

II. PT -SYMMETRIC FIBER WITH
CIRCULAR CROSS-SECTION

As a physical example, we consider a lengthwise
uniform, multi-core fiber with circular cross-section
of radius R = 1 (purple) centered at the origin
in the x1-x2 plane, a lossy core of radius ρ cen-
tered at distance d/2 from the origin (green), and
a gain-medium core of the same radius ρ centered at
the mirror-symmetric location (pink). The position-
dependent index of refraction in the fiber is given by
n(x1, x2) = n0+δn(x1, x2) where n0 ∼ 1, and the in-
dex contrast δn ∼ 10−4 ≪ n0 [35, 36]. Gain and loss
can then be modeled by introducing negative and
positive imaginary parts to the index contrast re-
spectively, δn = δnR∓iδnI . The Maxwell’s equation
for a transverse-magnetic (TM) mode, characterized
by a vanishing electric field at the boundary, implies
that the field E(x) = E(x1, x2) exp[i(k3x3 − ωt)]x̂3,
propagating along the fiber, is given by

−
[︃
∆′ +

2n0ω
2

c2
δn

]︃
E(x) =

[︃
n20ω

2

c2
− k23

]︃
E(x) (1)

where ∆′ ≡ (∂2x1
+ ∂2x2

) is the in-plane Laplacian
with dimensions of inverse-area and c is the speed
of light in vacuum. After suitable rescaling, Eq.(1)
can be mapped onto a Schrödinger-like eigenvalue
problem [37, 38],

−∆fn(x) + V (x)fn(x) = λnfn(x), (2)

V (x) = VB −
2n0R

2ω2

c2
δn(x1, x2), (3)

λn = VB +
n20R

2ω2

c2
−R2k23. (4)

Here, ∆ = R2∆′ is the dimensionless Laplacian, λn
denotes the dimensionless eigenvalue, fn is the cor-
responding eigenmode, and VB sets the zero for the
dimensionless potential V (x). Changing VB shifts
the overall spectrum but does not change the level
differences ∆λmn ≡ λm − λn. We see from Eq.(3)
that a positive index-contrast δn > 0 acts as an at-
tractive potential for the electric field. We proceed
to identify V (x) for the specific geometry we will
consider.

R
=
1

ρ
x1

x2

d

DL DR

Ω

Figure 1: Schematic cross-section of cylindrical,
multi-core fiber. The radius R = 1 sets the length-
scale. The pink region DR, centered at x1 = d/2
with radius ρ denotes the gain region, and the green
region DL, centered at mirror-symmetric point x1 =
−d/2 with the same radius denotes the loss region.
When the gain-loss regions have no real-part for the
index-contrast with the rest of the fiber (purple), i.e.
V0 = 0, the eigenmodes are not just confined to the
regions DL and DR.

Let Br(x01, x02) = {(x1, x2) ∈ R2 : (x1 − x01)
2 +

(x2 − x02)
2 < r2} denote the disk of dimensionless

radius r centered at x0. Our problem is set in the
domain Ω = B1(0, 0) where a purely imaginary gain-
loss potential is introduced into non-intersecting
left and right subdomains DL = Bρ(−d/2, 0) and
DR = Bρ(d/2, 0) where ρ < R and 2ρ ≤ d ≤
2(R − ρ) ensures that the two domains do not in-
tersect (Fig. 1). The eigenvalue problem is to find
complex-valued, square-integrable functions on Ω,
fn(x1, x2) ∈ L2(Ω), that are in the domain of the
operator A defined below, and that vanish on the
boundary ∂Ω, together with complex numbers λn,
such that

Afn(x) = (−∆+ V )fn(x) = λnfn(x) in Ω, (5)

with

V (x1, x2) = VB +

⎧⎪⎨⎪⎩
V0 − iγ if (x1, x2) ∈ DL,

V0 + iγ if (x1, x2) ∈ DR,

0 otherwise.

(6)

We set the background potential VB = 1. It is
constant over the entire domain Ω. It does not
affect the eigenvalue differences and the resulting
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PT -symmetry breaking threshold where the spec-
trum transitions between purely real and complex-
conjugate pairs. We define the parity operator
P : L2(Ω) → L2(Ω) by (Pf)(x1, x2) = f(−x1, x2),
i.e., P mirrors functions about the second axis. It is
easy to see that P is a linear, self-adjoint, and uni-
tary operator in L2(Ω). The antilinear time-reversal
operator T : L2(Ω)→ L2(Ω) is given by (Tf) = f∗.
An operator H is called PT -symmetric if it com-
mutes with the antilinear operator PT ,

