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The Fine-Gray proportional sub-distribution hazards (PSH) model is among
the most popular regression model for competing risks time-to-event data. This
article develops a fast safe feature elimination method, named PSH-SAFE, for
fitting the penalized Fine-Gray PSH model with a Lasso (or adaptive Lasso)
penalty. Our PSH-SAFE procedure is straightforward to implement, fast, and
scales well to ultrahigh dimensional data. We also show that as a feature screen-
ing procedure, PSH-SAFE is safe in a sense that the eliminated features are
guaranteed to be inactive features in the original Lasso (or adaptive Lasso)
estimator for the penalized PSH model. We evaluate the performance of the
PSH-SAFE procedure in terms of computational efficiency, screening efficiency
and safety, run-time, and prediction accuracy on multiple simulated datasets
and a real bladder cancer data. Our empirical results show that the PSH-SAFE
procedure possesses desirable screening efficiency and safety properties and can
offer substantially improved computational efficiency as well as similar or better

prediction performance in comparison to their baseline competitors.

KEYWORDS

adaptive Lasso, competing risks, Fine-Gray model, proportional subdistribution hazards, safe
feature screening

P01AT003960; Fundamental Research
Funds for the Central Universities of
Central South University, Grant/Award
Number: 2020zzts361

1 | INTRODUCTION
Lasso penalization! is among the most widely used methodology for high dimensional problems. However, large-scale
and high dimensional data can pose substantial computational challenges to solving a Lasso-type penalization problem
because its computational cost is in the order of np?.? To improve computational efficiency, a safe feature elimination
(SAFE) algorithm has been recently developed for large scale Lasso-type problems.® Briefly speaking, SAFE serves as a
screening procedure to remove features that are guaranteed to be inactive with zero coefficients in the original Lasso
solution. Hence preceding Lasso with SAFE screening can effectively reduce the data dimension and the computational
complexity. Due to its superb numerical performance and desirable theoretical properties, SAFE screening has been
widely applied to classification and regression problems.*’

The purpose of this article is to develop SAFE algorithms for the Lasso or adaptive Lasso penalized Fine-Gray pro-
portional subdistribution hazards (PSH) model® for competing risks survival data with ultrahigh dimensional covariates.
Competing risks data arise commonly in many applications when individuals may fail from multiple causes and the
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occurrence of one failure event precludes the others from happening.®!! The Fine-Gray PSH model directly models the
impact of covariates on the marginal probability of failure for a specific cause, namely, the cumulative incidence function
(CIF) or subdistribution, and has been commonly used for competing risks data. However, despite of the rich literature on
high dimensional methods for the PSH model,'?!? to the best of our knowledge, no SAFE procedure has been developed
for the PSH model.

In this article, we derive a fast safe feature elimination method, named PSH-SAFE, for the Fine-Gray PSH model
combined with the Lasso and adaptive Lasso penalties, respectively. The detailed PSH-SAFE rules are described later in
(9) and (11). Our PSH-SAFE procedure is straightforward to implement, fast, and scales well to ultrahigh dimensional
data. We also show rigorously that as a feature screening procedure, PSH-SAFE is safe in a sense that the elimi-
nated features are guaranteed to be inactive features in the original Lasso-PSH (or adaptive Lasso-PSH) estimator. We
conduct extensive simulations to evaluate the performance of the PSH-SAFE procedure in terms of computational effi-
ciency, screening efficiency and safety, and prediction accuracy in multiple scenarios. Our empirical results demonstrate
that the PSH-SAFE procedure possesses desirable screening efficiency and safety properties and can offer substantially
improved computational efficiency as well as similar or better prediction performance in comparison to their baseline
competitors.

The rest of this article is organized as follows. In Section 2.1, we review the PSH model® and the pseudo-partial likeli-
hood estimation method. In Section 2.2, we derive the SAFE screening rules for both the Lasso and adaptive Lasso PSH
models, with theoretical guarantees. In Section 3, the performance of the proposed method is demonstrated using exten-
sive simulations and a publicly available high-dimensional bladder cancer dataset. Concluding remarks are provided in
Section 4.

2 | SAFE SCREENING FOR PENALIZED PROPORTIONAL
SUBDISTRIBUTION HAZARDS MODELS

2.1 | Preliminaries

Without loss of generality, we assume that there are two causes of failure for the competing risks outcome, where
cause 1 is the event of interest and cause 2 is a competing risk. A competing risks data consists of n iid observations
{i, 6, 661, X;),i =1, ... ,n}, where y; = min(T;, C;) is the observed time, T;, C; and ¢; € {1,2} denote the failure time,
the censoring time, and the failure type, 6; = I(T; < C;) is the censoring indicator, and X; is a vector of p covariates for
subject i. Denote the feature matrix by X = [x3,xz, ... ,xp] € R™P. Hence, Xl.T denotes the ith row of X and x; € RP? be
the jth column of X.

