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Abstract. We consider regression of a max-affine model that produces a piecewise linear model by combining4
affine models via the max function. The max-affine model ubiquitously arises in applications in5
signal processing and statistics including multiclass classification, auction problems, and convex re-6
gression. It also generalizes phase retrieval and learning rectifier linear unit activation functions. We7
present a non-asymptotic convergence analysis of gradient descent (GD) and mini-batch stochastic8
gradient descent (SGD) for max-affine regression when the model is observed at random locations9
following the sub-Gaussianity and an anti-concentration with additive sub-Gaussian noise. Under10
these assumptions, a suitably initialized GD and SGD converge linearly to a neighborhood of the11
ground truth specified by the corresponding error bound. We provide numerical results that corrob-12
orate the theoretical findings. Importantly, SGD not only converges faster in run time with fewer13
observations than alternating minimization and GD in the noiseless scenario but also outperforms14
them in low-sample scenarios with noise.15
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1. Introduction. The max-affine model combines k affine models in the form of18

(1.1) y = max
j∈[k]

(
⟨x,θ⋆j ⟩+ b⋆j

)
19

to produce a piecewise-linear mutivariate functions, where x and y respectively denote the20

covariate and the response, and [k] denotes the set {1, . . . , k}. The max-affine model frequently21

arises in applications of statistics, machine learning, economics, and signal processing. For22

example, the max-affine model has been adopted for multiclass classification problems [7, 9]23

and simple auction problems [31, 34].24

We consider a regression of the max-affine model in (1.1) via least squares25

(1.2) min
{θj ,bj}kj=1

1

2n

n∑
i=1

(
yi −max

j∈[k]
(⟨xi,θj⟩+ bj)

)2

26

from statistical observations {(xi, yi)}ni=1 potentially corrupted with noise. A suite of numer-27

ical methods has been proposed to solve the nonconvex optimization in (1.2) (e.g., [30, 42, 19,28

1]). The least-squares partition algorithm [30] iteratively refines the parameter estimate by al-29

ternating between the partition and the least-squares steps when the number of affine models30

k is known a priori. The partitioning step classifies the inputs x1, . . . ,xn with respect to the31

maximizing affine models given estimated model parameters. The least-squares step updates32

the parameters for each affine model by using the corresponding observations. Later varia-33

tions of the alternating minimization algorithm used an adaptive search for unknown k [19, 1].34
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2 SEONHO KIM AND KIRYUNG LEE

The consistency of these estimators has been derived. In more recent papers, Ghosh et al.35

[12, 13, 14] established finite-sample analysis of the alternating minimization (AM) estimator36

[30] for the special case when the observations are generated from a ground-truth model. One37

can interpret their analysis through the lens of the popular teacher-student framework [29].38

This framework has been widely adopted in statistical mechanics [29, 10] and machine learning39

[49, 15, 48, 22]. It provides a theoretical understanding of how a specific model is trained and40

generalized through a ground-truth generative model [22]. In this framework, a max-affine41

model (student) is trained by data generated from a ground-truth max-affine model (teacher)42

from k fixed affine models. By using the provided data, the student model recovers param-43

eters that produce the ground-truth model via AM. Since the max affine model is invariant44

under the permutation of the component affine models, the minimizer to (1.2) is determined45

only up to the corresponding equivalence class. Ghosh et al. [14] established a finite-sample46

analysis of AM under the standard Gaussian covariate assumption with independent stochas-47

tic noise. They showed that a suitably initialized alternating minimization converges linearly48

to a consistent estimate of the ground-truth parameters along with a non-asymptotic error49

bound. Moreover, they proposed and analyzed a spectral method that provides the desired50

initialization. They also further extended the theory to a generalized scenario with relaxed51

assumptions on the covariate model [12, 13].52

In this paper, we present analogous theoretical and numerical results on max-affine regres-53

sion by first-order methods including gradient descent (GD) and stochastic gradient descent54

(SGD). The first-order methods have been widely used to solve various nonlinear least squares55

problems in machine learning [16, 11, 39, 24]. We observe that GD and SGD also perform56

competitively on max-affine regression compared to AM. In particular, SGD converges signif-57

icantly faster (in run time) than AM in a noise-free scenario. Figure 1 compares AM, GD,58

and a mini-batch SGD on random 50 trials of max-affine regression where the ground-truth59

parameter vectors {β⋆j }
k

j=1
are selected randomly from the unit sphere. Covariates are inde-60

pendently generated from either Normal(0, I500) or Unif[−
√
3,
√
3]⊗500. We plot the median61

of relative errors versus the average run time where the relative error is calculated as62

min
π∈Perm([k])

log10

 k∑
j=1

∥β̂π(j) − β⋆j ∥22/
k∑
j=1

∥β⋆j ∥22

63

with Perm([k]) and {β̂j}kj=1 denoting the set of all possible permutations over [k] and the64

estimated parameters, respectively. Our main result provides a theoretical analysis of SGD65

that explains this empirical observation.66

1.1. Main results. We derive convergence analyses of GD and mini-batch SGD under the67

same covariate and noise assumptions in the previous work on AM by Ghosh et al. [12]. They68

assumed that covariates x1, . . . ,xn are independent copies of a random vector x that satisfies69

the sub-Gaussianity and anti-concentration defined below.70

Assumption 1.1 (Sub-Gaussianity). The covariate distribution satisfies71

∥⟨v,x⟩∥ψ2
≤ η, ∀v ∈ Sd−1,72
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Figure 1: Convergence of estimators for noise-free max-affine regression (k = 3, d = 500, and
n = 8, 000).

where ∥ · ∥ψ2 and Sd−1 denote the sub-Gaussian norm (i.e., see [44, Equation 2.13]) and the73

unit sphere in ℓd2, respectively.74

Assumption 1.2 (Anti-concentration). The covariate distribution satisfies75

sup
w∈R,v∈Sd−1

P((⟨v,x⟩+ w)2 ≤ ϵ) ≤ (γϵ)ζ , ∀ϵ > 0.76

The class of covariate distributions by Assumptions 1.1 and 1.2 generalizes the standard77

independent and identically distributed Gaussian distribution. For example, the uniform and78

beta distributions satisfy Assumptions 1.1 and 1.2. Therefore, the theoretical result under79

this relaxed covariate model will apply to a wider range of applications. They also assumed80

that observations are corrupted with independent additive σ-sub-Gaussian noise.81

This paper establishes the first theoretical analysis of GD and mini-batch SGD for max-82

affine regression. The following pseudo-theorem demonstrates that GD shows a local linear83

convergence under the above assumptions.84

Theorem 1.3 (Informal). Let β⋆ ∈ Rk(d+1) denote the column vector that collects all ground-85

truth parameters (θ⋆j , b
⋆
j )j∈[k]. Given Õ(Cβ⋆kd(k3 ∨ σ2)) observations, a suitably initialized86

GD for max-affine regression converges linearly to an estimate of β⋆ with ℓ2-error scaling87

as Õ(σk2
√
d/n), where Cβ⋆ is a constant that implicitly depends on k through β⋆ but is88

independent of d.89

The error bound by this theorem improves upon the best-known result on max-affine90

regression achieved by AM [12, Theorem 2]. The error bound for AM is larger by a factor91

that grows at least as k−1+2ζ−1
. We also present an analogous analysis for SGD. A specification92

for the noise-free observation scenario is stated as follows.93

Theorem 1.4 (Informal). A suitably initialized mini-batch SGD for max-affine regression94

with Õ(Cβ⋆k9d) noise-free observations converges linearly to the ground truth β⋆ for any95

batch size.96
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4 SEONHO KIM AND KIRYUNG LEE

The per-iteration cost of a mini-batch SGD with batch size m is O(kmd), which is sig-97

nificantly lower than those for GD O(knd) and of AM O(knd2). This implies the faster98

convergence of SGD in run time shown in Figure 1. We also observe that SGD empirically99

recovers the ground-truth parameters from fewer observations (see Figures 2 and 3).100

1.2. Related Work. Relation to phase retrieval and ReLU regression: The max-101

affine model includes well-known models in signal processing and machine learning as special102

cases. The instance of (1.1) for k = 2 with b⋆1 = b⋆2 = 0 and θ⋆1 = −θ⋆2 = θ⋆ reduces to103

y = |⟨x,θ⋆⟩|, which corresponds to a measurement model in phase retrieval. Similarly, the104

rectified linear unit (ReLU) y = max(⟨x,θ⋆⟩, 0) is written in the form of (1.1) for k = 2 with105

θ⋆1 = 0 and θ⋆2 = θ⋆. A series of studies in [47, 38, 41, 40, 45, 25, 46, 43] has developed a106

statistical analysis of GD and SGD for phase retrieval and ReLU regression. It has been shown107

that for the noiseless case, GD and SGD converge linearly to a near-optimal estimate of the108

ground-truth parameters when the number of observations grows linearly with the ambient109

dimension d. In the context of bounded noise, GD converges to the ground truth within a110

radius determined by the noise level [47, 45]. However, it remained an open question whether111

GD is consistent under stochastic noise assumptions. Additionally, SGD in the presence of112

noise has not been thoroughly investigated yet. The main results of this paper address these113

questions on phase retrieval as a special case of max-affine regression.114

115

Relation to convex regression: The max-affine model has also been adopted in parametric116

approaches to convex regression [30, 19, 18, 3, 1, 2, 36, 37, 35]. Let f⋆ : R
d → R be an arbitrary117

convex function. The observations are given by {(xi, yi)}ni=1 where yi = f⋆(xi) for all i in [n].118

The nonparametric convex regression problem aims to estimate f⋆ by solving119

(1.3) min
f∈Fcvx

n∑
i=1

(yi − f(xi))
2,120

where Fcvx denotes the set of convex functions. Since f exists in the space of continuous121

real-valued functions on Rp, the optimization problem in (1.3) is infinite-dimensional. A line122

of research [5, 3, 37] investigated the interpolation approach with a max-affine model in the123

form of124

(1.4) f̂(x) = max
i∈[n]

(yi + gT
i (x− xi)) .125

It provides a perfect interpolation of data {(xi, yi)}ni=1 with zero training error. For example,126

the interpolation is achieved by choosing gi ∈ ∂f⋆(xi) for all i ∈ [n]. It has been show127

that the least squares estimator provides near-optimal generalization bounds relative to a128

matching minimax bound [28, 17, 1, 18, 27]. However, the minimax bound for the parametric129

model in (1.4) decays slowly due to the curse of dimensionality for a set of max affine with n130

segments. The least squares for the model in (1.4) is formulated as a quadratic program (QP)131

[5, Section 6.5.5]. However, off-the-shelf interior-point methods do not scale to large instances132

of this QP due to the high computational cost O(d4n5) [30, 19].133

The k-max-affine model in (1.1) is considered as an alternative compact parametriza-134

tion to approximate convex regression. The worst-case error in approximating d-variate Lip-135

schtiz convex functions on a bounded domain by a k-max-affine model decays as O(k−2/d)136
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[1, Lemma 5.2]. However, data in practical applications such as aircraft wing design, wage137

prediction, and pricing stock options are often well approximated by the k-max-affine model138

with small k (e.g., [19, Section 6], [1, Section 7]). Unlike the interpolation approach to convex139

regression, if the compact model fits data in applications, the estimation error decays much140

faster in n.141

142

Max-linear regression in the presence of deterministic noise: A special instance of143

(1.1) with b⋆j = 0 for j ∈ [k] is called the max-linear model. A convex optimization method to144

max-linear regression obtained with an initial estimate has been studied under the standard145

Gaussian covariate assumption and deterministic noise [26]. They empirically showed that146

the convex estimator outperforms the existing methods in the presence of outliers.147

1.3. Organizations and Notations. The rest of the paper is organized as follows: Sec-148

tion 2 formulates the least squares estimator for max-affine regression, describes the GD149

algorithm and presents the convergence analysis of GD. Section 3 describes a mini-batch SGD150

for max-affine regression and provides its convergence analysis. Section 4 presents numerical151

results to compare the empirical performance of GD, SGD, and AM for max-affine regression.152

Finally, Section 5 summarizes the contributions and discusses future directions.153

Boldface lowercase letters denote column vectors, and boldface capital letters denote ma-154

trices. The concatenation of two column vectors a and b is denoted by [a; b]. The subvector of155

a ∈ Rd+1 with the first d entries will be denoted by (a)1:d. Various norms are used throughout156

the paper. We use ∥ · ∥, ∥ · ∥F, ∥ · ∥2, and ∥ · ∥ψ2 to denote the spectral norm, Frobenius norm,157

Euclidean norm, and sub-Gaussian norm respectively. Moreover, Bd
2 and Sd−1 will denote the158

d-dimensional unit ball and unit sphere with respect to the Euclidean norm. For two scalars159

q and d, we write q ≲ p if there exists an absolute constant C > 0 such that q ≤ Cp. We use160

C,C1, C2, . . . and c, c1, c2, . . . to denote absolute constants that may vary from line to line.161

We adopt the big-O notation so that q ≲ p is alternatively written as q = O(p). With a tilde162

on top of O, we ignore logarithmic factors. For brevity, the shorthand notation [n] denotes163

the set {1, . . . , n} for n ∈ N. Moreover, a∨ b and a∧ b will denote max(a, b) and min(a, b) for164

a, b ∈ R.165

2. Convergence analysis of gradient descent. We first formulate the least squares es-166

timator for max-affine regression and derive the gradient descent algorithm. For brevity, let167

ξ := [x; 1] ∈ Rd+1 and βj := [θj ; bj ] ∈ Rd+1. Then the model in (1.1) is rewritten as168

(2.1) y = max
j∈[k]

⟨ξ,β⋆j ⟩+ noise.169

The least squares estimator minimizes the quadratic loss function given by170

(2.2) ℓ(β) :=
1

2n

n∑
i=1

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

,171

where β = [β1; . . . ; βk] ∈ Rk(d+1).172

The gradient descent algorithm iteratively updates the estimate by173

βt+1 = βt − µ∇βℓ(β
t),174
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6 SEONHO KIM AND KIRYUNG LEE

where µ > 0 denotes a step size. A generalized gradient [21] of the cost function in (2.2)175

with respect to the jth block βj is written as176

(2.3) ∇βj
ℓ(β) =

1

n

n∑
i=1

1{xi∈Cj}

(
max
j∈[k]

⟨ξi,βj⟩ − yi

)
ξi,177

where C1, . . . , Ck are defined by β as178

(2.4) Cj := {w ∈ Rd : ⟨[w; 1],βj − βl⟩ > 0, ∀l < j, ⟨[w; 1],βj − βl⟩ ≥ 0, ∀l > j}.179

