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Abstract

The diversification of many lineages throughout natural history has frequently been
associated with evolutionary changes in life cycle complexity. However, our understanding of the
processes that facilitate differentiation in the morphologies and functions expressed by organisms
throughout their life cycles is limited. Theory suggests that the expression of traits is decoupled
across life stages, thus allowing for their evolutionary independence. Although trait decoupling
between stages is well established, explanations of how said decoupling evolves have seldom
been considered. Because the different phenotypes expressed by organisms throughout their life
cycles are coded for by the same genome, trait decoupling must be mediated through divergence
in gene expression between stages. Gene duplication has been identified as an important
mechanism that enables divergence in gene function and expression between cells and tissues.
Because stage transitions across life cycles require changes in tissue types and functions, we
investigated the potential link between gene duplication and expression divergence between life
stages. To explore this idea, we examined the temporal changes in gene expression across the
monarch butterfly (Danaus plexippus) metamorphosis. We found that within homologous
groups, more phylogenetically diverged genes exhibited more distinct temporal expression
patterns. This relationship scaled such that more phylogenetically diverse homologous groups
showed more diverse patterns of gene expression. Furthermore, we found that duplicate genes
showed increased stage-specificity relative to singleton genes. Overall, our findings suggest an

important link between gene duplication and the evolution of complex life cycles.
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Lay Summary

How do caterpillars and tadpoles turn into butterflies and frogs? It is well established that
although the larval and adult stages have the same genome, larvae and adults up and down
regulate the expression of different genes. However, knowing this only tells us how
metamorphosis happens, not how it or other forms of complex life cycles evolved. Where did the
different genes expressed by different life stages come from, and how did they evolve to generate
the incredibly different morphologies seen between life stages? Theory suggests that an
important mechanism that generates new genes is when an existing gene gets duplicated. The
copies then evolutionarily diverge, resulting in genes with different functions and expression
patterns. This theory has been predominately developed around the evolution of different cell
and tissue types within an organism. Here, we apply this same concept towards explaining the
changes in gene expression between different life stages across the monarch butterfly
metamorphosis. Consistent with theory, we found that as genes duplicated and evolutionarily
diverged, their patterns of gene expression across life stages became increasingly different.
Overall, these findings link the evolution of complex life cycles to a more general understanding

of how biological complexity evolves through gene duplication.

Introduction

Many groups of organisms undergo extensive morphological and ecological shifts
throughout their life cycles. These shifts appear gradual in some organisms, as seen in the
relatively continuous development from infant to adult in primates. However, these shifts seem
more complex in many other organisms; a larva first must transition into an intermediate pupal

stage before restructuring its morphology into the form of a butterfly. Changes in life cycle
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complexity have been associated with the diversification of many taxa throughout natural history
(Wheeler et al. 2001; Reiss 2002). Despite nearly a century of interest in the evolution of
complex life cycles, we still lack a general understanding of the mechanisms that facilitate
divergence in the morphologies and functions expressed by organisms throughout their lives.

This gap in our understanding can be partially attributed to the view that complex life
cycles are divided into stages that are discrete, which is the central assumption made in
foundational theoretical work (Istock 1967; Moran 1994). While this assumption can capture the
punctual ecological and developmental dynamics exhibited by organisms that are considered to
have complex life cycles, it has also generated the dichotomy that organisms either do or do not
have complex life cycles (Moran 1994). However, considering life cycle complexity as a
continuous spectrum has the potential to provide more basic insight into the processes that
facilitate life cycle evolution. It is apparent that the transition from one life stage to the next
requires continuous changes in the relative abundance, activity, or placement of different cells
and tissues (Haldane 1932). Therefore, we propose that from an organismal perspective, life
cycle evolution can be more fundamentally described by the body of theory concerning the
evolution of cell and tissue differentiation, which focuses on describing the mechanisms that
facilitate evolutionary change in gene function and patterns of expression.

The adaptive decoupling hypothesis is the most prominent explanation for the evolution
of complex life cycles, and is an extension of an earlier hypothesis that different life stages adapt
independently to the niches they occupy (Istock 1967; Moran 1994). The adaptive decoupling
hypothesis elaborates that complex life cycles allow different stages to independently respond to
natural selection by genetically decoupling the development of their traits (Moran 1994). This

hypothesis predicts that genetic variation should generate phenotypic variation in certain life
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stages but not others. Many studies have found results consistent with this prediction (Fellous
and Lazzaro 2011; Aguirre et al. 2014; Goedert and Calsbeek 2019; Schott et al. 2022), and more
recent studies have elucidated variation in gene expression between stages as the likely driver of
said genetic independence (Herrig et al. 2021; Collet et al. 2023). However, the predictions made
by the adaptive decoupling hypothesis are limited to descriptions of extant signatures of
decoupled traits, which fails to provide a mechanism that explains how trait decoupling evolves.
We propose that the evolution of trait decoupling can be explained by the mechanisms already
established in the evolution of cell and tissue differentiation because transitions between life
stages are driven by continuous turnover in cell and tissue types and functions.

Gene duplication is the best described mechanism that generates evolutionary change in
patterns of gene expression between cells and tissues (Gu et al. 2002; Huminiecki and Wolfe
2004; He and Zhang 2005; Li et al. 2005). However, other non-exclusive mechanisms, such as
regulatory network evolution, are likely at play but have been more challenging to empirically
study (Wagner 2001; Teichmann and Babu 2004; Zhang et al. 2004). Gene duplication can be
generated though unequal crossing over, retrotransposition, and chromosomal duplication and
provides a rich source of genetic variation that can facilitate major evolutionary change (Ohno,
Susumu 1970; Zhang 2003). Hypotheses concerning the evolution of duplicate genes share key
similarities with the adaptive decoupling hypothesis. For example, the neofunctionalization
hypothesis suggests that retention of the ancestral function in one copy alleviates selective
constraints on the other copy, allowing it to develop novel functions more efficiently (Ohno,
Susumu 1970). However, a role of neutral evolution in generating functional divergence between
duplicate genes has also been described (Force et al. 1999; He and Zhang 2005), thus offering a

mechanism by which traits could diverge between stages that more comprehensively accounts
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for the processes that drive evolutionary change. More generally, the idea that complexity is
added to a genome through gene duplication is well established (Ohno, Susumu 1970; Martin
1999; Lynch and Conery 2003), and empirical evidence for gene duplication resulting in more
complex phenotypes has been documented in a variety of taxa (Tian et al. 2008; Rivera et al.
2010; Leite et al. 2018; Chen et al. 2023). Therefore, investigating the link between gene
duplication and life cycle evolution has potential to broaden our understanding of how biological
complexity evolves.

