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Abstract—Smart cities seek to leverage data from 

advanced information, communication, and sensor 

technologies (ICSTs) for achieving their transportation-

related sustainability goals. However, the multi-source, 

multi-timescale nature of these disparate data sets 

introduces many challenges to community decision-makers, 

hindering the use of these technologies in an efficient, 

effective, and holistic manner. Here, using statistical and 

machine learning methods, we present a visualization 

platform developed for the City of Peachtree Corners, GA, 

comprising nine integrated data sets. This platform can 

capture dynamic interactions between data from different 

sources and has the potential to support decision-makers in 

developing different solution options for contemporary 

transportation-related problems in a smart city 

environment. 
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I. INTRODUCTION 

Smart cities seek to leverage the deployment of advanced 

information, communication, and sensor technologies (ICSTs) 

for improving community-level transportation-related 

decision-making, such as decisions related to attaining certain 

sustainability goals (e.g., improved mobility, enhanced transit 

accessibility, etc.). While these technologies are well-

established and organically introduced into communities, they 

are typically not utilized adequately due to the lack of 

systematic methods and frameworks to leverage them. Hence, 

smart cities are faced with various challenges in realizing the 

 

 

benefits of ICSTs, the main one being their disparate nature. 

Specifically, the large-scale, multi-source, multi-timescale 

nature of these data precludes community decision-makers 

from using them in a deliberate, holistic manner. This study 

aims to utilize data mining, data fusion, and data analysis 

methods to develop a comprehensive platform to integrate and 

dynamically visualize data from ICSTs to support decision-

makers (e.g., city planners) in attaining different transportation 

sustainability goals (in particular, mobility, safety, 

accessibility, and equity). The platform can aid decision-

makers to develop innovative solutions for various 

transportation-related unique and contemporary problems, such 

as transit deserts and enabling societal benefits to be realized at 

their highest potential for various community stakeholders 

(e.g., residents, employees, city governance, travelers, etc.). In 

this context, the City of Peachtree Corners (PTC), GA, serves 

as a living lab for this study. PTC is part of the Atlanta 

metropolitan area and is the largest city in Gwinnett County, 

with a population of around 42,000. The study uses data 

obtained through our partnerships with PTC and Gwinnett 

County Transit (GCT), along with open-source data, to 

demonstrate the development of the visualization platform.  

The remainder of this paper is organized as follows: Section II 

summarizes related work and gaps in literature. Section III 

provides methodological details. Section IV discusses potential 

applications along with a case study. Section V presents the 

conclusion.  
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II. RELATED WORK 

Existing studies related to visualization of spatiotemporal 

transportation data mostly consider single-source data. 

Visualization platforms were usually developed to explore the 

spatiotemporal relationship of single-source data and analyze 

potential impact [1,2]. 

Recently, several studies have integrated transportation-related 

data from different sources to provide more consistent and 

accurate information than that provided by a single source. A 

key challenge is that transportation data is usually owned and 

operated by different organizations that may not share it with 

others. Hence, the data integrated in these studies are either 

open-source or managed by the same organization [3,4,5]. The 

effect of route choice, day of the week, and weather conditions 

on travel time variability was studied by using publicly 

available traffic data and presented using visualization methods 

[3]. With the focus on private and public transport, multiple-

source data were integrated to create tools for mobility data 

analysis in [6]. Moreover, multiple attributes of transportation-

related data, including space, time, and modes, have been 

utilized to investigate traffic pattern [4]. However, the data 

considered in these studies did not entail multi-timescale-

related complexity. 

In the context of smart cities, several studies have explored data 

integration and visualization methods to tackle transportation-

related problems. Machine learning-based traffic visualization 

platform has given promising performance in processing and 

analyzing traffic data to solve congestion problems in smart 

cities [7]. The relationship between air quality parameters and 

traffic density was demonstrated using a GIS-based 

visualization method in [8]. 

The summary of the existing literature points to four key gaps 

in the context of smart cities. First, existing data visualization 

platforms have been developed to address specific problems, 

and hence cannot be effectively used by community decision-

makers when faced with other transportation-related problems. 

