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Abstract. Let F be a totally real field of degree n and p an odd
prime. We prove the p-part of the integral Gross–Stark conjecture for the
Brumer–Stark p-units living in CM abelian extensions of F . In previous
work, the first author showed that such a result implies an exact p-adic
analytic formula for these Brumer–Stark units up to a bounded root of
unity error, including a “real multiplication” analogue of Shimura’s cel-
ebrated reciprocity law from the theory of Complex Multiplication. In
this paper we show that the Brumer–Stark units, along with n�1 other
easily described elements (these are simply square roots of certain ele-
ments of F ) generate the maximal abelian extension of F . We therefore
obtain an unconditional construction of the maximal abelian extension
of any totally real field, albeit one that involves p-adic integration for
infinitely many primes p.

Our method of proof of the integral Gross–Stark conjecture is a gen-
eralization of our previous work on the Brumer–Stark conjecture. We
apply Ribet’s method in the context of group ring valued Hilbert modu-
lar forms. A key new construction here is the definition of a Galois mod-
ule rL that incorporates an integral version of the Greenberg–Stevens
L -invariant into the theory of Ritter–Weiss modules. This allows for
the reinterpretation of Gross’s conjecture as the vanishing of the Fitting
ideal of rL . This vanishing is obtained by constructing a quotient of
rL whose Fitting ideal vanishes using the Galois representations asso-
ciated to cuspidal Hilbert modular forms.
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1. Introduction

Our motivation in this paper is explicit class field theory, i.e. the explicit
analytic construction of the maximal abelian extension of a number field F .
Let F be a totally real number field. Up to a bounded root of unity, we
prove an explicit p-adic analytic formula for certain elements (Brumer–Stark
p-units) that we show generate, along with other easily described elements,
the maximal abelian extension of F as we range over all primes p and all
conductors n ⇢ OF . To demonstrate the simplest possible novel case of these
formulas, in §2.3 we present example computations of narrow Hilbert class
fields of real quadratic fields generated by our elements; complete tables of
hundreds of such calculations are given in [26].

The p-adic formula for Brumer–Stark units that we prove was conjec-
tured by the first author, collaborators, and others over a series of previous
papers ([15], [13], [6], [7], [16], [24]). It was proven in [16] that under a
mild assumption denoted (⇤) below, our formula for Brumer–Stark p-units
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is implied by the p-part of a conjecture of Gross on the relationship be-
tween Brumer–Stark p-units and the special values of L-functions in towers
of number fields [31, Conjecture 7.6]. Note that the assumption (⇤) excludes
only finitely many primes p for a given totally real field F (a subset of those
dividing the discriminant of F ). The conjecture of Gross is often referred
to as the “integral Gross–Stark conjecture” or “Gross’s tower of fields con-
jecture,” and the proof of the p-part of this conjecture takes up the bulk of
the paper.

We prove the p-part of the integral Gross–Stark conjecture by applying
Ribet’s method, which was first established in his groundbreaking paper
[37]. We apply Ribet’s method in the context of group ring valued families
of Hilbert modular forms as employed in [52] and developed in our previous
work [20].

The main new feature in the present paper that goes beyond our work in
[20] is to incorporate an integral group-ring version of the Greenberg-Stevens
L -invariant. In this way, we generalize from considering just the “value”
of the L-function to the “derivative” of the L-function (in Gross’s integral
group ring sense). After defining an appropriate generalized group ring RL

in which this integral Greenberg–Stevens L -invariant lives, we construct a
Ritter–Weiss module rL associated to the L -invariant. We calculate the
Fitting ideal of rL using the Galois representations associated to group
ring valued modular forms. The connection between L -invariants, families
of modular forms, and Galois representations was pioneered by the work
of Greenberg and Stevens on the Mazur–Tate–Teitelbaum conjecture [28].
The application of these ideas toward the rational Gross–Stark conjecture
([30, Conjecture 2.12]) was introduced in [18] and developed in [22]. The
current construction is a strong integral refinement of those prior works. The
methods of this paper are similar to those used by Atsuta and Kataoka to
give a near complete proof of the Equivariant Tamagawa Number Conjecture
for the minus part of the Tate motive associated to CM abelian extensions
of totally real fields [1].

We now describe our results in greater detail.

1.1. The Brumer–Stark conjecture. Let F be a totally real field of de-
gree n over Q. Let H be a finite abelian extension of F that is a CM field.
Write G = Gal(H/F ). Let S and T denote finite nonempty disjoint sets of
places of F such that S contains the set S1 of real places and the set Sram

of finite primes ramifying in H. Associated to any character � : G �! C⇤

one has the Artin L-function

(1) LS(�, s) =
Y

p 62S

1

1� �(p)Np�s
, Re(s) > 1,
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and its “T -smoothed” version

(2) LS,T (�, s) = LS(�, s)
Y

p2T

(1� �(p)Np
1�s).

The function LS,T (�, s) can be analytically continued to a holomorphic func-
tion on the complex plane. These L-functions can be packaged together into
Stickelberger elements

⇥H/F
S (s), ⇥H/F

S,T (s) 2 C[G]

defined by (we drop the superscript H/F when unambiguous)

�(⇥S(s)) = LS(�
�1

, s), �(⇥S,T ) = LS,T (�
�1

, s) for all � 2 Ĝ.

A classical theorem of Siegel [42], Klingen [33] and Shintani [41] states
that ⇥S := ⇥S(0) lies in Q[G]. This was refined by Deligne–Ribet [25] and
Cassou-Noguès [5], who proved that under a certain mild technical condition
on T (which is discussed in (19) below and which we assume holds for the
remainder of the paper), we have ⇥S,T := ⇥S,T (0) 2 Z[G].

The following conjecture stated by Tate is known as the Brumer–Stark
conjecture. Let p 62 S [ T be a prime of F that splits completely in H. Let
U

�
p ⇢ H

⇤ denote the group of elements u satisfying |u|v = 1 for all places v
of H not lying above p, including the complex places. Let U�

p,T ⇢ U
�
p denote

the subgroup of elements such that u ⌘ 1 (mod qOH) for all q 2 T .

Conjecture 1.1 (Tate–Brumer–Stark, [47]). Fix a prime P of H above p.

There exists an element up 2 U
�

p,T such that

(3) ordG(up) :=
X

�2G

ordP(�(up))�
�1 = ⇥S,T

in Z[G].

In previous work [20], we proved this conjecture away from 2, i.e. over
Z[1/2]. In forthcoming work [21], we will prove the conjecture at 2 and
thereby complete the proof. (Even without the result at p = 2, one could
carry around an unspecified power of 2 in various results in this paper, and
our applications to explicit class field theory would not change.)

Theorem 1.2. The Brumer–Stark Conjecture holds.

1.2. The Integral Gross–Stark conjecture. Let p be as above and write
Sp = S [ {p}. Let L denote a finite abelian CM extension of F containing
H that is ramified over F only at the places in Sp. Write g = Gal(L/F ) and
� = Gal(L/H), so g/� ⇠= G. Let I denote the relative augmentation ideal
associated to g and G, i.e. the kernel of the canonical projection

AuggG : Z[g] �⇣ Z[G].
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Then ⇥L/F
Sp,T

lies in I, since its image under AuggG is

(4) ⇥H/F
Sp,T

= ⇥H/F
S,T (1� Frob(H/F, p)) = 0,

as p splits completely in H. Intuitively, if we view ⇥L/F
Sp,T

as a function on

the ideals of Z[g], equation (4) states that this function “has a zero” at the
ideal I; the value of the “derivative” of this function at I is simply the image

of ⇥L/F
Sp,T

in I/I
2. Gross provided a conjectural algebraic interpretation of

this derivative as follows. Denote by

(5) recP : H⇤

P �! �

the composition of the inclusion H
⇤

P
,�! A⇤

H with the global Artin reci-
procity map

A⇤

H �⇣ �.

Throughout this article we adopt Serre’s convention [40] for the reciprocity
map. Therefore rec($�1) is a lifting to G

ab
p of the Frobenius element on the

maximal unramified extension of Fp if $ 2 F
⇤
p is a uniformizer.

Conjecture 1.3 (Gross, [31, Conjecture 7.6]). Define

(6) recG(up) =
X

�2G

(recP �(up)� 1)�̃�1 2 I/I
2
,

where �̃ 2 g is any lift of � 2 G. Then

recG(up) ⌘ ⇥L/F
Sp,T

in I/I
2
.

Let p denote the rational prime below p, and assume that p 6= 2. Our
first main result is the p-part of Gross’s conjecture.

Theorem 1.4. Let p be an odd prime and suppose that p lies above p.

Gross’s Conjecture 1.3 holds in (I/I2)⌦ Zp.

1.3. An Exact Formula for Brumer–Stark units. Building o↵ the p-
adic Gross–Stark conjecture and applying the methods introduced by Dar-
mon in [12], the first author proposed an exact formula for Brumer–Stark
units in his Ph.D. thesis [15], published jointly with Darmon in [13]. The
setting for this conjecture was that of a real quadratic ground field F , a
prime p of the form p = pOF for a rational prime p, and a ring class field
extension H/F . Afterward, a sequence of works generalized and refined this
conjecture to the case of arbitrary totally real fields F and finite primes p

that split completely in a CM abelian extension H ([6], [7], [16], [24]). Fur-
ther details on this history are given in §2.2. See also the analogous works
[36], [9] in the archimedean context.
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For expositional purposes in this introduction, let us describe the shape
of these conjectures in a special case mentioned above: we assume that the
rational prime p is inert in F and that p = pOF . Then for each integral ideal
a of F relatively prime to the primes in S and T , one may define a Z-valued
measure ⌫a,S,T on O⇤

p in terms of special values of Shintani zeta-functions
(or, alternatively, in terms of periods of Eisenstein series). The following is
a special case of [16, Conjecture 3.21] or [24, Conjecture 6.1].

Conjecture 1.5. Let � = Frob(H/F, a). We have the following exact ana-

lytic formula for the associated conjugate of the Brumer–Stark unit up:

(7) �(up) = p
⇣S,T (�,0) ⇥

Z

O⇤
p

x d⌫a,S,T (x) in F
⇤

p .

Here we view �(up) as an element of F ⇤
p via H ⇢ HP

⇠= Fp, where P is the
prime above p appearing in Conjecture 1.1. Conjecture 1.5 implies not only
the algebraicity of the p-adic integrals in (7), but a “Shimura reciprocity law”
in which the geometric action of a generalized class group on equivalence
classes of ideals a is identified with the Galois action of Gal(H/F ) on the
units up (see [16, Conjecture 3.21]). In this way, Conjecture 1.5 can be
viewed as a part of a theory of “real multiplication” in parallel with the
classical theory of complex multiplication that is governed by Shimura’s
celebrated reciprocity law.

Our second main result, which applies in the general case (i.e. without
assuming p is inert over Q), is the following.

Theorem 1.6. Let p denote the rational prime below p. Suppose that

(⇤) p is odd and H \ F (µp1) ⇢ H
+
, the maximal totally

real subfield of H.

Then equation (7), or more precisely its generalization (14) to the general

setting, holds up to multiplication by a root of unity in F
⇤
p .

Since p splits completely in H while p is totally ramified in Q(µpn) for
all n, condition (⇤) can fail for an odd prime p only if p is ramified in F .
The condition therefore eliminates only finitely many p, a subset of those
dividing the discriminant of F .

An analogue of Conjecture 1.5 where F is replaced by the function field of
a smooth projective algebraic curve over Fq—a far simpler setting because
of the explicit class field theory a↵orded by the theory of Drinfeld modules—
was proven by the first author and Miller in [23].

We conclude this discussion by bringing attention to the beautiful concur-
rent work of Darmon, Pozzi, and Vonk, who prove a version of Conjecture 1.5
in the setting that F is a real quadratic field and the rational prime p is in-
ert in F [14]. While their work also employs the deformations of p-adic
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modular forms and their associated Galois representations, they work with
deformations in “vertical” p-adic towers as opposed to the “horizontal” tame
deformations applied in this paper.

1.4. Explicit Class Field Theory. A celebrated theorem of Kronecker
and Weber states that the maximal abelian extension of the field Q of ra-
tional numbers is obtained by adjoining all roots of unity.

Theorem 1.7 (Kronecker–Weber). We have Qab =
S

n�1Q(e2⇡i/n).

The roots of unity can be viewed analytically as the special values of the
analytic function e

2⇡ix at rational arguments, or algebraically as the set of
torsion points of the group scheme Gm. The theory of complex multiplica-
tion provides a similar description of F ab when F is a quadratic imaginary
field.

Theorem 1.8. Let F be a quadratic imaginary field. Let E denote an

elliptic curve with complex multiplication by the ring of integers OF and let

w denote the Weber function. We have

F
ab =

[

n�1

F (j(E), w(E[n])).

See the elegant exposition [27] for the definition of the Weber function w

and a proof of Theorem 1.8. From the analytic perspective, the modular
functions j and w take on the role of the exponential function e

2⇡ix in the
case F = Q; from the algebraic perspective, the abelian variety E takes on
the role of the group scheme Gm.

As we now describe, Theorem 1.6 can be viewed as an explicit class field
theory for totally real fields F in the spirit of of Theorems 1.7 and 1.8.
Our approach here is inspired by Stark’s discussion of the application of his
conjectures to Hilbert’s 12th problem [46]. For each nonzero ideal n ⇢ OF ,
pick a prime ideal p(n) ⇢ OF whose image in the narrow ray class group
of F of conductor n is trivial. Choose p(n) such that the rational prime p

below it satisfies (⇤). Let up(n) denote the Brumer–Stark unit for the narrow
ray class field F (n) of conductor n. Let

Sn =
�
�(up(n)) : � 2 Gal(F (n)/F )

 
.

Finally, let {↵1, . . . ,↵n�1} denote any elements of F ⇤ whose signs in

{±1}n/(�1, . . . ,�1)

under the real embeddings of F form a basis for this Z/2Z-vector space. In
§2.2, we prove the following.
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Theorem 1.9. The maximal abelian extension of F is generated by

p
↵1, . . . ,

p
↵n�1

together with the elements of Sn as n ranges over all nonzero ideals n ⇢ OF :

F
ab =

[̇
n
F (Sn) [̇ F (

p
↵1, . . . ,

p
↵n�1),

where [̇ denotes compositum of fields.

Since Theorem 1.6 gives an exact formula for the elements in Sn, we obtain
via Theorem 1.9 an e↵ective method of generating the maximal abelian
extension of any totally real field. See Remark 2.7 for a discussion regarding
the root of unity ambiguity in Theorem 1.6.

The integrals in (7) are explicitly computable and yield a practical method
of generating class fields. In Section 2.3 we provide examples of narrow
Hilbert class fields of real quadratic fields generated by this analytic formula.

Any discussion of explicit class field theory would be incomplete without
mentioning Hilbert’s 12th problem. In his famed address at the ICM in
Paris in 1900, Hilbert wrote [32]:

“The theorem that every abelian number field arises from
the realm of rational numbers by the composition of fields of
roots of unity is due to Kronecker...”

“Since the realm of the imaginary quadratic number fields
is the simplest after the realm of rational numbers, the prob-
lem arises, to extend Kronecker’s theorem to this case...”

“Finally, the extension of Kronecker’s theorem to the case
that, in the place of the realm of rational numbers or of
the imaginary quadratic field, any algebraic field whatever
is laid down as the realm of rationality, seems to me of the
greatest importance. I regard this problem as one of the most
profound and far-reaching in the theory of numbers and of
functions.”

At the time of Hilbert’s lecture, Theorem 1.8 was not fully proved. Over
the previous decades, the explicit construction of class fields of imaginary
quadratic fields using special values of modular functions was the topic of
great study, particularly by Kronecker (1823–1891), who called this program
his Jugendtraum (“dream of youth”). Nevertheless, it was already clear by
1900 that analytically constructing class fields of ground fields other than

Q or quadratic imaginary fields represented a substantially more di�cult
problem. Hilbert was somewhat specific in the type of explicit class field
theory he envisioned: he asked for the definition of certain complex analytic
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functions whose special values or transformation properties yield the maxi-
mal abelian extension of F . Certainly, as p-adic numbers had only recently
been invented at the time of Hilbert’s lecture, the constructions of this paper
do not fit neatly into his framework. We refer the reader to Schappacher’s
delightful exposition on Hilbert’s 12th problem for further background and
historical details [39].

As a final note on explicit class field theory in the introduction, we recall
that if E/F is a quadratic CM extension, then “most” of the field E

ab

is obtained by taking the compositum of fields of moduli of appropriate
CM-motives with F

ab. More precisely, the following result, which combines
Corollary 1.5.2, Theorem 2.1, and Corollary 2.3 of [51], is known.

Theorem 1.10. Let E be a CM field with maximal totally real subfield F .

Let ME be the field generated over E by the fields of moduli of all CM-

motives with Hodge cycle structure whose reflex fields are contained in E.

Equivalently, ME is the field obtained by adjoining to E the fields of moduli

of all polarised abelian varieties of CM-type, whose reflex fields are contained

in E, and their torsion points. Then the compositum MEF
ab

is a subfield

of E
ab

such that Gal(Eab
/MEF

ab) has exponent dividing 2 (it is an infinite

product of Z/2Z’s unless F = Q, in which case it is trivial).

As a result, we find that the construction of F ab given in Theorem 1.9
together with the field ME yields a description of most of the maximal
abelian extension of E.

1.5. Summary of Proof. We conclude the introduction by describing the
proof of Theorem 1.4, the p-part of the integral Gross–Stark conjecture
where p is the prime below p. We always assume that p is odd. Recall that we
are given a tower of fields L/H/F with g = Gal(L/F ) and G = Gal(H/F ).
Let

R = Zp[g]
� = Zp[g]/(� + 1), R = Zp[G]�,

where � is the complex conjugation of g. Let I = ker(R �⇣ R).
As a first step, we alter the smoothing set S and depletion set T as follows.

Define

⌃ = {v 2 S : v | p1},
⌃p = ⌃ [ {p},
⌃0 = {v 2 S : v - p1} [ T.

There exists an associated modified Stickelberger element ⇥H
⌃,⌃0 2 Zp[G] and

modified Brumer–Stark unit u
⌃,⌃0
p 2 U

�

p,T such that ordG(u
⌃,⌃0
p ) = ⇥H

⌃,⌃0 .
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We show in Lemma 3.1 that the modified Gross–Stark congruence

(8) recG(u
⌃,⌃0
p ) ⌘ ⇥L

⌃p,⌃0 (mod I
2)

implies the original one.

In order to prove (8), we recall the Ritter–Weiss modules r⌃0
⌃ (H) and

r⌃0
⌃p
(L) and the relationship between these modules. Versions of these mod-

ules were originally defined by Ritter and Weiss in the foundational work
[38]. An alternate approach was studied in [4] and [3]. Here we apply our
previous work [20], which builds upon the original definition of Ritter–Weiss.

In order to make a connection with the Greenberg–Stevens theory, we
introduce an R-algebra RL that is generated over R by an element L that
plays the role of the analytic L -invariant, i.e. the “ratio” between ⇥L =
⇥L

⌃p,⌃0 and ⇥H = ⇥H
⌃,⌃0 . In some sense, RL is the canonical R-algebra in

which such a ratio can be considered:

RL = R[L ]/(⇥HL �⇥L,L I,L 2
, I

2).

See §3.3 for an expanded discussion motivating this definition. An important
feature of the ring RL that we prove in §3.3 is that the canonical R-algebra
map R/I

2 �! RL is injective.

