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Abstract—Machine learning (ML) has recently emerged as
an application with confidentiality needs. A trained ML model
is indeed a high-value intellectual property (IP), making it a
lucrative target for notorious side-channel attacks. Recent works
have already shown the possibility of reverse engineering the
model internals by exploiting the side channels like timing and
power consumption. But the defenses are largely unexplored.
Preventing ML IP theft is highly relevant given that the demand
for ML will only increase in the coming years.

Securing ML hardware against side-channel attacks requires
analyzing the vulnerabilities in the current ML applications
and developing full-stack countermeasures from the ground up,
covering cryptographic proofs, circuit design, firmware support,
architecture/microarchitecture integration, compiler extensions,
software design, and physical testing. There is a need to work on

all abstraction levels because focusing on just one or few level(s)
cannot provide a complete solution to this nascent problem.

Our research achieves four key objectives to realize the
first complete solution for side-channel protected ML. First, we
analyze the side-channel vulnerabilities in the various hardware
blocks of an ML accelerator and assess the feasibility of model
parameter extraction. Second, we design provably-secure gadgets,
implement them on FPGA, and empirically validate possible
countermeasures. Third, we add usability and flexibility to the
solution—the ability to support multiple ML architectures via
secure software APIs and compiler extensions on a RISC-V core.
Fourth, we fabricate the final solution at Skywater 130nm node.

I. INTRODUCTION

Side channel attacks (SCA) are notoriously known to break

the security of cryptographically secure algorithms [1] and

leak secret data. SCAs exploit the correlation of the computed

data on the physical properties of the device, such as the power

draw, electromagnetic emanations, etc [1]. Since the discovery

of differential power analysis (DPA) [1], the literature on SCA

and defenses has matured significantly with two decades of

academic research and industry adoption. However, the focus

has always been on cryptographic implementations due to their

strict confidentiality needs.

Machine learning (ML) has recently emerged as another

application with confidentiality needs. ML models are expen-

sive to develop, which makes them intellectual property (IP).

ML IPs are the key drivers in the business of ML appli-

cations offered as a service (MLaaS). Thus, models should

be protected against unauthorized access to their internals

such as the weights, and biases (or parameters) in a neural

network. Information about the internals of a model also

aids in other potentially dangerous attacks such as adversarial

attacks, model poisoning, and fault attacks [2]–[4]. Recent

Fig. 1. The figure depicts the research gap that we address in our work starting
all the way from assessing the side-channel vulnerabilities in ML hardware,
to taping out a configurable side-channel secure ML ASIC.

works have already shown the high potency of physical SCAs

to extract the parameters of a neural network [5]. Given that

the number of devices running ML is only going to increase

in the coming years, the research on building side-channel

defenses for ML hardware warrants urgent attention.

We undertake the challenge to secure ML hardware against

physical SCAs for the very first time through our work. We

need to build a full-stack solution to solve this problem.

ML was never designed for security, unlike cryptography.

Therefore, we need to rethink the way we currently design

ML applications. Fig. 1 highlights the research gap that

exists between secure cryptography hardware and secure ML,

and the various abstraction levels required to build a side-

channel defense. We fill the gap through our seminal works,

which span writing cryptographic proofs, designing hardware,

developing compiler extensions, building a system-on-a-chip

architecture, conducting side-channel validations, and taping

out an ASIC.

We demonstrate the first successful DPA attack to extract

the parameters of a neural network from an FPGA implemen-

tation. We develop the first side-channel defenses for neural

networks. We design formally secure hardware gadgets to

securely compute the common neural network operations like

weighted summations, activations, maxpool, etc. We design

and implement multiple secure neural network designs with

varying performance, area, and security levels for both FPGA

and ASIC targets. We use state-of-the-art tests like correlation

power analysis (CPA), and test vector leakage assessment

(TVLA) to validate the side-channel security of our imple-

mentations with millions of traces. Next, we add flexibility to

our solution by coupling the secure neural network hardware
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with a RISC-V core. We propose a custom instruction set

extension (ISE) to the RISC-V ISA to access the secure

hardware gadgets and build a library of APIs that enable

any user to securely perform neural network computations on

our platform. Finally, we tape out our final solution targeting

the Skywater 130nm node. We answer the following research

questions through our contributions.

1) To what extent is SCA exploitable in the low-level func-

tions of ML, like weighted summation, activation function,

etc., when implemented on hardware?

MaskedNet demonstrates the first successful power-based

SCA on a hardware implementation of a neural net-

work [6]. We show successful parameter extraction from

a neural network on different ML operations and quantify

the number of required queries for a successful attack.

2) What are the potential security and computational bottle-

necks when trying to leverage the existing cryptographic

side-channel defenses to ML functions on hardware?

Our works MaskedNet and BoMaNet leverage the mask-

ing and hiding techniques to propose the first side-channel

secure constructions of the neural network operations like

weighted summation, activation function, etc. MaskedNet

quantifies the security bottlenecks of using straightfor-

ward arithmetic masking on weighted summation, while

BoMaNet explores a fully Boolean masking approach and

quantifies the computational bottlenecks [7].

3) What are the possible algorithmic transformations that

can be incorporated into the ML algorithms to support

an efficient adoption of side-channel defenses by design?

