2023 IEEE International Test Conference (ITC) | 979-8-3503-4325-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/ITC51656.2023.00035

2023 IEEE International Test Conference (ITC)

A Full-Stack Approach for Side-Channel Secure
ML Hardware

Anuj Dubey
Department of Electrical and
Computer Engineering
North Carolina State University
Raleigh, NC 27606

Abstract—Machine learning (ML) has recently emerged as
an application with confidentiality needs. A trained ML model
is indeed a high-value intellectual property (IP), making it a
lucrative target for notorious side-channel attacks. Recent works
have already shown the possibility of reverse engineering the
model internals by exploiting the side channels like timing and
power consumption. But the defenses are largely unexplored.
Preventing ML IP theft is highly relevant given that the demand
for ML will only increase in the coming years.

Securing ML hardware against side-channel attacks requires
analyzing the vulnerabilities in the current ML applications
and developing full-stack countermeasures from the ground up,
covering cryptographic proofs, circuit design, firmware support,
architecture/microarchitecture integration, compiler extensions,
software design, and physical testing. There is a need to work on
all abstraction levels because focusing on just one or few level(s)
cannot provide a complete solution to this nascent problem.

Our research achieves four key objectives to realize the
first complete solution for side-channel protected ML. First, we
analyze the side-channel vulnerabilities in the various hardware
blocks of an ML accelerator and assess the feasibility of model
parameter extraction. Second, we design provably-secure gadgets,
implement them on FPGA, and empirically validate possible
countermeasures. Third, we add usability and flexibility to the
solution—the ability to support multiple ML architectures via
secure software APIs and compiler extensions on a RISC-V core.
Fourth, we fabricate the final solution at Skywater 130nm node.

[. INTRODUCTION

Side channel attacks (SCA) are notoriously known to break
the security of cryptographically secure algorithms [1] and
leak secret data. SCAs exploit the correlation of the computed
data on the physical properties of the device, such as the power
draw, electromagnetic emanations, etc [1]. Since the discovery
of differential power analysis (DPA) [1], the literature on SCA
and defenses has matured significantly with two decades of
academic research and industry adoption. However, the focus
has always been on cryptographic implementations due to their
strict confidentiality needs.

Machine learning (ML) has recently emerged as another
application with confidentiality needs. ML models are expen-
sive to develop, which makes them intellectual property (IP).
ML IPs are the key drivers in the business of ML appli-
cations offered as a service (MLaaS). Thus, models should
be protected against unauthorized access to their internals
such as the weights, and biases (or parameters) in a neural
network. Information about the internals of a model also
aids in other potentially dangerous attacks such as adversarial
attacks, model poisoning, and fault attacks [2]-[4]. Recent

Aydin Aysu
Department of Electrical and
Computer Engineering
North Carolina State University
Raleigh, NC 27606

| Side-Channel Secure Cryptographic Hardware |

| Analyze the side-channel vulnerabilities in ML operations [6],[10], [38]

| Develop cryptographically secure gadgets for ML [8] G

| Design and implement the gadgets on hardware [6-9], [11], [38]

| Statistically validate the practical security of gadgets [6-9], [11], [38]

| Chip design of the final ASIC with post-tapeout validations [32]

|
|
|
| Add flexibility through intuitive software APIs [9] |
|
|

Side-Channel Secure Machine Learning Hardware

<>

Fig. 1. The figure depicts the research gap that we address in our work starting
all the way from assessing the side-channel vulnerabilities in ML hardware,
to taping out a configurable side-channel secure ML ASIC.

works have already shown the high potency of physical SCAs
to extract the parameters of a neural network [5]. Given that
the number of devices running ML is only going to increase
in the coming years, the research on building side-channel
defenses for ML hardware warrants urgent attention.

We undertake the challenge to secure ML hardware against
physical SCAs for the very first time through our work. We
need to build a full-stack solution to solve this problem.
ML was never designed for security, unlike cryptography.
Therefore, we need to rethink the way we currently design
ML applications. Fig. 1 highlights the research gap that
exists between secure cryptography hardware and secure ML,
and the various abstraction levels required to build a side-
channel defense. We fill the gap through our seminal works,
which span writing cryptographic proofs, designing hardware,
developing compiler extensions, building a system-on-a-chip
architecture, conducting side-channel validations, and taping
out an ASIC.

We demonstrate the first successful DPA attack to extract
the parameters of a neural network from an FPGA implemen-
tation. We develop the first side-channel defenses for neural
networks. We design formally secure hardware gadgets to
securely compute the common neural network operations like
weighted summations, activations, maxpool, etc. We design
and implement multiple secure neural network designs with
varying performance, area, and security levels for both FPGA
and ASIC targets. We use state-of-the-art tests like correlation
power analysis (CPA), and test vector leakage assessment
(TVLA) to validate the side-channel security of our imple-
mentations with millions of traces. Next, we add flexibility to
our solution by coupling the secure neural network hardware

2378-2250/23/$31.00 ©2023 IEEE 186

DOI 10.1109/1TC51656.2023.00035 '];"EE" _(J}r)ehP
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC from1E %I . “Restrictions apply.

with a RISC-V core. We propose a custom instruction set
extension (ISE) to the RISC-V ISA to access the secure
hardware gadgets and build a library of APIs that enable
any user to securely perform neural network computations on
our platform. Finally, we tape out our final solution targeting
the Skywater 130nm node. We answer the following research
questions through our contributions.

1) To what extent is SCA exploitable in the low-level func-
tions of ML, like weighted summation, activation function,
etc., when implemented on hardware?

MaskedNet demonstrates the first successful power-based
SCA on a hardware implementation of a neural net-
work [6]. We show successful parameter extraction from
a neural network on different ML operations and quantify
the number of required queries for a successful attack.
What are the potential security and computational bottle-
necks when trying to leverage the existing cryptographic
side-channel defenses to ML functions on hardware?
Our works MaskedNet and BoMaNet leverage the mask-
ing and hiding techniques to propose the first side-channel
secure constructions of the neural network operations like
weighted summation, activation function, etc. MaskedNet
quantifies the security bottlenecks of using straightfor-
ward arithmetic masking on weighted summation, while
BoMaNet explores a fully Boolean masking approach and
quantifies the computational bottlenecks [7].

What are the possible algorithmic transformations that
can be incorporated into the ML algorithms to support
an efficient adoption of side-channel defenses by design?
ModuloNet proposes a fundamentally new technique to
perform neural network inference by incorporating mod-
ular arithmetic [8]. As observed from MaskedNet, and
BoMaNet, the most efficient way to incorporate masking
in neural network computations is to use modular arith-
metic. We quantify the overheads of masking a neural
network that uses modular arithmetic and show significant
gains both in performance and area.

