Max-Affine Regression via first-order methods*

Seonho Kim' and Kiryung Leef

Abstract. We consider regression of a max-affine model that produces a piecewise linear model by combining
affine models via the max function. The max-affine model ubiquitously arises in applications in
signal processing and statistics including multiclass classification, auction problems, and convex re-
gression. It also generalizes phase retrieval and learning rectifier linear unit activation functions. We
present a non-asymptotic convergence analysis of gradient descent (GD) and mini-batch stochastic
gradient descent (SGD) for max-affine regression when the model is observed at random locations
following the sub-Gaussianity and an anti-concentration with additive sub-Gaussian noise. Under
these assumptions, a suitably initialized GD and SGD converge linearly to a neighborhood of the
ground truth specified by the corresponding error bound. We provide numerical results that corrob-
orate the theoretical findings. Importantly, SGD not only converges faster in run time with fewer
observations than alternating minimization and GD in the noiseless scenario but also outperforms
them in low-sample scenarios with noise.
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1. Introduction. The maz-affine model combines k affine models in the form of

* *
(1.1) yf?éz[ié](((a:,aﬂ—}—bj)
to produce a piecewise-linear mutivariate functions, where & and y respectively denote the
covariate and the response, and [k] denotes the set {1,..., k}. The max-affine model frequently
arises in applications of statistics, machine learning, economics, and signal processing. For
example, the max-affine model has been adopted for multiclass classification problems [7, 9]
and simple auction problems [31, 34].

We consider a regression of the max-affine model in (1.1) via least squares

n

2
(1.2) min S Z <yz - mz{za:((mi, 0;) + bj)>

{ojvbj}§:1 2n i=1 S

from statistical observations {(x;,y;)}"; potentially corrupted with noise. A suite of numer-
ical methods has been proposed to solve the nonconvex optimization in (1.2) (e.g., [30, 42, 19,
1]). The least-squares partition algorithm [30] iteratively refines the parameter estimate by al-
ternating between the partition and the least-squares steps when the number of affine models
k is known a priori. The partitioning step classifies the inputs 1, ..., x, with respect to the
maximizing affine models given estimated model parameters. The least-squares step updates
the parameters for each affine model by using the corresponding observations. Later varia-
tions of the alternating minimization algorithm used an adaptive search for unknown & [19, 1].
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2 SEONHO KIM AND KIRYUNG LEE

The consistency of these estimators has been derived. In more recent papers, Ghosh et al.
[12, 13, 14] established finite-sample analysis of the alternating minimization (AM) estimator
[30] for the special case when the observations are generated from a ground-truth model. One
can interpret their analysis through the lens of the popular teacher-student framework [29].
This framework has been widely adopted in statistical mechanics [29, 10] and machine learning
[49, 15, 48, 22]. Tt provides a theoretical understanding of how a specific model is trained and
generalized through a ground-truth generative model [22]. In this framework, a max-affine
model (student) is trained by data generated from a ground-truth max-affine model (teacher)
from k fixed affine models. By using the provided data, the student model recovers param-
eters that produce the ground-truth model via AM. Since the max affine model is invariant
under the permutation of the component affine models, the minimizer to (1.2) is determined
only up to the corresponding equivalence class. Ghosh et al. [14] established a finite-sample
analysis of AM under the standard Gaussian covariate assumption with independent stochas-
tic noise. They showed that a suitably initialized alternating minimization converges linearly
to a consistent estimate of the ground-truth parameters along with a non-asymptotic error
bound. Moreover, they proposed and analyzed a spectral method that provides the desired
initialization. They also further extended the theory to a generalized scenario with relaxed
assumptions on the covariate model [12, 13].