ModuloNet proposes a fundamentally new technique to

perform neural network inference by incorporating mod-

ular arithmetic [8]. As observed from MaskedNet, and

BoMaNet, the most efficient way to incorporate masking

in neural network computations is to use modular arith-

metic. We quantify the overheads of masking a neural

network that uses modular arithmetic and show significant

gains both in performance and area.

4) How to flexibly support multiple ML architectures on

custom-built and commercial accelerators while still

maintaining side-channel resistance on hardware?

We develop a RISC-V-based coprocessor design that can

securely process a neural network implemented in C/C++.

We propose and implement a custom ISE to exercise the

masking gadgets inside the coprocessor and use them to

build a software library for secure ML functions [9].

A. Scope of this Paper and Organization

Due to space limitations, we have highlighted the key

aspects of our works in this paper and skipped some details.

We have organized this paper following the same theme of

building the various abstraction levels from the top down. Sec-

tion II presents the relevant background. Section III presents

our attack from MaskedNet [6], which shows the vulnerability

of neural network hardware to SCAs. Section IV presents two

proofs from ModuloNET. Section V presents the details about

the hardware design of the secure ML gadgets. Section VI

describes the hardware software codesign to couple a RISC-

V core to our secure neural network unit through custom

instructions. Section VII describes the details of the ASIC tape

Fig. 2. DPA threat model applied to ML model stealing–the trained neural
network is deployed to an edge device running in an untrusted environment.

out. Section VIII presents the area, and performance compar-

ison of our works with other published works, and the side-

channel validation results of our proposed designs. Section IX

discusses the broader impact of our research in the education

sector and industry. Additionally, we also published the first

successful remote power attack to extract model parameters

and a lightweight shuffling-based defense for neural networks,

but skip those works in this manuscript [10], [11].

II. BACKGROUND

This section describes the commonly assumed threat model

for side-channel attacks on ML hardware, hardware masking,

the RISC-V framework, and neural network basics.

A. Threat of Physical Side-Channels for AI/ML

Numerous works have shown successful attacks to extract

the model parameters from a device running ML inference [5],

[6], [12]. We follow the same attack setup for our works

as we depict in Fig. 2 and build defenses against it. The

training happens securely and the computed parameters are

programmed into a secure memory inside the edge device. The

device then operates in an untrusted environment where an end

user (adversary) can have physical access. The adversary’s

goal is to learn the parameters of the neural network by

conducting a DPA on the power traces captured during the

inference computation on the device. These parameters include

weights and biases in fully connected layers and kernels in

convolution layers. Adversary aims to steal the exact values

of these parameters—known as the high-fidelity extraction of

the model parameters [13]. Additionally, we also assume that

the adversary knows the hyperparameters of the model either

because it is public, or by using the techniques mentioned in

prior works [5].

To mitigate side-channel leakage, we implement masking

primitives that are proven first-order secure in the glitch-

extended probing model in cryptography [14], [15]. We then

validate the empirical security of our complete design using
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both DPA and TVLA tests. We exclude invasive attacks such

as clock glitching, or laser fault injection on the hardware.

Fault attacks can be handled by a different layer of defense.

B. RISC-V ISA and Toolchain

RISC-V is an open-source instruction-set architecture with

47 base instructions [16]. Its modular design enables easy ex-

tensions over the base ISA. The encoding space of instructions

is split into standard, reserved, and custom categories [16].

Any custom instruction should preferably use the encoding

space allotted to the custom category because the standard

space is already in use and the reserved space is kept for

possible future standardization (see Fig. 8) The RISC-V cross-

compiler (or toolchain) is publicly available with its source

code. The relevant components for this work are the GCC,

the Binutils, and the Newlib. Binutils contains the GNU

assembler (as) and linker (ld). GCC is the GNU compiler

for C, and Newlib provides the required low-level libraries for

basic C routines like malloc, free, etc. Adding a new custom

instruction requires modifying the source code of the toolchain

and rebuilding it. The rebuilt toolchain can now compile a

source code with the newly added custom instructions.

C. Hardware Masking

Masking is a common side-channel countermeasure. It splits

the secret variable into multiple statistically independent and

uniformly random shares and modifies the original algorithm

to process these shares instead of the original secret and

still maintain correct functionality. The power consumption is,

therefore, decorrelated from the secret since the computations

only happen on random shares. Based on whether the shares

are split using exclusive-OR operation or modular addition, the

scheme is respectively called Boolean or arithmetic masking.

Multiple masking schemes have been proposed in the litera-

ture [17], [18]. We use domain-oriented masking (DOM) to

mask Boolean functions because it is secure in the glitch-

extended probing model and has a low randomness and area

overhead [18]. Notably, this style of masking is also adopted

in real-world products such as Google’s OpenTitan [19].

D. Neural Networks Basics

Neural networks are a class of ML classifiers frequently

used for classification problems. They consist of units called

neurons that perform a weighted summation followed by a bias

addition and a non-linear transformation. Multiple neurons

are stacked together in layers that feed their results to the

next layers. A fully connected (FC) layer has all its neurons

connected to all the neurons of the previous layer. Another

flavor of neural networks uses convolutional layers. The idea is

to process smaller regions of the image and extract meaningful

information using kernels before using the FC layers [20],

[21]. The connection weights and kernel values are tuned

during the training process and typically in floating point

representation. However, to reduce the power and memory

footprint for hardware implementations, quantized neural net-

works have been proposed that limit the precision of the

parameters to fewer bits [22], with the extreme case being

binarized neural networks (BNN) [23].

