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ABSTRACT. Let F' be a totally real field of degree n and p an odd
prime. We prove the p-part of the integral Gross—Stark conjecture for the
Brumer—Stark p-units living in CM abelian extensions of F'. In previous
work, the first author showed that such a result implies an exact p-adic
analytic formula for these Brumer—Stark units up to a bounded root of
unity error, including a “real multiplication” analogue of Shimura’s cel-
ebrated reciprocity law from the theory of Complex Multiplication. In
this paper we show that the Brumer—Stark units, along with n — 1 other
easily described elements (these are simply square roots of certain ele-
ments of F) generate the maximal abelian extension of F. We therefore
obtain an unconditional construction of the maximal abelian extension
of any totally real field, albeit one that involves p-adic integration for
infinitely many primes p.

Our method of proof of the integral Gross—Stark conjecture is a gen-
eralization of our previous work on the Brumer—Stark conjecture. We
apply Ribet’s method in the context of group ring valued Hilbert modu-
lar forms. A key new construction here is the definition of a Galois mod-
ule V¢ that incorporates an integral version of the Greenberg—Stevens
Z-invariant into the theory of Ritter—Weiss modules. This allows for
the reinterpretation of Gross’s conjecture as the vanishing of the Fitting
ideal of V¢. This vanishing is obtained by constructing a quotient of
V¢ whose Fitting ideal vanishes using the Galois representations asso-
ciated to cuspidal Hilbert modular forms.
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1. INTRODUCTION

Our motivation in this paper is explicit class field theory, i.e. the explicit
analytic construction of the maximal abelian extension of a number field F'.
Let F be a totally real number field. Up to a bounded root of unity, we
prove an explicit p-adic analytic formula for certain elements (Brumer—Stark
p-units) that we show generate, along with other easily described elements,
the maximal abelian extension of F' as we range over all primes p and all
conductors n C Op. To demonstrate the simplest possible novel case of these
formulas, in §2.3| we present example computations of narrow Hilbert class
fields of real quadratic fields generated by our elements; complete tables of
hundreds of such calculations are given in [26].

The p-adic formula for Brumer—Stark units that we prove was conjec-
tured by the first author, collaborators, and others over a series of previous

papers (, , @, , , ) It was proven in that under a

mild assumption denoted () below, our formula for Brumer—Stark p-units
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is implied by the p-part of a conjecture of Gross on the relationship be-
tween Brumer—Stark p-units and the special values of L-functions in towers
of number fields |31, Conjecture 7.6]. Note that the assumption (x) excludes
only finitely many primes p for a given totally real field F' (a subset of those
dividing the discriminant of F'). The conjecture of Gross is often referred
“integral Gross—Stark conjecture” or “Gross’s tower of fields con-
jecture,” and the proof of the p-part of this conjecture takes up the bulk of

to as the

the paper.

We prove the p-part of the integral Gross—Stark conjecture by applying
Ribet’s method, which was first established in his groundbreaking paper
[37]. We apply Ribet’s method in the context of group ring valued families
of Hilbert modular forms as employed in [52] and developed in our previous
work [20].

The main new feature in the present paper that goes beyond our work in
[20] is to incorporate an integral group-ring version of the Greenberg-Stevens
ZL-invariant. In this way, we generalize from considering just the “value”
of the L-function to the “derivative” of the L-function (in Gross’s integral
group ring sense). After defining an appropriate generalized group ring R
in which this integral Greenberg—Stevens .#Z-invariant lives, we construct a
Ritter—Weiss module V ¢ associated to the .Z-invariant. We calculate the
Fitting ideal of V ¢ using the Galois representations associated to group
ring valued modular forms. The connection between .Z-invariants, families
of modular forms, and Galois representations was pioneered by the work
of Greenberg and Stevens on the Mazur—Tate-Teitelbaum conjecture [2§].
The application of these ideas toward the rational Gross—Stark conjecture
([30, Conjecture 2.12]) was introduced in [18] and developed in [22]. The
current construction is a strong integral refinement of those prior works. The
methods of this paper are similar to those used by Atsuta and Kataoka to
give a near complete proof of the Equivariant Tamagawa Number Conjecture
for the minus part of the Tate motive associated to CM abelian extensions
of totally real fields [1].

We now describe our results in greater detail.

1.1. The Brumer—Stark conjecture. Let F' be a totally real field of de-
gree n over Q. Let H be a finite abelian extension of F' that is a CM field.
Write G = Gal(H/F). Let S and T denote finite nonempty disjoint sets of
places of F' such that S contains the set S, of real places and the set Siam
of finite primes ramifying in H. Associated to any character y: G — C*
one has the Artin L-function

1) Lstv.s) =[]

pEs

1

. Re(s)>1,
T x(P)Np— (5)
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and its “T'-smoothed” version

(2) Lsr(x,s) = Ls(x,s) [ [ (1 = x(»)Np'~*).

peT
The function Lg (X, s) can be analytically continued to a holomorphic func-
tion on the complex plane. These L-functions can be packaged together into
Stickelberger elements

H/F H/F
01/ (s), o) (s) € C[q]
defined by (we drop the superscript H / F when unambiguous)
X(©s(s)) =Ls(x'.s),  x(Osr)=Lsr(x'.s)  forall xeG.

A classical theorem of Siegel [42], Klingen [33] and Shintani [41] states
that ©g := Og(0) lies in Q[G]. This was refined by Deligne-Ribet [25] and
Cassou-Nogues [5], who proved that under a certain mild technical condition
on T (which is discussed in below and which we assume holds for the
remainder of the paper), we have Og7 := ©g7(0) € Z[G].

The following conjecture stated by Tate is known as the Brumer—Stark
conjecture. Let p € SUT be a prime of F' that splits completely in H. Let
U, C H* denote the group of elements u satisfying |u|, = 1 for all places v
of H not lying above p, including the complex places. Let U r C U, denote
the subgroup of elements such that w =1 (mod qOp) for all qe T

Conjecture 1.1 (Tate-Brumer—Stark, [47]). Fiz a prime B of H above p.
There exists an element uy, € U T such that

(3) ordg(up) : Z ordy(o =Ogr
ceG

in Z|G].

In previous work [20], we proved this conjecture away from 2, i.e. over
Z[1/2]. In forthcoming work [21], we will prove the conjecture at 2 and
thereby complete the proof. (Even without the result at p = 2, one could
carry around an unspecified power of 2 in various results in this paper, and
our applications to explicit class field theory would not change.)

Theorem 1.2. The Brumer—Stark Conjecture holds.

1.2. The Integral Gross—Stark conjecture. Let p be as above and write
Sp = SU{p}. Let L denote a finite abelian CM extension of F' containing
H that is ramified over F' only at the places in S,. Write g = Gal(L/F') and
I'=Gal(L/H), so g/T' =2 G. Let I denote the relative augmentation ideal
associated to g and G, i.e. the kernel of the canonical projection

Augt,: Zlg] — Z[G].
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L/F . . o 9
Then © Sp.T lies in I, since its image under Aug, is
H/F _ ~H/F .
(4) Og. 17 =Og7 (1 —Frob(H/F,p)) =0,

as p splits completely in H. Intuitively, if we view @gp/ 1; as a function on
the ideals of Z[g], equation states that this function “has a zero” at the
ideal I; the value of the “derivative” of this function at I is simply the image
of @gp/ }; in I/I%. Gross provided a conjectural algebraic interpretation of
this derivative as follows. Denote by

(5) recy: Hy — T
the composition of the inclusion H;i} —— AJ}; with the global Artin reci-
procity map
Ay — T
Throughout this article we adopt Serre’s convention [40] for the reciprocity

map. Therefore rec(w™!) is a lifting to G&" of the Frobenius element on the
maximal unramified extension of F} if w € Fp* is a uniformizer.

Conjecture 1.3 (Gross, [31, Conjecture 7.6]). Define

(6) recg(up) = Z(recm o(up) — )57t € I/17,
oeG
where 6 € g is any lift of 0 € G. Then
recg(up) = @gp/l;
in I/12.

Let p denote the rational prime below p, and assume that p # 2. Our
first main result is the p-part of Gross’s conjecture.

Theorem 1.4. Let p be an odd prime and suppose that p lies above p.
Gross’s Congecture holds in (I/1?) @ Zy.

1.3. An Exact Formula for Brumer—Stark units. Building off the p-
adic Gross—Stark conjecture and applying the methods introduced by Dar-
mon in [12], the first author proposed an exact formula for Brumer—Stark
units in his Ph.D. thesis [15], published jointly with Darmon in [13]. The
setting for this conjecture was that of a real quadratic ground field F, a
prime p of the form p = pOp for a rational prime p, and a ring class field
extension H/F. Afterward, a sequence of works generalized and refined this
conjecture to the case of arbitrary totally real fields F' and finite primes p
that split completely in a CM abelian extension H ([6], [7], [16], [24]). Fur-
ther details on this history are given in See also the analogous works
[36], [9] in the archimedean context.
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For expositional purposes in this introduction, let us describe the shape
of these conjectures in a special case mentioned above: we assume that the
rational prime p is inert in F and that p = pOp. Then for each integral ideal
a of F' relatively prime to the primes in S and 7', one may define a Z-valued
measure Vg g7 Ol O; in terms of special values of Shintani zeta-functions
(or, alternatively, in terms of periods of Eisenstein series). The following is
a special case of [16, Conjecture 3.21] or [24, Conjecture 6.1].

Conjecture 1.5. Let 0 = Frob(H/F,a). We have the following exact ana-
lytic formula for the associated conjugate of the Brumer—Stark unit uy:

(7) o(up) :pCSvT("’O)][ v dvgsr(r) in  Fy.
Op

Here we view o (uy) as an element of Fy via H C Hyp = Fy,, where B is the
prime above p appearing in Conjecture Conjecture [1.5[implies not only
the algebraicity of the p-adic integrals in , but a “Shimura reciprocity law”
in which the geometric action of a generalized class group on equivalence
classes of ideals a is identified with the Galois action of Gal(H/F') on the
units u, (see [16, Conjecture 3.21]). In this way, Conjecture can be
viewed as a part of a theory of “real multiplication” in parallel with the
classical theory of complex multiplication that is governed by Shimura’s
celebrated reciprocity law.

Our second main result, which applies in the general case (i.e. without
assuming p is inert over Q), is the following.

Theorem 1.6. Let p denote the rational prime below p. Suppose that

(x)  pisodd and HN F(uye) C H', the mazimal totally
real subfield of H.

Then equation (@, or more precisely its generalization (114) to the general
setting, holds up to multiplication by a root of unity in Fy.

Since p splits completely in H while p is totally ramified in Q(gu,n) for
all n, condition (*) can fail for an odd prime p only if p is ramified in F.
The condition therefore eliminates only finitely many p, a subset of those
dividing the discriminant of F'.

An analogue of Conjecture[l.5|where F' is replaced by the function field of
a smooth projective algebraic curve over F,—a far simpler setting because
of the explicit class field theory afforded by the theory of Drinfeld modules—
was proven by the first author and Miller in [23].

We conclude this discussion by bringing attention to the beautiful concur-
rent work of Darmon, Pozzi, and Vonk, who prove a version of Conjecture[l.5
in the setting that F'is a real quadratic field and the rational prime p is in-
ert in F' [14]. While their work also employs the deformations of p-adic
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modular forms and their associated Galois representations, they work with
deformations in “vertical” p-adic towers as opposed to the “horizontal” tame
deformations applied in this paper.

1.4. Explicit Class Field Theory. A celebrated theorem of Kronecker
and Weber states that the maximal abelian extension of the field Q of ra-
tional numbers is obtained by adjoining all roots of unity.

Theorem 1.7 (Kronecker-Weber). We have Q® = Up>1 Q(e2™i/m).

The roots of unity can be viewed analytically as the special values of the

2miz at rational arguments, or algebraically as the set of

analytic function e
torsion points of the group scheme G,,. The theory of complex multiplica-
tion provides a similar description of F*P when F' is a quadratic imaginary

field.

Theorem 1.8. Let F' be a quadratic imaginary field. Let E denote an
elliptic curve with complex multiplication by the ring of integers O and let
w denote the Weber function. We have

F = F((E),w(E[n)).

n>1

See the elegant exposition [27] for the definition of the Weber function w
and a proof of Theorem From the analytic perspective, the modular
functions j and w take on the role of the exponential function €*™® in the
case ' = Q; from the algebraic perspective, the abelian variety E takes on
the role of the group scheme G,,.

As we now describe, Theorem can be viewed as an explicit class field
theory for totally real fields F' in the spirit of of Theorems and [L.8]
Our approach here is inspired by Stark’s discussion of the application of his
conjectures to Hilbert’s 12th problem [46|. For each nonzero ideal n C Op,
pick a prime ideal p(n) C O whose image in the narrow ray class group
of F of conductor n is trivial. Choose p(n) such that the rational prime p
below it satisfies (*). Let uy(y) denote the Brumer—Stark unit for the narrow
ray class field F'(n) of conductor n. Let

Sn = {o(upw)): 0 € Gal(F(n)/F)}.
Finally, let {ag, ..., an—1} denote any elements of F™* whose signs in
{£1}"/(-1,...,-1)

under the real embeddings of F' form a basis for this Z/2Z-vector space. In
we prove the following.
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Theorem 1.9. The mazximal abelian extension of F' is generated by

VO 54/On—1

together with the elements of Sy as n ranges over all nonzero ideals n C Op:

Fob = Un F(Sy) U F(\/aq,...,/an 1),
where U denotes compositum of fields.

Since Theorem [1.6|gives an exact formula for the elements in S, we obtain
via Theorem an effective method of generating the maximal abelian
extension of any totally real field. See Remark for a discussion regarding
the root of unity ambiguity in Theorem

The integrals in are explicitly computable and yield a practical method
of generating class fields. In Section we provide examples of narrow
Hilbert class fields of real quadratic fields generated by this analytic formula.

Any discussion of explicit class field theory would be incomplete without
mentioning Hilbert’s 12th problem. In his famed address at the ICM in
Paris in 1900, Hilbert wrote |32]:

“The theorem that every abelian number field arises from
the realm of rational numbers by the composition of fields of
roots of unity is due to Kronecker...”

“Since the realm of the imaginary quadratic number fields
is the simplest after the realm of rational numbers, the prob-
lem arises, to extend Kronecker’s theorem to this case...”

“Finally, the extension of Kronecker’s theorem to the case
that, in the place of the realm of rational numbers or of
the imaginary quadratic field, any algebraic field whatever
is laid down as the realm of rationality, seems to me of the
greatest importance. I regard this problem as one of the most
profound and far-reaching in the theory of numbers and of
functions.”

At the time of Hilbert’s lecture, Theorem was not fully proved. Over
the previous decades, the explicit construction of class fields of imaginary
quadratic fields using special values of modular functions was the topic of
great study, particularly by Kronecker (1823-1891), who called this program
his Jugendtraum (“dream of youth”). Nevertheless, it was already clear by
1900 that analytically constructing class fields of ground fields other than
Q or quadratic imaginary fields represented a substantially more difficult
problem. Hilbert was somewhat specific in the type of explicit class field
theory he envisioned: he asked for the definition of certain complex analytic



BRUMER-STARK UNITS AND EXPLICIT CLASS FIELD THEORY 9

functions whose special values or transformation properties yield the maxi-
mal abelian extension of F'. Certainly, as p-adic numbers had only recently
been invented at the time of Hilbert’s lecture, the constructions of this paper
do not fit neatly into his framework. We refer the reader to Schappacher’s
delightful exposition on Hilbert’s 12th problem for further background and
historical details [39].

As a final note on explicit class field theory in the introduction, we recall
that if F/F is a quadratic CM extension, then “most” of the field E2P
is obtained by taking the compositum of fields of moduli of appropriate
CM-motives with F2P. More precisely, the following result, which combines
Corollary 1.5.2, Theorem 2.1, and Corollary 2.3 of [51], is known.

Theorem 1.10. Let E be a CM field with mazimal totally real subfield F'.
Let Mg be the field generated over E by the fields of moduli of all CM-
motives with Hodge cycle structure whose reflex fields are contained in E.
Equivalently, Mg is the field obtained by adjoining to E the fields of moduli
of all polarised abelian varieties of CM-type, whose reflex fields are contained
in E, and their torsion points. Then the compositum MpF® is a subfield
of E% such that Gal(E®/MgF®) has exponent dividing 2 (it is an infinite
product of Z/2Z’s unless F' = Q, in which case it is trivial).

As a result, we find that the construction of F2P given in Theorem
together with the field Mg yields a description of most of the maximal
abelian extension of F.