How to flexibly support multiple ML architectures on
custom-built and commercial accelerators while still
maintaining side-channel resistance on hardware?

We develop a RISC-V-based coprocessor design that can
securely process a neural network implemented in C/C++.
We propose and implement a custom ISE to exercise the
masking gadgets inside the coprocessor and use them to
build a software library for secure ML functions [9].

2)

3)

4)

A. Scope of this Paper and Organization

Due to space limitations, we have highlighted the key
aspects of our works in this paper and skipped some details.
We have organized this paper following the same theme of
building the various abstraction levels from the top down. Sec-
tion II presents the relevant background. Section III presents
our attack from MaskedNet [6], which shows the vulnerability
of neural network hardware to SCAs. Section IV presents two
proofs from ModuloNET. Section V presents the details about
the hardware design of the secure ML gadgets. Section VI
describes the hardware software codesign to couple a RISC-
V core to our secure neural network unit through custom
instructions. Section VII describes the details of the ASIC tape

187

Trusted Training Phase

Training Trained Model
Dataset Parameters
@
SO b araecies
Lavers “are .
Untrusted Inference Phase
v
Input
Secure

Programmable
Logic

Secure bus . :
(tamper-proof) Memory

(on-chip)

(Im agc)§
Output

(Prediction)

BNN Accelerator

i

WY

mn,
Standard DPA Attack

Power Model and
Key Hypotheses

Fig. 2. DPA threat model applied to ML model stealing—the trained neural
network is deployed to an edge device running in an untrusted environment.

out. Section VIII presents the area, and performance compar-
ison of our works with other published works, and the side-
channel validation results of our proposed designs. Section IX
discusses the broader impact of our research in the education
sector and industry. Additionally, we also published the first
successful remote power attack to extract model parameters
and a lightweight shuffling-based defense for neural networks,
but skip those works in this manuscript [10], [11].

II. BACKGROUND

This section describes the commonly assumed threat model
for side-channel attacks on ML hardware, hardware masking,
the RISC-V framework, and neural network basics.

A. Threat of Physical Side-Channels for AI/ML

Numerous works have shown successful attacks to extract
the model parameters from a device running ML inference [5],
[6], [12]. We follow the same attack setup for our works
as we depict in Fig. 2 and build defenses against it. The
training happens securely and the computed parameters are
programmed into a secure memory inside the edge device. The
device then operates in an untrusted environment where an end
user (adversary) can have physical access. The adversary’s
goal is to learn the parameters of the neural network by
conducting a DPA on the power traces captured during the
inference computation on the device. These parameters include
weights and biases in fully connected layers and kernels in
convolution layers. Adversary aims to steal the exact values
of these parameters—known as the high-fidelity extraction of
the model parameters [13]. Additionally, we also assume that
the adversary knows the hyperparameters of the model either
because it is public, or by using the techniques mentioned in
prior works [5].

To mitigate side-channel leakage, we implement masking
primitives that are proven first-order secure in the glitch-
extended probing model in cryptography [14], [15]. We then
validate the empirical security of our complete design using

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC from']rI,E—‘Eg‘gﬁnlr)el.lPestrictions apply.

both DPA and TVLA tests. We exclude invasive attacks such
as clock glitching, or laser fault injection on the hardware.
Fault attacks can be handled by a different layer of defense.

B. RISC-V ISA and Toolchain

RISC-V is an open-source instruction-set architecture with
47 base instructions [16]. Its modular design enables easy ex-
tensions over the base ISA. The encoding space of instructions
is split into standard, reserved, and custom categories [16].
Any custom instruction should preferably use the encoding
space allotted to the custom category because the standard
space is already in use and the reserved space is kept for
possible future standardization (see Fig. 8) The RISC-V cross-
compiler (or toolchain) is publicly available with its source
code. The relevant components for this work are the GCC,
the Binutils, and the Newlib. Binutils contains the GNU
assembler (as) and linker (1d). GCC is the GNU compiler
for C, and Newlib provides the required low-level libraries for
basic C routines like malloc, free, etc. Adding a new custom
instruction requires modifying the source code of the toolchain
and rebuilding it. The rebuilt toolchain can now compile a
source code with the newly added custom instructions.

C. Hardware Masking

Masking is a common side-channel countermeasure. It splits
the secret variable into multiple statistically independent and
uniformly random shares and modifies the original algorithm
to process these shares instead of the original secret and
still maintain correct functionality. The power consumption is,
therefore, decorrelated from the secret since the computations
only happen on random shares. Based on whether the shares
are split using exclusive-OR operation or modular addition, the
scheme is respectively called Boolean or arithmetic masking.
Multiple masking schemes have been proposed in the litera-
ture [17], [18]. We use domain-oriented masking (DOM) to
mask Boolean functions because it is secure in the glitch-
extended probing model and has a low randomness and area
overhead [18]. Notably, this style of masking is also adopted
in real-world products such as Google’s OpenTitan [19].

D. Neural Networks Basics

Neural networks are a class of ML classifiers frequently
used for classification problems. They consist of units called
neurons that perform a weighted summation followed by a bias
addition and a non-linear transformation. Multiple neurons
are stacked together in layers that feed their results to the
next layers. A fully connected (FC) layer has all its neurons
connected to all the neurons of the previous layer. Another
flavor of neural networks uses convolutional layers. The idea is
to process smaller regions of the image and extract meaningful
information using kernels before using the FC layers [20],
[21]. The connection weights and kernel values are tuned
during the training process and typically in floating point
representation. However, to reduce the power and memory
footprint for hardware implementations, quantized neural net-
works have been proposed that limit the precision of the
parameters to fewer bits [22], with the extreme case being
binarized neural networks (BNN) [23].

188

1-8wg

7-%eg

01-98w)8

Fig. 3. Adder Tree used in HW Implementation. The figure shows the scenario
where the 2nd stage registers(red) are targeted for DPA. This results in 16
possible key guesses corresponding to the 4 input pixels involved in the
computation of each second stage register, grouped by the dotted blue line.

III. DPA ON PARALLEL BNN HARDWARE

This section describes our attack on a BNN hardware
implementation to extract secret weights. We use a completely
parallel implementation of the neural network as the baseline.
We assume the MNIST dataset for this implementation, which
has 784 pixels per image. Thus, we design a pipelined adder
tree of depth 10 to compute the complete sum in 10 cycles
and achieve a throughput of 784 summations per cycle.