Fig. 3. Adder Tree used in HW Implementation. The figure shows the scenario
where the 2nd stage registers(red) are targeted for DPA. This results in 16
possible key guesses corresponding to the 4 input pixels involved in the
computation of each second stage register, grouped by the dotted blue line.

III. DPA ON PARALLEL BNN HARDWARE

This section describes our attack on a BNN hardware

implementation to extract secret weights. We use a completely

parallel implementation of the neural network as the baseline.

We assume the MNIST dataset for this implementation, which

has 784 pixels per image. Thus, we design a pipelined adder

tree of depth 10 to compute the complete sum in 10 cycles

and achieve a throughput of 784 summations per cycle.

The pipeline registers of the adder tree store the intermediate

weighted summations. Therefore, the value in these registers

is directly correlated to the secret—model weights in our case.

Figure 3 shows an example attack. Four possible values can

be loaded in the output register [0] of stage-1: −[0] − [1],
−[0]+ [1], [0]− [1] and [0]+ [1] corresponding to the weights

of (0,0), (0,1), (1,0) and (1,1), respectively1. Therefore, a DPA

attack with known inputs (xi) on stage-2 registers (storing

wixi accumulations) can reveal 4 bits of the secret weights

(wi). The attack can target any stage of the adder tree but the

number of possible weight combinations grows exponentially

with depth. To aid the attack, we developed a cycle-accurate

hamming-distance simulator for the adder tree pipeline and

used it to mount a DPA attack.

Fig. 4 illustrates the result of the attack on stage-2 registers.

There is a strong correlation between the correct key guess

annotated with green and the power measurements crossing

the 99.99% confidence threshold after 45k measurements. The

attacker can successively extract the parameters for all the

nodes in all the layers, starting from the first node and layer.

The bias, in our design, is added after computing the final sum

in the 10th stage, before sending the result to the activation

function. Therefore the adversary can attack this addition

operation by creating a hypothesis for the bias. Alternatively,

bias can be extracted by attacking the activation function

output since the sign is correlated to the bias.

IV. PROVABLY SECURE NEURAL NETWORK GADGETS

We present the security proof sketches for two of our

proposed masked hardware gadgets from ModuloNET in this

section: 1) masked weighted summation, and 2) Boolean-to-

arithmetic conversion (B2A). We first define the two com-

monly used adversary models in literature viz. t-probing

security and glitch-extended t-probing security.

1-1 is represented as 0 on BNN hardware for efficiency.
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Fig. 4. Pearson Correlation Coefficient versus time and number of traces for
DPA on weights. The lower plot shows a high correlation peak at the time of
target computation, for the correct weight guess denoted in green. The upper
plot shows that approximately 40k traces are needed to get a correlation of
99.99% for the correct guess. The confidence intervals are shown in dotted
lines. The blue plot denotes the 2’s complement of the correct weight guess.

Definition 4.1: t-probing security [24] A gadget G is t-

probing secure, iff any arbitrary combination of every t-tuple

wires in the gadget is independent of all secret variables.

Definition 4.2: Glitch-extended t-probing security [14], [15]

A gadget G is glitch-extended t-probing secure, iff any arbitrary

combination of every t-tuple wires in the gadget and the wires

in their fan-in until the last registered point is independent of

all secret variables.

Since we focus on masking ML-specific operations, we

prove the first-order security of the ML-specific gadgets in

the glitch-extended probing model [14] and provide 1-probing-

secure implementations for other gadgets. For the proofs in the

glitch-extended probing model, O denotes observation set–the

set of all the intermediate nets observable by the adversary A.

We occasionally use a subscript to distinguish between two

sets corresponding to different probe positions. A can place at

most 1 probe in the gadget since we claim first-order security.

A. Weighted Summations:

Figure 5 shows the isolated masked weighted summation

gadget G1. The circuit computes the summation over masked

weighted input pixels during the input layer computations and

over masked weighted activation values during the hidden

layer computations. Thus, in the input layer, the two inputs

to the circuit are the two arithmetic shares (pi − ri) · w
{0}
i,j

and ri · w
{0}
i,j of the partial product pi · w

{0}
i,j . In the hidden

layer, the gadget inputs are arithmetic shares b0 and b1 of the

product ai · w
{k}
i,j of activation value ai with the respective

weight w
{k}
i,j of the kth layer. We aim to protect the weights

w
{k}
i,j in this gadget.

Theorem 4.1: G1 is glitch-extended t-probing secure given

the secret variables as w
{k}
i,j .

Proof 4.1: (Sketch) The gadget is internally split in two

independent datapaths D1 and D2 corresponding to the two

share domains. The hardware registers the arithmetic shares

before feeding them to G1.

Fig. 5. Circuit design of the masked weighted summation gadget G1 proven
secure in the glitch-extended probing model.

1) During the input layer computations, the input to D1
can either be (pi − ri) mod K or (−pi + ri) mod K,

depending on whether w
{0}
i,j is 1 or 0, respectively. Here,

pi ∈ ZK and is known to A; ri ∈ ZK is a fresh and

uniformly sampled random number; K is the modulus.