1.5. Summary of Proof. We conclude the introduction by describing the
proof of Theorem the p-part of the integral Gross—Stark conjecture
where p is the prime below p. We always assume that p is odd. Recall that we
are given a tower of fields L/H/F with g = Gal(L/F) and G = Gal(H/F).
Let

R=1Zylg]" = Zp[g]/(c +1), R =17,[G]",
where o is the complex conjugation of g. Let I = ker(R —» R).

As a first step, we alter the smoothing set S and depletion set 1" as follows.
Define

Y={veS:v|po},
EP =XU {p}7
YW={veS:vfpoo}tUT.
There exists an associated modified Stickelberger element @g s € Zp[G] and

modified Brumer—Stark unit upE e U, 7 such that ordg(upz’z/) = @g -
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We show in Lemma that the modified Gross—Stark congruence
R A
(8) recg(uy,”” ) = @ép’zl (mod I?)

implies the original one.

In order to prove @) we recall the Ritter—Weiss modules V%l(H ) and
V%; (L) and the relationship between these modules. Versions of these mod-
ules were originally defined by Ritter and Weiss in the foundational work
[38]. An alternate approach was studied in [4] and [3]. Here we apply our
previous work [20], which builds upon the original definition of Ritter—Weiss.

In order to make a connection with the Greenberg—Stevens theory, we
introduce an R-algebra Ry that is generated over R by an element .# that
plays the role of the analytic .Z-invariant, i.e. the “ratio” between O =
@épﬂ and O = @g sy In some sense, R¢ is the canonical R-algebra in
which such a ratio can be considered:

Ry = R[Z)/(©Oy% — O, L1, 2% I?).

See §3.3|for an expanded discussion motivating this definition. An important
feature of the ring R¢ that we prove in is that the canonical R-algebra
map R/I?> — R is injective.

We next define a generalized Ritter—Weiss module V¢ over the ring R¢.
This module can be viewed as a gluing of the modules V3 (H) and Vg; (L)
over R¢. By its defining properties, the module V%l (H) “sees” the modified
Brumer-Stark unit upZ ’E/, while the module V%;(L) sees the image of upE’E,
under recg. By fiat, the ring R sees the Stickelberger elements ©f and
Oy, (or more precisely, a stand-in . for their “ratio”). The upshot is that
Vg will be large if holds, and will be small if fails. This notion of
size is made precise via the theory of Fitting ideals.

We will show in that the Fitting ideal Fittr, (V) is generated by
the element

recG(upE’E/) — @épﬂ cI/I%
In view of the injectivity of R/I?> — R, in order to prove that holds
it suffices to prove that

(9) Fittgr,, (Vg)=0.

We prove @ and thereby conclude the proof of Theorem as follows.
We first give a characterization of Vg via Galois cohomology as in |20,
Lemma A.8]. Using this characterization, we show that for an R g-module
M, an R ¢-module surjection

(10) Vg —» M
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is equivalent to a Galois cohomology class k € H'(Gp, M) satisfying certain
local conditions. For each positive integer m, we construct such a Galois
cohomology class in an R g-module M satisfying Fittr,, (M) C (p™). The
surjection then implies

FittRz (Vg) C FittRz (M) C (pm)

Since this is true for all m, we obtain @ as desired.

The R e-module M and cohomology class k are constructed using group
ring valued families of Hilbert modular forms. Write n for the conductor
of L/F. For simplicity in this introduction we assume that all primes of F
above p divide n and that there is more than one such prime. Let A be a finite
free Z,-module. For a positive integer k, let My (n, A) (respectively Sk(n, A))
denote the space of Hilbert modular forms (respectively, cusp forms) over
F of level T';(n) over A. The group Sk(n, A) is endowed with the action of
a Hecke algebra T that is generated over Z, by the Hecke operators Ty for
q1{n, U for q | p, and the diamond operators S(m) for each integral ideal m
relatively prime to n.

The main result of §5|is the definition of an R-module A, a submodule
J C A, and the construction of a cusp form f € Si(n,A) satisfying the
following properties.

e The weight k is congruent to 1 modulo (p — 1)p™.
e The quotient A/J has the structure of a faithful R/(I?, p™)-module.
e Let G} denote the narrow ray class group of conductor n, and let

P: G — gC R

denote the canonical character. The form f has nebentypus 1, i.e.
S(m)f =(m)f for (m,n) =1.
e The form f is Eisenstein modulo J in the sense that T,(f) = (1 +

$(@))f (mod J) for q {n, and Ug(f) = f (mod J) for all q | p.q # p.
e Modulo J, the operator (1 — Uy,) acting on the Hecke span of the

form f satisfies the relations governing the element .Z € Ry, e.g.
(1 - Up)@Hf = @Lf (mod J)

The form f allows for the definition of an R /p™-algebra W and an
R-algebra homorphism
o: T — W
such that
* o(Ty) =1+9(q) for qfn
e o(Ug) =1 forall q | p,q # p, and
e p(1-Up) = 2.
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Furthermore the algebra W is large enough that the structure map
(11) Ry /p™m — W

is an injection.

There is a Galois representation p: Gp — GLy(Frac(T)) that satisfies
the usual conditions; in particular p is unramified outside n and tr(p(oq)) =
Ty for q { n, where o4 denotes a Frobenius at q. We choose a basis for p such
that p(7) is diagonal for a certain well-chosen 7 € G that restricts to the
complex conjugation in g. Writing

a(o) blo
o= (13 1)
in this basis, we let B denote the T-module generated by b(o) for o € G,
together with certain other elements x4 € Frac(T) for q | p. We then define
B =B/(p™, ker ¢)B.

Standard methods in the theory of pseudorepresentations then allow for
the definition of a cohomology class & € H'(Gg, B(h~')). We show that the
class k satisfies the necessary local conditions to yield a surjection Vg —»
B(®~!) as in . These local calculations are based on the fact that
the form f is ordinary at primes q | p, and p-ordinary forms have Galois
representations with prescribed shapes when restricted to decomposition
groups at primes dividing p. The elements x4 mentioned above arise from
this local calculation.

Finally, we use the methods of |20, Theorem 9.10] along with the crucial

injection to prove the desired result
Fittr, (B ™) C (0.

One modification of the description above in the text is that we break R into
a product of components A and work over Ay = A®pr R. This reduction
is useful in our constructions with modular forms.

Also, the case where the prime p is the only prime of F' above p requires
special consideration and is handled in Let us try to motivate why
this case is unique. In this setting, when k¥ = 1 (mod (p — 1)p™), the
Eisenstein series Eg(1,x) and Fx(x,1) are congruent modulo p™ for any
odd character of G. The intersection of the associated Hida families in
weight 1 causes a singularity in the spectrum of the Hida Hecke algebra
at that point. The deformations of modular forms at the weight 1 point
corresponding to Ei(1, xp) are more complicated for this reason. We are
not able to construct a group ring family of modular forms defined over a
module endowed with an action of the ring R in this case.

Instead, we provide a different strategy for proving the congruence ()
when there is only one prime of F' above p. In a sense, the argument is
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easier in this case, though it relies on previous significant results, some of
which were themselves proved using Hilbert modular forms. We are able
to deform up the cyclotomic tower of F without altering the depletion set
Y, = SsU{p} since this tower is ramified only at the prime p. Let F},, denote
the mth layer of the tower, let g, = Gal(LF,,/F), and let Ry, = Zy[gm] .
We introduce a ring Rx ,, analogous to Ry, except that X now represents
the ratio between Oy, and the derivative of the p-adic L-function of H/F' at
s = 0, denoted ©’;. We then define a homomorphism R,, — Rx,, and
show that in order to prove , it suffices to prove that

(12) Fittr,, (V3 (LFm) R, @R, Bxm) = 0.

This reduction is dependent on the proof of the rational rank 1 Gross—Stark
conjecture by the first author with Darmon and Pollack in [18] and Ventullo
in [50]. Another ingredient of the reduction proof is the nonvanishing of the
first derivatives of p-adic L-functions deduced by combining the rational rank
1 Gross—Stark conjecture with the transcendence result of Brumer—Baker
on the nonvanishing of algebraic linear combinations of p-adic logarithms of
algebraic numbers (see Theorem [6.4)).

We prove that holds and thereby conclude the proof by applying the
formula

(13) Fitt g, (V3 (LFn)R,,) = (0% %" (0)

proved in our previous work [20]. We deduce from using the explicit
construction of the Deligne-Ribet p-adic L-function as an integral.
This concludes our summary discussion of the proof of Theorem
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2. ExprLiciT CLASS FIELD THEORY

2.1. An Exact Formula for Brumer—Stark units. In [16], we proposed
a conjectural exact p-adic analytic formula for the Brumer—Stark units u,.
We briefly recall the shape of this formula. Let n C Op denote a nonzero
ideal and let F'(n) denote the narrow ray class field of F' associated to the
conductor n. Let H be the maximal CM subfield of F'(n) in which the prime
p splits completely. Let f denote the order of p in the narrow ray class group
of conductor n, and write p/ = () for a totally positive element m € 1 + n.
We also assume that the set T' contains a prime whose norm is a rational
prime in Z.

Next we let & denote a Shintani domain, as defined in |16, Proposition
3.7]. Let O, denote the completion of O at p, and let O = Oy — 7O,. Let
b C Op denote an integral ideal that is relatively prime to n. Associated
with all this data, we have:

e A totally positive unit e(b, Z,m) € O} congruent to 1 modulo n,
defined in |16} Definition 3.17].

e A Z-valued measure v(b, Z) on Oy, defined in [16, eqn. (21)] using
Shintani’s theory of simplicial zeta functions.

We then proposed:

Conjecture 2.1 ([16, Conjecture 3.21)). Let o, € Gal(H/F) denote the
Frobenius element associated with b. Let P and uy be as in Conjecture[1.1],
and consider H as a subfield of F, via H C Hp = F,. We then have

(14)  op(up) = €(b, D, Tr)-TrCs’ﬂF(“)/F’va)][ z dv(b, 2,z)) € Fy.
o)

We stress that the exponent (g7 (F(n)/F,b,0) and the measure v(b, Z)
may be computed explicitly using Shintani’s formulas. If we may take 7 to be
a rational integer (e.g. if p is inert in F' and 7 = p/), then the unit (b, 2, 7)
is equal to 1 and the formula simplifies as described in the introduction .
See [17, Proposition 3.2] for an explicit formula for the measure v(b, 2) in
this setting when F' is real quadratic. One of the main theorems of [16] is
the following:
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Theorem 2.2 (|16, Theorem 5.18]). Suppose that condition (%) holds. Then
the p-part of Conjecture[1.3 for all L implies Conjecture up to multipli-
cation by a root of unity in Fy.

In other words, Theorem implies Theorem

We conclude this section by discussing the history of Conjecture [2.1] and
its various manifestations. The first conjecture of this form appeared in the
2004 Ph.D. thesis of the first author [15], which was published in the form
[13]. The setting for this conjecture was that of a real quadratic field F' and
a prime p that is inert in F'. Furthermore H was taken to be a CM ring class
field extension of F'. In that paper, the measure v was defined as a special-
ization of the Fisenstein cocycle obtained by integrating Eisenstein series on
the complex upper half plane. The resulting interplay between complex and
p-adic integration was inspired by Darmon’s theory of integration on H, x H
[12].

This first construction was generalized by Chapdelaine in his 2007 Ph.D.
thesis [6] to the context where F' is still a real quadratic field and p is an inert
prime, but H is an arbitrary CM abelian extension of F' in which p = pOp
splits completely. Chapedelaine’s construction applied integration of more
general Eisenstein series than considered in [13]. It was published in the
form [7].

Next, as described above, the first author applied Shintani’s theory of
simplicial zeta functions in order to expand the earlier constructions to cover
the general case: F' is any totally real field, H is a CM abelian extension,
and p is a finite prime of F' that splits completely in H [16]. The equivalence
between the constructions of |[13] and [16] in the setting of the former article
was established in [16, §8], though we note an error in this argument that
was observed and corrected by Chapdelaine in [8]. In Chapdelaine’s paper
the equivalence between the constructions was generalized to include that
of [7].

Notably absent from the article [16], however, is the cohomological per-
spective of the earlier works. More recently, several articles have appeared
that have reestablished the cohomological underpinnings of the p-adic for-
mula in the general case.

In [10], Charollois and the first author reconsidered the construction of
the Eisenstein cocycle by Sczech using conditionally convergent sums, and
proved an integrality result yielding another construction of the measure v
in the general case. The cohomological approach was applied to Shintani’s
method independently by Spiess in [45] and by the first author in joint work
with Charollois and M. Greenberg in [11]. The application of these con-
structions to an exact p-adic analytic formula for u, was given in joint work
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of the first author with Spiess [24} §6]. The equivalence of the cohomological
approach of loc. cit. with the formula above is the subject of current
work by Honnor, building on the Ph.D. thesis of Tsosie [49]. We hope to
prove directly that Theorem implies the conjecture of [24] (and in fact
generalize to the higher rank case) in future joint work with Spiess.

2.2. The Maximal Abelian Extension of F'. The goal of this section is
to prove Theorem [1.9] The following is |48, Remarque 2.3 Chap. IV].

Lemma 2.3. Let F be a totally real field and suppose that H/F is a cyclic
CM extension such that the finite prime p C O splits completely in H. Let
S = Soc USram(H/F) be minimal for the extension H/F. Then H = F(uy).

Proof. Since H/F is cyclic, there exists a faithful character of G = Gal(H/F).
Such a character is necessarily odd, i.e. x(complex conjugation) = —1. By
[48, Pg. 25], we have

ords=g LS,T(X’ 0) =#{veS: x(Gy,) =1} =0

since x is faithful and S is minimal (in particular S contains no place v that
splits completely in H). Hence Lg7(x,0) # 0. On the other hand, applying

X! to yields
LST Xa Z OI’dgp ( )

ceG
If 7 € G fixes uy, then

X(r) - Ls(x,0) = > ordg(o(up))x(70)

ceG

= > ordp (o7 (up))x(0)

ceG

= Z Ordm(U(up))X(U)

ceG
= Ls1(x,0).

Since Lg7(x,0) is nonzero, we conclude that x(7) = 1. Since x is faithful,
we have 7 = 1. By Galois theory, we have H = F'(uy). O

Lemma 2.4. Let F be a totally real field and suppose that H/F is an abelian
CM extension. Then H is the compositum of its CM subfields H C H
containing F such that Gal(H'/F) is cyclic.

Proof. Let ¢ € G = Gal(H/F') denote the unique complex conjugation. Let
G’ be a subgroup of G. The fixed field HE is CM if and only if ¢ ¢ G'.
The desired result then follows from the following elementary fact in group
theory: if G is a finite abelian group and ¢ € G is any nontrivial element,
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then the intersection of all subgroups G’ C G such that G/G" is cyclic and
c € G' is trivial. We leave the proof of this fact as an exercise. (|

To pass from CM fields to arbitrary abelian extensions, we consider the
sign homomorphism

sgn: F* — {+1}", x +— (sign(oq1(x)),...,sign(o,(z)).

Here the o; denote the n real embeddings of F. We say that elements
Qi,...,qn are sign spanning if the images of these elements under sgn gen-
erate the abelian group {£1}".

Lemma 2.5. Let F' be a totally real field and let K/F be a finite abelian
extension. Suppose that ai,...,q, are a sign spanning set of elements of
F* such that \/o; € K for alli=1,...,n. Let H denote the maximal CM
extension of F' contained in K. Then K = H(\/aq,...,/on).

Proof. The assumption of the existence of the «; implies that K contains
a CM extension of F, e.g. F(y/a) for a product « of the a; that is totally
negative. Note also that the notion of “maximal CM extension” is well-
defined, since the compositum of CM fields is again CM.

Let ; € G = Gal(K/F) denote the complex conjugation corresponding to
any complex place of K above the real place o; of F. Let G’ C G denote the
exponent 2 subgroup generated by the elements 7;/7; for all 4,5 =1,...,n.
The fixed field H = K¢ has at most one complex conjugation, namely the
image of any 7; in G/G’. The field H will be CM if this image is nontrivial,
and totally real if the image is trivial. The latter situation happens if and
only if there is an equality of the form

(15) [[n=1inG

1€ER
for some subset E C {1,...,n} of odd size. In fact the assumption of
the lemma implies that no such relation can occur for any nonempty FE.
Indeed, choose an appropriate product a of the a; such that oj(a) < 0 for
some j € E and oj/(a) > 0 for all j* # j. Then ([[,cp7) (Va) = —Va,
precluding the possibility that holds.