A fundamental quantity in competing risks problems is the CIF for each competing event. The CIF of event type i is

t
Ft|X)=P(T < t,e = i|X) = / Hi(¢1X)S(u|X) du,
0

where H;(t|X) is the cause-specific hazard (CSH) and S(t|X) is the event-free survival. With Fine-Gray’s PSH model, one
can directly estimate the impact of the covariates on the hazard of the CIF without estimating the individual CSH for the
different failure type. The PSH model based on the subdistribution hazard for cause 1 is defined as

h (t1X) = dF, (t1X) /{1 - F1(t|X)}

=Bn5ipr{tgTgt+At,s=1|thu(T5me¢1)|X}. 1)

The subdistribution hazard of cause 1 is assumed to follow a proportional hazard model, h;(t|X) = ho(t) exp(B7X),
where hjo(t) is an unspecified baseline subdistribution hazard function, and g is a p-dimensional vector of regression
coefficients.

For right censored competing risk data, the pseudo log-partial likelihood function of the PSH model is defined as'’

=y, /0 lﬁTXi ~ log { ¥ )Y () exp(87X) H X wi(WdN(w), @
i=1 j
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where N;(t) = I(T; < t,&; = 1), Y;(t) =1 — N;(t-), and w;(t) is a time dependent weight developed based on inverse prob-
ability of censoring weighting (IPCW) technique, allowing for dependence between censoring times and covariates. For
an individual i at time ¢, the IPCW weight is defined as w;(t) = I(C; > T; A £)G(T; A t). Here G(t) = Pr(C > t) is the survival
function of the censoring time C and G(t) is the Kaplan-Meier estimate for G(t). At a given time ¢, if the individual is right
censored or failed due to an event of interest, w;(t)Y;(¢) = 0; if failed due to competing risks, then w;(¢)Y;(¢) is between 0
and 1 and decreasing over time; otherwise, w;(#)Y;(t) = 1.

The pseudo log-partial likelihood can also be written as?

I(B) = Y I(biei = 1) lﬂTXi —log { D wi(t) exp(B"X)) H : ®3)
i=1

JER;

where therisksetR; = {j : (T; > T) U ((T; £ T)) n (§; = 1) N (&; # 1))}, including subjects still at risk and those who have
already failed from competing cause prior to time t.

Recently, penalization methodology is extended to the PSH model by proposing a generalized objective function and
rigorously established the asymptotic properties of the proposed penalized estimators:?!

p
Q) =1(B) — Y.pi(IBD, )
Jj=1

where [(B) is defined in Equation (3), p,(|4;]) is the penalty function, and 4 is a tuning parameter that controls the
complexity of selected models.

As can see from the literature,'”1%2122 Lasso-type penalties are the most widely used ones among all regularized
models. However, when the dimension of the feature space and/or the number of samples are extremely large, solving
common optimization algorithms for the lasso-type problem remains challenging.

In this research, using SAFE feature screening rules, we can quickly remove a significant number of features without
solving the L; optimization problems and these discarded features are guaranteed not to appear in an optimal solu-
tion. Consequently, the computational burden associated with computationally intensive optimization problems can be
substantially reduced.

2.2 | SAFE rules for Lasso-PSH and adaptive Lasso-PSH models

In this subsection, we will derive SAFE rules for PSH model with Lasso and adaptive Lasso penalties:

» Lasso penalty: p,(I5;]) = 415;|.

« Adaptive Lasso: p,(|6;]) = Awj|§;|, where wj is a data-adaptive weight assigned to each regression parameter. Generally
speaking, a default of w; = 1/|5;| can yield the oracle properties, and the penalized estimator = [4}, f,. ... , f,]" is
the maximizer of the log partial likelihood I(8) in Equation (3).