Thus, for both possible values of w
{0}
i,j the input to

D1 is always a fresh and uniformly distributed random

number. Since the inputs to the gadget are registered, the

observation set variables are confined to the intermediate

nets inside G1. Therefore, any arbitrary function of the

intermediate nets in D1 will produce only random outputs

independent of w
{0}
i,j .

2) During input layer computations, the input to D2 can

either be ri mod K or −ri mod K. Both these values

are also fresh and uniformly sampled random numbers.

Thus, any arbitrary function of the intermediate nets will

also produce outputs independent of w
{0}
i,j .

3) For the hidden layer computations, the inputs to D1 and

D2 are the registered outputs b0 and b1 from the Boolean-

to-arithmetic converter. We prove in Section IV-B that the

outputs from the Boolean-to-arithmetic unit are also fresh

and uniformly distributed random numbers. Thus, using

a similar analysis as that for the input layer, any arbitrary

function of the intermediate nets produced during the

hidden layer computations in either D1 and D2 are

independent of w
{k}
i,j .

Important Notes. We assume that the encoder circuit that

generates the shares of pi · w
{0}
i,j by loading pi, ri and w

{0}
i,j

cannot be probed by A. Such assumptions on the encoder are

common in prior works on provably-secure hardware mask-

ing [24]. Furthermore, although the weights are unmasked in

the gadget, that is an issue with template attacks, not DPA.

B. Boolean-to-arithmetic conversion

The inputs to this gadget G3 are 1-bit Boolean shares

(x0, x1) of the activation value x and output is a 15-bit value

a such that a+x1 = x0⊕x1. We provide the probing security

guarantee that none of the intermediate nets leak the value of

the original secret x in the process of generating a.
Theorem 4.2: All the intermediate nets in G3 are indepen-

dent of x.
Proof 4.2: (Sketch) The gadget pads the inputs before

feeding them to the Pipelined Golic’s B2A block (see Figure

6). We first prove that the padding is secure and then prove

the security of the B2A circuit.

1) Padding. The gadget pads both x0 and x1 with a 14-bit

fresh and uniformly sampled r to produce y0 = r||x0 and
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Fig. 6. Design of our proposed circuit to process the binary Boolean shares
(x0, x1) to produce a such that

⊕
i x

i = a + x1. The circuit concatenates
the Boolean shares with 14 random bits and feeds them to a pipelined version
of Golic’s Boolean to arithmetic circuit.

y1 = r||x1; the operator || denotes concatenation. The

LSB yi[0] = r[0]||x
i. Both xi and r[0] are independent

of x and so is the net r[0]||x
i. Therefore, the all the

intermediate nets in this operation are independent of the

secret x.

For the other bits, yi[j] = r[j] where j > 1 and i ∈ {0, 1}.

Since r[j] is a fresh and uniformly sampled random bit,

all the nets for the rest of the bits are also independent

of x.

2) Pipelined Golic’s B2A circuit. The analysis of padding

step proves that all the inputs to this circuit are indepen-

dent of x, so we exclude the input probes in this analysis.

We start our analysis from the LSB of a, i.e., stage-0.

a[0] = y0[0], and since y0[0] is independent of x, a[0] is

independent of x.

In stage-1, the XOR output is y0[1] ⊕ y1[0]. Since y0[1] and

y1[0] are the Boolean shares of y[1] and y[0], respectively,

their XOR sum will yield another uniform random value

because the two bits y[1] and y[0] are independent of each

other.2.

The output of the multiplexer in stage-1 is (a[0] · (y
0
[1] ⊕

y1[0])) | (a′[0] · y
0
[1]). All the variables in this equation

are uniformly distributed random numbers. Thus, the

probability distribution of the multiplexer output is also

independent of x.

From stage-2 onwards, yi[j], with i ∈ {(0, 1}, and 0 < j <

15, is a fresh and uniform random number. The other

input to the stage is the output a[j] from the previous

stage. We proved in the analysis of stage-1 that a[1] is

independent of x. Thus, from stage-2 onwards all the

intermediates nets are independent of the secret x.

V. HARDWARE DESIGN OF THE MASKED NEURAL

NETWORK

We use a top-down approach to explain the fully masked

ModuloNET hardware design shown in Fig. 7 (left). We start

with an overview of the full design with various blocks and

then explain the details of the masked weighted summation

and activation function blocks. We skip the details of the other

blocks for brevity. All the gadgets we develop are composable

in the glitch-extended probing model, which automatically

makes the full ModuloNET design also secure in that model.

2We need to be careful here. If the two variables were Boolean shares of
the same bit of y, then A can easily recreate the secret by the shares, even
though they’re independent of each other.

A. Overview of the Full Design

We target an area-optimized BNN design that has a through-

put of 1 summation per cycle; the input and hidden layers reuse

the weighted summation unit. Our solution can extend to more

parallel designs, but we make this decision to accommodate

the full design on an FPGA and simultaneously analyze

the side-channel leakage, which is the main focus of our

work. We choose a common modulus (K) of 215 for all the

layer summations based on our offline characterization of the

dataset [8]. Image BRAM stores the input pixels. The design

sequentially reads one pixel per cycle, multiplies it with the

respective weight, and then accumulates the weighted sum.