We next define a generalized Ritter–Weiss module rL over the ring RL .
This module can be viewed as a gluing of the modules r⌃0

⌃ (H) and r⌃0
⌃p
(L)

over RL . By its defining properties, the module r⌃0
⌃ (H) “sees” the modified

Brumer-Stark unit u⌃,⌃0
p , while the module r⌃0

⌃p
(L) sees the image of u⌃,⌃0

p

under recG. By fiat, the ring RL sees the Stickelberger elements ⇥H and
⇥L (or more precisely, a stand-in L for their “ratio”). The upshot is that
rL will be large if (8) holds, and will be small if (8) fails. This notion of
size is made precise via the theory of Fitting ideals.

We will show in §4.4 that the Fitting ideal FittRL (rL ) is generated by
the element

recG(u
⌃,⌃0
p )�⇥L

⌃p,⌃0 2 I/I
2
.

In view of the injectivity of R/I
2 �! RL , in order to prove that (8) holds

it su�ces to prove that

(9) FittRL (rL ) = 0.

We prove (9) and thereby conclude the proof of Theorem 1.4 as follows.
We first give a characterization of rL via Galois cohomology as in [20,
Lemma A.8]. Using this characterization, we show that for an RL -module
M , an RL -module surjection

(10) rL �⇣ M
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is equivalent to a Galois cohomology class  2 H
1(GF ,M) satisfying certain

local conditions. For each positive integer m, we construct such a Galois
cohomology class in an RL -module M satisfying FittRL (M) ⇢ (pm). The
surjection (10) then implies

FittRL (rL ) ⇢ FittRL (M) ⇢ (pm).

Since this is true for all m, we obtain (9) as desired.

The RL -module M and cohomology class  are constructed using group
ring valued families of Hilbert modular forms. Write n for the conductor
of L/F . For simplicity in this introduction we assume that all primes of F
above p divide n and that there is more than one such prime. Let ⇤ be a finite
free Zp-module. For a positive integer k, let Mk(n,⇤) (respectively Sk(n,⇤))
denote the space of Hilbert modular forms (respectively, cusp forms) over
F of level �1(n) over ⇤. The group Sk(n,⇤) is endowed with the action of
a Hecke algebra T̃ that is generated over Zp by the Hecke operators Tq for
q - n, Uq for q | p, and the diamond operators S(m) for each integral ideal m
relatively prime to n.

The main result of §5 is the definition of an R-module ⇤, a submodule
J ⇢ ⇤, and the construction of a cusp form f 2 Sk(n,⇤) satisfying the
following properties.

• The weight k is congruent to 1 modulo (p� 1)pm.
• The quotient ⇤/J has the structure of a faithful R/(I2, pm)-module.
• Let G+

n denote the narrow ray class group of conductor n, and let

   : G+
n �⇣ g ⇢ R

⇤

denote the canonical character. The form f has nebentypus    , i.e.
S(m)f =    (m)f for (m, n) = 1.

• The form f is Eisenstein modulo J in the sense that Tq(f) ⌘ (1 +
   (q))f (mod J) for q - n, and Uq(f) ⌘ f (mod J) for all q | p, q 6= p.

• Modulo J , the operator (1 � Up) acting on the Hecke span of the
form f satisfies the relations governing the element L 2 RL , e.g.

(1� Up)⇥Hf ⌘ ⇥Lf (mod J).

The form f allows for the definition of an RL /p
m-algebra W and an

R-algebra homorphism

' : T̃ �! W

such that

• '(Tq) = 1 +   (q) for q - n
• '(Uq) = 1 for all q | p, q 6= p, and
• '(1� Up) = L .
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Furthermore the algebra W is large enough that the structure map

(11) RL /p
m �! W

is an injection.
There is a Galois representation ⇢ : GF �! GL2(Frac(T̃)) that satisfies

the usual conditions; in particular ⇢ is unramified outside n and tr(⇢(�q)) =
Tq for q - n, where �q denotes a Frobenius at q. We choose a basis for ⇢ such
that ⇢(⌧) is diagonal for a certain well-chosen ⌧ 2 GF that restricts to the
complex conjugation in g. Writing

⇢(�) =

✓
a(�) b(�)
c(�) d(�)

◆

in this basis, we let B̃ denote the T̃-module generated by b(�) for � 2 GF ,
together with certain other elements xq 2 Frac(T̃) for q | p. We then define
B̃ = B̃/(pm, ker')B̃.

Standard methods in the theory of pseudorepresentations then allow for
the definition of a cohomology class  2 H

1(GF , B̃(   �1)). We show that the
class  satisfies the necessary local conditions to yield a surjection rL �⇣
B̃(   �1) as in (10). These local calculations are based on the fact that
the form f is ordinary at primes q | p, and p-ordinary forms have Galois
representations with prescribed shapes when restricted to decomposition
groups at primes dividing p. The elements xq mentioned above arise from
this local calculation.

Finally, we use the methods of [20, Theorem 9.10] along with the crucial
injection (11) to prove the desired result

FittRL (B̃(   �1)) ⇢ (pm).

One modification of the description above in the text is that we break R into
a product of components A and work over AL = A⌦R RL . This reduction
is useful in our constructions with modular forms.

Also, the case where the prime p is the only prime of F above p requires
special consideration and is handled in §6. Let us try to motivate why
this case is unique. In this setting, when k ⌘ 1 (mod (p � 1)pm), the
Eisenstein series Ek(1,�) and Ek(�, 1) are congruent modulo p

m for any
odd character of G. The intersection of the associated Hida families in
weight 1 causes a singularity in the spectrum of the Hida Hecke algebra
at that point. The deformations of modular forms at the weight 1 point
corresponding to E1(1,�p) are more complicated for this reason. We are
not able to construct a group ring family of modular forms defined over a
module endowed with an action of the ring RL in this case.

Instead, we provide a di↵erent strategy for proving the congruence (8)
when there is only one prime of F above p. In a sense, the argument is



BRUMER–STARK UNITS AND EXPLICIT CLASS FIELD THEORY 13

easier in this case, though it relies on previous significant results, some of
which were themselves proved using Hilbert modular forms. We are able
to deform up the cyclotomic tower of F without altering the depletion set
⌃p = S1[{p} since this tower is ramified only at the prime p. Let Fm denote
the mth layer of the tower, let gm = Gal(LFm/F ), and let Rm = Zp[gm]�.
We introduce a ring RX,m analogous to RL , except that X now represents
the ratio between ⇥L and the derivative of the p-adic L-function of H/F at
s = 0, denoted ⇥0

H . We then define a homomorphism Rm �! RX,m and
show that in order to prove (8), it su�ces to prove that

(12) FittRm
(r⌃0

⌃p
(LFm)Rm

⌦Rm
RX,m) = 0.

This reduction is dependent on the proof of the rational rank 1 Gross–Stark
conjecture by the first author with Darmon and Pollack in [18] and Ventullo
in [50]. Another ingredient of the reduction proof is the nonvanishing of the
first derivatives of p-adic L-functions deduced by combining the rational rank
1 Gross–Stark conjecture with the transcendence result of Brumer–Baker
on the nonvanishing of algebraic linear combinations of p-adic logarithms of
algebraic numbers (see Theorem 6.4).

We prove that (12) holds and thereby conclude the proof by applying the
formula

(13) FittRm
(r⌃0

⌃p
(LFm)Rm

) = (⇥LFm/F
⌃p,⌃0 (0))

proved in our previous work [20]. We deduce (12) from (13) using the explicit
construction of the Deligne–Ribet p-adic L-function as an integral.

This concludes our summary discussion of the proof of Theorem 1.4.
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2. Explicit Class Field Theory

2.1. An Exact Formula for Brumer–Stark units. In [16], we proposed
a conjectural exact p-adic analytic formula for the Brumer–Stark units up.
We briefly recall the shape of this formula. Let n ⇢ OF denote a nonzero
ideal and let F (n) denote the narrow ray class field of F associated to the
conductor n. Let H be the maximal CM subfield of F (n) in which the prime
p splits completely. Let f denote the order of p in the narrow ray class group
of conductor n, and write pf = (⇡) for a totally positive element ⇡ 2 1 + n.
We also assume that the set T contains a prime whose norm is a rational
prime in Z.

Next we let D denote a Shintani domain, as defined in [16, Proposition
3.7]. Let Op denote the completion of OF at p, and let O = Op � ⇡Op. Let
b ⇢ OF denote an integral ideal that is relatively prime to n. Associated
with all this data, we have:

• A totally positive unit ✏(b,D ,⇡) 2 O⇤

F congruent to 1 modulo n,
defined in [16, Definition 3.17].

• A Z-valued measure ⌫(b,D) on Op, defined in [16, eqn. (21)] using
Shintani’s theory of simplicial zeta functions.

We then proposed:

Conjecture 2.1 ([16, Conjecture 3.21]). Let �b 2 Gal(H/F ) denote the

Frobenius element associated with b. Let P and up be as in Conjecture 1.1,

and consider H as a subfield of Fp via H ⇢ HP
⇠= Fp. We then have

(14) �b(up) = ✏(b,D,⇡) · ⇡⇣S,T (F (n)/F,b,0) ⇥
Z

O

x d⌫(b,D , x)) 2 F
⇤

p .

We stress that the exponent ⇣S,T (F (n)/F, b, 0) and the measure ⌫(b,D)
may be computed explicitly using Shintani’s formulas. If we may take ⇡ to be
a rational integer (e.g. if p is inert in F and ⇡ = p

f ), then the unit ✏(b,D ,⇡)
is equal to 1 and the formula simplifies as described in the introduction (7).
See [17, Proposition 3.2] for an explicit formula for the measure ⌫(b,D) in
this setting when F is real quadratic. One of the main theorems of [16] is
the following:
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Theorem 2.2 ([16, Theorem 5.18]). Suppose that condition (⇤) holds. Then
the p-part of Conjecture 1.3 for all L implies Conjecture 2.1 up to multipli-

cation by a root of unity in F
⇤
p .

In other words, Theorem 1.4 implies Theorem 1.6.

We conclude this section by discussing the history of Conjecture 2.1 and
its various manifestations. The first conjecture of this form appeared in the
2004 Ph.D. thesis of the first author [15], which was published in the form
[13]. The setting for this conjecture was that of a real quadratic field F and
a prime p that is inert in F . Furthermore H was taken to be a CM ring class
field extension of F . In that paper, the measure ⌫ was defined as a special-
ization of the Eisenstein cocycle obtained by integrating Eisenstein series on
the complex upper half plane. The resulting interplay between complex and
p-adic integration was inspired by Darmon’s theory of integration on Hp⇥H
[12].

This first construction was generalized by Chapdelaine in his 2007 Ph.D.
thesis [6] to the context where F is still a real quadratic field and p is an inert
prime, but H is an arbitrary CM abelian extension of F in which p = pOF

splits completely. Chapedelaine’s construction applied integration of more
general Eisenstein series than considered in [13]. It was published in the
form [7].

Next, as described above, the first author applied Shintani’s theory of
simplicial zeta functions in order to expand the earlier constructions to cover
the general case: F is any totally real field, H is a CM abelian extension,
and p is a finite prime of F that splits completely in H [16]. The equivalence
between the constructions of [13] and [16] in the setting of the former article
was established in [16, §8], though we note an error in this argument that
was observed and corrected by Chapdelaine in [8]. In Chapdelaine’s paper
the equivalence between the constructions was generalized to include that
of [7].

Notably absent from the article [16], however, is the cohomological per-
spective of the earlier works. More recently, several articles have appeared
that have reestablished the cohomological underpinnings of the p-adic for-
mula (14) in the general case.

In [10], Charollois and the first author reconsidered the construction of
the Eisenstein cocycle by Sczech using conditionally convergent sums, and
proved an integrality result yielding another construction of the measure ⌫
in the general case. The cohomological approach was applied to Shintani’s
method independently by Spiess in [45] and by the first author in joint work
with Charollois and M. Greenberg in [11]. The application of these con-
structions to an exact p-adic analytic formula for up was given in joint work
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of the first author with Spiess [24, §6]. The equivalence of the cohomological
approach of loc. cit. with the formula (14) above is the subject of current
work by Honnor, building on the Ph.D. thesis of Tsosie [49]. We hope to
prove directly that Theorem 1.4 implies the conjecture of [24] (and in fact
generalize to the higher rank case) in future joint work with Spiess.

2.2. The Maximal Abelian Extension of F . The goal of this section is
to prove Theorem 1.9. The following is [48, Remarque 2.3 Chap. IV].

Lemma 2.3. Let F be a totally real field and suppose that H/F is a cyclic

CM extension such that the finite prime p ⇢ OF splits completely in H. Let

S = S1[Sram(H/F ) be minimal for the extension H/F . Then H = F (up).

Proof. SinceH/F is cyclic, there exists a faithful character ofG = Gal(H/F ).
Such a character is necessarily odd, i.e. �(complex conjugation) = �1. By
[48, Pg. 25], we have

ords=0 LS,T (�, 0) = #{v 2 S : �(Gv) = 1} = 0

since � is faithful and S is minimal (in particular S contains no place v that
splits completely in H). Hence LS,T (�, 0) 6= 0. On the other hand, applying
�
�1 to (3) yields

LS,T (�, 0) =
X

�2G

ordP(�(up))�(�).

If ⌧ 2 G fixes up, then

�(⌧) · LS,T (�, 0) =
X

�2G

ordP(�(up))�(⌧�)

=
X

�2G

ordP(�⌧
�1(up))�(�)

=
X

�2G

ordP(�(up))�(�)

= LS,T (�, 0).

Since LS,T (�, 0) is nonzero, we conclude that �(⌧) = 1. Since � is faithful,
we have ⌧ = 1. By Galois theory, we have H = F (up). ⇤

Lemma 2.4. Let F be a totally real field and suppose that H/F is an abelian

CM extension. Then H is the compositum of its CM subfields H
0 ⇢ H

containing F such that Gal(H 0
/F ) is cyclic.

Proof. Let c 2 G = Gal(H/F ) denote the unique complex conjugation. Let
G

0 be a subgroup of G. The fixed field H
G0

is CM if and only if c 62 G
0.

The desired result then follows from the following elementary fact in group
theory: if G is a finite abelian group and c 2 G is any nontrivial element,
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then the intersection of all subgroups G0 ⇢ G such that G/G
0 is cyclic and

c 62 G
0 is trivial. We leave the proof of this fact as an exercise. ⇤

To pass from CM fields to arbitrary abelian extensions, we consider the
sign homomorphism

sgn: F ⇤ �! {±1}n, x 7! (sign(�1(x)), . . . , sign(�n(x)).

Here the �i denote the n real embeddings of F . We say that elements
↵1, . . . ,↵n are sign spanning if the images of these elements under sgn gen-
erate the abelian group {±1}n.

Lemma 2.5. Let F be a totally real field and let K/F be a finite abelian

extension. Suppose that ↵1, . . . ,↵n are a sign spanning set of elements of

F
⇤
such that

p
↵i 2 K for all i = 1, . . . , n. Let H denote the maximal CM

extension of F contained in K. Then K = H(
p
↵1, . . . ,

p
↵n).

Proof. The assumption of the existence of the ↵i implies that K contains
a CM extension of F , e.g. F (

p
↵) for a product ↵ of the ↵i that is totally

negative. Note also that the notion of “maximal CM extension” is well-
defined, since the compositum of CM fields is again CM.

Let ⌧i 2 G = Gal(K/F ) denote the complex conjugation corresponding to
any complex place of K above the real place �i of F . Let G0 ⇢ G denote the
exponent 2 subgroup generated by the elements ⌧i/⌧j for all i, j = 1, . . . , n.
The fixed field H = K

G0
has at most one complex conjugation, namely the

image of any ⌧i in G/G
0. The field H will be CM if this image is nontrivial,

and totally real if the image is trivial. The latter situation happens if and
only if there is an equality of the form

(15)
Y

i2E

⌧i = 1 in G

for some subset E ⇢ {1, . . . , n} of odd size. In fact the assumption of
the lemma implies that no such relation can occur for any nonempty E.
Indeed, choose an appropriate product ↵ of the ↵i such that �j(↵) < 0 for
some j 2 E and �j0(↵) > 0 for all j0 6= j. Then

�Q
i2E ⌧i

�
(
p
↵) = �

p
↵,

precluding the possibility that (15) holds.
It remains to show that K = H(

p
↵1, . . . ,

p
↵n). Any element ⌧ 2 G

that fixes the subfield H(
p
↵1, . . . ,

p
↵n) pointwise must in particular fix H

pointwise, and hence must lie in G
0. Such an element therefore has the form

⌧ =
Q

i2E ⌧i for some subset E ⇢ {1, . . . , n}. Yet we just showed that no
such nontrivial product can fix every

p
↵i. It follows that ⌧ = 1, and the

desired result follows from Galois theory. ⇤

We now prove Theorem 1.9, whose statement we recall. For each nonzero
ideal n ⇢ OF , pick a prime ideal p(n) ⇢ OF whose image in the narrow
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ray class group of F of conductor n is trivial. Choose p(n) such that the
rational prime p below it satisfies (⇤). Let up(n) 2 Up(n),T denote the Brumer–
Stark element for the narrow ray class field F (n) of conductor n (i.e. for the
maximal CM extension of F contained in F (n)). Define

(16) Sn =
�
�(up(n)) : � 2 Gal(F (n)/F )

 
.

Finally, let ↵1, . . . ,↵n�1 2 F
⇤ such that �1,↵1,↵2, . . . ,↵n�1 are sign span-

ning.

Theorem 2.6. The maximal abelian extension of F is generated by

p
↵1, . . . ,

p
↵n�1

together with the elements of Sn as n ranges over all nonzero ideals n ⇢ OF :

(17) F
ab =

[̇
n
F (Sn) [̇ F (

p
↵1, . . . ,

p
↵n�1),

where [̇ denotes compositum of fields.

Proof. Let L denote the field on the right side of (17). It is clear that L is
an abelian extension of F . We must show that if K is any finite abelian ex-
tension of F , then K ⇢ L. After replacing K by K(

p
�1,

p
↵1, . . . ,

p
↵n�1),

we may assume that K contains
p
�1,

p
↵1, . . . ,

p
↵n�1. If H denotes the

maximal CM extension of F contained in K, then
p
�1 2 H and hence

Lemma 2.5 implies that K = H(
p
↵1, . . . ,

p
↵n�1). It therefore su�ces to

show that H ⇢ L. By Lemma 2.4 we may assume that H is a cyclic CM
extension of F .

Let n ⇢ OF denote the conductor of H. The minimal set S for the narrow
ray class field F (n) is the same as that for H ⇢ F (n), namely the union of
S1 with the set of primes dividing n. We write p = p(n). By [48, Prop
IV.3.5, Pg. 92], the Brumer–Stark units for the extensions F (n) and H are
related by

(18) up(H) = NF (n)/H(up(F (n))) =
Y

�2Gal(F (n)/H)

�(up(F (n))).

It follows from (18) and the definition of Sn that up(H) 2 L. Lemma 2.3
implies that

H = F (up(H))

and hence H ⇢ L. The result follows. ⇤

Remark 2.7. We should remark on the root of unity ambiguity in The-
orem 2.2 with respect to providing an explicit formula for the elements in
Sn appearing on the right side of (17). Since this root of unity necessarily
lies in F

⇤

p(n), its order divides Np(n)� 1. Therefore we may simply raise our

elements up(n) to the power Np(n) � 1 and obtain an unconditional exact
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equality, with elements that still satisfy the necessary properties for Theo-
rem 2.6 (it is easy to adapt Lemma 2.3 to replace up by u

m
p for any positive

integer m). Alternatively, since roots of unity always generate abelian ex-
tensions, we can simply adjoin all roots of unity to the right side of (17) and
ignore any possible root of unity error in the formula (14) for the elements
of Sn.

