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Abstract—Smart cities seek to leverage data from
advanced information, communication, and sensor
technologies (ICSTs) for achieving their transportation-
related sustainability goals. However, the multi-source,
multi-timescale nature of these disparate data sets
introduces many challenges to community decision-makers,
hindering the use of these technologies in an efficient,
effective, and holistic manner. Here, using statistical and
machine learning methods, we present a visualization
platform developed for the City of Peachtree Corners, GA,
comprising nine integrated data sets. This platform can
capture dynamic interactions between data from different
sources and has the potential to support decision-makers in
developing different solution options for contemporary
transportation-related problems in a smart city
environment.
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I. INTRODUCTION

Smart cities seek to leverage the deployment of advanced
information, communication, and sensor technologies (ICSTs)
for improving community-level transportation-related
decision-making, such as decisions related to attaining certain
sustainability goals (e.g., improved mobility, enhanced transit
accessibility, etc.). While these technologies are well-
established and organically introduced into communities, they
are typically not utilized adequately due to the lack of
systematic methods and frameworks to leverage them. Hence,
smart cities are faced with various challenges in realizing the
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benefits of ICSTs, the main one being their disparate nature.
Specifically, the large-scale, multi-source, multi-timescale
nature of these data precludes community decision-makers
from using them in a deliberate, holistic manner. This study
aims to utilize data mining, data fusion, and data analysis
methods to develop a comprehensive platform to integrate and
dynamically visualize data from ICSTs to support decision-
makers (e.g., city planners) in attaining different transportation
sustainability goals (in particular, mobility, safety,
accessibility, and equity). The platform can aid decision-
makers to develop innovative solutions for various
transportation-related unique and contemporary problems, such
as transit deserts and enabling societal benefits to be realized at
their highest potential for various community stakeholders
(e.g., residents, employees, city governance, travelers, etc.). In
this context, the City of Peachtree Corners (PTC), GA, serves
as a living lab for this study. PTC is part of the Atlanta
metropolitan area and is the largest city in Gwinnett County,
with a population of around 42,000. The study uses data
obtained through our partnerships with PTC and Gwinnett
County Transit (GCT), along with open-source data, to
demonstrate the development of the visualization platform.
The remainder of this paper is organized as follows: Section II
summarizes related work and gaps in literature. Section III
provides methodological details. Section IV discusses potential
applications along with a case study. Section V presents the
conclusion.
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II. RELATED WORK

Existing studies related to visualization of spatiotemporal
transportation data mostly consider single-source data.
Visualization platforms were usually developed to explore the
spatiotemporal relationship of single-source data and analyze
potential impact [1,2].

Recently, several studies have integrated transportation-related
data from different sources to provide more consistent and
accurate information than that provided by a single source. A
key challenge is that transportation data is usually owned and
operated by different organizations that may not share it with
others. Hence, the data integrated in these studies are either
open-source or managed by the same organization [3,4,5]. The
effect of route choice, day of the week, and weather conditions
on travel time variability was studied by using publicly
available traffic data and presented using visualization methods
[3]. With the focus on private and public transport, multiple-
source data were integrated to create tools for mobility data
analysis in [6]. Moreover, multiple attributes of transportation-
related data, including space, time, and modes, have been
utilized to investigate traffic pattern [4]. However, the data
considered in these studies did not entail multi-timescale-
related complexity.

In the context of smart cities, several studies have explored data
integration and visualization methods to tackle transportation-
related problems. Machine learning-based traffic visualization
platform has given promising performance in processing and
analyzing traffic data to solve congestion problems in smart
cities [7]. The relationship between air quality parameters and
traffic density was demonstrated using a GIS-based
visualization method in [8].

The summary of the existing literature points to four key gaps
in the context of smart cities. First, existing data visualization
platforms have been developed to address specific problems,
and hence cannot be effectively used by community decision-
makers when faced with other transportation-related problems.
For example, a platform developed for traffic surveillance
cannot be directly used to address transit desert-related
problems. Second, socio-demographic characteristics (e.g., age,
income, households, etc.) influence the various transportation-
related decisions (e.g., trip origins/destinations, mode choice,
etc.). However, existing studies that developed data integration
and visualization platforms did not consider socio-demographic
data. Therefore, they cannot adequately identify disadvantaged
population groups (e.g., people living in transit deserts, lower-
income areas, etc.) and the associated transportation equity-
related issues. Third, the few studies that consider multi-source
data do not address multi-timescale data issues. Finally, most
of these platforms are web-based where data from different
sources are deposited and can be viewed on different web pages
without the capability to visualize the data together. They
cannot efficiently capture the interactions and relationships
between different attributes from different data sets located on
different web pages.

