

Max-Affine Regression via first-order methods*

Seonho Kim[†] and Kiryung Lee[†]

Abstract. We consider regression of a max-affine model that produces a piecewise linear model by combining affine models via the max function. The max-affine model ubiquitously arises in applications in signal processing and statistics including multiclass classification, auction problems, and convex regression. It also generalizes phase retrieval and learning rectifier linear unit activation functions. We present a non-asymptotic convergence analysis of gradient descent (GD) and mini-batch stochastic gradient descent (SGD) for max-affine regression when the model is observed at random locations following the sub-Gaussianity and an anti-concentration with additive sub-Gaussian noise. Under these assumptions, a suitably initialized GD and SGD converge linearly to a neighborhood of the ground truth specified by the corresponding error bound. We provide numerical results that corroborate the theoretical findings. Importantly, SGD not only converges faster in run time with fewer observations than alternating minimization and GD in the noiseless scenario but also outperforms them in low-sample scenarios with noise.

16 **Key words.** Max-affine regression, gradient descent, stochastic gradient descent, non-convex optimization.

17 AMS subject classifications. 90C26

18 **1. Introduction.** The *max-affine* model combines k affine models in the form of

$$19 \quad (1.1) \quad y = \max_{j \in [k]} (\langle \mathbf{x}, \boldsymbol{\theta}_j^* \rangle + b_j^*)$$

20 to produce a piecewise-linear multivariate functions, where x and y respectively denote the
 21 covariate and the response, and $[k]$ denotes the set $\{1, \dots, k\}$. The max-affine model frequently
 22 arises in applications of statistics, machine learning, economics, and signal processing. For
 23 example, the max-affine model has been adopted for multiclass classification problems [7, 9]
 24 and simple auction problems [31, 34].

25 We consider a regression of the max-affine model in (1.1) via least squares

$$(1.2) \quad \min_{\{\boldsymbol{\theta}_j, b_j\}_{j=1}^k} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \max_{j \in [k]} (\langle \mathbf{x}_i, \boldsymbol{\theta}_j \rangle + b_j) \right)^2$$

from statistical observations $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ potentially corrupted with noise. A suite of numerical methods has been proposed to solve the nonconvex optimization in (1.2) (e.g., [30, 42, 19, 1]). The *least-squares partition algorithm* [30] iteratively refines the parameter estimate by alternating between the partition and the least-squares steps when the number of affine models k is known a priori. The partitioning step classifies the inputs $\mathbf{x}_1, \dots, \mathbf{x}_n$ with respect to the maximizing affine models given estimated model parameters. The least-squares step updates the parameters for each affine model by using the corresponding observations. Later variations of the alternating minimization algorithm used an adaptive search for unknown k [19, 1].

*Submitted to the editors on March 17, 2024.

Funding: This work was supported in part by NSF CAREER Award CCF 19-43201.

[†]The Ohio State University, Columbus, Ohio (kim.7604@osu.edu, kiryung@ece.osu.edu).

35 The consistency of these estimators has been derived. In more recent papers, Ghosh et al.
 36 [12, 13, 14] established finite-sample analysis of the *alternating minimization* (AM) estimator
 37 [30] for the special case when the observations are generated from a ground-truth model. One
 38 can interpret their analysis through the lens of the popular *teacher-student framework* [29].
 39 This framework has been widely adopted in statistical mechanics [29, 10] and machine learning
 40 [49, 15, 48, 22]. It provides a theoretical understanding of how a specific model is trained and
 41 generalized through a ground-truth generative model [22]. In this framework, a max-affine
 42 model (student) is trained by data generated from a ground-truth max-affine model (teacher)
 43 from k fixed affine models. By using the provided data, the student model recovers param-
 44 eters that produce the ground-truth model via AM. Since the max affine model is invariant
 45 under the permutation of the component affine models, the minimizer to (1.2) is determined
 46 only up to the corresponding equivalence class. Ghosh et al. [14] established a finite-sample
 47 analysis of AM under the standard Gaussian covariate assumption with independent stochas-
 48 tic noise. They showed that a suitably initialized alternating minimization converges linearly
 49 to a consistent estimate of the ground-truth parameters along with a non-asymptotic error
 50 bound. Moreover, they proposed and analyzed a spectral method that provides the desired
 51 initialization. They also further extended the theory to a generalized scenario with relaxed
 52 assumptions on the covariate model [12, 13].

53 In this paper, we present analogous theoretical and numerical results on max-affine regres-
 54 sion by first-order methods including *gradient descent* (GD) and *stochastic gradient descent*
 55 (SGD). The first-order methods have been widely used to solve various nonlinear least squares
 56 problems in machine learning [16, 11, 39, 24]. We observe that GD and SGD also perform
 57 competitively on max-affine regression compared to AM. In particular, SGD converges signif-
 58 icantly faster (in run time) than AM in a noise-free scenario. Figure 1 compares AM, GD,
 59 and a mini-batch SGD on random 50 trials of max-affine regression where the ground-truth
 60 parameter vectors $\{\beta_j^*\}_{j=1}^k$ are selected randomly from the unit sphere. Covariates are inde-
 61 pendently generated from either $\text{Normal}(\mathbf{0}, \mathbf{I}_{500})$ or $\text{Unif}[-\sqrt{3}, \sqrt{3}]^{500}$. We plot the median
 62 of relative errors versus the average run time where the relative error is calculated as

$$63 \quad \min_{\pi \in \text{Perm}([k])} \log_{10} \left(\sum_{j=1}^k \|\hat{\beta}_{\pi(j)} - \beta_j^*\|_2^2 / \sum_{j=1}^k \|\beta_j^*\|_2^2 \right)$$

64 with $\text{Perm}([k])$ and $\{\hat{\beta}_j\}_{j=1}^k$ denoting the set of all possible permutations over $[k]$ and the
 65 estimated parameters, respectively. Our main result provides a theoretical analysis of SGD
 66 that explains this empirical observation.

67 **1.1. Main results.** We derive convergence analyses of GD and mini-batch SGD under the
 68 same covariate and noise assumptions in the previous work on AM by Ghosh et al. [12]. They
 69 assumed that covariates $\mathbf{x}_1, \dots, \mathbf{x}_n$ are independent copies of a random vector \mathbf{x} that satisfies
 70 the sub-Gaussianity and anti-concentration defined below.

71 **Assumption 1.1 (Sub-Gaussianity).** *The covariate distribution satisfies*

$$72 \quad \|\langle \mathbf{v}, \mathbf{x} \rangle\|_{\psi_2} \leq \eta, \quad \forall \mathbf{v} \in \mathbb{S}^{d-1},$$

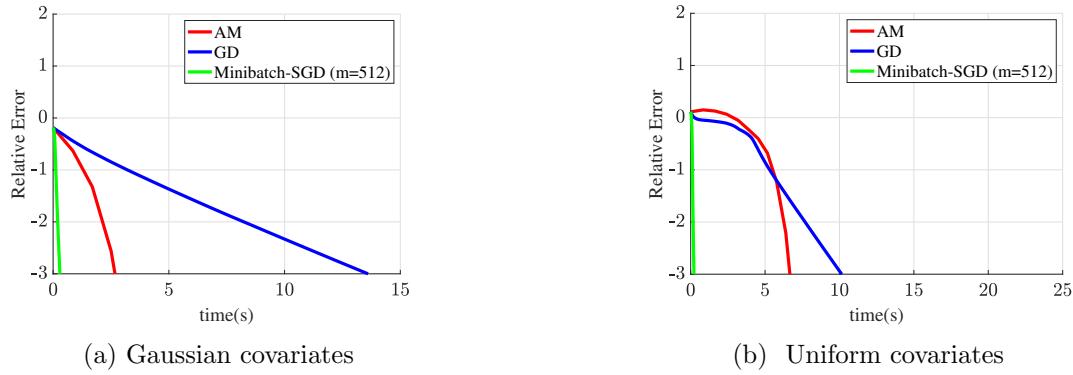


Figure 1: Convergence of estimators for noise-free max-affine regression ($k = 3$, $d = 500$, and $n = 8,000$).

73 where $\|\cdot\|_{\psi_2}$ and \mathbb{S}^{d-1} denote the sub-Gaussian norm (i.e., see [44, Equation 2.13]) and the
 74 unit sphere in ℓ_2^d , respectively.

75 **Assumption 1.2 (Anti-concentration).** The covariate distribution satisfies

76

$$\sup_{w \in \mathbb{R}, \mathbf{v} \in \mathbb{S}^{d-1}} \mathbb{P}((\langle \mathbf{v}, \mathbf{x} \rangle + w)^2 \leq \epsilon) \leq (\gamma \epsilon)^\zeta, \quad \forall \epsilon > 0.$$

77 The class of covariate distributions by Assumptions 1.1 and 1.2 generalizes the standard
 78 independent and identically distributed Gaussian distribution. For example, the uniform and
 79 beta distributions satisfy Assumptions 1.1 and 1.2. Therefore, the theoretical result under
 80 this relaxed covariate model will apply to a wider range of applications. They also assumed
 81 that observations are corrupted with independent additive σ -sub-Gaussian noise.

82 This paper establishes the first theoretical analysis of GD and mini-batch SGD for max-
 83 affine regression. The following pseudo-theorem demonstrates that GD shows a local linear
 84 convergence under the above assumptions.

85 **Theorem 1.3 (Informal).** Let $\beta^* \in \mathbb{R}^{k(d+1)}$ denote the column vector that collects all ground-
 86 truth parameters $(\theta_j^*, b_j^*)_{j \in [k]}$. Given $\tilde{O}(C_{\beta^*} kd(k^3 \vee \sigma^2))$ observations, a suitably initialized
 87 GD for max-affine regression converges linearly to an estimate of β^* with ℓ_2 -error scaling
 88 as $\tilde{O}(\sigma k^2 \sqrt{d/n})$, where C_{β^*} is a constant that implicitly depends on k through β^* but is
 89 independent of d .

90 The error bound by this theorem improves upon the best-known result on max-affine
 91 regression achieved by AM [12, Theorem 2]. The error bound for AM is larger by a factor
 92 that grows at least as $k^{-1+2\zeta^{-1}}$. We also present an analogous analysis for SGD. A specification
 93 for the noise-free observation scenario is stated as follows.

94 **Theorem 1.4 (Informal).** A suitably initialized mini-batch SGD for max-affine regression
 95 with $\tilde{O}(C_{\beta^*} k^9 d)$ noise-free observations converges linearly to the ground truth β^* for any
 96 batch size.

97 The per-iteration cost of a mini-batch SGD with batch size m is $O(kmd)$, which is significantly lower than those for GD $O(knd)$ and of AM $O(knd^2)$. This implies the faster
 98 convergence of SGD in run time shown in Figure 1. We also observe that SGD empirically
 99 recovers the ground-truth parameters from fewer observations (see Figures 2 and 3).
 100

101 **1.2. Related Work. Relation to phase retrieval and ReLU regression:** The max-
 102 affine model includes well-known models in signal processing and machine learning as special
 103 cases. The instance of (1.1) for $k = 2$ with $b_1^* = b_2^* = 0$ and $\theta_1^* = -\theta_2^* = \theta^*$ reduces to
 104 $y = |\langle \mathbf{x}, \theta^* \rangle|$, which corresponds to a measurement model in phase retrieval. Similarly, the
 105 rectified linear unit (ReLU) $y = \max(\langle \mathbf{x}, \theta^* \rangle, 0)$ is written in the form of (1.1) for $k = 2$ with
 106 $\theta_1^* = \mathbf{0}$ and $\theta_2^* = \theta^*$. A series of studies in [47, 38, 41, 40, 45, 25, 46, 43] has developed a
 107 statistical analysis of GD and SGD for phase retrieval and ReLU regression. It has been shown
 108 that for the noiseless case, GD and SGD converge linearly to a near-optimal estimate of the
 109 ground-truth parameters when the number of observations grows linearly with the ambient
 110 dimension d . In the context of bounded noise, GD converges to the ground truth within a
 111 radius determined by the noise level [47, 45]. However, it remained an open question whether
 112 GD is consistent under stochastic noise assumptions. Additionally, SGD in the presence of
 113 noise has not been thoroughly investigated yet. The main results of this paper address these
 114 questions on phase retrieval as a special case of max-affine regression.
 115

116 **Relation to convex regression:** The max-affine model has also been adopted in parametric
 117 approaches to convex regression [30, 19, 18, 3, 1, 2, 36, 37, 35]. Let $f_* : \mathbb{R}^d \rightarrow \mathbb{R}$ be an arbitrary
 118 convex function. The observations are given by $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ where $y_i = f_*(\mathbf{x}_i)$ for all i in $[n]$.
 119 The nonparametric convex regression problem aims to estimate f_* by solving

$$120 \quad (1.3) \quad \min_{f \in \mathcal{F}_{\text{cvx}}} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2,$$

121 where \mathcal{F}_{cvx} denotes the set of convex functions. Since f exists in the space of continuous
 122 real-valued functions on \mathbb{R}^p , the optimization problem in (1.3) is infinite-dimensional. A line
 123 of research [5, 3, 37] investigated the interpolation approach with a max-affine model in the
 124 form of

$$125 \quad (1.4) \quad \widehat{f}(\mathbf{x}) = \max_{i \in [n]} (y_i + \mathbf{g}_i^\top (\mathbf{x} - \mathbf{x}_i)).$$

126 It provides a perfect interpolation of data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with zero training error. For example,
 127 the interpolation is achieved by choosing $\mathbf{g}_i \in \partial f_*(\mathbf{x}_i)$ for all $i \in [n]$. It has been shown
 128 that the least squares estimator provides near-optimal generalization bounds relative to a
 129 matching minimax bound [28, 17, 1, 18, 27]. However, the minimax bound for the parametric
 130 model in (1.4) decays slowly due to the curse of dimensionality for a set of max affine with n
 131 segments. The least squares for the model in (1.4) is formulated as a quadratic program (QP)
 132 [5, Section 6.5.5]. However, off-the-shelf interior-point methods do not scale to large instances
 133 of this QP due to the high computational cost $O(d^4 n^5)$ [30, 19].

134 The k -max-affine model in (1.1) is considered as an alternative compact parametrization
 135 to approximate convex regression. The worst-case error in approximating d -variate Lipschitz
 136 convex functions on a bounded domain by a k -max-affine model decays as $O(k^{-2/d})$

[1, Lemma 5.2]. However, data in practical applications such as aircraft wing design, wage prediction, and pricing stock options are often well approximated by the k -max-affine model with small k (e.g., [19, Section 6], [1, Section 7]). Unlike the interpolation approach to convex regression, if the compact model fits data in applications, the estimation error decays much faster in n .

Max-linear regression in the presence of deterministic noise: A special instance of (1.1) with $b_j^* = 0$ for $j \in [k]$ is called the max-linear model. A convex optimization method to max-linear regression obtained with an initial estimate has been studied under the standard Gaussian covariate assumption and deterministic noise [26]. They empirically showed that the convex estimator outperforms the existing methods in the presence of outliers.

1.3. Organizations and Notations. The rest of the paper is organized as follows: Section 2 formulates the least squares estimator for max-affine regression, describes the GD algorithm and presents the convergence analysis of GD. Section 3 describes a mini-batch SGD for max-affine regression and provides its convergence analysis. Section 4 presents numerical results to compare the empirical performance of GD, SGD, and AM for max-affine regression. Finally, Section 5 summarizes the contributions and discusses future directions.

Boldface lowercase letters denote column vectors, and boldface capital letters denote matrices. The concatenation of two column vectors \mathbf{a} and \mathbf{b} is denoted by $[\mathbf{a}; \mathbf{b}]$. The subvector of $\mathbf{a} \in \mathbb{R}^{d+1}$ with the first d entries will be denoted by $(\mathbf{a})_{1:d}$. Various norms are used throughout the paper. We use $\|\cdot\|$, $\|\cdot\|_F$, $\|\cdot\|_2$, and $\|\cdot\|_{\psi_2}$ to denote the spectral norm, Frobenius norm, Euclidean norm, and sub-Gaussian norm respectively. Moreover, B_2^d and \mathbb{S}^{d-1} will denote the d -dimensional unit ball and unit sphere with respect to the Euclidean norm. For two scalars q and d , we write $q \lesssim p$ if there exists an absolute constant $C > 0$ such that $q \leq Cp$. We use C, C_1, C_2, \dots and c, c_1, c_2, \dots to denote absolute constants that may vary from line to line. We adopt the big- O notation so that $q \lesssim p$ is alternatively written as $q = O(p)$. With a tilde on top of O , we ignore logarithmic factors. For brevity, the shorthand notation $[n]$ denotes the set $\{1, \dots, n\}$ for $n \in \mathbb{N}$. Moreover, $a \vee b$ and $a \wedge b$ will denote $\max(a, b)$ and $\min(a, b)$ for $a, b \in \mathbb{R}$.

2. Convergence analysis of gradient descent. We first formulate the least squares estimator for max-affine regression and derive the gradient descent algorithm. For brevity, let $\boldsymbol{\xi} := [\mathbf{x}; 1] \in \mathbb{R}^{d+1}$ and $\boldsymbol{\beta}_j := [\boldsymbol{\theta}_j; b_j] \in \mathbb{R}^{d+1}$. Then the model in (1.1) is rewritten as

$$(2.1) \quad y = \max_{j \in [k]} \langle \boldsymbol{\xi}, \boldsymbol{\beta}_j^* \rangle + \text{noise}.$$

The least squares estimator minimizes the quadratic loss function given by

$$(2.2) \quad \ell(\boldsymbol{\beta}) := \frac{1}{2n} \sum_{i=1}^n \left(y_i - \max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j \rangle \right)^2,$$

where $\boldsymbol{\beta} = [\boldsymbol{\beta}_1; \dots; \boldsymbol{\beta}_k] \in \mathbb{R}^{k(d+1)}$.

The gradient descent algorithm iteratively updates the estimate by

$$\boldsymbol{\beta}^{t+1} = \boldsymbol{\beta}^t - \mu \nabla_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}^t),$$

175 where $\mu > 0$ denotes a step size. A generalized gradient [21] of the cost function in (2.2)
176 with respect to the j th block β_j is written as

177 (2.3)
$$\nabla_{\beta_j} \ell(\beta) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \left(\max_{j \in [k]} \langle \xi_i, \beta_j \rangle - y_i \right) \xi_i,$$

178 where $\mathcal{C}_1, \dots, \mathcal{C}_k$ are defined by β as

179 (2.4)
$$\mathcal{C}_j := \{\mathbf{w} \in \mathbb{R}^d : \langle [\mathbf{w}; 1], \beta_j - \beta_l \rangle > 0, \forall l < j, \langle [\mathbf{w}; 1], \beta_j - \beta_l \rangle \geq 0, \forall l > j\}.$$

180 The set \mathcal{C}_j contains all inputs maximizing the j th linear model.¹ Note that each \mathcal{C}_j is deter-
181 mined by $k - 1$ half spaces given by the pairwise difference of the j th linear model and the
182 others.

183 We show that the expression in (2.3) provides a valid generalized gradient of $\ell(\beta)$ with
184 respect to β_ℓ . We apply the chain rule on the generalized gradient [21]. The cost function in
185 (2.2) is the composition $\varrho \circ F$ where

186
$$\varrho((z_i)_{i=1}^n) = \frac{1}{2n} \sum_{i=1}^n z_i^2$$

187 and $\beta \mapsto F(\beta) = (f_i(\beta))_{i=1}^n$ with

188
$$f_i(\beta) = \left| \max_{j \in [k]} \langle \beta_j, \xi_i \rangle - y_i \right|, \quad i \in [n].$$

189 Since each max-affine function f_i is regular at each point of the domain, the equality in [21],
190 Eq. (5.7) holds and it characterizes the generalized gradient of ℓ as

191
$$\nabla_{\beta_\ell} \ell(\beta) = \frac{1}{n} \sum_{i=1}^n \left(\max_{j \in [k]} \langle \beta_j, \xi_i \rangle - y_i \right) \cdot \nabla_{\beta_\ell} \left(\max_{j \in [k]} \langle \beta_j, \xi_i \rangle \right).$$

192 Since a sub-gradient of a convex function is a generalized gradient [6], it suffices to show that
193 $\mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_\ell\}} \xi_i$ is a sub-gradient of the convex function $\nabla_{\beta_\ell} (\max_{j \in [k]} \langle \beta_j, \xi_i \rangle)$. To this end, we
194 verify that the following inequality holds for all $i \in [n]$:

195 (2.5)
$$\max \left(\langle \beta_\ell + \mathbf{h}, \xi_i \rangle, \max_{j \neq \ell \in [k]} \langle \beta_j, \xi_i \rangle \right) - \max_{j \in [k]} \langle \beta_j, \xi_i \rangle \geq \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_\ell\}} \langle \mathbf{h}, \xi_i \rangle, \quad \forall \mathbf{h} \in \mathbb{R}^{d+1}.$$

196 Let $i \in [n]$ be arbitrarily fixed. First, we consider the case when ℓ is a maximizer in the
197 max-affine function in (2.1) at ξ_i . Then we have $\langle \beta_\ell, \xi_i \rangle = \max_{j \in [k]} \langle \beta_j, \xi_i \rangle$ and $\mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_\ell\}} = 1$.
198 Therefore, (2.5) holds since

199
$$\max \left(\langle \beta_\ell + \mathbf{h}, \xi_i \rangle, \max_{j \neq \ell \in [k]} \langle \beta_j, \xi_i \rangle \right) \geq \langle \beta_\ell + \mathbf{h}, \xi_i \rangle, \quad \forall \mathbf{h} \in \mathbb{R}^{d+1}.$$

¹In case of a tie when multiple linear models attain the maximum for a given sample, we assign the sample to the smallest maximizing index. Since the event of duplicate maximizing indices will happen with probability 0 for any absolutely continuous probability measure on \mathbf{x}_i s, the choice of a tie-break rule does not affect the analysis.

200 Next, we assume that ℓ is not a maximizer. Then $1_{\{\mathbf{x}_i \in C_\ell\}} = 0$ and there exists $\ell' \in [k] \setminus \{\ell\}$
 201 such that $\langle \boldsymbol{\beta}_{\ell'}, \boldsymbol{\xi}_i \rangle = \max_{j \in [k]} \langle \boldsymbol{\beta}_j, \boldsymbol{\xi}_i \rangle > \langle \boldsymbol{\beta}_\ell, \boldsymbol{\xi}_i \rangle$. Therefore, (2.5) is also satisfied since

$$202 \quad \max(\langle \boldsymbol{\beta}_\ell + \mathbf{h}, \boldsymbol{\xi}_i \rangle, \langle \boldsymbol{\beta}_{\ell'}, \boldsymbol{\xi}_i \rangle) \geq \langle \boldsymbol{\beta}_{\ell'}, \boldsymbol{\xi}_i \rangle, \quad \forall \mathbf{h} \in \mathbb{R}^{d+1}.$$

203 Then the generalized gradient $\nabla_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta})$ is obtained by concatenating $\{\nabla_{\boldsymbol{\beta}_j} \ell(\boldsymbol{\beta})\}_{j=1}^k$ by

$$204 \quad \nabla_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}) = \sum_{j=1}^k \mathbf{e}_j \otimes \nabla_{\boldsymbol{\beta}_j} \ell(\boldsymbol{\beta}),$$

205 where $\mathbf{e}_j \in \mathbb{R}^k$ denotes the j th column of the k -by- k identity matrix \mathbf{I}_k for $j \in [k]$. Moreover,
 206 $\ell(\boldsymbol{\beta})$ is differentiable except on a set of measure zero, with a slight abuse of terminology,
 207 $\nabla_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta})$ is referred to as the “gradient”.