Although there are several nuances to predicting the relationship between sequence
evolution and expression pattern evolution in duplicate genes, the general expectation is that the
evolution of duplicate genes leads to more divergent and (stage) specific expression patterns
(Huminiecki and Wolfe 2004; Li et al. 2005). While this insight has primarily been derived from
relating duplicate gene evolution to expression pattern divergence between different mammalian
tissues, we hypothesize that the same patterns will emerge when examining temporal patterns of
gene expression across a complex life cycle. To test the predictions that the evolution of
duplicate genes corresponds with more divergent and stage-specific expression patterns (Figure
1), we examined patterns of gene expression across the holometabolous life cycle of the monarch
butterfly, Danaus plexippus. The D. plexippus life cycle is characterized by a non-dispersive
caterpillar stage that is specialized for feeding on milkweed foliage, followed by a non-feeding
pupal stage during which metamorphosis occurs, and a final highly dispersive imaginal
(butterfly) stage that is specialized for reproduction and feeding on nectar. The extreme
ontogenetic niche shifts and trait divergence between stages makes D. plexippus a promising
model system for studying the evolutionary processes that generate morphological and functional

divergence throughout life cycles.
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Methods
Experimental design and D. plexippus rearing

To quantify changes in gene expression across the holometabolous development of D.
plexippus, we sequenced mRNA extracted from third instars, fifth instars, early pupae (one day
after pupation), late pupae (6-8 days after pupation), and adults (several hours after eclosion). A
previous study has suggested that feeding on more toxic milkweed induces changes in gene
expression during the second instar (Tan et al. 2019). Therefore, we reared larvae on both
Asclepias incarnata (less toxic) and Asclepias curassavica (more toxic) to ensure that our
findings are robust to a major source of environmental variation. We collected five individuals at
each stage and from each plant for mRNA quantification.

Parental (P) D. plexippus butterflies were caught in St. Marks, Florida, U.S.A.
(30°09'33"N 84°12'26"W) during October of 2022. Butterflies were overwintered in a 14°C
incubator (to maintain a state of diapause) and were fed approximately 10%-20% honey water
every ten days. During March of 2023, butterflies were mated to establish an F1 generation. F1
caterpillars were reared on Asclepias curassavica and after maturation and mating, the F2
caterpillars used in this experiment were reared on either 4. curassavica or A. incarnata. To
reach the necessary sample size, we used F2 caterpillars from two different lineages that did not
share P or F1 ancestors. Treatments of plant species and development stage were randomly
distributed to caterpillars from both lineages to minimize confounding due to genetic
background. All individuals sampled in this study were reared at the same time and in the same

conditions (See Appendix section 1.1-1.3 for details).
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Sample collection and preparation

To minimize possible effects of sample handling, all caterpillars, pupae, and adults were
snap frozen in liquid nitrogen before being stored at -80°C. Third instars, fifth instars, early
pupae, and late pupae were all frozen in sterile centrifuge tubes, and adults were frozen in
glassine envelopes several hours after eclosion (after their wings had finished expanding). For
each day freezing took place, samples were stored in a polystyrene foam cooler full of dry ice
until all flash freezing for that day was completed. This process took approximately one hour or
less on any given day, so no sample was on dry ice for more than an hour before being
transferred to the -80°C freezer. All freezing took place in the same greenhouse room that the
caterpillars were reared in, and no individual left said room before being frozen throughout the
duration of the experiment.

Because we were interested in global gene expression patterns, we collected samples by
homogenizing whole bodies using a sterile porcelain mortar and pestle. Each sample for a given
round of homogenization was placed in a cooler filled with dry ice. Samples were individually
placed in a mortar and liquid nitrogen was constantly added throughout the homogenization to
prevent samples from thawing. After a given sample was completely homogenized, homogenate
was quickly collected using a sterile polypropylene spatula and stored in a fresh centrifuge tube.

Twenty samples were randomly selected for each round of homogenization.

RNA extraction and sequencing



184 We used a Promega SV Total Isolation System kit to extract total RNA from D. plexippus
185 homogenate. While our workflow generally followed the manufacturer’s suggested protocol, we
186  made several alterations to obtain higher quality RNA. Briefly, we doubled the recommended
187  RNA lysis buffer, increased the relative centrifugal force in all centrifugation steps, and included
188  an additional centrifugation step to better clear organic contaminants and improve final extract
189  purity. The full RNA extraction protocol used can be found in Appendix Section 1.5. After each
190  extraction, we used a NanoDrop to quantify the purity and concentration of the RNA. Samples
191  with an A260/A280 or an A260/A230 of less than 1.95 were discarded and re-extracted. After all
192  extractions were completed, purified RNA was packaged in dry ice and sent to Novogene

193  (Sacramento, CA) for library preparation and sequencing. Briefly, Novogene used an Agilent
194 5400 Fragment Analyzer System to confirm that all samples had adequate purity levels,

195  concentrations, and volumes, as well as acceptable RNA integrity numbers (minimum = 7.9).
196  Libraries were then prepared via poly-A tail selection and sequenced using a 150bp paired-end
197  approach on a NovaSeq 6000 sequencing system, thus ensuring at least 20 million reads were
198  obtained for each sample.

199

200  Sequence processing and gene expression quantification

201

202 Initial quality control of raw sequences was performed by Novogene, where adapter

203  sequences, reads with ambiguous base calls in greater than 10% of the read, and reads with a
204  phred score of less than or equal to 5 in 50% of the read were removed. After receiving the

205 sequences from Novogene, we used FASTQC to generate additional quality reports for each
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sample (Andrews 2010). This showed that the median phred score did not drop below 30 at any
position for any sample. Therefore, no additional sequence quality control was performed.

To quantify transcript abundances for each gene, we used kallisto (v.0.46.2) to pseudo-
align reads to the coding sequences of the D. plexippus reference genome (v.Dpv3, GenBank
Assembly = GCA_000235995.2) (Zhan et al. 2011). Downstream analyses were performed using
transcript per million normalized read counts (automatically generated by kallisto) to minimize
biases due to unequal gene lengths and varying library sizes (Wagner et al. 2012; Abrams et al.
2019). Prior to analyses that involved phylogenetic-gene expression comparisons and expression

specificity, transcript/million values were log transformed.

Quantifying gene expression divergence between stages

Our objective was to quantify the overall transcriptional dissimilarity between stages. We
used Manhattan distances to quantify this dissimilarity because our data were high dimensional
and because we wanted to consider the magnitudes of transcriptional changes. We first computed
the Manhattan distance between each sample using the dist R function (R Core Team 2022). We
then used the adonis2 function from the vegan R package (v.2.6-4) (Oksanen et al. 2022) to
perform a permutational multivariate analysis of variance (PERMANOVA) with 999
permutations, where developmental stage and plant were initially considered as factors. We then
performed a PERMANOVA on each set of adjacent stages, as well as between each larval stage
and the adult stage. To visualize global expression divergence between stages, we performed

principal coordinate analysis using the prcomp R function (R Core Team 2022).
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Quantifying the relationship between gene phylogenetic divergence and expression pattern

divergence within homologous groups

To infer homology between genes, we first used PSI-BLAST (BLAST 2.5.0+) (Altschul
1997) with five iterations to align all D. plexippus protein sequences to each other. Genes were
then inferred to be homologous if the query sequence showed at least 30% similarity across the
length of the target sequence, as well as an E-value of at least 1x10°'°, To examine how including
more distant homologs could impact our analysis, we performed an additional analysis where
homology was inferred based on at least 20% similarity across 70% of the target sequence and an
E-value of less at least 1x107. These less stringent similarly cutoffs for homology inference
showed consistent results with our primary analysis (Appendix section 3.2). Homologous pairs
were assembled into sets of two-node subgraphs, and subgraphs were then merged based on
common node identity to assemble homologous groups.