For example, a platform developed for traffic surveillance 

cannot be directly used to address transit desert-related 

problems. Second, socio-demographic characteristics (e.g., age, 

income, households, etc.) influence the various transportation-

related decisions (e.g., trip origins/destinations, mode choice, 

etc.). However, existing studies that developed data integration 

and visualization platforms did not consider socio-demographic 

data. Therefore, they cannot adequately identify disadvantaged 

population groups (e.g., people living in transit deserts, lower-

income areas, etc.) and the associated transportation equity-

related issues. Third, the few studies that consider multi-source 

data do not address multi-timescale data issues. Finally, most 

of these platforms are web-based where data from different 

sources are deposited and can be viewed on different web pages 

without the capability to visualize the data together. They 

cannot efficiently capture the interactions and relationships 

between different attributes from different data sets located on 

different web pages.  

The next section describes the proposed methodology to 

address these gaps. It also illustrates how the challenge 

associated with integrating multi-timescale data can be 

addressed. 

III. METHODOLOGY 

This section describes the methodology followed to develop the 

dynamic visualization platform using 3 steps: data collection, 

data preprocessing and analysis, and data integration and 

visualization.  

Data Collection. To address the first gap, a platform 

integrating a comprehensive list of transportation-related data 

sets is needed so that it can assist in solving virtually any 

transportation-related contemporary problems. To achieve this 

capability, we decided to collect a comprehensive list of 

transportation-related data sets associated with PTC. By 

leveraging our partnerships with PTC and GCT, we collected 

different private data sets. Open-source data portals, 

specifically the Georgia Department of Transportation 

(GDOT), OpenWeather, Foursquare, and HERE, were used to 

collect other open and paid public data sets. 

To address the second gap, we collected socio-demographic 

data sets from open portals of the Census Bureau and Statistical 

Atlas. To provide decision-makers with a holistic perspective 

of PTC’s transportation system, we collected nine city-level 

data sets. Figure 1 shows the data sets collected and used as 

input to the visualization platform, including source, key 

attributes, timescale, and spatial and temporal resolution 

characteristics. These data sets were selected based on PTC’s 

transportation sustainability goals, which include mobility, 

safety, accessibility, and equity. Traffic speed, traffic count, 

and weather data sets are used to assess mobility. Accident data 

is used to assess safety. To measure accessibility, facility, 

transit, and autonomous vehicle (AV) shuttle data sets are used. 

Socio-demographic data is used to identify transportation 

equity issues within the city. 

 

Figure 1. Input data (and sources) and key attributes in the dynamic 

visualization platform 

Data Preprocessing and Analysis. From Figure. 1, it is evident 

that different data sets have different timescales, implying they 

are not compatible with each other. To address the challenge of 

integrating these multi-timescale data sets (i.e., the third gap 

mentioned in section II) and providing high-quality inputs to 

the visualization platform, data processing, and analysis was 



done which consisted of three steps: (i) data exploration and 

characterization, (ii) data preprocessing, and (iii) data analysis.  

Data exploration and characterization: The collected data sets 

have disparate formats (which is natural since these data sets 

came from different sources), including XLS (Excel 

Spreadsheet), CSV (Comma-Separated Value), and shapefiles 

(e.g., .shp, .dbf, etc.). Hence, it is critical to exhaustively 

explore each data set using different software that can handle 

these varying data formats to examine data quality. We 

examined these data sets using Python libraries (e.g., Pandas, 

CSV) and QGIS software. Table 1 summarizes the data formats 

and the software used to examine different data sets. 

Table 1. Datasets and corresponding format 

 
We inspected the characteristics of each data set by examining 

its features such as data attributes and temporal and spatial 

resolutions in each file, identifying and summarizing key 

characteristics (Figure 1) to be integrated and visualized on the 

platform. 

Data preprocessing: Since multi-source, multi-timescale data 

sets typically have varying data units and uncertain quality 

(e.g., missing values, repeated values, etc.), data preprocessing 

was employed to ensure and enhance data quality. Data units 

across all data sets were modified as needed so that they become 

consistent with each other. Cells with repeated and missing 

values were either eliminated or imputed based on other 

available information. For example, the facility data set 

collected through Foursquare contains locations (longitude-

latitude) and types (e.g., apartment complexes, schools, grocery 

stores, etc.) of the facilities throughout the city. However, there 

were instances where locations were missing for some facilities 

and facility types were missing for some locations. To handle 

such cases, a manual effort was made to validate the types and 

locations of those specific facilities. 