The pipeline registers of the adder tree store the intermediate
weighted summations. Therefore, the value in these registers
is directly correlated to the secret—model weights in our case.
Figure 3 shows an example attack. Four possible values can
be loaded in the output register [0] of stage-1: —[0] — [1],
—[0] 4 [1], [0] — [1] and [0] 4 [1] corresponding to the weights
of (0,0), (0,1), (1,0) and (1,1), respectively'. Therefore, a DPA
attack with known inputs (x;) on stage-2 registers (storing
w;x; accumulations) can reveal 4 bits of the secret weights
(w;). The attack can target any stage of the adder tree but the
number of possible weight combinations grows exponentially
with depth. To aid the attack, we developed a cycle-accurate
hamming-distance simulator for the adder tree pipeline and
used it to mount a DPA attack.

Fig. 4 illustrates the result of the attack on stage-2 registers.
There is a strong correlation between the correct key guess
annotated with green and the power measurements crossing
the 99.99% confidence threshold after 45k measurements. The
attacker can successively extract the parameters for all the
nodes in all the layers, starting from the first node and layer.
The bias, in our design, is added after computing the final sum
in the 10*" stage, before sending the result to the activation
function. Therefore the adversary can attack this addition
operation by creating a hypothesis for the bias. Alternatively,
bias can be extracted by attacking the activation function
output since the sign is correlated to the bias.

IV. PROVABLY SECURE NEURAL NETWORK GADGETS

We present the security proof sketches for two of our
proposed masked hardware gadgets from ModuloNET in this
section: 1) masked weighted summation, and 2) Boolean-to-
arithmetic conversion (B2A). We first define the two com-
monly used adversary models in literature viz. t-probing
security and glitch-extended t-probing security.

I_1 is represented as 0 on BNN hardware for efficiency.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁ)lr)ehPestrictions apply.

0.03
0.02
0.01
0
-0.01
-0.02¢

Pearson Correlation (p)

B T L 30K 75k 100k
‘Number of measurements’’ :

2 0.03f e
£ o002} i i
3 001f ! e
)] &
= of \ o
S A K
Z -0.01 HY i
5] |V:
£ -0.02 i
£ 003 .

0 10 20 30 40 50

Time (ps)

Fig. 4. Pearson Correlation Coefficient versus time and number of traces for
DPA on weights. The lower plot shows a high correlation peak at the time of
target computation, for the correct weight guess denoted in green. The upper
plot shows that approximately 40k traces are needed to get a correlation of
99.99% for the correct guess. The confidence intervals are shown in dotted
lines. The blue plot denotes the 2’s complement of the correct weight guess.

Definition 4.1: t-probing security [24] A gadget G is t-
probing secure, iff any arbitrary combination of every t-tuple
wires in the gadget is independent of all secret variables.

Definition 4.2: Glitch-extended t-probing security [14], [15]
A gadget G is glitch-extended t-probing secure, iff any arbitrary
combination of every t-tuple wires in the gadget and the wires
in their fan-in until the last registered point is independent of
all secret variables.

Since we focus on masking ML-specific operations, we
prove the first-order security of the ML-specific gadgets in
the glitch-extended probing model [14] and provide I-probing-
secure implementations for other gadgets. For the proofs in the
glitch-extended probing model, O denotes observation set—the
set of all the intermediate nets observable by the adversary A.
We occasionally use a subscript to distinguish between two
sets corresponding to different probe positions. A can place at
most 1 probe in the gadget since we claim first-order security.

A. Weighted Summations:

Figure 5 shows the isolated masked weighted summation
gadget G1. The circuit computes the summation over masked
weighted input pixels during the input layer computations and
over masked weighted activation values during the hidden
layer computations. Thus, in the input layer, the two inputs
to the circuit are the two arithmetic shares (p; — r;) - w;{g}
and r; - l{ b of the partial product p; - ;{3} In the hidden
layer, the gadget inputs are arithmetic shares b° and b' of the

product a; - w™} of activation value a; with the respective

i,
weight w{) of the kth layer. We aim to protect the weights

;{ j} in thls gadget.

Theorem 4.1: G1 is glitch-extended t-probing secure given
k

the secret variables as w;{ j}.

Proof 4.1: (Sketch) The gadget is internally split in two
independent datapaths D1 and D2 corresponding to the two
share domains. The hardware registers the arithmetic shares

before feeding them to G1.

Gadget G1
Fig. 5. Circuit design of the masked weighted summation gadget G1 proven

secure in the glitch-extended probing model.

1) During the input layer computations, the input to D1
can either be (p; — ;) mod K or (—p; + r;) mod K,
depending on whether w72 is 1 or 0O, respectively. Here,
p; € Zx and is known to A; r; € Zk is a fresh and
uniformly sampled random number; K is the modulus.
Thus, for both possible values of wfg} the input to
D1 is always a fresh and uniformly distributed random
number. Since the inputs to the gadget are registered, the
observation set variables are confined to the intermediate
nets inside G1. Therefore, any arbitrary function of the
intermediate nets in D1 will produce only random outputs
independent of wi{_(j)-}.

2) During input layer computations, the input to D2 can

either be r; mod K or —r; mod K. Both these values

are also fresh and uniformly sampled random numbers.

Thus, any arbitrary function of the intermediate nets will

also produce outputs independent of w{o}

For the hidden layer computations, the 1nputs to D1 and

D2 are the registered outputs b° and b* from the Boolean-

to-arithmetic converter. We prove in Section IV-B that the

outputs from the Boolean-to-arithmetic unit are also fresh
and uniformly distributed random numbers. Thus, using

a similar analysis as that for the input layer, any arbitrary

function of the intermediate nets produced during the

hidden layer computations in either D1 and D2 are

independent of w;{’; .

Important Notes. We assume that the encoder circuit that
generates the shares of p; - w 0} by loading p;, r; and wi{g}
cannot be probed by A. Such éssumptions on the encoder are
common in prior works on provably-secure hardware mask-
ing [24]. Furthermore, although the weights are unmasked in
the gadget, that is an issue with template attacks, not DPA.

3

~

B. Boolean-to-arithmetic conversion

The inputs to this gadget G3 are 1-bit Boolean shares
(20, 21) of the activation value x and output is a 15-bit value
a such that a4+ z' = 29 @ z'. We provide the probing security
guarantee that none of the intermediate nets leak the value of
the original secret = in the process of generating a.

Theorem 4.2: All the intermediate nets in G3 are indepen-
dent of x.