The design performs this operation in a masked fashion, which

is described in Section V-B. The masked summation is then

fed to the masked activation function block that computes the

Boolean shares of the activation result and stores them in the

Layer BRAM. The design uses the XNOR-popcount technique

to compute the weighted summations in the hidden layer.

However, it needs to convert the Boolean shares of activation

back to arithmetic shares before feeding them back to the

adders to process the next layer. For output layer computation,

the design feeds the masked summations to the masked output

layer unit, which produces the masked classification result.

B. Arithmetic Masking of Weighted Summations

Fig. 7 shows the implementation of masked weighted sum-

mation using arithmetic masking because it is an arithmetic

operation. The hardware reads pi from the image BRAM, pads

it to log2K-bits, and splits it into two arithmetic shares pi−ri
and ri, where ri is a log2K-bit fresh random mask. Next, the

hardware directly and independently computes the weighted

summations on the two arithmetic shares. Finally, the hardware

adds bias
{0}
j to one of the shares and sends both the shares

to the masked activation function.

C. Masked Activation Function

The activation function receives two arithmetic shares and

computes if their sum is greater than K
2 , which depends on

the MSB of the sum. Therefore, the hardware only needs to

compute the MSB of the final summation in a masked fashion.

MaskedNet implemented a masked LUT-based ripple carry

chain to produce the two Boolean shares of the MSB. Such a

design is good for applications where the security requirements

are low because glitches can happen inside the LUTs and

eventually reveal the secret [25]. Prior literature suggests a

number of alternatives such as Threshold Implementation [17],

DOM [26], a synchronized variant of the Trichina’s AND

gate [7], etc., to perform masked operations with reduced

glitches. We select DOM because it has low area and ran-

domness requirements and provides security against glitches.

Figure 7 (right) shows our proposed novel design of the

masked activation function using DOM-indep AND gates for

8-bit operands3. We specifically use the DOM-indep multiplier

instead of DOM-dep because we guarantee independent input

sharings: the hardware creates fresh Boolean shares for the

arithmetic sharings. The hardware needs to create Boolean

3We show an illustration with 8-bits but the actual design has log2K-bit
operands.
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Fig. 7. Figure on the left shows the hardware design of the fully masked ModuloNET inference showing various top-level masked components. The weights

w
{k}
i,j and bias

{k}
j are read from the respective block RAMs. The figure on the right shows the design of the masked activation function using a Kogge-Stone

carry propagator with DOM gates labeled as D. Figure is not to scale.

shares of the input bits (of arithmetic shares) explicitly before

feeding them into the DOM gates because the logic to compute

the carry is completely exposed in a gate-level masked design.

The Share Creation block creates two Boolean shares for

every bit of each arithmetic share.
Instead of adopting a linear ripple-carry design [6], we

implement the carry chain of a Kogge-Stone adder [27]

because it has a logarithmic latency. We replace the AND gates

in the logic with DOM-indep AND gates to mask the design;

XORs being linear can directly process the two share domains

independently. Level-0 of the tree produces the Boolean shares

of carry-generate (g) and carry-propagate (p) terms. Following

equations present the masked versions of g and p.

(g1i , g
0
i ) = DOM(a1[i], a

0
[i], b

1
[i], b

0
[i], ra)

(p1i , p
0
i ) = (a1[i] ⊕ b1[i], a

0
[i] ⊕ b0[i])

The subsequent levels process the group generate

(si:k, sk−1:j) and group propagate (ti:k, tk−1:j) terms to pro-

duce the group generate (si:j) and group propagate (ti:j) for

the next level. For any level l > 0, the relation between i and

k can be generalized to i = k + 2l−1 − 1. For level-1, i = k

and si:i = gi and ti:i = pi. The following equations illustrate

the masking of the group generate and group propagate terms.

(u1, u0) = DOM(t1i:k, t
0
i:k, s

1
k−1:j , s

0
k−1:j , rb)

(s1i:j , s
0
i:j) = (u1 ⊕ s1i:k, u

0 ⊕ s0i:k), (t
1
i:j , t

0
i:j)

= DOM(t1i:k, t
0
i:k, t

1
k−1:j , t

0
k−1:j , rc)

VI. SOFTWARE-ASSISTED COUNTERMEASURES FOR

FLEXIBILITY

This section describes the hardware software codesign to

add flexibility and usability to our side-channel secure neural

network hardware. We again take the top-down approach to

first explain the programming model exposed to the end user

and then present the details of the implementation of the APIs

using custom instructions, and coupling with the coprocessor.

A. Programming Model and Custom ISE

Instead of exposing the assembly-level custom instructions

directly to the user, we expose C-based4 APIs, which are

4Our approach is not fundamentally limited to a particular software lan-
guage but we chose C given its suitability for embedded platforms.

Fig. 8. Figures (a) and (b) respectively depict the overall opcode map for the
RISC-V ISA and the encoding of an R-type instruction. Our design uses the
major opcode of custom-0 (highlighted) to distinguish our proposed custom
instructions from the base instructions, and the minor opcode to distinguish
between each custom instruction.

easier to understand and debug. We provide the APIs as part

of a shared library—the user needs to include the header

file, follow the syntax of the functions, and link the library

while generating the ELF. Our rationale behind the syntax

of the APIs is to keep it close to existing ML frameworks.