Data analysis: Since different data sets have different 

timescales and temporal resolutions (e.g., daily, hourly, real-

time), they reflect conditions at mismatched timescales and 

hence do not readily sync with each other. We handled this 

issue by selecting the same timescale for socio-demographic, 

AV, and transit data sets. Moreover, real-time data and 

historical data cannot be directly synced. For example, real-

time traffic speed data and historical accident data cannot be 

synced without making some modifications. To address this 

challenge, data analytics tools such as distribution analysis and 

k-means clustering algorithm were employed to extract insights 

from historical data that are free from timescale-related 

influence. Considering the frequency and locations of traffic 

accidents can significantly vary during peak hours and off-peak 

hours, to dynamically visualize how accident occurrences may 

vary during a typical day, we decided to divide a day into peak 

and off-peak periods based on traffic speed data (higher speed 

is associated with off-peak hours and lower speed is associated 

with peak-hours). To determine the peak and off-peak periods 

for PTC, k-means clustering algorithm was applied to analyze 

the collected traffic speed data by assigning traffic conditions 

at different times to four clusters: morning peak, morning off-

peak, evening peak, and evening off-peak. Within each cluster, 

traffic conditions are similar. The k-means clustering algorithm 

is as follows: 

1: specify the number k of clusters to assign 

2: Randomly initialize k centroids 

3: repeat 

4:          expectation: Assign each point to its closest 

centroid. 

5:      maximization: Compute the new centroid 

(mean) of each cluster. 

6: until the centroid positions do not change. 

By applying spatial data mining, we analyzed the locations and 

counts of past traffic accidents to identify accident-prone zones 

along different road segments corresponding to each of the four 

clusters. Figure 2 shows the accident-prone zones using red 

color (the darker the color the higher the likelihood of 

accidents) and how these zones change during a typical day. 

Data Integration and Visualization. It is vital to integrate 

processed data in a flexible yet unified manner and to 

interactively display them to provide decision-makers (e.g., city 

planners) with efficient and effective support for addressing 

various smart city problems. Therefore, the visualization 

platform should enable decision-makers to load the necessary 

data sets based on the problem context and relevant objectives, 

produce integrated data layers, and generate interactive spatial 

and temporal visualizations for the periods of interest. These 

capabilities, however, are largely missing in the existing web-

based platforms as explained in the fourth and final gap in 

section II. To fill this gap, instead of developing a web-based 

platform, we developed a Python-based platform in which all 

the data sets are integrated at the same location thus eliminating 

the limitations associated with data sets located on different 

web pages in a web-based platform. 

 
 

 
 

Figure 2. Accident-prone zones during the four different periods on a 

typical day 

A python script was developed that can automatically reformat 

the real-time data (for example, HERE API data), and then 

(a) Morning peak (b) Morning off-peak 

(c) Evening peak (d) Evening off-peak 



analyze and visualize it on a distinct layer. When selected data 

is loaded into the platform, each data set is represented as 

distinct layers using points (transit stops, AV shuttle stops, 

traffic counts), lines (accident-prone zones, AV shuttle route, 

transit routes, and road segments), and polygons (socio-

demographic data) based on their characteristics. Python 

libraries HoloViews and Bokeh were used for data integration 

and visualization using distinct layers. Standard overlay 

operations (i.e., the placement of two or more distinct data 

layers on top of one another to create a more complex layer) 

were performed to generate cohesive data layers. While most of 

the overlay operations were straightforward (e.g., point-on-

point, line-on-line), overlay operations for generating demand 

links (defined in the next subsection) were more involved as 

discussed below. 

To visualize trips made within the city, trip origins and 

destinations as well as trip-starting links and ending links are 

needed. These links are referred to as demand links because 

these links create demands in the road network. Even though 

trip origin-destination data is available, data for demand links 

is absent in the original data source. Hence, we had to generate 

and visualize them using the available data sets. Since trips are 

associated with people moving between different facilities, we 

used the facility layer and the road network layer to generate 

the demand links. Line-on-polygon and point-on-line overlay 

operations were used in this regard. Figure 3(a) shows an 

apartment (the dot-patterned polygon) on the facility layer and 

a neighborhood road on the road network layer. The original 

road is divided into two segments by a line-on-polygon overlay 

procedure that preserves the polygon features on the 

overlapping portions of lines in the output layer. Both segments 

inherit the properties of the traffic link, while the segment 

overlaid by the apartment (shown using a dashed line in Figure 

3(b) inherits demand-related properties from the polygon in the 

facility layer. Thus, the dashed segment corresponds to a 

demand link.  

 
 

Figure 3. Generating demand links using line-on-polygon overlay 

operations 

Given the inevitability of misaligned coordinates on different 

layers, overlay operations are not as simple as combining them. 