Proof 4.2: (Sketch) The gadget pads the inputs before
feeding them to the Pipelined Golic’s B2A block (see Figure
6). We first prove that the padding is secure and then prove
the security of the B2A circuit.

1) Padding. The gadget pads both 20 and x! with a 14-bit

fresh and uniformly sampled r to produce 3° = r||2° and

189

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁ)lr)ehPestrictions apply.

x° x! stage-3 stage-2 stage-1 istage-0
1 00 T 001 0 0
! N Y YwY e mY my mYw Ve ow
T Concatenate 7
/
e
15 15 afo]
F
,
Pipelined e
Golic’s B2A T
s SRR -
a ey asy

Fig. 6. Design of our proposed circuit to process the binary Boolean shares
0 1 i 1 i

(29, x") to produce a such that @, * = a + ='. The circuit concatenates

the Boolean shares with 14 random bits and feeds them to a pipelined version

of Golic’s Boolean to arithmetic circuit.

y! = r||z!; the operator || denotes concatenation. The
LSB yfo] = r[j|[z". Both 2’ and r(; are independent
of z and so is the net ry;|[z’. Therefore, the all the
intermediate nets in this operation are independent of the
secret x.

For the other bits, yf;; = ;) where j > 1 and i € {0, 1}.
Since rp;) is a fresh and uniformly sampled random bit,
all the nets for the rest of the bits are also independent
of x.

Pipelined Golic’s B2A circuit. The analysis of padding
step proves that all the inputs to this circuit are indepen-
dent of x, so we exclude the input probes in this analysis.
We start our analysis from the LSB of a, i.e., stage-0.
ap] = y?o], and since ?/Fo] is independent of z, ajo is
independent of x.

In stage-1, the XOR output is yﬂ] b y[lo]. Since yﬁ] and
y[lo] are the Boolean shares of y1) and yg], respectively,
their XOR sum will yield another uniform random value
because the two bits y[1; and y[g) are independent of each
other.?.

The output of the multiplexer in stage-1 is (ajq; - (y?l] &
Yio)) | (ajg - yf’l]). All the variables in this equation
are uniformiy distributed random numbers. Thus, the
probability distribution of the multiplexer output is also
independent of z.

From stage-2 onwards, y7,, with i € {(0,1},and 0 < j <
15, is a fresh and uniform random number. The other
input to the stage is the output a;; from the previous
stage. We proved in the analysis of stage-1 that apy) is
independent of z. Thus, from stage-2 onwards all the
intermediates nets are independent of the secret z.

2)

V. HARDWARE DESIGN OF THE MASKED NEURAL
NETWORK

We use a top-down approach to explain the fully masked
ModuloNET hardware design shown in Fig. 7 (left). We start
with an overview of the full design with various blocks and
then explain the details of the masked weighted summation
and activation function blocks. We skip the details of the other
blocks for brevity. All the gadgets we develop are composable
in the glitch-extended probing model, which automatically
makes the full ModuloNET design also secure in that model.

2We need to be careful here. If the two variables were Boolean shares of
the same bit of y, then A can easily recreate the secret by the shares, even
though they’re independent of each other.

190

A. Overview of the Full Design

We target an area-optimized BNN design that has a through-
put of 1 summation per cycle; the input and hidden layers reuse
the weighted summation unit. Our solution can extend to more
parallel designs, but we make this decision to accommodate
the full design on an FPGA and simultaneously analyze
the side-channel leakage, which is the main focus of our
work. We choose a common modulus (K) of 21° for all the
layer summations based on our offline characterization of the
dataset [8]. Image BRAM stores the input pixels. The design
sequentially reads one pixel per cycle, multiplies it with the
respective weight, and then accumulates the weighted sum.
The design performs this operation in a masked fashion, which
is described in Section V-B. The masked summation is then
fed to the masked activation function block that computes the
Boolean shares of the activation result and stores them in the
Layer BRAM. The design uses the XNOR-popcount technique
to compute the weighted summations in the hidden layer.
However, it needs to convert the Boolean shares of activation
back to arithmetic shares before feeding them back to the
adders to process the next layer. For output layer computation,
the design feeds the masked summations to the masked output
layer unit, which produces the masked classification result.

B. Arithmetic Masking of Weighted Summations

Fig. 7 shows the implementation of masked weighted sum-
mation using arithmetic masking because it is an arithmetic
operation. The hardware reads p; from the image BRAM, pads
it to logo K-bits, and splits it into two arithmetic shares p; —r;
and r;, where r; is a logo K -bit fresh random mask. Next, the
hardware directly and independently computes the weighted
summations on the two arithmetic shares. Finally, the hardware
adds bz'asj-o} to one of the shares and sends both the shares
to the masked activation function.

C. Masked Activation Function

The activation function receives two arithmetic shares and
computes if their sum is greater than % which depends on
the MSB of the sum. Therefore, the hardware only needs to
compute the MSB of the final summation in a masked fashion.
MaskedNet implemented a masked LUT-based ripple carry
chain to produce the two Boolean shares of the MSB. Such a
design is good for applications where the security requirements
are low because glitches can happen inside the LUTs and
eventually reveal the secret [25]. Prior literature suggests a
number of alternatives such as Threshold Implementation [17],
DOM [26], a synchronized variant of the Trichina’s AND
gate [7], etc., to perform masked operations with reduced
glitches. We select DOM because it has low area and ran-
domness requirements and provides security against glitches.

Figure 7 (right) shows our proposed novel design of the
masked activation function using DOM-indep AND gates for
8-bit operands®. We specifically use the DOM-indep multiplier
instead of DOM-dep because we guarantee independent input
sharings: the hardware creates fresh Boolean shares for the
arithmetic sharings. The hardware needs to create Boolean

3We show an illustration with 8-bits but the actual design has logs K -bit
operands.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁnlr)ehPestrictions apply.

masked
———— inference
output

Masked
Output Layer

PRNG
. (01,23}
biasy™" " ddbias

Image

k

Sik tix Sk1j G

by ap by I b[l]a[l]b{o]alﬂl by ag

P T
D)

Share Creation

(c)

(@)

Fi% 7. Figure on the left shows the hardware design of the fully masked ModuloNET inference showing various top-level masked components. The weights
k
w;

1k} and biast
carry propagator with DOM gates labeled as D. Figure is not to scale.

shares of the input bits (of arithmetic shares) explicitly before
feeding them into the DOM gates because the logic to compute
the carry is completely exposed in a gate-level masked design.
The Share Creation block creates two Boolean shares for
every bit of each arithmetic share.