The set Cj contains all inputs maximizing the jth linear model.1 Note that each Cj is deter-180

mined by k − 1 half spaces given by the pairwise difference of the jth linear model and the181

others.182

We show that the expression in (2.3) provides a valid generalized gradient of ℓ(β) with183

respect to βℓ. We apply the chain rule on the generalized gradient [21]. The cost function in184

(2.2) is the composition ϱ ◦ F where185

ϱ((zi)
n
i=1) =

1

2n

n∑
i=1

z2i186

and β 7→ F (β) = (fi(β))
n
i=1 with187

fi(β) =

∣∣∣∣max
j∈[k]

⟨βj , ξi⟩ − yi

∣∣∣∣ , i ∈ [n].188

Since each max-affine function fi is regular at each point of the domain, the equality in [21,189

Eq. (5.7)] holds and it characterizes the generalized gradient of ℓ as190

∇βℓ
ℓ(β) =

1

n

n∑
i=1

(
max
j∈[k]

⟨βj , ξi⟩ − yi

)
· ∇βℓ

(
max
j∈[k]

⟨βj , ξi⟩
)
.191

Since a sub-gradient of a convex function is a generalized gradient [6], it suffices to show that192

1{xi∈Cℓ}ξi is a sub-gradient of the convex function ∇βℓ

(
maxj∈[k] ⟨βj , ξi⟩

)
. To this end, we193

verify that the following inequality holds for all i ∈ [n]:194

(2.5) max

(
⟨βℓ + h, ξi⟩ , max

j ̸=ℓ∈[k]
⟨βj , ξi⟩

)
−max

j∈[k]
⟨βj , ξi⟩ ≥ 1{xi∈Cℓ} ⟨h, ξi⟩ , ∀h ∈ Rd+1.195

Let i ∈ [n] be arbitrarily fixed. First, we consider the case when ℓ is a maximizer in the196

max-affine function in (2.1) at ξi. Then we have ⟨βℓ, ξi⟩ = maxj∈[k] ⟨βj , ξi⟩ and 1{xi∈Cℓ} = 1.197

Therefore, (2.5) holds since198

max

(
⟨βℓ + h, ξi⟩ , max

j ̸=ℓ∈[k]
⟨βj , ξi⟩

)
≥ ⟨βℓ + h, ξi⟩, ∀h ∈ Rd+1.199

1In case of a tie when multiple linear models attain the maximum for a given sample, we assign the sample
to the smallest maximizing index. Since the event of duplicate maximizing indices will happen with probability
0 for any absolutely continuous probability measure on xis, the choice of a tie-break rule does not affect the
analysis.
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Next, we assume that ℓ is not a maximizer. Then 1{xi∈Cℓ} = 0 and there exists ℓ′ ∈ [k] \ {ℓ}200

such that ⟨βℓ′ , ξi⟩ = maxj∈[k] ⟨βj , ξi⟩ > ⟨βℓ, ξi⟩. Therefore, (2.5) is also satisfied since201

max (⟨βℓ + h, ξi⟩ , ⟨βℓ′ , ξi⟩) ≥ ⟨βℓ′ , ξi⟩ , ∀h ∈ Rd+1.202

Then the generalized gradient ∇βℓ(β) is obtained by concatenating {∇βj
ℓ(β)}kj=1 by203

∇βℓ(β) =

k∑
j=1

ej ⊗∇βj
ℓ(β),204

where ej ∈ Rk denotes the jth column of the k-by-k identity matrix Ik for j ∈ [k]. Moreover,205

ℓ(β) is differentiable except on a set of measure zero, with a slight abuse of terminology,206

∇βℓ(β) is referred to as the “gradient”.207

Next, we present a convergence analysis of the gradient descent estimator. The analysis208

depends on a set of geometric parameters of the ground-truth model. The first parameter209

πmin describes the minimum portion of observations corresponding to the linear model which210

achieved the maximum least frequently. It is formally defined as a lower bound on the prob-211

ability measure on the smallest partition set, i.e.212

(2.6) min
j∈[k]

P(x ∈ C⋆j ) ≥ πmin,213

where C⋆1 , . . . , C⋆k are polytopes determined by214

(2.7) C⋆j := {w ∈ Rd : ⟨[w; 1],β⋆j − β⋆l ⟩ > 0, ∀l < j, ⟨[w; 1],β⋆j − β⋆l ⟩ ≥ 0, ∀l > j}.215

The next parameter κ quantifies the separation between all pairs of distinct linear models in216

(1.1) so that the pairwise distance on two distinct linear models satisfy217

(2.8) min
j′ ̸=j

∥(β⋆j )1:d − (β⋆j′)1:d∥2 ≥ κ.218

Next, we present a convergence analysis of the gradient descent estimator. The analysis219

depends on a set of geometric parameters of the ground-truth model. The first parameter220

πmin describes the minimum portion of observations corresponding to the linear model which221

achieved the maximum least frequently. It is formally defined as a lower bound on the prob-222

ability measure on the smallest partition set, i.e.223

(2.9) min
j∈[k]

P(x ∈ C⋆j ) ≥ πmin,224

where C⋆1 , . . . , C⋆k are polytopes determined by225

(2.10) C⋆j := {w ∈ Rd : ⟨[w; 1],β⋆j − β⋆l ⟩ > 0, ∀l < j, ⟨[w; 1],β⋆j − β⋆l ⟩ ≥ 0, ∀l > j}.226

The next parameter κ quantifies the separation between all pairs of distinct linear models in227

(1.1) so that the pairwise distance on two distinct linear models satisfy228

(2.11) min
j′ ̸=j

∥(β⋆j )1:d − (β⋆j′)1:d∥2 ≥ κ.229

Our main result in the following theorem presents a local linear convergence of the gradient230

descent estimator uniformly over all β⋆ satisfying (2.10) and (2.11).231
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Theorem 2.1. Let δ ∈ (0, 1/e), yi = maxj∈[k]⟨ξi,β⋆j ⟩ + zi for i ∈ [n] with ξi = [xi; 1],232

and {zi}ni=1 being additive σ-sub-Gaussian noise independent from everything else. Suppose233

that Assumptions 1.1 and 1.2 hold.2 Then there exist absolute constants C,C ′, R > 0, and234

ν ∈ (0, 1), for which the following statement holds with probability at least 1− δ: If the initial235

estimate β0 belongs to a neighborhood of β⋆ given by236

(2.12) N (β⋆) :=

{
β ∈ Rk(d+1) : max

j∈[k]
∥βj − β⋆j ∥2 ≤ κρ

}
237

with238

(2.13) ρ :=
Rπ

ζ−1(1+ζ−1)
min

4kζ−1 · log−1/2

(
kζ

−1

Rπ
ζ−1(1+ζ−1)
min

)
∧ 1

4
,239

then for all β⋆ satisfying (2.9) and (2.11), the sequence
(
βt
)
t∈N by the gradient descent method240

with a constant step size satisfies241

(2.14)
∥∥βt − β⋆

∥∥
2
≤ νt

∥∥β0 − β⋆
∥∥
2
+ C ′σk

√
k (kd log(n/d) + log(k/δ))√

n
, ∀t ∈ N,242

provided that243

(2.15) n ≥ Cπ
−2(1+ζ−1)
min ·

(
k1.5π

−(1+ζ−1)
min ∨ σ

κρ

)2

· (kd log(n/d) + log(k/δ)) .244

Proof. See Section SM3.245

Theorem 2.1 demonstrates that the GD estimator with a constant step size converges lin-246

early to a neighborhood of the ground-truth parameter of radius Õ
(
σ2k4d/n

)
. The number of247

sufficient observations to invoke this convergence result scales linearly in d and is proportional248

to a polynomial in π−1
min and k. This result implies the consistency of the gradient descent249

estimator. To compare Theorem 2.1 to the analogous result for AM under the same covariate250

and noise models [13, Theorem 1], we have the following remarks in order.251

• First, the final estimation error by (2.14) with t → ∞ is smaller than that by [13,252

Theorem 1] by being independent of π−1
min, which grows at least proportional to k. A253

larger estimation error bound in their result is due to the analysis of the least squares254

update, wherein the smallest singular value of the design matrix of each linear model255

is utilized. These quantities do not appear in the analysis of the gradient descent256

update.257

• Second, the convergence parameter ν in (2.14) is smaller than 3/4 for AM3, which258

might result in a slower convergence of GD in iteration count. The convergence speed259

2To simplify the presentation, we assume that the parameters η, ζ, γ in Assumptions 1.1 and 1.2 are fixed
numerical constants in the statement and proof of Theorem 2.1. Therefore, any constant determined only by
η, ζ, γ will be treated as a numerical constant.

3As shown in the proof in Section SM3, the parameter ν is given as ν = (1−µλ) by (SM3.19). The quantity
µλ is determined by (SM3.8) and (SM3.29) as a function of πmin, πmax, and ζ so that it decreases in k and
π−1
min.
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issue becomes significant for large k and π−1
min. For example, in the illustration by260

Figure 1, GD shows a slower convergence in run time despite the lower per-iteration261

cost O(knd), which is lower than that of AM O(knd2) by a factor of d. However, as262

discussed in Section 3, the slow convergence of GD can be improved by modifying the263

algorithm into a (mini-batch) SGD.264

• Third, the sample complexity results by Theorem 2.1 and [13, Theorem 1] are quali-265

tatively comparable. There were mistakes in the proof of [13, Theorem 1]. We think266

that their result could be corrected with an increased order of dependence in their267

sample complexity on k and πmin (see Section SM5 for a detailed discussion).268

• Lastly, regarding the proof technique, we adapt and improve the strategy by Ghosh et269

al. [12, 13]. Note that the subgradient of the loss function in (2.3) involves clustering270

of covariates with respect to maximizing linear models such as (2.4), which also arises271

in alternating minimization. Due to this similarity, key quantities in the analysis have272

been estimated in [12, 13]. We provide sharpened estimates via different techniques.273

For example, Lemma SM2.3 provides a tighter bound than [12, Lemma 7] by a factor274

of αζ
−1

for a scalar α ∈ (0, 1).275

Theorem 2.1 also provides an auxiliary result. As a direct consequence of Theorem 2.1,276

we obtain an upper bound on the prediction error, which is defined by277

E(β̂) := E

(
max
j∈[k]

⟨ξ, β̂j⟩ −max
j∈[k]

⟨ξ,β⋆j ⟩
)2

,278

where β̂ = [β̂1; . . . ; β̂k] denotes the estimated parameter vector by GD. Since the quadratic279

cost function in (1.2) is 1-Lipschitz with respect to the ℓ2 norm, it follows that the prediction280

error E(β̂) is also bounded by Õ(σ2k3d/n) as in (2.14) with t → ∞.281

A limitation of Theorem 2.1 is that its local convergence analysis requires an initializa-282

tion within a specific neighborhood of the ground-truth parameter. To obtain the desired283

initial estimate, one may use spectral initialization by [14, Algorithm 2, 3], which consists284

of dimensionality reduction followed by a grid search. They provided a performance guaran-285

tee of a spectral initialization scheme under the standard Gaussian covariate assumption [14,286

Theorems 2 and 3]. Therefore, the reduction of Theorem 2.1 to the Gaussian covariate case287

combined with [14, Theorems 2 and 3] provides a global convergence analysis of GD, which288

is comparable to that for alternating minimization [14]. Even in this case, the number of289

sufficient samples for the success of spectral initialization overwhelms that for the subsequent290

gradient descent step. Since multiple steps of their analysis critically depend on the Gaussian-291

ity, it remains an open question whether the result on the spectral initialization generalizes292

to the setting by Assumptions 1.1 and 1.2.293

3. Convergence analysis of mini-batch SGD. SGD is an optimization method that up-294

dates parameters using a single or a small batch of randomly selected data point(s) instead295

of the entire dataset. SGD converges faster in run time than GD due to its significantly lower296

per-iteration cost. In particular, when applied to max-affine regression, SGD empirically out-297

performs GD and AM in both sample complexity and convergence speed (see Figures 1 to 3).298

In this section, we present an accompanying theoretical convergence analysis of mini-batch299

SGD for max-affine regression. The update rule of a mini-batch SGD with batch size m for300
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max-affine regression is described as follows. For each iteration index t ∈ N, let It be a multi-301

set of m randomly selected indices with replacement so that the entries of It are independent302

copies of a uniform random variable in [n]. A mini-batch SGD iteratively updates the estimate303

by304

βt+1 = βt − µ
1

m

∑
i∈It

∇βℓi(β
t),305

where306

ℓi(β) :=
1

2

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

, i ∈ [n].307

Then the following theorem presents a local linear convergence of SGD.308

Theorem 3.1. Under the hypothesis of Theorem 2.1, there exist absolute constants C,C ′ >309

0 and c, ν ∈ (0, 1), for which the following statement holds with probability at least 1 − δ:310

For all β⋆ satisfying (2.10) and (2.11), if the initial estimate β0 belongs to N (β⋆) defined in311

(2.12), n satisfies (2.15), and m satisfies312

(3.1) m ≥ C ·
(

σ

κρ

)2

· (d+ log(k/δ)) ,313

then the sequence
(
βt
)
t∈N by the mini-batch SGD with batch size m and step size µ =314

c (1 ∧m/(d+ log(n/δ))) satisfies315

(3.2)

EIt
∥∥βt − β⋆

∥∥
2
≤
(
1−

(
1 ∧ m

d+ log(n/δ)

)
cν

)t ∥∥β0 − β⋆
∥∥
2

+ C ′σk

√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
, ∀t ∈ N.