2.3. Computations. In this section we present some computations of the
units up calculated using the formula (14). We consider the simplest possible
case beyond F = Q: we let F = Q(

p
D) be a real quadratic field with

discriminant D, let p be a rational prime that is inert in F (so p = pOF ),
and let H be the narrow Hilbert class field of F . The set S is taken to equal
S1, the minimal possible set in this setting. The set T is taken to contain
a single prime q such that Nq = ` is a prime not equal to p.

The code to perform these computations was written by Max Fleischer
and Yijia Liu, two undergraduate students of the first author at Duke Uni-
versity. Their algorithm closely follows the paper [17]. One important di↵er-
ence is as follows. In loc. cit., a formal divisor

P
d|N nd[d] 2 Div(Z) is used

to smooth the zeta values. The conditions
P

d|N nd = 0 and
P

d|N ndd = 0
are imposed. For this reason, computations are performed with the simplest
possible nonzero such divisor, namely 2[1]� 3[2] + [4]. In the present paper,
we use the set T to smooth our zeta values, which corresponds to setting
N = ` and using the divisor [`]� `[1]. Note that this divisor does not satsify
the condition

P
d|N nd = 0. It turns out that this condition is unnecessary

to apply the general algorithm of loc. cit.; only minor modifications are
necessary (see [26]).

In each case, formula (14) is used to compute the image of up and all of
its conjugates over F in F

⇤
p to 100 p-adic digits. The elementary symmetric

polynomials of these conjugates are then calculated and, after scaling by
the appropriate power of p to achieve integrality, recognized as elements of
OF using a standard nearest lattice vector algorithm. This allows for the
computation of the minimal polynomial of up over F . The computed 100
p-adic digits were enough to recognize the minimal polynomials in each case.

We stress that the field H itself is never fed into the program; all com-
putations take place within F and its completion Fp. After the fact, it was
verified that in each case the minimal polynomials listed split over a CM
abelian extension of F unramified at all finite primes, and hence must be
contained in the narrow Hilbert class field H of F . The splitting field of
the minimal polynomial of up is in fact precisely H, as implied by a suitable
modification of Lemma 2.3 (using the fact that LS,T (�, 0) 6= 0 for every odd
character � since here S = S1 contains no finite primes).
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The programs to generate these results were written in SageMath and
executed on a Jupyter Notebook using the kernel SageMath 9.0. The code
is available at [26]. This web page also describes a typo (sign error) in one
equation in [17] that was discovered by Fleischer and Liu. Below we give
three interesting examples of the computations.

Example 2.8. D = 221, p = 3, ` = 5, G = Gal(H/F ) ⇠= Cl+(F ) ⇠= Z/4Z.
The values ordp(�(up)) for � 2 G, i.e. the partial zeta values ⇣S,T (�, 0), are
±3,±15. The minimal polynomial of up over F is computed to be:

X
4+

 
�423812

313
+

71680
p
D

315

!
X

3 +

 
76348630

318
+

�5218304
p
D

316

!
X

2

+

 
�423812

313
+

71680
p
D

315

!
X + 1.

Example 2.9. D = 321, p = 7, ` = 5, G ⇠= Z/6Z. The values ordp(�(up))
for � 2 G are ±1,±3,±7. The computed minimal polynomial of up over F
is:

X
6+

 
55935

2 · 77 +
�63891

p
D

2 · 77

!
X

5 +

 
1062148509

2 · 710 +
2960001

p
D

2 · 710

!
X

4

+

 
�49244921

2 · 710 +
�279429993

p
D

2 · 711

!
X

3 + · · ·+ 1.

Note that the minimal polynomials of Brumer–Stark units are always palin-
dromic, since u

�1
p is the complex conjugate of up. Hence the coe�cient of

X
2 above equals the coe�cient of X4 and the coe�cient of X equals that

of X5.

Example 2.10. D = 897, p = 5, ` = 7, G ⇠= Z/4Z ⇥ Z/2Z. The values
ordp(�(up)) are ±7,±9,±11,±21. The computed minimal polynomial of up
over F is:

X
8+

 
2549757626558363

2 · 521 +
1416002374557

p
D

2 · 521

!
X

7

+

 
51143699935554731498041

532
+

56709030111424864533
p
D

531

!
X

6

+

 
�11738117897361345671334368371

2 · 541 +
4935116278645813872967514931

p
D

2 · 541

!
X

5

+

 
�4489586764048071498962140328642159

548
+

49988908282076855221482
p
D

534

!
X

4

+ · · ·+ 1
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Complete tables for all fundamental discriminants D < 1000 whose asso-
ciated narrow class field is CM, comprising hundreds of similar examples,
are given in [26].

We conclude this section by noting that in his 2007 undergraduate se-
nior thesis at Harvard University, Kaloyan Slavov computed an example
where the ground field F is a totally real cubic field and the conductor n is
nontrivial. We refer to [43, §8.6.1] for details.

3. Algebraic preliminaries

The rest of the paper is concerned with proving Theorem 1.4. Let us
recall the setup. We are given a totally real field F and a finite abelian CM
extension H. Let S be a finite set of places of F containing Sram(H/F )[S1.
Let T be a finite set of primes of F disjoint from S satisfying the following
condition of Deligne–Ribet:

(19)
T contains a prime of residue characteristic greater than [F :
Q] + 1, or two primes of di↵erent residue characteristic.

This condition is useful because it implies the following:

Let TH denote the set of primes of H above those in T . The
group of roots of unity ⇣ 2 µ(H) such that ⇣ ⌘ 1 (mod q) for all
q 2 TH is trivial.

We fix a prime p ⇢ OF not in S [ T that splits completely in H and
write Sp = S [ {p}. We consider another finite abelian CM extension L/F

containing H and unramified outside Sp. Write

g = Gal(L/F ), � = Gal(L/H), G = Gal(H/F ) ⇠= g/�.

Let p denote the rational prime contained in p. We assume that p is odd.
Let

R = Zp[g]
�
, R = Zp[G]�, I = ker(R �! R).

By Theorem 1.2, there is a unique up 2 U
�

p,T ⌦ Zp such that

ordG(up) = ⇥H
S,T .

Our goal is to prove the following congruence, the p-part of Gross’s conjec-
ture:

recG(up) ⌘ ⇥L
Sp,T (mod I

2).

3.1. Altering Depletion and Smoothing Sets. Following [20], define

⌃ = {v 2 S : v | p1},
⌃p = ⌃ [ {p},
⌃0 = {v 2 S : v - p1} [ T.
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It will be very convenient for us to replace the sets S, Sp, and T by the sets
⌃,⌃p, and ⌃0, respectively. In this section, we make this replacement precise
and prove that it su�ces to prove the result in this context.

There is a Stickelberger element ⇥H
⌃,⌃0 2 Q[G]� defined by the property

�(⇥H
⌃,⌃0) = L⌃,⌃0(��1

, 0)

for every odd character � of G, where L⌃,⌃0(�, s) is defined by (1) and (2)
along with the convention that �(q) = 0 if � is ramified at q. We show in
[20, Remark 3.6] that ⇥H

⌃,⌃0 2 R.
As we explain, the results of [20] imply that there exists a unique

u
⌃,⌃0
p 2 U

�

p,T ⌦ Z[
1

2
]

such that

ordG(u
⌃,⌃0
p ) = ⇥H

⌃,⌃0 .

Let # denote the involution on R induced by g 7! g
�1 for g 2 G. Define

SKuTp (H/F ) = (⇥H
⌃,T )

#
Y

v2Sram(H/F )
v-p

(NIv, 1� �vNIv/#Iv) ⇢ R.

Here Iv is the inertia subgroup at v. Remark 3.6 of loc. cit. implies that

⇥H
⌃,⌃0 2 SKuTp (H/F )#.

Equation (35) of loc. cit. then implies that ⇥H
⌃,⌃0 annihilates ClT (H)�p . The

annihilation of the class represented by p is equivalent to the existence of

the desired u
⌃,⌃0
p .

Lemma 3.1. To prove Gross’s conjecture, it su�ces to show that in each

setup as above, we have the “modified Gross conjecture”:

(20) recG(u
⌃,⌃0
p ) ⌘ ⇥L

⌃p,⌃0 (mod I
2).

Proof. More generally if ⌃ ⇢ J ⇢ S and J
0 = ⌃0 \ J , Jp = J [ {p}, then we

will show that

(21) recG(u
J,J 0
p ) ⌘ ⇥L

Jp,J 0 (mod I
2).

The desired result is the case J = S. We proceed by induction on #(J \⌃).
The base case J = ⌃ is given. For the inductive step, fix J � ⌃ and let
v 2 S \ J . Then v - p1. We write

Jv = J [ {v}, Jv,p = J [ {v, p}, J
0

v = J
0 � {v}.

Then

(22) ⇥L
Jv,p,J 0

v
= ⇥L

Jp,J 0 +
Nv � 1

#Iv
�
�1
v NIv⇥

L
Jp,J 0

v
.
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Note that #Iv | Nv � 1 in Zp, since v - p. Both terms on the right side of
(22) lie in SKuTp (L/F )# and hence lie in R. By the inductive hypothesis,

we have (21). Furthermore, if we write Iv for the image of Iv in G and

IG(v) = ker(Zp[g/Iv]
� �! Zp[G/Iv]

�),

then by induction we have

(23) recG/Iv
(uJ,J

0
v

p ) ⌘ ⇥LIv

Jp,J 0
v

(mod IG(v)
2).

Here u
J,J 0

v

p 2 Up(HIv)� satisfies

ordG/Iv
(uJ,J

0
v

p ) = ⇥HIv

J,J 0
v
.

Now x 7! x · NIv yields a map Zp[g/Iv] ! Zp[g] sending IG(v)2 ! I
2, so

from (23) we deduce

(24) recG((u
J,J 0

v

p )NIv) ⌘ NIv⇥
L
Jp,J 0

v
(mod I

2).

The desired result

recG(u
Jv ,J 0

v

p ) ⌘ ⇥L
Jv,p,J 0

v
(mod I

2)

now follows by combining (21) and (24), using (22). We must simply note
that

⇥H
Jv ,J 0

v
= ⇥H

J,J 0 +
Nv � 1

#Iv
�
�1
v NIv⇥

H
J,J 0

v
(25)

= ⇥H
J,J 0 +

Nv � 1

#Iv
�
�1
v NIv⇥

H
J,J 0

v
,(26)

which implies that uJv ,J
0
v

p = u
J,J 0
p · (uJ,J

0
v

p )
Nv�1
#Iv

��1
v NIv

. ⇤

3.2. Removing primes above p from the smoothing set. When work-
ing with modular forms in §5, it will be convenient if the set ⌃0 does not
contain any primes above p. Note that any primes above p in ⌃0 necessar-
ily lie in T and hence are unramifed in L/F . We give now the elementary
argument, in the spirit of [20, §4.1], that shows that we can safely remove
these primes. Let

Tp = {q 2 T : p | p}, T0 = T \ Tp, ⌃0

0 = ⌃0 \ Tp.

Lemma 3.2. There exists u
⌃,⌃0

0
p 2 U

�

p,T0
⌦ Zp such that ordG(u

⌃,⌃0
0

p ) =

⇥H
⌃,⌃0

0
. Furthermore the congruence

(27) recG(u
⌃,⌃0

0
p ) ⌘ ⇥L

⌃p,⌃0
0

(mod I
2)

implies the congruence

recG(u
⌃,⌃0
p ) ⌘ ⇥L

⌃p,⌃0 (mod I
2).
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Proof. For each q 2 Tp, let �q denote the associated Frobenius in g, and �q
its image in G. We have

(28) ⇥H
⌃,⌃0 = ⇥H

⌃,⌃0
0

Y

q2Tp

(1� �qNq).

Each term in the product in (28) is congruent to 1 modulo p and hence is
invertible in Zp[G]. Hence we can simply define

u
⌃,⌃0

0
p =

Y

p2Tp

(1� �pNp)�1(u⌃,⌃0
p ).

The congruence (27) then implies

recG(u
⌃,⌃0
p ) ⌘ ⇥L

⌃p,⌃0
0

Y

q2Tp

(1� �qNq) (mod I
2)

⌘ ⇥L
⌃p,⌃0 (mod I

2)

as desired. ⇤

Applying Lemma 3.2, we assume for the remainder of the paper that T

contains no primes above p. We will continue to write T,⌃0 rather than
T0,⌃0

0.

Remark 3.3. After removing the primes above p from T , condition (19)
might no longer be satisified. That condition was used to ensure the inte-
grality of ⇥S,T , which was then used to deduce the p-integrality of ⇥⌃,⌃0 .
As the argument in this section shows, after removing the primes above p

from T , the p-integrality of ⇥⌃,⌃0 still holds.

3.3. The ring RL . In [18], the rank one p-adic Gross–Stark conjecture was
interpreted as the equality of an algebraic L-invariant Lalg and an analytic
L-invariant Lan. The analytic L -invariant is the ratio of the leading term
of the p-adic L-function at s = 0 to its classical counterpart:

(29) Lan = �
L
0
p(�!, 0)

L(�, 0)
.

The algebraic L-invariant is the ratio of the p-adic logarithm and valuation
of the ��1-component of the Brumer–Stark unit:

(30) Lalg =
logpNormHP/Qp

(u�
�1

p )

ordP(u
��1

p )
.

Here and throughout the paper, logp denotes the p-adic logarithm follow-
ing Iwasawa’s convention logp(p) = 0. There is no di�culty in defining the
ratios (29) and (30), since the quantities live in a p-adic field and the de-
nominators are non-zero. The analog of this situation in our present context
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is more delicate. Let I denote the kernel of the projection

R = Zp[g]� R = Zp[G]�.

The role of the p-adic L-function is played by the Stickelberger element
⇥L

⌃p,⌃0 2 R, and the analogue of the derivative at 0 is played by the im-

age of ⇥L
⌃p,⌃0 in I/I

2. The role of the classical L-function is played by

the element ⇥H
⌃,⌃0 2 R. It is therefore not clear how to take the “ratio”

of these quantities. Similarly, the role of the p-adic logarithm is played

by recG(u
⌃,⌃0
p ) 2 I/I

2 and the role of the p-adic valuation is played by

ordG(u
⌃,⌃0
p ) 2 R.

For this reason, we introduce an R-algebra RL that is generated by an
element L that plays the role of the analytic L -invariant, i.e. the “ratio”
between

⇥L = ⇥L
⌃p,⌃0 and ⇥H = ⇥H

⌃,⌃0 .

We define

(31) RL = R[L ]/(⇥HL �⇥L,L I,L 2
, I

2).

Note that ⇥HL is well-defined in R[L ]/L I, so this definition makes sense.
A key point is that the ring RL , in which we have adjoined a ratio L
between ⇥L and ⇥H , is still large enough to see R/I

2.

Theorem 3.4. The kernel of the structure map R �! RL is I
2
.

Before proving the theorem we establish some intermediate results that
are important in their own right.

Theorem 3.5. For each prime v, let

I(v) = ker(R Zp[g/gv]�).

We have

⇥L 2
Y

v2⌃p

I(v).

The proof of Theorem 3.5 uses the Ritter–Weiss modules that will be
recalled in the next section. For this reason we postpone the proof until
that point.

Lemma 3.6. Suppose that r 2 R satisfies r⇥H = 0 in R. Then r⇥L 2 I
2
.

Proof. Let

e1 =
X

L⌃,⌃0 (H/F,�,0)=0

e�

denote the idempotent of Frac(R) corresponding to the set of odd characters
of G at which ⇥H has a trivial zero. Let e2 = 1 � e1 the denote the
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idempotent corresponding to the set of other odd characters of G. Let I�

denote the (absolute) augmentation ideal of Zp[�]. Our goal is to prove that
the image of r⇥L in

I/I
2 ⇠= R⌦ I�/I

2
�

vanishes (see [35, 5.2.3(b)] for this isomorphism). Now r⇥H = 0 implies
that re2 = 0.

Let ⌥ denote the kernel of the projection R �! Re1. We have a short
exact sequence

(32) ⌥⌦ I�/I
2
� R⌦ I�/I

2
� Re1 ⌦ I�/I

2
� 0.$ e1

We claim that the image of ⇥L under the map denoted e1 in (32) vanishes.
Granting this claim for now, let us finish the proof. The claim implies that
⇥L lies in the image of ⌥ ⌦ I�/I

2
� under the map $ in (32). But re2 = 0

implies that r annihilates ⌥. It follows that r⇥L vanishes in I/I
2 as desired.

We now prove the claim, which states that ⇥Le1 vanishes in Re1⌦ I�/I
2
�.

By Theorem 3.5, we have that ⇥L 2
Q

v2⌃p
I(v). Now gp ⇢ �, so I(p) ⇢ I.

We may therefore write ⇥L as a sum of elements of the form yz where
y 2

Q
v2⌃ I(v) and z 2 I. Now if y 2

Q
v2⌃ I(v) and y denotes the image of

y in R, then e1y = 0. Indeed, it su�ces to check this character by character:
for an odd � 2 Ĝ, we have �(e1) = 0 if �(Gv) 6= 1 for all v 2 ⌃, whereas
�(y) = 0 if �(Gv) = 1 for some v 2 ⌃. It follows that if z 2 I, then e1(yz)
vanishes in Re1 ⌦ I�/I

2
�. The desired result for ⇥Le1 follows. ⇤

We can now establish the injectivity of the map R/I
2 �! RL .

Proof of Theorem 3.4. If the image of a 2 R in the polynomial ring R[x]
belongs to the ideal generated by ⇥Hx�⇥L, x

2
, xI, I

2, then considering the
constant term implies that a + ⇥Lr 2 I

2 for some r 2 R. Considering the
linear term implies that r⇥H = 0 in R, where r denotes the image of r in
R. It then follows from Lemma 3.6 that a 2 I

2, as desired. ⇤

In view of Theorem 3.4, the integral Gross–Stark conjecture can be rein-
terpreted as an equation between algebraic and analytic L -invariants in the
ring RL . We will show

(33) recG(u
⌃,⌃0
p ) = L ordG(u

⌃,⌃0
p ) in RL .

Since the modified Brumer–Stark unit satsifies ordG(u
⌃,⌃0
p ) = ⇥H , the right

side of (33) equals ⇥L. The equality recG(u
⌃,⌃0
p ) = ⇥L in RL then gives

the desired congruence recG(u
⌃,⌃0
p ) ⌘ ⇥L (mod I

2) in R by the injectivity
of R/I

2 �! RL .
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4. Generalized Ritter–Weiss modules

The Galois modules introduced by Ritter and Weiss to give generalized
Tate sequences play a central role in this work. Before delving into the
details, we give a road map for §4.1–§4.4. In §4.1, we recall the definition
of the Ritter–Weiss module r⌃0

⌃ , following the construction of [20] that in-
corporates the smoothing set ⌃0. To maintain maximal generality, we work
over Z[g] rather than over R = Zp[g]�. In §4.2 we give an interpretation of
r⌃0

⌃ in terms of Galois cohomology. In §4.3 we define a module rL over the
ring RL that incorporates the analytic L -invariant. In §4.4 we interpret
the p-part of Gross’s conjecture as the statement that the Fitting ideal of
rL over RL vanishes.