To quantify the phylogenetic distance between members of inferred homologous groups,
we first used MUSCLE (v.5.1) to create a multiple sequence alignment for each group (Edgar
2004). We then used IQ-TREE2 (v.2.1.4) to identify the best fit sequence evolution model and
infer maximum likelihood phylogenies for each multiple sequence alignment (Kalyaanamoorthy
et al. 2017; Minh et al. 2020). We then used the cophenetic.phylo function from the ape R
package (v. 5.7-1) (Paradis and Schliep 2019) to calculate pairwise phylogenetic distances from
each homologous group tree, which we note are based on sequence divergence and not inferred
divergence time. To calculate pairwise expression pattern distances we mean centered and
standardized the median transcript/million value for each gene across stages by dividing the

difference between the transcript/million value and the mean value for each gene by the standard
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deviation of transcript/million values across stages. This allowed us to better capture temporal
trends in expression by minimizing similarities due to expression magnitudes. We then calculated
the pairwise Euclidian distance between each gene expression pattern within a given homologous
group using the dist R function (R Core Team 2022). Finally, we used Mantel tests to calculate
the correlation between phylogenetic and expression pattern distance matrices for each
homologous group, which were implemented via the mantel function in the vegan R package
(v.2.6-4) (Oksanen et al. 2022). We then used a t-test to test if the distribution of correlation
coefficients was positively shifted from 0, which was implemented using the ¢ fest R function (R

Core Team 2022).

Quantifying the relationship between phylogenetic diversity and expression pattern diversity

across homologous groups

The diversity (D) of each previously described phylogenetic tree was calculated as the
sum of branch lengths: D = )i, [;, where n represents the number of branches and /; represents
the length of the ith branch. To quantify expression pattern diversity, we first used the Ward
method to created hierarchical clustering graphs of the temporal expression patterns for each
gene. Prior to clustering, the transcripts/million values for each gene were mean centered and
standardized because hierarchical clustering will group expression patterns that show distinct
temporal trends but have more similar average relative abundances across time points. For each
hierarchical clustering graph, diversity was calculated as previously described for phylogenetic
diversity. All hierarchical clustering graphs were constructed using the sclust R function and all

linear models were fit using the /m R function (R Core Team 2022). Our data was non-linearly
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related and both phylogenetic diversity (Shapiro-Wilk test, W = 0.717, p = 2.909¢-16) and
expression pattern diversity (W = 0.570, p < 2.2e-16) were non-normally distributed. Therefore,
we tested that expression pattern diversity monotonically increases with phylogenetic diversity
using Spearman’s rank correlations, which was implemented using the cor.fest R function (R
Core Team 2022). We examined correlations across all homologous groups, as well as within
homologous group sizes that had five or more groups to discern the effects of gene addition and

phylogenetic diversification within groups.

Expression specificity calculation and analysis

Stage-specificity for each gene was calculated using the tissue specificity index t (Yanai
et al. 2005), which ranges from 0 (equal expression across stages) to 1 (expression in a single

Z%\I:l(l_xi)

stage): T = N1

, where NV is the number of stages (for our purposes) and x; is the expression
level normalized to the maximum expression value across stages. Although t was developed for
assessing tissue specificity, it has been used to gain insight into temporal specificity as well

(Cardoso-Moreira et al. 2019). We then performed a Kolmogorov—Smirnov test using the ks.test

R function (R Core Team 2022) to assess if the distribution of t values was shifted in duplicated

genes relative to singleton genes.

Results
The extent of transcriptional divergence between D. plexippus larvae and pupae is comparable

to the divergence between larvae and adults.
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Because all distinct phenotypes expressed throughout a complex life cycle are coded by
the same genome, trait decoupling must be mediated through variation in gene expression across
stages. Therefore, we were first interested in the extent that gene expression has diverged
between stages throughout the D. plexippus metamorphosis.

Overall, we found that gene expression significantly varied by developmental stage (F =
61.36, p <0.001) but not plant host (F = 0.88, p = 0.47) (Figure 2). We then performed pairwise
comparisons to test for differences between subsequent stages, as well as between larvae and
adults. Following D. plexippus throughout metamorphosis: the transition from third instar to fifth
instar involves some, but relative few changes in gene expression (distance = 6.97x10°, F =
18.67, p <0.001). Then a substantial change in gene expression occurs during the transition from
fifth instar to early pupa (distance = 1.22x10, F = 68.06, p < 0.001), followed by a slightly
smaller but comparable change from early pupa to late pupa (distance = 1.20x10%, F = 62.25, p <
0.001). Finally, the transition from late pupa to adult involves a modest change in gene
expression (distances = 9.37x10°, F = 35.43, p < 0.001), but said change is notably less than the
changes involved in the previous two transitions. It’s interesting to note that the extent of
divergence in gene expression between fifth instars and early pupae is comparable to the
divergence between both larval stages and adults (third instar: distance = 1.16 x10%, F = 108.08,
p <0.001; fifth instar: distance = 1.24 x10°, F = 71.65, p < 0.001). This distinction in early pupae
appears to involve a decrease in metabolic investment and an increase in immune investment
(Appendix Figure S7). More broadly, the transcriptional changes across stages appear to be
mostly driven by differential investment in metabolism and genetic information processing,

consistent with niche shifting and developmental requirements (Appendix Figure S7).
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Phylogenetic divergence between homologs generally corresponds with increased divergence in

temporal expression pattern.

As previously described, the general hypothesized outcome of evolutionary divergence
between homologs, which we measured using phylogenetic distances based on sequence
divergence, is increased divergence in their expression patterns. Consistent with this hypothesis,
we generally found a positive relationship between phylogenetic distance and expression pattern
distance within homologous groups (Figure 3). Specifically, a positive association was observed
in approximately 72% of groups. However, we note that there is variation in the both the strength
and direction of said correlations, with the remaining 28% of groups showing null or negative
correlations. Nonetheless, the distribution of correlation coefficients is shifted positively from 0

(mean=0.19,t=6.29, p=5.38 x 10”).

Diversity in the temporal expression patterns exhibited by homologous groups increases with

their phylogenetic diversity.

If expression pattern diverges with phylogenetic divergence between genes within a
homologous group, the predicted emergent pattern is that as a homologous groups diversifies (in
both size and sequence divergence), the group as a whole should accumulate more different
patterns of gene expression. This would result in increased overall expression pattern diversity in
homologous groups that are more phylogenetically diverse, which we measured using sequence
divergence. Consistent with this hypothesis, we found a positive relationship between

phylogenetic diversity and expression pattern diversity (p = 0.8345, p < 2.2e-16) (Figure 4).
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However, we also found that the increase in expression pattern diversity started to saturate at
higher phylogenetic diversities, and that this relationship was better described by a quadratic
model than a linear model (linear model SSE = 826.78, quadratic model SSE = 823.52).

The positive relationship between phylogenetic and expression pattern diversity could
have been driven by the addition of genes to homologous groups, as opposed to phylogenetic
diversification within the group. Therefore, we examined the relationship within each
homologous group with five or more replicates. This analysis revealed positive correlations
between phylogenetic and expression pattern diversification for each of the six smaller
homologous group sizes (mean p = 0.30, 95% CI =[0.15, 0.45]), where we had statistical power
to detect this positive relationship in two out of six homologous group sizes (p < 0.0185).
However, in the two larger group sizes, we found no associations between phylogenetic and
expression pattern diversification (mean p =-0.52, p range = [0.825, 0.8792]). Full results for
each group size can be found in Appendix Table S4. Overall, these results support a positive but

saturating relationship between phylogenetic and expression pattern diversity.

Genes within duplicated genes tend to show more stage-specific expression patterns than

singleton genes.

Another key prediction regarding expression pattern divergence between duplicate genes
is that copies will show increased stage specificity. Consistent with this prediction, we found that
genes within homologous groups tended to show increased stage specificity relative to singleton

genes (D =0.193, p <2.2x107'%) (Figure 5).