316

Proof. See Section SM4.317

Theorem 3.1 establishes linear convergence of mini-batch SGD in expectation to the318

ground-truth parameters within error Õ(σ2k2 (d/m ∨ kd/n)). The local linear convergence319

applies uniformly over all β⋆ satisfying (2.10) and (2.11). In general, the convergence rate320

of SGD is much slower even with strong convexity [33, 4, 20]. However, in a special case321

where the cost function is in the form of
∑n

i=1 ℓi(β), smooth, and strongly convex, if β⋆ is the322

minimizer of all summands {ℓi(β)}ni=1, then SGD converges linearly to β⋆ [32, Theorem 2.1].323

The convergence analysis in Theorem 3.1 can be considered along with this result. The cost324

function in (2.2) in the noiseless case satisfies the desired properties locally near the ground325

truth, whence establishes the local linear convergence of SGD.326

Theorem 3.1 also explains how the batch size m affects the final estimation error by (3.2)327

with t → ∞. Let n and m satisfy (2.15) and (3.1) so that Theorem 3.1 is invoked. Under328

this condition, one can still choose m and n so that m ≲ n/k. Then the Õ(σ2k2d/m) term329

determined by the batch size m dominates the final estimation error. In this regime, the330

SGD estimator is not consistent since the estimation error Õ(σ2k2d/m) does not vanish with331

increasing n. This result implies the trade-off between the convergence speed and the final332

estimation error determined by the batch size.333
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Furthermore, since the condition on m in (3.1) becomes trivial when σ = 0, we obtain a334

stronger result in the noiseless case given by the following corollary.335

Corollary 3.2. Let δ, δ′ ∈ (0, 1), and ϵ > 0 fixed. Suppose that the hypothesis of Theorem 3.1336

holds. If t ≥ (log(1/ϵ) + log(1/δ))
(
1 ∨ d+log(n/δ)

m

)
1/ν, then337 ∥∥βt − β⋆

∥∥
2
≤ ϵ∥β0 − β⋆∥2338

holds with probability at least 1− δ − δ′.339

Proof. By Theorem 3.1, (3.2) holds with probability at least 1− δ. By applying Markov’s340

inequality, we have341

P
(∥∥βt − β⋆

∥∥
2
≥ ϵ∥β0 − β⋆∥2

)
≤ EIt∥βt − β⋆∥2

ϵ∥β0 − β⋆∥2
≤

(
1−

(
1 ∧ m

d+log(n/δ)

)
ν
)t

ϵ
≤ δ′,342

where the second and third inequalities hold by (3.2) and assumption on t respectively.343

Corollary 3.2 presents the convergence of SGD with high probability, which is stronger344

than the convergence in expectation. Furthermore, there is no requirement on the batch size345

in invoking Corollary 3.2. This result is analogous to the recent theoretical analysis of phase346

retrieval by randomized Kaczmarz [41] and SGD [40].347

4. Numerical results. We study the empirical performance of GD and mini-batch SGD348

for max-affine regression. The performance of these first-order methods is compared to AM349

[14]. All of these algorithms start from the spectral initialization by Ghosh et al. [14]. We use a350

constant step size 0.5 for GD. The step size for SGD is set to 1∧(m/d)
2 adaptive to the batch size.351

According to our covariate assumptions in Assumption 1.1 and Assumption 1.2, we consider352

the following two scenarios; The first scenario involves Gaussian covariates, where x1, . . . ,xn353

are generated as independent samples from a random vector following Normal(0, Id). The354

other scenario involves a uniform distribution, where x1, . . . ,xn are generated as independent355

samples from a random vector following Unif[−
√
3,
√
3]⊗d, which is also considered in the356

numerical setting in [12]. We use spectral initialization for the Gaussian covariate model [12],357

while for the uniform distribution case, we apply the multiple-restart random initialization358

method [1].359

First, we observe the performance of the three estimators for the exact parameter recovery360

in the noiseless case. In this experiment, the ground-truth parameters θ⋆1, . . . , θ
⋆
k are generated361

as k random pairwise orthogonal vectors with k < d, and the offset terms are set to 0, i.e.,362

b⋆j = 0 for all j ∈ [k]. By the construction, the probability assigned to the maximizer set363

of each linear model will be approximately 1
k . In other words, the parameters πmax and364

πmin of the ground truth concentrate around 1
k where πmin is defined in (2.9) and πmax :=365

maxj∈[k] P(x ∈ C⋆j ). Furthermore, due to the orthogonality, the pairwise distance satisfies366

∥θ⋆j −θ⋆j′∥2 =
√
2 for all j ̸= j′ ∈ [k]. Consequently, the sample complexity results for GD and367

SGD by Theorem 2.1 and Theorem 3.1 simplify to an easy-to-interpret expression Õ(k16d)368

that involves only k and d for both Gaussian and uniform distribution scenarios. The sample369

complexity result on AM [12] simplifies similarly.370
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(a) Gaussian covariate

Figures 2a and 3a illustrate the empirical phase transition by the three estimators through371

Monte Carlo simulations under the Gaussian covariate model. The median and the 90th372

percentile of 50 random trials are displayed. In these figures, the transition occurs when373

the sample size n becomes larger than a threshold that depends on the ambient dimension d374

and the number of linear models k. Figure 2a shows that the threshold for both estimators375

increases linearly with d for fixed k. This observation is consistent with the sample complexity376

by Theorem 2.1 and Theorem 3.1. A complementary view is presented in Figure 3a for varying377

k and fixed d. The thresholds in Figure 3a for GD and SGD are almost linear in k when378

d is fixed to 50, which scales slower than the corresponding sample complexity results in379

Theorem 2.1 and Theorem 3.1. A similar discrepancy between theoretical and empirical phase380

transitions has been observed for AM [12, Appendix L]. We also observe that mini-batch SGD381
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(b) Uniform covariate

Figure 2: Phase transition of estimation error per the number of observations n and the
ambient dimension d in the noiseless case (The number of linear models k and the batch size
m are set to 3 and 64, respectively). The first row and the second row respectively show the
median and the 90th percentile of estimation errors in 50 trials.

outperforms GD and AM with a lower threshold for phase transition. It has been shown that382

the inherent random noise in the gradient helps the estimator to escape saddle points or local383

minima [23, 8]. This explains why SGD recovers the parameters with fewer samples than384

GD. We also note that the relative performance among the three estimators remains similar385

in both the median and the 90th percentile. This shows that SGD for noiseless max-affine386
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(a) Gaussian covariate

regression does not suffer from a large variance, which corroborates the result in Corollary 3.2.387

The phase transition boundaries in Figures 2b and 3b are higher with a larger success388

regime relative to the corresponding results in Figures 2a and 3a. Recall that GD/SGD with389

the multiple-restart random initialization involves multiple runs of GD/SGD. The performance390

improvement is obtained at the cost of higher computational cost proportional to the number391

of repetitions.392

Figures 4 and 5 study the estimation error by mini-batch SGD under zero-mean Gaussian393

noise with standard deviation σ = 0.1 in three different scenarios. In Figure 4, we focus394

on observing how the batch size m affects the convergence speed and the estimation error.395

Figure 4a and Figure 4b consider the scenario where the spectral method provides a poor396
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(b) Uniform covariate

Figure 3: Phase transition of estimation error per number of observations n and number of
linear models k in the noiseless case (The ambient dimension d and mini-batch size m are set
to 50 and 64 respectively). The first row and the second row respectively show the median
and the 90th percentile of estimation errors in 50 trials.

initialization due to a small number of observations. Consequently, GD and AM fail to397

provide a low estimation error. In contrast, mini-batch SGD with a small batch size (m = 32398

or m = 128) relative to the total number of samples (n = 1, 500) converges to a small399

estimation error (< 10−2). In other words, there exists a trade-off between the convergence400

speed and the estimation error determined by the batch size m. SGD with m = 128 converges401
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Figure 4: Convergence of estimators for max-affine regression under additive white Gaussian
noise of variance σ2 = 0.01 (k = 8 and d = 50). Comparison between Gaussian and Uniform
covariates.

slower to a smaller error than SGD with m = 32. This corroborates the theoretical result in402

Theorem 3.1. However, as the batch size m further increases to m = 1, 024 close to n = 1, 500,403

SGD starts to fail like GD and AM. Again, this phenomenon is explained by the fact that the404

noisy gradient in SGD avoids saddle points and local minima efficiently [23, 8].405

For the Gaussian and uniform covariates, Figure 4c and Figure 4d illustrate the com-406

parison in a high-sample regime, where the number of samples is twice larger than that for407

Figure 4a and Figure 4b, respectively. In this case, both GD and AM converge to a smaller408

error than SGD. Moreover, AM converges faster than the other algorithms in the run time,409
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Figure 5: Convergence of estimators for max-affine regression under additive white Gaussian
noise of variance σ2 = 0.01 (k = 3, d = 500, and n = 8, 000).

which is explained by the following two reasons. First, as discussed in Section 2, AM converges410

faster than GD and SGD in the iteration count with a smaller constant for linear convergence.411

Second, due to the small ambient dimension (d = 50), the gain in the per-iteration cost of412

SGD O(kmd) over that of AM O(knd2) is not significant.413

Lastly, Figure 5, compares the convergence of the estimators in the presence of noise414

when d, k, and n are set as in Figure 1. On one hand, SGD converges faster than AM415

with a significantly lower per-iteration cost O(kmd) than O(knd2) due to the large ambient416

dimension (d = 500) and small batch size (m = 512 compared to n = 8, 000). On the other417

hand, SGD yields a larger error than the other two estimators. The estimation error bound418

of SGD by Theorem 3.1 behaves similarly in this case.419

5. Discussion. We have established local convergence analysis of GD and SGD for max-420

affine regression under a relaxed covariate model with σ-sub-Gaussian noise. The covariate421

distribution characterized by the sub-Gaussianity and the anti-concentration generalizes be-422

yond the standard Gaussian model. It has been shown that suitably initialized GD and SGD423

converge linearly below a non-asymptotic error bound, which is comparable to the analo-424

gous result on AM. Notably, when applied to noiseless max-affine regression, SGD empirically425

outperforms GD and AM in both sample complexity and convergence speed.426

Under a special case of the Gaussian covariate model, the spectral method by Ghosh et al.427

[14] can provide the desired initial estimate. It is of great interest to extend their theory on428

the spectral method to the relaxed covariate model. Moreover, the extension of the theoretical429

result on GD and SGD to robust regression, where a subset of samples is corrupted as outliers,430

is also an intriguing future direction.431
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4

SM1. Tools. This section collects a set of standard results on concentration inequali-5

ties, which will be used in the proofs of Theorem 2.1. The following lemma provides the6

concentration of extreme singular values of sub-Gaussian matrices.7

Lemma SM1.1 ([SM11, Theorem 4.6.1]). Let {xi}ni=1 be independent isotropic η-sub-8

Gaussian random vectors in Rd. Then there exists an absolute constant C > 0 such that9

P

(∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i − Ip

∥∥∥∥∥ > η2max(ϵ, ϵ2)

)
≤ δ where ϵ =

√
C(d+ log(2/δ))

n
.10

Remark SM1.2. It has been shown that Lemma SM1.1 continues to hold when xi is sub-11

stituted by ξ = [xi; 1] [SM3]. Indeed, multiplying a random sign to the last coordinate of ξi12

does not modify the outer product ξiξ
⊤
i whereas ξi remains a sub-Gaussian vector.13

Furthermore, we also use the results from the standard Vapnik–Chervonenkis (VC) theory14

stated in the following lemmas.15

Lemma SM1.3 ([SM10, Theorem 2]). Let V be a collection of subsets of a set X and16

{xi}ni=1 be n independent copies of a random variable x ∈ X . Then it holds for all ϵ > 0 and17

n ≥ 2/ϵ2 that18

P

(
sup
V ∈V

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈V } − P(x ∈ V )

∣∣∣∣∣ ≥ ϵ

)
≤ 4ΠV(2n) exp(−nϵ2/16),19

where ΠV(n) denotes the growth function defined by20

ΠV(n) := max
x1,...,xn∈X

∣∣{(1{x1∈V }, . . . , 1{xn∈V }
)
: V ∈ V

}∣∣ .21

Lemma SM1.4 ([SM8, Corollary 3.18]). Let V be a collection of subsets having VC dimen-22

sion d. Then, for all n ≥ d, the growth function of V is upper-bounded by23

ΠV(n) ≤
(en
d

)d
.24

The VC dimension of the k-fold intersection has been known in the literature (e.g. see [SM1]).25

We will use the following lemma for the result for the intersection of size two. Since it was26

given as an exercise in [SM8], we provide a proof for the sake of completeness.27
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SM2 SEONHO KIM AND KIRYUNG LEE

Lemma SM1.5 ([SM8, Equation (3.53)]). Let V and W be collections of subsets of a28

common set. Then their intersection given by V ∩ W := {V ∩W : V ∈ V , W ∈ W} satisfies29

that30

ΠV∩W(n) ≤ ΠV(n)ΠW(n), ∀n ∈ N.31

Proof. For any V ∩W ∈ V ∩W , we have32 (
1{x1∈V ∩W}, . . . , 1{xn∈V ∩W}

)
=
(
1{x1∈V }, . . . , 1{xn∈V }

)
⊙
(
1{x1∈W}, . . . , 1{xn∈W}

)
,3334

where ⊙ denotes the pointwise product. Therefore, the claim follows from the definition of35

the growth function.36

Lemma SM1.6. Let Pk be the collection of all polytopes constructed by the intersection of37

k half spaces in Rd. Then the growth function of Pk satisfies38

(SM1.1) ΠPk
(n) ≤

(
en

d+ 1

)k(d+1)

.39

Proof. Let Hj be the collection of all half spaces in Rd for j ∈ [k]. Then, by the construc-40

tion of Pk, we have Pk = ∩kj=1Hj . Therefore, by inductive application of Lemma SM1.5, the41

growth function of Pk satisfies42

(SM1.2) ΠPk
(n) ≤

k∏
j=1

ΠHj (n).43

Furthermore, since the VC dimensions of half spaces in Rd is d+1 (e.g. see [SM8, Section 3]),44

Lemma SM1.4 implies45

(SM1.3) ΠHj (n) ≤
(

en

d+ 1

)d+1

, ∀j ∈ [k].46

The assertion is obtained by plugging in (SM1.3) into (SM1.2).47

Finally, the following corollary is a direct consequence of Lemmas SM1.3, SM1.4, and SM1.5.48

Corollary SM1.7. Let δ ∈ (0, 1) and Pk be the collection of all polytopes constructed by the49

intersection of k half-spaces in Rd. Suppose that {xi}ni=1 are independent copies of a random50

vector x ∈ Rd. Then it holds with probability at least 1− δ that51

sup
Z∈Pk

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Z} − P(x ∈ Z)

∣∣∣∣∣ ≤ 4

√
log(4/δ) + 2k(d+ 1) log(2en/(d+ 1))

n
.(SM1.4)52

53

SM2. Supporting lemmas. In this section, we list lemmas to prove Theorem 2.1. These54

lemmas are borrowed from [SM9] and [SM3]. We improve on a subset of these results derived55

with a streamlined proof.56
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SM2.1. Worst-case extreme eigenvalues of partial sum of outer products of covariates.57

A partial sum of the outer products of covariates,
∑

i∈I ξiξ
⊤
i appears frequently in the proof.58

The summation indices in I often depend on covariates. The following lemma by Tan and59

Vershynin [SM9] provides a tail bound on the worst-case largest eigenvalue of
∑

i∈I ξiξ
⊤
i when60

the cardinality of I is bounded from above.61

Lemma SM2.1 ([SM9, Theorem 5.7]). Let δ ∈ (0, 1/e), α ∈ (0, 1), and ξi = [xi, 1] ∈ Rd+162

for i ∈ [n]. Suppose that Assumption 1.1 holds. Then it holds with probability at least 1 − δ63

that64

sup
I:|I|≤αn

λ1

(∑
i∈I

ξiξ
T
i

)
≤ C4(η

2 ∨ 1)
√
αn65

for some absolute constant C4 > 0, provided66

(SM2.1) n ≥
(
d ∨ log(1/δ)