4.1. Definition. We recall the definition of r⌃0
⌃ from [20, §A]. We begin

by choosing an auxiliary finite set of primes S0 of F that contains ⌃p and is
disjoint from ⌃0. Note that the places in S

0 � ⌃p are unramified in L. We

furthermore assume that S0 is large enough so that Cl⌃
0

S0 (L) = 1, Cl⌃
0

S0 (H) =
1, and such that the union of the decomposition groups gv ⇢ g for v 2 S

0 is
all of g. The construction of r is independent of the chosen auxiliary set S0

(see [20, §A.2]).
For each place v of F , we fix a place w of L above v. Write �gv for the

augmentation ideal of Z[gv]. Ritter–Weiss [38] define Z[g]-modules Vw(L)
and Ww(L) sitting in exact sequences:

(34)
1 L

⇤
w Vw(L) �gv 1

1 O⇤
w Vw(L) Ww(L) 1.

Here Ow denotes the completion of OL at w. Let Uw ⇢ O⇤
w denote the

subgroup of 1-units.
The modules Vw(L) and Ww(L) are defined as follows. Let L

ab
w � L

nr
w

denote the maximal abelian and unramified extensions of Lw, respectively.
There are canonical short exact sequences

1 W(Lab
w /Lw) ⇠= L

⇤
w W(Lab

w /Fv) gv 1

1 W(Lnr
w /Lw) ⇠= Z W(Lnr

w /Fv) gv 1,

⇡V

⇡W

where W denotes the Weil group. Let IV denote the (absolute) augmentation
ideal of W(Lab

w /Fv), and let I⇡V denote the relative augmentation ideal
corresponding to ⇡V . Define IW and I⇡W similarly from the corresponding
terms in the second exact sequence above. Then

(35) Vw(L) = IV /IV I⇡V , Ww(L) = IW /IW I⇡W .
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Following [29], given a collection of gv-modules Mw, we write

⇠Y

v

Mw =
Y

v

Indggv Mw.

Define

V =
⇠Y

v2S0

Vw(L)
⇠Y

v2⌃0

Uw

⇠Y

v 62S0[⌃0

O⇤

w.

Let

J⌃ =
⇠Y

v 62⌃[⌃0

O⇤

w

⇠Y

v2⌃

L
⇤

w

⇠Y

v2⌃0

Uw, J⌃p =
⇠Y

v 62⌃p[⌃0

O⇤

w

⇠Y

v2⌃p

L
⇤

w

⇠Y

v2⌃0

Uw,

W⌃ =
⇠Y

v2S0�⌃

Ww(L)
⇠Y

v2⌃

�gv, W⌃p =
⇠Y

v2S0�⌃p

Ww(L)
⇠Y

v2⌃p

�gv.

Note that we do not adorn V with a subscript because it does not depend
on the choice of ⌃ versus ⌃p. The fact that the same module V is used in
both constructions will be of great importance.

For each set ⌃⇤ = ⌃ or ⌃p, we have a commutative diagram

(36)

1 J⌃⇤ V W⌃⇤ 1

1 CL O �g 1.

✓J ✓ ✓W

Here CL = AL/L
⇤ denotes the idèle class group of L, and O denotes the ex-

tension of �g by CL associated to the global fundamental class in H
2(g, CL)

(see [38]). By [20, Lemma A.1], the map ✓ is surjective. We therefore get a
short exact sequence

(37) 0 O⇤

L,⌃⇤,⌃0 V
✓

W
✓
⌃⇤

Cl⌃
0

⌃⇤(L) 0,

where V ✓ denotes the kernel of ✓ andW
✓
⌃⇤

denotes the kernel of ✓W . Further,
O⇤

L,⌃⇤,⌃0 denotes the group of ⌃⇤-units of L congruent to 1 modulo ⌃0, i.e.

the set of elements in L
⇤ whose image in

Q̃
vLw is contained in J⌃⇤ . Next

we define

B⌃ = (Z[g]� Z[g/gp])�
Y

v2S0�{p}

Z[g], B⌃p =
Y

v2S0

Z[g].

In B⌃, the first term Z[g]�Z[g/gp] will be referred to as the component at
p.

There are injective maps j⌃⇤ : W⌃⇤ �! B⌃⇤ that we now describe on each
component.
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• Each v 2 S
0 �⌃p is unramified in L, so we have Ww(L) ⇠= Z[gv] (see

[38, Lemma 5]). If �w 2 W(Lnr
w /Fv) is the Frobenius element, this

isomorphism sends the image of �v � 1 2 IW to 1. We then have
Indggv Ww(L) ⇠= Z[g]. The component of j⌃⇤ at v 2 S

0 � ⌃p is this
isomorphism.

• For v 2 ⌃⇤, the inclusion �gv ⇢ Z[gv] induces Indggv �gv ⇢ Z[g].
The component of j⌃⇤ at v 2 ⌃⇤ is this inclusion.

• To conclude we define, for w the chosen place of L above p, a map

(38) jp : Indggp Ww(L) // Z[g]� Z[g/gp]

giving the component of j⌃ at p. Consider the composition

(39) W(F p/Fp) W(F ab
p /Fp) ⇠= F

⇤
p Z,

ordp

which we simply denote ordp. Clearly ordp factors throughW(Lnr
w /Fp).

We then define

Ww(L) Z[gp]� Z

by

(40) � � 1 7! (�|Lw
� 1, ordp(�)), � 2 W(Lnr

w /Fp).

Inducing this map from gp to g yields the desired map jp.

The fact that jp is an injection follows from [38, Lemma 5(b)]. Let Yp

denote the cokernel of jp. Let

Y⌃ = Yp

Y

v2⌃

Indggv Z, Y⌃p =
Y

v2⌃p

Indggv Z.

For each ⌃⇤ = ⌃ or ⌃p we have a commutative diagram with exact rows:

(41)

0 W⌃⇤ B⌃⇤ Y⌃⇤ 0

0 �g Z[g] Z 0.

✓W ✓B ✓Y

The map ✓B is defined as follows:

• ✓B is the identity in the factors corresponding to v 2 ⌃⇤.
• ✓B is multiplication by �v � 1 (where �v 2 gv ⇢ g denotes Frobenius
at v) in the factors corresponding to v 2 S

0�⌃ (see [38, Lemma 5]).
• For v = p and ⌃⇤ = ⌃, the map ✓B on the component at p is
projection onto the first factor.

Since ✓W is surjective, taking kernels in (41) yields a short exact sequence

(42) 0 W
✓
⌃⇤

B
✓
⌃⇤

Y
✓
⌃⇤

0.
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Note that B✓
⌃
⇠= Z[g/gp]� Z[g]#S0

�1 and B
✓
⌃p

⇠= Z[g]#S0
�1. We define

(43) r̃⌃0
⌃⇤

(L) = coker(f⌃⇤ : V
✓

W
✓
⌃⇤

B
✓
⌃⇤

).

When ⌃⇤ = ⌃p, the module r̃⌃0
⌃p
(L) is the same as the module r⌃0

⌃p
(L)

defined in [20], and when we speak of it individually we will use the latter
notation. However for ⌃⇤ = ⌃, the module r̃⌃0

⌃ (L) is a subquotient of the
module r⌃0

⌃ (L) defined in loc. cit.. We have introduced the r̃ notation so
as to not conflict with the notation of loc. cit., and so that we may speak
of r⌃0

⌃p
(L) and r̃⌃0

⌃ (L) simultaneously when convenient, using the symbol

r̃⌃0
⌃⇤

(L).
In view of (37) and (42), we have two exact sequences:

(44) 0 O⇤

L,⌃⇤,⌃0 V
✓

B
✓
⌃⇤

r̃⌃0
⌃⇤

(L) 0,

(45) 0 Cl⌃
0

⌃⇤(L) r̃⌃0
⌃⇤

(L) Y
✓
⌃⇤

0.

In [20] we proved the following results. Write

(V ✓)R = (V ✓)⌦Z[g] R,

and similarly with V
✓ replaced by any other Z[g]-module.

Lemma 4.1 ([20, Lemma A.4]). The module (V ✓)R is free over R of rank

equal to the rank of the free module B
✓
⌃p
, namely #S

0�1. Hence the module

r⌃0
⌃p
(L)R is quadratically presented over R.

Theorem 4.2 ([20, Theorem 3.3]). We have

(46) FittR(r⌃0
⌃p
(L)R) = (⇥L

⌃p,⌃0).

We can now give the proof of Theorem 3.5.

Proof of Theorem 3.5. If we denote by {ev : v 2 S
0} the standard R-basis

for
(B⌃p)R =

Y

v2S0

R,

then the module (B✓
⌃p
)R has a basis

{bv = ev � ✓B(ev)e1 : v 2 S
0 �1}

where 1 2 S1 ⇢ S
0 is any fixed infinite place of F . By Lemma 4.1, the

R-module V ✓
R is free of rank #S

0�1, and hence FittR(r⌃0
⌃p
(L)R) is the ideal

generated by the determinant of the square matrix A representing the map
f : V ✓

R �! (B✓
⌃p
)R with respect to any bases.

We choose any basis of V ✓
R and the basis {bv : v 2 S

0
, v 6= 1} for (B✓

⌃p
)R.

The columns of the associated matrix A are indexed by the basis vectors
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bv. For v 2 ⌃p, the elements of the corresponding column vector lie, by
definition, in the image of Indggv �gv �! R. This is exactly the ideal

I(v) = ker(R �! Zp[g/gv]
�).

The determinant of A therefore lies in
Q

v2⌃p
I(v). In view of (46), the result

follows. ⇤

4.2. Interpretation via Galois Cohomology. In [20, §A.3], we gave a de-
scription of the projection to the minus side of the class in Ext1

Z[G](Y
✓
⌃p
,Cl⌃

0
⌃p
(L))

determined byr⌃0
⌃p
(L) via the exact sequence (45), using Galois cohomology.

We recall this now and give the generalization that allows for the application
to r̃⌃0

⌃ (L).
For each v 2 S

0, let

GF,v
⇠= Gal(F v/Fv) ⇢ GF

denote the decomposition group at v associated to a place of F above v

restricting to the chosen place w of L. Let M be a g-module. Suppose that
we are given a 1-cocycle

 2 Z
1(GF ,M),

where M is endowed with a GF -action via the canonical map GF �⇣ g.

Suppose that the restriction of  to Gal(F v/L
nr
w ) is trivial. For a Z[g]-

module N we write

N
� = (N ⌦ Z[1/2])/(c+ 1),

where c 2 g denotes complex conjugation. We may then define a g-module
homomorphism

'
v
 : W

�
v = (Indggv Ww(L))� M

�

by the rule

(47) '
v
(g ⌦ (� � 1)) = g · (�), g 2 G, � 2 W(Lnr

w /Fv).

The condition on  ensures that (�) is well-defined for � 2 W(Lnr
w /Fv). It

is elementary to check that 'v
 is well-defined, as follows.

• If g 2 gv, then

'
v
(1⌦ (g� � g)) = (g�)� (g) = g · (�) = '

v
(g ⌦ (� � 1)).

• If � 2 W(Lnr
w /Fv) and ⌧ 2 W(Lnr

w /Lw), then

'
v
(1⌦ (⌧ � 1)(� � 1)) = (⌧�)� (⌧)� (�) = 0

since ⌧ acts trivially on M .
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Write Zv = Indggv �gv. Since �gv is canonically a gv-module quotient
of Ww(L) (see 34), Z�

v is canonically a g-module quotient of W�
v . If the

restriction of [] to Gal(F v/Lw) is trivial, then 'v
 descends to a homomor-

phism

(48) '
v
 : Z

�
v M

�
.

Now letM⌃⇤ = Cl⌃
0

⌃⇤(L)
� for ⌃⇤ = ⌃ or ⌃⇤ = ⌃p. By class field theory, we

may view M⌃⇤ as the Galois group of a field extension L̃⌃⇤/L. The field L̃⌃⇤

is the maximal abelian extension of L of odd order that is unramified outside
⌃0, tamely ramified at ⌃0, such that the primes in ⌃⇤ split completely, and
such that the conjugation action of the complex conjugation in g is inversion.
Let

�̃⌃⇤ : GL
// Gal(L̃⌃⇤/L) ⇠= M⌃⇤

denote the canonical homomorphism given by the reciprocity map of class
field theory. By [20, Lemma 6.3], the class �̃⌃⇤ 2 H

1(GL,M⌃⇤) is the
restriction of a unique class

[�⌃⇤ ] 2 H
1(GF ,M⌃⇤).

An explicit 1-coycle representing this class is given as follows. Let c̃ denote
a lift of the complex conjugation c 2 g to an element of g̃ = Gal(L̃⌃⇤/F ).
Then

(49) �⌃⇤(�̃) = �̃⌃⇤(�̃c̃�̃
�1

c̃
�1)1/2, �̃ 2 GF .

Note that the cocycle �⌃⇤ 2 Z
1(GF ,M⌃⇤) satisfies the condition described

above for , namely that the restriction to Gal(F v/L
nr
w ) is trivial for each

v 2 S
0. This follows since L̃⌃⇤ ⇢ L

nr
w . Furthermore if v 2 ⌃⇤, then the

restriction of �⌃⇤ to Gal(F v/Lw) is trivial. Therefore the construction in
(47) and (48) yields elements:

'
v
�⌃⇤

2 HomZ[g]�(W
�

v ,M⌃⇤), v 2 S
0 � ⌃⇤,

'
v
�⌃⇤

2 HomZ[g]�(Z
�

v ,M⌃⇤), v 2 ⌃⇤.

Lemma 4.3. The “snake map” '⌃⇤ : (W
✓
⌃⇤

)� �! M⌃⇤ given by the minus

part of the last nontrivial arrow in (37) can be described explicitly by the

formula

'⌃⇤((av)v2S0) =
X

v2S0

'
v
�⌃⇤

(av).

Proof. The proof is nearly identical to [20, Lemma A.9], but we give it for
completeness and because of notational di↵erences. We use the description
of the snake map given by Ritter and Weiss in [38, Theorem 5]. Write
g̃ = Gal(L̃/F ), where as above L̃ is the extension of L corresponding to
M⌃⇤ via class field theory. Write �g̃ for the augmentation ideal of Z[g̃] and
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let �(g̃,M⌃⇤) denote the kernel of the canonical projection Z[g̃] �! Z[g].
There is a short exact sequence (see [38, Pg. 154])
(50)

0 M⌃⇤
⇠=

�(g̃,M⌃⇤)

�(g̃,M⌃⇤)�g̃

�g̃

�(g̃,M⌃⇤)�g̃
�g 0.

Let v 2 S
0. The extension L̃ is unramifed (over L) at w, so there is

a canonical restriction map W(Lnr
w /Fv) �! g̃. In view of the definition of

Ww(L) given in (35), this induces a canonical map

Indggv Ww(L) = Z[g]⌦Z[gv ] Ww(L)
�g̃

�(g̃,M⌃)�g̃
.

fv

In [38, Theorem 5], Ritter–Weiss show that the snake map is realized by

(51) '⌃⇤((av)v2S0) =
X

v2S0

fv(av).

Let a = (av)v2S0 2 (W ✓
⌃⇤

)�. Choose v
0 2 S

0 such that the decomposition
group gv0 ⇢ g contains complex conjugation c (the existence of such a v

0 is
guaranteed by the assumptions on S

0). Let c̃ denote a lift of c to W(Lnr
w0/Fv).

For each v 2 S
0, define yv 2 W

�

⌃⇤
to have component at v equal to av,

component at v0 equal to

bv = ✓W (av)⌦ (1� c̃)/2 2 (Z[g]⌦Z[g
v0 ]

Ww0(L))�,

and all other components equal to 0. Then a =
P

v2S0 yv since ✓W (a) = 0.
Furthermore each yv lies in (W ✓

⌃⇤
)� by construction. It therefore su�ces to

prove that '⌃⇤(yv) = '
v
�⌃⇤

(av) for each v 2 S
0. For this, we apply (51) with

the tuple (av)v2S0 replaced by yv.
The module W

�
v is generated over Z[g]� by elements of the form

av = �̃ � 1 2 IW

for �̃ 2 W(Lnr
w /Fv). Since we are working on the minus side, we have

fv(av) = fv((1� c)/2⌦ av) = (1� c̃)(�̃ � 1)/2,

fv0(bv) = (�̃ � 1)(c̃� 1)/2,

and hence

'⌃⇤(yv) = (�̃c̃� c̃�̃)/2.

Under the isomorphism noted in the first nonzero term in (50), this corre-
ponds to the element

(�̃c̃�̃�1
c̃
�1)1/2 2 Gal(L̃/L) ⇠= M⌃⇤ .

By (49), this is precisely the value of 'v
�⌃⇤

(�̃ � 1) = �⌃⇤(�̃). ⇤
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As we now describe, the Galois theoretic description of r⌃0
⌃ (L)� provided

by Lemma 4.3 yields an explicit method of constructing homomorphisms

r⌃0
⌃ (L)� �! B

for Z[g]�-modules B. Recall R = Zp[g]�. We work over an arbitrary R-
algebra A since this is the context we will require later. Therefore let B

denote an A-module and let [] 2 H
1(GF , B) denote a Galois cohomology

class, where B is endowed with a GF -action via the composition

GF �! g �! A
⇤
.

Suppose that:

• The class [] is unramified outside ⌃0, locally trivial at ⌃, and tamely
ramified at ⌃0.

• Let B0 ⇢ B denote the A-submodule generated by the image of the
restriction

[]|GL
2 H

1(GL, B) = Homcont(GL, B).

The module B/B0 is generated over A by the images of elements
xv 2 B for v 2 ⌃ and elements xp, x0p 2 B. The element x0p is fixed
by the action of GF,p (i.e. by the action of gp).

• The class [] is represented by a 1-cocycle  satisfying the following.
– For v 2 ⌃ and � 2 GF,v, we have (�) = xv(� � 1).
– For � 2 W(F p/Fp), we have

(52) (�) = (� � 1)xp + ordp(�)x
0

p,

where ordp is as in (39).
– There exists ⌧ 2 GF , a lift of the complex conjugation in g,

such that for all � 2 GF we have

(53) (�) = []|GL
(�⌧��1

⌧
�1)/2 2 B0.

Theorem 4.4. Let B be an A-module and [] 2 H
1(GF , B) a Galois

cohomology class satsifying the three bulleted points above. Write Ap =
A⌦R Zp[g/gp]�. There is a surjective A-module homomorphism

(54) ↵1 : r̃⌃0
⌃ (L)A B

induced by the map

↵ : (B⌃)A ⇠= (A�Ap)�A
#S0

�1
B

defined as follows:

• For av 2 A in the component at v 2 S
0 � ⌃p, we have ↵(av) =

av(�v), where �v denotes the Frobenius element at v.

• For av 2 A in the component at v 2 ⌃, we have ↵(av) = avxv.
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• For (av, bv) 2 A � Ap in the component at p, we have ↵(av, bv) =
avxp + bvx

0
p.

Proof. The homomorphism []|GL
2 H

1(GL, B) = Homcont(GL, B) is un-
ramified outside ⌃0, locally trivial at ⌃, and tamely ramified at ⌃0. It follows
from class field theory that []|GL

factors through

M⌃
⇠= Gal(L̃⌃/L)

and therefore induces a surjective map

(M⌃)R B0.

Equation (53) implies that  takes values in B0.
To prove that ↵ induces a map ↵1 as in (54), it su�ces to prove that the

composition

(W ✓
⌃)A (B✓

⌃)A (B⌃)A B
↵

can be factored as

(W ✓
⌃)A (M⌃)A B0 B.