208 Next, we present a convergence analysis of the gradient descent estimator. The analysis
 209 depends on a set of geometric parameters of the ground-truth model. The first parameter
 210 π_{\min} describes the minimum portion of observations corresponding to the linear model which
 211 achieved the maximum least frequently. It is formally defined as a lower bound on the prob-
 212 ability measure on the smallest partition set, i.e.

$$213 \quad (2.6) \quad \min_{j \in [k]} \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*) \geq \pi_{\min},$$

214 where $\mathcal{C}_1^*, \dots, \mathcal{C}_k^*$ are polytopes determined by

$$215 \quad (2.7) \quad \mathcal{C}_j^* := \{\mathbf{w} \in \mathbb{R}^d : \langle [\mathbf{w}; 1], \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_l^* \rangle > 0, \forall l < j, \langle [\mathbf{w}; 1], \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_l^* \rangle \geq 0, \forall l > j\}.$$

216 The next parameter κ quantifies the separation between all pairs of distinct linear models in
 217 (1.1) so that the pairwise distance on two distinct linear models satisfy

$$218 \quad (2.8) \quad \min_{j' \neq j} \|(\boldsymbol{\beta}_j^*)_{1:d} - (\boldsymbol{\beta}_{j'}^*)_{1:d}\|_2 \geq \kappa.$$

219 Next, we present a convergence analysis of the gradient descent estimator. The analysis
 220 depends on a set of geometric parameters of the ground-truth model. The first parameter
 221 π_{\min} describes the minimum portion of observations corresponding to the linear model which
 222 achieved the maximum least frequently. It is formally defined as a lower bound on the prob-
 223 ability measure on the smallest partition set, i.e.

$$224 \quad (2.9) \quad \min_{j \in [k]} \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*) \geq \pi_{\min},$$

225 where $\mathcal{C}_1^*, \dots, \mathcal{C}_k^*$ are polytopes determined by

$$226 \quad (2.10) \quad \mathcal{C}_j^* := \{\mathbf{w} \in \mathbb{R}^d : \langle [\mathbf{w}; 1], \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_l^* \rangle > 0, \forall l < j, \langle [\mathbf{w}; 1], \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_l^* \rangle \geq 0, \forall l > j\}.$$

227 The next parameter κ quantifies the separation between all pairs of distinct linear models in
 228 (1.1) so that the pairwise distance on two distinct linear models satisfy

$$229 \quad (2.11) \quad \min_{j' \neq j} \|(\boldsymbol{\beta}_j^*)_{1:d} - (\boldsymbol{\beta}_{j'}^*)_{1:d}\|_2 \geq \kappa.$$

230 Our main result in the following theorem presents a local linear convergence of the gradient
 231 descent estimator uniformly over all $\boldsymbol{\beta}^*$ satisfying (2.10) and (2.11).

232 **Theorem 2.1.** Let $\delta \in (0, 1/e)$, $y_i = \max_{j \in [k]} \langle \xi_i, \beta_j^* \rangle + z_i$ for $i \in [n]$ with $\xi_i = [\mathbf{x}_i; 1]$,
 233 and $\{z_i\}_{i=1}^n$ being additive σ -sub-Gaussian noise independent from everything else. Suppose
 234 that Assumptions 1.1 and 1.2 hold.² Then there exist absolute constants $C, C', R > 0$, and
 235 $\nu \in (0, 1)$, for which the following statement holds with probability at least $1 - \delta$: If the initial
 236 estimate β^0 belongs to a neighborhood of β^* given by

237 (2.12)
$$\mathcal{N}(\beta^*) := \left\{ \beta \in \mathbb{R}^{k(d+1)} : \max_{j \in [k]} \|\beta_j - \beta_j^*\|_2 \leq \kappa \rho \right\}$$

238 with

239 (2.13)
$$\rho := \frac{R\pi_{\min}^{\zeta^{-1}(1+\zeta^{-1})}}{4k^{\zeta^{-1}}} \cdot \log^{-1/2} \left(\frac{k^{\zeta^{-1}}}{R\pi_{\min}^{\zeta^{-1}(1+\zeta^{-1})}} \right) \wedge \frac{1}{4},$$

240 then for all β^* satisfying (2.9) and (2.11), the sequence $(\beta^t)_{t \in \mathbb{N}}$ by the gradient descent method
 241 with a constant step size satisfies

242 (2.14)
$$\|\beta^t - \beta^*\|_2 \leq \nu^t \|\beta^0 - \beta^*\|_2 + C' \sigma k \frac{\sqrt{k(kd \log(n/d) + \log(k/\delta))}}{\sqrt{n}}, \quad \forall t \in \mathbb{N},$$

243 provided that

244 (2.15)
$$n \geq C \pi_{\min}^{-2(1+\zeta^{-1})} \cdot \left(k^{1.5} \pi_{\min}^{-(1+\zeta^{-1})} \vee \frac{\sigma}{\kappa \rho} \right)^2 \cdot (kd \log(n/d) + \log(k/\delta)).$$

245 *Proof.* See Section SM3. ■

246 Theorem 2.1 demonstrates that the GD estimator with a constant step size converges lin-
 247 early to a neighborhood of the ground-truth parameter of radius $\tilde{O}(\sigma^2 k^4 d/n)$. The number of
 248 sufficient observations to invoke this convergence result scales linearly in d and is proportional
 249 to a polynomial in π_{\min}^{-1} and k . This result implies the consistency of the gradient descent
 250 estimator. To compare Theorem 2.1 to the analogous result for AM under the same covariate
 251 and noise models [13, Theorem 1], we have the following remarks in order.

252 • First, the final estimation error by (2.14) with $t \rightarrow \infty$ is smaller than that by [13,
 253 Theorem 1] by being independent of π_{\min}^{-1} , which grows at least proportional to k . A
 254 larger estimation error bound in their result is due to the analysis of the least squares
 255 update, wherein the smallest singular value of the design matrix of each linear model
 256 is utilized. These quantities do not appear in the analysis of the gradient descent
 257 update.

258 • Second, the convergence parameter ν in (2.14) is smaller than $3/4$ for AM³, which
 259 might result in a slower convergence of GD in iteration count. The convergence speed

²To simplify the presentation, we assume that the parameters η, ζ, γ in Assumptions 1.1 and 1.2 are fixed numerical constants in the statement and proof of Theorem 2.1. Therefore, any constant determined only by η, ζ, γ will be treated as a numerical constant.

³As shown in the proof in Section SM3, the parameter ν is given as $\nu = (1 - \mu\lambda)$ by (SM3.19). The quantity $\mu\lambda$ is determined by (SM3.8) and (SM3.29) as a function of π_{\min}, π_{\max} , and ζ so that it decreases in k and π_{\min}^{-1} .

issue becomes significant for large k and π_{\min}^{-1} . For example, in the illustration by [Figure 1](#), GD shows a slower convergence in run time despite the lower per-iteration cost $O(knd)$, which is lower than that of AM $O(knd^2)$ by a factor of d . However, as discussed in [Section 3](#), the slow convergence of GD can be improved by modifying the algorithm into a (mini-batch) SGD.

- Third, the sample complexity results by [Theorem 2.1](#) and [\[13, Theorem 1\]](#) are qualitatively comparable. There were mistakes in the proof of [\[13, Theorem 1\]](#). We think that their result could be corrected with an increased order of dependence in their sample complexity on k and π_{\min} (see [Section SM5](#) for a detailed discussion).
- Lastly, regarding the proof technique, we adapt and improve the strategy by Ghosh et al. [\[12, 13\]](#). Note that the subgradient of the loss function in [\(2.3\)](#) involves clustering of covariates with respect to maximizing linear models such as [\(2.4\)](#), which also arises in alternating minimization. Due to this similarity, key quantities in the analysis have been estimated in [\[12, 13\]](#). We provide sharpened estimates via different techniques. For example, [Lemma SM2.3](#) provides a tighter bound than [\[12, Lemma 7\]](#) by a factor of $\alpha^{\zeta-1}$ for a scalar $\alpha \in (0, 1)$.

[Theorem 2.1](#) also provides an auxiliary result. As a direct consequence of [Theorem 2.1](#), we obtain an upper bound on the prediction error, which is defined by

$$\mathcal{E}(\hat{\beta}) := \mathbb{E} \left(\max_{j \in [k]} \langle \xi, \hat{\beta}_j \rangle - \max_{j \in [k]} \langle \xi, \beta_j^* \rangle \right)^2,$$

where $\hat{\beta} = [\hat{\beta}_1; \dots; \hat{\beta}_k]$ denotes the estimated parameter vector by GD. Since the quadratic cost function in [\(1.2\)](#) is 1-Lipschitz with respect to the ℓ_2 norm, it follows that the prediction error $\mathcal{E}(\hat{\beta})$ is also bounded by $\tilde{O}(\sigma^2 k^3 d / n)$ as in [\(2.14\)](#) with $t \rightarrow \infty$.

A limitation of [Theorem 2.1](#) is that its local convergence analysis requires an initialization within a specific neighborhood of the ground-truth parameter. To obtain the desired initial estimate, one may use spectral initialization by [\[14, Algorithm 2, 3\]](#), which consists of dimensionality reduction followed by a grid search. They provided a performance guarantee of a spectral initialization scheme under the standard Gaussian covariate assumption [\[14, Theorems 2 and 3\]](#). Therefore, the reduction of [Theorem 2.1](#) to the Gaussian covariate case combined with [\[14, Theorems 2 and 3\]](#) provides a global convergence analysis of GD, which is comparable to that for alternating minimization [\[14\]](#). Even in this case, the number of sufficient samples for the success of spectral initialization overwhelms that for the subsequent gradient descent step. Since multiple steps of their analysis critically depend on the Gaussianity, it remains an open question whether the result on the spectral initialization generalizes to the setting by [Assumptions 1.1](#) and [1.2](#).

3. Convergence analysis of mini-batch SGD. SGD is an optimization method that updates parameters using a single or a small batch of randomly selected data point(s) instead of the entire dataset. SGD converges faster in run time than GD due to its significantly lower per-iteration cost. In particular, when applied to max-affine regression, SGD empirically outperforms GD and AM in both sample complexity and convergence speed (see [Figures 1 to 3](#)). In this section, we present an accompanying theoretical convergence analysis of mini-batch SGD for max-affine regression. The update rule of a mini-batch SGD with batch size m for

301 max-affine regression is described as follows. For each iteration index $t \in \mathbb{N}$, let I_t be a multi-
 302 set of m randomly selected indices with replacement so that the entries of I_t are independent
 303 copies of a uniform random variable in $[n]$. A mini-batch SGD iteratively updates the estimate
 304 by

305
$$\boldsymbol{\beta}^{t+1} = \boldsymbol{\beta}^t - \mu \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}} \ell_i(\boldsymbol{\beta}^t),$$

306 where

307
$$\ell_i(\boldsymbol{\beta}) := \frac{1}{2} \left(y_i - \max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j \rangle \right)^2, \quad i \in [n].$$

308 Then the following theorem presents a local linear convergence of SGD.

309 **Theorem 3.1.** *Under the hypothesis of Theorem 2.1, there exist absolute constants $C, C' >$
 310 0 and $c, \nu \in (0, 1)$, for which the following statement holds with probability at least $1 - \delta$:
 311 For all $\boldsymbol{\beta}^*$ satisfying (2.10) and (2.11), if the initial estimate $\boldsymbol{\beta}^0$ belongs to $\mathcal{N}(\boldsymbol{\beta}^*)$ defined in
 312 (2.12), n satisfies (2.15), and m satisfies*

313 (3.1)
$$m \geq C \cdot \left(\frac{\sigma}{\kappa \rho} \right)^2 \cdot (d + \log(k/\delta)),$$

314 then the sequence $(\boldsymbol{\beta}^t)_{t \in \mathbb{N}}$ by the mini-batch SGD with batch size m and step size $\mu =$
 315 $c(1 \wedge m/(d + \log(n/\delta)))$ satisfies

316 (3.2)
$$\begin{aligned} \mathbb{E}_{I_t} \|\boldsymbol{\beta}^t - \boldsymbol{\beta}^*\|_2 &\leq \left(1 - \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) c \nu \right)^t \|\boldsymbol{\beta}^0 - \boldsymbol{\beta}^*\|_2 \\ &\quad + C' \sigma k \sqrt{\left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)}, \quad \forall t \in \mathbb{N}. \end{aligned}$$

317 *Proof.* See Section SM4. ■

318 Theorem 3.1 establishes linear convergence of mini-batch SGD in expectation to the
 319 ground-truth parameters within error $\tilde{O}(\sigma^2 k^2 (d/m \vee kd/n))$. The local linear convergence
 320 applies uniformly over all $\boldsymbol{\beta}^*$ satisfying (2.10) and (2.11). In general, the convergence rate
 321 of SGD is much slower even with strong convexity [33, 4, 20]. However, in a special case
 322 where the cost function is in the form of $\sum_{i=1}^n \ell_i(\boldsymbol{\beta})$, smooth, and strongly convex, if $\boldsymbol{\beta}^*$ is the
 323 minimizer of all summands $\{\ell_i(\boldsymbol{\beta})\}_{i=1}^n$, then SGD converges linearly to $\boldsymbol{\beta}^*$ [32, Theorem 2.1].
 324 The convergence analysis in Theorem 3.1 can be considered along with this result. The cost
 325 function in (2.2) in the noiseless case satisfies the desired properties locally near the ground
 326 truth, whence establishes the local linear convergence of SGD.

327 Theorem 3.1 also explains how the batch size m affects the final estimation error by (3.2)
 328 with $t \rightarrow \infty$. Let n and m satisfy (2.15) and (3.1) so that Theorem 3.1 is invoked. Under
 329 this condition, one can still choose m and n so that $m \lesssim n/k$. Then the $\tilde{O}(\sigma^2 k^2 d/m)$ term
 330 determined by the batch size m dominates the final estimation error. In this regime, the
 331 SGD estimator is not consistent since the estimation error $\tilde{O}(\sigma^2 k^2 d/m)$ does not vanish with
 332 increasing n . This result implies the trade-off between the convergence speed and the final
 333 estimation error determined by the batch size.

334 Furthermore, since the condition on m in (3.1) becomes trivial when $\sigma = 0$, we obtain a
 335 stronger result in the noiseless case given by the following corollary.

336 **Corollary 3.2.** *Let $\delta, \delta' \in (0, 1)$, and $\epsilon > 0$ fixed. Suppose that the hypothesis of Theorem 3.1
 337 holds. If $t \geq (\log(1/\epsilon) + \log(1/\delta)) \left(1 \vee \frac{d+\log(n/\delta)}{m}\right) 1/\nu$, then*

$$338 \quad \|\beta^t - \beta^*\|_2 \leq \epsilon \|\beta^0 - \beta^*\|_2$$

339 *holds with probability at least $1 - \delta - \delta'$.*

340 **Proof.** By Theorem 3.1, (3.2) holds with probability at least $1 - \delta$. By applying Markov's
 341 inequality, we have

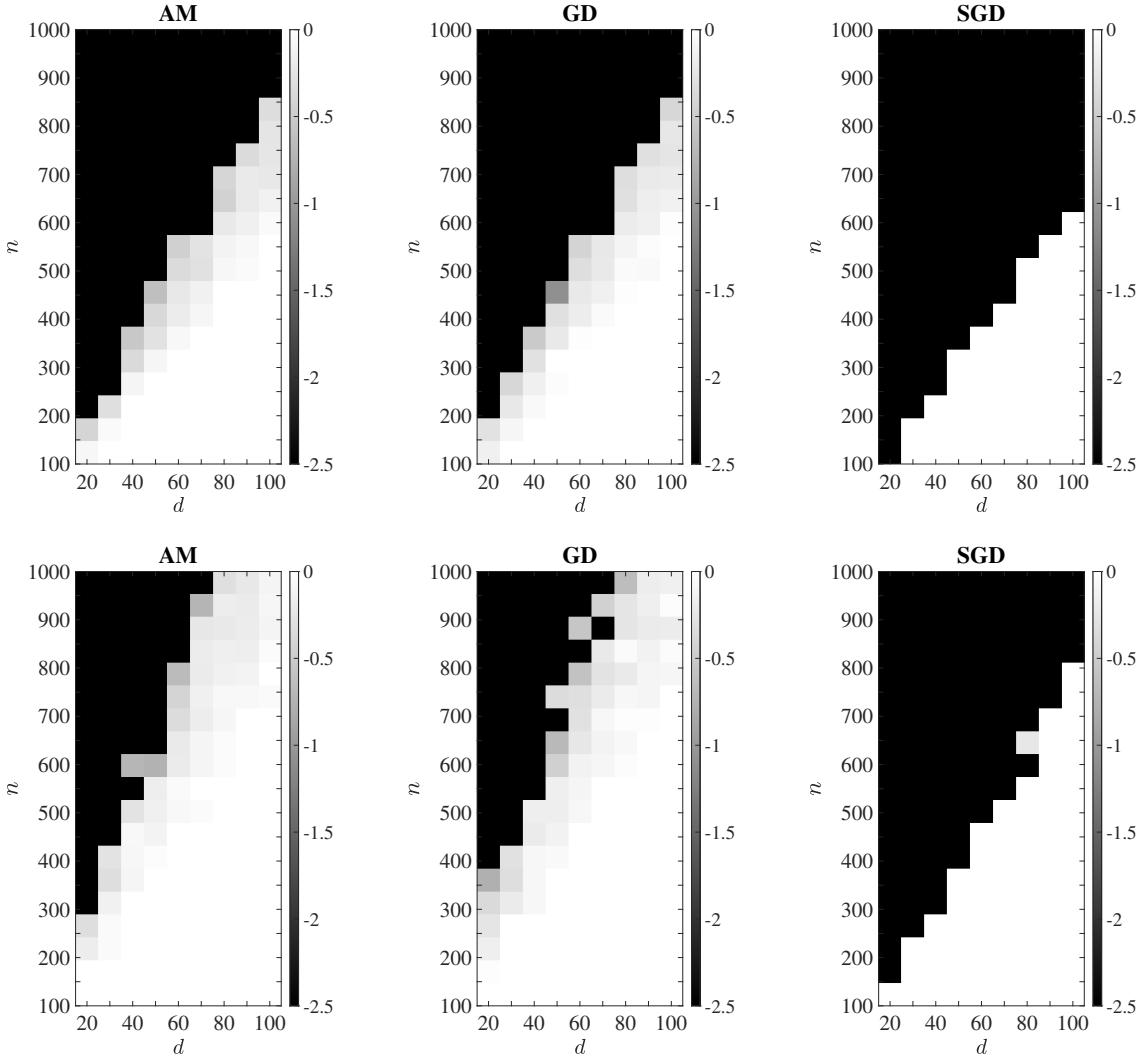
$$342 \quad \mathbb{P} (\|\beta^t - \beta^*\|_2 \geq \epsilon \|\beta^0 - \beta^*\|_2) \leq \frac{\mathbb{E}_{I_t} \|\beta^t - \beta^*\|_2}{\epsilon \|\beta^0 - \beta^*\|_2} \leq \frac{\left(1 - \left(1 \wedge \frac{m}{d+\log(n/\delta)}\right) \nu\right)^t}{\epsilon} \leq \delta',$$

343 where the second and third inequalities hold by (3.2) and assumption on t respectively. ■

344 **Corollary 3.2** presents the convergence of SGD with high probability, which is stronger
 345 than the convergence in expectation. Furthermore, there is no requirement on the batch size
 346 in invoking Corollary 3.2. This result is analogous to the recent theoretical analysis of phase
 347 retrieval by randomized Kaczmarz [41] and SGD [40].

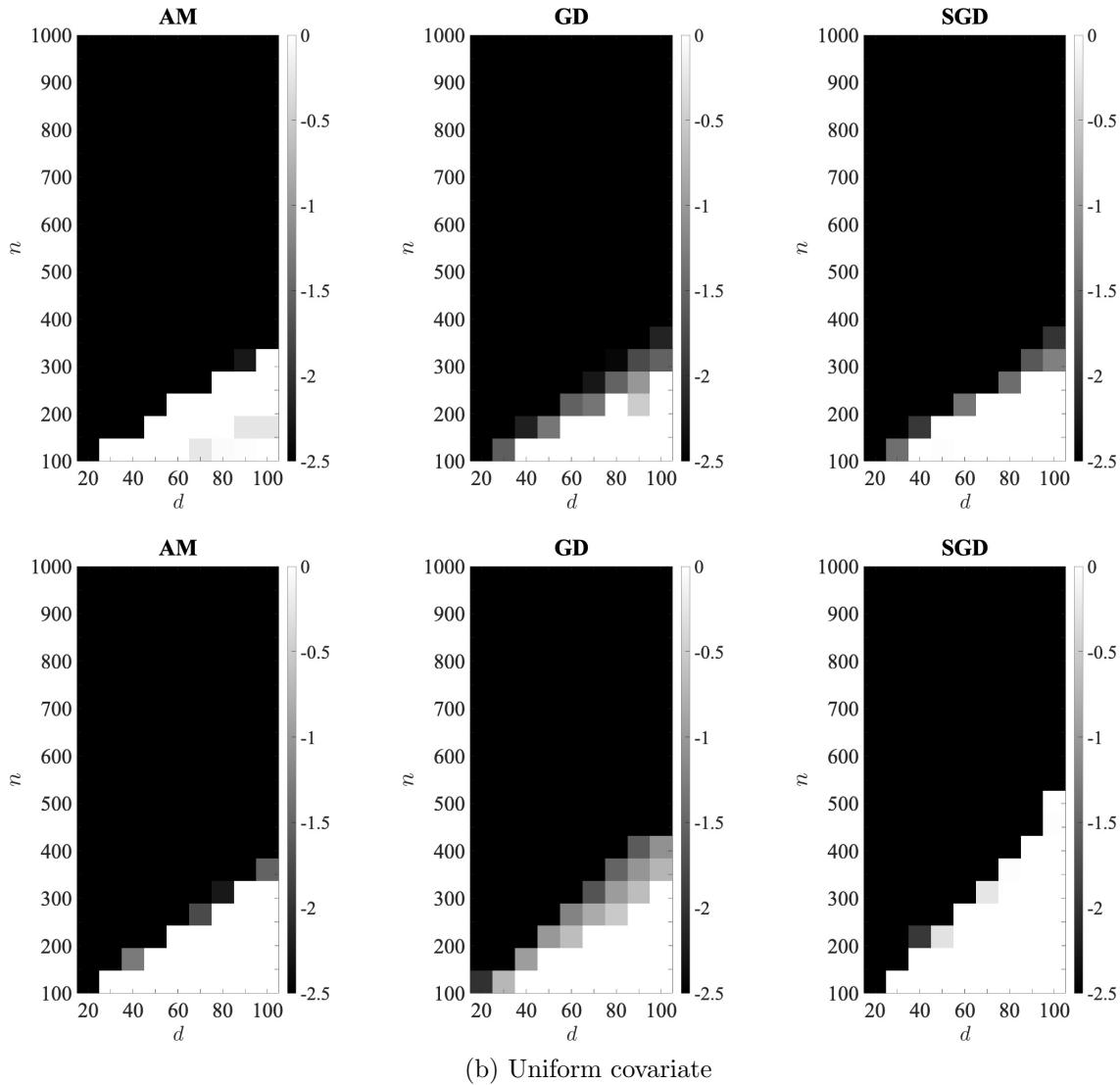
348 **4. Numerical results.** We study the empirical performance of GD and mini-batch SGD
 349 for max-affine regression. The performance of these first-order methods is compared to AM
 350 [14]. All of these algorithms start from the spectral initialization by Ghosh et al. [14]. We use a
 351 constant step size 0.5 for GD. The step size for SGD is set to $\frac{1 \wedge (m/d)}{2}$ adaptive to the batch size.
 352 According to our covariate assumptions in Assumption 1.1 and Assumption 1.2, we consider
 353 the following two scenarios; The first scenario involves Gaussian covariates, where $\mathbf{x}_1, \dots, \mathbf{x}_n$
 354 are generated as independent samples from a random vector following $\text{Normal}(\mathbf{0}, \mathbf{I}_d)$. The
 355 other scenario involves a uniform distribution, where $\mathbf{x}_1, \dots, \mathbf{x}_n$ are generated as independent
 356 samples from a random vector following $\text{Unif}[-\sqrt{3}, \sqrt{3}]^{\otimes d}$, which is also considered in the
 357 numerical setting in [12]. We use spectral initialization for the Gaussian covariate model [12],
 358 while for the uniform distribution case, we apply the multiple-restart random initialization
 359 method [1].