α

)
.67

Remark SM2.2. In the original result, Tan and Vershynin assumed that {ξi}ni=1 are iso-68

tropic η-sub-Gaussian random vectors [SM9, Theorem 5.7]. Later, Ghosh et al. [SM3] showed69

that the result also applies to the setting in Lemma SM2.1 through the following argument.70

The outer product ξiξ
⊤
i remains the same as one multiplies a random sign to the last entry71

of ξi which makes the random vector η̃-sub-Gaussian with η̃ = max(η, 1).72

Moreover, Ghosh et al. also derived analogous lower tail bound on the smallest eigenvalue73

when the index set I exceeds a threshold [SM3, Lemma 7]. Their proof strategy adopted an74

epsilon-net approximation and a union bound argument. Our lemma below, derived by using75

the small-ball method [SM6], provides a streamlined proof and a sharper bound.76

Lemma SM2.3. Let α, δ ∈ (0, 1) and ξi = [xi, 1] ∈ Rd+1 for i ∈ [n]. Suppose that Assump-77

tion 1.2 holds. Then there exists an absolute constant C > 0 such that if78

(SM2.2) n ≥ Cα−2(d log(n/d) ∨ log(1/δ))79

then it holds with probability at least 1− δ that80

(SM2.3) inf
I⊂[n]:|I|≥αn

λd+1

(∑
i∈I

ξiξ
⊤
i

)
≥ 2n

γ

(α
4

)1+ζ−1

.81

We compare Lemma SM2.3 to the previous result by Ghosh et al. [SM3, Lemma 7] when the82

parameter γ is treated as a fixed constant. They demonstrated that the worst-case minimum83

eigenvalue in the left-hand side of (SM2.3) satisfies Ω(nα1+2ζ−1
) if n ≥ α−1max(4p, ζ−1(d+1)).84

On one hand, their requirement in the sample complexity is less stringent than that in (SM2.2).85

On the other hand, the lower bound in (SM2.3) is tighter than theirs by a factor of αζ
−1
. When86

these two results are applied to derive Theorem 2.1 with α substituted by πmin, the resulting87

sample complexity Õ(π
−4(1+ζ−1)
min d) by Lemma SM2.3 is smaller than Õ(π

−4(1+2ζ−1)
min d) by [SM3,88

Lemma 7]. The gain due to Lemma SM2.3 is π−4ζ−1

min , which is no less than k4ζ
−1
. For example,89

if the covariates are Gaussian ζ = 1/2, then the gain is k8.90
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Proof. Let T > 0 be an arbitrarily fixed threshold. If91

(SM2.4) N(v) :=

n∑
i=1

1{⟨ξi,v⟩2>T} > n− αn

2
92

then it follows that93

1

n

∑
i∈I

⟨ξi,v⟩2 ≥
αT

2
, ∀I ⊂ [n] : |I| ≥ αn.94

Therefore, it suffices to show that (SM2.4) holds for all v ∈ Sd with probability 1 − δ. Let95

H denote the collection of half-spaces in Rd given by {x ∈ Rd : xTu >
√
T − w} for all96

v = [u; w] ∈ Sd. Since the VC dimension of all half-spaces in Rd is at most d+1, by Lemmas97

SM1.3 and SM1.4, it holds with probability at least 1 − δ/2 that98

(SM2.5)
1

n
N(v) ≥ 1

n
EN(v)− C ′

√
d log(n/d) + log(1/δ)

n
, ∀v ∈ Sd,99

where C ′ > 0 is an absolute constant.100

Moreover, it follows from Assumption 1.2 that101

(SM2.6)
1

n
EN(v) = P

(
|⟨x,u⟩+ w|2 > T

)
≥ 1− (Tγ)ζ .102

By plugging in (SM2.6) into (SM2.5), we obtain that103

1

n
N(v) ≥ 1− (Tγ)ζ − C ′

√
d log(n/d) + log(1/δ)

n
, ∀w ∈ Sd.104

Then (SM2.4) is satisfied for all v ∈ Sd when T = 1
γ

(
α
4

)ζ−1

and C = (4C ′)2. This completes105

the proof.106

SM2.2. Local estimates. In this section, we present local tail bounds which arise in107

the proof of the main result. The following lemma, obtained as a direct consequence of the108

triangle inequality and the definition of κ in (2.11), provides a basic inequality that will be109

used frequently throughout this section.110

Lemma SM2.4. Suppose that β ∈ N (β⋆), where N (β⋆) is defined as in (2.12). Then we111

have112

∥(βj − βj′)− (β⋆j − β⋆j′)∥2 ≤ 2ρ∥(β⋆j − β⋆j′)1:d∥2, ∀j ̸= j′ ∈ [k].113

Proof. Since β ∈ N (β⋆), by the triangle inequality, we have114

∥(βj − βj′)− (β⋆j − β⋆j′)∥2 ≤ ∥βj − β⋆j ∥2 + ∥βj′ − β⋆j′∥2 ≤ 2κρ, ∀j, j′ ∈ [k].115

Furthermore, it follows from the definition of κ in (2.11) that116

κ ≤ ∥(β⋆j − β⋆j′)1:d∥2, ∀j ̸= j′ ∈ [k].117

Then the assertion follows.118
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We also use the following lemma by Ghosh et al. [SM3], which is a consequence of Assump-119

tions 1.1 and 1.2 respectively for the sub-Gaussianity and anti-concentration.120

Lemma SM2.5 ([SM3, Lemma 17]). Suppose that x ∈ Rd satisfies Assumptions 1.1 and121

1.2. If122

∥v − v⋆∥2 ≤
1

2
∥(v⋆)1:d∥2,123

then124

P
(
⟨[x; 1],v⋆⟩2 ≤ ⟨[x; 1],v − v⋆⟩2

)
≲

((
∥v − v⋆∥2
∥(v⋆)1:d∥2

)2

· log
(
2∥(v⋆)1:d∥2
∥v − v⋆∥2

))ζ
.125

Intuitively, when the parameter vector β belongs to a small neighborhood of the ground-126

truth, the partition sets (Cj)kj=1 by β and
(
C⋆j
)k
j=1

by the ground-truth β⋆ will be similar.127

The next lemmas quantify the empirical measure on the event of x ∈ Cj ∩ C⋆j′ for distinct128

indices j and j′, and quadratic forms given as a partial summation indexed by the indicator129

functions on this event.130

Lemma SM2.6. Let (Cj)kj=1 and
(
C⋆j
)k
j=1

be defined as in (2.4) and (2.10) respectively by β131

and β⋆. Furthermore, let πmin be defined as in (2.9) by β⋆. Suppose that x ∈ Rd and {xi}ni=1132

satisfy Assumptions 1.1 and 1.2, and that the parameter ρ of N (β⋆) in (2.12) satisfies (2.13)133

for some numerical constant R > 0. Then there exists an absolute constant C such that if134

(SM2.7) n ≥ Cπ−2
min · (kd log(n/d) ∨ log(1/δ))135

then with probability at least 1− δ136

(SM2.8)
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j } ≥

πmin

4
137

holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1.138

Proof. Note that the left-hand side of (SM2.8) is an empirical measure on the event139

x ∈ Cj ∩ C⋆j . We first derive a lower bound on its expectation, which is written as140

P
(
x ∈ Cj ,x ∈ C⋆j

)
= P

(
x ∈ Cj |x ∈ C⋆j

)
· P
(
x ∈ C⋆j

)
141

=
(
1− P

(
x ̸∈ Cj |x ∈ C⋆j

))
· P
(
x ∈ C⋆j

)
.(SM2.9)142143
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Then, by the construction of (Cj)kj=1 in (2.4), we have144

P
(
x ̸∈ Cj |x ∈ C⋆j

)
145

=
P(x ̸∈ Cj ,x ∈ C⋆j )

P(x ∈ C⋆j )
146

≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],βj′⟩ ≥ ⟨[x; 1],βj⟩, ⟨[x; 1],β⋆j ⟩ ≥ ⟨[x; 1],β⋆j′⟩

)
147

≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],vj,j′⟩⟨[x; 1],v⋆j,j′⟩ ≤ 0

)
148

≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],v⋆j,j′⟩2 ≤ ⟨[x; 1],vj,j′ − v⋆j,j′⟩2

)
,149

150

where the second inequality holds since vj,j′ = βj − βj′ and v⋆j,j′ = β⋆j − β⋆j′ , and the last151

inequality follows from the fact that ab ≤ 0 implies |b| ≤ |a − b| for a, b ∈ R. Recall that152

β ∈ N (β⋆) implies ∥vj,j′ − v⋆j,j′∥2 ≤ 2ρ∥(v⋆j,j′)1:d∥2 due to Lemma SM2.4. Furthermore, one153

can choose the numerical constant R > 0 in (2.13) sufficiently small (but independent of k154

and p) so that 2ρ ≤ 0.1. Then it follows that155

P(x ̸∈ Cj′ |x ∈ C⋆j′)
(i)

≲
k

P(x ∈ C⋆j )

(
∥vj,j′ − v⋆j,j′∥22
∥(v⋆j,j′)1:d∥22

log

(
2∥(v⋆j,j′)1:d∥2
∥vj,j′ − v⋆j,j′∥2

))ζ
156

(ii)

≤ k

P(x ∈ C⋆j )

(
(2ρ)2 log

(
1

ρ

))ζ
157

(iii)

≤ k

πmin

(
R2π

2ζ−1(1+ζ−1)
min

k2ζ−1

)ζ
158

≤
R2ζπ1+2ζ−1

min

k
,(SM2.10)159

160

where (i) follows from Lemma SM2.5; (ii) holds since a log1/2(2/a) is monotone increasing161

for a ∈ (0, 1]; (iii) follows from the fact that a ≤ b
2 log

−1/2(1/b) implies a log1/2(2/a) ≤ b for162

b ∈ (0, 0.1]. Since πmin ≤ 1
k , once again R > 0 can be made sufficiently small so that the163

right-hand side of (SM2.10) is at most 1
2 . Then plugging in this upper bound by (SM2.10)164

into (SM2.9) yields165

(SM2.11) P(x ∈ Cj′ ∩ C⋆j′) ≥
1

2
· P(x ∈ C⋆j′).166

It remains to show the concentration of the left-hand side of (SM2.8) around the expecta-167

tion. Recall that Cj and C⋆j are constructed as the intersection of at most k half-spaces. Then168

Cj ∩ C⋆j belongs to the set P2k defined in Lemma SM1.6 and, hence, we have169

sup
j∈[k],β∈N (β⋆)

β⋆∈Rd+1

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Cj∩C⋆
j } − P(x ∈ Cj ∩ C⋆j )

∣∣∣∣∣ ≤ sup
Z∈P2k

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Z} − P(x ∈ Z)

∣∣∣∣∣ .170

171
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Therefore, it follows from Corollary SM1.7 that with probability at least 1 − δ172

(SM2.12)
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j } ≥ P(x ∈ Cj ∩ C⋆j )− 4

√
log(4/δ) + 2k(d+ 1) log(2en/(d+ 1))

n
173

holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1. The first summand in the right-hand side of174

(SM2.12) is bounded from below as in (SM2.11). Then choosing C in (SM2.7) large enough175

makes the second summand less than half of the lower bound in (SM2.11). This completes176

the proof.177

Next, the following lemma provides a slightly improved upper bound compared to the178

analogous previous result [SM3, Lemma 6]. Moreover, Lemma SM2.7 is derived by using the179

VC theory and provides a streamlined and shorter proof compared to previous work [SM3].180

Lemma SM2.7. Suppose that Assumptions 1.1 and 1.2 hold, and that ρ satisfies (2.13) for181

some numerical constant R > 0. Let δ ∈ (0, 1/e). There exists an absolute constant C such182

that if183

(SM2.13) n ≥ Ck4π
−4(1+ζ−1)
min (log(k/δ) ∨ d log(n/d))184

then with probability at least 1− δ185

(SM2.14)
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨[xi; 1],v⋆j,j′⟩2 ≤
2

5γk

(πmin

16

)1+ζ−1

∥vj,j′ − v⋆j,j′∥22186

holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1 where vj,j′ = βj − βj′ and v⋆j,j′ = β⋆j − β⋆j′.187

The previous result [SM3, Lemma 6] showed that with probability at least 1 − δ the188

left-hand side of (SM2.14) is bounded from above by Õ((π1+ζ−1

min /k) logζ/2+1(k/(πmin
1+ζ−1

)))189

if n ≥ O(max(p, log(1/δ))). In contrast, Lemma SM2.7 provides a smaller upper bound by190

a logarithmic factor at the cost of increased sample complexity. However, the condition in191

(SM2.13) is implied by another sufficient condition from another step of the analysis; hence,192

it does not affect the main result in Theorem 2.1.193

194

Proof. By the definition of (Cj)kj=1 in (2.4), it holds for any j ̸= j′ that195

(SM2.15)

xi ∈ Cj ∩ C⋆j′ ⇐⇒ ⟨ξi,βj⟩ ≥ ⟨ξi,βj′⟩, ⟨ξi,β⋆j′⟩ ≥ ⟨ξi,β⋆j ⟩
⇐⇒ ⟨ξi,vj,j′⟩ ≥ 0, ⟨ξi,v⋆j,j′⟩ ≤ 0

=⇒ ⟨ξi,vj,j′⟩⟨ξi,v⋆j,j′⟩ ≤ 0.