Very often, aggregation and clustering were used to align 

adjacent lines or polygon edges within a predetermined 

tolerance. Figure 4 illustrates another instance of demand link 

generation based on aggregation, clustering, and point-on-line 

overlay operation. In this scenario, most of the facilities are 

single storefronts. Hence, they are depicted as points rather than 

polygons. Specifically, the black dots represent facilities that 

induce a high number of trips (e.g., restaurants, grocery stores, 

etc.), whereas the facilities associated with the white dots do 

not induce a significant number of trips (e.g., print services, 

storage services, etc.). Despite the proximity of these facilities 

to the road, the dots do not align with the lines in the traffic 

network layer. Consequently, we are unable to determine the 

number of demand-related facilities for each link. To address 

this issue, only higher demand-inducing facilities (i.e., the black 

dots) are selected and grouped with their nearest links. For a 

link, if the number of nearby demand-inducing facilities 

exceeds a threshold, the output layer labels the corresponding 

link as a demand link (shown by the dashed line in Figure 4(b). 

Other overlay operations, such as polygon-on-polygon overlay 

and polygon-on-point overlay, are also applied in practice 

depending on how data sets are represented in corresponding 

distinct data layers. 

 
 

Figure 4. Generating demand links using point-on-line overlay 

operation 

Additionally, a feature was added to the visualization platform 

that allows users to play animations at a chosen speed and drag 

a slider to efficiently examine the spatiotemporal interactions 

across different data layers. Figure 5 depicts how the proposed 

platform may assist in visualizing the effects of weather on 

traffic speeds and how the accident-prone zones are correlated 

with traffic speeds.  

 
Figure 5. An instance from the dynamic visualization platform, 

capturing traffic and weather states, and illustrating the accident-

prone zones at a specific time 

IV. APPLICATIONS 

A city’s transportation system consists of its transportation 

demand (which depends on the socio-demographic 

characteristics of the population) and transportation supply 

(e.g., available travel modes, transportation infrastructure, etc.). 

Therefore, to effectively address different transportation-

related contemporary problems, the decision-makers need to 

consider data associated with both demand and supply. In the 

context of smart cities, these data are generally available from 

the ICSTs. However, the multi-source, multi-timescale nature 

of these disparate data sets makes it challenging for the 

(b) (a) 

(a) (b) 



decision-makers to consider different data sets relevant to a 

specific problem together to efficiently determine the 

interactions and relationships between them. Determining these 

interactions is of crucial importance while identifying solution 

options for a specific problem. By developing the dynamic 

visualization platform, we have generated capabilities to 

support PTC in efficiently determining the aforementioned 

interactions by combining multiple layers on the visualization 

platform. This capability has the potential to aid the city in 

achieving its transportation sustainability goals. 

A Case Study. A case study on how the platform can aid in 

addressing an emerging transportation problem in PTC is 

discussed hereafter. PTC has a 3-mile AV test track (Figure 

6(a)), through which two AV shuttles (Figure 6(b)) serve the 

city residents, workers, and visitors by providing access to 

shops, office buildings, etc. This shuttle service is being used 

as a proof of concept, meaning the shuttles are serving a small 

number of people within a limited catchment area. The city 

planners want to commercialize the AV shuttle service by 

extending the current route and deploying more shuttles. One 

of the associated planning questions is: in which regions of the 

city should the AV shuttle service be extended to enhance the 

city’s transportation accessibility and equity? In the absence of 

the visualization platform, the city planners’ preliminary plan 

was to connect the existing route to the downtown of the city 

by extending the route to the north. After developing the 

platform, we decided to take a systematic approach to find the 

answer to the aforesaid question and check whether the 

preliminary plan is the most effective one. For this, we first 

need to understand the current accessibility level of different 

regions of the city and the socio-demographic characteristics of 

the residents living in those regions. The developed 

visualization platform can adequately aid in this regard. 

  
Figure 6. The current AV shuttle route and the AV shuttles 

To assess PTC’s current accessibility and equity states, we can 

combine the following layers: transit, AV shuttle, facility, and 

median income. Figure 7(a) shows the visualization platform 

with three activated layers: median income, AV shuttle, and 

transit. Figure 7(b) shows the facility sub-layers combined with 

the income layer. From these figures, we make the following 

observations:  

• High-income population groups mostly live in the north of 

the city, whereas lower-income groups live in the south. 

• Almost all the apartment complexes are situated in the 

south-east and south-west of the city. There are no 

apartment complexes in the north of the city. 