360 First, we observe the performance of the three estimators for the exact parameter recovery
 361 in the noiseless case. In this experiment, the ground-truth parameters $\theta_1^*, \dots, \theta_k^*$ are generated
 362 as k random pairwise orthogonal vectors with $k < d$, and the offset terms are set to 0, i.e.,
 363 $b_j^* = 0$ for all $j \in [k]$. By the construction, the probability assigned to the maximizer set
 364 of each linear model will be approximately $\frac{1}{k}$. In other words, the parameters π_{\max} and
 365 π_{\min} of the ground truth concentrate around $\frac{1}{k}$ where π_{\min} is defined in (2.9) and $\pi_{\max} :=$
 366 $\max_{j \in [k]} \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)$. Furthermore, due to the orthogonality, the pairwise distance satisfies
 367 $\|\theta_j^* - \theta_{j'}^*\|_2 = \sqrt{2}$ for all $j \neq j' \in [k]$. Consequently, the sample complexity results for GD and
 368 SGD by Theorem 2.1 and Theorem 3.1 simplify to an easy-to-interpret expression $\tilde{O}(k^{16}d)$
 369 that involves only k and d for both Gaussian and uniform distribution scenarios. The sample
 370 complexity result on AM [12] simplifies similarly.



(a) Gaussian covariate

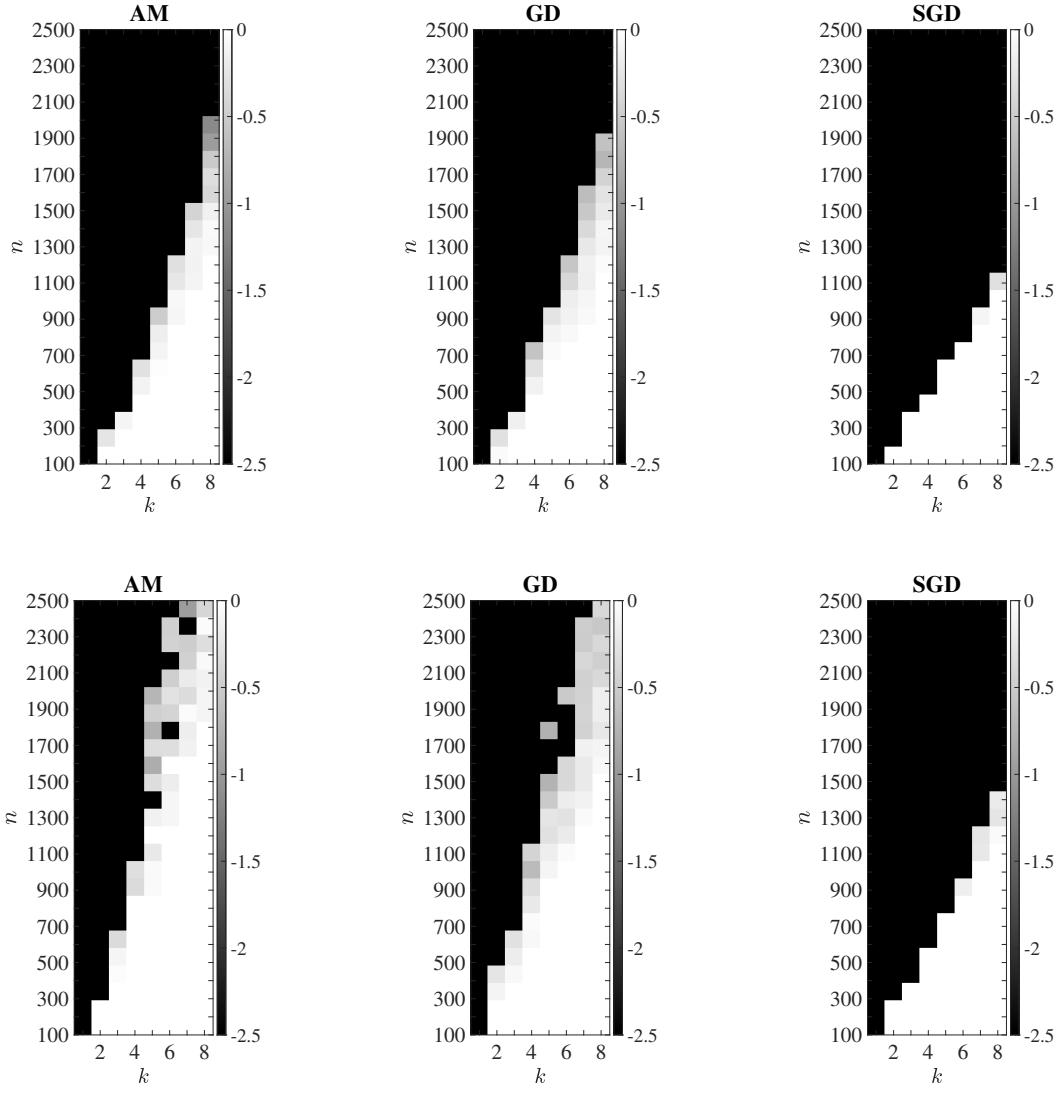
371 Figures 2a and 3a illustrate the empirical phase transition by the three estimators through
 372 Monte Carlo simulations under the Gaussian covariate model. The median and the 90th
 373 percentile of 50 random trials are displayed. In these figures, the transition occurs when
 374 the sample size n becomes larger than a threshold that depends on the ambient dimension d
 375 and the number of linear models k . Figure 2a shows that the threshold for both estimators
 376 increases linearly with d for fixed k . This observation is consistent with the sample complexity
 377 by Theorem 2.1 and Theorem 3.1. A complementary view is presented in Figure 3a for varying
 378 k and fixed d . The thresholds in Figure 3a for GD and SGD are almost linear in k when
 379 d is fixed to 50, which scales slower than the corresponding sample complexity results in
 380 Theorem 2.1 and Theorem 3.1. A similar discrepancy between theoretical and empirical phase
 381 transitions has been observed for AM [12, Appendix L]. We also observe that mini-batch SGD



(b) Uniform covariate

Figure 2: Phase transition of estimation error per the number of observations n and the ambient dimension d in the noiseless case (The number of linear models k and the batch size m are set to 3 and 64, respectively). The first row and the second row respectively show the median and the 90th percentile of estimation errors in 50 trials.

382 outperforms GD and AM with a lower threshold for phase transition. It has been shown that
 383 the inherent random noise in the gradient helps the estimator to escape saddle points or local
 384 minima [23, 8]. This explains why SGD recovers the parameters with fewer samples than
 385 GD. We also note that the relative performance among the three estimators remains similar
 386 in both the median and the 90th percentile. This shows that SGD for noiseless max-affine

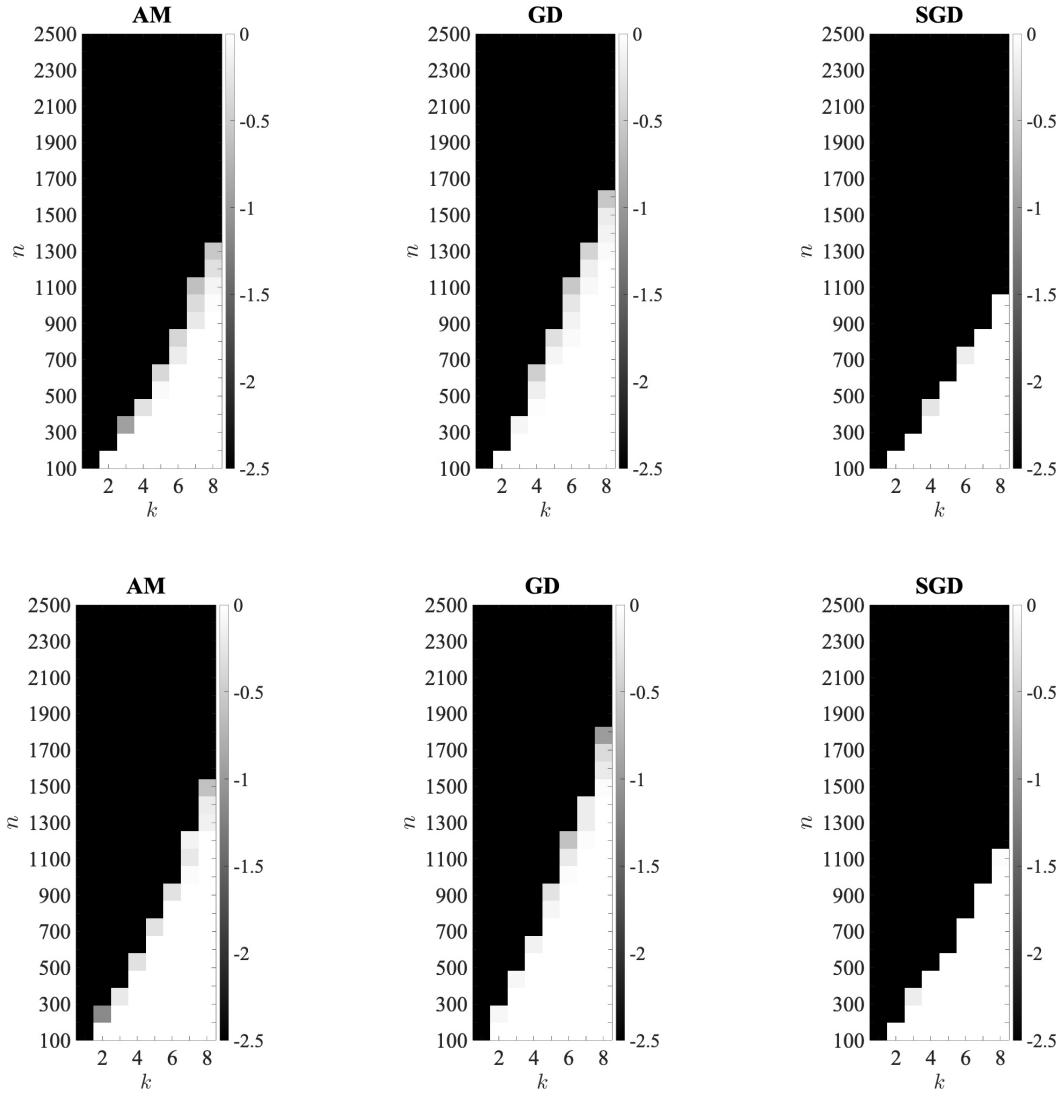


(a) Gaussian covariate

387 regression does not suffer from a large variance, which corroborates the result in Corollary 3.2.

388 The phase transition boundaries in Figures 2b and 3b are higher with a larger success
 389 regime relative to the corresponding results in Figures 2a and 3a. Recall that GD/SGD with
 390 the multiple-restart random initialization involves multiple runs of GD/SGD. The performance
 391 improvement is obtained at the cost of higher computational cost proportional to the number
 392 of repetitions.

393 Figures 4 and 5 study the estimation error by mini-batch SGD under zero-mean Gaussian
 394 noise with standard deviation $\sigma = 0.1$ in three different scenarios. In Figure 4, we focus
 395 on observing how the batch size m affects the convergence speed and the estimation error.
 396 Figure 4a and Figure 4b consider the scenario where the spectral method provides a poor



(b) Uniform covariate

Figure 3: Phase transition of estimation error per number of observations n and number of linear models k in the noiseless case (The ambient dimension d and mini-batch size m are set to 50 and 64 respectively). The first row and the second row respectively show the median and the 90th percentile of estimation errors in 50 trials.

397 initialization due to a small number of observations. Consequently, GD and AM fail to
 398 provide a low estimation error. In contrast, mini-batch SGD with a small batch size ($m = 32$
 399 or $m = 128$) relative to the total number of samples ($n = 1,500$) converges to a small
 400 estimation error ($< 10^{-2}$). In other words, there exists a trade-off between the convergence
 401 speed and the estimation error determined by the batch size m . SGD with $m = 128$ converges

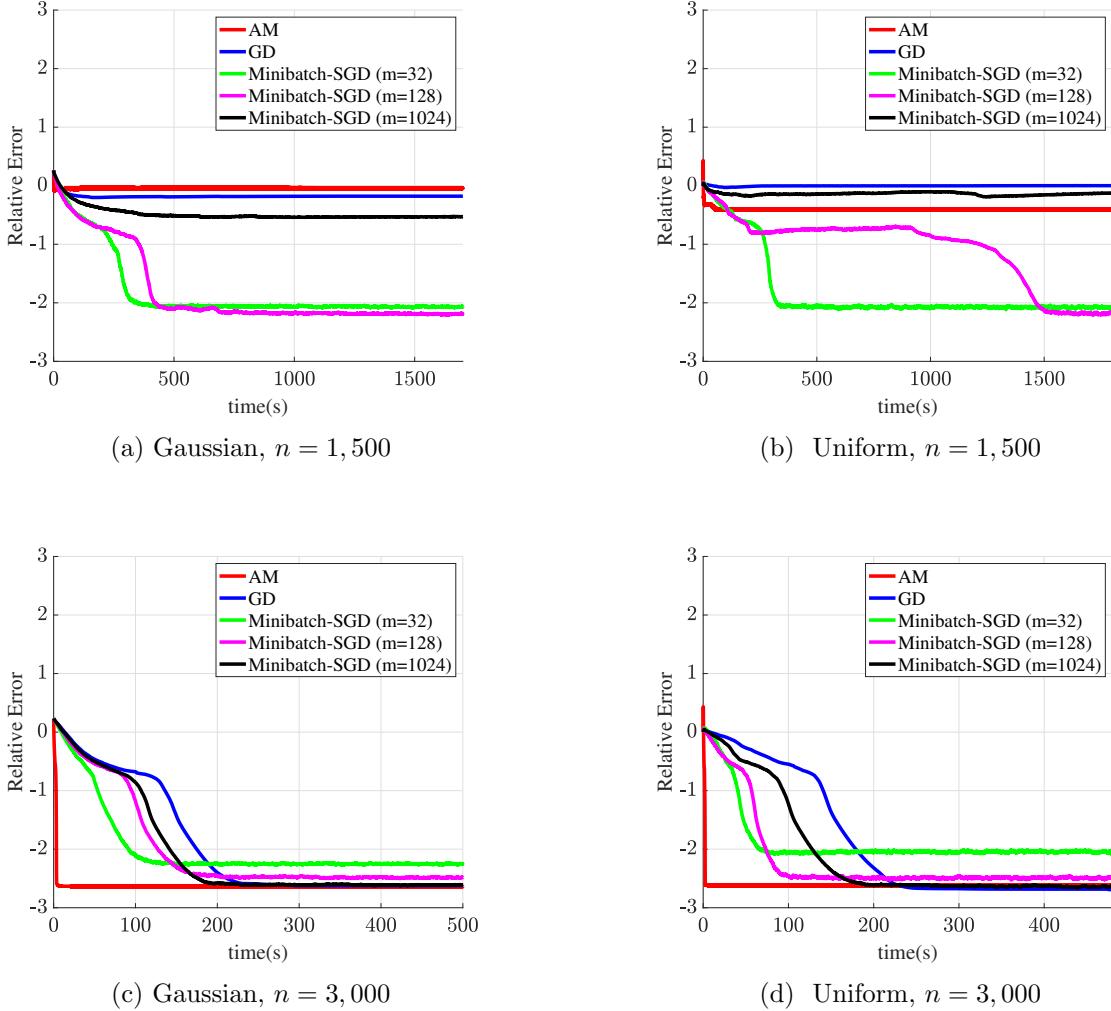


Figure 4: Convergence of estimators for max-affine regression under additive white Gaussian noise of variance $\sigma^2 = 0.01$ ($k = 8$ and $d = 50$). Comparison between Gaussian and Uniform covariates.

402 slower to a smaller error than SGD with $m = 32$. This corroborates the theoretical result in
 403 [Theorem 3.1](#). However, as the batch size m further increases to $m = 1,024$ close to $n = 1,500$,
 404 SGD starts to fail like GD and AM. Again, this phenomenon is explained by the fact that the
 405 noisy gradient in SGD avoids saddle points and local minima efficiently [23, 8].

406 For the Gaussian and uniform covariates, [Figure 4c](#) and [Figure 4d](#) illustrate the com-
 407 parison in a high-sample regime, where the number of samples is twice larger than that for
 408 [Figure 4a](#) and [Figure 4b](#), respectively. In this case, both GD and AM converge to a smaller
 409 error than SGD. Moreover, AM converges faster than the other algorithms in the run time,

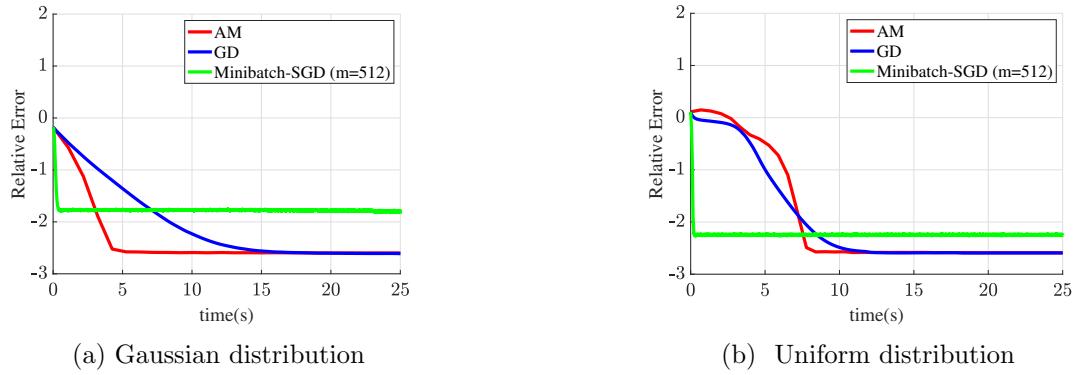


Figure 5: Convergence of estimators for max-affine regression under additive white Gaussian noise of variance $\sigma^2 = 0.01$ ($k = 3$, $d = 500$, and $n = 8,000$).

410 which is explained by the following two reasons. First, as discussed in [Section 2](#), AM converges
 411 faster than GD and SGD in the iteration count with a smaller constant for linear convergence.
 412 Second, due to the small ambient dimension ($d = 50$), the gain in the per-iteration cost of
 413 SGD $O(kmd)$ over that of AM $O(knd^2)$ is not significant.

414 Lastly, [Figure 5](#), compares the convergence of the estimators in the presence of noise
 415 when d , k , and n are set as in [Figure 1](#). On one hand, SGD converges faster than AM
 416 with a significantly lower per-iteration cost $O(kmd)$ than $O(knd^2)$ due to the large ambient
 417 dimension ($d = 500$) and small batch size ($m = 512$ compared to $n = 8,000$). On the other
 418 hand, SGD yields a larger error than the other two estimators. The estimation error bound
 419 of SGD by [Theorem 3.1](#) behaves similarly in this case.

420 **5. Discussion.** We have established local convergence analysis of GD and SGD for max-
 421 affine regression under a relaxed covariate model with σ -sub-Gaussian noise. The covariate
 422 distribution characterized by the sub-Gaussianity and the anti-concentration generalizes be-
 423 yond the standard Gaussian model. It has been shown that suitably initialized GD and SGD
 424 converge linearly below a non-asymptotic error bound, which is comparable to the analo-
 425 gous result on AM. Notably, when applied to noiseless max-affine regression, SGD empirically
 426 outperforms GD and AM in both sample complexity and convergence speed.

427 Under a special case of the Gaussian covariate model, the spectral method by Ghosh et al.
 428 [[14](#)] can provide the desired initial estimate. It is of great interest to extend their theory on
 429 the spectral method to the relaxed covariate model. Moreover, the extension of the theoretical
 430 result on GD and SGD to robust regression, where a subset of samples is corrupted as outliers,
 431 is also an intriguing future direction.

432 **Acknowledgement.** The authors thank Sohail Bahmani for the helpful discussions.

433

REFERENCES

434 [1] G. BALÁZS, Convex regression: theory, practice, and applications, (2016).

435 [2] G. BALÁZS, Adaptively partitioning max-affine estimators for convex regression, in International Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 860–874.

436 [3] G. BALÁZS, A. GYÖRGY, AND C. SZEPESVÁRI, Near-optimal max-affine estimators for convex regression, in Artificial Intelligence and Statistics, PMLR, 2015, pp. 56–64.

437 [4] L. BOTTOU, F. E. CURTIS, AND J. NOCEDAL, Optimization methods for large-scale machine learning, SIAM review, 60 (2018), pp. 223–311.

438 [5] S. BOYD, S. P. BOYD, AND L. VANDENBERGHE, Convex optimization, Cambridge university press, 2004.

439 [6] F. H. CLARKE, Generalized gradients and applications, Transactions of the American Mathematical Society, 205 (1975), pp. 247–262.

440 [7] K. CRAMMER AND Y. SINGER, On the algorithmic implementation of multiclass kernel-based vector machines, Journal of machine learning research, 2 (2001), pp. 265–292.

441 [8] H. DANESHMAND, J. KOHLER, A. LUCCHI, AND T. HOFMANN, Escaping saddles with stochastic gradients, in International Conference on Machine Learning, PMLR, 2018, pp. 1155–1164.

442 [9] A. DANIELY, S. SABATO, AND S. SHWARTZ, Multiclass learning approaches: A theoretical comparison with implications, Advances in Neural Information Processing Systems, 25 (2012).