Instead of adopting a linear ripple-carry design [6], we
implement the carry chain of a Kogge-Stone adder [27]
because it has a logarithmic latency. We replace the AND gates
in the logic with DOM-indep AND gates to mask the design;
XORs being linear can directly process the two share domains
independently. Level-0 of the tree produces the Boolean shares
of carry-generate (g) and carry-propagate (p) terms. Following
equations present the masked versions of g and p.

(91‘17 g?) = DOM(G[lip a?i]a b[li]a b?i] iTa)
(pi > p)) = (afy) ® by, afy © b))

The subsequent levels process the group generate
(Si:ks Sk—1:5) and group propagate (Z;.x,tr—1.;) terms to pro-
duce the group generate (s;.;) and group propagate (t;.;) for
the next level. For any level [> 0, the relation between ¢ and
k can be generalized to ¢ = k + 2!=1 _ 1. For level-1, i = k

and s;.; = g; and ¢;.; = p;. The following equations illustrate
the masking of the group generate and group propagate terms.

(U17 uO) = DOM(tzl:/w t(i):k’7 Sllcflzja 3271:]'7 ’f'b)
(Szl:j7 Slo:j) = (ul D Szl:lw UO D 8?:16)’ (tzl:j7 tzoj)

1 0 1 0
= DOM(ti:kv ti:lw tk:flzja tkflzja 710)

VI. SOFTWARE-ASSISTED COUNTERMEASURES FOR
FLEXIBILITY

This section describes the hardware software codesign to
add flexibility and usability to our side-channel secure neural
network hardware. We again take the top-down approach to
first explain the programming model exposed to the end user
and then present the details of the implementation of the APIs
using custom instructions, and coupling with the coprocessor.

A. Programming Model and Custom ISE
Instead of exposing the assembly-level custom instructions
directly to the user, we expose C-based* APIs, which are

4QOur approach is not fundamentally limited to a particular software lan-
guage but we chose C given its suitability for embedded platforms.

191

} are read from the respective block RAMs. The figure on the right shows the design of the masked activation function using a Kogge-Stone

inst[4:2]
inst[6:5]
00
01
10
11

000 001 010 011 100 101 111

LOAD
STORE
MADD

BRANCH

LOADFP
STOREFP
MSUB
JALR

MISCMEM
AMO
NMADD
JAL

OP-IMM
opP
OP-FP
SYSTEM

AUIPC
Ll
OP-v
reserved

OPIMM32
0oP32

custom-0

custom-1
NMSUB
reserved

custom-2

custom-3

(a)

funct7 rs2 rsl minor rd major

31:25 24:20 19:15 14:12 117

G:SI 4:2 Il:O

b
Fig. 8. Figures (a) and (b) respective(l)2 depict the overall opcode map for the
RISC-V ISA and the encoding of an R-type instruction. Our design uses the
major opcode of custom-0 (highlighted) to distinguish our proposed custom
instructions from the base instructions, and the minor opcode to distinguish
between each custom instruction.

easier to understand and debug. We provide the APIs as part
of a shared library—the user needs to include the header
file, follow the syntax of the functions, and link the library
while generating the ELF. Our rationale behind the syntax
of the APIs is to keep it close to existing ML frameworks.
We develop an interface similar to the Sequential model of
TensorFlow Keras [28]. The programming interface configures
and executes each layer of the neural network sequentially
similar to the Keras model of stacking layers.

A key advantage of our solution is exploiting the layer-wise
reconfigurability of this software interface to activate/deacti-
vate the masking of each layer. This helps to trade off security
with performance. Selective masking has also been explored
in cryptography—prior works propose masking only the first
and last rounds of AES because those are the most vulnerable
rounds in a DPA attack [29]. Neural networks are no different
in this regard. Additionally, this also enables only protecting
the parameters of the layers retrained using transfer learning
and saves the power and clock cycles spent on unnecessary
masking of layers with public parameters [30]. The library
provides the following four APIs.

void fetch_input (intx
void input_layer (intx*
intx weightO, int
int num_bias, int masking_enable);
void hidden_layer (intx weight, int
num_weight, int masking_enable);
void output_layer (intx weight, int
num_weight, int masking_enable);

image, int num_images);
image, int num_images,

num_weightO, intx bias,

We provide one API each for the input’ and the output
layer computations. We use the stacking approach for hidden

SBy input layer computation, we mean processing the input pixels to
compute the first hidden layer.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁnlr)ehPestrictions apply.

layers: each call to the hidden_layer (.) API triggers a
hidden layer computation where the hardware processes the
previous layer results to compute the results of the next layer.
We implement the APIs using inline assembly and the custom
ISE. We describe the encoding of the custom instructions next.

B. Custom Instruction Set Extension

We choose the R-type instruction format shown in Fig. 8(a)
for the custom instructions because some instructions require
two source operands and a destination operand. Fig. 8(b)
shows how the bits [6:2] are encoded for various categories of
instructions. The base opcode encoding space has the two least
significant bits [1:0] set to one. Since we only need 5 custom
instructions, we choose the standard 30-bit base encoding
space. We use the major opcode (bits [6:2]) to distinguish the
custom instructions from the base instructions and the minor
opcode (bits [14:12]) to distinguish between each custom
instruction. We choose the custom-0 space without loss of
generality. The major opcode for this space is 00010. The
instruction names and operations are explained below.

1) mnn.cfgwr rsl rs2. This instruction stores the
pointer to a data structure (rsl) and its size (rs2) in
a configuration register inside the coprocessor. It is used
to store the pointers to the input pixels, the parameters,
and the hyperparameters such as the layer sizes.
mnn.<i/h/o>layer rsl. These instructions have
one source operand (rsl) controlling the enabling or
disabling masking of the layers. Based on the op-
code, the instructions mnn.ilayer, mnn.hlayer, and
mnn.olayer respectively trigger the input, hidden, and
output layer computations in the coprocessor.
mnn.ifetch rsl rs2. This instruction fetches the
required number of input pixels (rs2) from the host and
stores them in the location pointed by rs1 in hardware.

2)

3)

C. Codesigning the Hardware with Software

Fig. 9 shows the block diagram of our complete design.
The important blocks are the RISC-V core (referred to as just
core from hereon), the dual-ported memory accessible through
a shared bus, and the coprocessor. The coprocessor further
consists of the command decoder (CMD) and the secure neural
network unit (SNNU). In the following sections, we describe
the design details in a top-down fashion—how the design
processes the high-level commands from the host to perform
the secure inference on hardware eventually.