First, we derive the SAFE screening rule for the Lasso-PSH model. The primal optimal problem for the Lasso PSH
model is as follows:

max(8) — 411l1, = max { YiGie =1) lﬁTXi ~ log { Yoy eXp(ﬁTXj)H ~ 1Bl I1} . ©
i=1

JER;

Let B* be the optimum of the primal problem. To get the dual form of the optimization problem (5), we introduce the
following notations. An event time of interest matrix can be defined as an indicator matrix I := (I;;) € {0, 1" where
f is the number of unique observed events of interest failure times (¥ ,1(6;e; = 1)) and I;; = 1 if j € R;. Assuming Z :=
@) =1"XTeR*1=(, .., )" e V.
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Then the optimization problem (5) for PSH model can be written as

max { | 2 lxiﬁ —log {ij(ti)exp(zij)}] - /1||ﬁ||1}
(il6,6;=1) JER;

f n
= max {CTﬁ - 2 log { Zlijwj(ti) EXP(ZU)} = AlBlh } ; (6)

i=1 j=1

where ¢ =35 _1,Xi € RP.
For (6), introducing a dual variable U : = (uy) € RI*"_the dual form can be written as

f n
min max c'p— ) log <21ijmj(ti) exp(zij)> — Bl + r(UEZ" - Xp17y), (7)

i=1 j=1

where tr(A) refers to the trace of the matrix A.
Following the derivation detailed in Appendix A, the dual problem given in Equation (7) can be rewritten as*:

f n
min )" 3" uy(loguy — log (),

i=1 j=1
st |IXTUL—¢||o <A, UT1=1,U>0,Uc(1-1)=0, )

where o denotes the element-wise multiplication.
Theorem 1 below gives the SAFE rule for the Lasso PSH model. The proof of this theorem is available in Appendix B.

Theorem 1 (SAFE rule for Lasso-PSH). Consider the optimization problem Lasso-PSH in (5). Denote by xy the kth feature
(column) of the matrix X. We can obtain the index set for all inactive (excluded) features:

f f
= {k|/1>max (ck— anlinlxjk, Z_n}a>§>cjk—ck>}, 9
=) i =1 i

where ¢ = z{iléie,:l} x; € R?, f is the number of unique events of interest failure times and Iy = Iieg , Rj = {k : (T 2 Tj) U
(T =T NGk =1 N (e # 1)}

According to the above SAFE screening rule (9), for every index k € {, the kth entry of p* (the optimum of the primal
problem) is zero, that is, (f*); = 0, and feature x; can be safely eliminated from X, a priori to solving the optimization problem

(6).

With the adaptive Lasso penalty, we can obtain the SAFE rule for the adaptive Lasso PSH model as stated in following
Theorem 2.

Theorem 2 (SAFE rule for adaptive Lasso-PSH). Similar to the Lasso PSH model, the primal optimal problem for the
adaptive Lasso PSH model can be written as:

p
ml?xl(ﬁ) - /12|ﬁj|/|ﬂj|
=

n p
= max { D IGiei =1) [ﬁTxi —log { ) exp(ﬂij)}] =2 181/15] } : (10)

b i=1 JER; j=1
Following the procedure in Theorem 1, we can obtain the index set for all inactive (excluded) features:

! !
A .
¢= {klﬁ > max(ck — Zj‘l»-lill Xjks ijr}gﬁ Xji — Ck)} : (11)
k o =170

i=1"""Y
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Based on the SAFE screening rule in (11), for every index k € ¢, the kth entry of B* is zero, that is, (*)x = 0, and feature
Xy can be safely eliminated from X, a priori to solving the optimization problem (10).

In penalized Lasso-type problems, the tuning parameter A plays an important role. Typically, the optimal value of
A is chosen via cross-validation, Akaike information criterion (AIC), Bayesian information criterion (BIC), generally
cross-validation (GCV), and/or other criteria. Since optimization problems over a sequence of tuning parameter values
are involved, such procedures are usually time consuming.

With the help of the proposed screening method, the computational burden on solving Lasso or adaptive Lasso PSH
models can be greatly alleviated. Hence, for a given 4, some inactive features of (5) or (10) can be identified and discarded.
In other words, for a specified 4, only a partial data matrix is involved to solve the optimization problem in (5) or (10),
and consequently the algorithm efficiency is substantially improved.

3 | NUMERICAL STUDIES

Since the Lasso penalty leads to biased estimates for true nonzero coefficients®* and tends to select too many noninforma-
tive variables?* while the adaptive Lasso ensures the existence of global optimizers, produces less biased estimators and
reduces the number of false positives, here we only provide empirical results of the adaptive Lasso penalty.

In the following, we will systematically evaluate the screening and predictive performance of the proposed PSH-SAFE
method with adaptive Lasso-type penalty (shorten as “PSH_SAFE_aLasso”) on simulation and real-world datasets.

3.1 | Evaluation criteria

To evaluate the performance of our proposed algorithm, the following evaluation criteria are specified before presenting
the experimental results.