443 [10] A. ENGEL, Statistical mechanics of learning, Cambridge University Press, 2001.

444 [11] C. FINN, P. ABBEEL, AND S. LEVINE, Model-agnostic meta-learning for fast adaptation of deep networks, in International conference on machine learning, PMLR, 2017, pp. 1126–1135.

445 [12] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression: Provable, tractable, and near-optimal statistical estimation, arXiv preprint arXiv:1906.09255, (2019).

446 [13] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression with universal parameter estimation for small-ball designs, in 2020 IEEE International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 2706–2710.

447 [14] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression: Parameter estimation for gaussian designs, IEEE Transactions on Information Theory, (2021).

448 [15] S. GOLDT, M. ADVANI, A. M. SAXE, F. KRZAKALA, AND L. ZDEBOROVÁ, Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup, Advances in neural information processing systems, 32 (2019).

449 [16] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep learning, MIT press, 2016.

450 [17] A. GUNTUBOYINA AND B. SEN, Covering numbers for convex functions, IEEE Transactions on Information Theory, 59 (2012), pp. 1957–1965.

451 [18] Q. HAN AND J. A. WELLNER, Multivariate convex regression: global risk bounds and adaptation, arXiv preprint arXiv:1601.06844, (2016).

452 [19] L. A. HANNAH AND D. B. DUNSON, Multivariate convex regression with adaptive partitioning, The Journal of Machine Learning Research, 14 (2013), pp. 3261–3294.

453 [20] N. J. HARVEY, C. LIAW, Y. PLAN, AND S. RANDHAWA, Tight analyses for non-smooth stochastic gradient descent, in Conference on Learning Theory, PMLR, 2019, pp. 1579–1613.

454 [21] J. HIRIART-URRUTY, New concepts in nondifferentiable programming, Bull. Soc. Math. France, 60 (1979), pp. 57–85.

455 [22] T. HU, Z. SHANG, AND G. CHENG, Sharp rate of convergence for deep neural network classifiers under the teacher-student setting, arXiv preprint arXiv:2001.06892, (2020).

456 [23] C. JIN, R. GE, P. NETRAPALLI, S. M. KAKADE, AND M. I. JORDAN, How to escape saddle points efficiently, in International conference on machine learning, PMLR, 2017, pp. 1724–1732.

457 [24] P. KAIROUZ, H. B. McMAHAN, B. AVENT, A. BELLET, M. BENNIS, A. N. BHAGOJI, K. BONAWITZ, Z. CHARLES, G. CORMODE, AND R. CUMMINGS, Advances and open problems in federated learning, Foundations and Trends® in Machine Learning, 14 (2021), pp. 1–210.

458 [25] S. M. M. KALAN, M. SOLTANOLKOTABI, AND A. S. AVESTIMEHR, Fitting relus via sgd and quantized sgd, in 2019 IEEE International Symposium on Information Theory (ISIT), IEEE, 2019, pp. 2469–2473.

459 [26] S. KIM, S. BAHMANI, AND K. LEE, Max-linear regression by scalable and guaranteed convex programming, arXiv preprint arXiv:2103.07020, (2021).

460 [27] G. KUR, Y. DAGAN, AND A. RAKHLIN, Optimality of maximum likelihood for log-concave density estimation and bounded convex regression, arXiv preprint arXiv:1903.05315, (2019).

461 [28] E. LIM AND P. W. GLYNN, Consistency of multidimensional convex regression, Operations Research, 60

488 (2012), pp. 196–208.

489 [29] C. MACE AND A. COOLEN, Statistical mechanical analysis of the dynamics of learning in perceptrons,
490 Statistics and Computing, 8 (1998), pp. 55–88.

491 [30] A. MAGNANI AND S. P. BOYD, Convex piecewise-linear fitting, Optimization and Engineering, 10 (2009),
492 pp. 1–17.

493 [31] J. MORGENSEN AND T. ROUGHGARDEN, Learning simple auctions, in Conference on Learning Theory,
494 PMLR, 2016, pp. 1298–1318.

495 [32] D. NEEDELL, R. WARD, AND N. SREBRO, Stochastic gradient descent, weighted sampling, and the
496 randomized kaczmarz algorithm, Advances in neural information processing systems, 27 (2014).

497 [33] A. NEMIROVSKI, A. JUDITSKY, G. LAN, AND A. SHAPIRO, Robust stochastic approximation approach to
498 stochastic programming, SIAM Journal on optimization, 19 (2009), pp. 1574–1609.

499 [34] A. RUBINSTEIN AND S. M. WEINBERG, Simple mechanisms for a subadditive buyer and applications
500 to revenue monotonicity, ACM Transactions on Economics and Computation (TEAC), 6 (2018),
501 pp. 1–25.

502 [35] A. SIAHKAMARI, D. A. E. ACAR, C. LIAO, K. L. GEYER, V. SALIGRAMA, AND B. KULIS, Faster
503 algorithms for learning convex functions, in International Conference on Machine Learning, PMLR,
504 2022, pp. 20176–20194.

505 [36] A. SIAHKAMARI, V. SALIGRAMA, D. CASTANON, AND B. KULIS, Learning Bregman divergences, arXiv
506 preprint arXiv:1905.11545, (2019).

507 [37] A. SIAHKAMARI, X. XIA, V. SALIGRAMA, D. CASTAÑÓN, AND B. KULIS, Learning to approximate a
508 bregman divergence, Advances in Neural Information Processing Systems, 33 (2020), pp. 3603–3612.

509 [38] M. SOLTANOLKOTABI, Learning relus via gradient descent, Advances in neural information processing
510 systems, 30 (2017).

511 [39] R. S. SUTTON AND A. G. BARTO, Reinforcement learning: An introduction, MIT press, 2018.

512 [40] Y. S. TAN AND R. VERSHYNIN, Online stochastic gradient descent with arbitrary initialization solves
513 non-smooth, non-convex phase retrieval, arXiv preprint arXiv:1910.12837, (2019).

514 [41] Y. S. TAN AND R. VERSHYNIN, Phase retrieval via randomized kaczmarz: theoretical guarantees, Information
515 and Inference: A Journal of the IMA, 8 (2019), pp. 97–123.

516 [42] A. TORIELLO AND J. P. VIELMA, Fitting piecewise linear continuous functions, European Journal of
517 Operational Research, 219 (2012), pp. 86–95.

518 [43] G. VARDI, G. YEHUDAI, AND O. SHAMIR, Learning a single neuron with bias using gradient descent,
519 Advances in Neural Information Processing Systems, 34 (2021).

520 [44] R. VERSHYNIN, High-dimensional probability: An introduction with applications in data science, vol. 47,
521 Cambridge university press, 2018.

522 [45] G. WANG, G. B. GIANNAKIS, Y. SAAD, AND J. CHEN, Phase retrieval via reweighted amplitude flow,
523 IEEE Transactions on Signal Processing, 66 (2018), pp. 2818–2833.

524 [46] G. YEHUDAI AND S. OHAD, Learning a single neuron with gradient methods, in Conference on Learning
525 Theory, PMLR, 2020, pp. 3756–3786.

526 [47] H. ZHANG, Y. ZHOU, Y. LIANG, AND Y. CHI, A nonconvex approach for phase retrieval: Reshaped
527 wirtinger flow and incremental algorithms, Journal of Machine Learning Research, 18 (2017).

528 [48] X. ZHANG, Y. YU, L. WANG, AND Q. GU, Learning one-hidden-layer relu networks via gradient descent,
529 in The 22nd international conference on artificial intelligence and statistics, PMLR, 2019, pp. 1524–
530 1534.

531 [49] K. ZHONG, Z. SONG, P. JAIN, P. L. BARTLETT, AND I. S. DHILLON, Recovery guarantees for
532 one-hidden-layer neural networks, in International conference on machine learning, PMLR, 2017,
533 pp. 4140–4149.

SUPPLEMENTARY MATERIALS: Max-Affine Regression via first-order methods*

Seonho Kim[†] and Kiryung Lee[†]

SM1. Tools. This section collects a set of standard results on concentration inequalities, which will be used in the proofs of Theorem 2.1. The following lemma provides the concentration of extreme singular values of sub-Gaussian matrices.

Lemma SM1.1 ([SM11, Theorem 4.6.1]). *Let $\{x_i\}_{i=1}^n$ be independent isotropic η -sub-Gaussian random vectors in \mathbb{R}^d . Then there exists an absolute constant $C > 0$ such that*

$$\mathbb{P} \left(\left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top - \mathbf{I}_p \right\| > \eta^2 \max(\epsilon, \epsilon^2) \right) \leq \delta \quad \text{where} \quad \epsilon = \sqrt{\frac{C(d + \log(2/\delta))}{n}}.$$

Remark SM1.2. It has been shown that Lemma SM1.1 continues to hold when \mathbf{x}_i is substituted by $\boldsymbol{\xi} = [\mathbf{x}_i; 1]$ [SM3]. Indeed, multiplying a random sign to the last coordinate of $\boldsymbol{\xi}_i$ does not modify the outer product $\boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top$ whereas $\boldsymbol{\xi}_i$ remains a sub-Gaussian vector.

14 Furthermore, we also use the results from the standard Vapnik–Chervonenkis (VC) theory
15 stated in the following lemmas.

Lemma SM1.3 ([SM10, Theorem 2]). Let \mathcal{V} be a collection of subsets of a set \mathcal{X} and $\{\mathbf{x}_i\}_{i=1}^n$ be n independent copies of a random variable $\mathbf{x} \in \mathcal{X}$. Then it holds for all $\epsilon > 0$ and $n \geq 2/\epsilon^2$ that

$$\mathbb{P} \left(\sup_{V \in \mathcal{V}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in V\}} - \mathbb{P}(\mathbf{x} \in V) \right| \geq \epsilon \right) \leq 4\Pi_{\mathcal{V}}(2n) \exp(-n\epsilon^2/16),$$

20 where $\Pi_V(n)$ denotes the growth function defined by

$$\Pi_{\mathcal{V}}(n) := \max_{\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}} \left| \left\{ (\mathbf{1}_{\{\mathbf{x}_1 \in V\}}, \dots, \mathbf{1}_{\{\mathbf{x}_n \in V\}}) : V \in \mathcal{V} \right\} \right|.$$

22 **Lemma SM1.4 ([SM8, Corollary 3.18]).** *Let \mathcal{V} be a collection of subsets having VC dimension d . Then, for all $n \geq d$, the growth function of \mathcal{V} is upper-bounded by*

$$\Pi_{\mathcal{V}}(n) \leq \left(\frac{en}{d}\right)^d.$$

25 The VC dimension of the k -fold intersection has been known in the literature (e.g. see [SM1]).
 26 We will use the following lemma for the result for the intersection of size two. Since it was
 27 given as an exercise in [SM8], we provide a proof for the sake of completeness.

*Submitted to the editors on March 17, 2024.

Funding: This work was supported in part by NSF CAREER Award CCF 19-43201.

[†]The Ohio State University, Columbus, Ohio (kim.7604@osu.edu, kiryung@ece.osu.edu).

28 **Lemma SM1.5 ([SM8, Equation (3.53)])**. Let \mathcal{V} and \mathcal{W} be collections of subsets of a
 29 common set. Then their intersection given by $\mathcal{V} \cap \mathcal{W} := \{V \cap W : V \in \mathcal{V}, W \in \mathcal{W}\}$ satisfies
 30 that

$$31 \quad \Pi_{\mathcal{V} \cap \mathcal{W}}(n) \leq \Pi_{\mathcal{V}}(n)\Pi_{\mathcal{W}}(n), \quad \forall n \in \mathbb{N}.$$

32 *Proof.* For any $V \cap W \in \mathcal{V} \cap \mathcal{W}$, we have

$$33 \quad (\mathbb{1}_{\{\mathbf{x}_1 \in V \cap W\}}, \dots, \mathbb{1}_{\{\mathbf{x}_n \in V \cap W\}}) = (\mathbb{1}_{\{\mathbf{x}_1 \in V\}}, \dots, \mathbb{1}_{\{\mathbf{x}_n \in V\}}) \odot (\mathbb{1}_{\{\mathbf{x}_1 \in W\}}, \dots, \mathbb{1}_{\{\mathbf{x}_n \in W\}}),$$

35 where \odot denotes the pointwise product. Therefore, the claim follows from the definition of
 36 the growth function. \blacksquare

37 **Lemma SM1.6.** Let \mathcal{P}_k be the collection of all polytopes constructed by the intersection of
 38 k half spaces in \mathbb{R}^d . Then the growth function of \mathcal{P}_k satisfies

$$39 \quad (\text{SM1.1}) \quad \Pi_{\mathcal{P}_k}(n) \leq \left(\frac{en}{d+1} \right)^{k(d+1)}.$$

40 *Proof.* Let \mathcal{H}_j be the collection of all half spaces in \mathbb{R}^d for $j \in [k]$. Then, by the construction of \mathcal{P}_k , we have $\mathcal{P}_k = \bigcap_{j=1}^k \mathcal{H}_j$. Therefore, by inductive application of **Lemma SM1.5**, the
 42 growth function of \mathcal{P}_k satisfies

$$43 \quad (\text{SM1.2}) \quad \Pi_{\mathcal{P}_k}(n) \leq \prod_{j=1}^k \Pi_{\mathcal{H}_j}(n).$$

44 Furthermore, since the VC dimensions of half spaces in \mathbb{R}^d is $d+1$ (e.g. see [SM8, Section 3]),
 45 **Lemma SM1.4** implies

$$46 \quad (\text{SM1.3}) \quad \Pi_{\mathcal{H}_j}(n) \leq \left(\frac{en}{d+1} \right)^{d+1}, \quad \forall j \in [k].$$

47 The assertion is obtained by plugging in (SM1.3) into (SM1.2). \blacksquare

48 Finally, the following corollary is a direct consequence of Lemmas SM1.3, SM1.4, and SM1.5.

49 **Corollary SM1.7.** Let $\delta \in (0, 1)$ and \mathcal{P}_k be the collection of all polytopes constructed by the
 50 intersection of k half-spaces in \mathbb{R}^d . Suppose that $\{\mathbf{x}_i\}_{i=1}^n$ are independent copies of a random
 51 vector $\mathbf{x} \in \mathbb{R}^d$. Then it holds with probability at least $1 - \delta$ that

$$52 \quad (\text{SM1.4}) \quad \sup_{Z \in \mathcal{P}_k} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in Z\}} - \mathbb{P}(\mathbf{x} \in Z) \right| \leq 4 \sqrt{\frac{\log(4/\delta) + 2k(d+1) \log(2en/(d+1))}{n}}.$$

54 **SM2. Supporting lemmas.** In this section, we list lemmas to prove Theorem 2.1. These
 55 lemmas are borrowed from [SM9] and [SM3]. We improve on a subset of these results derived
 56 with a streamlined proof.

57 **SM2.1. Worst-case extreme eigenvalues of partial sum of outer products of covariates.**

58 A partial sum of the outer products of covariates, $\sum_{i \in \mathcal{I}} \xi_i \xi_i^\top$ appears frequently in the proof.
 59 The summation indices in \mathcal{I} often depend on covariates. The following lemma by Tan and
 60 Vershynin [SM9] provides a tail bound on the worst-case largest eigenvalue of $\sum_{i \in \mathcal{I}} \xi_i \xi_i^\top$ when
 61 the cardinality of \mathcal{I} is bounded from above.

62 **Lemma SM2.1 ([SM9, Theorem 5.7]).** *Let $\delta \in (0, 1/e)$, $\alpha \in (0, 1)$, and $\xi_i = [\mathbf{x}_i, 1] \in \mathbb{R}^{d+1}$
 63 for $i \in [n]$. Suppose that Assumption 1.1 holds. Then it holds with probability at least $1 - \delta$
 64 that*

$$65 \quad \sup_{\mathcal{I}: |\mathcal{I}| \leq \alpha n} \lambda_1 \left(\sum_{i \in \mathcal{I}} \xi_i \xi_i^\top \right) \leq C_4(\eta^2 \vee 1) \sqrt{\alpha n}$$

66 for some absolute constant $C_4 > 0$, provided

$$67 \quad (\text{SM2.1}) \quad n \geq \left(d \vee \frac{\log(1/\delta)}{\alpha} \right).$$

68 **Remark SM2.2.** In the original result, Tan and Vershynin assumed that $\{\xi_i\}_{i=1}^n$ are iso-
 69 tropic η -sub-Gaussian random vectors [SM9, Theorem 5.7]. Later, Ghosh et al. [SM3] showed
 70 that the result also applies to the setting in Lemma SM2.1 through the following argument.
 71 The outer product $\xi_i \xi_i^\top$ remains the same as one multiplies a random sign to the last entry
 72 of ξ_i which makes the random vector $\tilde{\eta}$ -sub-Gaussian with $\tilde{\eta} = \max(\eta, 1)$.

73 Moreover, Ghosh et al. also derived analogous lower tail bound on the smallest eigenvalue
 74 when the index set \mathcal{I} exceeds a threshold [SM3, Lemma 7]. Their proof strategy adopted an
 75 epsilon-net approximation and a union bound argument. Our lemma below, derived by using
 76 the small-ball method [SM6], provides a streamlined proof and a sharper bound.

77 **Lemma SM2.3.** *Let $\alpha, \delta \in (0, 1)$ and $\xi_i = [\mathbf{x}_i, 1] \in \mathbb{R}^{d+1}$ for $i \in [n]$. Suppose that Assump-
 78 tion 1.2 holds. Then there exists an absolute constant $C > 0$ such that if*

$$79 \quad (\text{SM2.2}) \quad n \geq C\alpha^{-2}(d \log(n/d) \vee \log(1/\delta))$$

80 then it holds with probability at least $1 - \delta$ that

$$81 \quad (\text{SM2.3}) \quad \inf_{\mathcal{I} \subset [n]: |\mathcal{I}| \geq \alpha n} \lambda_{d+1} \left(\sum_{i \in \mathcal{I}} \xi_i \xi_i^\top \right) \geq \frac{2n}{\gamma} \left(\frac{\alpha}{4} \right)^{1+\zeta^{-1}}.$$

82 We compare Lemma SM2.3 to the previous result by Ghosh et al. [SM3, Lemma 7] when the
 83 parameter γ is treated as a fixed constant. They demonstrated that the worst-case minimum
 84 eigenvalue in the left-hand side of (SM2.3) satisfies $\Omega(n\alpha^{1+2\zeta^{-1}})$ if $n \geq \alpha^{-1} \max(4p, \zeta^{-1}(d+1))$.
 85 On one hand, their requirement in the sample complexity is less stringent than that in (SM2.2).
 86 On the other hand, the lower bound in (SM2.3) is tighter than theirs by a factor of $\alpha^{\zeta^{-1}}$. When
 87 these two results are applied to derive Theorem 2.1 with α substituted by π_{\min} , the resulting
 88 sample complexity $\tilde{O}(\pi_{\min}^{-4(1+\zeta^{-1})} d)$ by Lemma SM2.3 is smaller than $\tilde{O}(\pi_{\min}^{-4(1+2\zeta^{-1})} d)$ by [SM3,
 89 Lemma 7]. The gain due to Lemma SM2.3 is $\pi_{\min}^{-4\zeta^{-1}}$, which is no less than $k^{4\zeta^{-1}}$. For example,
 90 if the covariates are Gaussian $\zeta = 1/2$, then the gain is k^8 .

91 *Proof.* Let $T > 0$ be an arbitrarily fixed threshold. If

92 (SM2.4)
$$N(\mathbf{v}) := \sum_{i=1}^n \mathbb{1}_{\{\langle \boldsymbol{\xi}_i, \mathbf{v} \rangle^2 > T\}} > n - \frac{\alpha n}{2}$$

93 then it follows that

94
$$\frac{1}{n} \sum_{i \in \mathcal{I}} \langle \boldsymbol{\xi}_i, \mathbf{v} \rangle^2 \geq \frac{\alpha T}{2}, \quad \forall \mathcal{I} \subset [n] : |\mathcal{I}| \geq \alpha n.$$

95 Therefore, it suffices to show that (SM2.4) holds for all $\mathbf{v} \in \mathbb{S}^d$ with probability $1 - \delta$. Let
96 \mathcal{H} denote the collection of half-spaces in \mathbb{R}^d given by $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{x}^\top \mathbf{u} > \sqrt{T} - w\}$ for all
97 $\mathbf{v} = [\mathbf{u}; w] \in \mathbb{S}^d$. Since the VC dimension of all half-spaces in \mathbb{R}^d is at most $d + 1$, by Lemmas
98 SM1.3 and SM1.4, it holds with probability at least $1 - \delta/2$ that

99 (SM2.5)
$$\frac{1}{n} N(\mathbf{v}) \geq \frac{1}{n} \mathbb{E} N(\mathbf{v}) - C' \sqrt{\frac{d \log(n/d) + \log(1/\delta)}{n}}, \quad \forall \mathbf{v} \in \mathbb{S}^d,$$

100 where $C' > 0$ is an absolute constant.

101 Moreover, it follows from Assumption 1.2 that

102 (SM2.6)
$$\frac{1}{n} \mathbb{E} N(\mathbf{v}) = \mathbb{P} (|\langle \mathbf{x}, \mathbf{u} \rangle + w|^2 > T) \geq 1 - (T\gamma)^\zeta.$$

103 By plugging in (SM2.6) into (SM2.5), we obtain that

104
$$\frac{1}{n} N(\mathbf{v}) \geq 1 - (T\gamma)^\zeta - C' \sqrt{\frac{d \log(n/d) + \log(1/\delta)}{n}}, \quad \forall \mathbf{v} \in \mathbb{S}^d.$$

105 Then (SM2.4) is satisfied for all $\mathbf{v} \in \mathbb{S}^d$ when $T = \frac{1}{\gamma} (\frac{\alpha}{4})^{\zeta-1}$ and $C = (4C')^2$. This completes
106 the proof. ■

107 **SM2.2. Local estimates.** In this section, we present local tail bounds which arise in
108 the proof of the main result. The following lemma, obtained as a direct consequence of the
109 triangle inequality and the definition of κ in (2.11), provides a basic inequality that will be
110 used frequently throughout this section.

111 **Lemma SM2.4.** *Suppose that $\boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*)$, where $\mathcal{N}(\boldsymbol{\beta}^*)$ is defined as in (2.12). Then we
112 have*

113
$$\|(\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}) - (\boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*)\|_2 \leq 2\rho \|(\boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*)_{1:d}\|_2, \quad \forall j \neq j' \in [k].$$

114 *Proof.* Since $\boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*)$, by the triangle inequality, we have

115
$$\|(\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}) - (\boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*)\|_2 \leq \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*\|_2 + \|\boldsymbol{\beta}_{j'} - \boldsymbol{\beta}_{j'}^*\|_2 \leq 2\kappa\rho, \quad \forall j, j' \in [k].$$

116 Furthermore, it follows from the definition of κ in (2.11) that

117
$$\kappa \leq \|(\boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*)_{1:d}\|_2, \quad \forall j \neq j' \in [k].$$

118 Then the assertion follows. ■

119 We also use the following lemma by Ghosh et al. [SM3], which is a consequence of Assumptions 1.1 and 1.2 respectively for the sub-Gaussianity and anti-concentration.