The next section describes the proposed methodology to
address these gaps. It also illustrates how the challenge

associated with integrating multi-timescale data can be
addressed.

1. METHODOLOGY

This section describes the methodology followed to develop the
dynamic visualization platform using 3 steps: data collection,
data preprocessing and analysis, and data integration and
visualization.

Data Collection. To address the first gap, a platform
integrating a comprehensive list of transportation-related data
sets is needed so that it can assist in solving virtually any
transportation-related contemporary problems. To achieve this
capability, we decided to collect a comprehensive list of
transportation-related data sets associated with PTC. By
leveraging our partnerships with PTC and GCT, we collected
different private data sets. Open-source data portals,
specifically the Georgia Department of Transportation
(GDOT), OpenWeather, Foursquare, and HERE, were used to
collect other open and paid public data sets.

To address the second gap, we collected socio-demographic
data sets from open portals of the Census Bureau and Statistical
Atlas. To provide decision-makers with a holistic perspective
of PTC’s transportation system, we collected nine city-level
data sets. Figure 1 shows the data sets collected and used as
input to the visualization platform, including source, key
attributes, timescale, and spatial and temporal resolution
characteristics. These data sets were selected based on PTC’s
transportation sustainability goals, which include mobility,
safety, accessibility, and equity. Traffic speed, traffic count,
and weather data sets are used to assess mobility. Accident data
is used to assess safety. To measure accessibility, facility,
transit, and autonomous vehicle (AV) shuttle data sets are used.
Socio-demographic data is used to identify transportation
equity issues within the city.
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Figure 1. Input data (and sources) and key attributes in the dynamic
visualization platform

Data Preprocessing and Analysis. From Figure. 1, it is evident
that different data sets have different timescales, implying they
are not compatible with each other. To address the challenge of
integrating these multi-timescale data sets (i.e., the third gap
mentioned in section II) and providing high-quality inputs to
the visualization platform, data processing, and analysis was



done which consisted of three steps: (i) data exploration and
characterization, (ii) data preprocessing, and (iii) data analysis.
Data exploration and characterization: The collected data sets
have disparate formats (which is natural since these data sets
came from different sources), including XLS (Excel
Spreadsheet), CSV (Comma-Separated Value), and shapefiles
(e.g., .shp, .dbf, etc.). Hence, it is critical to exhaustively
explore each data set using different software that can handle
these varying data formats to examine data quality. We
examined these data sets using Python libraries (e.g., Pandas,
CSV) and QGIS software. Table 1 summarizes the data formats
and the software used to examine different data sets.

Table 1. Datasets and corresponding format

Data set Format | Software | Data set Format | Software
Socio-demographic | Shapefile | QGIS Traffic count | CSV Python
Accident CSv Python Transit XLS Python
Facility CSV Python Weather Text Python
AV XLS Python Speed Ccsv Python

We inspected the characteristics of each data set by examining
its features such as data attributes and temporal and spatial
resolutions in each file, identifying and summarizing key
characteristics (Figure 1) to be integrated and visualized on the
platform.

Data preprocessing: Since multi-source, multi-timescale data
sets typically have varying data units and uncertain quality
(e.g., missing values, repeated values, etc.), data preprocessing
was employed to ensure and enhance data quality. Data units
across all data sets were modified as needed so that they become
consistent with each other. Cells with repeated and missing
values were either eliminated or imputed based on other
available information. For example, the facility data set
collected through Foursquare contains locations (longitude-
latitude) and types (e.g., apartment complexes, schools, grocery
stores, etc.) of the facilities throughout the city. However, there
were instances where locations were missing for some facilities
and facility types were missing for some locations. To handle
such cases, a manual effort was made to validate the types and
locations of those specific facilities.