3.1.1 | Efficiency of screening

To measure the efficiency of SAFE screening rules, we choose two popular criteria, that is, the rejection ratio>*® and
screen ratio:?”?8

Number of eliminated features by screening
Number of inactive features in original Lasso solution g*’
Number of retained features
Original feature dimension(p)

Rejection ratio =

Screen ratio =

Here, inactive features are those features whose coefficients will be set to zero in the original Lasso optimization problem.
The rejection ratio less than or equal to 1 implies the screening is SAFE (coefficients of discarded features are guaranteed
to be zero in the targeted optimal solution), and a lower screening ratio means feature dimensionality is dramatically
decreased.

In this article, we adopt the approach in a previous study?’ to build the solution path: initialize Anay to a sufficiently
large value, which force all g to a zero vector, and then gradually decrease A in each iteration. Hence, Ay, is obtained by
setting all ﬂAj to 0. As for Ay, if n > p, we set Apin = 0.001 Aax, else we set Apyin = 0.05Amax. In our experiments, we search
m different A values in total. For the kth step, Ax = Amax(Amin/ Amax)</™.

3.1.2 | Prediction performance

After variable screening and/or variable selection procedures, it is usually necessary to evaluate the predictive perfor-
mance power of the model in question. In this study, a concordance index (C-index)?’ is adopted to evaluate the accuracy
of survival models in competing risks. The C-index metric is calculated by comparing a risk score M(X) at time ¢ with the
survival time of each subject. Here, a higher value of M(X) implies a higher risk of the event of interest. For two subjects
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X;, X;, the concordance value can be obtained by
Ci(0) :=PM(, X)) >M(t,Xj)le;=1 and T; <t and (T; < T or g = 2)). (12)

In this study, the above risk scores are based on estimates of the cumulative incidence function obtained by the Fine-Gray’s
model. Here, the reported C-index values are evaluated over the generated 100 As on the test sets for each of the three
methods (PSH_Lasso, PSH_alLasso, PSH_SAFE_aLasso).

3.2 | Simulated study

We first investigate the screening performance on data with different censoring rates, dimensions and different correla-
tions between covariates. Then, we explore the computational efficiency under different combinations of dimensions and
samples.

3.2.1 | Simulation settings

Similar to Reference 20, we consider the following two settings: (n, p) = (100, 500) and (n, p) = (200, 800). And covari-
ates X = (xi, ... ,Xp) are marginally standard normal with pairwise correlations corr(x;, x;) = p"7Il. In the experiments,
we set p = 0.6, 0.9 to reflect moderate and high correlated cases among the covariates. Censoring times are generated
from a uniform distribution U(0, cp), where ¢, is chosen to obtain the low (about 25%), moderate (about 50%) an high
(about 70%) censoring rates. Here, we consider two events, one primary event and one competing event. In the follow-
ing, denote the primary event by 1 and the competing event by 2. Also denote the regression parameter of cause 1 by
B1 = (P11, 2. ... . Pip)T and set B; = (0.5,0.5,-0.5,0.5,0, ... ,0)7; and for cause 2, B, = —B;. The CIF of cause 1 is:

Fi(t|1X) =P(T < t,e =1|X) =1 - [1 — pr{1 — exp(—1)}]=P1 %),

which is a unit exponential mixture with mass 1 — pr at co when X = 0. The value of pr is set to 0.3. The CIF for cause 2
is obtained by taking P(e = 2|X) = 1 — P(e = 1|X) and then using an exponential distribution with rate exp(ﬁZTX) for the
conditional CIF, P(T < t, |e = 2,X).

Hence, altogether 12 simulated scenarios are investigated. Simulated datasets with moderate correlations (Case 1:
p = 0.6) and high correlations (Case 2: p = 0.9) are summarized in Tables 1 and 2, respectively.

3.2.2 | Comparison results on simulated data
First, we present the simulated results for Case 1 (p = 0.6) when moderated correlations between covariates are present.

The screening related results, namely, screen ratio and rejection ratio with different As are shown in Figures 1 and 2,
respectively. While the predictive results in terms of C-index with different As is presented in Figure 3.