'⌃ |GL

For then the image of (V ✓)A in (W ✓
⌃)R vanishes under ↵. Note that the

composition |GL
�'⌃ equals ' :=

P
v2S0 '

v
, by Lemma 4.3 together with

equations (49) and (53).
The fact that the restriction of ↵ to (W ✓

⌃)A equals ' follows from the
assumptions on , as we now check on each component.

• Any v 2 S
0�⌃p in unramifed in L and hence (Wv)A is generated over

A by �v � 1, where �v is the Frobenius element at v. By definition
of the map W⌃ �! B⌃, the image of �v � 1 in the component of B⌃

at v is simply 1. Therefore

↵(�v � 1) = (�v) = '
v
(�v � 1).

• For v 2 ⌃, let � 2 gv, and consider the element � � 1 in the v-
component of (B⌃)A. We find:

↵(� � 1) = xv(� � 1) = (�) = '
v
(� � 1).

• Let y 2 (Wp)R be represented by �̃�1 for � 2 W(Lnr
w /Fp). Consider

jp(y) in the p-component of (B⌃)R. We find:

↵(jp(y)) = ↵(�|Lw
� 1, ordp(�))

= (� � 1)xp + ordp(�)x
0

p

= (�)

= '
v
(y).
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This concludes the proof that ↵ induces the desired map ↵1. In fact, if we
let ↵0 denote the composition of ↵ with the projection B �! B/B0, then
we have demonstrated a commutative diagram

(55)

0 (M⌃)A r̃⌃0
⌃ (L)A (Y ✓

⌃)A 0

0 B0 B B/B0 0.

|GL
↵1 ↵0

The surjectivity of ↵0 follows by the assumption that B/B0 is generated
over R by the xv for v 2 ⌃ along with xp, x

0
p. The surjectivity of ↵1 then

follows from the Five Lemma. ⇤
4.3. The module rL . Recall R = Zp[g]�, R = Zp[G]�. As we did with
(B✓

⌃p
)R in the proof of Theorem 3.5, we can write down a generating set

for the R-module (B✓
⌃)R as follows. The module (B⌃)R is generated over

R by the vectors e0 = (1, 0) and e1 = (0, 1) in the component R � Rp at
p together with the standard basis vectors ev for

Q
v2S0\pR ⇢ (B⌃)R. The

module (B✓
⌃)R is then generated by

{b0 = e0 � e1, b1 = e1, bv = ev � ✓B(ev)e1 : v 2 S
0 \ {1, p}},

where 1 2 S1 ⇢ S
0 is any fixed infinite place of F .

Denote the image of the vectors b0 and b1 in r̃⌃0
⌃ (L) by b0 and b1, respec-

tively. Recall the R-algebra RL defined in (31). We define

(56) rL = r̃⌃0
⌃ (L)R ⌦R RL /(b1 + L b0).

The following is the analogue of Theorem 4.4 for the module rL . Again
we work over an arbitrary R-algebra A and write AL = RL ⌦R A, rL ,A =
rL ⌦R A.

Theorem 4.5. Let B and [] 2 H
1(GF , B) be as in Theorem 4.4. Suppose

that B̃ is an AL -module endowed with an A-module map B �! B̃ such that

the image of B generates B̃ over AL . Suppose further that the images in B̃

of xp, x
0
p 2 B defined in (52) satisfy x

0
p + L · xp = 0. Then the map ↵1 of

(54) induces a surjective AL -module homomorphism

(57) ↵L : rL ,A B̃.

Proof. Since the image of B generates B̃ as an AL -module, the surjection
r̃⌃0

⌃ (L)A �⇣ B induces a surjection

(58) r̃⌃0
⌃ (L)A ⌦A AL �⇣ B̃.

Since ↵1(b0) = xp and ↵1(b1) = x
0
p, the equality x

0
p+L ·xp = 0 implies that

the surjection (58) factors through

rL ,A = r̃⌃0
⌃ (L)A ⌦A AL /(b1 + L b0)
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as desired. ⇤

4.4. Gross’s Conjecture via Fitting Ideals. In this section we prove the
following interpretation of Gross’s Conjecture.

Theorem 4.6. The RL -module rL is quadratically presented and we have

FittRL (rL ) = (recG(u
⌃,⌃0
p )�⇥L).

Therefore, the equality

FittRL (rL ) = 0

implies the p-part of the modified Gross conjecture:

recG(u
⌃,⌃0
p ) ⌘ ⇥L (mod I

2).

We would like to point out that most of the computations of §4.4 are
the same as, or slight variants of, the calculations of Burns, Kurihara, and

Sano in §5 of [4]. Our approach to relating the Brumer–Stark unit u
⌃,⌃0
p

to Ritter–Weiss modules and studying its properties is modeled after theirs.
Our innovation is the definition of RL and rL and the application of these
techniques to the statement and proof of Theorem 4.6.

First we note that the same construction used to define r̃⌃0
⌃p
(L) = r⌃0

⌃p
(L)

above, but working over H rather than L, gives rise to modules r⌃0
⌃ (H) and

r⌃0
⌃p
(H). Since H/F is unramified outside ⌃ [ ⌃0, these modules are the

cokernels of maps

V
✓(H) B

✓(H),
fH,⌃

V
✓(H) B

✓(H),
fH,⌃p

respectively, with the same domain and codomain. The modules r⌃0
⌃ (H)R

and r⌃0
⌃p
(H)R satisfy properties analogous to those stated in Lemma 4.1 and

Theorem 1.2. Specifically, V ✓(H)R is free over R with constant rank equal
to the rank of the free module B

✓(H)R, namely #S
0 � 1. Furthermore, as

stated in Theorem 4.2 above, we have by [20, Theorem 3.3] the equalities

FittR r⌃0
⌃ (H)R = (⇥H

⌃,⌃0), FittR r⌃0
⌃p
(H)R = (⇥H

⌃p,⌃0) = 0.

In [20, Lemmas B.1 and B.2] we prove that there is a commutative dia-
gram

(59)

V
✓(L)R V

✓(L)�
R

V
✓(H)R

B
✓
⌃p
(L)R B

✓
⌃p
(L)�

R
B
✓(H)R.

f⌃p

N� ⇠

fH,⌃p

N� ⇠
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To give the analogous diagram for ⌃, we need some additional notation.
Define

B⌃(L) = Z[g/gp]�
M

v2S0\p

Z[g],

and let ⇡ : B⌃(L) �! B⌃(L) be the projection in which the first com-
ponent at p, which is a factor Z[g], has been forgotten. Recall the map
f⌃ : V ✓(L) �! B

✓
⌃(L) defined in (43). Let f⌃,⇡ = ⇡ � f⌃. Note that since

gp ⇢ �, multiplication by N� induces a well-defined map

Z[g/gp] �! N� · Z[g] = Z[g]�

and hence a well-defined map B⌃(L) �! B⌃p(L)
�. By [20, Lemma B.2], we

then have a commutative diagram:

(60)

V
✓(L)R V

✓(L)�
R

V
✓(H)R

B
✓
⌃(L)R B

✓
⌃p
(L)�

R
B
✓(H)R.

f⌃,⇡

N� ⇠

fH,⌃

N� ⇠

Write t = #S
0 � 1 and fix an R-basis {v1, v2, . . . , vt} of V ✓(L)R. As in

the proof of Theorem 3.5, we choose the following basis for B✓
⌃p
(L)R:

(61) {bv = ev � ✓B(ev)e1 : v 2 S
0 �1},

where 1 2 S1 ⇢ S
0 is any fixed infinite place of F and {ev} is the standard

basis of

B⌃p(L)R =
Y

v2S0

R.

Let {v1, . . . , vt} and {bv} denote the R-bases of V ✓(H)R and B
✓(H)R, re-

spectively, obtained by applying the horizontal maps in (59).
Having fixed these bases, we define:

• A⌃p 2 Mt⇥t(R) is the matrix for f⌃p .
• A⌃ is the t ⇥ (t + 1) matrix representing the map f⌃, with second
column having entries in Rp = Zp[g/gp]� and all other columns
having entries in R.

By the commutative diagrams (59) and (60) we have:

• The reduction of A⌃p modulo I, denoted A⌃p 2 Mt⇥t(R), is the
matrix for fH,⌃p .

• Let A⌃ denote the matrix in Mt⇥t(R) obtained from A⌃ by deleting
the first column and reducing the other entries modulo I. Then A⌃

is the matrix for fH,⌃.

We furthermore note that:



BRUMER–STARK UNITS AND EXPLICIT CLASS FIELD THEORY 39

• The matrices A⌃p and A⌃ agree other than their first columns, since
the components away from p of the maps fH,⌃p , fH,⌃ are the same.

• The first column of A⌃p consists of all zeroes, since gp ⇢ �.

We now define a square t ⇥ t matrix AV . The last t � 1 columns of AV

have entries in R and are equal to the last t�1 columns of A⌃p (equivalently,

A⌃). The first column of AV is the column vector (vi)ti=1, with entries in
V
✓(H)R. It makes sense to consider the determinant of AV as an element

of V ✓(H)R by Leibniz formula for determinants.

Lemma 4.7. We have det(AV ) 2 ker(fH,⌃p).

Proof. The value fH,⌃p(det(AV )) is the determinant of the matrix in which
the first column of AV has been replaced by column whose elements are
fH,⌃p(vi) 2 B

✓(H)R. With respect to the decomposition of B✓(H)R as a
product over the places v 2 S

0, each component of (fH,⌃p(vi))
t
i=1 corre-

sponding to a place v 2 S
0 \ p is equal to another column of the matrix,

namely the column corresponding to v. Meanwhile the component at v = p

is the 0 vector, as noted in the bulleted point above, regarding A⌃p . It
follows that the determinant is 0 in every component of B✓(H)R. ⇤

From the exact sequence
(62)

0 (O⇤

H,⌃p,⌃0)R V
✓(H)R B

✓(H)R r⌃0
⌃p
(H)R 0,

fH,⌃p

it follows from Lemma 4.7 that det(AV ) 2 V
✓(H)R is the image of a unit

(63) ✏ 2 (O⇤

H,⌃p,⌃0)R.

Lemma 4.8. We have ✏ 2 (O⇤

H,p,⌃0)R.

Proof. Let v 2 ⌃ and let w be the chosen place of H above v in the definition
of V (H). Recall the short exact sequence
(64)

IndGGw
O⇤

w Vv(H) = IndGGw
Vw(Hw) Wv(H) = IndGGw

Ww(Hw).
!v

To show that ✏ 2 (O⇤

H,p,⌃0)R, we must show that the component of det(AV )
in Vv(H) has vanishing image in Wv(H) under !v. Now !v(det(AV )) is
the determinant of the matrix A!v

in which the first column of AV has
been replaced by (!v(vi))ti=1. We use the description of Ww(Hw) given by
Ritter–Weiss in [38, §3]. We have

(65) Ww(Hw) = {(x, y) 2 �Gw � Z[Gw/Iw] : x = (�w � 1)y}.
Here �w 2 Gw/Iw denotes Frobenius. If we write

!v(vi) =
X

�2G/Gw

� ⌦ (x�,i, y�,i),



40 SAMIT DASGUPTA MAHESH KAKDE

then A!v
has first column equal to these values, and another column (the

column corresponding to v) equal to
X

�2G/Gw

� ⌦ x�,i 2 IndGGw
�Gw.

Indeed, this is the component of fH,⌃ at the factor of B✓(H) corresponding
to v. Because of the relationship between x and y in (65), it is easy to see
that the determinant of such a matrix is zero. This is clear for the first
component of the ordered pair, and for the second we note that

(�w � 1)y�,i = x�,i.

The vanishing of detA!v
yields the desired result ✏ 2 (O⇤

H,p,⌃0)R. ⇤

Lemma 4.9. Let P denote the chosen place of H above p used in the defi-

nition of V (H). We have

ordG(✏) :=
X

�2G

ordP(�(✏))�
�1 = det(A⌃) = x⇥H

for some unit x 2 R
⇤
.

Proof. The proof is similar to the previous calculations. The key point here
is that since p splits completely inH, we haveHP = Fp, hence VP(HP) ⇠= H

⇤

P

and WP(HP) ⇠= Z. The sequence (64) becomes the canonical sequence

IndG1 O⇤

P
Vp(H) = IndG1 H

⇤

P
Wp(H) = IndG1 Z = Z[G]

!p

with !p = 1⌦ ordP. The composition

O⇤

H,⌃p,⌃0 Vp(H) Z[G]
!p

therefore is precisely the map ordG. It follows that the value of ordG(✏) is
the determinant of the matrix in which the first column of AV has been
replaced by !p(vi). But this is by definition the matrix A⌃.

To conclude, we note that

(det(A⌃)) = FittR r⌃0
⌃ (H) = (⇥H)

by [20, Theorem 3.3 and Corollary 6.2]. ⇤

If follows from Lemma 4.9 that

(66) ✏ = x · u⌃,⌃0
p .

For the next lemma, recall from §1.2 that we have a map

recG : (O⇤

H,⌃,⌃0)R �! I/I
2
, ✏ 7!

X

�2G

(recP(�(✏))� 1)�̃�1
,

where �̃ is a lift of � in g.
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Lemma 4.10. We have

recG(✏) ⌘ det(A⌃p) in I/I
2
.

Proof. Recall from the proof of Lemma 4.9 that Vp(H) = IndG1 H
⇤

P
. The

homomorphism
recP : H⇤

P �! � ⇠= I�/I
2
�

therefore induces a map that we again denote recP : Vp(H) �! I/I
2
. The

composition

O⇤

H,⌃p,⌃0 Vp(H) I/I
2recP

is precisely the map recG. It follows that recG(✏) is the determinant of
the matrix Arec in which the first column of AV has been replaced by
(recP(vi))ti=1. We must prove that

det(A⌃p) ⌘ det(Arec) (mod I
2).

To prove this claim, first note that A⌃p and Arec have all columns after
the first equal in R. It therefore su�ces to show that the first columns of
A⌃p and Arec are equal in I/I

2.
This follows from an unwinding of the definitions. We revisit the definition

of VP(HP) given in (35). In this notation, the map

recP : VP(HP) �! I�/I
2
�

giving the first column of Arec is simply induced by the canonical restriction
map

� � 1 7! �|L � 1, � 2 W(Hab
P /Fp).

Let w denote the chosen place of L above P and p. By (40), the map
VP(LP) �! I giving the first column ofA⌃p is also induced by the restriction
� � 1 7! �|L � 1 for � 2 W(Lab

w /Fp).
To conclude, we observe that by [20, Lemma B.1], the composition of the

maps

Indggv Vw(Lw) (Indggv Vw(Lw))� IndG1 VP(HP)
N� ⇠

is induced by the map Vw(Lw) �! VP(HP) given by restriction: � � 1 7!
�|Hab

P
� 1. ⇤

We are finally ready for:

Proof of Theorem 4.6. Define

V
✓
L = V

✓(L)⌦Z[g] RL , B
✓
L = B

✓
⌃(L)⌦Z[g] RL /(b1 + L b0) ⇠= (RL )t.

The module B
✓
L has free generators b0, b2, b3, . . . , bt over RL . The module

V
✓
L has free generators v1, . . . , vt over RL . Therefore

rL = r̃⌃0
⌃ (L)⌦Z[G] RL /(b1 + L b0)
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has a quadratic RL -module presentation

V
✓
L B

✓
L rL 0.

fL

By definition, the matrix AL for fL with respect to our chosen bases is the
matrix A⌃p with the first column replaced by the first column of A⌃p�LA⌃.

Note that this first column has entries in the ideal (I,L ) ⇢ RL that is
annihilated by I. Furthermore A⌃p and A⌃ have columns after the first
that are equal. It follows that

det(AL ) = det(A⌃p)� L det(A⌃).

By Lemma 4.9, we have det(A⌃) = x⇥H for some x 2 R
⇤
. By (66) and

Lemma 4.10, we have det(A⌃p) = x · recG(u⌃,⌃0
p ) in I/I

2, with the same x.
Therefore,

det(AL ) = det(A⌃p)� L det(A⌃)

= x · recG(u⌃,⌃0
p )� x · L⇥H

= x · (recG(u⌃,⌃0
p )�⇥L).

Since x is a unit, the equality

FittRL (rL ) = (det(AL )) = (recG(u
⌃,⌃0
p )�⇥L)

follows. Since

recG(u
⌃,⌃0
p )�⇥L 2 I/I

2
,

the second statement of the theorem follows from the first by Theorem 3.4.
⇤

4.5. Working componentwise. The rings R and R are not in general
connected. In working with modular forms, it will be convenient to replace
these rings with individual components. We will also need to extend scalars
when working with Galois representations, so we do so already at this point.
Therefore let E denote a finite extension of Qp and let O denote the ring of
integers of E. We assume that E contains the image of every character of
g.

Write g = gp ⇥ g0, where gp is the p-Sylow subgroup of g and g0 is the
subgroup of g containing the elements of prime-to-p order. For each odd
character  of g0, let R denote the group ring O[gp] endowed with the
g-action in which g = gp · g0 (with gp 2 gp, g

0 2 g0) acts by multiplication by
gp (g0). We then have an isomorphism of O[g]-algebras

R⌦Zp
O = O[g]� ⇠=

Y

 

R ,
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where the product ranges over the odd characters  of g0. We let

RL , = RL ⌦R R , rL , = rL ⌦RL RL , .

We consider the analogous decomposition G = Gp ⇥ G
0. If � is an odd

character of G0, we let R� denote the group ring O[Gp] endowed with the G-
action in which g = gp ·g0 acts by multiplication by gp�(g0). Then R⌦Zp

O ⇠=Q
�R� with the product running over the odd characters � of G0.
If � is an odd character of G0, then it may be viewed as a character of g0

via the canonical projection g0 �! G
0, and we may consider both R� and

R�. Furthermore, in this case if we let I� denote the image of the relative
augmentation ideal I in R�, then we have R�/I�

⇠= R�.

Lemma 4.11. The equality

(67) FittRL ,�
(rL ,�) = 0

for each odd character � of G
0
implies the equality

(68) FittRL (rL ) = 0.

Proof. As O is free (and hence faithfully flat) over Zp, in order to prove (68)
it su�ces to show that

FittRL ⌦Zp
O(rL ⌦Zp

O) = 0.

As

RL ⌦Zp
O ⇠=

Y

 

RL , ,

with the product running over all odd characters  of g0, it su�ces to prove
that

(69) FittRL , 
(rL , ) = 0

for all such  . The assumption (67) is precisely this result if  factors
through G

0.
It therefore remains to show that (69) holds if  is an odd character of

g0 that does not factor through G
0. For such  , there exists � in the kernel

of g0 �! G
0 such that  (�) 6= 1. Since  has prime-to-p order, the element

1 �  (�) is a unit in O. It follows that the image of 1 � � 2 I in R is a
unit. Since L I = 0 in RL , it follows that the image of L in RL , vanishes,
and hence that

(70) RL , 
⇠= R /(⇥L, I

2).

In view of the definition (56), and again applying L = 0 in RL , , we find

rL , 
⇠= (r̃⌃0

⌃ (L)RL , 
)/(b1)

⇠= r⌃0
⌃p
(L)RL , 

,
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since r̃⌃0
⌃ (L)/b1 ⇠= r⌃0

⌃p
(L) by the definitions of these modules. Now

FittR(r⌃0
⌃p
(L)R) = (⇥L)

by [20, Theorem 3.3] as stated in Theorem 4.2 above. The desired result
(69) follows since ⇥L = 0 in RL , by (70). ⇤

Lemma 4.12. Let � be an odd character of G
0
and let K ⇢ g0,K ⇢ G

0

denote the kernels of � when viewed as characters of g0 and G
0
, respectively.