Data analysis: Since different data sets have different
timescales and temporal resolutions (e.g., daily, hourly, real-
time), they reflect conditions at mismatched timescales and
hence do not readily sync with each other. We handled this
issue by selecting the same timescale for socio-demographic,
AV, and transit data sets. Moreover, real-time data and
historical data cannot be directly synced. For example, real-
time traffic speed data and historical accident data cannot be
synced without making some modifications. To address this
challenge, data analytics tools such as distribution analysis and
k-means clustering algorithm were employed to extract insights
from historical data that are free from timescale-related
influence. Considering the frequency and locations of traffic
accidents can significantly vary during peak hours and off-peak
hours, to dynamically visualize how accident occurrences may
vary during a typical day, we decided to divide a day into peak
and off-peak periods based on traffic speed data (higher speed
is associated with off-peak hours and lower speed is associated

with peak-hours). To determine the peak and off-peak periods
for PTC, k-means clustering algorithm was applied to analyze
the collected traffic speed data by assigning traffic conditions
at different times to four clusters: morning peak, morning off-
peak, evening peak, and evening off-peak. Within each cluster,
traffic conditions are similar. The k-means clustering algorithm
is as follows:

1: specify the number % of clusters to assign

2: Randomly initialize £ centroids

3: repeat

4: expectation: Assign each point to its closest
centroid.

5: maximization: Compute the new centroid

(mean) of each cluster.
6: until the centroid positions do not change.

By applying spatial data mining, we analyzed the locations and
counts of past traffic accidents to identify accident-prone zones
along different road segments corresponding to each of the four
clusters. Figure 2 shows the accident-prone zones using red
color (the darker the color the higher the likelihood of
accidents) and how these zones change during a typical day.

Data Integration and Visualization. It is vital to integrate
processed data in a flexible yet unified manner and to
interactively display them to provide decision-makers (e.g., city
planners) with efficient and effective support for addressing
various smart city problems. Therefore, the visualization
platform should enable decision-makers to load the necessary
data sets based on the problem context and relevant objectives,
produce integrated data layers, and generate interactive spatial
and temporal visualizations for the periods of interest. These
capabilities, however, are largely missing in the existing web-
based platforms as explained in the fourth and final gap in
section II. To fill this gap, instead of developing a web-based
platform, we developed a Python-based platform in which all
the data sets are integrated at the same location thus eliminating
the limitations associated with data sets located on different
web pages in a web-based platform.
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Figure 2. Accident-prone zones during the four different periods on a
typical day

A python script was developed that can automatically reformat

the real-time data (for example, HERE API data), and then



analyze and visualize it on a distinct layer. When selected data
is loaded into the platform, each data set is represented as
distinct layers using points (transit stops, AV shuttle stops,
traffic counts), lines (accident-prone zones, AV shuttle route,
transit routes, and road segments), and polygons (socio-
demographic data) based on their characteristics. Python
libraries HoloViews and Bokeh were used for data integration
and visualization using distinct layers. Standard overlay
operations (i.e., the placement of two or more distinct data
layers on top of one another to create a more complex layer)
were performed to generate cohesive data layers. While most of
the overlay operations were straightforward (e.g., point-on-
point, line-on-line), overlay operations for generating demand
links (defined in the next subsection) were more involved as
discussed below.

To visualize trips made within the city, trip origins and
destinations as well as trip-starting links and ending links are
needed. These links are referred to as demand links because
these links create demands in the road network. Even though
trip origin-destination data is available, data for demand links
is absent in the original data source. Hence, we had to generate
and visualize them using the available data sets. Since trips are
associated with people moving between different facilities, we
used the facility layer and the road network layer to generate
the demand links. Line-on-polygon and point-on-line overlay
operations were used in this regard. Figure 3(a) shows an
apartment (the dot-patterned polygon) on the facility layer and
a neighborhood road on the road network layer. The original
road is divided into two segments by a line-on-polygon overlay
procedure that preserves the polygon features on the
overlapping portions of lines in the output layer. Both segments
inherit the properties of the traffic link, while the segment
overlaid by the apartment (shown using a dashed line in Figure
3(b) inherits demand-related properties from the polygon in the
facility layer. Thus, the dashed segment corresponds to a
demand link.