It remains to show that K = H(\/aq,...,\/ay,). Any element 7 € G
that fixes the subfield H(\/a1, ..., /0an) pointwise must in particular fix H
pointwise, and hence must lie in G’. Such an element therefore has the form
7 = |[;cp 7 for some subset E' C {1,...,n}. Yet we just showed that no
such nontrivial product can fix every /o;. It follows that 7 = 1, and the
desired result follows from Galois theory. O

We now prove Theorem [1.9] whose statement we recall. For each nonzero
ideal n C Op, pick a prime ideal p(n) C O whose image in the narrow
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ray class group of F' of conductor n is trivial. Choose p(n) such that the
rational prime p below it satisfies (). Let up(n) € Up(n),r denote the Brumer—
Stark element for the narrow ray class field F'(n) of conductor n (i.e. for the
maximal CM extension of F' contained in F(n)). Define

(16) Sn = {o(upw)): 0 € Gal(F(n)/F)}.
Finally, let aq,...,a,—1 € F* such that —1, a1, a9, ...,a,_1 are sign span-
ning.

Theorem 2.6. The maximal abelian extension of F' is generated by

VAL, -/ Qn—1

together with the elements of Sy as n ranges over all nonzero ideals n C Op:

(17) Fob = Un F(Sy) U F(yai,...,\/an 1),
where U denotes compositum of fields.

Proof. Let L denote the field on the right side of . It is clear that L is
an abelian extension of F'. We must show that if K is any finite abelian ex-
tension of F, then K C L. After replacing K by K(v/—1, /a1, ..., /0n_1),
we may assume that K contains v/—1, Vat, ..., \/ap—1. If H denotes the
maximal CM extension of F' contained in K, then /-1 € H and hence
Lemma implies that K = H(\/a1,...,\/&,—1). It therefore suffices to
show that H C L. By Lemma |2.4] we may assume that H is a cyclic CM
extension of F'.

Let n C O denote the conductor of H. The minimal set S for the narrow
ray class field F(n) is the same as that for H C F(n), namely the union of
Seo with the set of primes dividing n. We write p = p(n). By [48, Prop
IV.3.5, Pg. 92], the Brumer—Stark units for the extensions F'(n) and H are
related by
(18)  wup(H) = Np@yu(up(FMm)) = [[  o(up(F(n)).

oceGal(F(n)/H)
It follows from and the definition of S, that uy(H) € L. Lemma
implies that
H = F(uy(H)
and hence H C L. The result follows. O

Remark 2.7. We should remark on the root of unity ambiguity in The-
orem with respect to providing an explicit formula for the elements in
Sy appearing on the right side of . Since this root of unity necessarily
lies in Fp*(n), its order divides Np(n) — 1. Therefore we may simply raise our
elements () to the power Np(n) — 1 and obtain an unconditional exact
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equality, with elements that still satisfy the necessary properties for Theo-
rem (it is easy to adapt Lemma to replace uy by wy" for any positive
integer m). Alternatively, since roots of unity always generate abelian ex-
tensions, we can simply adjoin all roots of unity to the right side of and
ignore any possible root of unity error in the formula for the elements
of Sj.

2.3. Computations. In this section we present some computations of the
units uy calculated using the formula . We consider the simplest possible
case beyond F = Q: we let F = Q(v/D) be a real quadratic field with
discriminant D, let p be a rational prime that is inert in F' (so p = pOp),
and let H be the narrow Hilbert class field of F'. The set S is taken to equal
Soo, the minimal possible set in this setting. The set T is taken to contain
a single prime ¢ such that Nq = £ is a prime not equal to p.

The code to perform these computations was written by Max Fleischer
and Yijia Liu, two undergraduate students of the first author at Duke Uni-
versity. Their algorithm closely follows the paper [17]. One important differ-
ence is as follows. In loc. cit., a formal divisor 3,y na[d] € Div(Z) is used
to smooth the zeta values. The conditions _;ynq¢ = 0 and 3y nad = 0
are imposed. For this reason, computations are performed with the simplest
possible nonzero such divisor, namely 2[1] — 3[2] + [4]. In the present paper,
we use the set T" to smooth our zeta values, which corresponds to setting
N = ¢ and using the divisor [¢] — ¢[1]. Note that this divisor does not satsify
the condition 4y "d = 0. It turns out that this condition is unnecessary
to apply the general algorithm of loc. cit.; only minor modifications are
necessary (see [26]).

In each case, formula is used to compute the image of u, and all of
its conjugates over F' in F to 100 p-adic digits. The elementary symmetric
polynomials of these conjugates are then calculated and, after scaling by
the appropriate power of p to achieve integrality, recognized as elements of
Or using a standard nearest lattice vector algorithm. This allows for the
computation of the minimal polynomial of u, over F'. The computed 100
p-adic digits were enough to recognize the minimal polynomials in each case.

We stress that the field H itself is never fed into the program; all com-
putations take place within F' and its completion F),. After the fact, it was
verified that in each case the minimal polynomials listed split over a CM
abelian extension of F' unramified at all finite primes, and hence must be
contained in the narrow Hilbert class field H of F. The splitting field of
the minimal polynomial of w, is in fact precisely H, as implied by a suitable
modification of Lemma (using the fact that Lg7(x,0) # 0 for every odd
character x since here S = S, contains no finite primes).
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The programs to generate these results were written in SageMath and
executed on a Jupyter Notebook using the kernel SageMath 9.0. The code
is available at |26]. This web page also describes a typo (sign error) in one
equation in [17] that was discovered by Fleischer and Liu. Below we give
three interesting examples of the computations.

Example 2.8. D = 221,p = 3,/ = 5,G = Gal(H/F) = CI"(F) = Z/4Z.
The values ordy(c(up)) for o € G, i.e. the partial zeta values (s r(0,0), are
+3,£15. The minimal polynomial of u, over F' is computed to be:

423812 71680V D 76348630  —5218304v/D
X4t ( + f) X3 4+ < + f) X2

313 315 318 316

—423812  71680v D
+ ( + f) X+ 1

313 315

Example 2.9. D = 321,p = 7,4 = 5,G = Z/6Z. The values ord,(o(uyp))
for o € G are £1,43,£7. The computed minimal polynomial of u, over F
is:

o (55935 —63891\/5) X5y (1062148509 2960001\/5)

2-77jL 2.77 2.710 + 2.710

—49244921  —279429993v/D
( + ) X4+ 1
2.710 2. 711

Note that the minimal polynomials of Brumer—Stark units are always palin-
dromic, since u, s the complex conjugate of up. Hence the coefficient of
X? above equals the coefficient of X* and the coefficient of X equals that
of X°.

Example 2.10. D = 897,p = 5,0 = 7,G = Z/AZ x Z/27Z. The values
ord,(o(uy)) are £7,£9, 411, +21. The computed minimal polynomial of uy
over F is:
2549757626558363 1416002374557 D
X8+ ( + f) X7
2521 2521

+

51143699935554731498041 n 56709030111424864533@) X6
532 531

+

. 541 2. 541

~ 4489586764048071498962140328642159 49988908282076855221482\/5

+ 548 534

( 11738117897361345671334368371 n 4935116278645813872967514931v/ D

>X5
>X4
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Complete tables for all fundamental discriminants D < 1000 whose asso-
ciated narrow class field is CM, comprising hundreds of similar examples,
are given in [26].

We conclude this section by noting that in his 2007 undergraduate se-
nior thesis at Harvard University, Kaloyan Slavov computed an example
where the ground field F' is a totally real cubic field and the conductor n is
nontrivial. We refer to [43| §8.6.1] for details.

3. ALGEBRAIC PRELIMINARIES

The rest of the paper is concerned with proving Theorem Let us
recall the setup. We are given a totally real field F' and a finite abelian CM
extension H. Let S be a finite set of places of I containing Syam(H/F)USec.
Let T be a finite set of primes of F' disjoint from S satisfying the following

condition of Deligne—Ribet:

(19) T contains a prime of residue characteristic greater than [F' :
Q] + 1, or two primes of different residue characteristic.

This condition is useful because it implies the following;:

Let Ty denote the set of primes of H above those in T. The
group of roots of unity ¢ € pu(H) such that ¢ =1 (mod q) for all
q € Ty is trivial.

We fix a prime p C Op not in S UT that splits completely in H and
write S, = S U {p}. We consider another finite abelian CM extension L/F
containing A and unramified outside S,. Write

g=Gal(L/F), T =Gal(L/H), G=Gal(H/F)=g/T.

Let p denote the rational prime contained in p. We assume that p is odd.
Let

R=17,[g], R=17,[G]", I =ker(R — R).
By Theorem E there is a unique uy € U; 7 ® Zy such that

ordg(up) = @gT.

Our goal is to prove the following congruence, the p-part of Gross’s conjec-
ture:

recg(uy) = GémT (mod I?).
3.1. Altering Depletion and Smoothing Sets. Following [20], define
Y={veS:v|poo},
Yp =X U{p},
Y ={veS:vtpoo}UT.
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It will be very convenient for us to replace the sets S, Sy, and T' by the sets
¥, %,, and X, respectively. In this section, we make this replacement precise
and prove that it suffices to prove the result in this context.

There is a Stickelberger element @g s € Q[G]™ defined by the property

X(085) = Ly s (x,0)

for every odd character x of G, where Ly, s (x, s) is defined by and
along with the convention that x(q) = 0 if y is ramified at q. We show in
[20, Remark 3.6] that © o, € R.

As we explain, the results of [20] imply that there exists a unique

/ 1
P —

such that
ordg(u,‘?’z/) = @g’zl.
Let # denote the involution on R induced by g + ¢g~! for g € G. Define
SKu (H/F) = (0% 7)# [ [(NI,, 1 — 0, NI, /#1,) C R.

VESram (H/F)
vip

Here I, is the inertia subgroup at v. Remark 3.6 of loc. cit. implies that

Equation (35) of loc. cit. then implies that ©H .., annihilates C17 (H )p - The

annihilation of the class represented by p is equivalent to the existence of
. =5

the desired uy,

Lemma 3.1. To prove Gross’s conjecture, it suffices to show that in each
setup as above, we have the “modified Gross conjecture”:

23
(20) recg(up,”™ ) = @épvz/ (mod I?).
Proof. More generally if ¥ C J C S and J' = X'\ J, J, = J U {p}, then we
will show that
(21) recG(ug’J/) = @{;‘)’J, (mod I?).

The desired result is the case J = S. We proceed by induction on #(.J \ ).
The base case J = ¥ is given. For the inductive step, fix J D X and let
v € S\ J. Then v poo. We write

JU:JU{U}, JU,P:‘]U{U’p}’ J,{):J,_{’U}

Then
Nov -1
#1,

L L —1 L
(22) @pr”]/l/] = @Jp,Jl + gy, NIU@Jp,J{,'
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Note that #1I,, | Nv — 1 in Z,, since v { p. Both terms on the right side of
1} lie in SKuZ(L/ F)# and hence lie in R. By the inductive hypothesis,
we have . Furthermore, if we write I, for the image of I, in G and

Ig(v) = ker(Zplg/1,]” — Z,[G/L.]"),
then by induction we have
JJIN AL
(23) recg 7, (Uy™) = @ﬁj% (mod Ig(v)?).

Here ug"]” e U, (H™v)~ satisfies

JJN v
ordg/jv (up™*) = Sy

Now x + x - NI, yields a map Zy[g/I,] — Z,[g] sending Ig(v)? — I?, so
from we deduce
JJNNTy —
(24) recg ((up ")) = va@gp,% (mod I?).
The desired result

recG(u‘{”’Jé) = @Lv,p,J{J (mod I?)

now follows by combining and , using . We must simply note
that
Nv—1

(25) of ,=e,+ y; o, 'NI,O%
v
Nv -1
(26) =0, + #710511\11@@5{ 7
v
U / / Nv—1 -1
which implies that up”"]“ = up‘]"] : (u",{"]“) #1, v Nlv, |

3.2. Removing primes above p from the smoothing set. When work-
ing with modular forms in §5, it will be convenient if the set ¥’ does not
contain any primes above p. Note that any primes above p in ¥’ necessar-
ily lie in 7" and hence are unramifed in L/F. We give now the elementary
argument, in the spirit of |20}, §4.1], that shows that we can safely remove
these primes. Let

Tp:{qET:p|p}7 TOZT\T;D’ {):Z,\Tp

Lemma 3.2. There exists upE’EO € U,g, ® Zp such that ordG(upE’EO) =
@g%. Furthermore the congruence

(27) reCG(upE’EO) = @ém% (mod I?)
implies the congruence

recG(upZ’El) = @ép,Z’ (mod I?).
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Proof. For each q € T}, let o4 denote the associated Frobenius in g, and 7,
its image in G. We have

qeTp

Each term in the product in is congruent to 1 modulo p and hence is
invertible in Z,[G]. Hence we can simply define

DB S I o0 31
up 0= H(l—apr) Hup™™).
pelp

The congruence then implies

recg(uy™) = OF 5, [[ (1-54Na)  (mod I?)
q€Tp

= @épz, (mod I?)

as desired. O

Applying Lemma we assume for the remainder of the paper that T'
contains no primes above p. We will continue to write 7', %’ rather than
To, Xp-

Remark 3.3. After removing the primes above p from T, condition
might no longer be satisified. That condition was used to ensure the inte-
grality of ©g 7, which was then used to deduce the p-integrality of Oy .
As the argument in this section shows, after removing the primes above p
from T, the p-integrality of Oy s still holds.

3.3. The ring Ry. In [18], the rank one p-adic Gross—Stark conjecture was
interpreted as the equality of an algebraic L-invariant .Z;;, and an analytic
L-invariant %,,. The analytic Z-invariant is the ratio of the leading term
of the p-adic L-function at s = 0 to its classical counterpart:

Ly (xw,0)
L(x,0)
The algebraic L-invariant is the ratio of the p-adic logarithm and valuation

(29) gan =

of the xy~'-component of the Brumer-Stark unit:
—1
log, Normy,, /q, (uy )
(30) Ly = 2 R
ordg(up )

Here and throughout the paper, log, denotes the p-adic logarithm follow-
ing Iwasawa’s convention logp(p) = 0. There is no difficulty in defining the
ratios and , since the quantities live in a p-adic field and the de-

nominators are non-zero. The analog of this situation in our present context



BRUMER-STARK UNITS AND EXPLICIT CLASS FIELD THEORY 25

is more delicate. Let I denote the kernel of the projection

R=17Z,g]" —— R=127,|G]".
The role of the p-adic L-function is played by the Stickelberger element
@ép sv € R, and the analogue of the derivative at 0 is played by the im-

age of @ép,z' in I/I?. The role of the classical L-function is played by
the element @g sy € R. Tt is therefore not clear how to take the “ratio”
of these quantifies. Similarly, the role of the p-adic logarithm is played
by 1feCG(upZ ’EI) € I/I? and the role of the p-adic valuation is played by
Ordg(upz’zl) €R.

For this reason, we introduce an R-algebra R that is generated by an
element .Z that plays the role of the analytic .Z-invariant, i.e. the “ratio”

between

OL=06% v and Oy =6y,
We define
(31) Ry = R[Z)/(Oy% — O, L1, L% I?).

Note that © 5. is well-defined in R[.Z]/.Z1, so this definition makes sense.
A key point is that the ring R¢, in which we have adjoined a ratio .
between O, and O, is still large enough to see R/Iz.

Theorem 3.4. The kernel of the structure map R — Ry is I°.

Before proving the theorem we establish some intermediate results that
are important in their own right.

Theorem 3.5. For each prime v, let
I(v) = ker(R —— Zyg/g.]™).

We have
ore [] I(v).

vELp

The proof of Theorem uses the Ritter—Weiss modules that will be
recalled in the next section. For this reason we postpone the proof until
that point.

Lemma 3.6. Suppose that r € R satisfies 7Oy = 0 in R. Then 1Oy, € I?.

el = E ex

LE,E/ (H/F>X70):0

Proof. Let

denote the idempotent of Frac(R) corresponding to the set of odd characters
of G at which ©y has a trivial zero. Let es = 1 — e; the denote the
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idempotent corresponding to the set of other odd characters of G. Let Ip
denote the (absolute) augmentation ideal of Z,[I']. Our goal is to prove that
the image of r®p, in

I/I? =2 R® Ip/I}

vanishes (see [35, 5.2.3(b)] for this isomorphism). Now 7Oy = 0 implies
that 7es = 0.

Let Y denote the kernel of the projection R — Re;. We have a short
exact sequence

(32) YT®II/I} —=2 R Ir /I —— Rey ® Iv /I —— 0.

We claim that the image of ©f under the map denoted e; in vanishes.
Granting this claim for now, let us finish the proof. The claim implies that
O lies in the image of ¥ ® Iv/I% under the map w in . But Tes = 0
implies that 7 annihilates Y. It follows that 7O, vanishes in I/I? as desired.