196

Furthermore, by Lemma SM2.4, every β ∈ N (β⋆) satisfies ∥vj,j′ − v⋆j,j′∥2 ≤ 2ρ∥(v⋆j,j′)1:d∥2.197

Therefore, it suffices to show that with probability at least 1 − δ198

(SM2.16)
1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤
2

5γk

(πmin

16

)1+ζ−1

∥v − v⋆∥22199
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holds for all (v,v⋆) ∈ M, where200

M := {(v,v⋆) ∈ Rd+1 ×Rd+1 : ∥v − v⋆∥ ≤ 2ρ∥(v)1:d∥2}.201

Since ab ≤ 0 implies |b| ≤ |a − b| for a, b ∈ R, each summand in the left-hand side of202

(SM2.16) is upper-bounded by203

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤ 1{⟨ξi,v⋆⟩2≤⟨ξi,v−v⋆⟩2}⟨ξi,v⋆⟩2

≤ 1{⟨ξi,v⋆⟩2≤⟨ξi,v−v⋆⟩2}⟨ξi,v − v⋆⟩2.
204

Before we proceed to the next step, for brevity, we introduce a shorthand notation given by205

(SM2.17) Sv,v⋆ := {ξ ∈ Rd+1 : ⟨ξ,v − v⋆⟩2 ≥ ⟨ξ,v⋆⟩2}.206

Then the left-hand side of (SM2.16) is bounded from above as207

1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤
1

n

n∑
i=1

1{ξi∈Sv,v⋆}⟨ξi,v − v⋆⟩2.208

Next, we derive a tail bound on the empirical measure 1
n

∑n
i=1 1{ξi∈Sv,v⋆} on the event for209

ξ ∈ Sv,v⋆ . Let P2 denote the collection of all polytopes given by the intersections of two half-210

spaces. Then Sv,v⋆ belongs to P2 ∪P2. It follows from Lemma SM1.6 and [SM2, Theorem A]211

that212

(SM2.18) ΠP2∪P2(n) ≤
(

en

C ′(d+ 1)

)C′(d+1)

213

for some absolute constant C ′. Therefore, by Lemma SM1.3 and (SM2.18), we obtain that214

sup
(v,v⋆)∈M

∣∣∣∣∣ 1n
n∑
i=1

1{ξi∈Sv,v⋆} − P(ξ ∈ Sv,v⋆)

∣∣∣∣∣ ≲
√

log(1/δ) + d log(n/d)

n
(SM2.19)215

216

holds with probability at least 1 − δ
2 .217

Similar to (SM2.10), we obtain an upper bound on the probability by using Lemma SM2.5218

as follows:219

sup
(v,v⋆)∈M

P(ξ ∈ Sv,v⋆) ≤ C1

(
(2ρ)2 log

(
1

ρ

))ζ
220

≤ C1

(
R2π

2ζ−1(1+ζ−1)
min

k2ζ−1

)ζ
221

≤
C1R

2ζπ2+2ζ−1

min

k2︸ ︷︷ ︸
α

(SM2.20)222

223
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where C1 > 0 is an absolute constant. By choosing the numerical constant C > 0 in (SM2.13)224

sufficiently large, we obtain from (SM2.19) and (SM2.20) that225

(SM2.21) P

(
sup

(v,v⋆)∈M

1

n

n∑
i=1

1{ξi∈Sv,v⋆} >
α

2

)
≤ δ

2
.226

Furthermore, one can choose the numerical constant R > 0 small enough so that α ∈ (0, 1).227

Then, since (SM2.13) and (2.13) imply (SM2.1), by Lemma SM2.1, it holds with probability228

at least 1− δ/2 that229

(SM2.22) sup
I:|I|≤αn

2

∥∥∥∥∥∑
i∈I

ξiξ
⊤
i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
αn.230

Finally, by combining the results in (SM2.21) and (SM2.22), we obtain that with proba-231

bility at least 1− δ232

1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤ sup
I:|I|≤αn

2

1

n

∑
i∈I

⟨ξi,v − v⋆⟩2233

≤ sup
I:|I|≤αn

2

∥∥∥∥∥ 1n∑
i∈I

ξiξ
⊤
i

∥∥∥∥∥ · ∥v − v⋆∥22234

≤ C2(η
2 ∨ 1)Rζ

(
π
(1+ζ−1)
min

k

)
· ∥v − v⋆∥22235

236

holds for all (v,v⋆) ∈ M, where C2 is an absolute constant. By choosing R > 0 sufficiently237

small so that238

C2(η
2 ∨ 1)Rζ ≤ 2

5γ

(
1

16

)1+ζ−1

,239

we obtain the assertion in (SM2.16).240

SM3. Proof of Theorem 2.1. The loss function ℓ(β) is decomposed as241

ℓ(β) =
1

2n

(
max
j∈[k]

⟨ξi,βj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩ − zi

)2

242

=
1

2n

n∑
i=1

(
max
j∈[k]

⟨ξi,βj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩
)2

︸ ︷︷ ︸
ℓclean(β)

243

−

(
1

n

n∑
i=1

zi

(
max
j∈[k]

⟨ξi,βj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩
)
− 1

2n

n∑
i=1

z2i

)
︸ ︷︷ ︸

ℓnoise(β)

.244

245

This manuscript is for review purposes only.



SM10 SEONHO KIM AND KIRYUNG LEE

Then the partial gradient of ℓ(β) with respect to βl is written as246

(SM3.1)

∇βl
ℓ(β) =

1

n

n∑
i=1

1{xi∈Cl}

(
max
j∈[k]

⟨ξi,βj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩ − zi

)
ξi

=
1

n

n∑
i=1

1{xi∈Cl}

(
max
j∈[k]

⟨ξi,βj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩
)
ξi︸ ︷︷ ︸

∇βl
ℓclean(β)

− 1

n

n∑
i=1

zi1{xi∈Cl}ξi︸ ︷︷ ︸
∇βl

ℓnoise(β)

247

where C1, . . . , Ck are determined by β as in (2.4).248

In the remainder of the proof, we will use the following shorthand notation to denote the249

pairwise difference of parameter vectors and the probability measure on the largest partition250

by the ground-truth model:251

vj,j′ := βj − βj′ , v⋆j,j′ := β⋆j − β⋆j′ , and πmax := max
j∈[k]

P
(
x ∈ C⋆j

)
.252

253

Below we show that the following lemmas hold under the condition in (2.15). The proof is254

provided in Appendix SM3.1.255

Lemma SM3.1. Under the hypothesis of Theorem 2.1, if (2.15) is satisfied, then with proba-256

bility at least 1−δ the following inequalities hold for all j ∈ [k], β⋆ ∈ Rk(d+1), and βt ∈ N (β⋆):257

(SM3.2)

⟨∇βj
ℓclean(βt),βtj − β⋆j ⟩ ≥

2

γ

(πmin

16

)1+ζ−1

∥βtj − β⋆j ∥22 −
1

10k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

 ,258

259
(SM3.3)

∥∇βj
ℓclean(βt)∥22 ≲

(
πmax + π

2(1+ζ−1)
min

)∥∥βtj − β⋆j
∥∥2
2
+

π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
,260

and261

(SM3.4)
∥∥∇βj

ℓnoise(βt)
∥∥
2
≲

σ
√
kd log(n/d) + log(1/δ)√

n
.262

The remainder of the proof shows that the assertion of the theorem is obtained from263

(SM3.2), (SM3.3) and (SM3.4) via the following three steps.264

265

Step 1: We prove by induction that all iterates remain within the neighborhood N (β⋆).266

Suppose that βt ∈ N (β⋆) holds for a fixed t ∈ N. By the triangle inequality, for any j ∈ [k],267

the next iterate βt+1 satisfies268

∥βt+1
j − β⋆j ∥2 = ∥βtj − µ∇βj

ℓ(βt)− β⋆j ∥2269

≤ ∥βtj − µ∇βj
ℓclean(βt)− β⋆j ∥2︸ ︷︷ ︸
Aclean

+µ∥∇βj
ℓnoise(βt)∥2︸ ︷︷ ︸
Anoise

.(SM3.5)270

271
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Then it remains to show272

(SM3.6) ∥βt+1
j − β⋆j ∥2 ≤ Aclean +Anoise ≤ κρ, ∀j ∈ [k].273

Note that the first summand in the right-hand side of (SM3.5) satisfies274

A2
clean = ∥βtj − β⋆j ∥22 − 2µ⟨∇βj

ℓclean(βt),βtj − β⋆j ⟩+ µ2∥∇βj
ℓclean(βt)∥22.275276

Therefore, it follows from (SM3.2) and (SM3.3) that277

A2
clean ≤

∥∥βtj − β⋆j
∥∥2
2
− 4µ

γ

(
1

16

)1+ζ−1

π1+ζ−1

min

∥βtj − β⋆j ∥22 −
1

10k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

278

+ µ2C1

(πmax + π
2(1+ζ−1)
min

)∥∥βtj − β⋆j
∥∥2
2
+

π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

279

=

(
1− 4

γ

(
1

16

)1+ζ−1

µπ1+ζ−1

min + C1µ
2
(
πmax + π

2(1+ζ−1)
min

))
∥βtj − β⋆j ∥22280

+

 2
γ

(
1
16

)1+ζ−1

µπ1+ζ−1

min

5k
+

C1µ
2π

2(1+ζ−1)
min

k2

 ∑
j′∗:j′ ̸=j

∥∥vtj,j − v⋆j,j′
∥∥2
2
.(SM3.7)281

282

We set the step size µ to be283

(SM3.8) µ =
ωπ1+ζ−1

min

τ
284

where ω is a constant that will be specified later and τ is given by285

(SM3.9) τ := πmax + π
2(1+ζ−1)
min .286

Putting the choices of µ and τ respectively by (SM3.8) and (SM3.9) into (SM3.7) yields287

(SM3.10)

A2
clean ≤

1−
4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
+

C1ω
2π

2(1+ζ−1)
min

(
πmax + π

2(1+ζ−1)
min

)
τ2

 ∥βtj − β⋆j ∥22

+

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τk
+

C1ω
2π

4(1+ζ−1)
min

τ2k2

 ∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

≤

1−
4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
+

C1ω
2π

2(1+ζ−1)
min

τ

 ∥βtj − β⋆j ∥22

+

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τ
+

C1w
2π

2(1+ζ−1)
min

τ

 max
1≤j ̸=j′≤k

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
.

288
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Next, since βt ∈ N (β⋆), by the definition of N (β⋆) in (2.12), we have289

(SM3.11) max
j∈[k]

∥βtj − β⋆j ∥2 ≤ κρ.290

Furthermore, by Lemma SM2.4, we also have291

(SM3.12) max
1≤j ̸=j′≤k

∥∥vtj,j′ − v⋆j,j′
∥∥
2
≤ 2κρ.292

Then plugging in (SM3.11) and (SM3.12) into (SM3.10) yields293

(SM3.13)

(κρ)−2A2
clean ≤ 1−

π
2(1+ζ−1)
min ω

τ

(
2

γ

(
1

16

)1+ζ−1 (
2− 4

5

)
+ C1ω (1 + 4)

)

≤ 1−
π
2(1+ζ−1)
min

τ
· ω

 12
γ

(
1
16

)1+ζ−1

5
+ 5ωC1


≤ 1−

π
2(1+ζ−1)
min

τ
· ω

 12
γ

(
1
16

)1+ζ−1

5


︸ ︷︷ ︸

c0

,

294

which is rewritten as295

(SM3.14) A2
clean ≤ (κρ)2

(
1−

c0ωπ
2(1+ζ−1)
min

τ

)
.296

For fixed γ and ζ, c0 is a positive numerical constant. Due to the choice of τ by (SM3.9), we297

have298

π
2(1+ζ−1)
min

τ
=

π
2(1+ζ−1)
min

πmax + π
2(1+ζ−1)
min

< 1,299

Furthermore, one can choose ω > 0 sufficiently small so that ωc0 < 1. Then the upper bound300

in the right-hand side of (SM3.14) is valid as a positive number.301

If Anoise is upper-bounded as302

(SM3.15) Anoise ≤ κρ
c0ωπ

2(1+ζ−1)
min

2τ
,303

then, by the elementary inequality 1 −
√
1− α ≥ α/2 that holds for any α ∈ (0, 1), we have304

(SM3.16) Anoise ≤ κρ

1−

√
1−

c0ωπ
2(1+ζ−1)
min

τ

 .305

Then (SM3.14) and (SM3.16) yield (SM3.6). Therefore, it suffices to show that (SM3.15)306

holds.307
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Due to the inequality in (SM3.4), we have308

∥∥∇βj
ℓnoise(βt)

∥∥
2
≲

σ
√
kd log(n/d) + log(1/δ)√

n
, ∀j ∈ [k].309

By the choice of µ in (SM3.8), we obtain an upper bound on Anoise given by310

(SM3.17) Anoise = µ
∥∥∇βj

ℓnoise(βt)
∥∥
2
≲

ωπ1+ζ−1

min

τ
·
σ
√

kd log(n/d) + log(1/δ)√
n

.311

The condition in (2.15) implies312

(SM3.18) n ≥ C ·
σ2π

−2(1+ζ−1)
min (kd log(n/d) + log(1/δ))

κ2ρ2
.313

One can choose the absolute constant C > 0 in (2.15) and (SM3.18) as large enough so that314

(SM3.18) and (SM3.17) imply (SM3.15). This completes the induction argument in Step 1.315

316

Step 2: Next we show that all iterates also satisfy317

∥∥βt+1 − β⋆
∥∥
2
≤

√
1− ν

∥∥βt − β⋆
∥∥
2
+ C ′µσ

√
k (kd log(n/d) + log(1/δ))

n
.(SM3.19)318

319

We use the fact that βt ∈ N (β⋆), which has been shown in Step 1. By the update rule of320

gradient descent and the triangle inequality, the left-hand side of (SM3.19) satisfies321

∥βt+1 − β⋆∥2 = ∥βt − µ∇βℓ(β
t)− β⋆∥2322

≤ ∥βt − µ∇βℓ
clean(βt)− β⋆∥2 + µ∥∇βℓ

noise(βt)∥2323

=

√√√√ k∑
j=1

∥βtj − β⋆j − µ∇βj
ℓclean(βt)∥22︸ ︷︷ ︸

Bclean

+

√√√√µ2

k∑
j=1

∥∇βj
ℓnoise(βt)∥22︸ ︷︷ ︸

Bnoise

.(SM3.20)324

325

Below we derive an upper bound on each of the summands on the right-hand side of (SM3.20).326

First we show that327

B2
clean ≤ (1− ν)

k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.(SM3.21)328

329

Since βt ∈ N (β⋆), the inequality in (SM3.21) holds if there exist constants µ, λ ∈ (0, 1) such330

that331

(SM3.22)
k∑
j=1

⟨∇βj
ℓclean(βt),βj − β⋆j ⟩ ≥

µ

2

k∑
j=1

∥∇βj
ℓclean(βt)∥22 +

λ

2

k∑
j=1

∥βtj − β⋆j ∥22, ∀βt ∈ N (β⋆).332
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Indeed, the condition in (SM3.22) and βt ∈ N (β⋆) imply333

B2
clean =

k∑
j=1

∥βtj − µ∇βj
ℓclean(βt)− β⋆j ∥22334

=
k∑
j=1

∥βtj − β⋆j ∥22 +
k∑
j=1

µ2∥∇βj
ℓclean(βt)∥22 − 2µ

k∑
j=1

⟨βtj − β⋆j ,∇βj
ℓclean(βt)⟩335

≤
k∑
j=1

∥βtj − β⋆j ∥22 − µλ
k∑
j=1

∥βtj − β⋆j ∥22336

= (1− µλ)
k∑
j=1

∥βtj − β⋆j ∥22.(SM3.23)337

338

Next we show that (SM3.22) holds. Due to (SM3.2) and the elementary inequality ∥a +339

b∥22 ≤ 2∥a∥22 + 2∥b∥22, it holds for all j ∈ [k] that340

(SM3.24)

⟨∇βj
ℓclean(βt),βtj − β⋆j ⟩

≥ 2

γ

(
1

16

)1+ζ−1

π1+ζ−1

min

∥βtj − β⋆j ∥22 −
1

5k

∑
j′:j′ ̸=j

(∥∥βtj − β⋆j
∥∥2
2
+
∥∥βtj′ − β⋆j′

∥∥2
2

) .
341

By taking the summation of (SM3.24) over j ∈ [k], we obtain342

k∑
j=1

⟨∇βj
ℓclean(βt),βtj − β⋆j ⟩ ≥

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5

k∑
j=1

∥βtj − β⋆j ∥22.(SM3.25)343

344

Furthermore, by using (SM3.3) and the elementary inequality ∥a+b∥22 ≤ 2∥a∥22+2∥b∥22 again,345

we obtain346

(SM3.26)

∥∇βj
ℓclean(βt)∥22 ≤ C1

(
πmax + π

2(1+ζ−1)
min

)
∥βtj − β⋆j ∥22

+
2C1π

2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

(
∥βtj − β⋆j

∥∥2
2
+
∥∥βtj′ − β⋆j′∥22

)
.