D. The RISC-V Integration

We select the open-source PicoRV32 RISC-V core [31] for
this work because it has a low area footprint and provides
the basic features we need for our solution. The design
communicates to the host PC via UART. The host interface
processes the received signals to generate specific commands
using address mapping.

The host first loads the cross-compiled RISC-V binary to
the memory. The binary contains the model parameters, hy-
perparameters, and custom instructions to perform the neural
network inference. Next, the host sends the start signal to
trigger the core to fetch instructions. The core has an in-built

192

Host PC
[
vrx|tx

rd |wr |data |addr
[Host Interface |

I I |
Coprocessor lload ldata laddr
o
2
< SNNU ~ [«—>
X %]
S 3
c
=
L CMD g Memory
T
v &
7

Core

Fig. 9. The figure depicts major components of the proposed RISC-V based
SoC. RISC-V and coprocessor units share the memory interface. CMD de-
codes the custom instructions sent on the PCPI interface and relays appropriate
commands to the coprocessor to execute the required computations.

peripheral coprocessor interface (PCPI) to control a coproces-
sor. The CMD unit inside the coprocessor decodes the custom
instructions discussed in Section VI-A and issues commands
to the SNNU to perform the respective computations based
on the decoded instruction. The following listing presents a
typical user code to use our platform.

int main () {
//declare and initialize pointers and
variables
init (image,wO,wl,w2,bias);

fetch_input (image, ni);

m_en=1;

input_layer (image, ni, wO, nwO, bias, nb,
m_en) ;

hidden_layer (wl, nwl, m_en);

output_layer (w2, nw2, m_en);

The core writes the input pixels, and parameters directly to
the memory while executing the instructions. The coprocessor
can directly read from the respective addresses during its com-
putations because of shared memory access with the core. We
choose to share the memory between the core and coprocessor
instead of having distinct memories to avoid wasting cycles
copying data from one memory to another.

VII. PHYSICAL TAPE-OUT AND CHIP FABRICATION

This section presents the details of the ASIC tapeout. We
received the fabricated chips very close to this submission,
and thus, this section is limited to only the pre-silicon tapeout
information. Part of this information has been published at the
GOMACTech [32]. Fig. 10 shows the final layout of our chip.
We used the Skywater 130nm technology node for the tape
out using the chiplgnite shuttle that is managed by eFabless
Corporation. The shuttle uses a harness chip called Caravel as
depicted in Fig. 10 (right). The chip consists of a management
space and a user space. Management space consists of a
RISC-V core, a small SRAM for the core, and some internal
and external communication interfaces like Wishbone, UART,
SPI, etc., to boot up the chip properly. The user design is
instantiated inside the user space.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁnlr)ehPestrictions apply.

32mm
U U E]

User Space
~10mm?
(2.92mm x
3.52mm)

TITTTTTTATT

1.4--

Packaged

¢ Management Y
Die

Space
(a) (b) (c)

Fig. 10. The layout of the fabricated chip. The final solution fits into

10mm? with 8 SRAM banks for on-chip memory, RISC-V core, and our

developed co-processors. This is placed into the Caravel architecture that

allows communication with the outside world through UART.

9

We synthesized a single macro for our design depicted in
Fig. 9. We place this macro at the center of the user space
and surround it with eight SRAM macros of size 2kB to
reduce congestion and routing delays. The Caravel harness
provides direct access to 32 GPIOs from the user space. It
also provides additional access to 128 logical ports that can be
configured and driven by the RISC-V core in the management
unit. We designate 2 GPIOs as the RX and TX pins of the
UART protocol to communicate directly from host to the user
space. We also add direct access to important control signals
and registers inside the DUT via GPIOs to enable post-silicon
debug. We use some of the logical ports from the management
unit to configure the debug modes in the DUT. We use the
management unit to only configure our design and not drive
all the data from the host to reduce the communication latency,
and to keep the DUT independent of the management unit.

VIII. PERFORMANCE, AREA, AND SECURITY
EVALUATIONS

This section presents the area and performance overheads of
our proposed solutions, and how they compare to some other
existing works. We also present the results of our side-channel
evaluation on our hardware software codesign.

A. Area and Performance Comparison

Table I compares the area and latency of our solutions
with prior works. It is difficult to make exact comparisons
between the works because of the varying hyperparameters,
parallelization modes, and implementation platforms (FPGA
versus ASIC versus microcontroller). We try our best to
provide the comparison for completeness. We first choose a
standard hyperparameter set of 784 input nodes, one hidden
layer of 512 nodes, and an output layer of 10 nodes for
comparison; [33] already uses this configuration. All the works
have a throughput of 1 summation/cycle®. Thus, we assume
that the latency varies linearly with the total number of
summations per inference—the sum of products of the number
of nodes in two subsequent layers.

We scale the originally quoted latency (the Latency col-
umn) of the works to the expected latency of our chosen
hyperparameter set (the Latency (N) column) for each work.
The ASIC work [34] does not quote any latency numbers,
thus, we assume it to be equal to the number of weighted

9The ASIC solution [34] actually has a throughput of 8 summations/cycle
but we assume only 1 PE instantiation for this comparison.

193

TABLE 1
AREA AND PERFORMANCE COMPARISON WITH PRIOR WORKS.

‘Work Area Latency | Latency (N) | Programmable
(LUT+FF) | (cycles) (cycles)
Our Work [7]| 17457 [2.94 x 108| 4.2 x 10° No
Our Work [8] 10644 [2.91 x 106 | 4.1 x 10° No
[33] NA! 1.97 x 107 | 1.97 x 107 Yes
[34] NA2 NA3 4 x 10° No
Our Work [9] 8778 10150 4.67 x 10° Yes

! microcontroller-based solution; no LUT/FF equivalents;

2 ASIC solution; no LUT/FF equivalents;
3 No latency numbers in the manuscript;

summations. The results show that the ASIC and FPGA
solutions have a comparable latency’ of around 4 x 10°,
which is much lower than that of the microcontroller-based
solution, as expected. However, while the microcontroller is
programmable, the ASIC and FPGA are not. Our proposed
hardware software codesign is almost as fast as the hardware
solutions and provides the same programmability benefits as
that of a microcontroller. Thus, it provides both programma-
bility and high performance without sacrificing security.

B. Side-Channel Validation

We use both DPA and test vector leakage assessment
(TVLA) methods to perform side-channel validations [35]. We
validate the empirical security with 1M power traces.