TABLE 1 Simulated datasets with moderated correlations (Case 1: p = 0.6)

Dataset #instance #feature Censoring rate Event 1 proportion
S1 100 500 31% 35%

S2 100 500 62% 19%

S3 100 500 80% 7%

S4 200 800 25% 44%

S5 200 800 54% 23%

S6 200 800 79% 9.5%
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TABLE 2 Simulated datasets with high correlations (Case 2: p = 0.9)
Dataset #instance #feature Censoring rate Event 1 proportion
S7 100 500 21% 39%
S8 100 500 49% 22%
S9 100 500 70% 13%
S10 200 800 27.5% 34%
S11 200 800 56% 15.5%
S12 200 800 74.5% 8%
1.00 1200
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FIGURE 1 Screen ratio for Case 1 given 100 As parameters. (A) S1, (B) S2, (C) S3, (D) S4, (E) S5, and (F) S6
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FIGURE 2 Rejection ratio for Case 1 given 100 As parameters. (A) S1, (B) S2, (C) S3, (D) S4, (E) S5, and (F) S6

From Figure 1, one can observe that the screen ratio decreases very rapidly with the increase of 1/Anya.x, indicating
that it is very effective in reducing the dimensionality of data. According to Figure 2, we can see that under all these six
simulated scenarios, the rejection ratio is always less than or equal to 1, which satisfies the SAFE property, that is, the
rejection ratio will not be greater than one.?

According to Figure 3, our algorithm (PSH_SAFE_aLasso, the rightmost one of each subfigure) outperforms the
original PSH_aLasso in all these cases and gain better results than PSH_Lasso in most cases (moderate censoring rate
with/without a larger sample size). We also notice that, when highly censored data (S3 and S6) are present, all compared
models produces unsatisfactory or incorrect predictions as most C-index predictions are below 0.5. This not something
unexpected since highly censoring rates (80% and 79%) imply only a small portion of data (7% and 9.5%) have events of
interest. With such few data, parameter estimation for PSH may not be reliable and these inaccurate parameters will lead
to low predictive performance.
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FIGURE 3 C-index boxplots for Case 1 over different 4s. (A) S1, (B) S2, (C) S3, (D) S4, (E) S5, and (F) S6

Next, we present the simulated results for Case 2 (p = 0.9) when high correlations between covariates are present.
This is often the case when Omics data are involved. The screening related results, namely, screen ratio and rejection ratio
with different As are shown in Figure 4 and Figure 5, respectively. And the predictive results in terms of C-index with
different As is presented in Figure 6.

According to Figures 4 and 5, the results on screen ratio and rejection ratio is very similar to the results in Case 1. These
results again demonstrate that the proposed method is effective in screening efficiency and safe in eliminating inactive
features.

From Figure 6, one can find that, in terms of predictive capability, the proposed method (PSH_SAFE_aLasso, the
rightmost one in each subfigure) again show similar performance: PSH_SAFE_aLasso beats PSH_aLasso in almost all
cases and outperforms the lasso method in most scenarios, except the heavily censoring case S9 where all three methods
achieve comparable results.

From both Figures 5 and 6, the proposed algorithm generally performs the best in terms of C-index and the superiority
stands out when moderate censoring and/or high correlated covariates are present. However, with a relative small sample
size (n = 100, 200), if highly censored rates are encountered, only a small proportion (about 10% in four scenarios) event
of interest data will be used for the screening procedure and estimating the weight B. Consequently, the noise or instability
incurred during both procedures make PSH_SAFE_alLasso may not work as expected.
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FIGURE 4 Screen ratio for Case 2 given 100 As parameters. (A) S7, (B) S8, (C) S9, (D) S10, (E) S11, and (F) S12

In the above experiments, the proportion of the primary event (interest of event 1) varies from 8% to 44% and all
the rejection and screen ratios results from 12 scenarios suggest that this does not have any effect on the screening effi-
ciency or the SAFE property of the algorithm. As to the effect on predictive capability, we find that the proposed method
(PSH_SAFE_aLasso) works best when the primary event data occupy a large proportion (20%) (S4, S5, S7, S8, S10). But,
PSH_SAFE_aLasso also beats the other two models on some low proportion cases (S3, S11). Therefore, we may conclude
that the proposed method is not too much sensitive to the proportion of primary event.

3.2.3 | Results on computation efficiency

In survival data with competing risks, we may come across different kinds of big data such as large sample sized
and/or ultra-high dimensional data. The computation efficiency of different kinds of method under such settings is our
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FIGURE 5 Rejection ratio for Case 2 given 100 As parameters. (A) S7, (B) S8, (C) S9, (D) S10, (E) S11, and (F) S12

primary concern. To validate the effectiveness of the proposed method in reducing computational burdens, we evaluate
the running times of our algorithm and other competitive algorithms under different settings.