347

Summing the equation in (SM3.26) over j ∈ [k] yields348

(SM3.27)
k∑
j=1

∥∇βj
ℓclean(βt)∥22 ≤ C1

(
πmax + π

2(1+ζ−1)
min +

4(k − 1)π
2(1+ζ−1)
min

k2

)
k∑
j=1

∥∥βtj − β⋆j
∥∥2
2

≤ C1

(
πmax + π

2(1+ζ−1)
min + 4π

2(1+ζ−1)
min

) k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.

349
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By combining (SM3.25) and (SM3.27) with µ as in (SM3.8), we obtain a sufficient condition350

for (SM3.22) given by351

(SM3.28)

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5
≥

ωπ1+ζ−1

min C1

(
πmax + 5π

2(1+ζ−1)
min

)
2
(
πmax + π

2(1+ζ−1)
min

) +
λ

2
.352

By choosing ω > 0 small enough, (SM3.28) is satisfied when λ is chosen as353

(SM3.29) λ = min(c2π
1+ζ−1

min , 1)354

for an absolute constant c2 > 0. Hence, we have shown that the condition in (SM3.22) holds355

with µ and λ specified by (SM3.8) and (SM3.29).356

Next we consider the second summand on the right-hand side of (SM3.20). The inequality357

in (SM3.4) implies358

B2
noise = µ2

k∑
j=1

∥∥∇βj
ℓnoise(βt)

∥∥2
2
≲

µ2σ2k(kd log(n/d) + log(1/δ))

n
.(SM3.30)359

360

Finally, plugging in (SM3.23) and (SM3.30) into (SM3.20) provides the assertion (SM3.19).361

This completes the proof of Step 2.362

363

Step 3: We finish the proof of Theorem 2.1 by applying the results in Step 1 and Step 2.364

Plugging in the expression of ν = µλ with µ and λ as in (SM3.8) and (SM3.29) provides365

∥βt − β⋆∥2 ≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
µσ

1−
√
1− µλ

·
√

k (kd log(n/d) + log(1/δ))

n
366

(a)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
2σ

λ
·
√

k (kd log(n/d) + log(1/δ))

n
367

(b)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 ·
σ

πmax
·
√

k (kd log(n/d) + log(1/δ))

n
368

(c)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 · σk
√

k (kd log(n/d) + log(1/δ))

n
,369

370

where (a) follows from the elementary inequality
√
1− t < 1− t/2 for any t ∈ (0, 1); (b) holds371

by the choice of τ in (SM3.9); (c) holds since π−1
max ≤ k.372

SM3.1. Proof of Lemma SM3.1. We show that each of (SM3.2), (SM3.3), and (SM3.4)373

holds with probability at least 1 − δ/3. We also note that for simplicity, we proceed on the374

proofs using β and vj,j′ . Therefore, the assertions in (SM3.2), (SM3.3), and (SM3.4) can be375

completed by substituting β and vj,j′ with βt and vtj,j′ respectively.376

Proof of (SM3.2): We show that (SM3.2) holds with high probability under the following377

condition378

(SM3.31) n ≥ C1 (log(k/δ) ∨ d log(n/d)) k4π
−4(1+ζ−1)
min ,379
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which is implied by the assumption in (2.15). We proceed with the proof under the following380

three events, each of which holds with probability at least 1 − δ/9. First, since (SM3.31)381

implies (SM2.13), by Lemma SM2.7, it holds with probability at least 1 − δ/9 that382

(SM3.32)

1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,v⋆j,j′⟩2

≤ 2

5γk

(πmin

16

)1+ζ−1 ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22, ∀j ∈ [k], ∀β ∈ N (β⋆), ∀β⋆ ∈ Rd+1.

383

Moreover, since (SM3.31) also implies (SM2.7), by Lemma SM2.6, it holds with probability384

at least 1− δ/3 that385

(SM3.33)
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j } ≥

πmin

4
, ∀j ∈ [k], ∀β ∈ N (β⋆), ∀β⋆ ∈ Rd+1.386

Lastly, since (SM3.31) is a sufficient condition to invoke Lemma SM2.3 with α = πmin/4, it387

holds with probability at least 1 − δ/9 that388

(SM3.34) inf
I⊂[n]:|I|≥πminn

4

λd+1

(
1

n

∑
i∈I

ξiξ
⊤
i

)
≥ 2

γ

(πmin

16

)1+ζ−1

.389

Therefore, we have shown that (SM3.32), (SM3.33), and (SM3.34) hold with probability at390

least 1 − δ/3. The remainder of the proof is conditioned on the event that {ξi}ni=1 satisfy391

(SM3.32), (SM3.33), and (SM3.34).392

Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. For brevity, we will use the393

shorthand notation hj := βj − β⋆j . Then the left-hand side of (SM3.2) is rewritten as394

⟨∇βj
ℓclean(β),hj⟩ =

1

n

n∑
i=1

1{xi∈Cj}

(
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
⟨ξi,hj⟩395

=
1

n

k∑
j′=1

n∑
i=1

1{xi∈Cj∩C⋆
j }⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩396

=
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j }⟨ξi,hj⟩

2 +
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩.397

398

By the inequality of arithmetic and geometric means, we have399

⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩ = ⟨ξi,βj − β⋆j + β⋆j − β⋆j′⟩⟨ξi,hj⟩400

= ⟨ξi,hj + v⋆j,j′⟩⟨ξi,hj⟩401

≥ ⟨ξi,hj⟩2

2
−

⟨ξi,v⋆j,j′⟩2

2
≥ −

⟨ξi,v⋆j,j′⟩2

2
.402

403
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Therefore, we obtain404

⟨∇βj
ℓclean(β),hj⟩ ≥

1

n

n∑
i=1

1{xi∈Cj∩C⋆
j }⟨ξi,hj⟩

2

︸ ︷︷ ︸
(∗)

− 1

2n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,v⋆j,j′⟩2︸ ︷︷ ︸
(∗∗)

.

(SM3.35)

405

406

By (SM3.33) and (SM3.34), the first summand in the right-hand side of (SM3.35) is bounded407

from below as408

(SM3.36) (∗) ≥ 2

γ

(πmin

16

)1+ζ−1

∥hj∥22.409

Moreover, due to (SM3.32), (∗∗) is bounded from above as410

(SM3.37) (∗∗) ≤ 1

5γk

(πmin

16

)1+ζ−1 ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22.411

Then, plugging in (SM3.36) and (SM3.37) into (SM3.35) provides412

⟨∇βj
ℓ(β),hj⟩

≥ 2

γ

(πmin

16

)1+ζ−1

∥hj∥22 −
1

5γ

(
1

16

)1+ζ−1
(
π1+ζ−1

min

k

) ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22

=
2

γ

(πmin

16

)1+ζ−1

∥hj∥22 −
1

10k

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

 .

413

This completes the proof.414

415

Proof of (SM3.3): The proof is based on the condition416

(SM3.38) n ≥ C2 (log(k/δ) ∨ d log(n/d)) k4π
−4(1+ζ−1)
min ,417

which is implied by (2.15). We will proceed under the following four events, each of which holds418

with probability at least 1− δ/12. First, since (SM3.38) implies (SM2.13), by Lemma SM2.7,419

(SM3.32) holds with probability at least 1 − δ/12. Next, since
(
C⋆j
)k
j=1

are included in the420

set of intersection of k half-spaces in Rd, by Corollary SM1.7 and (SM3.38), it holds with421

probability at least 1− δ/12 that422

(SM3.39)
1

n

n∑
i=1

1{xi∈C⋆
j } ≤ 2P

(
x ∈ C⋆j

)
, ∀j ∈ [k].423

We also consider the event given by424

(SM3.40)
n∑
i=1

1{xi∈Cj∩C⋆
j } ≤ 2nc

(
π
2(1+ζ−1)
min

k2

)
, ∀j ̸= j′, ∀β ∈ N (β⋆)425
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for some numerical constant c ∈ (0, 1). Note that (SM3.38) is a sufficient condition to invoke426

Lemma SM2.7 with probability at least 1−δ/12. Therefore, all intermediate steps in the proof427

of Lemma SM2.7 hold. In particular, due to the inclusion argument in (SM2.15), xi ∈ Cj ∩C⋆j′428

implies ξi = [xi; 1] ∈ Svj,j′ ,v
⋆
j,j′

for any j ̸= j′, where Svj,j′ ,v
⋆
j,j′

is defined in (SM2.17). Then,429

(SM2.21) with α as in (SM2.20) implies (SM3.40). The last event is defined by430

(SM3.41)

max
I⊂[n]

|I|≤2αn

λmax

(
1

n

∑
i∈I

ξiξ
T
i

)
≤ C4(η

2 ∨ 1)
√
α, ∀α ∈

{
cπ

2(1+ζ−1)
min

k2

}
∪
{
P(x ∈ C⋆j )

}k
j=1

.431

By (SM3.38), Lemma SM2.1, and the union bound over j ∈ [k], (SM3.41) holds with prob-432

ability at least 1 − δ/12. Thus far we have shown that (SM3.32), (SM3.39), (SM3.40), and433

(SM3.41) hold with probability at least 1 − δ/3. We proceed conditioned on the event that434

{ξi}ni=1 satisfy these conditions.435

Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. Then the partial gradient of436

ℓclean(β) with respect to the jth block βj ∈ Rd+1 of β ∈ Rk(d+1) is written as437

∇βj
ℓclean(β) =

1

n

n∑
i=1

1{xi∈Cj}

(
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
ξi438

=
1

n

∑
j′∈[k]

n∑
i=1

1{xi∈Cj∩C⋆
j′}
(
⟨ξi,βj⟩ − ⟨ξi,β⋆j′⟩

)
ξi439

=
1

n

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,βj − β⋆j ⟩ξi +
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,βj − β⋆j′⟩ξi.(SM3.42)440

441

By using the identity ⟨ξi,βj − β⋆j′⟩ = ⟨ξi,βj − β⋆j + β⋆j − β⋆j′⟩, (SM3.42) is rewritten as442

(SM3.43)

∇βj
ℓclean(β) =

1

n

n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi +
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩ξi.443
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Then it follows from (SM3.43) that444 ∥∥∥∇βj
ℓclean(β)

∥∥∥2
2

445

(i)

≤ 2

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∥ 1n
∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩ξi

∥∥∥∥∥∥
2

2

446

(ii)

≤ 2 ·

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}ξiξ
⊤
i

∥∥∥∥∥ · 1n
n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2447

+ 2 ·
∑
j′:j′ ̸=j

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj∩C}ξiξ
⊤
i

∥∥∥∥∥ · 1n
n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩2448

≤ 2 ·

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}ξiξ
⊤
i

∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

·∥βj − β⋆j ∥22449

+ 2 · max
j′:j′ ̸=j

∥∥∥∥∥ 1n
n∑
i=1

1{xiCj∩C⋆
j′}

ξiξ
⊤
i

∥∥∥∥∥︸ ︷︷ ︸
(b)

· 1
n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩2︸ ︷︷ ︸
(c)

,

(SM3.44)

450

451

where (i) holds since ∥a + b∥22 ≤ 2∥a∥22 + 2∥b∥22 and (ii) holds since Cj ∩ C⋆l and Cj ∩ C⋆l′ are452

disjoint for any l ̸= l′ ∈ [k]. An upper bound on (b) is provided by (SM3.32). It remains to453

derive upper bounds on (a) and (c).454

First, we derive an upper bound on (a). By the triangle inequality, we have455

(SM3.45)
√

(a) ≤
k∑

j′=1

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆
j′}

ξiξ
T
i

∥∥∥∥∥ .456

For the summand indexed by j′ = j, due to the set inclusion Cj ∩ C⋆j ⊂ C⋆j , we obtain that457

n∑
i=1

1{xi∈Cj∩C⋆
j }ξiξ

T
i ⪯

n∑
i=1

1{xi∈C⋆
j }ξiξ

T
i .458

459

Therefore, by (SM3.39) and (SM3.41), we have460

(SM3.46)

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈C⋆
j }ξiξ

T
i

∥∥∥∥∥ ≤ max
I:|I|≤2nP(x∈C⋆

j )

∥∥∥∥∥ 1n∑
i∈I

ξiξ
T
i

∥∥∥∥∥
≲ (η2 ∨ 1)

√
P(x ∈ C⋆j )

≤ (η2 ∨ 1)
√
πmax,

461
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where the last inequality holds by the definition of πmax. Similarly, by (SM3.40) and (SM3.41),462

we have463

(SM3.47)

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆
j′}

ξiξ
T
i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
c

(
π1+ζ−1

min

k

)
, ∀j′ ̸= j.464

Then by plugging in (SM3.46) and (SM3.47) to (SM3.45), we obtain465

(a) ≲
(
πmax + π

2(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2

466

for an absolute constant C1. Finally, since an upper bound on (b) is given by (SM3.47),467

plugging in the obtained upper bounds to (SM3.44) provides the assertion.468

469

Proof of (SM3.4): By the variational characterization of the Euclidean norm and the470

triangle inequality, we have471

∥∥∇βj
ℓnoise(β)

∥∥
2
= sup

[u; w]∈Bd+1
2

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}(⟨xi,u⟩+ w)