367  Discussion

368 Although many studies have investigated the genetic decoupling of traits between life
369  stages, the evolutionary causes and consequences of trait decoupling remain less understood.
370  Therefore, we investigated the link between gene duplication and transcriptional divergence
371  between stages across the D. plexippus metamorphosis. By examining how temporal gene

372  expression patterns changed with phylogenetic divergence between duplicate genes, we found
373  that more distantly related genes tended to show more diverged patterns of gene expression
374  (Figure 3). Although the use of pairwise comparisons has been criticized for assessing the

375 relationship between sequence and expression divergence across species (Dunn et al. 2018), as
376  this was not a comparative study across species, distinguishing patterns of divergence between
377  orthologs and paralogs was not central to our goals (duplications that occurred in an ancestral
378  species or more recently could both contribute to trait decoupling between stages). We also found
379 that more phylogenetically diverse groups generally exhibited more diverse patterns of gene
380 expression (Figure 4) and that genes within homologous groups showed increased stage-

381  specificity relative to singleton genes (Figure 5). As predicted, these results are consistent with
382  studies that have examined the role of gene duplication in facilitating expression divergence
383  between different cells and tissues (Gu et al. 2002; Huminiecki and Wolfe 2004; He and Zhang
384  2005; Li et al. 2005; Yanai et al. 2005; Cardoso-Moreira et al. 2019). This consistency suggests
385 that theories of evolution by gene duplication can be applied more generally towards

386 understanding functional differentiation between stages at the organismal level.

387 Our findings significantly expand on previous findings that duplicate genes were more
388 likely to vary in expression between larvae and pre-pupae in several Drosophila species than

389  singleton genes. (Gu et al. 2004). A more nuanced pattern that we observed was a saturating
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relationship between phylogenetic diversity and expression pattern diversity. This pattern was
recapitulated across homologous group sizes, where the positive relationship between expression
pattern diversity and phylogenetic diversity disappeared at larger and more diverse groups
(Figure 4). Similar patterns have been documented in humans, mice, and yeasts, with expression
divergence occurring more rapidly at shorter evolutionary time scales before plateauing at longer
time-scales (Gu et al. 2002; Makova and Li 2003; He and Zhang 2005). Possible explanations for
this pattern include decoupled rates of evolution in coding sequence and regulatory elements,
dosage sensitivities/balancing, and additional complexities related to neo/sub-functionalization
dynamics (Wagner 2000; Wagner 2001; Papp et al. 2003; Qian and Zhang 2008). Regardless of
the specific mechanisms, which are beyond the focus of this study, finding this consistency
provides stronger evidence that our results recapitulate more fundamental work on duplicate
gene evolution. However, deviations from the predicted relationship between phylogenetic
divergence and expression pattern divergence were also found. These deviations could likely be
explained by the historical context in which specific homologous groups originated and evolved.
For example, whether or not the duplication event was lineage-specific or occurred ancestrally,
whether or not duplicates arose from a small-scale duplication event or a chromosomal
duplication event, and relative importance of selective and neutral processes in generating
sequence divergence, are all expected influence duplicate functionalization and expression
divergence (Makova and Li 2003; Huminiecki and Wolfe 2004; He and Zhang 2005).

We interpret our results as evidence for an important link between gene duplication and
life cycle evolution. However, it is important to emphasize that we do not suggest that expansion
of the specific homologous groups identified in our analyses were directly involved in the origin

of holometabolous development; the origin of holometabolous development was not the focus of
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this study. Rather, our aim was to search for a general process by which traits become temporally
decoupled, which would result in greater life cycle complexity when said traits are accumulated
over time. Previous studies have documented the patterns that emerge from temporal trait
decoupling. Genetic independence of traits expressed by different stages has been well described
(see: (Cheverud et al. 1982; Aguirre et al. 2014; Goedert and Calsbeek 2019; Medina et al. 2020)
for examples and (Collet and Fellous 2019) for a detailed review), and more recent studies have
elucidated variation in gene expression between stages as the likely cause of said independence
(Critchlow et al. 2019; Herrig et al. 2021; Schott et al. 2022; Collet et al. 2023). Our findings are
consistent with this interpretation as well. However, a common theme across previous studies is
that decoupling is variable and not universal to all traits or genes. Therefore, a more mechanistic
understanding of how decoupling evolves is needed to understand life cycle evolution more
comprehensively. Our findings suggest a role of gene duplication in the decoupling of traits and
more generally in facilitating divergence in temporal gene expression patterns across stages.
Although our findings suggest an important link between gene duplication and life cycle
evolution, we are not able to make causal inferences because gene duplication is not the only
mechanism that facilitates evolutionary change in gene expression patterns. Genes are expressed
through regulatory networks, and evolutionary changes to said regulatory elements may be
facilitated by, but do not require gene duplication. (Wagner 2001; Zhang et al. 2004). It is
possible that decoupling of traits between life stages is predominately driven by regulatory
evolution. Under this hypothesis, the associations we described between sequence divergence
and expression divergence could be attributed to regulatory divergence between homologous
genes, as opposed to their differential functionalization. Likewise, the regulatory environment of

a given stage can shape patterns of stage specificity in gene expression, which has the potential
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to influence how duplicate genes evolve. For example, if a gene is expressed ubiquitously across
stages, duplication could lead to broad deleterious effects through dosage sensitivity (Papp et al.
2003). Therefore, it is possible that duplicates of genes with stage-specific expression patterns
are more likely to be retained, which could explain our observation that duplicate genes show
more stage-specific expression patterns. These alternative hypotheses do not necessarily exclude
a role of gene duplication in facilitating life cycle evolution, and future studies that aim to
quantify their relative importance will lend key insight into the evolution of life cycle
complexity. One approach would be to understand how regulatory elements (such as
transcription factors) and duplicate genes have evolved across lineages with varying degrees of
life cycle complexity.

Because our samples consisted of whole bodies, the variation in gene expression
observed between stages likely represents shifts in the relative abundance or activity of different
cell and tissue types throughout the D. plexippus post-embryonic development. This, paired with
the consistency of our findings with work on the role of gene duplication in generating functional
differentiation between cells and tissues suggests that life cycle evolution in multicellular
organisms can be more fundamentally understood through evolutionary shifts in the timing at
which different cell and tissue types and functions are expressed. This echoes Haldane’s earlier
ideas that changes in the timings in which genes act is an important aspect of evolutionary
change (Haldane 1932). From this perspective, the continuous transition from infant to adult in
primates could be mechanistically linked to the extreme transition from larva to butterfly in

lepidopterans.
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Figure 1. A conceptual diagram showing the hypothesized mechanism of how duplicate gene
evolution could lead to divergence in gene expression (and consequently phenotypes) between
perceived stages in a complex life cycle. Initially, a given gene has an expression pattern that is
relatively uniform throughout an organism’s lifetime. After duplication, the expression patterns
of each copy tend to diverge and become more stage specific. After additional duplication and
divergence, expression tends to diverge and specify even more between copies. This makes the
expression at each stage substantially more distinct from other stages, which would result in
greater phenotypic divergence between stages if the duplicates functionally diverged as well.
This diagram does not show all possible fates of duplicate genes.
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Figure 2. A depiction of how morphology and transcription changes across the D. plexippus
lifecycle. A) Images of each life stage sampled in this study showing. B) A principal coordinate
analysis plot showing substantial transcriptional divergence between life stages. Each point
represents the global gene expression profile of an individual, and closer points indicate more
similar gene expression profiles. Axis labels indicate principal coordinate rank and the proportion
of variance explained.
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Figure 3. Phylogenetic distance positively correlates with expression pattern distance in most
homologous gene groups. The correlation between phylogenetic and expression distances in a set
of A) Hox homologs and B) Osiris homologs. In A and B, each point indicates the phylogenetic
and expression distance for a pair of genes within the homologous groups. A and B are meant to
contextualize the broader analysis, not to lend interpretations about the specific homologous
groups used for demonstration purposes. C) The empirical cumulative density function of
correlation coefficients between phylogenetic distance and expression pattern distance across all
homologous groups. Values greater than O indicate a positive correlation and greater values
indicate stronger correlations. Overall, the majority of the distribution (approximately 72%)
consists of positive correlations.
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size (only group sizes with five or more replicates were considered in this analysis).
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1 Extended Methods

1.1 Study system and experimental design

Holometabolous development involves the transition from a larval stage that is typically specialized for
feeding and growth to a stationary or less mobile pupal stage. During the pupal stage, dramatic morpho-
logical restructuring occurs, resulting in a distinct adult stage that is typically specialized for dispersal and
reproduction.