We now prove the claim, which states that ©re; vanishes in Re; ® It / Ilg.
By Theorem we have that O € [] ey, I(v). Now g, C T, s0 I(p) C I.
We may therefore write O as a sum of elements of the form yz where
Y € [[,ex I(v) and z € I. Now if y € [],cx; I(v) and ¥ denotes the image of
y in R, then e;5 = 0. Indeed, it suffices to check this character by character:
for an odd x € G, we have y(e1) = 0 if x(Gy) # 1 for all v € %, whereas
x(@) = 0 if x(G,) = 1 for some v € X. It follows that if z € I, then e;(yz)
vanishes in Re; @ Ip/ Ilg. The desired result for ©eq follows. O

We can now establish the injectivity of the map R/I?> — R.

Proof of Theorem[3.4]. If the image of a € R in the polynomial ring R[z]
belongs to the ideal generated by ©yx — O, 22, 1, I?, then considering the
constant term implies that a + ©pr € I? for some r € R. Considering the

linear term implies that 7Oy = 0 in R, where 7 denotes the image of 7 in
R. It then follows from Lemma that a € I?, as desired. ([

In view of Theorem the integral Gross—Stark conjecture can be rein-
terpreted as an equation between algebraic and analytic Z-invariants in the
ring Ry. We will show

(33) recG(upE’Z/) = ﬁordg(uf’zl) in Re.

Since the modified Brumer—Stark unit satsifies ordg(upz’z,) = Op, the right

side of equals ©7. The equality recg(upZ ’El) = Or in Ry then gives
the desired congruence 1recG(upE ’Z/) = Oy, (mod I?) in R by the injectivity
of R/I? — Rg.
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4. GENERALIZED RITTER—WEISS MODULES

The Galois modules introduced by Ritter and Weiss to give generalized
Tate sequences play a central role in this work. Before delving into the
details, we give a road map for In §4.1] we recall the definition
of the Ritter-Weiss module V33, following the construction of [20] that in-
corporates the smoothing set ¥’. To maintain maximal generality, we work
over Z[g] rather than over R = Z,[g]~. In we give an interpretation of
Vg in terms of Galois cohomology. In we define a module V¢ over the
ring R¢ that incorporates the analytic Z-invariant. In §4.4] we interpret
the p-part of Gross’s conjecture as the statement that the Fitting ideal of

Vg over Ry vanishes.

4.1. Definition. We recall the definition of Vg from [20, §A]. We begin
by choosing an auxiliary finite set of primes S’ of F that contains X, and is
disjoint from ¥'. Note that the places in S’ — ¥, are unramified in L. We
furthermore assume that S’ is large enough so that C1% (L) = 1, CIE// (H) =
1, and such that the union of the decomposition groups g, C g for v € S’ is
all of g. The construction of V is independent of the chosen auxiliary set S’
(see |20, §A.2]).

For each place v of F', we fix a place w of L above v. Write Ag, for the
augmentation ideal of Z[g,]. Ritter—Weiss [38] define Z[g]-modules V,,(L)
and W, (L) sitting in exact sequences:

1 Ly, Vi (L > Agy > 1
(34) (L) g

1 > O V(L) —— Wy(L) —— 1.

Here O,, denotes the completion of Op at w. Let U, C O;, denote the
subgroup of 1-units.

The modules Vi, (L) and Wy, (L) are defined as follows. Let L3P > LI
denote the maximal abelian and unramified extensions of L,,, respectively.
There are canonical short exact sequences

1 —— W(L?*/L,) = LY, —— W(L2*/F,) —% g, s 1

1 —— W(LY/L,) =2 Z —— W(L™/F,) —% g, > 1,

where W denotes the Weil group. Let Iy denote the (absolute) augmentation
ideal of W(L2P/F,), and let I, denote the relative augmentation ideal
corresponding to my. Define Iy and Iy, similarly from the corresponding
terms in the second exact sequence above. Then

(35) V(L) = Iy /IyIy,,  Wy(L) = Iy /Iwly, .
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Following [29], given a collection of g,-modules M,,, we write

f[ My, = [ [ ndd, M,.
v v

Define
V=] v%® [[Uo ] 0
veS’ vex! vgS'Ux!
Let
Jy = H OZ}HLZ}HUwa JEp: H O;HLZHUwa
vgXUY/ vEX vey’ vEE, UL vEYXp veyx!
W= [[ Wu@ ]] A, Ws, = [[ W@ [] As.
vesS'—% veEX veS =Xy vEX

Note that we do not adorn V' with a subscript because it does not depend
on the choice of 3 versus ¥,. The fact that the same module V' is used in
both constructions will be of great importance.

For each set X, = X or X, we have a commutative diagram

l— sy, —V — Wy, —— 1

(36) le(] le low

1 CL O Ag 1.

Here C, = A /L* denotes the idele class group of L, and O denotes the ex-
tension of Ag by C, associated to the global fundamental class in H?(g, C)
(see [38]). By [20, Lemma A.1], the map 6 is surjective. We therefore get a
short exact sequence

(37) 00— Ojs. v Ve we_ ClE (L) — 0,

where V? denotes the kernel of § and Wg* denotes the kernel of fy,. Further,
O} 5. sy denotes the group of X,-units of L congruent to 1 modulo ¥, i.e.

the set of elements in L* whose image in ]:[va is contained in Jy,. Next
we define

By = (Zlgl® Zlg/g) & [ 2Zlol, Bs, = ] Zlal-
veS'—{p} vesS’
In By, the first term Z[g] @ Z[g/g,] will be referred to as the component at
p.

There are injective maps jyx, : Wy, — By, that we now describe on each
component.
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e Bach v € §' — X, is unramified in L, so we have W,,(L) = Z[g,] (see
138, Lemma 5)). If o, € W(L}/F,) is the Frobenius element, this
isomorphism sends the image of o, — 1 € Iy to 1. We then have
Ind§, Wy, (L) = Z[g]. The component of js, at v € S — ¥, is this
isomorphism.

e For v € X, the inclusion Ag, C Z[g,| induces Ind§ Ag, C Z[g].
The component of jy, at v € ¥, is this inclusion.

e To conclude we define, for w the chosen place of L above p, a map

(38) Jp: Indg, Wy (L) — Z[g] ® Z[g/gy]

giving the component of jy at p. Consider the composition

(39) W(Fp/F) — W(F/F,) = F; _orde,

p Z,

which we simply denote ord,. Clearly ord, factors through W (L} /Fy).
We then define
Wu(L) —— Zlgy| & Z
by
(40) o—1—(o|r, —1,ordy(0)), oe W(Ly /Fp).
Inducing this map from g, to g yields the desired map jp.

The fact that j, is an injection follows from [38, Lemma 5(b)]. Let Y,
denote the cokernel of j,. Let

Yo=Y [[Indd zZ, Yy, =[] Ind Z
veEX vEDp

For each ¥, = X or X, we have a commutative diagram with exact rows:

0 —— Wx, —— Bx, Yy, 0
(41) PW I ley
0 Ag Z[g] Z 0.

The map 0p is defined as follows:
e Op is the identity in the factors corresponding to v € ¥,.
e (p is multiplication by o, — 1 (where o, € g, C g denotes Frobenius
at v) in the factors corresponding to v € S"— X (see [38, Lemma 5]).
e For v = p and X, = ¥, the map 0p on the component at p is
projection onto the first factor.

Since Oy is surjective, taking kernels in yields a short exact sequence

(42) 0 —— Wg* — Bg* Yg* 0.
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Note that BE = Z[g/g,] ® Z[g]#>'~" and ng >~ Z[g]#5'~1. We define
(43) V3 (L) = coker(fs,: VO —— W& —— BY).

When X, = 3,, the module @%;(L) is the same as the module Vg; (L)
defined in [20], and when we speak of it individually we will use the latter
notation. However for ¥, = ¥, the module V¥ (L) is a subquotient of the
module V3 (L) defined in loc. cit.. We have introduced the V notation so
as to not conflict with the notation of loc. cit., and so that we may speak
of V%;(L) and V¥ (L) simultaneously when convenient, using the symbol
V. (D).
In view of and , we have two exact sequences:

(44)  0— O}y & > VO BY VE (L) —— 0,

(45) 0 — CIE (L) — VE (L) Ve 0.
In [20] we proved the following results. Write
(VR = (V") ®z4 R,
and similarly with V? replaced by any other Z[g]-module.
Lemma 4.1 (|20, Lemma A.4]). The module (V%)g is free over R of rank

equal to the rank of the free module ng, namely #5’ — 1. Hence the module
V%;(L)R is quadratically presented over R.

Theorem 4.2 (|20, Theorem 3.3]). We have
(46) Fittp(V3, (L)r) = (0%, 5).
We can now give the proof of Theorem

Proof of Theorem[3.5. If we denote by {e,: v € S’} the standard R-basis
for
(BEp)R = H R,
ves’
then the module (B%p) r has a basis

{by = e, —Op(ey)ex 1 v € S — 0}

where co € S, C S’ is any fixed infinite place of F. By Lemma the
R-module Vg is free of rank #5’ — 1, and hence FittR(Vg; (L)R) is the ideal
generated by the determinant of the square matrix A representing the map
fVE— (B%p)R with respect to any bases.

We choose any basis of V} and the basis {b,: v € §',v # oo} for (B%p)R.
The columns of the associated matrix A are indexed by the basis vectors
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b,. For v € %, the elements of the corresponding column vector lie, by
definition, in the image of Ind§ Ag, — R. This is exactly the ideal

I(v) = ker(R — Zp[g/9.]")-

The determinant of A therefore lies in [],c5, I(v). In view of , the result
follows. O

4.2. Interpretation via Galois Cohomology. In [20, §A.3], we gave a de-
scription of the projection to the minus side of the class in Extlz[G] (ng, Cl%; (L))

determined by Vg; (L) via the exact sequence , using Galois cohomology.
We recall this now and give the generalization that allows for the application
to V3 (L).

For each v € 9/, let

Gro 2 Gal(F,/F,) C G

denote the decomposition group at v associated to a place of F above v
restricting to the chosen place w of L. Let M be a g-module. Suppose that
we are given a l-cocycle

k€ ZYGp, M),

where M is endowed with a Gp-action via the canonical map Gp — g.
Suppose that the restriction of x to Gal(F,/LY) is trivial. For a Z[g]-
module N we write

N™=(N®Z[1/2])/(c+1),

where ¢ € g denotes complex conjugation. We may then define a g-module
homomorphism

¢p: W, = (Ind§ Wy(L))” —— M~
by the rule
(47) eulg® (0 —1))=g-klo), geG, o€ W(Ly/F,).

The condition on k ensures that (o) is well-defined for 0 € W(LLI/F,). It
is elementary to check that ¢}, is well-defined, as follows.

e If g € g,, then
on(1® (g0 — g)) = k(go) — k(g) = g k(o) = pi(g @ (o —1)).
o If o € W(LY/F,) and 7 € W(L3/L,,), then
pr(1® (1 =1)(0 — 1)) = k(r0) — k(1) — k(o) =0

since 7 acts trivially on M.
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Write Z, = Indgv Ag,. Since Ag, is canonically a g,-module quotient
of Wy (L) (see [34), Z, is canonically a g-module quotient of W, . If the
restriction of [k] to Gal(F,/L,,) is trivial, then ¢ descends to a homomor-
phism

(48) opt Zy —— M.

Now let My, = Cl%; (L)~ for ¥, = Y or ¥, = X,. By class field theory, we
may view My, as the Galois group of a field extension Ly, /L. The field Ly,
is the maximal abelian extension of L of odd order that is unramified outside
Y/, tamely ramified at ¥’, such that the primes in X, split completely, and
such that the conjugation action of the complex conjugation in g is inversion.
Let

5\2* : GL _— Gal(iz*/L) = ME*
denote the canonical homomorphism given by the reciprocity map of class
field theory. By [20, Lemma 6.3], the class Ay, € H'(Gp,Ms,) is the
restriction of a unique class

As.] € HY (Gp, Ms,).

An explicit 1-coycle representing this class is given as follows. Let ¢ denote
a lift of the complex conjugation ¢ € g to an element of g = Gal(Ly, /F).
Then

(49) As, (6) = As, (Ges e HY2 5 eGp.

Note that the cocycle Ay, € Z1 (G, My, ) satisfies the condition described
above for k, namely that the restriction to Gal(F, /L) is trivial for each
v € §'. This follows since Eg* C LY. Furthermore if v € ¥, then the
I“eth‘ICtIOD of Ay, to Gal(F,/L,) is trivial. Therefore the construction in

and (48 . yields elements:
PRy, € Homgp- (W, , Ms,), wveS -
901;\2* € Homz[g]*(Zv_a MZ‘*), v E V.

Lemma 4.3. The “snake map” ¢y, : (Wg*)_ — My, given by the minus
part of the last nontrivial arrow in can be described explicitly by the
formula
902 av ’UES/ Z (10)\2 av
ves’

Proof. The proof is nearly identical to |20, Lemma A.9], but we give it for
completeness and because of notational differences. We use the description
of the snake map given by Ritter and Weiss in [38, Theorem 5]. Write
g = Gal(L/F), where as above L is the extension of L corresponding to
My, via class field theory. Write Ag for the augmentation ideal of Z[g] and

*
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let A(g, Myx,) denote the kernel of the canonical projection Z[g] — Zlg].
There is a short exact sequence (see |38, Pg. 154])
(50)

A(g, Ms,) Ag

0 —— My = — — — —
%7 A, Ms.)Ag A(G, M, )Ag

Ag 0.

Let v € S’. The extension L is unramifed (over L) at w, so there is
a canonical restriction map W(L) /F,) — g. In view of the definition of
Wy(L) given in (35]), this induces a canonical map

fo | Ag
A(g, Mx)Ag

Indgv Ww(L) = Z[g} ®Z[gu] Ww(L)

In 38, Theorem 5], Ritter—Weiss show that the snake map is realized by
(51) @E*((av)ves’) = Z fv(av)-
veS!

Let a = (ay)pes € (WZ.)~. Choose v' € S such that the decomposition
group g,» C g contains complex conjugation ¢ (the existence of such a v’ is
guaranteed by the assumptions on S”). Let ¢ denote a lift of ¢ to W(L2, /F,).

For each v € §’, define y, € Wy, to have component at v equal to ay,
component at v’ equal to

by = Ow (av) ® (1 —¢)/2 € (Z]g] @zfg,) Wur (L)),
and all other components equal to 0. Then a = ) o yo since Oy (a) = 0.
Furthermore each y, lies in (Wg*)_ by construction. It therefore suffices to
prove that ¢x, (y») = @5, (ay) for each v € S’. For this, we apply with
the tuple (ay)yes replaced by y,.
The module W, is generated over Z[g]~ by elements of the form
ay=0—-1¢€lwy

for 6 € W(LY'/F,). Since we are working on the minus side, we have

folaw) = fu((1 = ¢)/2®ay) = (1 = ¢)(6 — 1)/2,
for(by) = (6 =1)(¢—-1)/2,
and hence
ex. (y) = (6¢—¢0)/2.
Under the isomorphism noted in the first nonzero term in , this corre-
ponds to the element

(ea— e )% € Gal(L/L) = M, .
By , this is precisely the value of ¢} (6 —1)= A, (5). O
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As we now describe, the Galois theoretic description of V%l(L)_ provided
by Lemma [4.3] yields an explicit method of constructing homomorphisms
Vi (L)” — B

for Z]g|”-modules B. Recall R = Z,[g]”. We work over an arbitrary R-
algebra A since this is the context we will require later. Therefore let B
denote an A-module and let [k] € H'(GF, B) denote a Galois cohomology
class, where B is endowed with a Gr-action via the composition

GF — g — A*.
Suppose that:

e The class [k] is unramified outside ', locally trivial at 3, and tamely
ramified at X',

e Let By C B denote the A-submodule generated by the image of the
restriction

[HhGL S Hl(GL,B) = Homcont(GL,B).

The module B/By is generated over A by the images of elements
r, € B for v € ¥ and elements xy, ), € B. The element x; is fixed
by the action of G, (i.e. by the action of gp).
e The class [k] is represented by a 1-cocycle  satisfying the following.
— For v € ¥ and 0 € G, we have k(o) = z,(0 — 1).
— For 0 € W(F,/F,), we have
(52) k(o) = (o0 — 1)zp + ordy (o),

p?
where ord, is as in .
— There exists 7 € Gp, a lift of the complex conjugation in g,
such that for all o € G we have

(53) K(0) = [K]lg, (eTo'771) /2 € By.

Theorem 4.4. Let B be an A-module and [k] € H'(Gp,B) a Galois
cohomology class satsifying the three bulleted points above. Write A, =
A®prZylg/8p)”. There is a surjective A-module homomorphism

(54) a1: V¥ (L)a —» B
induced by the map

a: (Be)a 2 (A@ A,) @ A1 — . B
defined as follows:

e For a, € A in the component at v € S" — %,, we have a(ay) =
ayk(oy), where o, denotes the Frobenius element at v.
e For a, € A in the component at v € X, we have a(ay,) = ayxy,.
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o For (ay,by) € A@ Ay in the component at p, we have o(ay,by) =
ayTp + bvx;.