In this paper, we present analogous theoretical and numerical results on max-affine regres-
sion by first-order methods including gradient descent (GD) and stochastic gradient descent
(SGD). The first-order methods have been widely used to solve various nonlinear least squares
problems in machine learning [16, 11, 39, 24]. We observe that GD and SGD also perform
competitively on max-affine regression compared to AM. In particular, SGD converges signif-
icantly faster (in run time) than AM in a noise-free scenario. Figure 1 compares AM, GD,
and a mini-batch SGD on random 50 trials of max-affine regression where the ground-truth
parameter vectors {,6';}5: | are selected randomly from the unit sphere. Covariates are inde-

pendently generated from either Normal(0, I50) or Unif[—+/3,1/3]95%0. We plot the median
of relative errors versus the average run time where the relative error is calculated as

k k
min log;q Z 1Br(j) — /3]*“%/2 183115
j=1 Jj=1

m€Perm([k])

with Perm([k]) and {Bj ?:1 denoting the set of all possible permutations over [k] and the
estimated parameters, respectively. Our main result provides a theoretical analysis of SGD
that explains this empirical observation.

1.1. Main results. We derive convergence analyses of GD and mini-batch SGD under the
same covariate and noise assumptions in the previous work on AM by Ghosh et al. [12]. They
assumed that covariates @1, ..., x, are independent copies of a random vector x that satisfies
the sub-Gaussianity and anti-concentration defined below.

Assumption 1.1 (Sub-Gaussianity). The covariate distribution satisfies

v, 2)[ly, <n, VoesSTT

This manuscript is for review purposes only.



~

-~
at

76

(i
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

FIRST-ORDER MAX-AFFINE REGRESSION 3

2 2
— AM —AM
—GD —GD
1 — Minibatch-SGD (m=512) L —Minibaich-SGD (m=512)
= =
=] o
50 G 0
5] 5]
£ 2
=1 E-1
O Q
& &
2 -2
-3 3 ‘ ‘ ‘ |
0 5 10 15 0 5 10 15 20 25
time(s) time(s)
(a) Gaussian covariates (b) Uniform covariates

Figure 1: Convergence of estimators for noise-free max-affine regression (k = 3, d = 500, and
n = 8,000).

where || - ||y, and ST denote the sub-Gaussian norm (i.e., see [/4, Equation 2.13]) and the
unit sphere in Kg, respectively.

Assumption 1.2 (Anti-concentration). The covariate distribution satisfies

sup  P(((v,) +w)® <€) < (y€)°, Ve>0.
weR,veSI—1

The class of covariate distributions by Assumptions 1.1 and 1.2 generalizes the standard
independent and identically distributed Gaussian distribution. For example, the uniform and
beta distributions satisfy Assumptions 1.1 and 1.2. Therefore, the theoretical result under
this relaxed covariate model will apply to a wider range of applications. They also assumed
that observations are corrupted with independent additive o-sub-Gaussian noise.

This paper establishes the first theoretical analysis of GD and mini-batch SGD for max-
affine regression. The following pseudo-theorem demonstrates that GD shows a local linear
convergence under the above assumptions.

Theorem 1.3 (Informal). Let B* € [Rf(dﬂ) denote the column vector that collects all ground-
truth parameters (07,07)en)- Given O(Ca+kd(k3 V %)) observations, a suitably initialized
GD for maz-affine regression converges linearly to an estimate of B* with fa-error scaling
as 5(0k:2«/d/n), where Cg« is a constant that implicitly depends on k through B* but is

independent of d.

The error bound by this theorem improves upon the best-known result on max-affine
regression achieved by AM [12, Theorem 2]. The error bound for AM is larger by a factor
that grows at least as k=126 We also present an analogous analysis for SGD. A specification
for the noise-free observation scenario is stated as follows.

Theorem 1.4 (Informal). A suitably initialized mini-batch SGD for maz-affine regression
with O(Cﬁ*kgd) noise-free observations converges linearly to the ground truth B* for any
batch size.
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4 SEONHO KIM AND KIRYUNG LEE

The per-iteration cost of a mini-batch SGD with batch size m is O(kmd), which is sig-
nificantly lower than those for GD O(knd) and of AM O(knd?). This implies the faster
convergence of SGD in run time shown in Figure 1. We also observe that SGD empirically
recovers the ground-truth parameters from fewer observations (see Figures 2 and 3).