We develop an interface similar to the Sequential model of

TensorFlow Keras [28]. The programming interface configures

and executes each layer of the neural network sequentially

similar to the Keras model of stacking layers.

A key advantage of our solution is exploiting the layer-wise

reconfigurability of this software interface to activate/deacti-

vate the masking of each layer. This helps to trade off security

with performance. Selective masking has also been explored

in cryptography—prior works propose masking only the first

and last rounds of AES because those are the most vulnerable

rounds in a DPA attack [29]. Neural networks are no different

in this regard. Additionally, this also enables only protecting

the parameters of the layers retrained using transfer learning

and saves the power and clock cycles spent on unnecessary

masking of layers with public parameters [30]. The library

provides the following four APIs.

void fetch_input(int* image, int num_images);
void input_layer(int* image, int num_images,

int* weight0, int num_weight0, int* bias,
int num_bias, int masking_enable);

void hidden_layer(int* weight, int
num_weight, int masking_enable);

void output_layer(int* weight, int
num_weight, int masking_enable);

We provide one API each for the input5 and the output

layer computations. We use the stacking approach for hidden

5By input layer computation, we mean processing the input pixels to
compute the first hidden layer.
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layers: each call to the hidden_layer(.) API triggers a

hidden layer computation where the hardware processes the

previous layer results to compute the results of the next layer.

We implement the APIs using inline assembly and the custom

ISE. We describe the encoding of the custom instructions next.

B. Custom Instruction Set Extension

We choose the R-type instruction format shown in Fig. 8(a)

for the custom instructions because some instructions require

two source operands and a destination operand. Fig. 8(b)

shows how the bits [6:2] are encoded for various categories of

instructions. The base opcode encoding space has the two least

significant bits [1:0] set to one. Since we only need 5 custom

instructions, we choose the standard 30-bit base encoding

space. We use the major opcode (bits [6:2]) to distinguish the

custom instructions from the base instructions and the minor

opcode (bits [14:12]) to distinguish between each custom

instruction. We choose the custom-0 space without loss of

generality. The major opcode for this space is 00010. The

instruction names and operations are explained below.

1) mnn.cfgwr rs1 rs2. This instruction stores the

pointer to a data structure (rs1) and its size (rs2) in

a configuration register inside the coprocessor. It is used

to store the pointers to the input pixels, the parameters,

and the hyperparameters such as the layer sizes.

2) mnn.<i/h/o>layer rs1. These instructions have

one source operand (rs1) controlling the enabling or

disabling masking of the layers. Based on the op-

code, the instructions mnn.ilayer, mnn.hlayer, and

mnn.olayer respectively trigger the input, hidden, and

output layer computations in the coprocessor.

3) mnn.ifetch rs1 rs2. This instruction fetches the

required number of input pixels (rs2) from the host and

stores them in the location pointed by rs1 in hardware.

C. Codesigning the Hardware with Software

Fig. 9 shows the block diagram of our complete design.

The important blocks are the RISC-V core (referred to as just

core from hereon), the dual-ported memory accessible through

a shared bus, and the coprocessor. The coprocessor further

consists of the command decoder (CMD) and the secure neural

network unit (SNNU). In the following sections, we describe

the design details in a top-down fashion—how the design

processes the high-level commands from the host to perform

the secure inference on hardware eventually.

D. The RISC-V Integration

We select the open-source PicoRV32 RISC-V core [31] for

this work because it has a low area footprint and provides

the basic features we need for our solution. The design

communicates to the host PC via UART. The host interface

processes the received signals to generate specific commands

using address mapping.

The host first loads the cross-compiled RISC-V binary to

the memory. The binary contains the model parameters, hy-

perparameters, and custom instructions to perform the neural

network inference. Next, the host sends the start signal to

trigger the core to fetch instructions. The core has an in-built

Fig. 9. The figure depicts major components of the proposed RISC-V based
SoC. RISC-V and coprocessor units share the memory interface. CMD de-
codes the custom instructions sent on the PCPI interface and relays appropriate
commands to the coprocessor to execute the required computations.

peripheral coprocessor interface (PCPI) to control a coproces-

sor. The CMD unit inside the coprocessor decodes the custom

instructions discussed in Section VI-A and issues commands

to the SNNU to perform the respective computations based

on the decoded instruction. The following listing presents a

typical user code to use our platform.

int main(){
//declare and initialize pointers and

variables
init(image,w0,w1,w2,bias);
fetch_input(image, ni);
m_en=1;
input_layer(image, ni, w0, nw0, bias, nb,

m_en);
hidden_layer(w1, nw1, m_en);
output_layer(w2, nw2, m_en);

}

The core writes the input pixels, and parameters directly to

the memory while executing the instructions. The coprocessor

can directly read from the respective addresses during its com-

putations because of shared memory access with the core. We

choose to share the memory between the core and coprocessor

instead of having distinct memories to avoid wasting cycles

copying data from one memory to another.

VII. PHYSICAL TAPE-OUT AND CHIP FABRICATION

This section presents the details of the ASIC tapeout. We

received the fabricated chips very close to this submission,

and thus, this section is limited to only the pre-silicon tapeout

information. Part of this information has been published at the

GOMACTech [32]. Fig. 10 shows the final layout of our chip.