1) DPA Results

Fig. 11 shows the results of the DPA attack on the unmasked
and masked implementations. We target the activation function
for the attack, use the hamming distance power model®, and
hypothesize on the possible weights. We set 8 input pixels
to be non-zero and hypothesize on the corresponding weights
for those pixels. This reduces the number of hypotheses from
264 to 28. Fig. 11 (a) clearly shows a high correlation only
for the correct hypothesis, at the exact point in time when the
activation is computed. The leakage is statistically significant
after 6000 measurements. Fig. 11 (b) shows the same attack on
the masked implementation, which quantifiably fails even with
IM power traces. Note that the latency of the target operation
in the masked design (3.2u5) is twice compared to that of the
unmasked design (1.6us) because the unmasked design uses
both the datapaths to quickly compute the summations using
a runtime reconfigurable hardware [9].

2) TVLA Results.

Since DPA is insufficient and atypical to evaluate side-
channel security exhaustively, we also conduct the more
generic TVLA test. We conduct TVLA on four masked neural
network configurations C1 to C4. All the configurations have
1 input layer and 2 hidden layers of 64 nodes, and an output
layer of 10 nodes. C1 and C2 respectively have all the layers
unmasked and masked, C3 has only the second hidden layer
unmasked, and C4 has only the output layer unmasked.

Fig. 12 (a) and (c) depict the overall power trace of a fully
unmasked and fully masked configuration. We clearly observe
the two hidden layer computations using simple power analysis
as the two high amplitude bands; the bands have higher

TWe refer to clock cycles. The actual latency might be much lower for an
ASIC because of the high design frequency compared to FPGAs.
8The memory storing the activations is not reset between measurements.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁ)}r)ehPestrictions apply.

008 16 24 32 34
Time (ps)

elation Coefficient

a
<
[l
=

£.0.0

0,065 . g
Number o(f }“races (<103~
a

¥
250 500 750 1000
Number of({;‘aces (<10%)

Fig. 11. Figure (a) top plot shows a high correlation peak only for the correct
hypothesis in black; the bottom plot shows its evolution with the number of
traces, which becomes statistically significant with the confidence of 99.99%
(shown by the dotted lines) at 6000 traces. Figure (b) shows the same attack
on the masked design, where we neither observe a high correlation peak for
the correct hypothesis nor does the correlation become statistically significant
before 1M traces demonstrating resistance to the DPA attack.

HL Hidden Layer’
OL: Output Layer

Voltage (mV)

t-scores

Fig. 12. Figures (a) and (c) show the mean power trace for the unmasked and
masked designs. Figures (b), (d), (e), and (f) show the t-scores observed for
the configurations C1-C4 in order. C1 and C2 are fully-unmasked and fully-
masked designs, therefore, we observe t-scores higher than +£4.5 (denoted by
horizontal dashed lines) throughout the trace in (b), but not in (d). C3 has
only HL2 unmasked, and C4 has only OL unmasked, and thus, the t-scores
cross the threshold only during those regions in (e) and (f).
amplitude for the masked design compared to the unmasked
design, which is expected because of extra activity due to
PRNGs and masked datapaths. Also, the layer power activity
is lower than that of the baseline processor activity in the
unmasked design, which is why the power drops during the
layer computations, and the power bumps are actually between
the layer executions. The execution time for the masked design
is twice that of the unmasked configuration due to the dual path
reuse optimization in our design for the unmasked layers [9].
Fig. 12 (b) and (d) show the TVLA evaluations of C1 and
C2. All the layers are unmasked in Cl1; thus, the t-scores
cross the TVLA threshold of £4.5. C2 has all the layers
masked, and therefore, we do not see the t-scores crossing
the threshold throughout the execution except the input layer.
This is because the design loads the pixels while computing the
arithmetic shares, and that load operation results in the input
correlations. This has been observed in prior works too [7],
[8], and is verified by running an experiment with buffered

194

arithmetic shares instead of generating them on-the-fly. We
also verify our design with that approach. We used 1M traces
in each fixed and random dataset to validate the side-channel
security. (e) and (f) show the TVLA results for C3 and C4.
We observe t-scores greater than the threshold in HL2 because
the second hidden layer is unmasked. The HL2 execution time
is halved with our optimization [9]. For C4, we observe the
t-scores cross the threshold in OL because the output layer is
unmasked. Thus, the design successfully masks/unmasks the
layers based on user configuration.

IX. BROADER IMPACT: INDUSTRY, EDUCATION
OUTREACH, AND UNDERGRADUATE TRAINING

In this section, we present the research impact of our works
in academia, and industry. We also talk about how we enabled
students at the undergraduate level to conduct research in this
domain, and successfully publish at top-tier venues.

Our works have created a significant impact in the literature
in terms of spearheading the research on analyzing the side
channel vulnerabilities in ML hardware applications and work-
ing towards building effective countermeasures against them.
Our research has enabled numerous other works on extending
the side-channel attacks on ML accelerators to multi-tenant
FPGA platforms using remote power monitors (including our
work) [10], [36], on using other masking schemes such as
threshold implementation on ASIC targets, on using pure
software masking on microcontrollers [33], [34], and also
on extending our masking gadgets to include other physical
defaults such as transitions [37]. Our research also achieved a
technology transfer with Intel. Specifically, our designs were
tested by Intel’s Product Assurance and Security team (IPAS)
on the Intel FPGAs, and the vulnerabilities were validated.

We have also introduced underrepresented minority under-
graduate students to our research as part of the Research
Experiences for Undergraduates (REU) program by the NSF.
We worked with sophomore students at NC State University to
mount a successful attack on a single neural network layer and
extract the weights using DPA. We only used basic building
blocks such as a breadboard, digital ICs, resistors, jumper
cables, and the Analog Discovery platform. We also helped
them to implement an effective low-cost countermeasure using
the concept of wave-dynamic differential logic (WDDL). They
were able to reduce the power side channel leakage by
15x with the countermeasure [38]. Ashley Calhoun was the
undergraduate lead student of this project and she published
a first-authored paper. Ashley also traveled to the GLS-VLSI
conference to present the paper in person. As a result of this
experience, she has decided to pursue a graduate degree in
electrical and computer engineering.

X. CONCLUSION

We conducted the first comprehensive research in the area of
physical side-channel security for ML hardware. We demon-
strate the vulnerability in parallel hardware for the first time,
and we provided the first provably secure hardware gadgets to
execute neural network operations securely. We also develop
the first hardware-software codesign framework in the context
of ML applications from a security standpoint. Our research
had a significant influence on academia and a direct impact on

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC from']rI,E—‘Eg‘%EJ}r)el.lPestrictions apply.

industry, along with a broader outreach to underrepresented
undergraduate students. The vast variety of ML topologies
and the nascent nature of this problem create a wide research
space. Future works can explore the threat of other types of
side channels, possible optimizations of solutions proposed in
our works, or cover more types of neural network topologies
under the threat of physical side channels.