In this experiment, simulation settings are almost the same with the above comparison study in the case of p = 0.9 and
moderate censoring. However, we vary the values of n and p to denote the high dimensional case, ultra-high dimensional
case, large sample sized case and the case of both large sample size and ultra-high dimensional data. Here, cases C1, C2,
and C3 have the same dimensionality (p = 500) but with different sample sizes (n = 100, 200, 2000). Cases C2, C4, and
C5 have the fixed sample size (n = 200) but different dimensionality (p = 500, 800, 5000). The most challenging case is
C6, where one can find both a large sample size (n = 2000) and a high dimensionality (p = 5000). In all these cases, s
are chosen to screening out about half of the dimensionality and all models are trained 100 times. Detailed information
for these simulated datasets can be found in Table 3.
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TABLE 3 Simulated cases for computational efficiency comparison

Dataset
C1
C2
C3
C4
C5
Cé6

#instance #feature
100 500

200 500

2000 500

200 800

200 5000
2000 5000

Censoring rate Event 1 proportion
58% 21%
62% 19%
49% 25%
49% 19%
51% 24%
51% 25%

d YT “TTOT 8STOLGOT

:sdny woiy papeoy

BIPUOD) PUE SLid I, 3) 39S “[$Z0T/80/71] U0 AXeIqrT QUIUQ AD[1A SO'T “BIWIOR[ED) JO ANSIAIUL AQ SHS6°WIS/ZO01"01/10p/WO Ao

:sdyy)

110)/w0d" Ko im A

pi

ASULDIT SUOWWO)) dANEAI)) d[qearjdde ayy £q pauIaA0S a1e sa[o1IE YO asn Jo sani 1oy AIeIqry aurjuQ A1 Uo (¢



WANG ET AL. Statistics -WI LEY—lﬂ

PSH_SAFE_alasso- <>———— PSH_SAFE_alasso- (>>——>—

PSH_alasso- PSH_alasso-

PSH_Lasso- PSH_Lasso- (}

100 1000 10000 3 5 10
Time [milliseconds] Time [seconds]

(A) (B)

PSH_SAFE_alasso- €> PSH_SAFE_alasso- (>v_-
PSH_alasso- D:> PSH_alasso- (}——c—

PSH_Lasso- PSH_Lasso-

10 30 100 300 3 10 30
Time [seconds] Time [seconds]

© D)

PSH_SAFE_alLasso- [>> PSH_SAFE_alasso- ”

PSH_alasso- PSH_alasso-

PSH_Lasso- PSH_Lasso- O

160 300 500 1000 3000 5000
Time [seconds] Time [seconds]

(E) (F)

FIGURE 7 Runtime comparison for simulation datasets. (A) C1, (B) C2, (C) C3, (D) C4, (E) C5, and (F) C6

Figure 7 shows the running times of all three compared algorithms over 100 runs. Table 4 gives the average run-
ning times of PSH_SAFE_aLasso (with screening) and PSH_aLasso algorithms (without screening). We also provide the
speed-ups of the proposed PSH_SAFE_aLasso method in all simulated cases.

As can be seen from Figure 7, in terms of time efficiency, the proposed algorithm always takes the lead in all six
simulated scenarios. PSH_aLasso takes the second while PSH_Lasso always takes the most amount of running times.
We also observe that there is a sharp difference in running times between the proposed PSH_SAFE_aLasso and methods
without safe screening for small sample-sized high dimensional and ultra-high dimensional data. However, with the
increase of sample size, PSH_SAFE_al.asso begins to deteriorate but is still faster than PSH_aLasso and much faster than
PSH_Lasso.

From Table 4, one may find that adaptive lasso method with safe screening generally outperforms its no-screening
counterpart by a noticeable margin in terms of computational efficiency. With safe screening, the speedups can be several
times or even several dozens of times in our simulations.
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TABLE 4 Average runtime comparison for the PSH-aLasso with and without SAFE screening rule over 100 runs

Dataset With screening Without screening Speed up
C1 (n =100, p = 500) 131.29 ms 7947.51 ms 60.53
C2 (n = 200, p = 500) 2.59s 8.66 s 3.35
C3 (n = 2000, p = 500) 14.19s 19.73 s 1.39
C4 (n = 200, p = 800) 2.69s 19.47 s 7.25
C5 (n =200, p = 5000) 94.06 s 324.56 s 3.45
C6 (n = 2000, p = 5000) 702.00 s 1307.87 s 1.86
1.00
1.00
0.75-
0.75
% 0.50 g
8 = 0.50
& B
0.25
0.25
0.00
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FIGURE 8 Empirical analysis of screening efficiency and safety: Screen ratio given 100 As parameters. (A) Screen ratio and (B)
rejection ratio

3.3 | Real application

In this part, we use a publicly available bladder cancer dataset to perform an empirical analysis of the proposed method.*°
This dataset is further preprocessed by eliminating all columns have the same values or data with missing values. The
resulting dataset includes 329 samples, each corresponding to 1381 publicly available preprocessed custom platform
microarray features.