121 **Lemma SM2.5** ([SM3, Lemma 17]). *Suppose that $\mathbf{x} \in \mathbb{R}^d$ satisfies Assumptions 1.1 and 1.2. If*

123
$$\|\mathbf{v} - \mathbf{v}^*\|_2 \leq \frac{1}{2} \|(\mathbf{v}^*)_{1:d}\|_2,$$

124 then

125
$$\mathbb{P}(\langle [\mathbf{x}; 1], \mathbf{v}^* \rangle^2 \leq \langle [\mathbf{x}; 1], \mathbf{v} - \mathbf{v}^* \rangle^2) \lesssim \left(\left(\frac{\|\mathbf{v} - \mathbf{v}^*\|_2}{\|(\mathbf{v}^*)_{1:d}\|_2} \right)^2 \cdot \log \left(\frac{2\|(\mathbf{v}^*)_{1:d}\|_2}{\|\mathbf{v} - \mathbf{v}^*\|_2} \right) \right)^\zeta.$$

126 Intuitively, when the parameter vector β belongs to a small neighborhood of the ground-
127 truth, the partition sets $(\mathcal{C}_j)_{j=1}^k$ by β and $(\mathcal{C}_j^*)_{j=1}^k$ by the ground-truth β^* will be similar.
128 The next lemmas quantify the empirical measure on the event of $\mathbf{x} \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*$ for distinct
129 indices j and j' , and quadratic forms given as a partial summation indexed by the indicator
130 functions on this event.

131 **Lemma SM2.6.** *Let $(\mathcal{C}_j)_{j=1}^k$ and $(\mathcal{C}_j^*)_{j=1}^k$ be defined as in (2.4) and (2.10) respectively by β
132 and β^* . Furthermore, let π_{\min} be defined as in (2.9) by β^* . Suppose that $\mathbf{x} \in \mathbb{R}^d$ and $\{\mathbf{x}_i\}_{i=1}^n$
133 satisfy Assumptions 1.1 and 1.2, and that the parameter ρ of $\mathcal{N}(\beta^*)$ in (2.12) satisfies (2.13)
134 for some numerical constant $R > 0$. Then there exists an absolute constant C such that if*

135 (SM2.7)
$$n \geq C\pi_{\min}^{-2} \cdot (kd \log(n/d) \vee \log(1/\delta))$$

136 then with probability at least $1 - \delta$

137 (SM2.8)
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \geq \frac{\pi_{\min}}{4}$$

138 holds for all $j \in [k]$, $\beta \in \mathcal{N}(\beta^*)$, and $\beta^* \in \mathbb{R}^{d+1}$.

139 **Proof.** Note that the left-hand side of (SM2.8) is an empirical measure on the event
140 $\mathbf{x} \in \mathcal{C}_j \cap \mathcal{C}_j^*$. We first derive a lower bound on its expectation, which is written as

141
$$\mathbb{P}(\mathbf{x} \in \mathcal{C}_j, \mathbf{x} \in \mathcal{C}_j^*) = \mathbb{P}(\mathbf{x} \in \mathcal{C}_j | \mathbf{x} \in \mathcal{C}_j^*) \cdot \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)$$

142 (SM2.9)
$$= (1 - \mathbb{P}(\mathbf{x} \notin \mathcal{C}_j | \mathbf{x} \in \mathcal{C}_j^*)) \cdot \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*).$$

144 Then, by the construction of $(\mathcal{C}_j)_{j=1}^k$ in (2.4), we have

$$\begin{aligned}
 145 \quad & \mathbb{P}(\mathbf{x} \notin \mathcal{C}_j | \mathbf{x} \in \mathcal{C}_j^*) \\
 146 \quad &= \frac{\mathbb{P}(\mathbf{x} \notin \mathcal{C}_j, \mathbf{x} \in \mathcal{C}_j^*)}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \\
 147 \quad &\leq \frac{1}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \sum_{j' \neq j} \mathbb{P}(\langle [\mathbf{x}; 1], \boldsymbol{\beta}_{j'} \rangle \geq \langle [\mathbf{x}; 1], \boldsymbol{\beta}_j \rangle, \langle [\mathbf{x}; 1], \boldsymbol{\beta}_j^* \rangle \geq \langle [\mathbf{x}; 1], \boldsymbol{\beta}_{j'}^* \rangle) \\
 148 \quad &\leq \frac{1}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \sum_{j' \neq j} \mathbb{P}(\langle [\mathbf{x}; 1], \mathbf{v}_{j,j'} \rangle \langle [\mathbf{x}; 1], \mathbf{v}_{j,j'}^* \rangle \leq 0) \\
 149 \quad &\leq \frac{1}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \sum_{j' \neq j} \mathbb{P}(\langle [\mathbf{x}; 1], \mathbf{v}_{j,j'}^* \rangle^2 \leq \langle [\mathbf{x}; 1], \mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^* \rangle^2),
 \end{aligned}$$

150 where the second inequality holds since $\mathbf{v}_{j,j'} = \boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}$ and $\mathbf{v}_{j,j'}^* = \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*$, and the last
 151 inequality follows from the fact that $ab \leq 0$ implies $|b| \leq |a - b|$ for $a, b \in \mathbb{R}$. Recall that
 152 $\boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*)$ implies $\|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2 \leq 2\rho\|(\mathbf{v}_{j,j'}^*)_{1:d}\|_2$ due to Lemma SM2.4. Furthermore, one
 153 can choose the numerical constant $R > 0$ in (2.13) sufficiently small (but independent of k
 154 and p) so that $2\rho \leq 0.1$. Then it follows that

$$\begin{aligned}
 156 \quad & \mathbb{P}(\mathbf{x} \notin \mathcal{C}_{j'} | \mathbf{x} \in \mathcal{C}_{j'}^*) \stackrel{(i)}{\lesssim} \frac{k}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \left(\frac{\|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2}{\|(\mathbf{v}_{j,j'}^*)_{1:d}\|_2^2} \log \left(\frac{2\|(\mathbf{v}_{j,j'}^*)_{1:d}\|_2}{\|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2} \right) \right)^\zeta \\
 157 \quad &\stackrel{(ii)}{\leq} \frac{k}{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \left((2\rho)^2 \log \left(\frac{1}{\rho} \right) \right)^\zeta \\
 158 \quad &\stackrel{(iii)}{\leq} \frac{k}{\pi_{\min}} \left(\frac{R^2 \pi_{\min}^{2\zeta^{-1}(1+\zeta^{-1})}}{k^{2\zeta^{-1}}} \right)^\zeta \\
 159 \quad &\stackrel{(SM2.10)}{\leq} \frac{R^{2\zeta} \pi_{\min}^{1+2\zeta^{-1}}}{k},
 \end{aligned}$$

160 where (i) follows from Lemma SM2.5; (ii) holds since $a \log^{1/2}(2/a)$ is monotone increasing
 161 for $a \in (0, 1]$; (iii) follows from the fact that $a \leq \frac{b}{2} \log^{-1/2}(1/b)$ implies $a \log^{1/2}(2/a) \leq b$ for
 162 $b \in (0, 0.1]$. Since $\pi_{\min} \leq \frac{1}{k}$, once again $R > 0$ can be made sufficiently small so that the
 163 right-hand side of (SM2.10) is at most $\frac{1}{2}$. Then plugging in this upper bound by (SM2.10)
 164 into (SM2.9) yields

$$166 \quad (SM2.11) \quad \mathbb{P}(\mathbf{x} \in \mathcal{C}_{j'} \cap \mathcal{C}_{j'}^*) \geq \frac{1}{2} \cdot \mathbb{P}(\mathbf{x} \in \mathcal{C}_{j'}^*).$$

167 It remains to show the concentration of the left-hand side of (SM2.8) around the expecta-
 168 tion. Recall that \mathcal{C}_j and \mathcal{C}_j^* are constructed as the intersection of at most k half-spaces. Then
 169 $\mathcal{C}_j \cap \mathcal{C}_j^*$ belongs to the set \mathcal{P}_{2k} defined in Lemma SM1.6 and, hence, we have

$$\begin{aligned}
 170 \quad & \sup_{\substack{j \in [k], \boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*) \\ \boldsymbol{\beta}^* \in \mathbb{R}^{d+1}}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} - \mathbb{P}(\mathbf{x} \in \mathcal{C}_j \cap \mathcal{C}_j^*) \right| \leq \sup_{\mathcal{Z} \in \mathcal{P}_{2k}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{Z}\}} - \mathbb{P}(\mathbf{x} \in \mathcal{Z}) \right|.
 \end{aligned}$$

172 Therefore, it follows from Corollary [SM1.7](#) that with probability at least $1 - \delta$

173 (SM2.12)
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \geq \mathbb{P}(\mathbf{x} \in \mathcal{C}_j \cap \mathcal{C}_j^*) - 4\sqrt{\frac{\log(4/\delta) + 2k(d+1) \log(2en/(d+1))}{n}}$$

174 holds for all $j \in [k]$, $\beta \in \mathcal{N}(\beta^*)$, and $\beta^* \in \mathbb{R}^{d+1}$. The first summand in the right-hand side of
 175 (SM2.12) is bounded from below as in (SM2.11). Then choosing C in (SM2.7) large enough
 176 makes the second summand less than half of the lower bound in (SM2.11). This completes
 177 the proof. \blacksquare

178 Next, the following lemma provides a slightly improved upper bound compared to the
 179 analogous previous result [[SM3](#), Lemma 6]. Moreover, Lemma [SM2.7](#) is derived by using the
 180 VC theory and provides a streamlined and shorter proof compared to previous work [[SM3](#)].

181 **Lemma SM2.7.** *Suppose that Assumptions [1.1](#) and [1.2](#) hold, and that ρ satisfies (2.13) for
 182 some numerical constant $R > 0$. Let $\delta \in (0, 1/e)$. There exists an absolute constant C such
 183 that if*

184 (SM2.13)
$$n \geq Ck^4 \pi_{\min}^{-4(1+\zeta^{-1})} (\log(k/\delta) \vee d \log(n/d))$$

185 then with probability at least $1 - \delta$

186 (SM2.14)
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle [\mathbf{x}_i; 1], \mathbf{v}_{j,j'}^* \rangle^2 \leq \frac{2}{5\gamma k} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2$$

187 holds for all $j \in [k]$, $\beta \in \mathcal{N}(\beta^*)$, and $\beta^* \in \mathbb{R}^{d+1}$ where $\mathbf{v}_{j,j'} = \beta_j - \beta_{j'}$ and $\mathbf{v}_{j,j'}^* = \beta_j^* - \beta_{j'}^*$.

188 The previous result [[SM3](#), Lemma 6] showed that with probability at least $1 - \delta$ the
 189 left-hand side of (SM2.14) is bounded from above by $\tilde{O}((\pi_{\min}^{1+\zeta^{-1}}/k) \log^{\zeta/2+1}(k/(\pi_{\min}^{1+\zeta^{-1}})))$
 190 if $n \geq O(\max(p, \log(1/\delta)))$. In contrast, Lemma [SM2.7](#) provides a smaller upper bound by
 191 a logarithmic factor at the cost of increased sample complexity. However, the condition in
 192 (SM2.13) is implied by another sufficient condition from another step of the analysis; hence,
 193 it does not affect the main result in Theorem [2.1](#).

194

195 *Proof.* By the definition of $(\mathcal{C}_j)_{j=1}^k$ in (2.4), it holds for any $j \neq j'$ that

196 (SM2.15)
$$\begin{aligned} \mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^* &\iff \langle \xi_i, \beta_j \rangle \geq \langle \xi_i, \beta_{j'} \rangle, \langle \xi_i, \beta_{j'}^* \rangle \geq \langle \xi_i, \beta_j^* \rangle \\ &\iff \langle \xi_i, \mathbf{v}_{j,j'} \rangle \geq 0, \langle \xi_i, \mathbf{v}_{j,j'}^* \rangle \leq 0 \\ &\implies \langle \xi_i, \mathbf{v}_{j,j'} \rangle \langle \xi_i, \mathbf{v}_{j,j'}^* \rangle \leq 0. \end{aligned}$$

197 Furthermore, by Lemma [SM2.4](#), every $\beta \in \mathcal{N}(\beta^*)$ satisfies $\|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2 \leq 2\rho \|\mathbf{v}_{j,j'}^*_{1:d}\|_2$.
 198 Therefore, it suffices to show that with probability at least $1 - \delta$

199 (SM2.16)
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\langle \xi_i, \mathbf{v} \rangle \langle \xi_i, \mathbf{v}^* \rangle \leq 0\}} \langle \xi_i, \mathbf{v}^* \rangle^2 \leq \frac{2}{5\gamma k} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \|\mathbf{v} - \mathbf{v}^*\|_2^2$$

200 holds for all $(\mathbf{v}, \mathbf{v}^*) \in \mathcal{M}$, where

201
$$\mathcal{M} := \{(\mathbf{v}, \mathbf{v}^*) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} : \|\mathbf{v} - \mathbf{v}^*\| \leq 2\rho\|(\mathbf{v})_{1:d}\|_2\}.$$

202 Since $ab \leq 0$ implies $|b| \leq |a - b|$ for $a, b \in \mathbb{R}$, each summand in the left-hand side of
203 (SM2.16) is upper-bounded by

204
$$\begin{aligned} \mathbb{1}_{\{\langle \xi_i, \mathbf{v} \rangle \langle \xi_i, \mathbf{v}^* \rangle \leq 0\}} \langle \xi_i, \mathbf{v}^* \rangle^2 &\leq \mathbb{1}_{\{\langle \xi_i, \mathbf{v}^* \rangle^2 \leq \langle \xi_i, \mathbf{v} - \mathbf{v}^* \rangle^2\}} \langle \xi_i, \mathbf{v}^* \rangle^2 \\ &\leq \mathbb{1}_{\{\langle \xi_i, \mathbf{v}^* \rangle^2 \leq \langle \xi_i, \mathbf{v} - \mathbf{v}^* \rangle^2\}} \langle \xi_i, \mathbf{v} - \mathbf{v}^* \rangle^2. \end{aligned}$$

205 Before we proceed to the next step, for brevity, we introduce a shorthand notation given by

206 (SM2.17)
$$\mathcal{S}_{\mathbf{v}, \mathbf{v}^*} := \{\xi \in \mathbb{R}^{d+1} : \langle \xi, \mathbf{v} - \mathbf{v}^* \rangle^2 \geq \langle \xi, \mathbf{v}^* \rangle^2\}.$$

207 Then the left-hand side of (SM2.16) is bounded from above as

208
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\langle \xi_i, \mathbf{v} \rangle \langle \xi_i, \mathbf{v}^* \rangle \leq 0\}} \langle \xi_i, \mathbf{v}^* \rangle^2 \leq \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\xi_i \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}\}} \langle \xi_i, \mathbf{v} - \mathbf{v}^* \rangle^2.$$

209 Next, we derive a tail bound on the empirical measure $\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\xi_i \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}\}}$ on the event for
210 $\xi \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}$. Let \mathcal{P}_2 denote the collection of all polytopes given by the intersections of two half-
211 spaces. Then $\mathcal{S}_{\mathbf{v}, \mathbf{v}^*}$ belongs to $\mathcal{P}_2 \cup \mathcal{P}_2$. It follows from Lemma SM1.6 and [SM2, Theorem A]
212 that

213 (SM2.18)
$$\Pi_{\mathcal{P}_2 \cup \mathcal{P}_2}(n) \leq \left(\frac{en}{C'(d+1)} \right)^{C'(d+1)}$$

214 for some absolute constant C' . Therefore, by Lemma SM1.3 and (SM2.18), we obtain that

215 (SM2.19)
$$\sup_{(\mathbf{v}, \mathbf{v}^*) \in \mathcal{M}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\xi_i \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}\}} - \mathbb{P}(\xi \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}) \right| \lesssim \sqrt{\frac{\log(1/\delta) + d \log(n/d)}{n}}$$

217 holds with probability at least $1 - \frac{\delta}{2}$.

218 Similar to (SM2.10), we obtain an upper bound on the probability by using Lemma SM2.5
219 as follows:

220
$$\begin{aligned} \sup_{(\mathbf{v}, \mathbf{v}^*) \in \mathcal{M}} \mathbb{P}(\xi \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}) &\leq C_1 \left((2\rho)^2 \log \left(\frac{1}{\rho} \right) \right)^\zeta \\ &\leq C_1 \left(\frac{R^2 \pi_{\min}^{2\zeta^{-1}(1+\zeta^{-1})}}{k^{2\zeta^{-1}}} \right)^\zeta \\ &\leq \underbrace{\frac{C_1 R^{2\zeta} \pi_{\min}^{2+2\zeta^{-1}}}{k^2}}_{\alpha} \end{aligned}$$

224 where $C_1 > 0$ is an absolute constant. By choosing the numerical constant $C > 0$ in (SM2.13)
 225 sufficiently large, we obtain from (SM2.19) and (SM2.20) that

226 (SM2.21)
$$\mathbb{P} \left(\sup_{(\mathbf{v}, \mathbf{v}^*) \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\xi_i \in \mathcal{S}_{\mathbf{v}, \mathbf{v}^*}\}} > \frac{\alpha}{2} \right) \leq \frac{\delta}{2}.$$

227 Furthermore, one can choose the numerical constant $R > 0$ small enough so that $\alpha \in (0, 1)$.
 228 Then, since (SM2.13) and (2.13) imply (SM2.1), by Lemma SM2.1, it holds with probability
 229 at least $1 - \delta/2$ that

230 (SM2.22)
$$\sup_{\mathcal{I}: |\mathcal{I}| \leq \frac{\alpha n}{2}} \left\| \sum_{i \in \mathcal{I}} \xi_i \xi_i^\top \right\| \lesssim (\eta^2 \vee 1) \sqrt{\alpha} n.$$

231 Finally, by combining the results in (SM2.21) and (SM2.22), we obtain that with proba-
 232 bility at least $1 - \delta$

233
$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\langle \xi_i, \mathbf{v} \rangle \langle \xi_i, \mathbf{v}^* \rangle \leq 0\}} \langle \xi_i, \mathbf{v}^* \rangle^2 \leq \sup_{\mathcal{I}: |\mathcal{I}| \leq \frac{\alpha n}{2}} \frac{1}{n} \sum_{i \in \mathcal{I}} \langle \xi_i, \mathbf{v} - \mathbf{v}^* \rangle^2$$

 234
$$\leq \sup_{\mathcal{I}: |\mathcal{I}| \leq \frac{\alpha n}{2}} \left\| \frac{1}{n} \sum_{i \in \mathcal{I}} \xi_i \xi_i^\top \right\| \cdot \|\mathbf{v} - \mathbf{v}^*\|_2^2$$

 235
$$\leq C_2 (\eta^2 \vee 1) R^\zeta \left(\frac{\pi_{\min}^{(1+\zeta^{-1})}}{k} \right) \cdot \|\mathbf{v} - \mathbf{v}^*\|_2^2$$

 236

237 holds for all $(\mathbf{v}, \mathbf{v}^*) \in \mathcal{M}$, where C_2 is an absolute constant. By choosing $R > 0$ sufficiently
 238 small so that

239
$$C_2 (\eta^2 \vee 1) R^\zeta \leq \frac{2}{5\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}},$$

240 we obtain the assertion in (SM2.16). ■

241 **SM3. Proof of Theorem 2.1.** The loss function $\ell(\boldsymbol{\beta})$ is decomposed as

242
$$\ell(\boldsymbol{\beta}) = \frac{1}{2n} \left(\max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j \rangle - \max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j^* \rangle - z_i \right)^2$$

 243
$$= \underbrace{\frac{1}{2n} \sum_{i=1}^n \left(\max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j \rangle - \max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j^* \rangle \right)^2}_{\ell^{\text{clean}}(\boldsymbol{\beta})}$$

 244
$$- \underbrace{\left(\frac{1}{n} \sum_{i=1}^n z_i \left(\max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j \rangle - \max_{j \in [k]} \langle \xi_i, \boldsymbol{\beta}_j^* \rangle \right) - \frac{1}{2n} \sum_{i=1}^n z_i^2 \right)}_{\ell^{\text{noise}}(\boldsymbol{\beta})}.$$

 245

246 Then the partial gradient of $\ell(\boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}_l$ is written as

$$\begin{aligned} \nabla_{\boldsymbol{\beta}_l} \ell(\boldsymbol{\beta}) &= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_l\}} \left(\max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j \rangle - \max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j^* \rangle - z_i \right) \boldsymbol{\xi}_i \\ 247 \quad (\text{SM3.1}) \quad &= \underbrace{\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_l\}} \left(\max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j \rangle - \max_{j \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j^* \rangle \right) \boldsymbol{\xi}_i}_{\nabla_{\boldsymbol{\beta}_l} \ell^{\text{clean}}(\boldsymbol{\beta})} - \underbrace{\frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_l\}} \boldsymbol{\xi}_i}_{\nabla_{\boldsymbol{\beta}_l} \ell^{\text{noise}}(\boldsymbol{\beta})} \end{aligned}$$

248 where $\mathcal{C}_1, \dots, \mathcal{C}_k$ are determined by $\boldsymbol{\beta}$ as in (2.4).

249 In the remainder of the proof, we will use the following shorthand notation to denote the
250 pairwise difference of parameter vectors and the probability measure on the largest partition
251 by the ground-truth model:

$$252 \quad \mathbf{v}_{j,j'} := \boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}, \quad \mathbf{v}_{j,j'}^* := \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^*, \quad \text{and} \quad \pi_{\max} := \max_{j \in [k]} \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*). \\ 253$$

254 Below we show that the following lemmas hold under the condition in (2.15). The proof is
255 provided in Appendix [SM3.1](#).

256 **Lemma SM3.1.** *Under the hypothesis of Theorem 2.1, if (2.15) is satisfied, then with probability at least $1 - \delta$ the following inequalities hold for all $j \in [k]$, $\boldsymbol{\beta}^* \in \mathbb{R}^{k(d+1)}$, and $\boldsymbol{\beta}^t \in \mathcal{N}(\boldsymbol{\beta}^*)$:*
257 (SM3.2)

$$258 \quad \langle \nabla_{\boldsymbol{\beta}_j} \ell^{\text{clean}}(\boldsymbol{\beta}^t), \boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^* \rangle \geq \frac{2}{\gamma} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \left(\|\boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^*\|_2^2 - \frac{1}{10k} \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \right),$$

259 (SM3.3)

$$260 \quad \|\nabla_{\boldsymbol{\beta}_j} \ell^{\text{clean}}(\boldsymbol{\beta}^t)\|_2^2 \lesssim \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \|\boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^*\|_2^2 + \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2,$$

261 and

$$262 \quad (\text{SM3.4}) \quad \|\nabla_{\boldsymbol{\beta}_j} \ell^{\text{noise}}(\boldsymbol{\beta}^t)\|_2 \lesssim \frac{\sigma \sqrt{kd \log(n/d) + \log(1/\delta)}}{\sqrt{n}}.$$

263 The remainder of the proof shows that the assertion of the theorem is obtained from
264 (SM3.2), (SM3.3) and (SM3.4) via the following three steps.