Let R
0

L ,� and r0

L ,� denote the ring RL ,� and the module rL ,�, respectively,

defined using the fields L
K
and H

K
in place of L and H. Then there exist

canonical isomorphisms

R
0

L ,�
⇠= RL ,�, r0

L ,�
⇠= rL ,�.

Proof. There is clearly an O[g]-algebra isomorphism R
0
�
⇠= R�, as these are

both the group ringO[gp] in which g = gpg
0 acts via �(g0). The elements ⇥LK

and ⇥L correspond under this isomorphism. Similarly we have an isomor-
phism R

0

�
⇠= R� under which ⇥HK and ⇥H correspond. The O[g]-algebra

isomorphism R
0

L ,�
⇠= RL ,� follows immediately from these considerations.

For the second isomorphism of the lemma, we first show that

(71) r̃⌃0
⌃ (L)R� ⇠= r̃⌃0

⌃ (LK)R� .

For this, we note that by [20, Lemma B.1], there is an isomorphism

V
✓(LK) ⇠= (NK)V ✓(L) ⇢ V

✓(L),

yielding a commutative diagram

V
✓(LK) B

✓
⌃(L

K) r̃⌃0
⌃ (LK) 0

V
✓(L) B

✓
⌃(L) r̃⌃0

⌃ (L) 0.

NK

Upon tensoring with R�, the arrow labelled NK becomes an isomorphism.
Indeed, K acts trivially on R�, whence NK acts as #K, which is prime-to-p
and hence invertible in Zp. The isomorphism (71) follows.

The desired isomorphism r0

L ,�
⇠= rL ,� now follows from the definition

(56). ⇤

In view of Lemma 4.12, we may (and do) hereafter replace (L,H) by
(LK

, H
K) and therefore assume that g0 = G

0 and that � is a faithful character
of G0. In particular, G0 is cyclic and

� = ker(g �! G)

is a p-group.
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5. Group ring valued Hilbert modular forms

Let m be a positive integer. Let � be an odd character of G0. In this
section, we use the theory of group ring valued Hilbert modular forms to
produce an RL ,�-module B̃p and a cohomology class  2 H

1(GF , B̃p) satis-
fying the conditions of Theorem 4.5. At some point, we will have to assume
that p is not the only prime of F above p (the case of one prime above p

will be handled in §6). We will calculate that

FittRL ,�
(B̃p) ⇢ (pm),

which in conjunction with the RL ,�-module surjection

rL ,� �! B̃p

of Theorem 4.5 yields

FittRL ,�
(rL ,�) ⇢ (pm).

Since this holds for all m, we have FittRL ,�
(rL ,�) = 0. Lemma 4.11 implies

FittRL (rL ) = 0, which by Theorem 4.6 completes the proof of the p-part
of Gross’s Conjecture.

We refer the reader to [20, Section 7] for our definitions on group ring
valued Hilbert modular forms, recalling only the essential notation here.
Let n ⇢ OF denote an integral ideal and k � 1 a positive integer. We let
Mk(n) denote the space of Hilbert modular forms of level n and weight k.
The subgroup of forms whose q-expansion coe�cients at all unramified cusps
lie in Z is denoted Mk(n,Z). If A is any abelian group, we let Mk(n, A) =
Mk(n,Z)⌦ A. The space Mk(n,Z) is endowed with an action of “diamond
operators” S(m), indexed by the classes m 2 G

+
n , the narrow ray class group

of F associated to the conductor n. Suppose now that R is a ring and
   : G+

n �! R
⇤ is a character. Suppose that the abelian group A has an

R-module structure. Then we define

Mk(n, A,   ) = {f 2 Mk(n, A) : f|S(m) =    (m)f for all m 2 G
+
n }.

These are the forms of nebentypus    . In our applications below, R is a
group ring (or a factor of a group ring), and    is the tautological character.
For this reason, we call Mk(n, A,   ) the space of group ring valued modular

forms. We write Sk(n, A,   ) ⇢ Mk(n, A,   ) for the subspace of cusp forms.

5.1. The modified group ring Eisenstein series. We begin by recalling
the reductions of previous sections. By the results of §3.2, we may assume
that T (and hence ⌃0) contains no primes above p. By the results of §4.5
we may assume that g0 = G

0 and that � is a faithful odd character of G0. In
particular, G0 is cyclic and � = ker(g �! G) is a p-group.
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Let

(72) n0 = cond(L/F ), n = lcm(n0,
Y

q2⌃p[⌃0

q ).

Let P be the p-part of n. Note that P 6= 1 as p | P. We write

A = R� = O[gp]�, A = R� = O[Gp]�.

There are canonical O[g]-algebra injections with finite cokernel:

A ,!
Y

 2ĝ
 |

G0=�

O , A ,!
Y

 2Ĝ
 |

G0=�

O , x 7! ( (x)) .

Here O denotes the ring O on which g acts by the character  . We call the
characters indexing these products the characters of A and the characters

of A, respectively. In particular, a character of A is simply a character of A
that is trivial on �.

Lemma 5.1. Let  be any character of A, and let c0 = cond( ). Put

c = lcm(c0,P), and l = n/c. Then l is a square-free product of primes not

dividing p.

Proof. The fact that the primes dividing l do not lie above p is clear since
P is the p-part of n and P | c. To prove that l is square-free, suppose
that q is a prime not lying above p such that qm || n with m � 2. It
su�ces to show that qm | c, whence q - l. By the definition of n, we must
have qm | n0 = cond(L/F ). The proof now follows exactly as [20, Lemma
8.13]. ⇤

Let  be a character of A. Denote by  P the character  viewed with
modulus divisible by all primes dividingP. In [20, Definition 8.2], we defined
the following linear combination of level-raised Eisenstein series (where l is
as in Lemma 5.1):

(73) Wk( P, 1) =
X

a|l

µ(a) (a)Na
k
Ek( P, 1)|a 2 Mk(n, ).

Here µ is the Möbius function, which for squarefree ideals a that are the
product of r distinct primes satsifies µ(a) = (�1)r.

As we now recall, we showed in [20, §8] that the forms Wk( P, 1) inter-
polate into a group ring-valued family of modular forms, and we calculated
the constant terms of this family at certain cusps. Let

   : g �! A
⇤
, g = gpg

0 7! gp�(g
0)

denote the canonical character. We recall from [20, §7.2.3] our notation on
the set of cusps of level n, denoted cusps(n). A cusp [A] is represented by a
pair A = (M,�) where M 2 GL+

2 (F ), the set of all 2 ⇥ 2 matrices over F
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with totally positive determinant, and � 2 Cl+(F ), the narrow class group
of F . The definition of Mk(n) involves the choice, for each � 2 Cl+(F ),
of a representative ideal t�. Writing d for the di↵erent of F and letting

M =

✓
a b

c d

◆
, we define the ideals

bA = aOF + c(t�d)
�1

, cA = c(t�dbA)
�1

.

Following [20, §7.2.5] we define for any integral ideal b | n:
C1(b, n) = {[A] 2 cusps(n) : b | cA}
C0(b, n) = {[A] 2 cusps(n) : gcd(b, cA) = 1}.

If b = n, we simply write C1(n) and C0(n). The notion of normalized

constant term of a modular form at a cusp is defined in [20, §7.2.3]. In the
remainder of the paper, we write for simplicity ⇥H = ⇥H

⌃,⌃0 and ⇥L = ⇥L
⌃p,⌃0

as in §4 above.

Proposition 5.2. There exists a group ring valued form

(74) W1(   , 1) 2 M1(n, A,   )

such that the specialization of W1(   , 1) at character  of A is the form

W1( P, 1). The normalized constant term of W1(   , 1) at a cusp A such that

[A] 2 C1(P, n) is

(75) C
L
1 (A) =

(
sgn(Na)   �1(ab�1

A
)⇥#

L /2
n

if [A] 2 C1(n)

0 if [A] 2 C1(P, n) \ C1(n).

Recall here that # denotes the involution on R induced by g 7! g
�1 for

g 2 g.

Proof. For any odd k � 1, a group ring valued form

Wk(   , 1) 2 Mk(n,Frac(A),   )

is defined in [20, Proposition 8.14, eqn. (102)], with notation from loc. cit.,
by

Wk(   , 1) =
X

m|l

NIm · Ẽk(   
m
, 1)|m   m(m)

1

#Im

Y

v|m

(1�Nv
k).

Note that this definition and the proof that Wk(   , 1) specializes under a
character  of A to Wk( P, 1) uses the result of Lemma 5.1. All the nor-
malized Fourier coe�cients of Wk(   , 1) lie in A, except for possibly the
constant terms, which lie in Frac(A).

As we now explain, [20, Proposition 8.7] implies that the constant term
of W1( P, 1) at a cusp [A] 2 C1(P, n) \ C1(n) vanishes. First note that
P 6= 1 and hence C0(P, n) \ C1(P, n) = ;. As in [20, §8.1], write

c0 = cond( ), c = lcm(c0,P), and t = n/c.
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By Lemma 5.1, t is a squarefree product of primes not lying above p. We
therefore have

C1(P, n) \ C1(c0t, n) = C1(n).

Hence if [A] 2 C1(P, n)\C1(n), then [20, Prop 8.7] yields that the constant
term of W1( P, 1) at [A] vanishes in both the cases c0 = 1 and c0 6= 1.

At a cusp [A] 2 C1(n) the contant term of W1( P, 1) equals

sgn(Na) �1(ab�1
A

)
L⌃p,⌃0( , 0)

2n
.

The element of A interpolating these specializations is the element C
L
1 (A)

defined in (75). Since C
L
1 (A) 2 A, we obtain W1(   , 1) 2 M1(n, A,   ). ⇤

We have an analogous construction of group ring forms over G. We write

A = R� = O[Gp]�.

Let

   : g �! A
⇤

denote the reduction of    . Note that    factors through g �! G. As in (72),
we let

m0 = cond(H/F ), m = lcm(m0,
Y

q2⌃[⌃0

q ).

Note that here, p does not divide the level m. Since we have g0 = G
0,

however, note that the levels n and m agree away from p, i.e. if P0 denotes
the p-part of m, then n/P = m/P0. (This fact implies that the results
of Propositions 5.3 and 5.4, which a priori would apply to the cusps in
C1(P0,m), also apply on C1(P, n).)

We use [20, Proposition 8.14, eqn. (102)] again to define, for odd k � 1,
a group ring valued modular form

(76) Wk(   , 1) 2 Mk(m,Frac(A),   ) ⇢ Mk(n,Frac(A),   ).

Again, the q-expansion coe�cients of Wk(   , 1) other than possibly the con-
stant terms lie in A. The specialization of Wk(   , 1) at a character  of A is
Wk( P0 , 1), defined as in (73) with P replaced by P0.

We now discuss the constant terms of Wk(   , 1) for odd k � 1. The
following result follows directly from [20, Proposition 8.7].

Proposition 5.3. If ⌃ \ S1 is nonempty, the normalized constant term of

W1(   , 1) at a cusp A such that [A] 2 C1(P, n) is

C
H
1 (A) =

(
sgn(Na)   

�1
(ab�1

A
)⇥#

H/2n if [A] 2 C1(n)

0 if [A] 2 C1(P, n) \ C1(n).

In particular, if ⌃ \ S1 is nonempty we have W1(   , 1) 2 M1(n, A,   ).
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If ⌃ = S1 (in which case P0 = 1) the situation is more complicated for
W1(   , 1). Furthermore in this case we require the constant terms of the
forms Wk(   , 1) for odd k � 3.

For each character  of A, let b0 = cond( ), b = lcm(b0,P0), and l =
m/b. If [A] is a cusp, we follow [20, Definition 8.3] and define two sets of
primes:

Jl = {q | l : [A] 2 C0(q, n)}, J
c
l = {q | l : [A] 2 C1(q, n)}.

Define C
0

k(A) to be the unique element of Frac(A) such that for each char-
acter  of A, we have
(77)

 (C 0

k(A)) =
⌧( )

Nbk0

 (cA)sgn(N(�c))
LS1,;( 

�1
, 1� k)

2n

Y

q2Jc

l

(1�Nqk)
Y

q2Jl

(1� (q))

if [A] 2 C0(b0, n), and

 (C 0

k(A)) = 0

if [A] 2 C1(P, n) \ C0(b0, n). Here ⌧( ) denotes the Gauss sum defined
in [19, Definition 4.1]. The following proposition follows directly from [20,
Propositions 8.6 and 8.7].

Proposition 5.4. Suppose that ⌃ = S1. The normalized constant term of

Wk(   , 1) at a cusp [A] 2 C1(P, n) is equal to C
H
1 (A)+C

0
1(A) if k = 1, and

is equal to C
0

k(A) if k > 1.

5.2. Construction of a cusp form. In this section we construct the cusp
form required in our proof. The construction will need to be split into several
cases. Recall that P is the p-part of n. The ideal P is divisible precisely by
the primes in ⌃p = ⌃[ {p}. Define P0 to be the product of all other primes
above p, i.e.

P
0 =

Y

q|p, q-P
q.

• Case 1: the set ⌃ \ S1 is non-empty, i.e. p is not the only prime
dividing P.

In Case 2, we have ⌃ = S1. Note that the eigenvalues of the form W1(   , 1)
for the operator Uq, q | P0, are    (q) and 1. If �(q) 6= 1, then these are not
congruent modulo the maximal ideal of A. To ensure that the Hecke algebras
we work with are local, it will be convenient to project to the eigenspace
with eigenvalue 1. Let

P
0

0 =
Y

q|P0

�(q) 6=1

q, P
0

1 =
Y

q|P0

�(q)=1

q.

We subdivide Case 2 into three cases:
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• Case 2(a): P0
0 6= 1.

• Case 2(b): P0
0 = 1,P0

1 6= 1.
• Case 2(c): P0

0 = P0
1 = 1, i.e. p is the only prime above p in F .

We consider the module
⇤ = A�A,

endowed with the canonical diagonal A-action. We view A = A � 0 as a
submodule of ⇤ and denote the vector (0, 1) 2 ⇤ by �, so elements of ⇤ will
be written a+ �b with a 2 A, b 2 A.

As in the previous section, we have the canonical characters

   : g �! A
⇤
,    : g �! G �! A

⇤
.

We denote the image of I in A (i.e. the kernel of the canonical projection
A �! A) by IA.

Recall the following result of Silliman [44, Theorem 8.10], a generalization
of a result of Hida.

Theorem 5.5. Fix a positive integer m. For positive integers k ⌘ 0
(mod (p� 1)pN ) with N su�ciently large depending on m, there is a modu-

lar form Vk 2 Mk(1,Zp, 1) such that c(m, Vk) ⌘ 0 (mod p
m) for all integral

ideals m, and such that the normalized constant term cA(0, Vk) for each cusp

[A] is congruent to 1 (mod p
m).

To apply this result, we hereafter assume that m is fixed and k ⌘ 1
(mod (p�1)pN )) withN su�ciently large that the conclusion of Theorem 5.5
holds. In subsequent arguments we will make N larger still if necessary to
obtain other properties of our modular forms.

In Case 1, we define

f = (W1(   , 1)� �W1(   , 1))Vk�1 2 Mk(n,⇤,   ).

Note here that W1(   , 1) 2 Mk(n, A,   ) and W1(   , 1) 2 Mk(n, A,   ) by
Propositions 5.2 and 5.3, respectively.

In Case 2 we recall the non-zerodivisor

(78) x = x(k) =
⇥H/F

S1,;(1� k)

⇥H/F
S1,;

2 Frac(A)

considered in [20, Theorem 8.16]. The elements ⇥H/F
S1,;(1�k) and ⇥H/F

S1,; be-

long to Frac(A) and interpolate the nonzero algebraic numbers LS1,;( 
�1

, 1�
k) and LS1,;( 

�1
, 0), respectively, as  ranges over the odd characters of

G that restrict to � on G
0. For k ⌘ 1 (mod (p� 1)pN )) with N su�ciently

large, the ratio x belongs to A by loc. cit. We hereafter assume that N is
chosen so that this holds. Let

(79) x̃ = any non-zerodivisor lift of x to A.
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We define in Case 2:

(80) f = x̃

⇣
W1(   , 1)� �W1(   , 1)

⌘
Vk�1 + �Wk(   , 1).

A priori, in Case 2 the form f lies in Mk(n,⇤ ⌦Zp
Qp,   ) since we have

only shown that the constant terms of the forms W1(   , 1) and Wk(   , 1) lie
in Frac(A) = A⌦Zp

Qp. However, the proposition below shows that in fact
f 2 Mk(n,⇤,   ). In order to state results in all cases simultaneously, we set
x̃ = 1 in Case 1 for the remainder of the paper.

Proposition 5.6. With N and k as above, we have in all cases f 2 Mk(n,⇤,   ).
Furthermore the form f has constant terms at cusps [A] 2 C1(P, n) lying

in the submodule J ⇢ ⇤, where

(81) J = x̃J0, J0 =
⇣
I
2
A,⇥

#
L �⇥#

H�, p
m⇤
⌘
.

Proof. We give the proof in Case 2, as Case 1 is similar and in fact easier.
We first note that the non-constant term q-expansion coe�cients of f

lie in ⇤. Indeed, all the forms appearing in the definition of f have non-
constant term q-expansion coe�cients lying in ⇤, so any failure of integrality
of non-constant terms can arise only from multiplying the constant terms
of W1(1,   ) by the non-constant terms of Vk�1. For k ⌘ 1 (mod (p� 1)pN )
and N su�ciently large, the non-constant terms of Vk�1 are divisible by any
desired power of p, and this product will be integral.

We will prove the integrality of the constant terms of f and the statement
about cuspidality simultaneously. By Propositions 5.2 and 5.4, the constant
term of f at a cusp [A] 2 C1(P, n) is equal to

�
C

L
1 (A)� �C

H
1 (A)� �C

0

1(A)
�
x̃y + �C

0

k(A)

⌘
�
x̃C

L
1 (A)� x̃�C

H
1 (A)

�
� �

�
C

0

1(A)x̃y � C
0

k(A)
�
,

where y = cA(0, Vk�1) ⌘ 1 (mod p
m) and the congruence is modulo x̃pm⇤ ⇢

J . For the first term, we have

�
x̃C

L
1 (A)� x̃�C

H
1 (A)

�
=

sgn(Na)   �1(ab�1
A

)

2n

⇣
x̃⇥#

L � x̃⇥#
H�

⌘
2 J.

It remains to show that xyC 0
1(A)�C

0

k(A) lies in A and is divisible by xp
m.

Now C
0
1(A) is some fixed element of Frac(A) and x 2 A, so for y su�ciently

close to 1 p-adically, (y � 1)C 0
1(A) will lie in p

m
A. Therefore it su�ces

to show that xC
0
1(A) � C

0

k(A) lies in A and is divisible by xp
m, i.e. that

C
0
1(A)� x

�1
C

0

k(A) lies in A and is divisible by p
m.

For this, we note that by the definition (78), multiplying by the factor
x
�1 exactly replaces the L-value in the definition (77) of C 0

k(A) with that
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appearing in C
0
1(A), hence

C
0

1(A)� x
�1⇥HC

0

k(A) = C
0

1(A)

0

@1�Nb
1�k
0

Y

q2Jc

l

1�Nlki

1�Nli

1

A .