To quantify changes in gene expression the across the holometabolous development of Danaus plexippus,
we sequenced mRNA extracted from third instars, fifth instars, early pupae (one day after pupation), late pu-
pae (6-8 days after pupation), and adults (several hours after eclosion). A previous study has suggested that
feeding on more toxic milkweed induces changes in gene expression during the second instar [1]. Therefore,
we reared larvae on both Asclepias incarnata (less toxic) and Asclepias curassavica (more toxic) to ensure
that our findings are robust to a major source of environmental variation. We collected five individuals at
each stage and from each plant for mRNA quantification. All individuals sampled in this study were reared
at the same time and in the same conditions.

1.2 Milkweed cultivation

A. incarnata and A. curassavica seeds were purchased from Joyful Butterfly (Blackstock, SC, USA). To
break cold dormancy, seeds were placed in sand-filled bags and kept at 4°C for two months prior to sowing.
Approximately two months before the start of the experiment, seeds were sown into Lambert LM-GPS
germination soil and placed in a temperature-controlled greenhouse room that was held between 25°C and
29.4°C. A. incarnata germination rates tend to be relatively low, so seed trays were topped with vermiculite
to aid in moisture retention. Seedlings were fertilized with approximately 20 PPM of Jack’s LX 15-5-15 with
4% Ca and 2% Mg fertilizer three times a week until the majority of plants grew two sets of true leaves. All
plants were then re-potted into Pro-mix BK25 soil, moved to a new temperature-controlled room that was
held between 25.6°C and 29.4°C, and fertilized three times a week as described above. Approximately one
week before the start of the experiment, plants were moved into the same greenhouse room that caterpillars
were reared in (described below).

1.3 D. plexippus Rearing

Monarch butterflies were caught and labeled near St. Marks, Florida, U.S.A. (30°09’33"N 84°12’26” W)
between October 21st and October 23rd, 2022. Clear tape was placed on the abdomen of each butterfly
and examined under a stereomicroscope to ensure they were not infected by Ophryocystis elektroscirrha,
a common parasite of monarch butterflies. Prior to mating season, wild-caught monarch butterflies were
stored in glassine envelopes at 14°C to induce a state of diapause, and were fed approximately 10-20% honey
water every 10 days. Between March 6th and March 15th, 2023, wild-caught monarchs were placed in
mesh cages for mating. Each cage was set up in a climate-controlled growth chamber (25°C, 16-hour/8-hour
day/night cycle) and contained three male and three female butterflies. All cages were provided with a petri
dish containing a sponge soaked in approximately 10-20% honey water for butterfly feeding. Mating cages
were checked every 14 hours, and copulated butterflies were transferred to their own separate cage. After a
copulated pair had detached the next day, the male was removed from the cage and the female was given a
potted A. curassavica plant for oviposition, as well as honey water as described above. After a given female
was done laying eggs, the plant was taken out of the growth chamber and placed in a temperature-controlled
greenhouse room that was held between 23.3°C and 27.8°C for.

F1 caterpillars were reared on A. curassavica in the same greenhouse room previously described. After
pupation, the silk attached to the end of the pupal cremaster was used to hot glue the pupae to the lid of
clear solo cups, which were then taken from the greenhouse to the laboratory ( 22°C) for eclosion. A piece
of paper towel was placed in the bottom of cups to help absorb liquids produced during the eclosion process.
After eclosion, butterflies were placed in glassine envelopes and stored as previously described.

Between April 23rd and May 1st, 2023, F1 butterflies from different lineages and that were not infected
with O. elektroscirrha were mated as previously described in the FO generation. F1 females were given either
A. curassavica or A. incarnata for oviposition, and caterpillars were collectively placed on their treatment



plant species upon hatching. Care was taken to make sure caterpillars that had taken bites of the plant they
were oviposited on to were placed on the same milkweed species. Likewise, only caterpillars that had not
taken any bites of the plant they were oviposited on were placed on the other milkweed species. To reach
the sample size needed for this experiment, we used F2 caterpillars from two different lineages that did not
share FO or F1 ancestors. Treatments of plant species and development stage were randomly distributed to
caterpillars from both lineages to minimize confounding due to genetic background.

1.4 Sampling across life stages

To minimize changes in transcription due to sample handling, all caterpillars, pupae, and adults were snap
frozen in liquid nitrogen before being stored in -80°C. Third instar caterpillars were pulled from their feeding
plant and quickly placed into a sterile 2mL microcentrifuge tube that was then dipped in liquid nitrogen. Fifth
instar caterpillars were frozen in the same way but were placed in sterile 5mL centrifuge tubes. Caterpillars
that ate all of the leaves off of the plant they were originally placed on were placed on another plant of the
same species.

One day after pupation, early pupae were placed in 5mL centrifuge tubes and frozen in liquid nitrogen
as described above. Three days after pupation, pupae assigned to late pupa and adult stages were removed
from their plant and taped to the lids of clear solo cups using silk attached to the cremaster. In some cases,
not enough silk detached with the pupa, and tape was applied directly to the cremaster. Solo cups were then
placed on the bottom rack of the same shelf that the caterpillars were reared on, and shade was provided by
placing plastic trays above and to the southeast facing side of the shelf to prevent pupae from burning. A
piece of paper towel was placed in the bottom of the cups containing adult samples to absorb fluids produced
during the pupation process. Since there is variation in how long it takes for a pupa to eclose, late pupae
were collected 6-8 days after pupation. Care was taken to ensure the distributions of how many days after
pupation late pupae were sampled were equal between plants. Adults were frozen several hours after eclosion
to allow their wings to fully expand. Here, adults were removed from their solo cup and quickly placed in
glassine envelopes, which were then quickly frozen in liquid nitrogen.

After flash freezing in liquid nitrogen, samples were stored in a styrofoam cooler full of dry ice until all
freezing for that day was completed. This process took approximately one hour or less on any given day, so
no sample was on dry ice for more than an hour before being transferred to the -80°C freezer. All freezing
took place in the same greenhouse room that the caterpillars were reared in, and no monarch left said room
before being frozen throughout the duration of the experiment.