In this dataset, the response of interest is the time to progression or death from bladder cancer. And death from other
or unknown causes is the competing event. For the former event, 57 patients were observed while for the latter, 49 were
observed. The remaining 223 patients are censored samples.

3.3.1 | Results on screening efficiency and safety

The screening efficiency and safety of the proposed screening procedure is shown in Figure 8. According to Figure 8(a),
the screen ratio decreases fast with the increase of dimensionality, indicating that the method can dramatically decrease
the feature dimensionality. From Figure 8(b), we know that the higher the dimension, the higher the rejection ratio. The
rejection ratio < 1, which means the PSH_SAFE_alasso can successfully identify a majority of the inactive features and
they only eliminate features that are guaranteed to be absent after solving the optimization problem.

3.3.2 | Results on prediction accuracy

In the experiments, results obtained are based on the 5x2 cross-validation procedure.?' In 5 x 2 folds cross-validation,
the dataset is randomly divide into two equal-sized blocks. The model is trained on the first block and evaluated
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FIGURE 9 Prediction performance comparison: C-index on the real datasets with best chosen As

on the second block and vice versa. This process is repeated five times. Here, following the reviewers’ suggestions,
instead of comparing all the predictive power over the 100 generated As values, we compare the predictive power
of all three models by choosing their best parameter As, respectively. Here, the best tuning parameter is chosen via
cross-validation.

From Figure 9, we can clearly see that in terms of C-index, adaptive methods (with screening or not) give almost iden-
tical results and both methods outperform the competing (PSH_Lasso) method. This again demonstrates the effectiveness
of the proposed method.

3.3.3 | Results on time efficiency

In simulated study, we have seen that with a fixed A value (screening out about half of the dimensionality), the proposed
method achieves the best performance in terms of time efficiency in all simulated cases. Here, we want to explore the
running times at different values of tuning parameter As. Here, we select four representative quantiles (ie, the upper 5th,
25th, 75th, and 95th) from the generated 100 As and compare the runtimes of all these three methods with these four As.
Again, for each 4, the experiment is run a hundred times. Figure 10 shows the runtimes of all three compared models on
the bladder cancer dataset.

From Figure 10, we can clearly see that the PSH_SAFE_alLasso takes the least time compared with PSH_alLasso and
PSH_Lasso. In order to show the advantages of our algorithm’s fast speed more clearly, we display average running time
values in the form of a Table 5.

It is seen from Table 5 that a larger A value (such as 45 or A,5) is associated with a larger speed-up. This is reasonable,
since with a large 4 value, a large proportion of inactive features will be removed prior to training the adaptive Lasso PSH
model. Hence, the model is trained on a much reduced data matrix, which consequently leads to greater savings in the
computational time.

4 | DISCUSSION

We have proposed fast SAFE screening algorithms for the PSH model for competing risks data with ultrahigh dimensional
covariates. Our empirical studies demonstrate that our algorithm is able to efficiently and safely eliminate some features
whose corresponding coefficients of optimization problem are guaranteed to be zero. Moreover, it can significantly reduce
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FIGURE 10 Runtime on the real dataset with four specific As over 100 runs. (A) As, (B) 45, (C) 475, and (D) Ags

TABLE 5 Average runtime comparison for the PSH-aLasso with and without SAFE screening rule over 100 runs

A With screening Without screening Speed up
As 82.68 ms 98886.73 ms 1196.02
Aos 2.56s 98.74 s 38.57

- 8245 100.45 s 1.31

. 93.94 s 106.10 s 1.13

the running time for large high dimensional competing risks data while maintaining competitive prediction performance.
In particular, the computational superiority stands out for large penalty parameter values.

We point out that the proposed PSH-SAFE screening strategy works with any PSH Lasso solvers. Inspired by the fact
that the computational complexity for the log-pseudo likelihood and its derivatives for the PSH model can be reduced
from O(n?) to O(n),'” our team is currently working on a more efficient PSH-SAFE implementation to handle competing
risks survival data with both ultrahigh dimensionality and massive sample size.