1.2. Related Work. Relation to phase retrieval and ReLU regression: The max-
affine model includes well-known models in signal processing and machine learning as special
cases. The instance of (1.1) for & = 2 with b7 = b5 = 0 and 6] = —65 = 6* reduces to
y = |(x,0%)|, which corresponds to a measurement model in phase retrieval. Similarly, the
rectified linear unit (ReLU) y = max((x, 8*),0) is written in the form of (1.1) for k = 2 with

T =0 and 05 = 6*. A series of studies in [47, 38, 41, 40, 45, 25, 46, 43] has developed a
statistical analysis of GD and SGD for phase retrieval and ReLU regression. It has been shown
that for the noiseless case, GD and SGD converge linearly to a near-optimal estimate of the
ground-truth parameters when the number of observations grows linearly with the ambient
dimension d. In the context of bounded noise, GD converges to the ground truth within a
radius determined by the noise level [47, 45]. However, it remained an open question whether
GD is consistent under stochastic noise assumptions. Additionally, SGD in the presence of
noise has not been thoroughly investigated yet. The main results of this paper address these
questions on phase retrieval as a special case of max-affine regression.

Relation to convex regression: The max-affine model has also been adopted in parametric
approaches to convex regression [30, 19, 18, 3, 1, 2, 36, 37, 35]. Let fy : R? — R be an arbitrary
convex function. The observations are given by {(x;,v;)}l"; where y; = f.(x;) for all i in [n].
The nonparametric convex regression problem aims to estimate f, by solving

n
1.3 min i — f(x:))?,
(13) in 30— /(@)
where F.yx denotes the set of convex functions. Since f exists in the space of continuous
real-valued functions on RP, the optimization problem in (1.3) is infinite-dimensional. A line
of research [5, 3, 37] investigated the interpolation approach with a max-affine model in the
form of

(1.4) flx) = max (yi + g (® — x;)) .

It provides a perfect interpolation of data {(z;,y;)}~; with zero training error. For example,
the interpolation is achieved by choosing g; € Jf.(x;) for all i € [n]. It has been show
that the least squares estimator provides near-optimal generalization bounds relative to a
matching minimax bound [28, 17, 1, 18, 27]. However, the minimax bound for the parametric
model in (1.4) decays slowly due to the curse of dimensionality for a set of max affine with n
segments. The least squares for the model in (1.4) is formulated as a quadratic program (QP)
[5, Section 6.5.5]. However, off-the-shelf interior-point methods do not scale to large instances
of this QP due to the high computational cost O(d*n%) [30, 19].

The k-max-affine model in (1.1) is considered as an alternative compact parametriza-
tion to approximate convex regression. The worst-case error in approximating d-variate Lip-
schtiz convex functions on a bounded domain by a k-max-affine model decays as O(k~%/¢)

This manuscript is for review purposes only.
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FIRST-ORDER MAX-AFFINE REGRESSION 5

[1, Lemma 5.2]. However, data in practical applications such as aircraft wing design, wage
prediction, and pricing stock options are often well approximated by the k-max-affine model
with small k (e.g., [19, Section 6], [1, Section 7]). Unlike the interpolation approach to convex
regression, if the compact model fits data in applications, the estimation error decays much
faster in n.

Max-linear regression in the presence of deterministic noise: A special instance of
(1.1) with b5 = 0 for j € [k] is called the max-linear model. A convex optimization method to
max-linear regression obtained with an initial estimate has been studied under the standard
Gaussian covariate assumption and deterministic noise [26]. They empirically showed that
the convex estimator outperforms the existing methods in the presence of outliers.

1.3. Organizations and Notations. The rest of the paper is organized as follows: Sec-
tion 2 formulates the least squares estimator for max-affine regression, describes the GD
algorithm and presents the convergence analysis of GD. Section 3 describes a mini-batch SGD
for max-affine regression and provides its convergence analysis. Section 4 presents numerical
results to compare the empirical performance of GD, SGD, and AM for max-affine regression.
Finally, Section 5 summarizes the contributions and discusses future directions.