• Three major attractions can be identified: the two purple 

rectangles in Figure 7(b) (people living in the south of the 

city shop there) and the downtown (people living in the 

north of the city shop there). 

• The current AV shuttle route is well-connected to transit 

route 35. 

In Figure 7(c), we have combined all the layers shown in Figure 

7(a) and 7(b) together. We identified two regions of interest that 

are shown using a blue oval and a red oval in the figure.   

Blue oval: It covers areas in the south of the city. Around 45% 

of the total population lives there. Most of the apartment 

complexes are situated in this region. One major attraction is 

situated there and another one is nearby (in the north-west of 

this region). This region mostly contains lower-income 

population groups. A significant amount of area inside this 

region does not have a transit service indicating the presence of 

transit deserts. 

Red oval: It covers areas in the north-west and north-east parts 

of the city. Around 35% of the total population lives there. The 

residents there fall into the higher-income groups. There are no 

apartment complexes, and this region is largely disconnected 

from existing transit routes, implying that the whole region is a 

transit desert. It is logical to assume that residents in this region 

use private vehicles for daily mobility needs, implying higher 

congestion. The downtown is situated in this region. 

 
 

 
 

Figure 7. Screenshots from the visualization platform 

Based on the current AV route location and the above 

observations, we have made the following recommendations to 

PTC: 

• By extending the AV shuttle service in the region 

corresponding to the blue oval, the city can enhance access 

to the major attractions (especially to the one situated in the 

north-west of this region) as well as can enhance mobility 

and accessibility for the lower-income groups who may not 

own private vehicles, thus addressing equity issues.  

• By extending the AV shuttle service in the region 

corresponding to the blue oval, the city can aim at 

enhancing transit accessibility (note that the AV shuttle is 

a transit service) for the people living in that region. 

Moreover, the city may extend the AV shuttle route in this 

region in such a way that the route also connects the 

 

(a) (b) 

(c) 



existing transit route. By doing so, transit desert-related 

issues can be mitigated. Even though the residents in this 

region have higher income and own private vehicles, 

providing them with transit options to move within the city 

has a high potential to promote travel sustainability (e.g., 

people switching modes from private vehicles to AV 

shuttle and transit). 

Based on these recommendations, the city is currently working 

towards introducing the AV shuttle service in the 

aforementioned regions. It is important to compare these 

recommendations with the city’s preliminary AV shuttle route 

extension plan (i.e., extending the route to the north to connect 

the downtown). Clearly, by leveraging the visualization 

platform, well-informed decisions can be made, as illustrated 

above, that have a higher likelihood of meeting the city’s 

transportation sustainability goals, which may not have been 

possible in the absence of the visualization platform.  

V. CONCLUSION 

In this study, we have developed a multi-source, multi-

timescale transportation-related data integration and 

visualization platform to support city planners in achieving 

different transportation sustainability objectives. The platform 

is dynamic in the sense that it can capture and visualize the 

spatiotemporal interactions and relations between different data 

sets. Although the dynamic visualization platform has been 

developed for a small city, the methodology for the platform 

can be scaled to larger-sized cities using appropriate computing 

resources. Hence, it is customizable and can be transferred to 

other smart cities characterized by disparate data sources and 

data owners.  

The main contributions of this work are threefold. First, by 

integrating a comprehensive list of transportation data sets, we 

have made the visualization platform capable of aiding smart 

city decision-makers in addressing virtually any transportation-

related contemporary problems. This capability fills the gap in 

existing similar visualization platforms which were developed 

to address specific problems. Second, the platform is capable of 

effectively identifying transportation equity issues within the 

cities. By integrating the socio-demographic data set, a data set 

that has been largely ignored in existing visualization 

platforms, we have generated capabilities to support city 

decision-makers identify different disadvantaged population 

groups. Hence, the platform has the potential to help smart 

cities move towards their transportation equity-related goals by 

identifying different equity issues and taking necessary steps to 

benefit disadvantaged population groups. Third, as discussed in 

section II, most of the existing visualization platforms are web-

based which inhibits analyzing interactions and relations 

between different attributes from different data sets located on 

different web pages. This largely limits the capability of taking 

well-informed decisions by city decision-makers. Since the 

developed visualization platform can show any subset of data 

sets together, it does not suffer from this aforementioned 

limitation. 

In term of future work, since the platform is built using Python 

and Jupyter notebook, it can be challenging for some users who 

are not familiar with the language. To improve the platform's 

accessibility, future work will be focused on creating a more 

user-friendly interface. 
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