1.5 RNA extraction and sequencing

We use a Promega SV Total Isolation System kit to extract total RNA from the monarch homogenate.
Extractions were performed in batches of 11 samples with 1 negative control (per extraction batch). After
each extraction, we used a NanoDrop to quantify the purity and concentration of the RNA. Samples with
an A260/A280 or an A260/A230 of less than 1.95 were discarded and re-extracted to meet purity standards.
While the general workflow followed the manufacturer’s suggested protocol, we made some alterations to
obtain higher quality RNA extract. Briefly, we doubled the recommended RNA lysis buffer to decrease the
tissue concentration in the initial lysis step. All centrifugation steps were increased to 20,000 rcf to better
remove organic contaminants and performed at 17°C to avoid sample heating. We also added an additional
centrifugation step after the initial tissue lysis to further clear organic contaminants and improve final extract
purity. The specific protocol is as follows:

1. Add homogenate to 2mL microcentrifuge tube.
2. Immediately add 590 uL of RNA Lysis Buffer (RLA4+BME) into microcentrifuge tube with homogenate

3. Use sterile micropestle to crush and lyse monarch homogenate (vigorously crush and spin pestle in
tube for approximately 1 minute).

4. Centrifuge at 20,000 rcf for 10 minutes at 17°C.

5. Transfer approximately 400 uL to 500 uL of aqueous phase to a new microcentrifuge tube.



Centrifuge at 20,000 rcf for 20 minutes at 17°C.
Transfer 175ulL of the cleared lysate (aqueous layer) to a new microcentrifuge tube.

Add 200 uL of 95
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Transfer lysate+ethanol to Spin Basket Assembly and centrifuge for 5 minutes at 20,000 rcf and 17°C.

10. While the centrifuge is running, Prepare DNase incubation mix: 40uli of Yellow Core Buffer + 5ulL
MnCI2 + 5ull of Dnase I (per sample). Mix gently via pipetting.

11. Discard eluate.

12. Add 50 uL of DNase incubation mix to the membrane of the Spin Basket, incubate for 15 minutes at
room temperature.

13. Add 200 uL of DNase Stop Solution (DSA+ethanol) and centrifuge at 20,000 rcf for 1 minute at 17°C.
14. Discard eluate.

15. Add 600 uL of RNA Wash Solution (RWA); centrifuge at 20,000 rcf for 1 minute at 17°C.

16. Discard eluate.

17. Add 250 uL of RNA Was Solution (RWA); centrifuge at 20,000 rcf for 2 minutes at 17°C.

18. Transfer Spin Basket to Elution Tube.

19. Add 100 uL of Nuclease-Free water to the Spin Basket membrane.

20. Centrifuge at 20,000 rcf for 1 minute to elute RNA.

21. Store at -80°C.

After all extractions were completed, purified RNA was packaged in dry ice and sent to Novogene for
sequencing. Briefly, Novogene used an Agilent 5400 Fragment Analyzer System to performed additional
quality control. This involved reconfirming sample purity, ensuring that all samples had adequate concen-
trations and volumes, and checking that all sampled had acceptable RNA integrity numbers (minimum =
7.9). After additional quality assessment, mRNA was separated via poly-A tail selection, and 150bp paired-
end sequencing was performed using a NovaSeq 6000 sequencing system, ensuring at least 20 million reads
were obtained for each sample.

1.6 Sequence processing and gene expression quantification

Quality control of raw sequences was initially performed by Novogene. This entailed the removal adapter
sequences, the removal of reads with ambiguous base calls in greater than 10% of the read, and the removal
of reads with a phred score of less than or equal to 5 in 50% of the read. After receiving the sequences from
Novogene, we used FASTQC to generate additional quality reports for each sample [2]. This showed that
for each sample, the median phred score did not drop below 30 at any position along the reads. Therefore,
no additional quality control was performed.

To quantify transcript abundances for each gene, we used kallisto (v.0.46.2) to pseudo-align reads to
the coding sequences of the D. plexippus reference genome (v.Dpv3; GCA_000235995.2) [3]. Downstream
analyses were performed using transcript per million normalized read counts (automatically generated by
kallisto) to minimize biases due to unequal gene lengths and varying library sizes [4, 5].



1.7 Quantifying gene expression divergence between stages

Given the high dimensionality of gene expression data, we first computed the Manhattan distance between
each sample using the dist R function [6]. We then used the adonis2 function from the vegan R package
(v.2.6-4) [7] to perform a permutational multivariate analysis of variance (PERMANOVA) with 999 per-
mutations, where developmental stage and plant were initially considered as factors. We then performed
a PERMANOVA on each set of adjacent stages, as well as between each larval stage and the adult stage.
To visualize global expression divergence between stages, we performed principal component analysis using
the prcomp R function [6]. To ensure our findings were robust to different metrics for evaluating overall
transcriptional differences, we performed the same analysis using Pearson correlation distances, which were
calculated using the cor R function [6].

1.8 Inferring homologous gene groups

To infer homology between genes, we first used PSI-BLAST (BLAST 2.5.04) [8] with five iterations to align
all D. plexippus protein sequences to each other. Genes were then inferred to be homologous if the query
sequence showed at least 30% similarity across the length of the target sequence, as well as an E-value of at
least 1x10-10. To examine how including more distant homologs could impact our analysis, we performed
an additional analysis where homology was inferred based on at least 20% similarity across 70% of the
target sequence and an E-value of less than 1x10-5. Homologous pairs were assembled into sets of two-node
subgraphs, and subgraphs were then merged based on common node identity to assemble homologous groups.

To quantify the phylogenetic distance between members of inferred homologous gene groups, we first
used MUSCLE (v.5.1) to create a multiple sequence alignment for each group [9]. We then used IQ-TREE2
(v.2.1.4) to identify the best fit sequence evolution model and infer maximum likelihood phylogenies for each
multiple sequence alignment [10, 11].

1.9 Quantifying the relationship between gene phylogenetic divergence and ex-
pression pattern divergence within homologous groups

To quantify the relatinship between phylogenetic divergence and expression divergence within homologous
groups, we used the cophenetic.phylo function from the ape R package (v. 5.7-1) [12] to calculate pairwise
phylogenetic distances from each homologous group tree. To calculate pairwise expression pattern distances,
we first mean centered and standardized the median transcripts/million value for each gene within each stage
to better measure distance between temporal patterns as opposed to magnitude (which cannot be assessed
with our data). We then calculated the pairwise Euclidian distance between each gene expression pattern
within a given homologous group using the dist R function [6]. Finally, we used Mantel tests to calculate
the correlation between phylogenetic and expression pattern distance matrices for each homologous group,
which were implemented via the mantel function in the vegan R package (v.2.6-4) [7]. We then used a t-test
to test if the distribution of correlation coefficients was positively shifted from 0, which was implemented
using the ¢.test R function [6].

1.10 Quantifying the relationship between phylogenetic and expression pattern
diversity

The diversity (D) of each tree was then calculated by summing all branch lengths: D = > | ;, where
n represents the number of branches and [; represents the length of the ith branch. To quantify expres-
sion pattern diversity, we first created hierarchical clustering graphs of the temporal expression patterns for
each gene using the Ward method, as implemented by hclust R function [6]. Prior to clustering, the tran-
scripts/million values for each gene were mean centered and standardized because hierarchical clustering will
group expression patterns that show distinct temporal trends but have more similar relative abundances at
each time point. For each hierarchical clustering graph, diversity was calculated as previously described for
phylogenetic diversity. We then fit a linear model to examine the relationship between phylogenetic diversity
and expression pattern diversity across all inferred homologous gene groups, which was implemented using
the Im R function [6]. Because diversity was calculated additively (for each branch, diversity was added in



proportion to divergence), we also fit individual linear models to each homologous gene group size that had
at least five replicates. In addition to removing the inherent positive correlation between group size and
diversity, this approach also allowed us to contrast global and local patterns.