Proof. The homomorphism k], € H'(Gr,B) = Homeont(GL, B) is un-
ramified outside ¥/, locally trivial at X, and tamely ramified at X’. It follows
from class field theory that [x]|;, factors through

My = Gal(Ls,/L)
and therefore induces a surjective map
(ME) R —» BO.

Equation implies that s takes values in By.
To prove that « induces a map o as in , it suffices to prove that the
composition

(W&)a — (BL)a — (Bg)a —— B

can be factored as

K|

G
(W4 —== (Ms)a Ly By < B.

For then the image of (V?)4 in (W)g vanishes under a. Note that the
composition k|, o px equals ¢ =) o pp, by Lemma together with

equations and .
The fact that the restriction of a to (W) 4 equals ¢, follows from the
assumptions on x, as we now check on each component.

e Any v € §’—X%, in unramifed in L and hence (W},) 4 is generated over
A by o, — 1, where o, is the Frobenius element at v. By definition
of the map Wy — By, the image of o, — 1 in the component of By,
at v is simply 1. Therefore

aloy, — 1) = k(oy) = ph(oy — 1).
e For v € X, let 0 € g,, and consider the element ¢ — 1 in the v-
component of (By)4. We find:
alc—1)=z,(0c — 1) = k(o) = pp(c — 1).

e Let y € (W,)g be represented by 6 —1 for 0 € W(Lyy /F,). Consider
Jp(y) in the p-component of (Byx)r. We find:

a(jp(y)) = a(o|r, — 1, 0rdy(0))
= (o0 —1)zp + ordp(a)x;,
= k(o)

= ¢.(y).
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This concludes the proof that « induces the desired map «y. In fact, if we
let g denote the composition of o with the projection B — B/ By, then
we have demonstrated a commutative diagram

0 —— (Mg)a —— Vg (L)a —— (Y)4 —— 0

(55) lK‘GL l@l lao

0 BO > B B/BO*>O.

The surjectivity of ag follows by the assumption that B/Byj is generated
over R by the z, for v € ¥ along with 1:p,x;,. The surjectivity of a; then
follows from the Five Lemma. U

4.3. The module Vg. Recall R = Z,[g]", R = Z,[G]". As we did with
(ng) R in the proof of Theorem we can write down a generating set

for the R-module (B%)g as follows. The module (By)g is generated over
R by the vectors eg = (1,0) and e; = (0,1) in the component R & R, at
p together with the standard basis vectors e, for [ e, # C (Bx)r. The
module (B%)g is then generated by

{bo = ep — €oo, b1 = €1, by =€, — Op(ey)ex: v €S\ {00, p}},
where oo € S, C S’ is any fixed infinite place of F.
Denote the image of the vectors by and b; in V%l(L) by by and by, respec-
tively. Recall the R-algebra R ¢ defined in . We define
(56) Vo = Vi (L) ®r Re /(b1 + Lho).

The following is the analogue of Theorem [4.4] for the module V. Again
we work over an arbitrary R-algebra A and write Ay = Ry ®r A, Vg a4 =
Vg ®@p A.

Theorem 4.5. Let B and [k] € H' (G, B) be as in Theorem . Suppose
that B is an A.y-module endowed with an A-module map B — B such that
the image of B generates B over Ag. Suppose further that the images in B
of xp,xy, € B defined in @) satisfy xy, + £ - vy = 0. Then the map a1 of
induces a surjective A g -module homomorphism

(57) Ay V.Z,A — B

Proof. Since the image of B generates B as an A g-module, the surjection
V%l(L)A — B induces a surjection

(58) Vi (L)a®a Ay — B.

Since a1 (by) = xp and o (b1) = x},, the equality z}, + .2 -z, = 0 implies that
the surjection factors through

Vya=VY(L)a®4Ag/(by + Lho)
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as desired. O

4.4. Gross’s Conjecture via Fitting Ideals. In this section we prove the
following interpretation of Gross’s Conjecture.

Theorem 4.6. The Ry-module Vg is quadratically presented and we have

Fittp, (V) = (reca(uy™ ) — O1).
Therefore, the equality
Fittp, (Vg) =0
implies the p-part of the modified Gross conjecture:
recG(upE’E/) =0 (mod I?).

We would like to point out that most of the computations of are
the same as, or slight variants of, the calculations of Burns, Kurihara, and
Sano in §5 of [4]. Our approach to relating the Brumer—Stark unit u?’z
to Ritter—Weiss modules and studying its properties is modeled after theirs.
Our innovation is the definition of R« and V¢ and the application of these
techniques to the statement and proof of Theorem

First we note that the same construction used to define @%; (L) = Vg; (L)

above, but working over H rather than L, gives rise to modules Vg(H ) and
V%;(H ). Since H/F is unramified outside ¥ U X', these modules are the
cokernels of maps

fus

Vo) 52 pogy, voy 22 o),

respectively, with the same domain and codomain. The modules Vg(H )R
and VZ ( )5 satisfy properties analogous to those stated in Lemma and

T heorem . Specifically, V¢ (H ) is free over R with constant rank equal
to the rank of the free module BG(H )5, namely #S” — 1. Furthermore, as
stated in Theorem above, we have by |20, Theorem 3.3] the equalities

Fitty; V3 (H)g = (0%y,),  Fitty V3 (H)p = (08 ) =0.

In |20, Lemmas B.1 and B.2] we prove that there is a commutative dia-
gram

VI(L)g —— V(L) —— VO(H)

(59) lfz,, | ifH,zp

BY, (g s BY (L)Y~ BY(H)g.
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To give the analogous diagram for X, we need some additional notation.
Define

Bx(L) =Zlg/g) & P Zlgl,
vES\p

and let m: By(L) — Bx(L) be the projection in which the first com-
ponent at p, which is a factor Z[g], has been forgotten. Recall the map
fs: V(L) — BY(L) defined in . Let fs» = mo fsx. Note that since
gp C I', multiplication by NI" induces a well-defined map

Z[g/gp] — NI - Z[g] = Z[g]"

and hence a well-defined map Bx,(L) — By, (L)', By [20, Lemma B.2], we
then have a commutative diagram:

V(L) VoL —— VP(H)g

(60) lfzm JfH,z

=0 ~
By(L)r —— BY (L)Y, —— BY(H)p.

Write t = #5' — 1 and fix an R-basis {v1,vo,...,v} of VO(L)g. As in
the proof of Theorem we choose the following basis for B%p (L)g:

(61) {by = e, — Op(ey)ess 1 v € ' — 0},

where 0o € Sy C S’ is any fixed infinite place of F' and {e,} is the standard
basis of
By, (L)r =[] B
veS!
Let {v1,...,7:} and {b,} denote the R-bases of VY(H)z and B?(H )z, re-
spectively, obtained by applying the horizontal maps in .
Having fixed these bases, we define:
o As, € M;x(R) is the matrix for fy,.
e Ay is the ¢t x (t + 1) matrix representing the map f5, with second
column having entries in Ry, = Z,[g/gy]” and all other columns
having entries in R.

By the commutative diagrams and we have:

e The reduction of Ay, modulo I, denoted ﬁgp € M;x¢(R), is the
matrix for fH7gp.

e Let Ay denote the matrix in M;y(R) obtained from Ay by deleting
the first column and reducing the other entries modulo I. Then As,
is the matrix for fgs.

We furthermore note that:
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e The matrices ﬁgp and Ay, agree other than their first columns, since
the components away from p of the maps fy s, fu s are the same.
e The first column of ﬁgp consists of all zeroes, since g, C I'.

We now define a square ¢t X ¢t matrix Ay . The last ¢ — 1 columns of Ay
have entries in R and are equal to the last ¢t — 1 columns of ﬁgp (equivalently,
As)). The first column of Ay is the column vector (v;)!_;, with entries in
Vo )5~ It makes sense to consider the determinant of Ay as an element
of VO(H )% by Leibniz formula for determinants.

Lemma 4.7. We have det(Ay) € ker(fux,).

Proof. The value fg s, (det(Ay)) is the determinant of the matrix in which
the first column of Ay has been replaced by column whose elements are
fus,(®;) € BY(H)g. With respect to the decomposition of BY(H)g as a
product over the places v € S, each component of (fu s, (7;))!_; corre-
sponding to a place v € 5"\ p is equal to another column of the matrix,
namely the column corresponding to v. Meanwhile the component at v = p
is the 0 vector, as noted in the bulleted point above, regarding Zzp. It
follows that the determinant is 0 in every component of BY(H)z. O

From the exact sequence
(62)
* 0 Ta2y by >
it follows from Lemma [4.7] that det(Ay) € V?(H )z is the image of a unit

(63) €€ (Opys, )7
Lemma 4.8. We have € € (O}, v)%-

Proof. Let v € X and let w be the chosen place of H above v in the definition
of V(H). Recall the short exact sequence

(64)

Indg O —— Vo(H) =Indg Vi (Hy) —» Wy(H) = Indg W, (Hy).
To show that € € (OF;, s )5, We must show that the component of det(Ay )
in V,(H) has vanishing image in W,(H) under w,. Now w,(det(Ay)) is
the determinant of the matrix A,, in which the first column of Ay has
been replaced by (w,(7;))!_;. We use the description of W,,(H,,) given by
Ritter—Weiss in |38} §3]. We have
(65) Ww(Hu}) = {(:C, y) € AGy, ® Z[Gw/Iu)]: T = (Uu) - 1)3/}

Here 0, € Gy/I,, denotes Frobenius. If we write

Wv(ﬁi) = Z o® ($U,i7 ya,i)a

O'EG/Gw
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then A, has first column equal to these values, and another column (the
column corresponding to v) equal to

Z 0R Ty € Indgw AGy,.
O'EG/Gw
Indeed, this is the component of fy x at the factor of BY(H) corresponding
to v. Because of the relationship between  and y in , it is easy to see
that the determinant of such a matrix is zero. This is clear for the first
component of the ordered pair, and for the second we note that
(Uw - 1)y07i - fo,i‘
The vanishing of det Ay, yields the desired result € € (O, )7 O

Lemma 4.9. Let B denote the chosen place of H above p used in the defi-
nition of V(H). We have

ordg(e) := Z ordg(o(e))o~ ! = det(Ayx) = 20y
oeG

for some unit z € R .

Proof. The proof is similar to the previous calculations. The key point here
is that since p splits completely in H, we have Hy = Fy, hence Vig(Hy) = Hy,
and Wy (Hy) = Z. The sequence becomes the canonical sequence

w

Ind{ O —— V,(H) = Ind{’ Hy —» Wy(H) = Ind{ Z = Z[G)
with wy = 1 ® ordy. The composition
w
Ol sy — Vo(H) — Z[G]

therefore is precisely the map ordg. It follows that the value of ordg(e) is
the determinant of the matrix in which the first column of Ay has been
replaced by wy(v;). But this is by definition the matrix Asy.

To conclude, we note that

(det(Ax)) = Fitt V3! (H) = (On)
by [20, Theorem 3.3 and Corollary 6.2]. O
If follows from Lemma [4.9] that
(66) €= :c'upz’zl.
For the next lemma, recall from that we have a map

recg: (O np)g — I/I%, e~ Y (reap(o(e)) — 1)o7,
ceG

where 7 is a lift of ¢ in g.
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Lemma 4.10. We have
recg(e) = det(Ag,) in I/12.
Proof. Recall from the proof of Lemma that V,(H) = Ind{ Hy. The

homomorphism
recy: Hy — [ = Ip/If
therefore induces a map that we again denote recy: V,(H) — I/I?. The
composition
Oy, sy — VolH) =+ /17
is precisely the map recg. It follows that recg(e) is the determinant of

the matrix Ayec in which the first column of Ay has been replaced by
(recq(v;))i_,. We must prove that

det(As,) = det(Arec) (mod I?).

To prove this claim, first note that ﬁgp and Aye. have all columns after
the first equal in R. It therefore suffices to show that the first columns of
As, and Aec are equal in I/12.

This follows from an unwinding of the definitions. We revisit the definition
of Vig(Hy) given in (35). In this notation, the map

recy : Vip(Hy) — I/ I}
giving the first column of A,ec is simply induced by the canonical restriction
map
o—1—o|p—1, O'EW(H;%b/Fp).
Let w denote the chosen place of L above 3 and p. By , the map
Vip(Leg) — I giving the first column of Ay, is also induced by the restriction
oc—1m ol —1foro e WLP/F,).

To conclude, we observe that by [20, Lemma B.1], the composition of the

maps

Ind?, Viy(Low) —— (IndS, Vip(Ly))" —— Ind§ Vi (Hyp)
is induced by the map Vi,(Ly,) — Vig(Hgp) given by restriction: o — 1 —
O"H%b —1. O
We are finally ready for:
Proof of Theorem [4.6. Define
VY =V(L) @z Ry, By = BY(L) ®zpq Ry /(b1 + L) = (Re)".

The module ng has free generators by, bg, b3, ...,b; over Ry. The module
Vé, has free generators vy, ...,v; over R¢. Therefore

Vg = VE (L) ®gic) Re/ (b1 + L)
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has a quadratic R¢-module presentation

ve 12, po, Ve 0.

By definition, the matrix A ¢ for f¢ with respect to our chosen bases is the
matrix Ay, with the first column replaced by the first column of Ay, — LAs.
Note that this first column has entries in the ideal (I,.#) C Ry that is
annihilated by I. Furthermore ﬁgp and Ay, have columns after the first
that are equal. It follows that

det(Ay) = det(As,) — L det(Ax).

By Lemma F we have det(Ay) = 20y for some 2 € R'. By and

Lemma , we have det(Ag,) =z - recG(upZ’E,) in I/I?, with the same .
Therefore,

det(Ay) = det(As,) — £ det(Ax)
=z- recG(upE’E,) A A),
=x- (reCG(upE’El) —0Or).
Since z is a unit, the equality

Fittp, (V) = (det(Az)) = (recq(uy™™) — O1)

follows. Since
recG(upE’E/) —- 0L eI/l

the second statement of the theorem follows from the first by Theorem
U

4.5. Working componentwise. The rings R and R are not in general
connected. In working with modular forms, it will be convenient to replace
these rings with individual components. We will also need to extend scalars
when working with Galois representations, so we do so already at this point.
Therefore let E/ denote a finite extension of Q) and let O denote the ring of
integers of E/. We assume that E contains the image of every character of
g.

Write g = g, x ¢/, where g, is the p-Sylow subgroup of g and ¢ is the
subgroup of g containing the elements of prime-to-p order. For each odd
character ¢ of g’, let Ry denote the group ring Olg,] endowed with the
g-action in which g = g, - ¢’ (with g, € gp, ¢’ € ¢’) acts by multiplication by
gp¥(¢’). We then have an isomorphism of O|g]-algebras

R ®gz, 0 =0[g]” =[] Ry,
Y



BRUMER-STARK UNITS AND EXPLICIT CLASS FIELD THEORY 43

where the product ranges over the odd characters 1 of g’. We let
Ry y =Ry ®Rr Ry, Vyyp =Vg®ry Ry

We consider the analogous decomposition G = G, x G'. If x is an odd
character of G’, we let RX denote the group ring O[G,] endowed with the G-
action in which g = g,- ¢ acts by multiplication by g,x(¢’). Then E@zp (=
Hx R,, with the product running over the odd characters x of G'.

If x is an odd character of G’, then it may be viewed as a character of g’
via the canonical projection g — G’, and we may consider both R, and
EX. Furthermore, in this case if we let I, denote the image of the relative
augmentation ideal I in R,, then we have R, /I, = R,.

Lemma 4.11. The equality

(67) Fittr,  (Vgy) =0
for each odd character x of G' implies the equality
(68) Fittp, (Vg) =0.

Proof. As O is free (and hence faithfully flat) over Z,, in order to prove
it suffices to show that

FittR$®zpo(Vg ®Zp O) = 0
As
Ry ®z,0 = HR3,¢7
P

with the product running over all odd characters ¢ of ¢, it suffices to prove
that

(69) Fittsz (Vg’d,) =0

for all such ¢. The assumption is precisely this result if 1 factors
through G’.