PT H = HPT . (7)

For unbounded operatorsH defined on a proper sub-
space dom(H) ⊂ L2(Ω) rather than all of L2(Ω),
namely H : dom(H) → L2(Ω), Eq.(7) means
f,PT f ∈ domH and the equality (7) holds. The
operator of interest to us, A = −∆ + V (x1, x2), is
unbounded, and its domain is given by dom(A) =

H2(Ω) ∩ H̊
1
(Ω). Here Hk(Ω) denotes the Sobolev

space of square-integrable functions all of whose
derivatives of order at most k ≥ 1 are also square in-

tegrable and H̊
1
(Ω) denotes the subspace of H1(Ω)-

functions that vanish on the boundary ∂Ω. It is
straightforward to check that A is PT -symmetric.
Note that when the index contrast V0 < 0 is suffi-

ciently large in magnitude, the modes fn(x1, x2) be-
come largely confined to the gain and loss regions.
Then our problem reduces to the well-studied PT -
symmetric coupler where the size of the mode is com-
parable to the size of the gain-loss region, the system
can be effectively modeled by a 2 × 2 Hamiltonian,
and undergoes a single PT -symmetry breaking tran-
sition [5, 39]. Instead, we choose V0 = 0 to ensure
the eigenfunctions fn(x1, x2) are spread over the en-
tire disk Ω.
To investigate the eigenvalues of A(γ), we start

with the Hermitian limit of Eq.(6), γ = 0. In this
case, the cylindrical symmetry in the x1-x2 plane
gives unnormalized eigenfunctions in polar coordi-
nates r, θ,

f0±mp(r, θ) = Jm(r
√︁
λmp − VB)e±imθ, (8)

form ≥ 0 and p ≥ 1, where the corresponding eigen-
value λmp is determined by the pth zero of the mth

Bessel function, Jm(
√︁
λmp − VB) = 0, which en-

forces the hard-wall boundary condition f |∂Ω = 0.
Except for m = 0, these solutions with exp(±imθ)
are degenerate, and represent positive and negative
angular momentum states respectively. The semi-
analytically obtained eigenvalues λmp of A(γ = 0)
are the starting point for computing eigenvalue tra-
jectories λmp(γ). They also serve to verify our nu-
merical methodology by benchmarking it against the
γ = 0 case.

III. NUMERICAL DISCRETIZATION IN
ARBITRARY 2D DOMAINS

In a one-dimensional interval, the discretization of
the Schrödinger operator with hard-wall boundary
condition leads to a tridiagonal matrix with no cor-
ner elements, whose absence enforces the boundary
conditions. Two-dimensional domains, on the other
hand, require more care. Let us denote the complex
L2(Ω)-inner product by ⟨·|·⟩. For any smooth func-
tion g vanishing on ∂Ω, the eigenvalue equation (5)
implies

⟨g|Afn⟩ = ⟨∇g(x)|∇fn(x)⟩+ ⟨g(x)|V (x)fn(x)⟩ .

The finite element method imposes the same equa-
tion on the Lagrange finite-element [40] space Xh

consisting of continuous functions, vanishing on the
boundary ∂Ω, which are polynomials of degree at
most p in each mesh element; in our computations,
we use p = 5. Here the mesh is a geometrically con-
forming mesh of triangles subdividing the domain,
respecting the material interfaces, with curved ele-
ments with higher density near the circular bound-
aries and interfaces. The subscript h indicates the
maximal diameter of all elements in the mesh. As h
becomes smaller or p becomes larger, the discretiza-
tion becomes finer and dimXh becomes larger.

Our numerical method computes the eigenvalues
of a discretization Ah : Xh → Xh of the infinite-
dimensional operator A. It is defined by

⟨gh|Ahfh⟩ = ⟨∇gh|∇fh⟩+ ⟨gh|V fh⟩ (9)

for all fh, gh ∈ Xh. Namely, we compute an eigen-
value approximation λh,n and right eigenfunction
fh,n satisfying

Ahfh,n = λh,nfh,n. (10)

Standard finite-element theory [41] can be used to
show that the approximate eigenpairs (fh,n, λh,n)
converge to the exact ones under suitable assump-
tions as h → 0; the symmetry of the mesh is im-
material in obtaining such convergence. The right
eigenfunction fh ∈ Xh in (10) is equivalently given
by

⟨gh|Ahfh⟩ = λh ⟨gh|fh⟩ for all gh ∈ Xh. (11)

Using a non-orthogonal basis ψi of finite-element
shape functions, Eq. (11) can be converted to a ma-
trix eigenvalue problem

Ax = λBx (12)

where Aij = ⟨ψi|Ahψj⟩ and Bij = ⟨ψi|ψj⟩. This
generalized eigenproblem is then solved for a clus-
ter of selected eigenvalues using a contour inte-
gral method called the FEAST algorithm [42, 43],
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which can also compute the corresponding eigen-
modes for the nonselfadjoint eigenproblem [44, Al-
gorithm 1]. The size of the eigenproblem for each γ
value, namely dimXh, is determined by the degree
p, the geometrical parameters (ρ and d) and how
it constrains the mesh size h; in our computations
dimXh ranged from 8000 to 16000.