∣∣∣∣∣472

≤ sup
u∈Bp

2

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}⟨xi,u⟩

∣∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
|w|≤1

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}w

∣∣∣∣∣︸ ︷︷ ︸
(B)

,(SM3.48)473

474

where Bd
2 denotes the unit ball in ℓd2. Note that (A) and (B) depend on β only through Cj ,475

which are determined by β according to (2.4). For any β and any j ∈ [k], the corresponding476

Cj is given as the intersection of up to k affine spaces. Therefore, it suffices to maximize477 ∥∥∇βj
ℓnoise(β)

∥∥
2
over Cj ∈ Pk−1 for a fixed j, where Pk−1 is defined in the statement of478

Lemma SM1.6.479

We proceed under the event that the following inequalities hold:480

(SM3.49)

∥∥∥∥∥ 1n
n∑
i=1

xix
T
i

∥∥∥∥∥ ≤ 1 + ϵ481

and482

(SM3.50)

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Cj} − P(x ∈ Cj)

∣∣∣∣∣ ≤ ϵ, ∀Cj ∈ Pk−1483

for some constant ϵ, which we specify later. The remainder of the proof is given conditioned484

on (xi)
n
i=1 satisfying (SM3.49) and (SM3.50).485

First, we derive an upper bound on (A) in (SM3.48). Note that (A) corresponds to the486

supremum of the random process487

Zu :=
1

n

n∑
i=1

zi1{xi∈Cj}⟨xi,u⟩488
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over u ∈ Bp
2 . The sub-Gaussian increment satisfies489

∥Zu − Zu′∥ψ2 ≲
σ√
n

√√√√ 1

n

n∑
i=1

1{xi∈Cj}⟨xi,u− u′⟩2490

≤ σ√
n

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}xix
T
i

∥∥∥∥∥
1/2

· ∥u− u′∥2491

≤ σ√
n

∥∥∥∥∥ 1n
n∑
i=1

xix
T
i

∥∥∥∥∥
1/2

· ∥u− u′∥2492

≤ σ
√
1 + ϵ√
n

· ∥u− u′∥2,493
494

where the third step follows from the inequality495 ∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}xix
T
i

∥∥∥∥∥ ≤

∥∥∥∥∥ 1n
n∑
i=1

xix
T
i

∥∥∥∥∥ ,496

which holds deterministically, and the last step follows from (SM3.49). Then, by applying a497

version of Dudley’s inequality [SM11, Theorem 8.1.6], we obtain that498

P

(
sup
u∈Bp

2

|Zu| >
C1σ

√
1 + ϵ√
n

(∫ ∞

0

√
logN(Bp

2 , ∥·∥2, η)dη +
√
log(1/δ)

))
≤ δ.499

By the elementary upper bound on the covering number N(Bp
2 , ∥·∥2, η) ≤ (3/η)p (e.g. see500

[SM11, Example 8.1.11]) and the definition of (A) in (SM3.48), we have501

(SM3.51) (A) ≲

√
σ2(1 + ϵ)(d+ log(1/δ))

n
,502

holds with probability 1 − δ/3. Then we apply the union bound over Cj ∈ Pk−1. It follows503

from (SM1.1) that504

sup
Cj∈Pk−1

(A) ≲

√
σ2(1 + ϵ)(log(1/δ) + kd log(n/d))

n
505

holds with probability 1 − δ/9.506

Next we derive an upper bound on (B) in (SM3.48). Note that (B) is rewritten as the507

absolute value of508

ϱ =
1

n

n∑
i=1

zi1{xi∈Cj}.509

Conditioned on (xi)
n
i=1 satisfying (SM3.50), ϱ is a sub-Gaussian random variable that satisfies510

Eϱ = 0 and511

Eϱ2 =
σ2

n
·

(
1

n

n∑
i=1

1{xi∈Cj}

)
≤ σ2(P(x ∈ Cj) + ϵ)

n
.512
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The standard sub-Gaussian tail bound implies513

P

(
|ϱ| >

√
C2σ2(P(x ∈ Cj) + ϵ) log(1/δ)

n

)
≤ δ.514

By taking the union bound over Cj ∈ Pk−1 and utilizing the inequality in (SM1.1), we obtain515

that516

sup
Cj∈Pk−1

(B) ≲

√
σ2(P(x ∈ Cj) + ϵ) (kd log(n/d) + log(1/δ))

n
517

≤
√

σ2(1 + ϵ) (kd log(n/d) + log(1/δ))

n
(SM3.52)518

519

holds with probability 1 − δ/9.520

Finally it remains to show that (SM3.49) and (SM3.50) hold with probability 1 − δ/3 for521

ϵ satisfying522

ϵ ≲

√
kp(log(n/d) + log(1/δ))

n
.523

This is obtained as a direct consequence of Lemmas SM1.1 and SM1.3. One can choose the524

absolute constant C in (2.15) large enough so that ϵ < 1. Then the parameter ϵ in (SM3.51)525

and (SM3.52) will be dropped. This completes the proof.526

SM4. Proof of Theorem 3.1. The proof will be similar to that for Theorem 2.1. We will527

focus on the distinction due to the modification of the algorithm with random sampling. The528

partial subgradient in the update for the mini-batch stochastic gradient descent algorithm is529

given by530

1

m

∑
i∈It

∇βl
ℓi(β

t) =
1

m

∑
i∈It

1{xi∈Cl}

(
max
j∈[k]

⟨ξi,βtj⟩ −max
j∈[k]

⟨ξi,β⋆j ⟩
)
ξi︸ ︷︷ ︸

∇βl
ℓcleani (βt)

− 1

m

∑
i∈It

zi1{xi∈Cl}ξi︸ ︷︷ ︸
∇βl

ℓnoisei (βt)

,531

where C1, . . . , Ck are determined by βt as in (2.4).532

As shown in Section SM3, (2.15) invokes Lemma SM3.1 and hence (SM3.2) holds with533

probability 1 − δ/3. Next, we show that under the condition (2.15), the statements of the534

following lemma hold with probability 1 − 2δ/3. The proof is provided in Appendix SM4.1.535

Lemma SM4.1. Suppose that the hypothesis of Theorem 3.1 holds. If (2.15) is satisfied,536

then the following statement holds with probability at least 1 − 2δ/3: For all j ∈ [k], β⋆ ∈537

Rk(d+1), and βt ∈ N (β⋆), we have538

(SM4.1)

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓcleani (βt)

∥∥∥∥∥
2

2

≲

(
1 ∨ d+ log(n/δ)

m

)(√πmax + π1+ζ−1

min

)∥∥βtj − β⋆j
∥∥2
2
+

π1+ζ−1

min

k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

 ,

539
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and540

(SM4.2) EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2

2

≲ σ2

(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
.541

Then we show that the assertion of the theorem follows from (SM3.2), (SM4.1), and542

(SM4.2) via the following three steps.543

544

Step 1: We show that every iterate remains within the neighborhood N (β⋆) by the induction545

argument. Therefore, we illustrate that if we suppose βt ∈ N (β⋆) holds for a fixed t ∈ N,546

we show βt+1 ∈ N (β⋆) in expectation. By the update rule of SGD with batch size m, the547

triangle inequality gives548

EIt∥βt+1
j − β⋆j ∥2 ≤ EIt

∥∥∥∥∥βtj − µ
1

m

∑
i∈It

∇βj
ℓcleani (βt)− β⋆j

∥∥∥∥∥
2︸ ︷︷ ︸

Aclean

+µEIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2︸ ︷︷ ︸

Anoise

.

(SM4.3)

549

550

We will show that551

(SM4.4) EIt∥βt+1
j − β⋆j ∥2 ≤ Aclean +Anoise ≤ κρ, ∀j ∈ [k].552

By applying Jensen’s inequality, we can obtain an upper-bound Aclean in (SM4.3):553

A2
clean ≤ EIt

∥∥∥∥∥βtj − µ · 1

m

∑
i∈It

∇βj
ℓcleani (βt)− β⋆j

∥∥∥∥∥
2

2

554

= ∥βtj − β⋆j ∥22 − 2µEIt

〈
1

m

∑
i∈It

∇βj
ℓcleani (βt),βtj − β⋆j

〉
+ µ2EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓi(β

t)

∥∥∥∥∥
2

2

.

(SM4.5)

555

556

Due to the expectation, the second term in (SM4.5) simplifies to557

(SM4.6) EIt

〈
1

m

∑
i∈It

∇βj
ℓcleani (βt),βtj − β⋆j

〉
= ⟨∇βj

ℓclean(βt),βtj − β⋆j ⟩,558

where ∇βj
ℓclean(βt) is defined in (SM3.1). Then, (SM3.2) gives a lower bound on (SM4.6).559

Furthermore, an upper bound on the third term in (SM4.5) is given by (SM4.1). Putting the560
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bounds (SM3.2) and (SM4.1) in (SM4.5) provides561

A2
clean ≤562 (
1− 4

γ

(
1

16

)1+ζ−1

µπ1+ζ−1

min + C1µ
2

(
1 ∨ d+ log(n/δ)

m

)(√
πmax + π1+ζ−1

min

))
∥βtj − β⋆j ∥22563

+

 2
γ

(
1
16

1+ζ−1
)
µπ1+ζ−1

min

5k
+ C1

(
1 ∨ d+ log(n/δ)

m

)
µ2π1+ζ−1

min

k

 ∑
j′∗:j′ ̸=j

∥∥vtj,j − v⋆j,j′
∥∥2
2
.

(SM4.7)

564

565

Let us choose the step size µ following566

(SM4.8) µ =
ωπ1+ζ−1

min

τ
·
(
1 ∧ m

d+ log(n/δ)

)
567

for a numerical constant ω, which we specify later, and τ defined as568

(SM4.9) τ :=
√
πmax + π1+ζ−1

min .569

Taking µ by (SM4.8) and τ by (SM4.9) in (SM4.7) yields570

(SM4.10)
A2

clean

≤

(
1−

(
1 ∧ m

d+ log(n/δ)

)
· 4

γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
−

C1ω
2π

2(1+ζ−1)
min

(√
πmax + π1+ζ−1

min

)
τ2

)∥βtj − β⋆j ∥22

+

(
1 ∧ m

d+ log(n/δ)

)
·

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τk
+

C1ω
2π

3(1+ζ−1)
min

τ2k

 ∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

≤

1−
(
1 ∧ m

d+ log(n/δ)

)
·

 4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
−

C1ω
2π

2(1+ζ−1)
min

τ

 ∥βtj − β⋆j ∥22

+

(
1 ∧ m

d+ log(n/δ)

)
·

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τ
+

C1ω
2π

2(1+ζ−1)
min

τ

max
j ̸=j′

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
.

571

Due to βt ∈ N (β⋆) defined in (2.12), we have (SM3.11) and (SM3.12) by Lemma SM2.4.572
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Inserting (SM3.11) and (SM3.12) into (SM4.10) gives573

(κρ)−2A2
clean ≤ 1−

π
2(1+ζ−1)
min ω

τ

(
1 ∧ m

d+ log(n/δ)

)(
4

γ

(
1

16

)1+ζ−1 (
1− 2

5

)
+ C1ω (1 + 4)

)
574

= 1−
π
2(1+ζ−1)
min ω

τ

(
1 ∧ m

d+ log(n/δ)

) 12
γ

(
1
16

)1+ζ−1

5
+ 5ωC1

575

≤ 1−
c0ωπ

2(1+ζ−1)
min

τ

(
1 ∧ m

d+ log(n/δ)

)
,(SM4.11)576

577

where c0 is the numerical constant defined in (SM3.13). We represent (SM4.11) as578

(SM4.12) A2
clean ≤ (κρ)2

(
1−

c0ωπ
2(1+ζ−1)
min

τ
·
(
1 ∧ m

d+ log(n/δ)

))
.579

We note that by (SM3.13), c0 is a positive absolute constant given γ and ζ. On the other580

hand, the choice of τ in (SM4.9) provides a bound581

π
2(1+ζ−1)
min

τ
=

π
2(1+ζ−1)
min√

πmax + π1+ζ−1

min

< 1.582

Since (1 ∧m/(d+ log(n/δ)) < 1, one can set ω > 0 such that ωc0 < 1, which makes the upper583

bound in the right-hand side of (SM4.12) a positive scalar belonging in (0, 1).584

By following the arguments in (SM3.15) and (SM3.16), if585

(SM4.13) Anoise ≤ κρ

(
c0ωπ

2(1+ζ−1)
min

2τ

)(
1 ∧ m

d+ log(n/δ)

)
586

holds, we have587

(SM4.14) Anoise ≤ κρ

1−

√
1−

c0ωπ
2(1+ζ−1)
min

τ

(
1 ∧ m

d+ log(n/δ)

) .588

Since the upper bounds (SM4.12) and (SM4.14) satisfies (SM4.4) it suffices to show (SM4.13).589

By (SM4.2), we have590 √√√√EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2

2

≲ σ

√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
591

for all j ∈ [k]. After applying Jensen’s inequality, we consider the choice of µ given in (SM4.8).592

Then, we have593

(SM4.15)

Anoise = µEIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2

≤ µ

√√√√EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2

2

≲

σωπ1+ζ−1

min

τ

(
1 ∧ m

d+ log(n/δ)

)√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
.

594
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Since (2.15) implies (SM3.18), we can choose a sufficiently large absolute constant C > 0 in595

(SM3.18) such that (SM3.18) and (SM4.15) result in (SM4.13). We complete the proof of596

induction argument in Step 1.597

Step 2: In this step, we show that every iterate obeys598

(SM4.16)

EIt
∥∥βt+1 − β⋆

∥∥
2
≤

√
1− ν

∥∥βt − β⋆
∥∥
2
+ C ′µσ

√
k ·

(√
d+ log(n/δ)

m
∨
√

kd log(n/d) + log(1/δ)

n

)
.

599

In Step 1, we showed βt ∈ N (β⋆). By following the argument (SM4.3), we have600

(SM4.17)

EIt∥βt+1 − β⋆∥2 ≤ EIt

∥∥∥∥∥βt − µ
1

m

∑
i∈It

∇βℓ
clean
i (βt)− β⋆

∥∥∥∥∥
2

+ EIt

∥∥∥∥∥ 1

m

∑
i∈I

∇βℓ
noise
i (βt)

∥∥∥∥∥
2

≤

√√√√EIt

∥∥∥∥∥βt − µ
1

m

∑
i∈It

∇βℓ
clean
i (βt)− β⋆

∥∥∥∥∥
2

2︸ ︷︷ ︸
Bclean

+

√√√√EIt

∥∥∥∥∥ 1

m

∑
i∈I

∇βℓ
noise
i (βt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Bnoise

,
601

where the last inequality holds by the Jensen’s inequality. We first show an upper bound on602

Bclean in (SM4.17):603

B2
clean ≤ (1− ν)

k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.(SM4.18)604

605

By following the argument in (SM3.23), (SM4.18) holds if there exist constants µ, λ ∈ (0, 1)606

such that for all βt ∈ N (β⋆),607

(SM4.19)

k∑
j=1

EIt

〈
1

m

∑
i∈It

∇βj
ℓcleani (βt),βtj − β⋆j

〉

≥ µ

2

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓcleani (βt)

∥∥∥∥∥
2

2

+
λ

2

k∑
j=1

∥βtj − β⋆j ∥22.