Boldface lowercase letters denote column vectors, and boldface capital letters denote ma-
trices. The concatenation of two column vectors a and b is denoted by [a; b]. The subvector of
a € R4 with the first d entries will be denoted by (a);.4. Various norms are used throughout
the paper. We use || - ||, || - [|F, || - [|2, and || - ||, to denote the spectral norm, Frobenius norm,
Fuclidean norm, and sub-Gaussian norm respectively. Moreover, Bg and S%! will denote the
d-dimensional unit ball and unit sphere with respect to the Euclidean norm. For two scalars
q and d, we write ¢ < p if there exists an absolute constant C' > 0 such that ¢ < Cp. We use
C,Cq,Cy,... and ¢, cq,co,... to denote absolute constants that may vary from line to line.
We adopt the big-O notation so that ¢ < p is alternatively written as ¢ = O(p). With a tilde
on top of O, we ignore logarithmic factors. For brevity, the shorthand notation [n| denotes
the set {1,...,n} for n € N. Moreover, a Vb and a A b will denote max(a,b) and min(a, b) for
a,beR.

2. Convergence analysis of gradient descent. We first formulate the least squares es-
timator for max-affine regression and derive the gradient descent algorithm. For brevity, let
¢ = [z; 1] € R¥L and B; := [0;; b;] € R¥L. Then the model in (1.1) is rewritten as

(2.1) y = max(§, B37) + noise.
JElk]

The least squares estimator minimizes the quadratic loss function given by
1 & 2
(22) B) = 5.3~ (- max(ei )

- 2n P JE[K]

where 3 = [B1; ...; Bi] € RF@HD,
The gradient descent algorithm iteratively updates the estimate by

B =B — uval(s),

This manuscript is for review purposes only.
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6 SEONHO KIM AND KIRYUNG LEE

where > 0 denotes a step size. A generalized gradient [21] of the cost function in (2.2)
with respect to the jth block 3; is written as

1 n
(2.3) Vg t(B) = > Maiees) (max<£ia/8j> - yi) &,
=1 JElk]
where Cy,...,C; are defined by 3 as

(24) ¢ ={weR? : ([w; 1,8 - B) >0, VI <j, ([w; 1],8; - Br) 20, VI > j}.

The set C; contains all inputs maximizing the jth linear model.! Note that each Cj is deter-
mined by k — 1 half spaces given by the pairwise difference of the jth linear model and the
others.

We show that the expression in (2.3) provides a valid generalized gradient of ¢(3) with
respect to 3g. We apply the chain rule on the generalized gradient [21]. The cost function in
(2.2) is the composition g o F' where

and B > F(B) = (fi(B))1, with

fi(B) = |max (8}, &) — yi

, 1€ [n].
JEK] i€l

Since each max-affine function f; is regular at each point of the domain, the equality in [21,
Eq. (5.7)] holds and it characterizes the generalized gradient of ¢ as

1 n

Ve l(B)=— (maxﬁ',i—,)-v <max,8~,z~>.

8.L(B) n; je[k]<g£> Y Be je[k]<]€>

Since a sub-gradient of a convex function is a generalized gradient [6], it suffices to show that
Viz,ec&i is a sub-gradient of the convex function Vg, (maxje[k} (B;,&)). To this end, we

verify that the following inequality holds for all i € [n]:

2.5 max + h,&;), max i i)—max i &) > g h,&), Vhe R
25 max ((B-+h&), max (6,6)) -~ mux (8,6) > Tican (. 6)
Let i € [n] be arbitrarily fixed. First, we consider the case when /¢ is a maximizer in the
max-affine function in (2.1) at &;. Then we have (8¢, &) = max;cpy (85, &) and Vg0, = 1.
Therefore, (2.5) holds since

max <<Be + h, &) ) A <Bj,£¢>> > (Be+ h, &), YheRM

In case of a tie when multiple linear models attain the maximum for a given sample, we assign the sample
to the smallest maximizing index. Since the event of duplicate maximizing indices will happen with probability
0 for any absolutely continuous probability measure on x;s, the choice of a tie-break rule does not affect the
analysis.