We used the Skywater 130nm technology node for the tape

out using the chipIgnite shuttle that is managed by eFabless

Corporation. The shuttle uses a harness chip called Caravel as

depicted in Fig. 10 (right). The chip consists of a management

space and a user space. Management space consists of a

RISC-V core, a small SRAM for the core, and some internal

and external communication interfaces like Wishbone, UART,

SPI, etc., to boot up the chip properly. The user design is

instantiated inside the user space.
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Fig. 10. The layout of the fabricated chip. The final solution fits into
10mm2 with 8 SRAM banks for on-chip memory, RISC-V core, and our
developed co-processors. This is placed into the Caravel architecture that
allows communication with the outside world through UART.

We synthesized a single macro for our design depicted in

Fig. 9. We place this macro at the center of the user space

and surround it with eight SRAM macros of size 2kB to

reduce congestion and routing delays. The Caravel harness

provides direct access to 32 GPIOs from the user space. It

also provides additional access to 128 logical ports that can be

configured and driven by the RISC-V core in the management

unit. We designate 2 GPIOs as the RX and TX pins of the

UART protocol to communicate directly from host to the user

space. We also add direct access to important control signals

and registers inside the DUT via GPIOs to enable post-silicon

debug. We use some of the logical ports from the management

unit to configure the debug modes in the DUT. We use the

management unit to only configure our design and not drive

all the data from the host to reduce the communication latency,

and to keep the DUT independent of the management unit.

VIII. PERFORMANCE, AREA, AND SECURITY

EVALUATIONS

This section presents the area and performance overheads of

our proposed solutions, and how they compare to some other

existing works. We also present the results of our side-channel

evaluation on our hardware software codesign.

A. Area and Performance Comparison

Table I compares the area and latency of our solutions

with prior works. It is difficult to make exact comparisons

between the works because of the varying hyperparameters,

parallelization modes, and implementation platforms (FPGA

versus ASIC versus microcontroller). We try our best to

provide the comparison for completeness. We first choose a

standard hyperparameter set of 784 input nodes, one hidden

layer of 512 nodes, and an output layer of 10 nodes for

comparison; [33] already uses this configuration. All the works

have a throughput of 1 summation/cycle6. Thus, we assume

that the latency varies linearly with the total number of

summations per inference—the sum of products of the number

of nodes in two subsequent layers.

We scale the originally quoted latency (the Latency col-

umn) of the works to the expected latency of our chosen

hyperparameter set (the Latency (N) column) for each work.

The ASIC work [34] does not quote any latency numbers,

thus, we assume it to be equal to the number of weighted

6The ASIC solution [34] actually has a throughput of 8 summations/cycle
but we assume only 1 PE instantiation for this comparison.

TABLE I
AREA AND PERFORMANCE COMPARISON WITH PRIOR WORKS.
Work Area Latency Latency (N) Programmable

(LUT+FF) (cycles) (cycles)

Our Work [7] 17457 2.94× 106 4.2× 105 No

Our Work [8] 10644 2.91× 106 4.1× 105 No

[33] NA1 1.97× 107 1.97× 107 Yes

[34] NA2 NA3 4× 105 No

Our Work [9] 8778 10150 4.67× 105 Yes
1 microcontroller-based solution; no LUT/FF equivalents;
2 ASIC solution; no LUT/FF equivalents;
3 No latency numbers in the manuscript;

summations. The results show that the ASIC and FPGA

solutions have a comparable latency7 of around 4 × 105,

which is much lower than that of the microcontroller-based

solution, as expected. However, while the microcontroller is

programmable, the ASIC and FPGA are not. Our proposed

hardware software codesign is almost as fast as the hardware

solutions and provides the same programmability benefits as

that of a microcontroller. Thus, it provides both programma-

bility and high performance without sacrificing security.

B. Side-Channel Validation

We use both DPA and test vector leakage assessment

(TVLA) methods to perform side-channel validations [35]. We

validate the empirical security with 1M power traces.

1) DPA Results

Fig. 11 shows the results of the DPA attack on the unmasked

and masked implementations. We target the activation function

for the attack, use the hamming distance power model8, and

hypothesize on the possible weights. We set 8 input pixels

to be non-zero and hypothesize on the corresponding weights

for those pixels. This reduces the number of hypotheses from

264, to 28. Fig. 11 (a) clearly shows a high correlation only

for the correct hypothesis, at the exact point in time when the

activation is computed. The leakage is statistically significant

after 6000 measurements. Fig. 11 (b) shows the same attack on

the masked implementation, which quantifiably fails even with

1M power traces. Note that the latency of the target operation

in the masked design (3.2µs) is twice compared to that of the

unmasked design (1.6µs) because the unmasked design uses

both the datapaths to quickly compute the summations using

a runtime reconfigurable hardware [9].

2) TVLA Results.

Since DPA is insufficient and atypical to evaluate side-

channel security exhaustively, we also conduct the more

generic TVLA test. We conduct TVLA on four masked neural

network configurations C1 to C4. All the configurations have

1 input layer and 2 hidden layers of 64 nodes, and an output

layer of 10 nodes. C1 and C2 respectively have all the layers

unmasked and masked, C3 has only the second hidden layer

unmasked, and C4 has only the output layer unmasked.