265

266 **Step 1:** We prove by induction that all iterates remain within the neighborhood $\mathcal{N}(\boldsymbol{\beta}^*)$.
267 Suppose that $\boldsymbol{\beta}^t \in \mathcal{N}(\boldsymbol{\beta}^*)$ holds for a fixed $t \in \mathbb{N}$. By the triangle inequality, for any $j \in [k]$,
268 the next iterate $\boldsymbol{\beta}^{t+1}$ satisfies

$$\begin{aligned} 269 \quad \|\boldsymbol{\beta}_j^{t+1} - \boldsymbol{\beta}_j^*\|_2 &= \|\boldsymbol{\beta}_j^t - \mu \nabla_{\boldsymbol{\beta}_j} \ell(\boldsymbol{\beta}^t) - \boldsymbol{\beta}_j^*\|_2 \\ 270 \quad (\text{SM3.5}) \quad &\leq \underbrace{\|\boldsymbol{\beta}_j^t - \mu \nabla_{\boldsymbol{\beta}_j} \ell^{\text{clean}}(\boldsymbol{\beta}^t) - \boldsymbol{\beta}_j^*\|_2}_{A_{\text{clean}}} + \underbrace{\mu \|\nabla_{\boldsymbol{\beta}_j} \ell^{\text{noise}}(\boldsymbol{\beta}^t)\|_2}_{A_{\text{noise}}}. \\ 271 \end{aligned}$$

272 Then it remains to show

273 (SM3.6) $\|\beta_j^{t+1} - \beta_j^*\|_2 \leq A_{\text{clean}} + A_{\text{noise}} \leq \kappa\rho, \quad \forall j \in [k].$

274 Note that the first summand in the right-hand side of (SM3.5) satisfies

275 $A_{\text{clean}}^2 = \|\beta_j^t - \beta_j^*\|_2^2 - 2\mu \langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \rangle + \mu^2 \|\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2.$

277 Therefore, it follows from (SM3.2) and (SM3.3) that

$$\begin{aligned}
 278 \quad A_{\text{clean}}^2 &\leq \|\beta_j^t - \beta_j^*\|_2^2 - \frac{4\mu}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}} \left(\|\beta_j^t - \beta_j^*\|_2^2 - \frac{1}{10k} \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \right) \\
 279 \quad &\quad + \mu^2 C_1 \left(\left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \|\beta_j^t - \beta_j^*\|_2^2 + \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \right) \\
 280 \quad &= \left(1 - \frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \mu \pi_{\min}^{1+\zeta^{-1}} + C_1 \mu^2 \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 281 \quad (\text{SM3.7}) \quad &+ \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \mu \pi_{\min}^{1+\zeta^{-1}}}{5k} + \frac{C_1 \mu^2 \pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \right) \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2. \\
 282
 \end{aligned}$$

283 We set the step size μ to be

284 (SM3.8) $\mu = \frac{\omega \pi_{\min}^{1+\zeta^{-1}}}{\tau}$

285 where ω is a constant that will be specified later and τ is given by

286 (SM3.9) $\tau := \pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})}.$

287 Putting the choices of μ and τ respectively by (SM3.8) and (SM3.9) into (SM3.7) yields (SM3.10)

$$\begin{aligned}
 288 \quad A_{\text{clean}}^2 &\leq \left(1 - \frac{\frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} + \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})} \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right)}{\tau^2} \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 &\quad + \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{5\tau k} + \frac{C_1 \omega^2 \pi_{\min}^{4(1+\zeta^{-1})}}{\tau^2 k^2} \right) \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \\
 &\leq \left(1 - \frac{\frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} + \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 &\quad + \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{5\tau} + \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \right) \max_{1 \leq j \neq j' \leq k} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2.
 \end{aligned}$$

289 Next, since $\beta^t \in \mathcal{N}(\beta^*)$, by the definition of $\mathcal{N}(\beta^*)$ in (2.12), we have

290 (SM3.11)
$$\max_{j \in [k]} \|\beta_j^t - \beta_j^*\|_2 \leq \kappa\rho.$$

291 Furthermore, by Lemma SM2.4, we also have

292 (SM3.12)
$$\max_{1 \leq j \neq j' \leq k} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2 \leq 2\kappa\rho.$$

293 Then plugging in (SM3.11) and (SM3.12) into (SM3.10) yields

$$\begin{aligned} (\kappa\rho)^{-2} A_{\text{clean}}^2 &\leq 1 - \frac{\pi_{\min}^{2(1+\zeta^{-1})} \omega}{\tau} \left(\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \left(2 - \frac{4}{5} \right) + C_1 \omega (1+4) \right) \\ &\leq 1 - \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \cdot \omega \left(\underbrace{\frac{\frac{12}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}}}{5} + 5\omega C_1}_{c_0} \right) \\ &\leq 1 - \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \cdot \omega \underbrace{\left(\frac{\frac{12}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}}}{5} \right)}_{c_0}, \end{aligned} \quad 294 \quad (\text{SM3.13})$$

295 which is rewritten as

296 (SM3.14)
$$A_{\text{clean}}^2 \leq (\kappa\rho)^2 \left(1 - \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \right).$$

297 For fixed γ and ζ , c_0 is a positive numerical constant. Due to the choice of τ by (SM3.9), we
298 have

299
$$\frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\tau} = \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})}} < 1,$$

300 Furthermore, one can choose $\omega > 0$ sufficiently small so that $\omega c_0 < 1$. Then the upper bound
301 in the right-hand side of (SM3.14) is valid as a positive number.

302 If A_{noise} is upper-bounded as

303 (SM3.15)
$$A_{\text{noise}} \leq \kappa\rho \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{2\tau},$$

304 then, by the elementary inequality $1 - \sqrt{1 - \alpha} \geq \alpha/2$ that holds for any $\alpha \in (0, 1)$, we have

305 (SM3.16)
$$A_{\text{noise}} \leq \kappa\rho \left(1 - \sqrt{1 - \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau}} \right).$$

306 Then (SM3.14) and (SM3.16) yield (SM3.6). Therefore, it suffices to show that (SM3.15)
307 holds.

308 Due to the inequality in (SM3.4), we have

309

$$\|\nabla_{\beta_j} \ell^{\text{noise}}(\beta^t)\|_2 \lesssim \frac{\sigma \sqrt{kd \log(n/d) + \log(1/\delta)}}{\sqrt{n}}, \quad \forall j \in [k].$$

310 By the choice of μ in (SM3.8), we obtain an upper bound on A_{noise} given by

311 (SM3.17)
$$A_{\text{noise}} = \mu \|\nabla_{\beta_j} \ell^{\text{noise}}(\beta^t)\|_2 \lesssim \frac{\omega \pi_{\min}^{1+\zeta^{-1}}}{\tau} \cdot \frac{\sigma \sqrt{kd \log(n/d) + \log(1/\delta)}}{\sqrt{n}}.$$

312 The condition in (2.15) implies

313 (SM3.18)
$$n \geq C \cdot \frac{\sigma^2 \pi_{\min}^{-2(1+\zeta^{-1})} (kd \log(n/d) + \log(1/\delta))}{\kappa^2 \rho^2}.$$

314 One can choose the absolute constant $C > 0$ in (2.15) and (SM3.18) as large enough so that
315 (SM3.18) and (SM3.17) imply (SM3.15). This completes the induction argument in Step 1.

316

317 **Step 2:** Next we show that all iterates also satisfy

318 (SM3.19)
$$\|\beta^{t+1} - \beta^*\|_2 \leq \sqrt{1-\nu} \|\beta^t - \beta^*\|_2 + C' \mu \sigma \sqrt{\frac{k (kd \log(n/d) + \log(1/\delta))}{n}}.$$

320 We use the fact that $\beta^t \in \mathcal{N}(\beta^*)$, which has been shown in Step 1. By the update rule of
321 gradient descent and the triangle inequality, the left-hand side of (SM3.19) satisfies

322
$$\|\beta^{t+1} - \beta^*\|_2 = \|\beta^t - \mu \nabla_{\beta} \ell(\beta^t) - \beta^*\|_2$$

323
$$\leq \|\beta^t - \mu \nabla_{\beta} \ell^{\text{clean}}(\beta^t) - \beta^*\|_2 + \mu \|\nabla_{\beta} \ell^{\text{noise}}(\beta^t)\|_2$$

324 (SM3.20)
$$= \underbrace{\sqrt{\sum_{j=1}^k \|\beta_j^t - \beta_j^* - \mu \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2}}_{B_{\text{clean}}} + \underbrace{\sqrt{\mu^2 \sum_{j=1}^k \|\nabla_{\beta_j} \ell^{\text{noise}}(\beta^t)\|_2^2}}_{B_{\text{noise}}}.$$

325

326 Below we derive an upper bound on each of the summands on the right-hand side of (SM3.20).
327 First we show that

328 (SM3.21)
$$B_{\text{clean}}^2 \leq (1-\nu) \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2.$$

330 Since $\beta^t \in \mathcal{N}(\beta^*)$, the inequality in (SM3.21) holds if there exist constants $\mu, \lambda \in (0, 1)$ such
331 that

(SM3.22)
$$\sum_{j=1}^k \langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t), \beta_j - \beta_j^* \rangle \geq \frac{\mu}{2} \sum_{j=1}^k \|\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2 + \frac{\lambda}{2} \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2, \quad \forall \beta^t \in \mathcal{N}(\beta^*).$$

333 Indeed, the condition in (SM3.22) and $\beta^t \in \mathcal{N}(\beta^*)$ imply

$$\begin{aligned}
 334 \quad B_{\text{clean}}^2 &= \sum_{j=1}^k \|\beta_j^t - \mu \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t) - \beta_j^*\|_2^2 \\
 335 \quad &= \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2 + \sum_{j=1}^k \mu^2 \|\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2 - 2\mu \sum_{j=1}^k \langle \beta_j^t - \beta_j^*, \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t) \rangle \\
 336 \quad &\leq \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2 - \mu \lambda \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2 \\
 337 \quad (\text{SM3.23}) \quad &= (1 - \mu \lambda) \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2. \\
 338
 \end{aligned}$$

339 Next we show that (SM3.22) holds. Due to (SM3.2) and the elementary inequality $\|\mathbf{a} +$
 340 $\mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$, it holds for all $j \in [k]$ that

$$\begin{aligned}
 341 \quad (\text{SM3.24}) \quad &\langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \rangle \\
 &\geq \frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}} \left(\|\beta_j^t - \beta_j^*\|_2^2 - \frac{1}{5k} \sum_{j': j' \neq j} \left(\|\beta_j^t - \beta_{j'}^*\|_2^2 + \|\beta_{j'}^t - \beta_{j'}^*\|_2^2 \right) \right).
 \end{aligned}$$

342 By taking the summation of (SM3.24) over $j \in [k]$, we obtain

$$\begin{aligned}
 343 \quad (\text{SM3.25}) \quad &\sum_{j=1}^k \langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \rangle \geq \frac{\frac{6}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}}}{5} \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2. \\
 344
 \end{aligned}$$

345 Furthermore, by using (SM3.3) and the elementary inequality $\|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$ again,
 346 we obtain

$$\begin{aligned}
 347 \quad (\text{SM3.26}) \quad &\|\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2 \leq C_1 \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 &+ \frac{2C_1 \pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \sum_{j': j' \neq j} \left(\|\beta_j^t - \beta_{j'}^*\|_2^2 + \|\beta_{j'}^t - \beta_{j'}^*\|_2^2 \right).
 \end{aligned}$$

348 Summing the equation in (SM3.26) over $j \in [k]$ yields

$$\begin{aligned}
 349 \quad (\text{SM3.27}) \quad &\sum_{j=1}^k \|\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)\|_2^2 \leq C_1 \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} + \frac{4(k-1)\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \right) \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2 \\
 &\leq C_1 \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} + 4\pi_{\min}^{2(1+\zeta^{-1})} \right) \sum_{j=1}^k \|\beta_j^t - \beta_j^*\|_2^2.
 \end{aligned}$$

350 By combining (SM3.25) and (SM3.27) with μ as in (SM3.8), we obtain a sufficient condition
 351 for (SM3.22) given by

$$352 \quad (SM3.28) \quad \frac{\frac{6}{\gamma} \left(\frac{1}{16}\right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}}}{5} \geq \frac{\omega \pi_{\min}^{1+\zeta^{-1}} C_1 \left(\pi_{\max} + 5\pi_{\min}^{2(1+\zeta^{-1})}\right)}{2 \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})}\right)} + \frac{\lambda}{2}.$$

353 By choosing $\omega > 0$ small enough, (SM3.28) is satisfied when λ is chosen as

$$354 \quad (SM3.29) \quad \lambda = \min(c_2 \pi_{\min}^{1+\zeta^{-1}}, 1)$$

355 for an absolute constant $c_2 > 0$. Hence, we have shown that the condition in (SM3.22) holds
 356 with μ and λ specified by (SM3.8) and (SM3.29).

357 Next we consider the second summand on the right-hand side of (SM3.20). The inequality
 358 in (SM3.4) implies

$$359 \quad (SM3.30) \quad B_{\text{noise}}^2 = \mu^2 \sum_{j=1}^k \left\| \nabla_{\beta_j} \ell^{\text{noise}}(\beta^t) \right\|_2^2 \lesssim \frac{\mu^2 \sigma^2 k (kd \log(n/d) + \log(1/\delta))}{n}.$$

361 Finally, plugging in (SM3.23) and (SM3.30) into (SM3.20) provides the assertion (SM3.19).
 362 This completes the proof of Step 2.

363

364 **Step 3:** We finish the proof of Theorem 2.1 by applying the results in Step 1 and Step 2.
 365 Plugging in the expression of $\nu = \mu\lambda$ with μ and λ as in (SM3.8) and (SM3.29) provides

$$\begin{aligned} 366 \quad \|\beta^t - \beta^*\|_2 &\leq (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_2 \cdot \frac{\mu\sigma}{1 - \sqrt{1 - \mu\lambda}} \cdot \sqrt{\frac{k (kd \log(n/d) + \log(1/\delta))}{n}} \\ 367 \quad &\stackrel{(a)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_2 \cdot \frac{2\sigma}{\lambda} \cdot \sqrt{\frac{k (kd \log(n/d) + \log(1/\delta))}{n}} \\ 368 \quad &\stackrel{(b)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_3 \cdot \frac{\sigma}{\pi_{\max}} \cdot \sqrt{\frac{k (kd \log(n/d) + \log(1/\delta))}{n}} \\ 369 \quad &\stackrel{(c)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_3 \cdot \sigma k \sqrt{\frac{k (kd \log(n/d) + \log(1/\delta))}{n}}, \end{aligned}$$

371 where (a) follows from the elementary inequality $\sqrt{1-t} < 1 - t/2$ for any $t \in (0, 1)$; (b) holds
 372 by the choice of τ in (SM3.9); (c) holds since $\pi_{\max}^{-1} \leq k$.

373 **SM3.1. Proof of Lemma SM3.1.** We show that each of (SM3.2), (SM3.3), and (SM3.4)
 374 holds with probability at least $1 - \delta/3$. We also note that for simplicity, we proceed on the
 375 proofs using β and $v_{j,j'}$. Therefore, the assertions in (SM3.2), (SM3.3), and (SM3.4) can be
 376 completed by substituting β and $v_{j,j'}$ with β^t and $v_{j,j'}^t$ respectively.

377 **Proof of (SM3.2):** We show that (SM3.2) holds with high probability under the following
 378 condition

$$379 \quad (SM3.31) \quad n \geq C_1 (\log(k/\delta) \vee d \log(n/d)) k^4 \pi_{\min}^{-4(1+\zeta^{-1})},$$

380 which is implied by the assumption in (2.15). We proceed with the proof under the following
 381 three events, each of which holds with probability at least $1 - \delta/9$. First, since (SM3.31)
 382 implies (SM2.13), by Lemma SM2.7, it holds with probability at least $1 - \delta/9$ that

$$383 \quad \begin{aligned} & \frac{1}{n} \sum_{j':j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \mathbf{v}_{j,j'}^* \rangle^2 \\ & \leq \frac{2}{5\gamma k} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \sum_{j':j' \neq j} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2, \quad \forall j \in [k], \forall \boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*), \forall \boldsymbol{\beta}^* \in \mathbb{R}^{d+1}. \end{aligned}$$

384 Moreover, since (SM3.31) also implies (SM2.7), by Lemma SM2.6, it holds with probability
 385 at least $1 - \delta/3$ that

$$386 \quad \text{(SM3.33)} \quad \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \geq \frac{\pi_{\min}}{4}, \quad \forall j \in [k], \forall \boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*), \forall \boldsymbol{\beta}^* \in \mathbb{R}^{d+1}.$$

387 Lastly, since (SM3.31) is a sufficient condition to invoke Lemma SM2.3 with $\alpha = \pi_{\min}/4$, it
 388 holds with probability at least $1 - \delta/9$ that

$$389 \quad \text{(SM3.34)} \quad \inf_{\mathcal{I} \subset [n]: |\mathcal{I}| \geq \frac{\pi_{\min} n}{4}} \lambda_{d+1} \left(\frac{1}{n} \sum_{i \in \mathcal{I}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right) \geq \frac{2}{\gamma} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}}.$$

390 Therefore, we have shown that (SM3.32), (SM3.33), and (SM3.34) hold with probability at
 391 least $1 - \delta/3$. The remainder of the proof is conditioned on the event that $\{\boldsymbol{\xi}_i\}_{i=1}^n$ satisfy
 392 (SM3.32), (SM3.33), and (SM3.34).

393 Let $\boldsymbol{\beta}^* \in \mathbb{R}^{d+1}$, $\boldsymbol{\beta} \in \mathcal{N}(\boldsymbol{\beta}^*)$, and $j \in [k]$ be arbitrarily fixed. For brevity, we will use the
 394 shorthand notation $\mathbf{h}_j := \boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*$. Then the left-hand side of (SM3.2) is rewritten as

$$\begin{aligned} 395 \quad \langle \nabla_{\boldsymbol{\beta}_j} \ell^{\text{clean}}(\boldsymbol{\beta}), \mathbf{h}_j \rangle &= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \left(\langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j \rangle - \max_{j' \in [k]} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_{j'}^* \rangle \right) \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle \\ 396 \quad &= \frac{1}{n} \sum_{j'=1}^k \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}^* \rangle \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle \\ 397 \quad &= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle^2 + \frac{1}{n} \sum_{j':j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}^* \rangle \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle. \\ 398 \end{aligned}$$

399 By the inequality of arithmetic and geometric means, we have

$$\begin{aligned} 400 \quad \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'}^* \rangle \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle &= \langle \boldsymbol{\xi}_i, \boldsymbol{\beta}_j - \boldsymbol{\beta}_j^* + \boldsymbol{\beta}_j^* - \boldsymbol{\beta}_{j'}^* \rangle \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle \\ 401 \quad &= \langle \boldsymbol{\xi}_i, \mathbf{h}_j + \mathbf{v}_{j,j'}^* \rangle \langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle \\ 402 \quad &\geq \frac{\langle \boldsymbol{\xi}_i, \mathbf{h}_j \rangle^2}{2} - \frac{\langle \boldsymbol{\xi}_i, \mathbf{v}_{j,j'}^* \rangle^2}{2} \geq -\frac{\langle \boldsymbol{\xi}_i, \mathbf{v}_{j,j'}^* \rangle^2}{2}. \\ 403 \end{aligned}$$

404 Therefore, we obtain

(SM3.35)

$$405 \quad \langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta), \mathbf{h}_j \rangle \geq \underbrace{\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \langle \xi_i, \mathbf{h}_j \rangle^2}_{(*)} - \underbrace{\frac{1}{2n} \sum_{j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \mathbf{v}_{j,j'}^* \rangle^2}_{(**)}.$$

406

407 By (SM3.33) and (SM3.34), the first summand in the right-hand side of (SM3.35) is bounded
408 from below as

$$409 \quad (\text{SM3.36}) \quad (*) \geq \frac{2}{\gamma} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \|\mathbf{h}_j\|_2^2.$$

410 Moreover, due to (SM3.32), (**) is bounded from above as

$$411 \quad (\text{SM3.37}) \quad (**) \leq \frac{1}{5\gamma k} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \sum_{j' \neq j} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2.$$

412 Then, plugging in (SM3.36) and (SM3.37) into (SM3.35) provides

$$413 \quad \begin{aligned} & \langle \nabla_{\beta_j} \ell(\beta), \mathbf{h}_j \rangle \\ & \geq \frac{2}{\gamma} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \|\mathbf{h}_j\|_2^2 - \frac{1}{5\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \left(\frac{\pi_{\min}^{1+\zeta^{-1}}}{k} \right) \sum_{j' \neq j} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2 \\ & = \frac{2}{\gamma} \left(\frac{\pi_{\min}}{16} \right)^{1+\zeta^{-1}} \left(\|\mathbf{h}_j\|_2^2 - \frac{1}{10k} \sum_{j' \neq j} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2 \right). \end{aligned}$$

414 This completes the proof.

415

416 **Proof of (SM3.3):** The proof is based on the condition

$$417 \quad (\text{SM3.38}) \quad n \geq C_2 (\log(k/\delta) \vee d \log(n/d)) k^4 \pi_{\min}^{-4(1+\zeta^{-1})},$$

418 which is implied by (2.15). We will proceed under the following four events, each of which holds
419 with probability at least $1 - \delta/12$. First, since (SM3.38) implies (SM2.13), by Lemma SM2.7,
420 (SM3.32) holds with probability at least $1 - \delta/12$. Next, since $(\mathcal{C}_j^*)_{j=1}^k$ are included in the
421 set of intersection of k half-spaces in \mathbb{R}^d , by Corollary SM1.7 and (SM3.38), it holds with
422 probability at least $1 - \delta/12$ that

$$423 \quad (\text{SM3.39}) \quad \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j^*\}} \leq 2\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*), \quad \forall j \in [k].$$

424 We also consider the event given by

$$425 \quad (\text{SM3.40}) \quad \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \leq 2nc \left(\frac{\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \right), \quad \forall j \neq j', \quad \forall \beta \in \mathcal{N}(\beta^*)$$

426 for some numerical constant $c \in (0, 1)$. Note that (SM3.38) is a sufficient condition to invoke
 427 Lemma SM2.7 with probability at least $1 - \delta/12$. Therefore, all intermediate steps in the proof
 428 of Lemma SM2.7 hold. In particular, due to the inclusion argument in (SM2.15), $\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*$
 429 implies $\xi_i = [\mathbf{x}_i; 1] \in \mathcal{S}_{\mathbf{v}_{j,j'}, \mathbf{v}_{j,j'}^*}$ for any $j \neq j'$, where $\mathcal{S}_{\mathbf{v}_{j,j'}, \mathbf{v}_{j,j'}^*}$ is defined in (SM2.17). Then,
 430 (SM2.21) with α as in (SM2.20) implies (SM3.40). The last event is defined by
 (SM3.41)

$$431 \quad \max_{\substack{\mathcal{I} \subset [n] \\ |\mathcal{I}| \leq 2\alpha n}} \lambda_{\max} \left(\frac{1}{n} \sum_{i \in \mathcal{I}} \xi_i \xi_i^\top \right) \leq C_4(\eta^2 \vee 1) \sqrt{\alpha}, \quad \forall \alpha \in \left\{ \frac{c\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \right\} \cup \{ \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*) \}_{j=1}^k.$$

432 By (SM3.38), Lemma SM2.1, and the union bound over $j \in [k]$, (SM3.41) holds with prob-
 433 ability at least $1 - \delta/12$. Thus far we have shown that (SM3.32), (SM3.39), (SM3.40), and
 434 (SM3.41) hold with probability at least $1 - \delta/3$. We proceed conditioned on the event that
 435 $\{\xi_i\}_{i=1}^n$ satisfy these conditions.