This manuscript is for review purposes only.
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Next, we assume that £ is not a maximizer. Then T4 cc,) = 0 and there exists ¢’ € [k] \ {¢}
such that (B, &) = max;cp (B, &) > (Be, &i). Therefore, (2.5) is also satisfied since

max (B + h, &) , (Be, &) > (Be, &), Vh e R
Then the generalized gradient Vgf(3) is obtained by concatenating {Vg,¢(3) }9?:1 by

k
Val(B) = e;® Vg l(B),
j=1

where e; € R* denotes the jth column of the k-by-k identity matrix Iy, for j € [k]. Moreover,
¢(B) is differentiable except on a set of measure zero, with a slight abuse of terminology,
Vgl(B) is referred to as the “gradient”.

Next, we present a convergence analysis of the gradient descent estimator. The analysis
depends on a set of geometric parameters of the ground-truth model. The first parameter
Tmin describes the minimum portion of observations corresponding to the linear model which
achieved the maximum least frequently. It is formally defined as a lower bound on the prob-
ability measure on the smallest partition set, i.e.

(2.6) min P(z € C}) > Tmin,
J€K]
where C7,...,C} are polytopes determined by

(27) Cj* = {w € Rd : <[wa 1]76; _Bl*> > 07 Vi < ja <[wa 1]a16; _Bl*> > 07 vi >]}

The next parameter x quantifies the separation between all pairs of distinct linear models in
(1.1) so that the pairwise distance on two distinct linear models satisfy

(2.8) win 1087)1:a — (B )1:dll2 = &

Next, we present a convergence analysis of the gradient descent estimator. The analysis
depends on a set of geometric parameters of the ground-truth model. The first parameter
Tmin describes the minimum portion of observations corresponding to the linear model which
achieved the maximum least frequently. It is formally defined as a lower bound on the prob-
ability measure on the smallest partition set, i.e.

2.9 in P(x € C7) > Tmin,
(2.9) e (xeC)=m

where C7,...,C} are polytopes determined by
(210)  Cri=fw e R ¢ (fw; 11,8} — Bf) >0, VI <j, ([wi 1,8} - Bf) =0, VI > j}.

The next parameter x quantifies the separation between all pairs of distinct linear models in
(1.1) so that the pairwise distance on two distinct linear models satisfy

(2.11) win 1087)1:a — (B )1:dll2 = &

Our main result in the following theorem presents a local linear convergence of the gradient
descent estimator uniformly over all B* satisfying (2.10) and (2.11).

This manuscript is for review purposes only.
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8 SEONHO KIM AND KIRYUNG LEE

Theorem 2.1. Let 6 € (0,1/e), y; = max;e(&i,B7) + 2 for i € [n] with & = [z;; 1],
and {z}I'_ | being additive o-sub-Gaussian noise independent from everything else. Suppose
that Assumptions 1.1 and 1.2 hold.> Then there exist absolute constants C,C',R > 0, and

€ (0,1), for which the following statement holds with probability at least 1 — ¢: If the initial
estimate B° belongs to a neighborhood of 3* given by

(2.12) N(B*) = {ﬁ e R max |8; — Bjlz < np}
VIS
with
¢CTrHa4¢T ¢t
_ B, ~1/2 k 1

then for all B* satisfying (2.9) and (2.11), the sequence (,Bt)
with a constant step size satisfies

teN by the gradient descent method

" Vk (kdlog(n/d) + log(k/d))

0
210 8- @, <o 8 -8, + o i | wien,
provided that
2
(2.15) n > Cr 20 <k1-5wm§§+4 RAY, ;’p) - (kdlog(n/d) + log(k/5)) .
Proof. See Section SM3. [ |