1.11 Expression specificity calculation and analysis

Stage-specificity for each gene was calculated using the tissue specificity index 7 [13], which ranges from

Z:\,:I(l_$i)

0 (broad expression) to 1 (specific expression): 7 = ~—— where N is the number of stages (for our
purposes) and z; is the expression level normalized to the maximum expression value across stages. Although
7 was developed for assessing tissue specificity, it has been used to gain insight into temporal specificity as
well [14]. We then performed a Kolmogorov—Smirnov test using the ks.test R function [6] to assess if the
distribution of 7 values was shifted in duplicated genes relative to singleton genes.

2 Methodological Summaries

2.1 RNA quality control report

Table S1: RNA extract quality control report.

Sample Name | Concentration (ng/ul) | Volume (ul) | Total amount (ug) | RIN
mtstp3cu2 120.15 91 10.93 9.7
mtstp3cul 435.84 93 40.53 9.6
mtstp3cud 99.07 88 8.72 9.6
mtstp3cud 223.96 94 21.05 9.7
mtstp3cu8 111.95 91 10.19 9.6
mtstp3iu8l 211.09 92 19.42 9.8
mtstp3iu82 194.64 93 18.1 9.8
mtstp3iu83 373.28 91 33.97 9.6
mtstp3iu84 196.04 93 18.23 9.6
mtstp3iu85 136.84 90 12.32 9.7
mtstpdcul7 363.74 101 36.74 9.4
mtstpdcul8 236.69 92 21.78 9.8
mtstpbcul9 544.95 93 50.68 9.5
mtstp5cu20 130 91 11.83 9.7
mtstphcu2l 400.58 94 37.65 9.8

mtstp5iul00 377.26 91 34.33 9.7

mtstpdiulOl 98.09 89 8.73 9.6
mtstp5iu97 164.64 92 15.15 9.8
mtstp5iu9s 258.2 91 23.5 9.8
mtstp5iu99 139.84 91 12.73 9.8
mtstpAcubb 132.79 92 12.22 9.5
mtstpAcu66 106.76 90 9.61 9.5
mtstpAcu67 37.05 94 3.48 8.9
mtstpAcub8 94.26 91 8.58 9.4
mtstpAcu69 176.26 91 16.04 9.8

mtstpAiulds 162.84 92 14.98 9.6

mtstpAiul46 283.45 92 26.08 9.6

mtstpAiuld7 51.58 92 4.75 9.2

mtstpAiulds 89.37 92 8.22 9.3

mtstpAiul49 307.63 91 27.99 9.7
mtstpEcu33 203.48 92 18.72 7.4
mtstpEcu34 244.57 91 22.26 8.7




Sample Name | Concentration (ng/ul) | Volume (ul) | Total amount (ug) | RIN
mtstpEcu3b 491.84 89 43.77 7.9
mtstpEcu36 220.03 92 20.24 8.6
mtstpEcu38 220.92 93 20.55 8.6
mtstpEiull3 333.32 93 31 8.9
mtstpEiull4 446.98 91 40.68 7.9
mtstpEiulld 182.76 92 16.81 8.6
mtstpEiull6 257.7 89 22.94 8.4
mtstpEiull7 326.41 92 30.03 8

mtstpLcud9 95.18 92 8.76 9

mtstpLcub0 93.51 92 8.6 9.3
mtstpLcud2 220.52 93 20.51 8.8
mtstpLcud3 95.67 91 8.71 9.4
mtstpLcub6 399.94 89 35.59 8.2
mtstpLiul29 145.89 91 13.28 9.1
mtstpLiul30 91.59 91 8.33 8.7
mtstpLiul3l 391.6 87 34.07 9.6
mtstpLiul33 85.42 89 7.6 8.4
mtstpLiul3b 108.7 92 10 8.1

2.2 RNA sequencing statistics

After quantifying transcript counts per gene, we checked that our sequencing effort was adequate to down-
stream analyses. First, we examined the number and proportion of raw reads that passed quality control, as
well as the number and proportion of quality-controlled reads that were pseudo-aligned to the D. plexippus
genome (Table 2). We then generated a rarefaction plot see if our sequencing depth had sufficiently detected
the expression of most transcripts that were expressed at a given stage (Figure 1).



Table S2: Sequence processing and mapping summary.

Sample Raw PE reads | Passed QC | % Passed QC Pseudo-aligned % Pseudo-aligned
mtstp3cu2 21943709 2132928515 97.2 16582965.404739982 0.777474036
mtstp3cu3 22924309 2202796852 96.09 17321415.999555275 0.786337423
mtstp3cud 24873976 2408547096 96.83 18718506.832656555 0.777170057
mtstp3cub 27818742 2729296778 98.11 21155266.226326376 0.77511784
mtstp3cul 21942370 2133237211 97.22 16603108.222044216 0.778305766
mtstp3iu8l 25932842 2532860678 97.67 19868699.32840216 0.784437119
mtstp3iu82 22375940 2195750992 98.13 17106242.600410897 0.779061135
mtstp3iu83 23183162 2267545075 97.81 17444460.402408678 0.769310414
mtstp3iu84 23107037 2261023570 97.85 17945429.764851093 0.793686099
mtstp3iu8h 21374435 2100251983 98.26 15988137.614267953 0.761248543
mtstpbcul? 24827892 2419229796 97.44 19638683.30078156 0.811774199
mtstpbcul8 23283921 2277633152 97.82 18962699.68340757 0.832561629
mtstp5cul9 20552516 1987839348 96.72 17087863.371912975 0.859619938
mtstp5cu20 22934654 2237734191 97.57 18115485.776358116 0.809545917
mtstpscu2l 23666289 2302019931 97.27 19702178.064739898 0.855864791

mtstpbiul00 31121258 3038368419 97.63 25782153.591624036 0.848552579
mtstpbiul0l 21768932 2121164734 97.44 18187966.46325012 0.85745186
mtstpbiu97 23849683 2315565722 97.09 19239689.897892967 0.830885071
mtstp5iu98 21766794 2105284316 96.72 17675440.16384149 0.83957497
mtstp5iu99 23386986 2292860107 98.04 18686179.461194277 0.814972505
mtstpAcu65 23267178 2266921153 97.43 17092435.515985236 0.753993384
mtstpAcu66 26977628 2628700072 97.44 20072649.61273931 0.763596038
mtstpAcu67? 24972220 2433542839 97.45 18546857.73716618 0.762134015
mtstpAcu68 22515202 2194331587 97.46 15951574.031512374 0.726944557
mtstpAcu69 21267172 2062915684 97 15662285.557752984 0.759230524
mtstpAiul4h 29683116 2870950980 96.72 23068781.60188841 0.80352405
mtstpAiul46 22849815 2210262605 96.73 17606493.53499071 0.796579261
mtstpAiuld7 22404070 2200079674 98.2 16188725.539826853 0.735824513
mtstpAiul4s 25214198 2456367169 97.42 18462578.21672617 0.751621274
mtstpAiul49 22156963 2154321512 97.23 16710014.455382776 0.775650912
mtstpEcu33 22763953 2217664301 97.42 16862537.346874774 0.760373756
mtstpEcu34 25629454 2499384354 97.52 18633231.46842286 0.745512848
mtstpEcu3b 22465556 2195109477 97.71 16842284.066866323 0.767263968
mtstpEcu36 22055561 2159239422 97.9 16253631.989667526 0.75274802
mtstpEcu38 23213904 2279605373 98.2 17463986.10284253 0.7660969