While much of our ensuing analysis use meshes
without symmetry, we have also experimented with
meshes with parity symmetry that are invariant un-
der reflection by the vertical axis (x1 = 0). On such
meshes, the discretized Ah is exactly PT -symmetric;
specifically, (9) implies that

PT Ahfh = AhPT fh (13)

for all fh ∈ Xh, recovering the perfect analogue of
Eq.(7) on the discrete space Xh. In practice, this
implies that exactly real eigenvalues are recovered
with imaginary parts of the order of machine preci-
sion when using meshes with parity symmetry. In
contrast, when using meshes without the symmetry,
the same eigenvalues are approximated by numbers
whose the imaginary parts are generally not machine
zero, but rather approach zero up to discretization
errors. Also note that since eigenfunctions are de-
fined only up to a scaling factor, the corresponding
eigenmode intensities |fh|2 are also only defined up
to a scaling factor. Hence we report intensities with-
out explicitly showing a color legend, with a blue-to-
red colormap where blue denotes zero and red de-
notes the maximum intensity value.

Since the finite element discretization and the
FEAST eigensolver do not depend on the shapes of
fiber cross-section, gain domain, or the loss domain,
this approach is uniquely suited to investigate the in-
terplay among Hermitian mode structure, gain-loss
geometry, and the widely tunable effective coupling
between the gain and loss domains.

IV. NUMERICAL RESULTS

We start with the typical results for the flow of
lowest few eigenvalues λmp(γ). Recall that at γ = 0,
all eigenvalues except the lowest one, m = 0, are
doubly degenerate. However, our judicious choice
of the gain-loss domains ensures that there are no
matrix elements for V (x1, x2) between states ±m
and therefore the spectrum λn(γ) does not become
immediately complex.

0 50 100 150 200 250 300
Dimensionless gain-loss strength 

10

20

30

40

50

60

Di
m

en
sio

nl
es

s e
ig

en
va

lu
e:

 R
e(

n)

4

2

0

2

4

Di
m

en
sio

nl
es

s e
ig

en
va

lu
e:

 Im
(

n)

Re
Im (a)

(b)

(c)

Figure 2: Flow of eigenvalues λmp(γ) for the first
seven eigenvalues. All of them except m = 0 cases
are doubly degenerate at γ = 0 and this degeneracy
is lifted with increasing γ. The first PT -symmetry
breaking transition occurs at γ = γPT ≈ 97 im-
mediately followed by PT -restoring transition near
γPT = 102 (detailed in the second plot). This
is followed by a significantly broad PT -broken re-
gion, and another small PT -breaking and restoring
transition. This re-entrant PT -symmetric phase in
a model with single gain-loss parameter is uncom-
mon. These results are independent of the back-
ground potential value VB = 1, changing which uni-
formly shifts all eigenvalues λn while leaving the
flow-diagram unchanged.

In Fig. 2a we track the real (pink) and imag-
inary (blue) parts of the lowest seven dimension-
less eigenvalues as a function of dimensionless gain-
loss strength γ for a geometry with d/R = 0.3 and
ρ/R = 0.1. As γ is increased, we see level attrac-
tion, leading to degeneracy and emergence of com-
plex conjugate pair, indicated by equal and oppo-
site imaginary parts. The first such transition oc-
curs near γ = 97, shown in detail in the second
plot, Fig. 2b (with rescaled axes), and is followed by
a PT -restoring transition where the spectrum be-
comes purely real again near γ = 102. It is followed
by a large PT -symmetry broken region in the range
110 ≤ γ ≤ 265, followed by another PT -symmetric
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region. Figure 2c shows the zoomed-in and rescaled-
view of another such small window near γ = 290.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Mode-intensity evolution for pair of eigen-
values in Fig. 2b that become complex and then real
again. The black circles denote the gain-loss regions
with d = 0.3 and ρ = 0.1. Mode intensities in (a)-
(b), at γ = 96, are PT -symmetric. Modes in (c)-(d),
at γ = 99, are in the PT -symmetry-broken region:
the intensities of the two modes are mirror-images
of each other, while each intensity, by itself, shows a
broken PT -symmetry. In (e)-(f), gain-loss strength
is increased further to γ = 102, the eigenvalues be-
come real again, leading to mode intensities that are
individually mirror symmetric.