Theorem 2.1 demonstrates that the GD estimator with a constant step size converges lin-
early to a neighborhood of the ground-truth parameter of radius 9) (a2k4d / n) The number of
sufficient observations to invoke this convergence result scales linearly in d and is proportional
to a polynomial in ﬂ;iln and k. This result implies the consistency of the gradient descent
estimator. To compare Theorem 2.1 to the analogous result for AM under the same covariate
and noise models [13, Theorem 1], we have the following remarks in order.

e First, the final estimation error by (2.14) with ¢ — oo is smaller than that by [13,

Theorem 1] by being independent of Fr;iln, which grows at least proportional to k. A

larger estimation error bound in their result is due to the analysis of the least squares

update, wherein the smallest singular value of the design matrix of each linear model

is utilized. These quantities do not appear in the analysis of the gradient descent
update.

e Second, the convergence parameter v in (2.14) is smaller than 3/4 for AM?, which

might result in a slower convergence of GD in iteration count. The convergence speed

2To simplify the presentation, we assume that the parameters 7, ¢, v in Assumptions 1.1 and 1.2 are fixed
numerical constants in the statement and proof of Theorem 2.1. Therefore, any constant determined only by
1, ¢, v will be treated as a numerical constant.

3 As shown in the proof in Section SM3, the parameter v is given as v = (1 —p)) by (SM3.19). The quantity
p is determined by (SM3.8) and (SM3.29) as a function of min, Tmax, and ¢ so that it decreases in k and
=l

min"*

This manuscript is for review purposes only.
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FIRST-ORDER MAX-AFFINE REGRESSION 9

issue becomes significant for large k and W;iln. For example, in the illustration by
Figure 1, GD shows a slower convergence in run time despite the lower per-iteration
cost O(knd), which is lower than that of AM O(knd?) by a factor of d. However, as
discussed in Section 3, the slow convergence of GD can be improved by modifying the
algorithm into a (mini-batch) SGD.

e Third, the sample complexity results by Theorem 2.1 and [13, Theorem 1] are quali-
tatively comparable. There were mistakes in the proof of [13, Theorem 1]. We think
that their result could be corrected with an increased order of dependence in their
sample complexity on k and myi, (see Section SM5 for a detailed discussion).

e Lastly, regarding the proof technique, we adapt and improve the strategy by Ghosh et
al. [12, 13]. Note that the subgradient of the loss function in (2.3) involves clustering
of covariates with respect to maximizing linear models such as (2.4), which also arises
in alternating minimization. Due to this similarity, key quantities in the analysis have
been estimated in [12, 13]. We provide sharpened estimates via different techniques.
For example, Lemma SM2.3 provides a tighter bound than [12, Lemma 7] by a factor
of ™" for a scalar o € (0, 1).

Theorem 2.1 also provides an auxiliary result. As a direct consequence of Theorem 2.1,
we obtain an upper bound on the prediction error, which is defined by

£(B) = € (maxle.B,) - max<s,,@;>>2 |

JE[K] JE[K]

where ,(/3\ = [Bl; co Bk] denotes the estimated parameter vector by GD. Since the quadratic
cost function in (1.2) is 1-Lipschitz with respect to the ¢5 norm, it follows that the prediction
erTor S(B) is also bounded by O(c2k3d/n) as in (2.14) with ¢ — cc.

A limitation of Theorem 2.1 is that its local convergence analysis requires an initializa-
tion within a specific neighborhood of the ground-truth parameter. To obtain the desired
initial estimate, one may use spectral initialization by [14, Algorithm 2, 3], which consists
of dimensionality reduction followed by a grid search. They provided a performance guaran-
tee of a spectral initialization scheme under the standard Gaussian covariate assumption [14,
Theorems 2 and 3]. Therefore, the reduction of Theorem 2.1 to the Gaussian covariate case
combined with [14, Theorems 2 and 3] provides a global convergence analysis of GD, which
is comparable to that for alternating minimization [14]. Even in this case, the number of
sufficient samples for the success of spectral initialization overwhelms that for the subsequent
gradient descent step. Since multiple steps of their analysis critically depend on the Gaussian-
ity, it remains an open question whether the result on the spectral initialization generalizes
to the setting by Assumptions 1.1 and 1.2.