mtstpEiull3 23868417 2301870135 96.44 17119222.41677067 0.743709306
mtstpEiull4 22466254 2186865164 97.34 16425515.425250849 0.751098682
mtstpEiullb 23622008 2313067023 97.92 17237434.840021413 0.74521986
mtstpEiull6 33296616 3242424466 97.38 23547226.785158955 0.726222832
mtstpEiull7 22703490 2224942020 98 17101827.281335317 0.76864148
mtstpLcud9 27550907 2684560378 97.44 21053416.44129032 0.78424075
mtstpLcub0 27343921 2665485419 97.48 21414551.829342157 0.803401575
mtstpLcub52 26550778 2588435347 97.49 20277129.22413158 0.783373989
mtstpLcub53 21114739 2069033275 97.99 15824607.707317442 0.764830991
mtstpLcub6 36034764 3517353314 97.61 27879259.42907198 0.792620386
mtstpLiul29 20400384 1985773379 97.34 15447977.51483457 0.777932552
mtstpLiul30 34495919 3368181531 97.64 26660707.28941579 0.791546033
mtstpLiul3l 22712422 2196972580 96.73 17262201.926361006 0.785726781
mtstpLiul33 22825856 2225064443 97.48 17685552.79521903 0.794833285
mtstpLiul35 24991444 2433166988 97.36 19590944.360775467 0.805162344
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Figure S1: Rarefaction curves showing the number of genes detected on the y-axis and sequencing depth
on the x-axis. Each line corresponds to an individual sample. Plateaus in the number of detected genes at
higher sequencing depths suggest that our sequencing effort was sufficient.

2.3 Summary of homologous gene group inferences

Homologous gene group inference is described in section 1.8. The following plots show the summary his-

tograms of homologous group size.
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Figure S2: Histograms showing the distribution of homologous group sizes detected in the D. plexippus
genome when using more (left) and less (right) stringent sequence similarity cutoffs.

Table S3: A table showing the number of duplicate and singleton genes identified in this study.

PSI-BLAST Parameters

n Homologs

n Singletons

e-value = e~ 10, %identity = 30, query coverage = 1
e-value = e~ 5, %identity = 20, query coverage = 0.7

3237
9792

11995
5440




3 Supporting Results

3.1 Analysis of transcriptional divergence using correlation-based distances

To ensure that our inference of transcriptional divergence between stages was robust, we performed an
additional analysis using Pearson distances, as opposed to Manhattan distances (presented in the main text).
We found that expression significantly varied by developmental stage (F = 194.94, p < 0.001) but not plant
(F = 0.87, p = 0.37) (Figure S3). We then performed pairwise comparisons to test for differences between
subsequent stages, as well as between larvae and adults. Following D. plexippus throughout metamorphosis:
the transition form third instar to fifth instar involves some, but relatively few changes in gene expression
(F = 40.84, p < 0.001). Then a substantial change in gene expression occurs during the transition from fifth
instar to early pupa (F = 182.74, p < 0.001), followed by another substantial change from early pupa to late
pupa (F = 274.12, p < 0.001). Finally, the transition from late pupa to adult involves another substantial
change in gene expression (F = 231.28, p < 0.001). It is interesting to note that the difference between
third instar and adults (F = 458.90, p < 0.001) is comparable to the difference between third instar larvae
and early pupae (F = 453.98, p < 0.001). Likewise, the difference between fifth instar larvae and adults
(F = 217.05, p < 0.001) is comparable to the difference between fifth instar larvae and early pupae. These
findings are consistent with the analysis based on Manhattan distances, and highlight the same interesting
point that pupae are approximately as transcriptioanlly diverged from larvae as adults are.
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Figure S3: A principal coordinate analysis plot showing substantial transcriptional divergence between life
stages. Each point represenst the global gene expression profile of an individual, and closer points indicate
more similar gene expression profiles. Axis labels indicate principle coordinate rank and the proportion of
explained variance.

To visualize of the lack of an effect of plant on transcriptional divergence, we also created a visualization
of the Manhattan-distance based PCoA (Figure S4).

3.2 Reanalysis based on less stringent homology inference

To ensure that our findings were robust, we re-analyzed our data using less stringent sequence identity cutoffs
to infer gene homology (see section 1.8). This included more divergent genes in our analysis, thus increasing
the amount of phylogenetic diversity captured.

3.2.1 Correlations between phylogenetic and expression pattern diversity

The overall relationships between phylogenetic and expression pattern diversity were consistent with our
primary analysis (Figure S5).
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Figure S4: A principal coordinate analysis plot showing substantial transcriptional divergence between life
stages, and a lack of differentiation based on which plant larvae were reared on. Each point represents
the global gene expression profile of an individual, and closer points indicate more similar gene expression
profiles. Axis labels indicate principle coordinate rank and the proportion of explained variance.

Table S4: A table showing the results for each correlation between phylogenetic and expression pattern

diversity that were summarized in the main text.

Homologous group size P p-value
Total 0.8345044 | < 2.2e — 16

4 0.3434008 0.01234
5 0.18 0.1938
6 0.1178571 0.3382
7 0.6454545 0.0185
8 0.3212121 0.1838
9 0.2 0.3917
11 -0.5428571 0.8792
13 -0.5 0.825

Table S5: A table showing the results for each correlation between phylogenetic and expression pattern di-
versity that were produced by our reanalysis based on less stringent similarity cutoffs for homology inference.

Homologous group size p p-value
Total 0.8268648 | < 2.2e — 16
4 0.3319884 0.0007816
5 0.3084583 0.02998
6 0.03387097 0.4282
7 0.3169231 0.0614
8 0.6363636 0.02722
9 0.3818182 0.1395
10 0.04242424 0.4593
12 -0.6 0.8833
14 -0.5 0.825
16 0.3 0.3417
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Figure S5: The relationship between phylogenetic and expression pattern diversity A) across all homologous
gene groups, B) within each homologous gene group size. In A, the solid black line depicts the fit polynomial
model, the light gray area indicates the 95% confidence interval for said model. In B, each line represents
the linear model fit to each homologous group size (only group sizes will 5 or more replicates were considered
in this analysis)
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3.2.2 Expression pattern specificity

Our comparisons of stage-specificity between duplicate and singleton genes based on less stringent similarity
cutoffs for homology inference were consistent with the analysis presented in the main text. Specifically,
genes that are part of homologous groups tend to show increased stage-specificity relative to singleton genes
(D = 0.13, p < 2.2 10716). Although this pattern is statistically supported, we note that the effect size is
slightly smaller than the analysis presented in the main text analysis.
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Figure S6: The empirical cumulative density functions of expression specificity values 7 for duplicate (solid
line) and singleton (dashed line) genes. Higher expression specificity values indicate more stage-specific
expression patterns.

3.3 Broad functional overview

To gain a general sense of what high level functional differences occurred between stages, we used the
KEGG [15] to infer gene functions and examined the relative transcriptional investment in the highest level
KEGG BRITE groupings (Figure 6). Genes that were classified to multiple high-level KEGG categories were
excluded from the analysis for more conservative estimates of functional investments.
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Figure S7: A line plot showing the relative transcriptional investment (transcripts per million) in each
high level functional group across life stages. Note that these groupings reflect the overall transcriptional
investment in each broad functional group listed, not the activity of individual pathways or genes. Therefore,
each individual pathway or gene within each group is not expected to necessarily follow the exact trend
exhibited by the whole group. Error bars represent 95% confidence intervals calculated across individual
samples.
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