An R package “SFEcmprsk” has been developed for the proposed screen procedure and the code is available at https://
github.com/whcsu/safecomp.
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APPENDIX A. DERIVATION OF THE DUAL FORM (8)

In this appendix, we provide the detailed derivation of the dual form (8) of Lasso PSH.
For the dual form,

f n
min max c'p- ) log <Zfijwj(ti) eXp(Zij)> — MBI+ tr(UEZ" - Xp17))

i=1 j=1
using U = [ug, uy, ... ,usl,Z = (21,22, ... ,Zfl, where u;, z; € R", the above formula can be rewritten as*
f n
P = mUianzax ul'z; — log <Zlijwj(ti) exp(zij)> + max c'B = AlIB|l1 — rQATUXP). (A1)
=1 j=1

In order to get P*, first consider the situation containing only f

fp = max c"B— Bl —trA’UX p)

= mngﬂT(c—XTUTl)—/lllﬁlll- (A2)

For (A2), f(p) is convex but not smooth. Next, we need to consider its subgradient

oAB) _

c—-XTuf1-w=o. A3
2B (A3)

In which v is the subgradient of || 8]|;, its definition by element-wise is: Vk, k = 1,2, ... ,p

+1, P > 0,
Ve =4-1, B <0,
[-1,+1], pi=0.

Plugging into Equation (A2), we can obtain that if || X" U1 — c|| < 4, then f*() = 0. So

f n
P* = mgnzngx ulz; - log (ZIija)j(ti)eXp(zij)> S IXTUL - ¢ < A (Ad)

i=1 j=1
For every i, consider every optimization problem

n
max u/z; —log <ZL-jcuj(t,-) exp(zij)> CIXTUL - ] < A (A5)
i j=1
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The solution is

3 Z;‘zluij(log u;j — log wj(ty)), u; >0,17u; = 1,Vj 1 uy(1—1I;) =0,
+00, otherwise.

So,

f n
P* = mUinZ Zuij(log u;j — log w;(t;)),

i=1 j=1

st | XTUL=¢|| <A, UT1=1,U>0,Uc(1-1)=0, (A6)

where o is the multiplication between the element-wise.
APPENDIX B. PROOF OF THEOREM 1

After solving the dual problem of optimization, we can obtain the SAFE rule. In this appendix, we present the proof of
Theorem 1.
We restate the optimization problem for PSH model here:

f n
max {CT.B - Z log {ZIijwj(ti) eXp(Zij)} = |ﬁ||1} ,
: psy =

where c = ilg.e,=1) Xi € RP . For each feature k = 1,2, ... ,p, based on the convex optimization theory, if the following
holds, then g = B this is that f is at optimum.

A > max X, U'l—c| : Ul1=1,U2>0,Uc(1-1)=0. (B1)

At the same time, from the dual form equation

f
: T
min maxc' f — lo

<21ij60j(fi) eXp(Zij)> — MBI + r(UZT - Xp17)),

=1
we have if g = 0, the following must be true at optimum ;' .
=B + (UL = )y < 0. (B2)

Ifall U in the feasible set satisfies Equation (B2), then the feature can be safely eliminated. To obtain the feature screening
rule, the maximization problem (B1) must be solved. First, consider the below expression for each x; .

Si(xp) = mgxx,{Ul : U1=1, U>0,Uo(1-1)=0.
Based on duality, we can get

S+(q) =min max x UL+ trZ"((I —11")oU)
Z U>0,UT1=1

=min_max tUI-11")oZ + 1x;)
Z Ux0UT1=1

f
= mzln; {rsl]%)fl((lij — Dz + Xji)

f
= Zmin max(xj + (I — 1)zyj)
i=1 ¢ lgsn
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min max max X, max Xjx — Zjj
4 JiI=1 J:I;=0

>

Jn}f:)i Xjk. (B3)

M~ I~

=N

1

It can also be shown that S, (x) < Z{_l 'nzla)% Xj,. by choosing z;; =0 for I; = 1,z = Jnaxxhj - Jnax Xpj otherwise. As a
= 1, =0 Jy=1

result, the expression can be written as

f
S4(6) = ) max . (B4)
=170

Similarly, we can get

S_(x) = mUinx,fUTl : Ul=1,U>0,Uc(1-1)=0

=S4 (—xk)
f
Z minxj. (B5)

=1/ =

Based on these two expressions, Equation (B1) can be written as

A > max (IS4 (xk) — ckl, [S—(xk) — ckl) s (B6)

f f
A>max| ¢ — minXxi, max Xix — Cx |- B7
k ;j:h-]:l ik ;j:l,-jzl ik k ( )

If the kth feature satisfies the SAFE condition (B7), then fx = 0 at optimum.
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