It therefore remains to show that holds if v is an odd character of
g’ that does not factor through G’. For such v, there exists o in the kernel
of g — G’ such that ¥ (o) # 1. Since 1) has prime-to-p order, the element
1 — (o) is a unit in O. It follows that the image of 1 —o € I in Ry is a
unit. Since ZI = 0in R, it follows that the image of £ in R y vanishes,
and hence that

(70) Ry = Ry/(Or,17).
In view of the definition , and again applying .2 = 0 in Rg ,, we find
Ve 2 (VS (L)Ry,)/ (b1)
= vEp (L)Rz,w
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since V3 (L) /by = V%;(L) by the definitions of these modules. Now

Fitt (V3 (L)r) = (O1)

by [20, Theorem 3.3] as stated in Theorem above. The desired result
follows since O, = 0 in Rg 4 by . O

Lemma 4.12. Let x be an odd character of G' and let & C ¢/, K C G’
denote the kernels of x when viewed as characters of ¢’ and G’, respectively.
Let RZZ,X and vfi”% denote the ring Ry, and the module Vg ,, respectively,
defined using the fields L* and H¥ in place of L and H. Then there exist
canonical isomorphisms

/ ~ / ~
X = Rff:X’ VL”,)( = vaX'

Proof. There is clearly an Olgl-algebra isomorphism R) = R,, as these are

both the group ring O[g,] in which g = g,¢’ acts via x(g’). The elements O «

and Op correspond under this isomorphism. Similarly we have an isomor-

phism Elx =~ R, under which Oy« and Oy correspond. The O[g]-algebra

isomorphism Rii”,x = Ry, follows immediately from these considerations.
For the second isomorphism of the lemma, we first show that

(71) VE (LR, = VE (LY)r, -
For this, we note that by [20, Lemma B.1], there is an isomorphism
VO(L®) = (NR)VP(L) c VY(L),
yielding a commutative diagram
VO(L®) —— BY(LY) —— VI (L¥) —— 0
| Jne !
V(L) —— BY4(L) —— V¥ (L) —— 0.

Upon tensoring with R,, the arrow labelled N& becomes an isomorphism.
Indeed, & acts trivially on R,, whence N acts as #R, which is prime-to-p
and hence invertible in Z,. The isomorphism follows.

The desired isomorphism vjﬂx = Vg now follows from the definition

59). O

In view of Lemma [4.12, we may (and do) hereafter replace (L, H) by
(L*, H®) and therefore assume that g’ = G’ and that Y is a faithful character
of G'. In particular, G’ is cyclic and

I' =ker(g — G)

is a p-group.
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5. GROUP RING VALUED HILBERT MODULAR FORMS

Let m be a positive integer. Let x be an odd character of G’. In this
section, we use the theory of group ring valued Hilbert modular forms to
produce an R g ,-module Bp and a cohomology class k € H' (G, Bp) satis-
fying the conditions of Theorem At some point, we will have to assume
that p is not the only prime of F' above p (the case of one prime above p
will be handled in . We will calculate that

Fittr, ,(Bp) € (0™),
which in conjunction with the R & ,-module surjection
Vg — Bp
of Theorem [4.5] yields

FittRz“ (Vg}x) C (pm)

Since this holds for all m, we have Fittg, (Vg ) =0. Lemma implies
Fittg, (Vg) = 0, which by Theorem completes the proof of the p-part
of Gross’s Conjecture.

We refer the reader to [20, Section 7] for our definitions on group ring
valued Hilbert modular forms, recalling only the essential notation here.
Let n C Op denote an integral ideal and £ > 1 a positive integer. We let
M} (n) denote the space of Hilbert modular forms of level n and weight k.
The subgroup of forms whose g-expansion coefficients at all unramified cusps
lie in Z is denoted My (n,Z). If A is any abelian group, we let My(n, A) =
My(n,Z) ® A. The space My(n,Z) is endowed with an action of “diamond
operators” S(m), indexed by the classes m € G, the narrow ray class group
of F associated to the conductor n. Suppose now that R is a ring and
¥: GI — R* is a character. Suppose that the abelian group A has an
R-module structure. Then we define

Mk(n, A,’l,b) = {f S Mk(n, A) f|5(m) = 'gb(m)f for all m € GnJr}

These are the forms of nebentypus 9. In our applications below, R is a
group ring (or a factor of a group ring), and % is the tautological character.
For this reason, we call My (n, A,%) the space of group ring valued modular
forms. We write Si(n, A,%) C Mg(n, A,) for the subspace of cusp forms.

5.1. The modified group ring Eisenstein series. We begin by recalling
the reductions of previous sections. By the results of we may assume
that 7' (and hence X') contains no primes above p. By the results of
we may assume that g’ = G’ and that y is a faithful odd character of G'. In
particular, G’ is cyclic and T = ker(g — G) is a p-group.
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Let

(72) no =cond(L/F),  n=lem(n, [Ja).
[ SMNE)

Let P be the p-part of n. Note that B # 1 as p | PB. We write
A =R, =0Olgply, A =R, =0[Gyly-

There are canonical O[g]-algebra injections with finite cokernel:

AsT[on  Ao[0n o0 @@

(] el
w|G’:X "MG’:X

Here Oy denotes the ring O on which g acts by the character ). We call the
characters indexing these products the characters of A and the characters
of A, respectively. In particular, a character of A is simply a character of A
that is trivial on T

Lemma 5.1. Let 1) be any character of A, and let ¢g = cond(y)). Put
¢ = lem(co,P), and = n/c. Then | is a square-free product of primes not
dividing p.

Proof. The fact that the primes dividing [ do not lie above p is clear since
P is the p-part of n and B | ¢. To prove that [ is square-free, suppose
that q is a prime not lying above p such that ¢ || n with m > 2. It
suffices to show that q™ | ¢, whence q 1 [. By the definition of n, we must
have g™ | ng = cond(L/F). The proof now follows exactly as |20, Lemma
8.13]. 0

Let 1 be a character of A. Denote by 1y the character ¢ viewed with
modulus divisible by all primes dividing 8. In [20 Definition 8.2], we defined
the following linear combination of level-raised Eisenstein series (where [ is
as in Lemma [5.1)):

(73) Wi (g, 1) = Y p(a)yp(a)Na* By (¢, 1)|a € Mi(n,1)).
all
Here p is the Mobius function, which for squarefree ideals a that are the
product of r distinct primes satsifies pu(a) = (—1)".
As we now recall, we showed in |20, §8] that the forms W, (1, 1) inter-
polate into a group ring-valued family of modular forms, and we calculated

the constant terms of this family at certain cusps. Let

Yrg— A", g=g9" — gpx(d)
denote the canonical character. We recall from [20, §7.2.3] our notation on

the set of cusps of level n, denoted cusps(n). A cusp [A] is represented by a
pair A = (M, \) where M € GLj (F), the set of all 2 x 2 matrices over F
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with totally positive determinant, and A € C1*(F), the narrow class group
of F. The definition of Mj(n) involves the choice, for each A € CIT(F),
of a representative ideal ty. Writing ? for the different of F' and letting

M = <CCL Z), we define the ideals

ba=a0p +c(t,0)™!, g = c(tydby) .

Following |20, §7.2.5] we define for any integral ideal b | n:

Coo(b,n) = {[A] € cusps(n): b | ca}

Co(b,n) = {[A] € cusps(n): ged(b,ca) =1}.
If b = n, we simply write Cs(n) and Cp(n). The notion of normalized
constant term of a modular form at a cusp is defined in (20} §7.2.3]. In the
remainder of the paper, we write for simplicity Oy = @g sy and ©f, = @épyzl
as in 4] above.
Proposition 5.2. There exists a group ring valued form
(74) Wl (1/]7 1) S Ml (nv Aa "/})

such that the specialization of Wi(¥,1) at character 1 of A is the form
Wiy, 1). The normalized constant term of Wi (v, 1) at a cusp A such that
[A] € Cso(B,n) is

[ sen(Na)yp~(ab 107 /27 if [A] € Coo(n)
C%(A)_{o A if [A] € Coo (B, 1) \ Coo(n).

Recall here that # denotes the involution on R induced by g —+ ¢! for
geg.

(75)

Proof. For any odd k > 1, a group ring valued form
Wk('l)b) 1) € Mk(n7 FraC(A)v'l)b)

is defined in |20, Proposition 8.14, eqn. (102)], with notation from loc. cit.,
by
Wi6,1) = 3 Nl Bu@p™ 1)lot™ () = [J(1 - NoP)
m|l m vlm

Note that this definition and the proof that Wy (1, 1) specializes under a
character ¢ of A to Wy(¢p,1) uses the result of Lemma All the nor-
malized Fourier coefficients of Wy (1, 1) lie in A, except for possibly the
constant terms, which lie in Frac(A).

As we now explain, [20, Proposition 8.7] implies that the constant term
of Wi(1g,1) at a cusp [A] € Co(P,n) \ Coo(n) vanishes. First note that

P # 1 and hence Co(P,n) N Coo (P, n) = 0. As in [20] §8.1], write
¢o = cond(¢)), ¢ = lem(co,P), and t =n/c.
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By Lemma t is a squarefree product of primes not lying above p. We
therefore have

Coo(P,1n) N Coo(cot,n) = Con(n).
Hence if [A] € Coo (P, n)\ Coo(n), then [20, Prop 8.7] yields that the constant

term of Wy (¢, 1) at [A] vanishes in both the cases ¢g = 1 and ¢o # 1.
At a cusp [A] € C(n) the contant term of Wi (v, 1) equals

Ly, s/(¢,0)

1,1 ; ;

sgn(Na)p™" (ab, )"T

The element of A interpolating these specializations is the element C¥(.A)

defined in . Since CF(A) € A, we obtain Wy (,1) € My (n, A, ). O

We have an analogous construction of group ring forms over G. We write

A =Ry =O[Gly-
Let
Y:g— A
denote the reduction of 9. Note that 9 factors through g — G. As in ,
we let
mg = cond(H/F),  m=lem(mg, []q).
qexuY

Note that here, p does not divide the level m. Since we have g’ = G’,
however, note that the levels n and m agree away from p, i.e. if Py denotes
the p-part of m, then n/P = m/Po. (This fact implies that the results
of Propositions [5.3] and which a priori would apply to the cusps in

Coo(Po,m), also apply on Coo (P, n).)
We use [20, Proposition 8.14, eqn. (102)] again to define, for odd k > 1,
a group ring valued modular form

(76) Wi(,1) € My (m,Frac(A),%) C My (n, Frac(A),v).

Again, the g-expansion coefficients of W, (@, 1) other than possibly the con-
stant terms lie in A. The specialization of Wy (1, 1) at a character v of A is

Wi (¢, 1), defined as in with B replaced by PBy.
We now discuss the constant terms of Wi (,1) for odd & > 1. The
following result follows directly from [20, Proposition 8.7].

Proposition 5.3. If ¥\ S is nonempty, the normalized constant term of
Wi(¥,1) at a cusp A such that [A] € Coo(PB,n) is

Oy = [En Ny (@b )6 /20 if [A] € Cao(n)
! 0 if [A] € Coo(B, 1) \ Coo(n).

In particular, if ¥\ Sso is nonempty we have Wy (1, 1) € My(n, A, ).
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If ¥ = S (in which case Py = 1) the situation is more complicated for
Wi(a,1). Furthermore in this case we require the constant terms of the
forms Wy (3, 1) for odd k > 3.

For each character v of A, let by = cond(¢)), b = lem(bg,Po), and [ =
m/b. If [A] is a cusp, we follow [20, Definition 8.3] and define two sets of
primes:

Ji={all[Al e Coa,n)}, i ={all: [Al € Cuola,n)}.

Define Cj(A) to be the unique element of Frac(A) such that for each char-
acter ¢ of A, we have

(77)
11 _
BOHA) = e san(N(—e)) =0 LR T gl TT (w(e))

ka omn
0 qeJy¢ qeJy

if [.A] S Co([lo,l‘l), and
Y(Cr(A) =0
if [A] € Coo(B,n) \ Co(bg,n). Here 7(¢) denotes the Gauss sum defined

in |19, Definition 4.1]. The following proposition follows directly from |20,
Propositions 8.6 and 8.7].

Progosition 5.4. Suppose that ¥ = Soo. The normalized constant term of
Wi(,1) at a cusp [A] € Coo (B, n) is equal to CH(A)+C(A) if k=1, and
is equal to Cp(A) if k> 1.

5.2. Construction of a cusp form. In this section we construct the cusp
form required in our proof. The construction will need to be split into several
cases. Recall that B is the p-part of n. The ideal B is divisible precisely by
the primes in ¥, = XU {p}. Define P’ to be the product of all other primes

above p, i.e.

B =]]o

alp, P
e Case 1: the set X\ S is non-empty, i.e. p is not the only prime

dividing ‘.

In Case 2, we have ¥ = S,,. Note that the eigenvalues of the form Wi (3, 1)
for the operator Uy, q | P, are 9(q) and 1. If x(q) # 1, then these are not
congruent modulo the maximal ideal of A. To ensure that the Hecke algebras
we work with are local, it will be convenient to project to the eigenspace

with eigenvalue 1. Let
Bo=[[a. ' =]]a

qlp’ ql®’
x(q)#1 x(q)=1

We subdivide Case 2 into three cases:
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e Case 2(a): P # 1.
e Case 2(b): P; =1, # 1.
e Case 2(c): P( =P} = 1, i.e. p is the only prime above p in F'.
We consider the module
A=AdA,
endowed with the canonical diagonal A-action. We view A = A® 0 as a
submodule of A and denote the vector (0,1) € A by A, so elements of A will
be written a + \b with a € A,b € A.
As in the previous section, we have the canonical characters

P g — A, Y:g—G— A
We denote the image of I in A (i.e. the kernel of the canonical projection
A— Z) by I A-
Recall the following result of Silliman [44, Theorem 8.10], a generalization
of a result of Hida.

Theorem 5.5. Fix a positive integer m. For positive integers k = 0
(mod (p—1)p™) with N sufficiently large depending on m, there is a modu-
lar form Vi, € My(1,Z,,1) such that ¢(m,Vy) =0 (mod p™) for all integral
ideals m, and such that the normalized constant term c4(0,Vy) for each cusp
[A] is congruent to 1 (mod p™).

To apply this result, we hereafter assume that m is fixed and k£ = 1
(mod (p—1)p™)) with N sufficiently large that the conclusion of Theorem
holds. In subsequent arguments we will make N larger still if necessary to
obtain other properties of our modular forms.

In Case 1, we define

f = (Wl("pa 1) - )‘Wl(av 1)>Vk'—1 € Mk(n7A>¢)'
Note here that Wi(1,1) € My(n, A,%) and Wi(¥,1) € M(n, A, %) by
Propositions [5.2] and respectively.
In Case 2 we recall the non-zerodivisor

o/ (1 — k)
Soo,0
(78) xr = .%'(k) - W
Soo,

considered in |20, Theorem 8.16]. The elements 9?:%(1 — k) and @g:; be-

€ Frac(A)

long to Frac(A) and interpolate the nonzero algebraic numbers Lg__ g(¢ !, 1—
k) and LSw@(@b*l, 0), respectively, as 1 ranges over the odd characters of
G that restrict to xy on G’. For k=1 (mod (p — 1)p")) with N sufficiently
large, the ratio = belongs to A by loc. cit. We hereafter assume that N is
chosen so that this holds. Let

(79) Z = any non-zerodivisor lift of = to A.
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We define in Case 2:
(80) =3 (Wi, 1) = WA, 1)) Viy + AWR(8,1).

A priori, in Case 2 the form f lies in Mj(n, A ®z, Qp,9) since we have
only shown that the constant terms of the forms Wi (1, 1) and Wy, (¢, 1) lie
in Frac(A) = A4 ®z, Qp. However, the proposition below shows that in fact
f € Mg(n,A,9). In order to state results in all cases simultaneously, we set
Z =1 in Case 1 for the remainder of the paper.

Proposition 5.6. With N and k as above, we have in all cases f € My(n, A, ).
Furthermore the form f has constant terms at cusps [A] € Coo(B,n) lying
in the submodule J C A, where

(81) J=3Jy, Jo= (13, of — ot pmA> .

Proof. We give the proof in Case 2, as Case 1 is similar and in fact easier.

We first note that the non-constant term g-expansion coefficients of f
lie in A. Indeed, all the forms appearing in the definition of f have non-
constant term g-expansion coefficients lying in A, so any failure of integrality
of non-constant terms can arise only from multiplying the constant terms
of W1(1,%) by the non-constant terms of Vj_;. For k=1 (mod (p — 1)p)
and N sufficiently large, the non-constant terms of V;_; are divisible by any
desired power of p, and this product will be integral.