For k ⌘ 1 (mod (p�1)pN ) and N su�ciently large, the term in parentheses
can be made divisible by arbitrarily large powers of p. (Note we are in Case
2, whence b0 is prime to p.) The result follows. ⇤

Corollary 5.7. There exists a p-ordinary cusp form g 2 Sk(nP0
,⇤,   )p-ord

such that in Cases 1 and 2(a) we have

g ⌘ W1(   P0
0
, 1)� �W1(   P0

0
, 1) (mod J0),

while in Cases 2(b) and 2(c) we have

g ⌘ x̃
�
W1(   , 1)� �W1(   , 1)

�
+ �Wk(1,   p) (mod J).

These congruences are understood to mean that the q-expansion coe�cients

c(a, g) for nonzero ideals a ⇢ OF are congruent modulo J0 or J to the

coe�cients of the expressions on the right.

Proof. Silliman’s result [44, Theorem 8.4] implies that there is an element
f
0 2 Mk(n, J,   ) whose constant terms at C1(P, n) agree with those of f .

Therefore f � f
0 has constant terms that vanish on C1(P, n). Let eord

P
, e

ord
p

denote the ordinary operators of Hida (see [20, §7.2.9]). By [19, Theorem
5.1], the form g0 = e

ord
P

(f � f
0) is cuspidal, whence

g = e
ord
p (f � f

0) = e
ord
P0 g0

is cuspidal as well. Now the ordinary operator eordp fixes the forms W1(   , 1)

andW1(   , 1), whereas it sendsWk(   , 1) to its ordinary p-stabilizationWk(   , 1p).
Furthermore, Vk�1 ⌘ 1 (mod p

m) and p
m 2 J0. The result follows in Cases

2(b) and 2(c).
To complete the proof in Cases 1 and 2(a), we apply the operator

Q
q|P0

0
(Uq�

   (q)). This operator sends

W1(   , 1) 7! W1(   P0
0
, 1), W1(   , 1) 7! W1(   P0

0
, 1),

while it annihilates Wk(   , 1p). This gives the result in Case 1. In Case 2(a),
we obtain a cusp form g satisfying

g ⌘ x̃

⇣
W1(   P0

0
, 1)� �W1(   P0

0
, 1)
⌘

(mod x̃J0).

This congruence in particular implies that the Fourier coe�cients of g are
divisible by x̃. Since x̃ is a non-zerodivisor, we may divide by it and obtain
a cusp form satsifying the same congruence as in Case 1. ⇤
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5.3. Homomorphism from the Hecke algebra. We now define certain
Hecke algebras acting on Sk(nP0

, A,   ). We define T to be the A-subalgebra
of EndA(Sk(nP0

, A,   )) generated over A by the following operators:

• Tl for l - nP0,
• S(a) for (a, nP0) = 1,
• Uq for prime q 2 ⌃ \ S1 (i.e. for prime q | P, q 6= p),
• (Up � 1)2, and
• (Up � 1)t for t 2 I.

Let T̃ = T[Up]. Finally let T† = T̃[Uq, q | P0].

Due to the presence of the involution # in Proposition 5.6, we consider
an “involuted” version of the ring AL . Define

A
#
L = A[L ]/(L (⇥H)# � (⇥L)

#
,L IA,L

2
, I

2
A).

At this point, we must momentarily abandon case 2(c), when p is the
only prime of F above p. In this case, the last bulleted point of the theorem
below—which in some sense is the most important—does not hold. Here
P0 = 1, and this last bulleted point then reads Ann

A#
L
(W ) ⇢ (pm), which

does not hold in case 2(c). The algebra W constructed in Theorem 5.8
using the form g is not large enough for our purposes. In §6 we will therefore
provide a di↵erent approach to proving the congruence (20) that only applies
when there is exactly one prime of F above p. For the remainder of §5 we
assume that there is at least one prime above p in F other than p.

Theorem 5.8. Suppose we are in Cases 1, 2(a), or 2(b), i.e. there exists

a prime of F above p other than p. There exists an A
#
L -algebra W and a

surjective A-algebra homomorphism

' : T† �! W

such that:

• Tl 7! Nlk�1 +   (l) for prime l - nP0
.

• S(a) 7!    (a) for (a, nP0) = 1.
• Uq 7! 1 for prime q 2 ⌃ \ S1.

• Up 7! 1� L .

• Uq 7! 1 for prime q | P0
0.

For prime q | P0
, write ✏q = '(Uq �   (q)) 2 W . Then:

• ✏q(✏q � 1 +   (q)) = 0.

• Ann
A#

L

⇣Q
q|P0 ✏q

⌘
⇢ (pm).

Proof. We recall from (81) the definition

J0 =
⇣
I
2
A,⇥

#
L �⇥#

H�, p
m⇤
⌘
.
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To streamline the notation for all cases, write

X =

(
1 Cases 1/2(a)

x̃ Case 2(b),
K = XJ0,

and recall P0
0 = 1 in Case 2(b). Define

C =
Y

a⇢OF

⇤/K,

with the product indexed by the nonzero ideals a ⇢ OF . There is an A-
module map

c : Sk(nP
0
,⇤,   ) �! C

that associates to each cusp form h its collection of normalized q-expansion
coe�cients c(a, h) reduced modulo K. Note that if we let the operators Tl,
Ul act by the usual formulae on Fourier coe�cients (see [20, eqn. (97)]) and
we let S(a) act by    (a), then the map c is equivariant for these operators.

Let F denote the image of the T†-span of the cusp form g defined in
Corollary 5.7 under the map c. This is an A-module of finite type. Define
W be the image of the canonical A-algebra homomorphism

T† �! EndA(F).

This construction yields a canonical surjective A-algebra map

' : T† �! W

that sends a Hecke operator to its action on the Hecke span of g under the
map c.

We will show in a moment that W has the structure of an A
#
L -algebra.

First we calculate the action of Hecke operators on g using the congruence
of Corollary 5.7:
(82)

g ⌘
(
W1(   P0

0
, 1)� �W1(   P0

0
, 1) Cases 1/2(a)

X

⇣
W1(   , 1)� �W1(   , 1)

⌘
+ �Wk(   , 1p) Case 2(b)

(mod K).

The fact that '(S(a)) =    (a) is clear since all our forms have nebentypus
   . The operator Tl acts by multiplication by 1 +    (l) on W1(   , 1) and
W1(   , 1), and it acts by multiplication by Nlk�1 +    (l) on Wk�1(   , 1p).
Since Nlk�1 ⌘ 1 (mod p

m) and Xp
m 2 K, we have

Tl(g) ⌘ (Nl
k�1 +   (l))g (mod K).

Similarly '(Uq) = 1 for prime q 2 ⌃ \ S1, since all the forms W1(   , 1),
W1(   , 1),Wk(   , 1p) have Uq-eigenvalue 1.

The most interesting action is that of Up. This operator fixes W1(   , 1),
since p | P. It also acts as    (p) = 1 on Wk(   , 1p) because of the p-
stabilization. Yet Up does not act as a scalar on W1(   , 1), as it is not
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stabilized. Instead Up � 1 sends W1(   , 1) to its p-stabilization W1(   , 1p) =
W1(   p, 1), where the equality follows since    (p) = 1 and we are in weight
1. The conclusion of these considerations is that

(83) (Up � 1)g ⌘ ��XW1(   pP0
0
, 1) (mod K).

We can now give W the structure of an A
#
L -algebra by letting L act by

'(1�Up). To prove that this is well-defined, we must show that the relations

in A
#
L are satisfied inW , namely L (⇥H)#�(⇥L)# = L IA = L 2 = I

2
A = 0.

The most interesting of these is the first. From (83), we find the following
congruences mod K:

(⇥H)#(1� Up)g ⌘ (⇥H)#X�W1(   pP0
0
, 1)

⌘ (⇥L)#XW1(   pP0
0
, 1)

⌘ (⇥L)#g.

The second congruence follows from the definition of K and the third from
(82), in view of the fact that (⇥L)# 2 IA annihilates � while W1(   P0

0
, 1) ⌘

W1(   pP0
0
, 1) (mod IA) and X(⇥L)#IA 2 XI

2
A ⇢ K. This proves that the

first relation holds, while the others are similar but easier.
Next we study the action of Uq �    (q) for q | P0. This operator sends

W1(   , 1) toW1(   q, 1), sendsW1(   , 1) toW1(   q, 1), and annihilatesWk(   , 1p).
For q | P0

1, we therefore have

(84) (Uq �   (q))g ⌘ X

⇣
W1(   qP0

0
, 1)� �W1(   qP0

0
, 1)
⌘

(mod K).

Note that Uq acts as 1 on the form on the right. This yields the equation

(85) ✏q(✏q � 1 +   (q)) = 0,

where ✏q = '(Uq �   (q)). Meanwhile if q | P0
0, then in particular we are in

case 1/2(a) and Uq acts as 1 on g (mod K) by (82). For such q we have

(86) ✏q = 1�   (q)

and (85) holds trivially.
To prove the last item note that by (84) and (86) we have

(87)Y

q|P0

(Uq�   (q))g ⌘ X

⇣
W1(   P0 , 1)� �W1(   P0 , 1)

⌘ Y

q|P0
0

(1�   (q)) (mod K).

In case 2(c), this congruence does not hold as there is a contribution from
the term Wk(   , 1p). This term does not appear in (82) in cases 1/2(a), and
is annihilated by the single application of an ✏q for q | P0

1 in case 2(b). This
is why case 2(c) must be removed from the present analysis.
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Returning to (87), suppose this form is annihilated by an element a+bL 2
A

#
L , with a, b 2 A. By definition, such an element acts by a+ b(1�Up) and

hence, noting that
Q

q|P0
0
(1�   (q)) is a unit, we obtain

aX

⇣
W1(   P0 , 1)� �W (   P0 , 1)

⌘
+ bX�W1(   P0 , 1p) ⌘ 0 (mod K).

Analyzing the q-expansion coe�cients c(1, ⇤) and c(p, ⇤) of this congru-
ence, respectively, we obtain

X(a� �a+ �b) ⌘ 0 (mod K)

X(a� 2�a+ �b) ⌘ 0 (mod K).

From these, we deduce X(a + �b) 2 K, and since X is a non-zerodivisor it

follows that a + �b 2 J0 = (⇥#
H� � ⇥#

L , I
2
A⇤, p

m⇤). It follows that in A
#
L ,

we have

a+ bL 2 (⇥#
HL �⇥#

L , I
2
A, p

m) = (pm)

as desired. ⇤

5.4. Galois Representation. In this section we recall the formalism of
[20, §9.1–9.2] regarding the Galois representation associated to the Hecke
algebra T†. As explained in [20, §8.5] the Hecke algebra T† is reduced.
The kernel of ' is contained in a unique maximal ideal m ⇢ T†. This
maximal ideal is generated by the maximal ideal (mO, I) of A together with
the elements Tl � (1 + �(l)) for l - nP0, S(a)� �(a) for (a, nP0) = 1, Uq � 1
for all q | p.

Let T†

m denote the completion of T† with respect to m (and similarly Tm,
T̃m the completions of T and T̃ with respect to their maximal ideals m\T,
m \ T̃, respectively). Set

K = Frac(T†

m).

As in [20, §9.2], there is a Galois representation

⇢ : GF �! GL2(K)

such that

(1) ⇢ is unramified outside np.
(2) For all primes l - np, the characteristic polynomial of ⇢(Frobl) is

given by

(88) char(⇢(Frobl))(x) = x
2 � Tlx+   (l)Nlk�1

.

(3) For q | p, let GF,q ⇢ GF denote a decomposition group at q. We
have

(89) ⇢|GF,q ⇠
✓
   "

k�1
cyc ⌘

�1
q ⇤

0 ⌘q

◆
,
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where ⌘p : GF,q �! (T†

m)⇤ is the unramified character given by
⌘p(rec($�1)) = Up. Here $ denotes a uniformizer of F ⇤

q and

rec : F ⇤

q �! G
ab
F,q

is the local Artin reciprocity map.

For each q | p, let Vq be the eigenspace of ⇢|Gq i.e. the span of the vector�1
0

�
in the basis for which (89) holds. We choose an element ⌧ 2 GF as in

[20, Proposition 9.3] so that its restriction to g is complex conjugation and
so that for all q | p, the subspace Vq projected to each factor of K is not
stable under ⇢(⌧). As in loc. cit., fix a basis such that

(90) ⇢(⌧) =

✓
�1 0
0 �2

◆

where �1 ⌘ 1 (mod m) and �2 ⌘ �1 (mod m). For a general �, we write

⇢(�) =

✓
a(�) b(�)
c(�) d(�)

◆
.

For each q | p, there is a change of basis matrix Mq =

✓
Aq Bq

Cq Dq

◆
2 GL2(K)

such that

(91)

✓
a(�) b(�)
c(�) d(�)

◆
Mq = Mq

✓
   "

k�1
cyc ⌘

�1
q ⇤

0 ⌘q

◆
.

The choice of ⌧ ensures that Aq and Cq are invertible in K. Furthermore,
equating the upper left hand entries in (91) yields:

(92) b(�) = xq(a(�)�   "
k�1
cyc ⌘

�1
q (�)) for all � 2 GF,q, where xq = �Aq

Cq

.

5.5. Cohomology Class. Let 'm : T†

m �! W denote the extension of the
homomorphism ' to the completion of T†. Let

I† = ker('m), Ĩ = ker('m|T̃m
), I = ker('m|Tm).

As in [20, §9.3], the choice of basis for ⇢ implies that a(�), d(�) 2 T with

(93) a(�) ⌘ "
k�1
cyc (�) (mod I), d(�) ⌘    (�) (mod I).

Furthermore we have

(94) det ⇢(�) ⌘ "
k�1
cyc    (�).
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Recall that K = Frac(T†

m). Recall the elements xq 2 K for q | p defined
in (92), including the distinguished prime p. Define x

0
p = xp(Up � 1). Let:

B̃ = T̃m-submodule of K generated by b(�) for all � 2 GF along with

xp, x
0

p, and xq for all q 2 ⌃.

B̃0 = T̃m-submodule of B̃ generated by ĨB̃, p
mB̃, and

b(�) for all � 2 Iq, q | P0
.

B̃ = B̃/B̃0
.

(95)

By construction, B̃ naturally has the structure of an A
#
L -algebra in which

L acts by multiplication by (1� Up).
Denote by b(�) the image of b(�) in B̃. Since ⇢ is a Galois representation,

we have

b(��0) = a(�)b(�0) + b(�)d(�0) for all �,�0 2 GF .

The congruences (93) therefore imply that the function

(�) = b(�)   �1(�)

is a 1-cocycle defining a cohomology class [] 2 H
1(GF , B̃(   �1)). Note here

that since p
mB̃ = 0 in B̃ and "k�1

cyc ⌘ 1 (mod p
m), the character "k�1

cyc acts

trivially on B̃. Let:

B0 = Tm-submodule of B̃ generated by the image of b(�) for all � 2 GF .

B = Tm-submodule of B̃ generated by B0 along with

xp, x
0

p, and xq for all q 2 ⌃.

Note that ĨB̃ = 0 in B̃ and every element of Tm is equivalent to an element
of A modulo I (see the first three bullet points of Theorem 5.8). Therefore,
in the definition of B0 and B, it is equivalent to replace Tm by A.

The A-module structure of B̃(   �1) is by definition the composition of the

involution # with the natural A-module structure of B̃. The canonical A#
L -

module structure of B̃ can therefore be viewed as an AL -module structure
on B̃(   �1).

We now verify that our construction verifies all the properties required to
apply Theorems 4.4 and 4.5. First we describe the class  locally at primes
in ⌃p \ S1 using (92).

Lemma 5.9. For q 2 ⌃ \ S1, we have

(�) = xq(   
�1(�)� 1), � 2 GF,q.

Meanwhile if x
0
p = �L xp then

(�) = xp(   
�1(�)� 1) + ordp(�)x

0

p, � 2 GF,p,



BRUMER–STARK UNITS AND EXPLICIT CLASS FIELD THEORY 59

where ordp is as in (39).

Proof. Note that

(96) a(�) ⌘ "
k�1
cyc (�) ⌘ 1 (mod (I, pm)).

If q 2 ⌃ \ S1, then Uq ⌘ 1 (mod I), and hence by the definition of ⌘q
following (89), ⌘q acts trivially on B̃(   �1). Therefore (92) becomes

(�) = b(�)   �1(�) = xq(   
�1(�)� 1), � 2 GF,q.

For q = p, this applies except that Up 6⌘ 1 (mod I). Since (Up � 1)2 2 I,
we have

U
n
p ⌘ 1 + n(Up � 1) (mod I).

It follows that

(�) = xp(   
�1(�)� 1) + ordp(�)x

0

p, � 2 GF,p,

where
x
0

p = (Up � 1)xp = �L xp. ⇤

Theorem 5.10. The G-module B̃(   �1) and the cohomology class [] 2
H

1(GF , B̃(   �1)) satisfy the following properties.

• The class [] is unramified outside ⌃0
, locally trivial at ⌃, and tamely

ramified at ⌃0
.

• The image of the restriction

[]|GL
2 H

1(GL, B̃) = Homcont(GL, B̃)

is equal to B0.

• The quotient B/B0 is generated over A by xq for q 2 ⌃ and the

elements xp, x
0
p. The element x

0
p is fixed by the action of GF,p.

• The 1-cocycle  satisfies the following.

– For q 2 ⌃ finite and � 2 GF,q, we have (�) = (   �1(�)� 1)xq.
– For � 2 W(F p/Fp), we have

(97) (�) = (   �1(�)� 1)xp + ordp(�)x
0

p.

– Let ⌧ be the special element used in §5.4 to fix the chosen basis

of ⇢. For all � 2 GF , we have

(98) (�) = []|GL
(�⌧��1

⌧
�1)/2 2 B0.

• With respect to the AL -structure on B̃(   �1), we have

x
0

p + L xp = 0.

Proof. The Galois representation ⇢, and hence the cohomology class [], is
unramified outside ⌃ [⌃0 and the primes dividing p. There are three types
of primes above p: those in ⌃, the distinguished prime p, and the primes
dividing P0.
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Since in the definition of B̃ we have taken the quotient by the T̃m-module
spanned by b(�) for � 2 Iq, q | P0, it follows that [] is unramified at the
primes dividing P0. For q 2 ⌃ \ S1, Lemma 5.9 expresses |GF,q

as a
coboundary and demonstrates that [] is locally trivial at q 2 ⌃. At p, note
that since ordp(�) = 0 for � 2 Ip, Lemma 5.9 shows that [] is unramified at
p. To conclude the proof of the first item, note that ⌃0 contains no primes
above p, and all our modules are pro-p. Therefore [] is tamely ramified at
all primes in ⌃0.

For the second bullet point, let BL ⇢ B0 denote the image of []|GL
. Then

of course the image of []|GL
in H

1(GL, (B0/BL)(   �1)) vanishes, and hence
by [20, Lemma 6.3], the image of [] in H

1(GF , (B0/BL)(   �1)) vanishes.
Writing  for the image of  in B0/BL, we may then write

(�) = z(   �1(�)� 1)

for some z 2 B0/BL. Yet by construction (⌧) = 0 and    �1(⌧) = �1. We
therefore obtain z = 0. Hence  = 0 as a cocycle. But by definition of 
and B0, the image of the cocycle  generates B0 and hence the image of 
generates B0/BL. It follows that B0/BL = 0, i.e. B0 = BL as desired.

Next we show that  satisfies equation (98). As B0 is pro-p with p odd,
it is enough to show that

2   �1(�)b(�) = b(�⌧��1
⌧
�1),

where ⌧ is as in (90). The upper right entry (“b-entry”) of ⇢(�⌧��1
⌧
�1) is

(99) b(�⌧��1
⌧
�1) = det(⇢(�))�1

a(�)b(�)

✓
1 +

�2

�1

◆
.