(11

(21

[3

—

[4

=

[5

[y

=
2

(71

[8

[t

38
X

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 14,2024 at 15:20:46 UTC fromTIg‘Eg‘gﬁ)}r)ehPestrictions apply.

REFERENCES

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO °99, 19th Annual International
Cryptology Conference Proceedings, ser. Lecture Notes in Computer
Science, vol. 1666. Springer, 1999, pp. 388-397.

D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2005, pp. 641-647.

J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data
poisoning attacks,” in Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems,
2017, pp. 3517-3529.

C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: Opti-
mizing voltage fault injection attacks,” JACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2019, no. 2, pp. 199-224, 2019.

H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “DeepEM: Deep neural net-
works model recovery through EM side-channel information leakage,”
in 2020 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2020. 1EEE, 2020.

A. Dubey, R. Cammarota, and A. Aysu, “MaskedNet: The first hardware
inference engine aiming power side-channel protection,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust,
HOST. 1EEE, 2020, pp. 197-208.

, “BoMaNet: Boolean masking of an entire neural network,”
in IEEE/ACM International Conference On Computer Aided Design,
ICCAD. 1IEEE, 2020, pp. 51:1-51:9.

A. Dubey, A. Ahmad, M. A. Pasha, R. Cammarota, and A. Aysu,
“Modulonet: Neural networks meet modular arithmetic for efficient
hardware masking,” JACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2022, no. 1, pp. 506-556, 2022.

A. Dubey, R. Cammarota, A. Varna, R. Kumar, and A. Aysu, “Hardware-
software co-design for side-channel protected neural network inference,”
in 2023 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2023, pp. 155-166.

A. Dubey, E. Karabulut, A. Awad, and A. Aysu, “High-fidelity model
extraction attacks via remote power monitors,” in 2022 [EEE 4th
International Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE, 2022, pp. 328-331.

A. Dubey, R. Cammarota, V. Suresh, and A. Aysu, “Guarding machine
learning hardware against physical side-channel attacks,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 18, no. 3,
2022.

L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: reverse engineering
of neural network architectures through electromagnetic side channel,”
in 28th USENIX Security Symposium, USENIX Security 2019. USENIX
Association, 2019, pp. 515-532.

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020.

O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in Advances in Cryptology - CRYPTO
- 35th Annual Cryptology Conference Proceedings, Part I, ser. Lecture
Notes in Computer Science, vol. 9215. Springer, 2015, pp. 764-783.
S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert,
“Composable masking schemes in the presence of physical defaults &
the robust probing model,” IJACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2018, no. 3, pp. 89-120, 2018.

K. A. Andrew Waterman, “The RISC-V Instruction Set Manual Volume
I: Unprivileged ISA,” https://github.com/riscv/riscv-isa-manual/releases,
2022.

S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Commu-
nications Security, 8th International Conference, ICICS, Proceedings,
ser. Lecture Notes in Computer Science, vol. 4307. Springer, 2006, pp.
529-545.

195

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

H. Gro8, S. Mangard, and T. Korak, “Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order,”
in Proceedings of the ACM Workshop on Theory of Implementation
Security, TIS@CCS, B. Bilgin, S. Nikova, and V. Rijmen, Eds. ACM,
2016, p. 3.

OpenTitan. (2022) Opentitan. https://github.com/lowrisc/opentitan.

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer
Vision, ser. Lecture Notes in Computer Science, vol. 1681. Springer,
1999, p. 319.

K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network
model for a mechanism of visual pattern recognition,” IEEE transactions
on systems, man, and cybernetics, no. 5, pp. 826-834, 1983.

1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869-6898, 2017.

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’15. MIT Press, 2015, p.
3123-3131.

Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in Annual International Cryptology Conference.
Springer, 2003, pp. 463-481.

S. Mangard, T. Popp, and B. M. Gammel, “Side-channel leakage of
masked cmos gates,” in Cryptographers’ Track at the RSA Conference.
Springer, 2005, pp. 351-365.

H. GroB, S. Mangard, and T. Korak, “Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order,”
in Proceedings of the ACM Workshop on Theory of Implementation
Security, TIS@QCCS 2016 Vienna, Austria, October, 2016, B. Bilgin,
S. Nikova, and V. Rijmen, Eds. ACM, 2016, p. 3.

P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Computers, vol. 22, no. 8, pp. 786-793, 1973.

Google. (2022) The sequential model. https://www.tensorflow.org/guide/
keras/sequential_model.

E. Trichina, D. D. Seta, and L. Germani, “Simplified adaptive multi-
plicative masking for aes,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2002, pp. 187-197.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345—
1359, 2009.

C. Xenia Wolf. (2021) PicoRV32 - A Size-Optimized RISC-V CPU.
https://github.com/YosysHQ/picorv32.

A. Dubey, R. Cammarota, and A. Aysu, “Secure Al hardware by design:
From cryptographic proofs to silicon tape-out,” GOMACTech, 2023.

K. Athanasiou, T. Wahl, A. A. Ding, and Y. Fei, “Masking feedforward
neural networks against power analysis attacks,” Proceedings on Privacy
Enhancing Technologies, vol. 2022, no. 1, pp. 501-521, 2022.

S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan, “A threshold-
implementation-based neural-network accelerator securing model pa-
rameters and inputs against power side-channel attacks,” in 2022 IEEE

International Solid-State Circuits Conference (ISSCC), vol. 65. 1EEE,
2022, pp. 518-520.
B. J. Gilbert Goodwill, J. Jaffe, and P. Rohatgi, “A testing

methodology for side-channel resistance validation,” in NIST non-
invasive attack testing workshop, 2011, http://csrc.nist.gov/news_events/
non-invasive-attack-testing- workshop/papers/08_Goodwill.pdf.

S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and
J. Szefer, “Remote power attacks on the versatile tensor accelerator in
multi-tenant fpgas,” in 2021 IEEE 29th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2021, pp. 242-246.

M. Schmid and E. B. Kavun, “Analyzing modulonet against transition
effects,” in 2023 IEEE International Conference on Omni-layer Intelli-
gent Systems (COINS). 1EEE, 2023, pp. 1-6.

A. Calhoun, E. Ortega, F. Yaman, A. Dubey, and A. Aysu, “Hands-on
teaching of hardware security for machine learning,” in Proceedings of
the Great Lakes Symposium on VLSI 2022, 2022, pp. 455-461.