We will prove the integrality of the constant terms of f and the statement
about cuspidality simultaneously. By Propositions and the constant
term of f at a cusp [A] € Cs(P, n) is equal to

(CL(A) = ACTT (A) = ACL(A)) Zy + ACL(A)
= (FCL(A) — ZACH(A)) — X (CL(A)zy — Cr(A)),

where y = ¢4(0,Vix_1) =1 (mod p™) and the congruence is modulo Zp"™A C
J. For the first term, we have

sgn(Na)y " (aby")
2n

(ZCE(A) — 2ACH (A)) = (azef - :zej‘f,x) e
It remains to show that xyC}(A) — C}(A) lies in A and is divisible by zp™.
Now (] (A) is some fixed element of Frac(A) and z € A, so for y sufficiently
close to 1 p-adically, (y — 1)C1(A) will lie in p™A. Therefore it suffices
to show that 2C{(A) — C}(A) lies in A and is divisible by zp™, i.e. that
C1(A) —271C}(A) lies in A and is divisible by p™.

For this, we note that by the definition , multiplying by the factor
71 exactly replaces the L-value in the definition of Cp(A) with that
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appearing in C}(A), hence

1— Nk

C{(A) - $71@HCI/C(~A) = Ci(A) 1= Nb(l)_k H 1 — NL

qeJ?

For k =1 (mod (p—1)p") and N sufficiently large, the term in parentheses
can be made divisible by arbitrarily large powers of p. (Note we are in Case
2, whence by is prime to p.) The result follows. O

Corollary 5.7. There exists a p-ordinary cusp form g € Sp(n’, A, )P
such that in Cases 1 and 2(a) we have

g = Wl(’lﬁmg, 1) - )\Wl(’lzma, 1) (HlOd J()),
while in Cases 2(b) and 2(c) we have
g=F(Wi(®,1) = AWi(9, 1)) + AWi(1,9,) (mod J).

These congruences are understood to mean that the g-expansion coefficients
c(a,g) for nonzero ideals a C Op are congruent modulo Jy or J to the
coefficients of the expressions on the right.

Proof. Silliman’s result [44, Theorem 8.4] implies that there is an element
I € Myg(n, J,9) whose constant terms at Coo (3, n) agree with those of f.
Therefore f — f’ has constant terms that vanish on Co (3, n). Let e%d, egrd
denote the ordinary operators of Hida (see [20, §7.2.9]). By [19, Theorem

5.1], the form gg = efgd(f — f’) is cuspidal, whence
g=eyd(f—f") = exg0

is cuspidal as well. Now the ordinary operator egrd fixes the forms Wy (1, 1)
and W1 (1, 1), whereas it sends Wy, (3, 1) to its ordinary p-stabilization Wy, (1, 1,,).
Furthermore, Viy_1 =1 (mod p™) and p™ € Jy. The result follows in Cases
2(b) and 2(c).

To complete the proof in Cases 1 and 2(a), we apply the operator [ | aI, (Uq—
¥(q)). This operator sends

Wl("pv 1) — Wl(¢‘;367 1)7 Wl(av 1) — Wl(a‘ﬁfﬁ 1)5

while it annihilates Wy (1, 1,). This gives the result in Case 1. In Case 2(a),
we obtain a cusp form g satisfying

gEj(Wﬂ¢wﬂU—AWﬁ@wﬁU) (mod Z.Jp).

This congruence in particular implies that the Fourier coefficients of g are
divisible by Z. Since Z is a non-zerodivisor, we may divide by it and obtain
a cusp form satsifying the same congruence as in Case 1. (|
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5.3. Homomorphism from the Hecke algebra. We now define certain
Hecke algebras acting on Sk (n’, A,4). We define T to be the A-subalgebra
of End4(Sk(n’, A,9)) generated over A by the following operators:

o T for [ nY,

e S(a) for (a,nP’) =1,

e U, for prime q € ¥\ S (i.e. for prime q | B, q # p),

e (U, —1)% and

o (Uy—Ntfortel.

Let T = T[U,]. Finally let T = T[Uq,q | ).

Due to the presence of the involution # in Proposition we consider
an “involuted” version of the ring A ¢. Define

Al = ALL)/(ZL(©On)F — (O)*, L14, L7, 13).

At this point, we must momentarily abandon case 2(c), when p is the
only prime of F' above p. In this case, the last bulleted point of the theorem
below—which in some sense is the most important—does not hold. Here
P’ = 1, and this last bulleted point then reads Ann A% (W) C (p™), which
does not hold in case 2(c). The algebra W constructed in Theorem [5.8
using the form g is not large enough for our purposes. In §6/we will therefore
provide a different approach to proving the congruence that only applies
when there is exactly one prime of F' above p. For the remainder of §5| we
assume that there is at least one prime above p in F' other than p.

Theorem 5.8. Suppose we are in Cases 1, 2(a), or 2(b), i.e. there exists
a prime of F above p other than p. There exists an A?;—algebm W and a
surjective A-algebra homomorphism
o: TH — W
such that:
Ty — NIF=1 4 4p(1) for prime [§ .
S(a) = ¥(a) for (a,nP’) = 1.
Ug — 1 for prime q € ¥\ Sec.
Up—1-2.
Uq 1 for prime q | By.
For prime q | B, write g = p(Uy —%(q)) € W. Then:
o c4(eq —1+1(q)) =0.
st (T ) © 0™,
Proof. We recall from the definition

Jo = (131, of —of), pmA) .

e Ann
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To streamline the notation for all cases, write

¥ — { Cases 1/2(a) K = X,
z  Case 2(b),

and recall P, = 1 in Case 2(b). Define
c= ] v/,

aCOp
with the product indexed by the nonzero ideals a C Op. There is an A-
module map
c: Sp(mP, A ) — C

that associates to each cusp form h its collection of normalized g-expansion
coefficients c¢(a, h) reduced modulo K. Note that if we let the operators T,
Uy act by the usual formulae on Fourier coefficients (see [20, eqn. (97)]) and
we let S(a) act by ¥(a), then the map c is equivariant for these operators.

Let F denote the image of the TT-span of the cusp form g defined in
Corollary under the map c¢. This is an A-module of finite type. Define
W be the image of the canonical A-algebra homomorphism

TT — End4(F).
This construction yields a canonical surjective A-algebra map
o:TH— W
that sends a Hecke operator to its action on the Hecke span of g under the
map c.

We will show in a moment that W has the structure of an Aj;—algebra.
First we calculate the action of Hecke operators on g using the congruence

of Corollary
(82)

Wiy, 1) — AWl@%, 1) Cases 1/2(a) 4K
IE X (M@ ) - W@ D) S A1) Casez(n) )

The fact that ¢(S(a)) = %(a) is clear since all our forms have nebentypus
¥. The operator T acts by multiplication by 1 + ¥([) on Wj(1,1) and
Wi(3,1), and it acts by multiplication by NI*=1 4+ 4h(I) on Wy (¢, 1,).
Since NI*~! =1 (mod p™) and Xp™ € K, we have

Ti(g) = (N1 4 9(1)g  (mod K).

Similarly @LUq) =1 for prime q € ¥\ S, since all the forms Wi (9, 1),
Wi, 1), Wi (9, 1,) have Uy-eigenvalue 1.

The most interesting action is that of U,. This operator fixes Wi(4,1),

since p | P. It also acts as ¥(p) = 1 on Wi(sh,1,) because of the p-
stabilization. Yet U, does not act as a scalar on Wi(9,1), as it is not
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stabilized. Instead U, — 1 sends Wi (1, 1) to its p-stabilization Wi (1, 1,) =
Wi (9, 1), where the equality follows since ¥(p) = 1 and we are in weight
1. The conclusion of these considerations is that

(83) Uy —1)g = —AXW ('ITmeE), 1) (mod K).

We can now give W the structure of an Af‘;—algebra by letting .Z act by
©(1-Uy). To prove that this is well-defined, we must show that the relations
in Aj; are satisfied in W, namely Z(0)# —(0L)# = £I, = ¥%2 =13 = 0.
The most interesting of these is the first. From , we find the following
congruences mod K:

(QH)#(l - Up)g = (G)H)#X)\Wl (Ep&BE)v 1)
= (057 X W1 (P, 1)

The second congruence follows from the definition of K and the third from
1} in view of the fact that (©r)# € I4 annihilates A while W (1,[1%, 1) =
Wl('?bp%, 1) (mod I4) and X(©%)#I4 € XI% C K. This proves that the
first relation holds, while the others are similar but easier.

Next we study the action of Uy —4(q) for q | P’. This operator sends
Wi (3, 1) to Wi (g, 1), sends Wi (3, 1) to Wy (Jq, 1), and annihilates Wy (9, 1,).
For q | P}, we therefore have

(89) Uy (@)g =X (Wi 1) ~ AWi (b 1)) (mod K).
Note that U, acts as 1 on the form on the right. This yields the equation

(85) €q(eg — 1 +9(q)) =0,

where €5 = ¢(Uq —%(q)). Meanwhile if q | 3, then in particular we are in
case 1/2(a) and Uy acts as 1 on g (mod K) by (82). For such q we have

(86) ¢ =1-1(q)
and holds trivially.

To prove the last item note that by and we have
(87)

[1Ws—w(@)g = X (Wi, 1) = W@y ) [T -#(@)  (mod K).
ql%’ alB)

In case 2(c), this congruence does not hold as there is a contribution from
the term Wy (3, 1,). This term does not appear in in cases 1/2(a), and
is annihilated by the single application of an ¢, for q | B in case 2(b). This
is why case 2(c) must be removed from the present analysis.
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Returning to , suppose this form is annihilated by an element a+b.%Z €
Aﬁ;, with a,b € A. By definition, such an element acts by a +b(1 —U,) and
hence, noting that qug)(l —(q)) is a unit, we obtain

aX (Wl (o, 1) — AW (g, 1)) + DX AW (g, 1,) =0 (mod K).

Analyzing the g-expansion coefficients ¢(1, *) and ¢(p, *) of this congru-
ence, respectively, we obtain

X(a—Xa+ ) =0 (mod K)
X(a—2Xa+Ab) =0 (mod K).

From these, we deduce X (a + A\b) € K, and since X is a non-zerodivisor it
follows that a + \b € Jo = (O%X — ©F  I3A, p™A). Tt follows that in A%,
we have

a+b¥ e (0% —0F 13,y = (™)
as desired. O

5.4. Galois Representation. In this section we recall the formalism of
[20, §9.1-9.2] regarding the Galois representation associated to the Hecke
algebra TT. As explained in [20, §8.5] the Hecke algebra TT is reduced.
The kernel of ¢ is contained in a unique maximal ideal m C TT. This
maximal ideal is generated by the maximal ideal (mp, I) of A together with
the elements Ty — (1 + x(I)) for [{nP’, S(a) — x(a) for (a,nP’) =1, Uy —1
for all q | p.

Let T,T11 denote the completion of TT with respect to m (and similarly Ty,
Ty, the completions of T and T with respect to their maximal ideals mN'T,
m N T, respectively). Set

K = Frac(T}).
As in [20, §9.2], there is a Galois representation
p: G F— GLQ(K )

such that

(1) p is unramified outside np.
(2) For all primes [ { np, the characteristic polynomial of p(Froby) is
given by

(88) char(p(Frob)))(z) = 2 — Tz + (ONIFL,

(3) For q | p, let Gpq C GF denote a decomposition group at q. We
have
k—1,,—1

Yecye Mg~ *
(%9 plar ~ (VR 7).
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where 7,: Gpq — (TL)* is the unramified character given by
np(rec(w™1)) = Uy. Here w denotes a uniformizer of Fy and
rec: Fy — G?’l?q

is the local Artin reciprocity map.

For each q | p, let Vj; be the eigenspace of p|g, i.e. the span of the vector
((1)) in the basis for which holds. We choose an element 7 € Gg as in
[20, Proposition 9.3] so that its restriction to g is complex conjugation and
so that for all q | p, the subspace V; projected to each factor of K is not
stable under p(7). As in loc. cit., fix a basis such that

(90 0=y 1)

where A} =1 (mod m) and A2 = —1 (mod m). For a general o, we write

)
o= (i) i)

For each q | p, there is a change of basis matrix M, = <é,: g:) € GLy(K)
such that
a(o) b((f)) <f/f€k‘1n‘1 *)
91 M, = M, cyc ‘lq )
o1 (o) i) = (P

The choice of 7 ensures that A; and Cy are invertible in K. Furthermore,
equating the upper left hand entries in yields:

(92) b(o) =z4(alo) — 'tps]j}fcln‘;l(a)) for all o € Gpq, where x4 = —élﬂ.
q

5.5. Cohomology Class. Let ¢p: T:rn — W denote the extension of the
homomorphism ¢ to the completion of TT. Let

I = ker(pn), T =ker(pnls,), 1= ker(pnlr,).
As in [20, §9.3], the choice of basis for p implies that a(o),d(c) € T with
(93) alo) =¥ 1(o) (mod I), d(o)=4(o) (modI).
Furthermore we have

(94) det p(o) = ¥~ (o).

cyc
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Recall that K = Frac(T:rn). Recall the elements x4 € K for q | p defined
in , including the distinguished prime p. Define x;, = x,(Uy — 1). Let:
B = Ty-submodule of K generated by b(c) for all ¢ € G along with
xp,:z:;,, and x4 for all g € X.
B’ = T\-submodule of B generated by IB, p™B, and
b(o) for all o € Iy, q | P
(95)
B—B/B
By construction, B naturally has the structure of an Aj;—algebra in which
Z acts by multiplication by (1 — Uy).

Denote by b(c) the image of b(¢) in B. Since p is a Galois representation,
we have

b(oo’) = a(a)b(o”) + b(o)d(c") for all 0,0" € Gp.
The congruences therefore imply that the function
w(o) = Blo (o)
is a 1-cocycle defining a cohomology class [s] € H'(Gp, B(~')). Note here

that since p™B = 0 in B and slgy_cl =1 (mod p™), the character elgy_cl acts

trivially on B. Let:

By = Tpy-submodule of B generated by the image of b(c) for all o € Gp.

B = Ty-submodule of B generated by By along with

xp,x;, and x4 for all g € X.

Note that IB = 0 in B and every element of Ty, is equivalent to an element
of A modulo I (see the first three bullet points of Theorem [5.8)). Therefore,
in the definition of By and B, it is equivalent to replace Ty, by A.

The A-module structure of B(p~!) is by definition the composition of the

involution # with the natural A-module structure of B. The canonical AZZ-
module structure of B can therefore be viewed as an A g-module structure
on B(yp~).

We now verify that our construction verifies all the properties required to
apply Theorems and First we describe the class k locally at primes

in ¥, \ Ss using (92).
Lemma 5.9. For q € ¥\ S, we have
k(o) = zq(p (o) — 1), o€ Gryg.
Meanwhile if v, = — Lz, then
k(o) = 2" (0) = 1) +ordp(0)zy, 0 € Gy,
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where ordy is as in (39).

Proof. Note that
(96) alo) =" lo)=1 (mod (I,p™)).

cyc
If g € ¥\ S, then U; = 1 (mod I), and hence by the definition of 7,
following , nq acts trivially on B(3~'). Therefore 1) becomes

k(o) =blopp~ (o) =24~ (0) = 1), o€ Gpy
For q = p, this applies except that U, # 1 (mod I). Since (U, —1)% € 1,
we have
U =1+nlUy—1) (modI).
It follows that
k(o) = :cp(q/)_l(a) -1+ ordp(a)az;, o€ Gpy,
where
Theorem 5.10. The G-module B(yp~") and the cohomology class [k] €
HY(Gp, B(yp1)) satisfy the following properties.
e The class [k] is unramified outside X', locally trivial at 3, and tamely
ramified at X'
e The image of the restriction
[KZ]|GL S HI(GL, B) = Homcont(GL, B)

1s equal to By.
e The quotient B/By is generated over A by xzq for ¢ € ¥ and the
elements xy, x),. The element x, is fived by the action of Gry.
e The 1-cocycle k satisfies the following.
— For q € X finite and 0 € Gpgq, we have k(o) = (P~1(0) — 1)q.
— For o € W(Fy/F,), we have

(97) k(o) = @ (o) — D)y + ordy (o).

— Let T be the special element used in to fix the chosen basis
of p. For all 0 € Gp, we have

(98) k(o) = [K]|lg, (ero 771 /2 € By.
o With respect to the Ag-structure on B(p~'), we have
x; + ZLxy, = 0.
Proof. The Galois representation p, and hence the cohomology class [k], is
unramified outside ¥ U ¥’ and the primes dividing p. There are three types

of primes above p: those in Y, the distinguished prime p, and the primes
dividing .
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Since in the definition of B we have taken the quotient by the Ty-module
spanned by b(o) for o € I, q | P/, it follows that [k] is unramified at the
primes dividing P’. For q € ¥ \ Sw, Lemma expresses K|g,, as a
coboundary and demonstrates that [x] is locally trivial at q € X. At p, note
that since ordy(o) = 0 for o € I, Lemma [5.9|shows that [«] is unramified at
p. To conclude the proof of the first item, note that ¥’ contains no primes
above p, and all our modules are pro-p. Therefore [k] is tamely ramified at
all primes in Y.