Fig. 12 (a) and (c) depict the overall power trace of a fully

unmasked and fully masked configuration. We clearly observe

the two hidden layer computations using simple power analysis

as the two high amplitude bands; the bands have higher

7We refer to clock cycles. The actual latency might be much lower for an
ASIC because of the high design frequency compared to FPGAs.

8The memory storing the activations is not reset between measurements.
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Fig. 11. Figure (a) top plot shows a high correlation peak only for the correct
hypothesis in black; the bottom plot shows its evolution with the number of
traces, which becomes statistically significant with the confidence of 99.99%
(shown by the dotted lines) at 6000 traces. Figure (b) shows the same attack
on the masked design, where we neither observe a high correlation peak for
the correct hypothesis nor does the correlation become statistically significant
before 1M traces demonstrating resistance to the DPA attack.

Fig. 12. Figures (a) and (c) show the mean power trace for the unmasked and
masked designs. Figures (b), (d), (e), and (f) show the t-scores observed for
the configurations C1-C4 in order. C1 and C2 are fully-unmasked and fully-
masked designs, therefore, we observe t-scores higher than ±4.5 (denoted by
horizontal dashed lines) throughout the trace in (b), but not in (d). C3 has
only HL2 unmasked, and C4 has only OL unmasked, and thus, the t-scores
cross the threshold only during those regions in (e) and (f).

amplitude for the masked design compared to the unmasked

design, which is expected because of extra activity due to

PRNGs and masked datapaths. Also, the layer power activity

is lower than that of the baseline processor activity in the

unmasked design, which is why the power drops during the

layer computations, and the power bumps are actually between

the layer executions. The execution time for the masked design

is twice that of the unmasked configuration due to the dual path

reuse optimization in our design for the unmasked layers [9].

Fig. 12 (b) and (d) show the TVLA evaluations of C1 and

C2. All the layers are unmasked in C1; thus, the t-scores

cross the TVLA threshold of ±4.5. C2 has all the layers

masked, and therefore, we do not see the t-scores crossing

the threshold throughout the execution except the input layer.

This is because the design loads the pixels while computing the

arithmetic shares, and that load operation results in the input

correlations. This has been observed in prior works too [7],

[8], and is verified by running an experiment with buffered

arithmetic shares instead of generating them on-the-fly. We

also verify our design with that approach. We used 1M traces

in each fixed and random dataset to validate the side-channel

security. (e) and (f) show the TVLA results for C3 and C4.

We observe t-scores greater than the threshold in HL2 because

the second hidden layer is unmasked. The HL2 execution time

is halved with our optimization [9]. For C4, we observe the

t-scores cross the threshold in OL because the output layer is

unmasked. Thus, the design successfully masks/unmasks the

layers based on user configuration.

IX. BROADER IMPACT: INDUSTRY, EDUCATION

OUTREACH, AND UNDERGRADUATE TRAINING

In this section, we present the research impact of our works

in academia, and industry. We also talk about how we enabled

students at the undergraduate level to conduct research in this

domain, and successfully publish at top-tier venues.

Our works have created a significant impact in the literature

in terms of spearheading the research on analyzing the side

channel vulnerabilities in ML hardware applications and work-

ing towards building effective countermeasures against them.

Our research has enabled numerous other works on extending

the side-channel attacks on ML accelerators to multi-tenant

FPGA platforms using remote power monitors (including our

work) [10], [36], on using other masking schemes such as

threshold implementation on ASIC targets, on using pure

software masking on microcontrollers [33], [34], and also

on extending our masking gadgets to include other physical

defaults such as transitions [37]. Our research also achieved a

technology transfer with Intel. Specifically, our designs were

tested by Intel’s Product Assurance and Security team (IPAS)

on the Intel FPGAs, and the vulnerabilities were validated.

We have also introduced underrepresented minority under-

graduate students to our research as part of the Research

Experiences for Undergraduates (REU) program by the NSF.

We worked with sophomore students at NC State University to

mount a successful attack on a single neural network layer and

extract the weights using DPA. We only used basic building

blocks such as a breadboard, digital ICs, resistors, jumper

cables, and the Analog Discovery platform. We also helped

them to implement an effective low-cost countermeasure using

the concept of wave-dynamic differential logic (WDDL). They

were able to reduce the power side channel leakage by

15× with the countermeasure [38]. Ashley Calhoun was the

undergraduate lead student of this project and she published

a first-authored paper. Ashley also traveled to the GLS-VLSI

conference to present the paper in person. As a result of this

experience, she has decided to pursue a graduate degree in

electrical and computer engineering.

X. CONCLUSION

We conducted the first comprehensive research in the area of

physical side-channel security for ML hardware. We demon-

strate the vulnerability in parallel hardware for the first time,

and we provided the first provably secure hardware gadgets to

execute neural network operations securely. We also develop

the first hardware-software codesign framework in the context

of ML applications from a security standpoint. Our research

had a significant influence on academia and a direct impact on
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industry, along with a broader outreach to underrepresented

undergraduate students. The vast variety of ML topologies

and the nascent nature of this problem create a wide research

space. Future works can explore the threat of other types of

side channels, possible optimizations of solutions proposed in

our works, or cover more types of neural network topologies

under the threat of physical side channels.
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