(b)
Figure 3. Generating demand links using line-on-polygon overlay
operations

Given the inevitability of misaligned coordinates on different
layers, overlay operations are not as simple as combining them.
Very often, aggregation and clustering were used to align
adjacent lines or polygon edges within a predetermined
tolerance. Figure 4 illustrates another instance of demand link
generation based on aggregation, clustering, and point-on-line
overlay operation. In this scenario, most of the facilities are
single storefronts. Hence, they are depicted as points rather than
polygons. Specifically, the black dots represent facilities that
induce a high number of trips (e.g., restaurants, grocery stores,
etc.), whereas the facilities associated with the white dots do
not induce a significant number of trips (e.g., print services,

storage services, etc.). Despite the proximity of these facilities
to the road, the dots do not align with the lines in the traffic
network layer. Consequently, we are unable to determine the
number of demand-related facilities for each link. To address
this issue, only higher demand-inducing facilities (i.e., the black
dots) are selected and grouped with their nearest links. For a
link, if the number of nearby demand-inducing facilities
exceeds a threshold, the output layer labels the corresponding
link as a demand link (shown by the dashed line in Figure 4(b).
Other overlay operations, such as polygon-on-polygon overlay
and polygon-on-point overlay, are also applied in practice
depending on how data sets are represented in corresponding
distinct data layers.

Figure 4. Generating demand links using poing)gn—line overlay
operation

Additionally, a feature was added to the visualization platform
that allows users to play animations at a chosen speed and drag
a slider to efficiently examine the spatiotemporal interactions
across different data layers. Figure 5 depicts how the proposed
platform may assist in visualizing the effects of weather on
traffic speeds and how the accident-prone zones are correlated
with traffic speeds.
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Figure 5. An instance from the dynamic visualization platform,
capturing traffic and weather states, and illustrating the accident-
prone zones at a specific time

IV. APPLICATIONS

A city’s transportation system consists of its transportation
demand (which depends on the socio-demographic
characteristics of the population) and transportation supply
(e.g., available travel modes, transportation infrastructure, etc.).
Therefore, to effectively address different transportation-
related contemporary problems, the decision-makers need to
consider data associated with both demand and supply. In the
context of smart cities, these data are generally available from
the ICSTs. However, the multi-source, multi-timescale nature
of these disparate data sets makes it challenging for the



decision-makers to consider different data sets relevant to a
specific problem together to efficiently determine the
interactions and relationships between them. Determining these
interactions is of crucial importance while identifying solution
options for a specific problem. By developing the dynamic
visualization platform, we have generated capabilities to
support PTC in efficiently determining the aforementioned
interactions by combining multiple layers on the visualization
platform. This capability has the potential to aid the city in
achieving its transportation sustainability goals.

A Case Study. A case study on how the platform can aid in
addressing an emerging transportation problem in PTC is
discussed hereafter. PTC has a 3-mile AV test track (Figure
6(a)), through which two AV shuttles (Figure 6(b)) serve the
city residents, workers, and visitors by providing access to
shops, office buildings, etc. This shuttle service is being used
as a proof of concept, meaning the shuttles are serving a small
number of people within a limited catchment area. The city
planners want to commercialize the AV shuttle service by
extending the current route and deploying more shuttles. One
of the associated planning questions is: in which regions of the
city should the AV shuttle service be extended to enhance the
city’s transportation accessibility and equity? In the absence of
the visualization platform, the city planners’ preliminary plan
was to connect the existing route to the downtown of the city
by extending the route to the north. After developing the
platform, we decided to take a systematic approach to find the
answer to the aforesaid question and check whether the
preliminary plan is the most effective one. For this, we first
need to understand the current accessibility level of different
regions of the city and the socio-demographic characteristics of
the residents living in those regions. The developed
visualization platform can adequately aid in this regard.
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Figure 6. The current AV shuttle route and the AV shuttles

To assess PTC’s current accessibility and equity states, we can
combine the following layers: transit, AV shuttle, facility, and
median income. Figure 7(a) shows the visualization platform
with three activated layers: median income, AV shuttle, and
transit. Figure 7(b) shows the facility sub-layers combined with
the income layer. From these figures, we make the following
observations:

e High-income population groups mostly live in the north of
the city, whereas lower-income groups live in the south.

e Almost all the apartment complexes are situated in the
south-east and south-west of the city. There are no
apartment complexes in the north of the city.

e Three major attractions can be identified: the two purple
rectangles in Figure 7(b) (people living in the south of the
city shop there) and the downtown (people living in the
north of the city shop there).

e The current AV shuttle route is well-connected to transit
route 35.