For the second bullet point, let By, C By denote the image of [«]|¢, . Then
of course the image of [k]|¢, in H' (G, (Bo/Br)(% ")) vanishes, and hence
by [20, Lemma 6.3], the image of [x] in H'(GF, (Bo/Br)(%~')) vanishes.
Writing % for the image of k in By/Br, we may then write

F(o) =247 (o) = 1)
for some z € By/Byr. Yet by construction x(7) = 0 and ¢~ 1(7) = —1. We
therefore obtain z = 0. Hence ® = 0 as a cocycle. But by definition of k
and By, the image of the cocycle k generates By and hence the image of K
generates By/By. It follows that By/Br = 0, i.e. By = By, as desired.

Next we show that k satisfies equation . As By is pro-p with p odd,
it is enough to show that

20" Yo)b(0) = b(oTo tr 7Y,

where 7 is as in . The upper right entry (“b-entry”) of p(cro~1771) is

A
(99) b(oro tr71) = det(p(0)) La(o)b(o) <1 + )\2> .
1
The congruence yields
d=¢(o) (mod p™,1I).
The first congruence in yields
a(c) =1 (mod p™,1I).

Furthermore, \y = 1 = —\y (mod p™,I). Hence the expression on the right
side of (99) is congruent to 2¢p='(0)b(c). This finishes the proof that x

satisfies equation .
The remaining bullet points follow directly from the definitions or have

already been established. O
In view of Theorems and we deduce from Theorem
Corollary 5.11. We have an A.y-module surjection
Vga— B@™)
and hence an inclusion Fitta,, (Vg 4) C Fitta, (B@™)).
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5.6. Calculation of the Fitting ideal. It remains to prove that
Fitta, (B@™')) C (™).
Applying the involution #, this is equivalent to
Fitt (B) C (p™) = pm A%,

This removal of the twist by 9~ will be convenient so that the usual g-
module structure on B via 9 is compatible with the Ty-module structure
on B and the homomorphism ¢y, which satsifies ¢ (S(a)) = ¥(a).

We first recall the following lemma from [20, Lemma 9.9].

Lemma 5.12. Recall that By C B denotes the Tw-submodule generated by
the elements b(o) for o € Gp. There are finitely many elements by, ..., b, €
By that are non-zerodivisors in K, which generate By as an A-module.

Theorem 5.13. With notation as in Theorem[5.8, we have

FittAé (B) C <pm,AnnA§ (H €q - W)),
qlP
and hence by the last item of that theorem we have

Fitt 5 (B) C (p™).

Proof. The proof proceeds closely along the lines of that in |20, Theorem
9.10]. Let q1,...,q, denote the primes dividing 9P’. For each q;, choose an
element 0; € Gy, C G that lifts rec(w;) € Gfl‘:,’, where wo; is a uniformizer
for Fy,. Define
G = —b(ffi)ip(%)ffi;;k(ffi) = 2q,(Ug, —9(q5) +1) € B.

Here and throughout this proof, we use the notation a = b + I to mean
a = b+ z for some z € I to avoid needing to add distinct variable names for
each such z that appears.

By choosing the elements b1, ...,b,, from Lemma together with z,
for all q € ¥,, we get elements by,...,b, (n = m + #X,) of B that are
non-zerodivisors in K = Frac(Ty) and generate this module over Ty,. The
images of these elements in B are therefore Aﬁp—module generators.

To calculate Fitt/@ (B) we use the generating set ci,...,¢p,b1,. .., by

for B over Aj;. Of course, these first r generators are not necessary, but
including them will aid us in proving the theorem. Suppose we have a matrix

M e M(n+7’)><(n+7’) (Ajs/t)
such that each row of M represents a relation amongst our generators, i.e.

such that
M(ecy,... ¢ b1,...,b,)T =0in B,
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We need to show that det(M) € Ajﬁ; satisfies (det(M) + p™2) [[ g €q = 0

in W for some z € Af;.
Write M = (Y|Z) in block matrix form, where

Y = (4ij) € Minsrysr(A%),  Z = (2ij) € Mniryxn(A%).

k—1
cyc

Since 9 and 7, are unramified at q; and a(o) = ¢ (mod I), we have by

(92):

b(Iy;) C zq,L
Also, since the b; generate B, every element of IB can be written as a sum
of elements of the form ¢;b; with ¢; € I. Therefore each relation

T n
Zyijcj' + Z Zijbj =0in B
j=1 j=1

can be expressed as in equality in B as

n

(100) > g, (51 (Ug; = 9(a;)) + 1) + > _(Zij + T+ p™Tin)b; = 0,
j=1 j=1

We reiterate that here and in what follows, the symbols I (twice) and Ty,
represent elements of those sets for which we do not, for notational reasons,
introduce separate variable names. Here we have denoted by 7;; and Z;;
elements of Ty, such that ©(3i;) = ij, @(%;) = zij. It follows from (100)
that if we define a matrix M’ € M, 1) x (n+tr) (Frac(Ty)) in block form by

M = (w, Gy, = 9@ + D) | G+ T+ Tty

then det(M’) = 0 in K since it has rows that sum to 0. We can cancel the
factors x4, and b; scaling the columns of M’, since these are non-zerodivisors
in K. We obtain that det(M") = 0 where

M = (565U, = (@) + 1) | i+ T+ 5" Tw) ) € Moy (ni) (T):
Taking the determinant of M” and applying ¢, we obtain
0 = p(det(M")) = (det(M) +p™A%) [ ] & in W.

qlP
Therefore,
det(M) € (pm,AnnAz < H €q - W)),
ql%’
yielding the first statement of the theorem. The second statement then
follows immediately from the last bulleted statement in Theorem 5.8 U

We immediately find:
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Theorem 5.14. Suppose we are in cases 1, 2(a), or 2(b). We have
FittAz (Vg,A) = 0.
Proof. Corollary and Theorem [5.13 combine to yield

Fitta, (V,a) C Fitta, (B ™)) C (p™).
Since this holds for all m, we have Fitts,, (Vg 1) = 0 as desired. O

Combining our results yields the p-part of Gross’s conjecture.

Proof of Theorem[1.4, For now we assume there is more than one prime
above p in F', leaving the case of one prime for the next section. Theo-

rem [5.14 and Lemma imply that Fittg, (V) = 0. Theorem 4.6/ then
yields the p-part of the modified Gross conjecture:

recG(upE’E/) =07 (mod I?).

Lemma, now gives the p-part of Gross’s conjecture for the Brumer—Stark
unit uy:
recg(up) = G)gﬁ; (mod I?). O
6. THE CASE OF ONE PRIME ABOVE p IN F'

In this section we handle Case 2(c), where p is the only prime of F' lying
above p. We impose this condition for the remainder of the paper. Rather
than calculating the Fitting ideal of V¢, we prove the p-part of the modified
Gross Conjecture (the congruence ) by taking advantage of two features
that present themselves when there is only one prime above p: (1) the
cyclotomic tower is ramified only at p, hence we may deform up this tower
without altering the depletion set ¥,; (2) The rank one rational Gross—Stark
conjecture, proven in [18] and [50], is known. In essence, our argument is
to show that the rational conjecture (for the cyclotomic tower) implies the
integral conjecture (for arbitrary L/F'). The key input in this reduction is
the strong version of the Brumer—Stark conjecture giving the Fitting ideal
of V%;, conjectured by Burns and Kurihara and proven in [20]|. This result
was stated in Theorem above, and we apply it in this section to the
compositum of L with cyclotomic extensions of F'. Another important result
applied is the nonvanishing of the derivative of p-adic L-functions at s = 0,
which follows by combining the result of the rational Gross—Stark conjecture
with the spectacular transcendence theorem of Brumer—Baker on the linear
independence of p-adic logarithms of algebraic numbers. This again takes
advantage of the fact that we are in a rank 1 situation since there is only
one prime above p in F.

We begin by recalling the necessary results and notation concerning p-adic
L-functions.
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6.1. p-adic L-functions. In our current setting we have ¥ = S, ¥, =
Soo U {p}, and p is the only prime of F' above p. For each odd character
x of G, Deligne-Ribet and Cassou-Nogues construct a p-adic meromorphic
function

Lp(xw,8): Zp — Qp(x)

satisfying the interpolation property

Lp(xw,n) = Ly, p(xw"; 1)

for all integers n < 0. Here w: Gp — pp—1 denotes the Teichmiiller char-
acter and Qp(x) denotes the extension of Q, obtained by adjoining the
values of x. Analyticity and integrality are achieved if we incorporate the
smoothing set ¥', i.e. we have a p-adic analytic function

Lys(xw,s): Zp, — Zy(x)
satisfying
Lys(xw,n) = Ly, s (xw",n)
for all integers n < 0. Moreover, these p-adic L-functions interpolate to

a group ring valued Stickelberger function. There exists a p-adic analytic
function

O (s): Zp — Z,[G]™
satisfying the interpolation property
Ol (1 — k) =Og, (1 —k)

for all positive integers k =1 (mod p—1). As we now describe, @gz,(s) can
be constructed as a certain p-adic integral. Let Fi./F denote the cyclotomic
Z,-extension of F' and let ho, = Gal(HF,,/F'). For each integer m > 0 we let
F,, C Fy denote the mth layer of the tower and let b,, = Gal(HF«/HF,).
Then b, is an open subgroup of h., and its cosets provide a cover of h, by

disjoint opens. For o € Gy, = oo /b = Gal(HF,,,/F) we define
p(o + bm) = Co,3(0,0),  where 057 %/7(0) = > Go, (7,077
TEGm

For o € (G define

(101) G3(0:5) = | {eese(n) du(r)
o+ho

Here hg = Gal(HFx/H). We then have

@ZI;{E/(S) = Z Cp,E’(‘L 8)071.

oceG
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Taking the derivative of (101) with respect to s and evaluating at 0, we
obtain

(102) G0 == [ | tog, ()

To evaluate this modulo p™, we may take the Riemann sum over the cosets
of bh,,. We obtain:

Lemma 6.1. For every integer m > 0, we have
(O85)/(0) = — 3 G5, 3(0,0) g ceyel0)o™"  (mod p™).
O'eG'm
Here @ denotes the image of o in G.

For notational simplicity, we will simply write ©; for (@fz,)’ (0) in the
sequel.

6.2. The rational Gross—Stark conjecture. The following result, which
we refer to as the rank 1 rational Gross—Stark conjecture, was proven in
[18] and [50]. The latter paper removed two assumptions from the former,
making the result unconditional.

Theorem 6.2 ([30, Conjecture 2.12]). Let u € U, such that
(103) X(ordg(u)) = Y x(0) " ordp(o(up)) # 0.

ceG
Then

ZO’GG X(J)il logp(Norme/Qp (U(U))) _ L;)(X_lw’ O)
x(ordg(u)) L(x~1,0)

When applied to the Brumer—Stark unit upZ ’E/, this result can be inter-
preted as follows:

(104)

Corollary 6.3. We have
(105) Zzp 110gp Norme/Q (o(u 3372 )))-
ceG

Proof. 1t is enough to show that the two sides agree after the application of
x for every odd character x of G, i.e. that

106)  Lhu(x'w,0) = — 3 x(0)  log,(Normg, jq, (o ().
oeG
Noting that
Ly 1e0) _ Ty (',0)
L0500  Les(c50)
since the smoothing factors [ ] s/ (1 — x " (0q)Ng) cancel, and recalling that

x(orde(uy ™)) = Ly s (x ™', 0)
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by the definition of up2 ’E/, the desired result li follows directly from 1}
O

The following result is known to the experts and has at its heart two
deep facts—Theorem above and the celebrated transcendence result of
Brumer—Baker on the linear independence of logarithms of algebraic num-
bers over Q.

Theorem 6.4. Let x be an odd character of G. We have L;,(xw,0) # 0.
Proof. In view of Theorem it suffices to prove that

S x(0) o, (Normp, q, (o(u))) # 0

oeG

for any u € U, such that x(ordg(u)) # 0. This follows from the theorem of
Brumer—Baker [2]| as explained by Gross in [30, Proposition 2.13]. O

We interpret this result in terms of the group-ring element ©’; as follows.
Corollary 6.5. The element ©'y; € R = Z,[G]™ is a non-zerodivisor.

6.3. The ring Rx,, and module Vy,,. Recall R = Z,[g]”. For any
nonnegative integer m, define the ring

(107) Rx.m = R[X]/(01 — Oy X, X IX, % p"X).

Lemma 6.6. For m sufficiently large, the canonical map R/I*> — Rx.m
18 injective.

Proof. The proof is easier than Theorem since ©'; is a non-zerodivisor
in R. Let a € R have image in Rx,, that vanishes. Writing down the
fact that a lies in the ideal defining Ry ,, shows that a = r©r (mod I 2)
for some r € R such that 70 = 0 (mod p™) in R. Yet since O is a
non-zerodivisor, there exists a nonnegative integer h such that ©’; divides
p" in R. We therefore find p"7 = 0 (mod p™), whence 7 = 0 (mod p™ ")
for m > h. Therefore r € (I,p™ ") so a € (I?,p™"I). But #I" annihilates
I/1? (vecall T' = Gal(L/H)) so for m large enough p™ "I C I?, and we have
a € I? as desired. ]

Recall that for an integer m > 0, F,,, denotes the mth layer of the cyclo-
tomic Z,-extension of F. Let g,, = Gal(LF,,/F) and I';,, = Gal(LF,,/H).
Let Ry, = Zp[gm]™ and let

Ym: 9m — Ry,
denote the canonical character. We define a ring homomorphism

(108) ﬁm: Rm — RX,ma ot U|L + U|H . 1ng(ecyc(a))‘)('
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This is well-defined since the image of o € g,, determines the value of
log,(cyc(0)) modulo p™.
Define

(109) Vxm = V3 (LFn) Ry @Ry Rxm,

where the R,,-action on the right factor is given by f3,,.

Lemma 6.7. The Rx ,,-module V x n, is quadratically presented and
Fittry . (Vx.m) = (teca(uy”™ ) — Of).

To prepare for the proof of Lemma define I, = ker(Z,[gm]” —
Z,[G]7). We have I,,/12, & Z,[G]~ @ I',,. We lift the map recg defined in
@ by defining

recam: (Ofp s ) — Im/Iny € Y (recgm(0(e)) — 1)5,,",
oceG

where recy ,, : H(ig — I}, is the reciprocity map and G, is a lift of o in g,,.
Under the projection g, — g, the element recy ,,(¢) is mapped to recg(e).
Furthermore,

Ecyc(recy,m(€)) = Normp, /q, (€) in (Z/p™Z)".
Therefore, under the map 3, defined in ({108), we have

(110)  Bm(recam(€)) = reca(e) + X Y (o) " log, Normy, q, (o(c)).
ceG

Proof of Lemma[6.7. Lemmas and (applied to LF}, in place of L)
imply that V%; (LF),)R,, is quadratically presented over R, and that

Fittp,, (V3 (LEm)R,,) = (reccm(up™)).
Applying (110), we then calculate
B,qq,(rech(upZ’E ) = recG(uf’E )+ X Z J(J)_l log,, NormHm/Qp(cf(upz’Z )

oceG
(111) = recG(upE’E,) -0yX
(112) — recq(uy™ ) — O
Equation follows from Corollary and equation is one of the
defining relations of Rx ,, in @) The lemma follows. O

On the other hand, in our previous work |20] we calculated the Fitting
ideal of V%; (LF,,) exactly, yielding the following result:

Theorem 6.8. We have Fittgr,, (Vxm) = 0.
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Proof. Theorem 3.3 of [20], recalled already in Theorem above, implies
that

Fittr,, (VE, (LFn)r,) = (O57%,).
Passing to Rx,, by applying f,,, we find

Bn(O%,%) = O + X D (5, 9(0,0)log, ceye(0)7

oCgm

(113) =0L+X Y (r,x(0,0)l0g, ceye(0)T
c€Gm

(114) =0, - X0y

(115) = 0.

Here & denotes the image of ¢ in G. Equation follows from the distri-
bution property of partial zeta functions since log, 5Cyc(0)5_1 depends only
on the image of ¢ in G,,. Equation follows from Lemma Equation
(115) is a defining relation of Ry ,,. The result follows. ]

Combining Lemma [6.7| with Theorem we obtain
(116) recG(upE’Z/) — 07 =0in Rx n.
By Lemma equation for m large enough yields
reCG(upE’Z/) =0 (mod I?)

in R. This completes the proof of the p-part of the modified Gross conjecture
in Case 2(c). Lemma then yields the p-part of Gross’s conjecture
for the Brumer—Stark unit wuy:

recg(up) = @ép/l; (mod I?).

This completes the proof of Theorem
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