The congruence (94) yields

� ⌘    (�) (mod p
m
, I).

The first congruence in (93) yields

a(�) ⌘ 1 (mod p
m
, I).

Furthermore, �1 ⌘ 1 ⌘ ��2 (mod p
m
, I). Hence the expression on the right

side of (99) is congruent to 2   �1(�)b(�). This finishes the proof that 
satisfies equation (98).

The remaining bullet points follow directly from the definitions or have
already been established. ⇤

In view of Theorems 4.4 and 4.5, we deduce from Theorem 5.10:

Corollary 5.11. We have an AL -module surjection

rL ,A �⇣ B̃(   �1)

and hence an inclusion FittAL (rL ,A) ⇢ FittAL (B̃(   �1)).
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5.6. Calculation of the Fitting ideal. It remains to prove that

FittAL (B̃(   �1)) ⇢ (pm).

Applying the involution #, this is equivalent to

Fitt
A#

L
(B̃) ⇢ (pm) = p

m
A

#
L .

This removal of the twist by    �1 will be convenient so that the usual g-
module structure on B̃ via    is compatible with the T̃m-module structure
on B̃ and the homomorphism 'm, which satsifies 'm(S(a)) =    (a).

We first recall the following lemma from [20, Lemma 9.9].

Lemma 5.12. Recall that B0 ⇢ B̃ denotes the T̃m-submodule generated by

the elements b(�) for � 2 GF . There are finitely many elements b1, . . . , bn 2
B0 that are non-zerodivisors in K, which generate B0 as an A-module.

Theorem 5.13. With notation as in Theorem 5.8, we have

Fitt
A#

L
(B̃) ⇢

✓
p
m
,Ann

A#
L

⇣Y

q|P0

✏q ·W
⌘◆

,

and hence by the last item of that theorem we have

Fitt
A#

L
(B̃) ⇢ (pm).

Proof. The proof proceeds closely along the lines of that in [20, Theorem
9.10]. Let q1, . . . , qr denote the primes dividing P0. For each qi, choose an
element �i 2 Gqi ⇢ GF that lifts rec($i) 2 G

ab
qi
, where $i is a uniformizer

for Fqi . Define

ci := �b(�i)   (qi)"
1�k
cyc (�i) = xqi(Uqi �   (qi) + I) 2 B̃.

Here and throughout this proof, we use the notation a = b + I to mean
a = b+ z for some z 2 I to avoid needing to add distinct variable names for
each such z that appears.

By choosing the elements b1, . . . , bm from Lemma 5.12 together with xq

for all q 2 ⌃p, we get elements b1, . . . , bn (n = m + #⌃p) of B̃ that are
non-zerodivisors in K = Frac(Tm) and generate this module over T̃m. The

images of these elements in B̃ are therefore A
#
L -module generators.

To calculate Fitt
A#

L
(B̃) we use the generating set c1, . . . , cr, b1, . . . , bn

for B̃ over A
#
L . Of course, these first r generators are not necessary, but

including them will aid us in proving the theorem. Suppose we have a matrix

M 2 M(n+r)⇥(n+r)(A
#
L )

such that each row of M represents a relation amongst our generators, i.e.
such that

M(c1, . . . , cr, b1, . . . , bn)
T ⌘ 0 in B̃

n+r
.
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We need to show that det(M) 2 A
#
L satisfies (det(M) + p

m
z)
Q

q|P0 ✏q = 0

in W for some z 2 A
#
L .

Write M = (Y |Z) in block matrix form, where

Y = (yij) 2 M(n+r)⇥r(A
#
L ), Z = (zij) 2 M(n+r)⇥n(A

#
L ).

Since    and ⌘qi are unramified at qi and a(�) ⌘ "
k�1
cyc (mod I), we have by

(92):

b(Iqi) ⇢ xqiI.

Also, since the bi generate B̃, every element of ĨB̃ can be written as a sum
of elements of the form tibi with ti 2 Ĩ. Therefore each relation

rX

j=1

yijcj +
nX

j=1

zijbj ⌘ 0 in B̃

can be expressed as in equality in B̃ as

(100)
rX

j=1

xqj (ỹij(Uqj �   (qj)) + Ĩ) +
nX

j=1

(z̃ij + Ĩ+ p
mT̃m)bj = 0.

We reiterate that here and in what follows, the symbols Ĩ (twice) and T̃m

represent elements of those sets for which we do not, for notational reasons,
introduce separate variable names. Here we have denoted by ỹij and z̃ij

elements of T̃m such that '(ỹij) = yij , '(z̃ij) = zij . It follows from (100)
that if we define a matrix M

0 2 M(n+r)⇥(n+r)(Frac(T̃m)) in block form by

M
0 =

⇣
xqj (ỹij(Uqj �   (qj)) + Ĩ) | (z̃ij + Ĩ+ p

mT̃m)bj
⌘
,

then det(M 0) = 0 in K since it has rows that sum to 0. We can cancel the
factors xqi and bj scaling the columns of M 0, since these are non-zerodivisors
in K. We obtain that det(M 00) = 0 where

M
00 =

⇣
(ỹij(Uqj �   (qj)) + Ĩ) | (z̃ij + Ĩ+ p

mT̃m)
⌘
2 M(n+r)⇥(n+r)(T

†).

Taking the determinant of M 00 and applying ', we obtain

0 = '(det(M 00)) = (det(M) + p
m
A

#
L )
Y

q|P0

✏q in W.

Therefore,

det(M) 2
✓
p
m
,Ann

A#
L

⇣Y

q|P0

✏q ·W
⌘◆

,

yielding the first statement of the theorem. The second statement then
follows immediately from the last bulleted statement in Theorem 5.8. ⇤

We immediately find:
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Theorem 5.14. Suppose we are in cases 1, 2(a), or 2(b). We have

FittAL (rL ,A) = 0.

Proof. Corollary 5.11 and Theorem 5.13 combine to yield

FittAL (rL ,A) ⇢ FittAL (B̃(   �1)) ⇢ (pm).

Since this holds for all m, we have FittAL (rL ,A) = 0 as desired. ⇤
Combining our results yields the p-part of Gross’s conjecture.

Proof of Theorem 1.4. For now we assume there is more than one prime
above p in F , leaving the case of one prime for the next section. Theo-
rem 5.14 and Lemma 4.11 imply that FittRL (rL ) = 0. Theorem 4.6 then
yields the p-part of the modified Gross conjecture:

recG(u
⌃,⌃0
p ) ⌘ ⇥L (mod I

2).

Lemma 3.1 now gives the p-part of Gross’s conjecture for the Brumer–Stark
unit up:

recG(up) ⌘ ⇥L/F
Sp,T

(mod I
2). ⇤

6. The case of one prime above p in F

In this section we handle Case 2(c), where p is the only prime of F lying
above p. We impose this condition for the remainder of the paper. Rather
than calculating the Fitting ideal of rL , we prove the p-part of the modified
Gross Conjecture (the congruence (20)) by taking advantage of two features
that present themselves when there is only one prime above p: (1) the
cyclotomic tower is ramified only at p, hence we may deform up this tower
without altering the depletion set ⌃p; (2) The rank one rational Gross–Stark
conjecture, proven in [18] and [50], is known. In essence, our argument is
to show that the rational conjecture (for the cyclotomic tower) implies the
integral conjecture (for arbitrary L/F ). The key input in this reduction is
the strong version of the Brumer–Stark conjecture giving the Fitting ideal
of r⌃0

⌃p
, conjectured by Burns and Kurihara and proven in [20]. This result

was stated in Theorem 4.2 above, and we apply it in this section to the
compositum of L with cyclotomic extensions of F . Another important result
applied is the nonvanishing of the derivative of p-adic L-functions at s = 0,
which follows by combining the result of the rational Gross–Stark conjecture
with the spectacular transcendence theorem of Brumer–Baker on the linear
independence of p-adic logarithms of algebraic numbers. This again takes
advantage of the fact that we are in a rank 1 situation since there is only
one prime above p in F .

We begin by recalling the necessary results and notation concerning p-adic
L-functions.
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6.1. p-adic L-functions. In our current setting we have ⌃ = S1, ⌃p =
S1 [ {p}, and p is the only prime of F above p. For each odd character
� of G, Deligne–Ribet and Cassou-Nogues construct a p-adic meromorphic
function

Lp(�!, s) : Zp �! Qp(�)

satisfying the interpolation property

Lp(�!, n) = L⌃p,;(�!
n
, n)

for all integers n  0. Here ! : GF �! µp�1 denotes the Teichmüller char-
acter and Qp(�) denotes the extension of Qp obtained by adjoining the
values of �. Analyticity and integrality are achieved if we incorporate the
smoothing set ⌃0, i.e. we have a p-adic analytic function

Lp,⌃0(�!, s) : Zp �! Zp(�)

satisfying

Lp,⌃0(�!, n) = L⌃p,⌃0(�!n
, n)

for all integers n  0. Moreover, these p-adic L-functions interpolate to
a group ring valued Stickelberger function. There exists a p-adic analytic
function

⇥H
p,⌃0(s) : Zp �! Zp[G]�

satisfying the interpolation property

⇥H
p,⌃0(1� k) = ⇥⌃p,⌃0(1� k)

for all positive integers k ⌘ 1 (mod p�1). As we now describe, ⇥H
p,⌃0(s) can

be constructed as a certain p-adic integral. Let F1/F denote the cyclotomic
Zp-extension of F and let h1 = Gal(HF1/F ). For each integerm � 0 we let
Fm ⇢ F1 denote the mth layer of the tower and let hm = Gal(HF1/HFm).
Then hm is an open subgroup of h1 and its cosets provide a cover of h1 by
disjoint opens. For � 2 Gm = h1/hm

⇠= Gal(HFm/F ) we define

µ(� + hm) = ⇣⌃p,⌃0(�, 0), where ⇥HFm/F
⌃p,⌃0 (0) =

X

⌧2Gm

⇣⌃p,⌃0(⌧, 0)⌧�1
.

For � 2 G define

(101) ⇣p,⌃0(�, s) =

Z

�+h0

h"cyc(⌧)i�s
dµ(⌧).

Here h0 = Gal(HF1/H). We then have

⇥H
p,⌃0(s) =

X

�2G

⇣p,⌃0(�, s)��1
.
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Taking the derivative of (101) with respect to s and evaluating at 0, we
obtain

(102) ⇣
0

p,⌃0(�, 0) = �
Z

�+h0

logp "cyc(⌧)dµ(⌧).

To evaluate this modulo p
m, we may take the Riemann sum over the cosets

of hm. We obtain:

Lemma 6.1. For every integer m � 0, we have

(⇥H
p,⌃0)0(0) ⌘ �

X

�2Gm

⇣⌃p,⌃0(�, 0) logp "cyc(�)�
�1 (mod p

m).

Here � denotes the image of � in G.

For notational simplicity, we will simply write ⇥0

H for (⇥H
p,⌃0)0(0) in the

sequel.

6.2. The rational Gross–Stark conjecture. The following result, which
we refer to as the rank 1 rational Gross–Stark conjecture, was proven in
[18] and [50]. The latter paper removed two assumptions from the former,
making the result unconditional.

Theorem 6.2 ([30, Conjecture 2.12]). Let u 2 U
�
p such that

(103) �(ordG(u)) =
X

�2G

�(�)�1 ordP(�(up)) 6= 0.

Then

(104)

P
�2G �(�)

�1 logp(NormFp/Qp
(�(u)))

�(ordG(u))
= �

L
0
p(�

�1
!, 0)

L(��1, 0)
.

When applied to the Brumer–Stark unit u
⌃,⌃0
p , this result can be inter-

preted as follows:

Corollary 6.3. We have

(105) ⇥0

H = �
X

�2G

   (�)�1 logp(NormFp/Qp
(�(u⌃,⌃0

p ))).

Proof. It is enough to show that the two sides agree after the application of
� for every odd character � of G, i.e. that

(106) L
0

p,⌃0(��1
!, 0) = �

X

�2G

�(�)�1 logp(NormFp/Qp
(�(u⌃,⌃0

p ))).

Noting that
L
0
p(�

�1
!, 0)

L(��1, 0)
=

L
0

p,⌃0(��1
!, 0)

L⌃,⌃0(��1, 0)

since the smoothing factors
Q

q|⌃0(1��
�1(�q)Nq) cancel, and recalling that

�(ordG(u
⌃,⌃0
p )) = L⌃,⌃0(��1

, 0)
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by the definition of u⌃,⌃0
p , the desired result (106) follows directly from (104).

⇤

The following result is known to the experts and has at its heart two
deep facts—Theorem 6.2 above and the celebrated transcendence result of
Brumer–Baker on the linear independence of logarithms of algebraic num-
bers over Q.

Theorem 6.4. Let � be an odd character of G. We have L
0
p(�!, 0) 6= 0.

Proof. In view of Theorem 6.2, it su�ces to prove that
X

�2G

�(�)�1 logp(NormFp/Qp
(�(u))) 6= 0

for any u 2 U
�
p such that �(ordG(u)) 6= 0. This follows from the theorem of

Brumer–Baker [2] as explained by Gross in [30, Proposition 2.13]. ⇤

We interpret this result in terms of the group-ring element ⇥0

H as follows.

Corollary 6.5. The element ⇥0

H 2 R = Zp[G]� is a non-zerodivisor.

6.3. The ring RX,m and module rX,m. Recall R = Zp[g]�. For any
nonnegative integer m, define the ring

(107) RX,m = R[X]/(⇥L �⇥0

HX,X
2
, IX, I

2
, p

m
X).

Lemma 6.6. For m su�ciently large, the canonical map R/I
2 �! RX,m

is injective.

Proof. The proof is easier than Theorem 3.4 since ⇥0

H is a non-zerodivisor
in R. Let a 2 R have image in RX,m that vanishes. Writing down the
fact that a lies in the ideal defining RX,m shows that a ⌘ r⇥L (mod I

2)
for some r 2 R such that r⇥0

H ⌘ 0 (mod p
m) in R. Yet since ⇥0

H is a
non-zerodivisor, there exists a nonnegative integer h such that ⇥0

H divides
p
h in R. We therefore find p

h
r ⌘ 0 (mod p

m), whence r ⌘ 0 (mod p
m�h)

for m � h. Therefore r 2 (I, pm�h) so a 2 (I2, pm�h
I). But #� annihilates

I/I
2 (recall � = Gal(L/H)) so for m large enough p

m�h
I ⇢ I

2, and we have
a 2 I

2 as desired. ⇤

Recall that for an integer m � 0, Fm denotes the mth layer of the cyclo-
tomic Zp-extension of F . Let gm = Gal(LFm/F ) and �m = Gal(LFm/H).
Let Rm = Zp[gm]� and let

   m : gm �! R
⇤

m

denote the canonical character. We define a ring homomorphism

(108) �m : Rm �! RX,m, � 7! �|L + �|H · logp("cyc(�))X.
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This is well-defined since the image of � 2 gm determines the value of
logp("cyc(�)) modulo p

m.
Define

(109) rX,m = r⌃0
⌃p
(LFm)Rm

⌦Rm
RX,m,

where the Rm-action on the right factor is given by �m.

Lemma 6.7. The RX,m-module rX,m is quadratically presented and

FittRX,m
(rX,m) = (recG(u

⌃,⌃0
p )�⇥L).

To prepare for the proof of Lemma 6.7, define Im = ker(Zp[gm]� �!
Zp[G]�). We have Im/I

2
m

⇠= Zp[G]� ⌦ �m. We lift the map recG defined in
(6) by defining

recG,m : (O⇤

H,⌃,⌃0)R �! Im/I
2
m, ✏ 7!

X

�2G

(recP,m(�(✏))� 1)�̃�1
m ,

where recP,m : H⇤

P
�! �m is the reciprocity map and �̃m is a lift of � in gm.

Under the projection gm �! g, the element recP,m(✏) is mapped to recP(✏).
Furthermore,

"cyc(recP,m(✏)) ⌘ NormHP/Qp
(✏) in (Z/pmZ)⇤.

Therefore, under the map �m defined in (108), we have

(110) �m(recG,m(✏)) = recG(✏) +X

X

�2G

   (�)�1 logpNormHP/Qp
(�(✏)).

Proof of Lemma 6.7. Lemmas 4.1 and 4.10 (applied to LFm in place of L)
imply that r⌃0

⌃p
(LFm)Rm

is quadratically presented over Rm and that

FittRm
(r⌃0

⌃p
(LFm)Rm

) = (recG,m(u⌃,⌃0
p )).

Applying (110), we then calculate

�m(recG,m(u⌃,⌃0
p )) = recG(u

⌃,⌃0
p ) +X

X

�2G

   (�)�1 logpNormHP/Qp
(�(u⌃,⌃0

p ))

= recG(u
⌃,⌃0
p )�⇥0

HX(111)

= recG(u
⌃,⌃0
p )�⇥L.(112)

Equation (111) follows from Corollary 6.3 and equation (112) is one of the
defining relations of RX,m in (107). The lemma follows. ⇤

On the other hand, in our previous work [20] we calculated the Fitting
ideal of r⌃0

⌃p
(LFm) exactly, yielding the following result:

Theorem 6.8. We have FittRX,m
(rX,m) = 0.
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Proof. Theorem 3.3 of [20], recalled already in Theorem 4.2 above, implies
that

FittRm
(r⌃0

⌃p
(LFm)Rm

) = (⇥LFm

⌃p,⌃0).

Passing to RX,m by applying �m, we find

�m(⇥LFm

⌃p,⌃0) = ⇥L +X

X

�2gm

⇣⌃p,⌃0(�, 0) logp "cyc(�)�
�1

= ⇥L +X

X

�2Gm

⇣⌃p,⌃0(�, 0) logp "cyc(�)�
�1(113)

= ⇥L �X⇥0

H(114)

= 0.(115)

Here � denotes the image of � in G. Equation (113) follows from the distri-
bution property of partial zeta functions since logp "cyc(�)�

�1 depends only
on the image of � in Gm. Equation (114) follows from Lemma 6.1. Equation
(115) is a defining relation of RX,m. The result follows. ⇤

Combining Lemma 6.7 with Theorem 6.8, we obtain

(116) recG(u
⌃,⌃0
p )�⇥L = 0 in RX,m.

By Lemma 6.6, equation (116) for m large enough yields

recG(u
⌃,⌃0
p ) ⌘ ⇥L (mod I

2)

in R. This completes the proof of the p-part of the modified Gross conjecture
(20) in Case 2(c). Lemma 3.1 then yields the p-part of Gross’s conjecture
for the Brumer–Stark unit up:

recG(up) ⌘ ⇥L/F
Sp,T

(mod I
2).

This completes the proof of Theorem 1.4.
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[42] Carl Ludwig Siegel. Über die Fourierschen Koe�zienten von Modulformen. Nachr.
Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970:15–56, 1970.

[43] Kaloyan Slavov. Gross–Stark Units for Totally Real Number Fields. Thesis (A.B.)–
Harvard University.

[44] Jesse Silliman. Group Ring Valued Hilbert Modular Forms. arXiv: 2009.14353.
[45] Michael Spiess. Shintani cocycles and the order of vanishing of p-adic Hecke L-

series at s = 0. Math. Ann. 359 (1-2):239–265, 2014.
[46] H. M. Stark. L-functions at s = 1. III. Totally real fields and Hilbert’s twelfth

problem. Advances in Math. 22 (1):64–84, 1976.
[47] John Tate. On Stark’s conjectures on the behavior of L(s, �) at s = 0. J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 28 (3):963–978 (1982), 1981.
[48] . Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Progress in
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