608

Hence, we show (SM4.19).First, since (SM3.2) holds, (SM3.25) holds. Also, the left-hand side609

in (SM4.19) can be computed as (SM4.6). Thus, by (SM4.6) and (SM3.25), we obtain a lower610

bound on the left-hand side of (SM4.19):611

k∑
j=1

EIt

〈
1

m

∑
i∈It

∇βj
ℓcleani (βt),βtj − β⋆j

〉
≥

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5

k∑
j=1

∥βtj − β⋆j ∥22.(SM4.20)612

613

Furthermore, to obtain an upper bound on first term in the right-hand side of (SM4.19),614
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applying (SM4.1) with the elementary inequality ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22 provides615

(SM4.21)

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓcleani (βt)

∥∥∥∥∥
2

2

≤ C1

(
1 ∨ d+ log(n/δ)

m

)((√
πmax + π1+ζ−1

min

)
∥βtj − β⋆j ∥22

+
2π1+ζ−1

min

k

∑
j′:j′ ̸=j

(
∥βtj − β⋆j

∥∥2
2
+
∥∥βtj′ − β⋆j′∥22

))
.

616

Taking summation on (SM4.21) over j ∈ [k] yields617

(SM4.22)

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓcleani (βt)

∥∥∥∥∥
2

2

≤ C1

(
1 ∨ d+ log(n/δ)

m

)(√
πmax + π1+ζ−1

min + 4π1+ζ−1

min

) k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.

618

Putting the bounds (SM4.20) and (SM4.22) in (SM4.19) with µ chosen in (SM4.8), we have619

a sufficient condition for (SM4.19):620

(SM4.23)

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5
≥

ωπ1+ζ−1

min C1

(√
πmax + 5π1+ζ−1

min

)
2
(√

πmax + π1+ζ−1

min

) +
λ

2
.621

(SM4.23) is satisfied when we choose ω > 0 small enough and λ as in (SM3.29). Hence, we622

have shown (SM4.18) with ν = µλ where µ and λ are chosen by (SM4.8) and (SM3.29).623

Next, we bound Bnoise in (SM4.17). By (SM4.2), we obtain an upper bound on Bnoise:624

(SM4.24)

B2
noise = µ2

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βj
ℓnoisei (βt)

∥∥∥∥∥
2

2

≲ kµ2σ2

(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
.

625

Finally, putting (SM4.18) and (SM4.24) in (SM4.17) gives (SM4.16). We complete the proof626

of Step 2.627

628

Step 3: We finish the proof of Theorem 3.1 using the results demonstrated in Step 1 and Step629

2. By substituting the expression ν = µλ , where we choose µ and λ according to (SM4.8)630
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and (SM3.29) respectively, into (SM4.16), we obtain631

EIt∥βt − β⋆∥2632

(1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
µσ

1−
√
1− µλ

·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
633

(a)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
2σ

λ
·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
634

(b)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 ·
σ

πmax
·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
635

(c)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 · σk ·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
,636

637

where i) (a) follows from the inequality
√
1− t < −t/2 + 1 for any t ∈ (0, 1); ii) (b) holds by638

the choice of τ in (SM4.9); iii) (c) is a result of π−1
max ≤ k.639

SM4.1. Proof of Lemma SM4.1. We will show that both (SM4.1) and (SM4.2) hold with640

probability at least 1−δ/3. Furthermore, for simplicity, we proceed on the proofs using β and641

vj,j′ instead of using βt and vtj,j′ in the statements of Lemma SM4.1. Thus, we complete the642

assertions in (SM4.1) and (SM4.2) by substituting β and vj,j′ with βt and vtj,j′ respectively.643

Proof of (SM4.1): We show that with high probability, (SM4.1) holds if644

(SM4.25) n ≥ C1 (log(k/δ) ∨ d log(n/d)) k4π
−4(1+ζ−1)
min ,645

Note that (2.15) is a sufficient condition for (SM4.25). We proceed with the proof under the646

following six events, each of which holds with probability at least 1−δ/18. First, by the proof647

of (SM3.3) in Subsection SM3.1, (SM4.25) is a sufficient condition to invoke (SM3.3) with648

probability at least 1−δ/18. Next, by following the argument for (SM3.39), (SM4.25) is a suf-649

ficient condition to invoke (SM3.39) with probability at least 1−δ/18. Furthermore, (SM4.25)650

implies (SM2.13) and is a sufficient condition to invoke Lemma SM2.7 and Lemma SM2.1 with651

probability at least 1 − δ/18 respectively. Hence, by following the arguments for (SM3.40),652

(SM3.41), and (SM3.32), (SM3.40), (SM3.41), and (SM3.32) hold with probability at least653

1− δ/18 respectively. The last event is defined as654

(SM4.26) max
i∈[n]

∥ξiξT
i ∥ ≲ d+ log(n/δ).655

By Lemma SM1.1 and the union bound over i ∈ [n], (SM4.26) holds with probability at least656

1− δ/18.657

Since we showed that (SM3.3), (SM3.39), (SM3.40), (SM3.41), (SM3.32), and (SM4.26)658

hold with probability at least 1 − δ/3, we will move forward with the remainder of the proof659

by assuming those conditions are satisfied.660
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Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. By the argument in [SM7,661

Equation 7], we decompose662

(SM4.27) EI

∥∥∥∥∥ 1

m

∑
i∈I

∇βj
ℓcleani (β)

∥∥∥∥∥
2

2

=
1

m
Ei1

∥∥∥∇βj
ℓcleani1 (β)

∥∥∥2
2︸ ︷︷ ︸

(A)

+
m− 1

m
∥∇βj

ℓclean(β)∥22︸ ︷︷ ︸
(B)

,663

where we define I := {i1, . . . , im} ⊂ [n] and ∇βj
ℓclean(β) in (SM3.1).664

Note that (SM3.3) gives an upper bound on (B):665

(SM4.28)

(B) ≲
m− 1

m

(πmax + π
2(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2
+

π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

 .666

It remains to show the bound on (A). By following arguments (SM3.43), we decompose667

∇βj
ℓcleani (β) following668

(SM4.29)

∇βj
ℓcleani (β) = 1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi +

∑
j′:j′ ̸=j

1{
xi∈Cj∩C⋆

j′

}⟨ξi,β⋆j − β⋆j′⟩ξi, ∀i ∈ [n].669

Then it follows from (SM4.29) that for any i ∈ [n],670 ∥∥∥∇βj
ℓcleani (β)

∥∥∥2
2

671

(i)

≤ 2
∥∥∥1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi

∥∥∥2
2
+ 2

∥∥∥∥∥∥
∑
j′:j′ ̸=j

1{
xi∈Cj∩C⋆

j′

}⟨ξi,β⋆j − β⋆j′⟩ξi

∥∥∥∥∥∥
2

2

672

(ii)
= 2 ·

∥∥∥ξiξ⊤i ∥∥∥1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2 + 2 ·
∥∥∥ξiξ⊤i ∥∥∥ · ∑

j′:j′ ̸=j
1{

xi∈Cj∩C⋆
j′

}⟨ξi,β⋆j − β⋆j′⟩2673

(iii)

≲ (d+ log(n/δ)) ·

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2 +
∑
j′:j′ ̸=j

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩2
 ,(SM4.30)674

675

where (i) holds due to ∥a + b∥22 ≤ 2∥a∥22 + 2∥b∥22; (ii) holds since Cj ∩ C⋆l and Cj ∩ C⋆l′ are676

disjoint for any l ̸= l′ ∈ [k]; and (iii) holds by (SM4.26).677

Applying the expectation on (SM4.30) yields678

(SM4.31)

Ei1
∥∥∇βj

ℓi1(β)
∥∥2
2
≲

(d+ log(n/δ)) ·


1

n

n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2︸ ︷︷ ︸
(a)

+
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆
j′}

⟨ξi,β⋆j − β⋆j′⟩2︸ ︷︷ ︸
(b)

 .
679
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An upper bound on (b) is provided by (SM3.32). It remains to derive an upper bound on (a).680

The triangle inequality provides681

(SM4.32) (a) ≤
k∑

j′=1

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆
j′}

ξiξ
T
i

∥∥∥∥∥ · ∥∥βj − β⋆j
∥∥2
2

682

For the summand indexed by j′ = j, the set inclusion, Cj ∩ C⋆j ⊆ C⋆j yields683

n∑
i=1

1{xi∈Cj∩C⋆
j }ξiξ

T
i ⪯

n∑
i=1

1{xi∈C⋆
j }ξiξ

T
i .684

685

Therefore, by (SM3.39) and (SM3.41), we have686

(SM4.33)

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈C⋆
j }ξiξ

T
i

∥∥∥∥∥ ≤ max
I:|I|≤2nP(x∈C⋆

j )

∥∥∥∥∥ 1n∑
i∈I

ξiξ
T
i

∥∥∥∥∥
≲ (η2 ∨ 1)

√
P(x ∈ C⋆j )

≤ (η2 ∨ 1)
√
πmax,

687

where the last inequality holds by the definition of πmax. Similarly, by (SM3.40) and (SM3.41),688

we have689

(SM4.34)

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆
j′}

ξiξ
T
i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
c

(
π1+ζ−1

min

k

)
, ∀j′ ̸= j.690

Then by plugging in (SM4.33) and (SM4.34) into (SM4.32), we obtain691

(a) ≲
(√

πmax + π1+ζ−1

min

)∥∥βj − β⋆j
∥∥2
2
.692

Finally, applying obtained upper bounds on (a) and (b) in (SM4.31) gives693

(SM4.35)

(A) ≲
(d+ log(n/δ))

m

(√πmax + π
(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2
+

π
(1+ζ−1)
min

k

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

 .694

Putting (SM4.28) and (SM4.35) in (SM4.27) completes the proof.695

Proof of (SM4.2): We proceed with the proof under the following three events, each of696

which holds with probability at least 1 − δ/9. First, (2.15) invokes (SM3.4) with probability697

at least 1 − δ/9. Next, by following the same argument in the proof of (SM4.1), (SM4.26)698

holds with probability at least 1 − δ/9. The last event is the following:699

(SM4.36)
1

n

n∑
i=1

z2i ≤ σ2

(
1 +

√
C log(1/δ)

n

)
.700
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Since {zi}ni=1 are i.i.d σ-sub-Gaussian random variables, the Bernstein’s inequality yields that701

(SM4.36) holds with probability at least 1 − δ/9.702

We have shown that (SM3.4), (SM4.26), and (SM4.36) hold with probability at least703

1− δ/3. For the remainder of the proof, we assume that those conditions are satisfied.704

Then, by the argument in [SM7, Equation 7], we decompose705

(SM4.37) EI

∥∥∥∥∥ 1

m

∑
i∈I

∇βj
ℓnoisei (β)

∥∥∥∥∥
2

2

=
1

m
Ei1
∥∥∇βj

ℓnoisei1 (β)
∥∥2
2︸ ︷︷ ︸

(A)

+
m− 1

m
∥∇βj

ℓnoise(β)∥22︸ ︷︷ ︸
(B)

,706

where we define I := {i1, . . . , im} ⊂ [n] and ∇βj
ℓnoise(β) in (SM3.1).707

(SM3.4) gives an upper bound on (B):708

(SM4.38) (B) ≲
σ2kd log(n/d) + log(k/δ)

n
.709

The remaining step is to obtain a bound on (A). Since we have710 ∥∥∇βj
ℓnoisei1 (β)

∥∥2
2
≤ ∥zi1ξi1∥22 ≤ ∥ξi1ξT

i1∥z
2
i1≲d+ log(n/δ)z2i1 ,711

where the last inequality holds by (SM4.26), applying the expectation and (SM4.36) gives an712

upper bound on (A):713

(SM4.39)

(A) ≲
1

n

n∑
i=1

z2i

(
d+ log(n/δ)

m

)
≲ σ2

(
1 ∨

(
log(1/δ)

n

)1/2
)(

d+ log(n/δ)

m

)
≤ σ2

(
d+ log(n/δ)

m

)
,

714

where the last inequality hold by (2.15). Putting the results (SM4.38) and (SM4.39) into715

(SM4.37) reduces to (SM4.2).716

SM5. Discussion on the proofs of [SM5, Theorem 1] and [SM4, Theorem 1]. In the717

proof of [SM5, Theorem 1], they claimed that n ≳ δ−2 implies [SM5, Equation (45)]. They718

showed that [SM5, Equation (45)] follows from [SM5, Lemmas 10 and 11]. Their [SM5,719

Lemma 10] presents the concentration of the supremum of an empirical measure via the VC720

dimension and [SM5, Lemma 11] computes an upper bound on the VC dimension of the feasible721

set of the maximization. According to their proof argument, the number of observations n722

should be proportional to the VC dimension d log(n/d) to obtain the concentration in [SM5,723

Equation (45)]. Their sufficient condition n ≳ δ−2 for [SM5, Equation (45)] missed the724

dependence on the VC dimension. We suspect that this is a typo. While it does not ruin725

their main result, the sample complexity in [SM5, Theorem 1] might need to be corrected726

accordingly. Specifically, between [SM5, Equation (32) and (33)], the parameter δ in [SM5,727

Lemma 6] was set to δ = Ck−2π6
min to upper-bound the second summand in the right-hand728

side of [SM5, Equation (32)]. Therefore, the corrected sample complexity of [SM5, Lemma 6]729

increases to Õ(k4dπ−12
min ) so that it dominates the sample complexity for part (b) in [SM5,730
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Proposition 1] (n ≳ kdπ−3
min). Consequently, the sample complexity in [SM5, Theorem 1] will731

increase by a factor k3π−9
min.732

Next, we report another mistake in their analysis under the generalized covariate model733

[SM4, Theorem 1]. They mistakenly omitted the dependence of σ in the sample complexity.734

A careful examination of their proof on page 48 in [SM3] will reveal that they use the same735

technique as in their other analysis in the Gaussian covariates case [SM5]. Therefore, we736

expect that their sample complexity should depend on the noise variance σ2 to ensure that737

the next iterate belongs to the local neighborhood of the ground truth (refer to the proof of738

their Theorem 1 on page 1865 in [SM5]).739

x740
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