436 Let $\beta^* \in \mathbb{R}^{d+1}$, $\beta \in \mathcal{N}(\beta^*)$, and $j \in [k]$ be arbitrarily fixed. Then the partial gradient of
 437 $\ell^{\text{clean}}(\beta)$ with respect to the j th block $\beta_j \in \mathbb{R}^{d+1}$ of $\beta \in \mathbb{R}^{k(d+1)}$ is written as

$$438 \quad \nabla_{\beta_j} \ell^{\text{clean}}(\beta) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \left(\langle \xi_i, \beta_j \rangle - \max_{j \in [k]} \langle \xi_i, \beta_j^* \rangle \right) \xi_i \\ 439 \quad = \frac{1}{n} \sum_{j' \in [k]} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} (\langle \xi_i, \beta_j \rangle - \langle \xi_i, \beta_{j'}^* \rangle) \xi_i \\ 440 \quad (\text{SM3.42}) \quad = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j - \beta_j^* \rangle \xi_i + \frac{1}{n} \sum_{j': j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j - \beta_{j'}^* \rangle \xi_i. \\ 441$$

442 By using the identity $\langle \xi_i, \beta_j - \beta_{j'}^* \rangle = \langle \xi_i, \beta_j - \beta_j^* + \beta_j^* - \beta_{j'}^* \rangle$, (SM3.42) is rewritten as
 (SM3.43)

$$443 \quad \nabla_{\beta_j} \ell^{\text{clean}}(\beta) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle \xi_i + \frac{1}{n} \sum_{j': j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle \xi_i.$$

444 Then it follows from (SM3.43) that

$$\begin{aligned}
 445 \quad & \left\| \nabla_{\beta_j} \ell^{\text{clean}}(\beta) \right\|_2^2 \\
 446 \quad & \stackrel{(i)}{\leq} 2 \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \boldsymbol{\xi}_i, \beta_j - \beta_j^* \rangle \boldsymbol{\xi}_i \right\|_2^2 + 2 \left\| \frac{1}{n} \sum_{j': j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \beta_j^* - \beta_{j'}^* \rangle \boldsymbol{\xi}_i \right\|_2^2 \\
 447 \quad & \stackrel{(ii)}{\leq} 2 \cdot \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \boldsymbol{\xi}_i, \beta_j - \beta_j^* \rangle^2 \\
 448 \quad & + 2 \cdot \sum_{j': j' \neq j} \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \beta_j^* - \beta_{j'}^* \rangle^2 \\
 449 \quad & \leq 2 \cdot \underbrace{\left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\|_2^2}_{(a)} \cdot \|\beta_j - \beta_j^*\|_2^2 \\
 \quad (SM3.44) \quad & + 2 \cdot \underbrace{\max_{j': j' \neq j} \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\|_2^2}_{(b)} \underbrace{\frac{1}{n} \sum_{j': j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \boldsymbol{\xi}_i, \beta_j^* - \beta_{j'}^* \rangle^2}_{(c)},
 \end{aligned}$$

452 where (i) holds since $\|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$ and (ii) holds since $\mathcal{C}_j \cap \mathcal{C}_l^*$ and $\mathcal{C}_j \cap \mathcal{C}_{l'}^*$ are
453 disjoint for any $l \neq l' \in [k]$. An upper bound on (b) is provided by (SM3.32). It remains to
454 derive upper bounds on (a) and (c).

455 First, we derive an upper bound on (a). By the triangle inequality, we have

$$456 \quad (SM3.45) \quad \sqrt{(a)} \leq \sum_{j'=1}^k \left\| \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\|.$$

457 For the summand indexed by $j' = j$, due to the set inclusion $\mathcal{C}_j \cap \mathcal{C}_j^* \subset \mathcal{C}_j^*$, we obtain that

$$458 \quad \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \preceq \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top.$$

460 Therefore, by (SM3.39) and (SM3.41), we have

$$\begin{aligned}
 461 \quad (SM3.46) \quad & \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \leq \max_{\mathcal{I}: |\mathcal{I}| \leq 2n \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \left\| \frac{1}{n} \sum_{i \in \mathcal{I}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \\
 & \lesssim (\eta^2 \vee 1) \sqrt{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \\
 & \leq (\eta^2 \vee 1) \sqrt{\pi_{\max}},
 \end{aligned}$$

462 where the last inequality holds by the definition of π_{\max} . Similarly, by (SM3.40) and (SM3.41),
 463 we have

464 (SM3.47)
$$\left\| \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \lesssim (\eta^2 \vee 1) \sqrt{c} \left(\frac{\pi_{\min}^{1+\zeta^{-1}}}{k} \right), \quad \forall j' \neq j.$$

465 Then by plugging in (SM3.46) and (SM3.47) to (SM3.45), we obtain

466 (a) $\lesssim \left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*\|_2^2$

467 for an absolute constant C_1 . Finally, since an upper bound on (b) is given by (SM3.47),
 468 plugging in the obtained upper bounds to (SM3.44) provides the assertion.

469

470 **Proof of (SM3.4):** By the variational characterization of the Euclidean norm and the
 471 triangle inequality, we have

472
$$\|\nabla_{\boldsymbol{\beta}_j} \ell^{\text{noise}}(\boldsymbol{\beta})\|_2 = \sup_{[\mathbf{u}; w] \in B_2^{d+1}} \left| \frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} (\langle \mathbf{x}_i, \mathbf{u} \rangle + w) \right|$$

473 (SM3.48)
$$\leq \underbrace{\sup_{\mathbf{u} \in B_2^p} \left| \frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \mathbf{x}_i, \mathbf{u} \rangle \right|}_{(A)} + \underbrace{\sup_{|w| \leq 1} \left| \frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} w \right|}_{(B)},$$

474

475 where B_2^d denotes the unit ball in ℓ_2^d . Note that (A) and (B) depend on $\boldsymbol{\beta}$ only through \mathcal{C}_j ,
 476 which are determined by $\boldsymbol{\beta}$ according to (2.4). For any $\boldsymbol{\beta}$ and any $j \in [k]$, the corresponding
 477 \mathcal{C}_j is given as the intersection of up to k affine spaces. Therefore, it suffices to maximize
 478 $\|\nabla_{\boldsymbol{\beta}_j} \ell^{\text{noise}}(\boldsymbol{\beta})\|_2$ over $\mathcal{C}_j \in \mathcal{P}_{k-1}$ for a fixed j , where \mathcal{P}_{k-1} is defined in the statement of
 479 Lemma SM1.6.

480 We proceed under the event that the following inequalities hold:

481 (SM3.49)
$$\left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right\| \leq 1 + \epsilon$$

482 and

483 (SM3.50)
$$\left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} - \mathbb{P}(\mathbf{x} \in \mathcal{C}_j) \right| \leq \epsilon, \quad \forall \mathcal{C}_j \in \mathcal{P}_{k-1}$$

484 for some constant ϵ , which we specify later. The remainder of the proof is given conditioned
 485 on $(\mathbf{x}_i)_{i=1}^n$ satisfying (SM3.49) and (SM3.50).

486 First, we derive an upper bound on (A) in (SM3.48). Note that (A) corresponds to the
 487 supremum of the random process

488
$$Z_{\mathbf{u}} := \frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \mathbf{x}_i, \mathbf{u} \rangle$$

489 over $\mathbf{u} \in B_2^p$. The sub-Gaussian increment satisfies

$$490 \quad \|Z_{\mathbf{u}} - Z_{\mathbf{u}'}\|_{\psi_2} \lesssim \frac{\sigma}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \mathbf{x}_i, \mathbf{u} - \mathbf{u}' \rangle^2}$$

$$491 \quad \leq \frac{\sigma}{\sqrt{n}} \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \mathbf{x}_i \mathbf{x}_i^\top \right\|^{1/2} \cdot \|\mathbf{u} - \mathbf{u}'\|_2$$

$$492 \quad \leq \frac{\sigma}{\sqrt{n}} \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right\|^{1/2} \cdot \|\mathbf{u} - \mathbf{u}'\|_2$$

$$493 \quad \leq \frac{\sigma \sqrt{1+\epsilon}}{\sqrt{n}} \cdot \|\mathbf{u} - \mathbf{u}'\|_2, \\ 494$$

495 where the third step follows from the inequality

$$496 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \mathbf{x}_i \mathbf{x}_i^\top \right\| \leq \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right\|,$$

497 which holds deterministically, and the last step follows from (SM3.49). Then, by applying a
498 version of Dudley's inequality [SM11, Theorem 8.1.6], we obtain that

$$499 \quad \mathbb{P} \left(\sup_{\mathbf{u} \in B_2^p} |Z_{\mathbf{u}}| > \frac{C_1 \sigma \sqrt{1+\epsilon}}{\sqrt{n}} \left(\int_0^\infty \sqrt{\log N(B_2^p, \|\cdot\|_2, \eta)} d\eta + \sqrt{\log(1/\delta)} \right) \right) \leq \delta.$$

500 By the elementary upper bound on the covering number $N(B_2^p, \|\cdot\|_2, \eta) \leq (3/\eta)^p$ (e.g. see
501 [SM11, Example 8.1.11]) and the definition of (A) in (SM3.48), we have

$$502 \quad (\text{SM3.51}) \quad (A) \lesssim \sqrt{\frac{\sigma^2(1+\epsilon)(d + \log(1/\delta))}{n}},$$

503 holds with probability $1 - \delta/3$. Then we apply the union bound over $\mathcal{C}_j \in \mathcal{P}_{k-1}$. It follows
504 from (SM1.1) that

$$505 \quad \sup_{\mathcal{C}_j \in \mathcal{P}_{k-1}} (A) \lesssim \sqrt{\frac{\sigma^2(1+\epsilon)(\log(1/\delta) + kd \log(n/d))}{n}}$$

506 holds with probability $1 - \delta/9$.

507 Next we derive an upper bound on (B) in (SM3.48). Note that (B) is rewritten as the
508 absolute value of

$$509 \quad \varrho = \frac{1}{n} \sum_{i=1}^n z_i \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}}.$$

510 Conditioned on $(\mathbf{x}_i)_{i=1}^n$ satisfying (SM3.50), ϱ is a sub-Gaussian random variable that satisfies
511 $\mathbb{E}\varrho = 0$ and

$$512 \quad \mathbb{E}\varrho^2 = \frac{\sigma^2}{n} \cdot \left(\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \right) \leq \frac{\sigma^2(\mathbb{P}(\mathbf{x} \in \mathcal{C}_j) + \epsilon)}{n}.$$

513 The standard sub-Gaussian tail bound implies

514

$$\mathbb{P} \left(|\varrho| > \sqrt{\frac{C_2 \sigma^2 (\mathbb{P}(\mathbf{x} \in \mathcal{C}_j) + \epsilon) \log(1/\delta)}{n}} \right) \leq \delta.$$

515 By taking the union bound over $\mathcal{C}_j \in \mathcal{P}_{k-1}$ and utilizing the inequality in (SM1.1), we obtain
516 that

517

$$\sup_{\mathcal{C}_j \in \mathcal{P}_{k-1}} (\text{B}) \lesssim \sqrt{\frac{\sigma^2 (\mathbb{P}(\mathbf{x} \in \mathcal{C}_j) + \epsilon) (kd \log(n/d) + \log(1/\delta))}{n}}$$

518 (SM3.52)

$$\leq \sqrt{\frac{\sigma^2 (1 + \epsilon) (kd \log(n/d) + \log(1/\delta))}{n}}$$

519

520 holds with probability $1 - \delta/9$.

521 Finally it remains to show that (SM3.49) and (SM3.50) hold with probability $1 - \delta/3$ for
522 ϵ satisfying

523

$$\epsilon \lesssim \sqrt{\frac{kp(\log(n/d) + \log(1/\delta))}{n}}.$$

524 This is obtained as a direct consequence of Lemmas SM1.1 and SM1.3. One can choose the
525 absolute constant C in (2.15) large enough so that $\epsilon < 1$. Then the parameter ϵ in (SM3.51)
526 and (SM3.52) will be dropped. This completes the proof.

527 **SM4. Proof of Theorem 3.1.** The proof will be similar to that for Theorem 2.1. We will
528 focus on the distinction due to the modification of the algorithm with random sampling. The
529 partial subgradient in the update for the mini-batch stochastic gradient descent algorithm is
530 given by

531

$$\frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_i} \ell_i(\beta^t) = \frac{1}{m} \sum_{i \in I_t} \underbrace{\mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_l\}} \left(\max_{j \in [k]} \langle \xi_i, \beta_j^t \rangle - \max_{j \in [k]} \langle \xi_i, \beta_j^* \rangle \right) \xi_i}_{\nabla_{\beta_i} \ell_i^{\text{clean}}(\beta^t)} - \frac{1}{m} \sum_{i \in I_t} z_i \underbrace{\mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_l\}} \xi_i}_{\nabla_{\beta_i} \ell_i^{\text{noise}}(\beta^t)},$$

532 where $\mathcal{C}_1, \dots, \mathcal{C}_k$ are determined by β^t as in (2.4).

533 As shown in Section SM3, (2.15) invokes Lemma SM3.1 and hence (SM3.2) holds with
534 probability $1 - \delta/3$. Next, we show that under the condition (2.15), the statements of the
535 following lemma hold with probability $1 - 2\delta/3$. The proof is provided in Appendix SM4.1.

536 **Lemma SM4.1.** *Suppose that the hypothesis of Theorem 3.1 holds. If (2.15) is satisfied,
537 then the following statement holds with probability at least $1 - 2\delta/3$: For all $j \in [k]$, $\beta^* \in
538 \mathbb{R}^{k(d+1)}$, and $\beta^t \in \mathcal{N}(\beta^*)$, we have*

(SM4.1)

539

$$\mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t) \right\|_2^2 \lesssim \left(1 \vee \frac{d + \log(n/\delta)}{m} \right) \left(\left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right) \|\beta_j^t - \beta_j^*\|_2^2 + \frac{\pi_{\min}^{1+\zeta^{-1}}}{k} \sum_{j': j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \right),$$

540 and

541 (SM4.2)
$$\mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2^2 \lesssim \sigma^2 \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right).$$

542 Then we show that the assertion of the theorem follows from (SM3.2), (SM4.1), and
543 (SM4.2) via the following three steps.

544

545 **Step 1:** We show that every iterate remains within the neighborhood $\mathcal{N}(\beta^*)$ by the induction
546 argument. Therefore, we illustrate that if we suppose $\beta^t \in \mathcal{N}(\beta^*)$ holds for a fixed $t \in \mathbb{N}$,
547 we show $\beta^{t+1} \in \mathcal{N}(\beta^*)$ in expectation. By the update rule of SGD with batch size m , the
548 triangle inequality gives

549 (SM4.3)
$$\mathbb{E}_{I_t} \|\beta_j^{t+1} - \beta_j^*\|_2 \leq \underbrace{\mathbb{E}_{I_t} \left\| \beta_j^t - \mu \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t) - \beta_j^* \right\|_2}_{A_{\text{clean}}} + \underbrace{\mu \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2}_{A_{\text{noise}}}.$$

550

551 We will show that

552 (SM4.4)
$$\mathbb{E}_{I_t} \|\beta_j^{t+1} - \beta_j^*\|_2 \leq A_{\text{clean}} + A_{\text{noise}} \leq \kappa \rho, \quad \forall j \in [k].$$

553 By applying Jensen's inequality, we can obtain an upper-bound A_{clean} in (SM4.3):

554
$$A_{\text{clean}}^2 \leq \mathbb{E}_{I_t} \left\| \beta_j^t - \mu \cdot \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t) - \beta_j^* \right\|_2^2$$

555 (SM4.5)
$$= \|\beta_j^t - \beta_j^*\|_2^2 - 2\mu \mathbb{E}_{I_t} \left\langle \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \right\rangle + \mu^2 \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i(\beta^t) \right\|_2^2.$$

556

557 Due to the expectation, the second term in (SM4.5) simplifies to

558 (SM4.6)
$$\mathbb{E}_{I_t} \left\langle \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \right\rangle = \langle \nabla_{\beta_j} \ell^{\text{clean}}(\beta^t), \beta_j^t - \beta_j^* \rangle,$$

559 where $\nabla_{\beta_j} \ell^{\text{clean}}(\beta^t)$ is defined in (SM3.1). Then, (SM3.2) gives a lower bound on (SM4.6).
560 Furthermore, an upper bound on the third term in (SM4.5) is given by (SM4.1). Putting the

561 bounds (SM3.2) and (SM4.1) in (SM4.5) provides

$$\begin{aligned}
 562 \quad & A_{\text{clean}}^2 \leq \\
 563 \quad & \left(1 - \frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \mu \pi_{\min}^{1+\zeta^{-1}} + C_1 \mu^2 \left(1 \vee \frac{d + \log(n/\delta)}{m} \right) \left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right) \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 564 \quad & + \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \mu \pi_{\min}^{1+\zeta^{-1}}}{5k} + C_1 \left(1 \vee \frac{d + \log(n/\delta)}{m} \right) \frac{\mu^2 \pi_{\min}^{1+\zeta^{-1}}}{k} \right) \sum_{j'^*: j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2. \\
 565 \quad & \tag{SM4.7}
 \end{aligned}$$

566 Let us choose the step size μ following

$$567 \quad (\text{SM4.8}) \quad \mu = \frac{\omega \pi_{\min}^{1+\zeta^{-1}}}{\tau} \cdot \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right)$$

568 for a numerical constant ω , which we specify later, and τ defined as

$$569 \quad (\text{SM4.9}) \quad \tau := \sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}}.$$

570 Taking μ by (SM4.8) and τ by (SM4.9) in (SM4.7) yields

$$\begin{aligned}
 570 \quad & (\text{SM4.10}) \quad A_{\text{clean}}^2 \\
 & \leq \left(1 - \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \cdot \left(\frac{\frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} - \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})} \left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right)}{\tau^2} \right) \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 & + \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \cdot \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{5\tau k} + \frac{C_1 \omega^2 \pi_{\min}^{3(1+\zeta^{-1})}}{\tau^2 k} \right) \sum_{j': j' \neq j} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2 \\
 & \leq \left(1 - \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \cdot \left(\frac{\frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} - \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \right) \right) \|\beta_j^t - \beta_j^*\|_2^2 \\
 & + \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \cdot \left(\frac{\frac{2}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \omega \pi_{\min}^{2(1+\zeta^{-1})}}{5\tau} + \frac{C_1 \omega^2 \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \right) \max_{j \neq j'} \|\mathbf{v}_{j,j'}^t - \mathbf{v}_{j,j'}^*\|_2^2.
 \end{aligned}$$

572 Due to $\beta^t \in \mathcal{N}(\beta^*)$ defined in (2.12), we have (SM3.11) and (SM3.12) by Lemma SM2.4.

573 Inserting (SM3.11) and (SM3.12) into (SM4.10) gives

$$574 \quad (\kappa\rho)^{-2} A_{\text{clean}}^2 \leq 1 - \frac{\pi_{\min}^{2(1+\zeta^{-1})} \omega}{\tau} \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \left(\frac{4}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \left(1 - \frac{2}{5} \right) + C_1 \omega (1+4) \right)$$

$$575 \quad = 1 - \frac{\pi_{\min}^{2(1+\zeta^{-1})} \omega}{\tau} \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \left(\frac{\frac{12}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}}}{5} + 5\omega C_1 \right)$$

$$576 \quad (\text{SM4.11}) \quad \leq 1 - \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right),$$

577 where c_0 is the numerical constant defined in (SM3.13). We represent (SM4.11) as

$$579 \quad (\text{SM4.12}) \quad A_{\text{clean}}^2 \leq (\kappa\rho)^2 \left(1 - \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \cdot \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \right).$$

580 We note that by (SM3.13), c_0 is a positive absolute constant given γ and ζ . On the other
581 hand, the choice of τ in (SM4.9) provides a bound

$$582 \quad \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\tau} = \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}}} < 1.$$

583 Since $(1 \wedge m/(d + \log(n/\delta))) < 1$, one can set $\omega > 0$ such that $\omega c_0 < 1$, which makes the upper
584 bound in the right-hand side of (SM4.12) a positive scalar belonging in $(0, 1)$.

585 By following the arguments in (SM3.15) and (SM3.16), if

$$586 \quad (\text{SM4.13}) \quad A_{\text{noise}} \leq \kappa\rho \left(\frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{2\tau} \right) \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right)$$

587 holds, we have

$$588 \quad (\text{SM4.14}) \quad A_{\text{noise}} \leq \kappa\rho \left(1 - \sqrt{1 - \frac{c_0 \omega \pi_{\min}^{2(1+\zeta^{-1})}}{\tau} \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right)} \right).$$

589 Since the upper bounds (SM4.12) and (SM4.14) satisfies (SM4.4) it suffices to show (SM4.13).

590 By (SM4.2), we have

$$591 \quad \sqrt{\mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2^2} \lesssim \sigma \sqrt{\left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)}$$

592 for all $j \in [k]$. After applying Jensen's inequality, we consider the choice of μ given in (SM4.8).

593 Then, we have

$$594 \quad (\text{SM4.15}) \quad A_{\text{noise}} = \mu \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2 \leq \mu \sqrt{\mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2^2} \lesssim \frac{\sigma \omega \pi_{\min}^{1+\zeta^{-1}}}{\tau} \left(1 \wedge \frac{m}{d + \log(n/\delta)} \right) \sqrt{\left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)}.$$

595 Since (2.15) implies (SM3.18), we can choose a sufficiently large absolute constant $C > 0$ in
 596 (SM3.18) such that (SM3.18) and (SM4.15) result in (SM4.13). We complete the proof of
 597 induction argument in Step 1.