The surprising emergence of multiple PT -
symmetry breaking transitions induced by variations
of a single parameter γ reflects the two dimensional
nature of the underlying model. One-dimensional
lattice or continuum models require potentials with
different spatial ranges or functional forms for re-
entrant PT -symmetric phases to arise [25, 45, 46].
It is also worth noting that, in contrast to tradi-
tional models, the lowest few eigenvalues continue
to remain real.
In Fig. 3 we show the evolution of the mode in-

tensities with γ for the pair of eigenvalues that be-

come complex and then again real, see Fig. 2b.
These results are for d/R = 0.3 and ρ/R = 0.1,
Each panel shows the triangular mesh, the gain-
loss domains (black circles), and mode intensities.
When the spectrum of the system is purely real at
γ = 96, (a)-(b), the intensities have equal weights
on mirror-symmetric locations x1 ↔ −x1. When
the spectrum changes into complex-conjugate pair,
the modes are preferentially localized in the loss re-
gion, (c), or its mirror-symmetric gain region, (d).
We also note that although the x1 ↔ −x1 sym-
metry is broken, the mirror-symmetry about the
horizontal axis, x2 ← −x2 continues to be obeyed
by all eigenfunctions. When the gain-loss strength
is further increased to γ = 102, the spectrum be-
comes real again, and as shown in (e)-(f), the eigen-
modes have equal weights in the gain and the loss
regions. These typical results show that irrespective
of the symmetry of the underlying mesh used for
discretization, the numerically obtained eigenmodes
also clearly show the PT -symmetry breaking and
restoring transitions.

Although we have shown results only for a single
parameter set, Fig. 2, the re-entrant PT -symmetric
phase occurs generically over a wide range of gain-
loss domain sizes and separations. It is also im-
portant to note that when the index-contrast is in-
creased, |V0| ≫ 1, PT -symmetry breaking occurs
via hybridization of the lowest m = 0,±1 modes,
and the re-entrant PT -symmetric phase disappears.
These results suggest that the large spatial extent
of the modes relative to the size of the gain-loss do-
mains plays an important part.

Next, we investigate the dependence of the PT -
threshold strength γPT on the radius ρ of the gain-
loss domains DL, DR and the center-to-center dis-
tance d between them, using the results shown in
Fig. 4. Plot (a) shows that γPT varies inversely with
ρ at d/R = 0.5. This is expected because the ”effec-
tive gain-loss strength” is given by γπρ2. In the limit
when ρ/d ≪ 1, the system goes over to two, local-
ized δ-function-like gain and loss potentials [25, 47]
with a finite threshold that depends on this effec-
tive strength. This inverse-relationship is valid for
general d, Fig. 4b over the possible range of ρ < 2d.
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(a)

(b)

Figure 4: Dependence of γPT, where first complex-
conjugate eigenvalues emerge, on the dimension-
less radius ρ of the gain-loss domain. (a) At dis-
tance d/R = 0.5, γPT varies inversely with the
ρ ≤ 2d. (b) This inverse behavior, expected from
the effective-strength model with δ-function gain-
loss points, is valid for different values of d.

Lastly, in Fig. 5 we show the variation of γPT

with the center-to-center distance d. Recall that in
traditional PT -dimer models, where the modes are
confined to the gain-loss regions, as the distance d
between the gain and loss regions increases, the ef-
fective coupling between them and subsequently the
PT -breaking threshold decreases. Here, however,
we see that after an initial decay, γPT shows non-
monotonic behavior. In particular, the threshold
γPT is recovered even as the distance is increased
six-fold from d ∼ 0.2 to d ∼ 1.2. This increase is
due to competing effects of boundary proximity for
the gain and loss regions, and increased distance be-
tween them [25, 28]. Note that for small values of
d in Fig. 5, when d < 2ρ, the gain and loss disks
overlap; within the overlap, since gain and the loss
cancel each other out, the values of V are real. Then

the breaking thresholds are high, being determined
by small nonoverlapping slivers of gain and loss. As
d is increased, the overlap decreases (with no over-
lap when d > 2ρ), thus explaining the initial decay
of the breaking threshold values.

Figure 5: Dependence of the first threshold γPT on
the distance d for a fixed radius ρ = 0.1 of the gain-
loss domains. After an initial decay, the threshold
is recovered even as the gain and loss regions move
farther away from each other.