In Figure 7(c), we have combined all the layers shown in Figure
7(a) and 7(b) together. We identified two regions of interest that
are shown using a blue oval and a red oval in the figure.

Blue oval: It covers areas in the south of the city. Around 45%
of the total population lives there. Most of the apartment
complexes are situated in this region. One major attraction is
situated there and another one is nearby (in the north-west of
this region). This region mostly contains lower-income
population groups. A significant amount of area inside this
region does not have a transit service indicating the presence of
transit deserts.

Red oval: It covers areas in the north-west and north-east parts
of the city. Around 35% of the total population lives there. The
residents there fall into the higher-income groups. There are no
apartment complexes, and this region is largely disconnected
from existing transit routes, implying that the whole region is a
transit desert. It is logical to assume that residents in this region
use private vehicles for daily mobility needs, implying higher
congestion. The downtown is situated in this region.
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Figure 7. Screenshots from the visualization platform

Based on the current AV route location and the above
observations, we have made the following recommendations to
PTC:

e By extending the AV shuttle service in the region
corresponding to the blue oval, the city can enhance access
to the major attractions (especially to the one situated in the
north-west of this region) as well as can enhance mobility
and accessibility for the lower-income groups who may not
own private vehicles, thus addressing equity issues.

e By extending the AV shuttle service in the region
corresponding to the blue oval, the city can aim at
enhancing transit accessibility (note that the AV shuttle is
a transit service) for the people living in that region.
Moreover, the city may extend the AV shuttle route in this
region in such a way that the route also connects the



existing transit route. By doing so, transit desert-related
issues can be mitigated. Even though the residents in this
region have higher income and own private vehicles,
providing them with transit options to move within the city
has a high potential to promote travel sustainability (e.g.,
people switching modes from private vehicles to AV
shuttle and transit).

Based on these recommendations, the city is currently working
towards introducing the AV shuttle service in the
aforementioned regions. It is important to compare these
recommendations with the city’s preliminary AV shuttle route
extension plan (i.e., extending the route to the north to connect
the downtown). Clearly, by leveraging the visualization
platform, well-informed decisions can be made, as illustrated
above, that have a higher likelihood of meeting the city’s
transportation sustainability goals, which may not have been
possible in the absence of the visualization platform.

V. CONCLUSION

In this study, we have developed a multi-source, multi-
timescale transportation-related data integration and
visualization platform to support city planners in achieving
different transportation sustainability objectives. The platform
is dynamic in the sense that it can capture and visualize the
spatiotemporal interactions and relations between different data
sets. Although the dynamic visualization platform has been
developed for a small city, the methodology for the platform
can be scaled to larger-sized cities using appropriate computing
resources. Hence, it is customizable and can be transferred to
other smart cities characterized by disparate data sources and
data owners.

The main contributions of this work are threefold. First, by
integrating a comprehensive list of transportation data sets, we
have made the visualization platform capable of aiding smart
city decision-makers in addressing virtually any transportation-
related contemporary problems. This capability fills the gap in
existing similar visualization platforms which were developed
to address specific problems. Second, the platform is capable of
effectively identifying transportation equity issues within the
cities. By integrating the socio-demographic data set, a data set
that has been largely ignored in existing visualization
platforms, we have generated capabilities to support city
decision-makers identify different disadvantaged population
groups. Hence, the platform has the potential to help smart
cities move towards their transportation equity-related goals by
identifying different equity issues and taking necessary steps to
benefit disadvantaged population groups. Third, as discussed in
section II, most of the existing visualization platforms are web-
based which inhibits analyzing interactions and relations
between different attributes from different data sets located on
different web pages. This largely limits the capability of taking
well-informed decisions by city decision-makers. Since the
developed visualization platform can show any subset of data
sets together, it does not suffer from this aforementioned
limitation.

In term of future work, since the platform is built using Python
and Jupyter notebook, it can be challenging for some users who
are not familiar with the language. To improve the platform's
accessibility, future work will be focused on creating a more
user-friendly interface.
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