598 **Step 2:** In this step, we show that every iterate obeys

$$600 \quad \mathbb{E}_{I_t} \|\boldsymbol{\beta}^{t+1} - \boldsymbol{\beta}^*\|_2 \leq \\ 599 \quad (\text{SM4.16}) \quad \sqrt{1-\nu} \|\boldsymbol{\beta}^t - \boldsymbol{\beta}^*\|_2 + C' \mu \sigma \sqrt{k} \cdot \left(\sqrt{\frac{d + \log(n/\delta)}{m}} \vee \sqrt{\frac{kd \log(n/d) + \log(1/\delta)}{n}} \right).$$

600 In Step 1, we showed $\boldsymbol{\beta}^t \in \mathcal{N}(\boldsymbol{\beta}^*)$. By following the argument (SM4.3), we have
 (SM4.17)

$$601 \quad \mathbb{E}_{I_t} \|\boldsymbol{\beta}^{t+1} - \boldsymbol{\beta}^*\|_2 \leq \mathbb{E}_{I_t} \left\| \boldsymbol{\beta}^t - \mu \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}} \ell_i^{\text{clean}}(\boldsymbol{\beta}^t) - \boldsymbol{\beta}^* \right\|_2 + \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I} \nabla_{\boldsymbol{\beta}} \ell_i^{\text{noise}}(\boldsymbol{\beta}^t) \right\|_2 \\ \leq \underbrace{\sqrt{\mathbb{E}_{I_t} \left\| \boldsymbol{\beta}^t - \mu \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}} \ell_i^{\text{clean}}(\boldsymbol{\beta}^t) - \boldsymbol{\beta}^* \right\|_2^2}}_{B_{\text{clean}}} + \underbrace{\sqrt{\mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I} \nabla_{\boldsymbol{\beta}} \ell_i^{\text{noise}}(\boldsymbol{\beta}^t) \right\|_2^2}}_{B_{\text{noise}}},$$

602 where the last inequality holds by the Jensen's inequality. We first show an upper bound on
 603 B_{clean} in (SM4.17):

$$604 \quad (\text{SM4.18}) \quad B_{\text{clean}}^2 \leq (1-\nu) \sum_{j=1}^k \|\boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^*\|_2^2. \\ 605$$

606 By following the argument in (SM3.23), (SM4.18) holds if there exist constants $\mu, \lambda \in (0, 1)$
 607 such that for all $\boldsymbol{\beta}^t \in \mathcal{N}(\boldsymbol{\beta}^*)$,

$$608 \quad (\text{SM4.19}) \quad \sum_{j=1}^k \mathbb{E}_{I_t} \left\langle \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}_j} \ell_i^{\text{clean}}(\boldsymbol{\beta}^t), \boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^* \right\rangle \\ \geq \frac{\mu}{2} \sum_{j=1}^k \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}_j} \ell_i^{\text{clean}}(\boldsymbol{\beta}^t) \right\|_2^2 + \frac{\lambda}{2} \sum_{j=1}^k \|\boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^*\|_2^2.$$

609 Hence, we show (SM4.19). First, since (SM3.2) holds, (SM3.25) holds. Also, the left-hand side
 610 in (SM4.19) can be computed as (SM4.6). Thus, by (SM4.6) and (SM3.25), we obtain a lower
 611 bound on the left-hand side of (SM4.19):

$$612 \quad (\text{SM4.20}) \quad \sum_{j=1}^k \mathbb{E}_{I_t} \left\langle \frac{1}{m} \sum_{i \in I_t} \nabla_{\boldsymbol{\beta}_j} \ell_i^{\text{clean}}(\boldsymbol{\beta}^t), \boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^* \right\rangle \geq \frac{\frac{6}{\gamma} \left(\frac{1}{16}\right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}}}{5} \sum_{j=1}^k \|\boldsymbol{\beta}_j^t - \boldsymbol{\beta}_j^*\|_2^2. \\ 613$$

614 Furthermore, to obtain an upper bound on first term in the right-hand side of (SM4.19),

615 applying (SM4.1) with the elementary inequality $\|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$ provides
(SM4.21)

$$616 \quad \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t) \right\|_2^2 \leq C_1 \left(1 \vee \frac{d + \log(n/\delta)}{m} \right) \left(\left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right) \|\beta_j^t - \beta_j^* \|_2^2 \right. \\ \left. + \frac{2\pi_{\min}^{1+\zeta^{-1}}}{k} \sum_{j': j' \neq j} \left(\|\beta_j^t - \beta_j^* \|_2^2 + \|\beta_{j'}^t - \beta_{j'}^* \|_2^2 \right) \right).$$

617 Taking summation on (SM4.21) over $j \in [k]$ yields

$$618 \quad (\text{SM4.22}) \quad \sum_{j=1}^k \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta^t) \right\|_2^2 \\ \leq C_1 \left(1 \vee \frac{d + \log(n/\delta)}{m} \right) \left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} + 4\pi_{\min}^{1+\zeta^{-1}} \right) \sum_{j=1}^k \|\beta_j^t - \beta_j^* \|_2^2.$$

619 Putting the bounds (SM4.20) and (SM4.22) in (SM4.19) with μ chosen in (SM4.8), we have
620 a sufficient condition for (SM4.19):

$$621 \quad (\text{SM4.23}) \quad \frac{\frac{6}{\gamma} \left(\frac{1}{16} \right)^{1+\zeta^{-1}} \pi_{\min}^{1+\zeta^{-1}}}{5} \geq \frac{\omega \pi_{\min}^{1+\zeta^{-1}} C_1 \left(\sqrt{\pi_{\max}} + 5\pi_{\min}^{1+\zeta^{-1}} \right)}{2 \left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right)} + \frac{\lambda}{2}.$$

622 (SM4.23) is satisfied when we choose $\omega > 0$ small enough and λ as in (SM3.29). Hence, we
623 have shown (SM4.18) with $\nu = \mu\lambda$ where μ and λ are chosen by (SM4.8) and (SM3.29).

624 Next, we bound B_{noise} in (SM4.17). By (SM4.2), we obtain an upper bound on B_{noise} :

$$625 \quad (\text{SM4.24}) \quad B_{\text{noise}}^2 = \mu^2 \sum_{j=1}^k \mathbb{E}_{I_t} \left\| \frac{1}{m} \sum_{i \in I_t} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta^t) \right\|_2^2 \\ \lesssim k\mu^2 \sigma^2 \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right).$$

626 Finally, putting (SM4.18) and (SM4.24) in (SM4.17) gives (SM4.16). We complete the proof
627 of Step 2.

628

629 **Step 3:** We finish the proof of Theorem 3.1 using the results demonstrated in Step 1 and Step
630 2. By substituting the expression $\nu = \mu\lambda$, where we choose μ and λ according to (SM4.8)

631 and (SM3.29) respectively, into (SM4.16), we obtain

$$\begin{aligned}
 632 \quad & \mathbb{E}_{I_t} \|\beta^t - \beta^*\|_2 \\
 633 \quad & (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_2 \cdot \frac{\mu\sigma}{1 - \sqrt{1 - \mu\lambda}} \cdot \sqrt{k \cdot \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)} \\
 634 \quad & \stackrel{(a)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_2 \cdot \frac{2\sigma}{\lambda} \cdot \sqrt{k \cdot \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)} \\
 635 \quad & \stackrel{(b)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_3 \cdot \frac{\sigma}{\pi_{\max}} \cdot \sqrt{k \cdot \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)} \\
 636 \quad & \stackrel{(c)}{\leq} (1 - \mu\lambda)^{t/2} \|\beta^0 - \beta^*\|_2 + C_3 \cdot \sigma k \cdot \sqrt{k \cdot \left(\frac{d + \log(n/\delta)}{m} \vee \frac{kd \log(n/d) + \log(1/\delta)}{n} \right)},
 \end{aligned}$$

638 where i) (a) follows from the inequality $\sqrt{1-t} < -t/2 + 1$ for any $t \in (0, 1)$; ii) (b) holds by
639 the choice of τ in (SM4.9); iii) (c) is a result of $\pi_{\max}^{-1} \leq k$.

640 **SM4.1. Proof of Lemma SM4.1.** We will show that both (SM4.1) and (SM4.2) hold with
641 probability at least $1 - \delta/3$. Furthermore, for simplicity, we proceed on the proofs using β and
642 $\mathbf{v}_{j,j'}$ instead of using β^t and $\mathbf{v}_{j,j'}^t$ in the statements of Lemma SM4.1. Thus, we complete the
643 assertions in (SM4.1) and (SM4.2) by substituting β and $\mathbf{v}_{j,j'}$ with β^t and $\mathbf{v}_{j,j'}^t$ respectively.
644 **Proof of (SM4.1):** We show that with high probability, (SM4.1) holds if

$$645 \quad (\text{SM4.25}) \quad n \geq C_1 (\log(k/\delta) \vee d \log(n/d)) k^4 \pi_{\min}^{-4(1+\zeta^{-1})},$$

646 Note that (2.15) is a sufficient condition for (SM4.25). We proceed with the proof under the
647 following six events, each of which holds with probability at least $1 - \delta/18$. First, by the proof
648 of (SM3.3) in Subsection SM3.1, (SM4.25) is a sufficient condition to invoke (SM3.3) with
649 probability at least $1 - \delta/18$. Next, by following the argument for (SM3.39), (SM4.25) is a suf-
650 ficient condition to invoke (SM3.39) with probability at least $1 - \delta/18$. Furthermore, (SM4.25)
651 implies (SM2.13) and is a sufficient condition to invoke Lemma SM2.7 and Lemma SM2.1 with
652 probability at least $1 - \delta/18$ respectively. Hence, by following the arguments for (SM3.40),
653 (SM3.41), and (SM3.32), (SM3.40), (SM3.41), and (SM3.32) hold with probability at least
654 $1 - \delta/18$ respectively. The last event is defined as

$$655 \quad (\text{SM4.26}) \quad \max_{i \in [n]} \|\xi_i \xi_i^\top\| \lesssim d + \log(n/\delta).$$

656 By Lemma SM1.1 and the union bound over $i \in [n]$, (SM4.26) holds with probability at least
657 $1 - \delta/18$.

658 Since we showed that (SM3.3), (SM3.39), (SM3.40), (SM3.41), (SM3.32), and (SM4.26)
659 hold with probability at least $1 - \delta/3$, we will move forward with the remainder of the proof
660 by assuming those conditions are satisfied.

661 Let $\beta^* \in \mathbb{R}^{d+1}$, $\beta \in \mathcal{N}(\beta^*)$, and $j \in [k]$ be arbitrarily fixed. By the argument in [SM7,
662 Equation 7], we decompose

$$663 \quad (\text{SM4.27}) \quad \mathbb{E}_I \left\| \frac{1}{m} \sum_{i \in I} \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta) \right\|_2^2 = \underbrace{\frac{1}{m} \mathbb{E}_{i_1} \left\| \nabla_{\beta_j} \ell_{i_1}^{\text{clean}}(\beta) \right\|_2^2}_{(\text{A})} + \underbrace{\frac{m-1}{m} \left\| \nabla_{\beta_j} \ell^{\text{clean}}(\beta) \right\|_2^2}_{(\text{B})},$$

664 where we define $I := \{i_1, \dots, i_m\} \subset [n]$ and $\nabla_{\beta_j} \ell^{\text{clean}}(\beta)$ in (SM3.1).

665 Note that (SM3.3) gives an upper bound on (B):

(SM4.28)

$$666 \quad (\text{B}) \lesssim \frac{m-1}{m} \left(\left(\pi_{\max} + \pi_{\min}^{2(1+\zeta^{-1})} \right) \left\| \beta_j - \beta_j^* \right\|_2^2 + \frac{\pi_{\min}^{2(1+\zeta^{-1})}}{k^2} \sum_{j': j' \neq j} \left\| \mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^* \right\|_2^2 \right).$$

667 It remains to show the bound on (A). By following arguments (SM3.43), we decompose
668 $\nabla_{\beta_j} \ell_i^{\text{clean}}(\beta)$ following

(SM4.29)

$$669 \quad \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta) = \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle \xi_i + \sum_{j': j' \neq j} \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle \xi_i, \quad \forall i \in [n].$$

670 Then it follows from (SM4.29) that for any $i \in [n]$,

$$671 \quad \left\| \nabla_{\beta_j} \ell_i^{\text{clean}}(\beta) \right\|_2^2 \\ 672 \quad \stackrel{(\text{i})}{\leq} 2 \left\| \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle \xi_i \right\|_2^2 + 2 \left\| \sum_{j': j' \neq j} \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle \xi_i \right\|_2^2 \\ 673 \quad \stackrel{(\text{ii})}{=} 2 \cdot \left\| \xi_i \xi_i^\top \right\| \left\| \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle^2 + 2 \cdot \left\| \xi_i \xi_i^\top \right\| \cdot \sum_{j': j' \neq j} \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle^2 \right\| \\ 674 \quad (\text{SM4.30}) \quad \stackrel{(\text{iii})}{\lesssim} (d + \log(n/\delta)) \cdot \left(\mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle^2 + \sum_{j': j' \neq j} \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle^2 \right),$$

675 where (i) holds due to $\|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$; (ii) holds since $\mathcal{C}_j \cap \mathcal{C}_l^*$ and $\mathcal{C}_j \cap \mathcal{C}_{l'}^*$ are
676 disjoint for any $l \neq l' \in [k]$; and (iii) holds by (SM4.26).

677 Applying the expectation on (SM4.30) yields

(SM4.31)

$$678 \quad \mathbb{E}_{i_1} \left\| \nabla_{\beta_j} \ell_{i_1}(\beta) \right\|_2^2 \lesssim \\ 679 \quad (d + \log(n/\delta)) \cdot \left(\underbrace{\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j\}} \langle \xi_i, \beta_j - \beta_j^* \rangle^2}_{(\text{a})} + \underbrace{\frac{1}{n} \sum_{j': j' \neq j} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \langle \xi_i, \beta_j^* - \beta_{j'}^* \rangle^2}_{(\text{b})} \right).$$

680 An upper bound on (b) is provided by (SM3.32). It remains to derive an upper bound on (a).
 681 The triangle inequality provides

682 (SM4.32)
$$(a) \leq \sum_{j'=1}^k \left\| \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \cdot \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*\|_2^2$$

683 For the summand indexed by $j' = j$, the set inclusion, $\mathcal{C}_j \cap \mathcal{C}_j^* \subseteq \mathcal{C}_j^*$ yields

684
$$\sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \preceq \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top.$$

 685

686 Therefore, by (SM3.39) and (SM3.41), we have

687 (SM4.33)
$$\begin{aligned} \left\| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| &\leq \max_{\mathcal{I}: |\mathcal{I}| \leq 2n \mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \left\| \frac{1}{n} \sum_{i \in \mathcal{I}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \\ &\lesssim (\eta^2 \vee 1) \sqrt{\mathbb{P}(\mathbf{x} \in \mathcal{C}_j^*)} \\ &\leq (\eta^2 \vee 1) \sqrt{\pi_{\max}}, \end{aligned}$$

688 where the last inequality holds by the definition of π_{\max} . Similarly, by (SM3.40) and (SM3.41),
 689 we have

690 (SM4.34)
$$\left\| \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i \in \mathcal{C}_j \cap \mathcal{C}_{j'}^*\}} \boldsymbol{\xi}_i \boldsymbol{\xi}_i^\top \right\| \lesssim (\eta^2 \vee 1) \sqrt{c} \left(\frac{\pi_{\min}^{1+\zeta^{-1}}}{k} \right), \quad \forall j' \neq j.$$

691 Then by plugging in (SM4.33) and (SM4.34) into (SM4.32), we obtain

692
$$(a) \lesssim \left(\sqrt{\pi_{\max}} + \pi_{\min}^{1+\zeta^{-1}} \right) \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*\|_2^2.$$

693 Finally, applying obtained upper bounds on (a) and (b) in (SM4.31) gives
 (SM4.35)

694 (A)
$$\lesssim \frac{(d + \log(n/\delta))}{m} \left(\left(\sqrt{\pi_{\max}} + \pi_{\min}^{(1+\zeta^{-1})} \right) \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_j^*\|_2^2 + \frac{\pi_{\min}^{(1+\zeta^{-1})}}{k} \sum_{j': j' \neq j} \|\mathbf{v}_{j,j'} - \mathbf{v}_{j,j'}^*\|_2^2 \right).$$

695 Putting (SM4.28) and (SM4.35) in (SM4.27) completes the proof.

696 **Proof of (SM4.2):** We proceed with the proof under the following three events, each of
 697 which holds with probability at least $1 - \delta/9$. First, (2.15) invokes (SM3.4) with probability
 698 at least $1 - \delta/9$. Next, by following the same argument in the proof of (SM4.1), (SM4.26)
 699 holds with probability at least $1 - \delta/9$. The last event is the following:

700 (SM4.36)
$$\frac{1}{n} \sum_{i=1}^n z_i^2 \leq \sigma^2 \left(1 + \sqrt{\frac{C \log(1/\delta)}{n}} \right).$$

701 Since $\{z_i\}_{i=1}^n$ are i.i.d σ -sub-Gaussian random variables, the Bernstein's inequality yields that
 702 (SM4.36) holds with probability at least $1 - \delta/9$.

703 We have shown that (SM3.4), (SM4.26), and (SM4.36) hold with probability at least
 704 $1 - \delta/3$. For the remainder of the proof, we assume that those conditions are satisfied.

705 Then, by the argument in [SM7, Equation 7], we decompose

$$706 \quad (\text{SM4.37}) \quad \mathbb{E}_I \left\| \frac{1}{m} \sum_{i \in I} \nabla_{\beta_j} \ell_i^{\text{noise}}(\beta) \right\|_2^2 = \underbrace{\frac{1}{m} \mathbb{E}_{i_1} \left\| \nabla_{\beta_j} \ell_{i_1}^{\text{noise}}(\beta) \right\|_2^2}_{(\text{A})} + \underbrace{\frac{m-1}{m} \left\| \nabla_{\beta_j} \ell^{\text{noise}}(\beta) \right\|_2^2}_{(\text{B})},$$

707 where we define $I := \{i_1, \dots, i_m\} \subset [n]$ and $\nabla_{\beta_j} \ell^{\text{noise}}(\beta)$ in (SM3.1).
 708 (SM3.4) gives an upper bound on (B):

$$709 \quad (\text{SM4.38}) \quad (\text{B}) \lesssim \frac{\sigma^2 k d \log(n/d) + \log(k/\delta)}{n}.$$

710 The remaining step is to obtain a bound on (A). Since we have

$$711 \quad \left\| \nabla_{\beta_j} \ell_{i_1}^{\text{noise}}(\beta) \right\|_2^2 \leq \|z_{i_1} \xi_{i_1}\|_2^2 \leq \|\xi_{i_1} \xi_{i_1}^\top\| z_{i_1}^2 \lesssim d + \log(n/\delta) z_{i_1}^2,$$

712 where the last inequality holds by (SM4.26), applying the expectation and (SM4.36) gives an
 713 upper bound on (A):

$$714 \quad (\text{SM4.39}) \quad (\text{A}) \lesssim \frac{1}{n} \sum_{i=1}^n z_i^2 \left(\frac{d + \log(n/\delta)}{m} \right) \lesssim \sigma^2 \left(1 \vee \left(\frac{\log(1/\delta)}{n} \right)^{1/2} \right) \left(\frac{d + \log(n/\delta)}{m} \right) \\ \leq \sigma^2 \left(\frac{d + \log(n/\delta)}{m} \right),$$

715 where the last inequality hold by (2.15). Putting the results (SM4.38) and (SM4.39) into
 716 (SM4.37) reduces to (SM4.2).

717 **SM5. Discussion on the proofs of [SM5, Theorem 1] and [SM4, Theorem 1].** In the
 718 proof of [SM5, Theorem 1], they claimed that $n \gtrsim \delta^{-2}$ implies [SM5, Equation (45)]. They
 719 showed that [SM5, Equation (45)] follows from [SM5, Lemmas 10 and 11]. Their [SM5,
 720 Lemma 10] presents the concentration of the supremum of an empirical measure via the VC
 721 dimension and [SM5, Lemma 11] computes an upper bound on the VC dimension of the feasible
 722 set of the maximization. According to their proof argument, the number of observations n
 723 should be proportional to the VC dimension $d \log(n/d)$ to obtain the concentration in [SM5,
 724 Equation (45)]. Their sufficient condition $n \gtrsim \delta^{-2}$ for [SM5, Equation (45)] missed the
 725 dependence on the VC dimension. We suspect that this is a typo. While it does not ruin
 726 their main result, the sample complexity in [SM5, Theorem 1] might need to be corrected
 727 accordingly. Specifically, between [SM5, Equation (32) and (33)], the parameter δ in [SM5,
 728 Lemma 6] was set to $\delta = Ck^{-2}\pi_{\min}^6$ to upper-bound the second summand in the right-hand
 729 side of [SM5, Equation (32)]. Therefore, the corrected sample complexity of [SM5, Lemma 6]
 730 increases to $\tilde{O}(k^4 d \pi_{\min}^{-12})$ so that it dominates the sample complexity for part (b) in [SM5,

731 Proposition 1] ($n \gtrsim kd\pi_{\min}^{-3}$). Consequently, the sample complexity in [SM5, Theorem 1] will
 732 increase by a factor $k^3\pi_{\min}^{-9}$.

733 Next, we report another mistake in their analysis under the generalized covariate model
 734 [SM4, Theorem 1]. They mistakenly omitted the dependence of σ in the sample complexity.
 735 A careful examination of their proof on page 48 in [SM3] will reveal that they use the same
 736 technique as in their other analysis in the Gaussian covariates case [SM5]. Therefore, we
 737 expect that their sample complexity should depend on the noise variance σ^2 to ensure that
 738 the next iterate belongs to the local neighborhood of the ground truth (refer to the proof of
 739 their Theorem 1 on page 1865 in [SM5]).

740 x

741 **REFERENCES**

- 742 [1] A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, AND M. K. WARMUTH, Learnability and the
 743 Vapnik-Chervonenkis dimension, Journal of the ACM (JACM), 36 (1989), pp. 929–965.
- 744 [2] M. CSIKOS, A. KUPAVSKII, AND N. H. MUSTAFA, Optimal bounds on the vc-dimension, arXiv preprint
 745 arXiv:1807.07924, (2018).
- 746 [3] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression: Provable,
 747 tractable, and near-optimal statistical estimation, arXiv preprint arXiv:1906.09255, (2019).
- 748 [4] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression with
 749 universal parameter estimation for small-ball designs, in 2020 IEEE International Symposium on
 750 Information Theory (ISIT), IEEE, 2020, pp. 2706–2710.
- 751 [5] A. GHOSH, A. PANANJADY, A. GUNTUBOYINA, AND K. RAMCHANDRAN, Max-affine regression:
 752 Parameter estimation for gaussian designs, IEEE Transactions on Information Theory, (2021).
- 753 [6] V. KOLTCHINSKII AND S. MENDELSON, Bounding the smallest singular value of a random matrix without
 754 concentration, International Mathematics Research Notices, 2015 (2015), pp. 12991–13008.
- 755 [7] S. MA, R. BASSILY, AND M. BELKIN, The power of interpolation: Understanding the effectiveness of sgd
 756 in modern over-parametrized learning, arXiv preprint arXiv:1712.06559, (2017).
- 757 [8] M. MOHRI, A. ROSTAMIZADEH, AND A. TALWALKAR, Foundations of machine learning, MIT press, 2018.
- 758 [9] Y. S. TAN AND R. VERSHYNIN, Phase retrieval via randomized kaczmarz: theoretical guarantees, Infor-
 759 mation and Inference: A Journal of the IMA, 8 (2019), pp. 97–123.
- 760 [10] V. N. VAPNIK AND A. Y. CHERVONENKIS, On the uniform convergence of relative frequencies of events
 761 to their probabilities, in Measures of complexity, Springer, 2015, pp. 11–30.
- 762 [11] R. VERSHYNIN, High-dimensional probability: An introduction with applications in data science, vol. 47,
 763 Cambridge university press, 2018.