V. CONCLUSION

In this work, we have numerically investigated the
rich diversity of PT -symmetry breaking and restor-
ing transitions that arise in a two-dimensional, con-
tinuum, circular domain with uniform gain or loss
potentials confined to parity-symmetric disk-shaped
regions. The resulting two-dimensional geometry
lacks any continuous symmetry and the hope of
any effective, dimensional reduction. Therefore, us-
ing a interface-conforming discretization, we have
numerically solved the resultant generalized eigen-
value problem for lowest few eigenvalues. We have
found multiple PT -symmetry breaking and restor-
ing transitions, that occur generically as the gain-
loss strength γ is increased while other system pa-
rameters are fixed. We have also found that while
the threshold γPT scales inversely with the size of the
gain-loss regions, it shows a non-monotonic depen-
dence on the separation d, with a marked increase in
γPT that occurs as the gain-loss domains approach
the boundary of the fiber. Our results show that sta-
ble, propagating modes are supported in multi-core
fiber with gain and loss regions. The difference in
the nominal size of the modes and size of gain-loss
cores, due to the absence of index contrast, is pri-
marily responsible for the non-trivial dependence of
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γPT on the location of gain and loss domains.

The lattice and continuum PT -symmetric mod-
els, particularly those relevant in optics, have fo-
cused on two categories. For models in the first
category, the gain regions span half the domain,
with the loss-region spanning the remaining, parity-
symmetric counterpart [5–7, 24, 33, 34]. For mod-
els in the second category, the gain-loss regions are
highly localized (measure zero) relative to the size
of the domain [26, 28, 35]. In each case, increas-
ing the gain-loss strength in the PT -broken region
leads to more unstable modes. On the other hand,
our single-parameter model shows that when gain-
loss regions occupy a finite, tunable fraction of the
domain, multiple PT -breaking transitions are pos-
sible. The emergence of stable, propagating modes

with real eigenvalues in response to increasing gain-
loss strength means that such fibers can serve to sup-
port both amplifying and propagating modes. These
results suggest that significant threshold engineering
can be carried out by using spatially distributed gain
and loss domains in a bounded region with no sym-
metries beyond the discrete, PT symmetry.
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[23] G. Lévai and M. Znojil, Systematic search for PT-
symmetric potentials with real energy spectra, Jour-
nal of Physics A: Mathematical and General 33,
7165 (2000).

[24] M. Znojil, -symmetric square well, Physics Letters
A 285, 7 (2001).

[25] Y. N. Joglekar and B. Bagchi, Competing $\mathcal
{PT}$ potentials and the re-entrant $\mathcal
{PT}$-symmetric phase: a particle in a box, Jour-
nal of Physics A: Mathematical and Theoretical 45,
402001 (2012).

[26] L. Jin and Z. Song, Solutions of PT -symmetric
tight-binding chain and its equivalent hermitian
counterpart, Phys. Rev. A 80, 052107 (2009).

[27] O. Bendix, R. Fleischmann, T. Kottos, and
B. Shapiro, Exponentially fragile PT symmetry in
lattices with localized eigenmodes, Phys. Rev. Lett.
103, 030402 (2009).

[28] Y. N. Joglekar, D. Scott, M. Babbey, and A. Saxena,
Robust and fragile PT -symmetric phases in a tight-
binding chain, Phys. Rev. A 82, 030103 (2010).

[29] Y. N. Joglekar, C. Thompson, D. D. Scott, and
G. Vemuri, Optical waveguide arrays: quantum ef-
fects and PT symmetry breaking, The European
Physical Journal Applied Physics 63, 30001 (2013).

[30] F. Ruzicka, K. S. Agarwal, and Y. N. Joglekar, Con-
served quantities, exceptional points, and antilin-
ear symmetries in non-hermitian systems, Journal
of Physics: Conference Series 2038, 012021 (2021).

[31] C. M. Bender, PT symmetry in quantum physics:
From a mathematical curiosity to optical experi-
ments, Europhysics News 47, 17 (2016).

[32] T. Kato, Perturbation Theory for Linear Operators
(Springer Berlin Heidelberg, 1995).
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[41] I. Babuška and J. Osborn, Eigenvalue problems, in
Handbook of numerical analysis, Vol. II , Handb.
Numer. Anal., II (North-Holland, Amsterdam,
1991) pp. 641–787.

[42] E. Polizzi, Density-matrix-based algorithm for solv-
ing eigenvalue problems, Phys. Rev. B 79, 115112
(2009).

[43] J. Gopalakrishnan, L. Grubǐsić, and J. Ovall, Spec-
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