3. Convergence analysis of mini-batch SGD. SGD is an optimization method that up-
dates parameters using a single or a small batch of randomly selected data point(s) instead
of the entire dataset. SGD converges faster in run time than GD due to its significantly lower
per-iteration cost. In particular, when applied to max-affine regression, SGD empirically out-
performs GD and AM in both sample complexity and convergence speed (see Figures 1 to 3).
In this section, we present an accompanying theoretical convergence analysis of mini-batch
SGD for max-affine regression. The update rule of a mini-batch SGD with batch size m for

This manuscript is for review purposes only.
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max-affine regression is described as follows. For each iteration index ¢ € N, let I; be a multi-
set of m randomly selected indices with replacement so that the entries of I; are independent
copies of a uniform random variable in [n]. A mini-batch SGD iteratively updates the estimate
by
1
B =B = > Vali(B),
i€l
where
1 2
; = — | y; — max{(&;, 3, , 1€ |n].
18) = (w-maxten8)) . ich

Then the following theorem presents a local linear convergence of SGD.

Theorem 3.1. Under the hypothesis of Theorem 2.1, there exist absolute constants C,C" >
0 and c,v € (0,1), for which the following statement holds with probability at least 1 — §:
For all B* satisfying (2.10) and (2.11), if the initial estimate B° belongs to N'(B*) defined in
(2.12), n satisfies (2.15), and m satisfies

g

2
(3.1) m>C- <) - (d + log(k/9)),

Kp

then the sequence (ﬂt)teN by the mini-batch SGD with batch size m and step size p =
c(1Am/(d+log(n/d))) satisfies

Emw—wmgQ_QAwwgwﬁyﬁH@_ﬁm
N C/Uk\/<d+ log(n/8) ,, kdlog(n/d) + log(l/é))) e

m n

(3.2)

Proof. See Section SM4. [ ]

Theorem 3.1 establishes linear convergence of mini-batch SGD in expectation to the
ground-truth parameters within error O(o?k? (d/m V kd/n)). The local linear convergence
applies uniformly over all 8* satisfying (2.10) and (2.11). In general, the convergence rate
of SGD is much slower even with strong convexity [33, 4, 20]. However, in a special case
where the cost function is in the form of Y | £;(3), smooth, and strongly convex, if 3* is the
minimizer of all summands {¢;(3)}"_,, then SGD converges linearly to 8* [32, Theorem 2.1].
The convergence analysis in Theorem 3.1 can be considered along with this result. The cost
function in (2.2) in the noiseless case satisfies the desired properties locally near the ground
truth, whence establishes the local linear convergence of SGD.

Theorem 3.1 also explains how the batch size m affects the final estimation error by (3.2)
with ¢ — co. Let n and m satisfy (2.15) and (3.1) so that Theorem 3.1 is invoked. Under
this condition, one can still choose m and n so that m < n/k. Then the O(o?k?d/m) term
determined by the batch size m dominates the final estimation error. In this regime, the
SGD estimator is not consistent since the estimation error O(0?k?d/m) does not vanish with
increasing n. This result implies the trade-off between the convergence speed and the final
estimation error determined by the batch size.

This manuscript is for review purposes only.



339

340
341

w
\V]

343

344
345
346
347
348
349
350

w
—

w

\V]

w
w

w

w W

BN

w

w
gt Ot Ov Ot Ot gt gt Ut Ot
[08) ot w

,.
NeJ

360
361
362
363
364
365
366
367
368
369
370

FIRST-ORDER MAX-AFFINE REGRESSION 11

Furthermore, since the condition on m in (3.1) becomes trivial when o = 0, we obtain a
stronger result in the noiseless case given by the following corollary.

Corollary 3.2. Let 4,8 € (0,1), and € > 0 fized. Suppose that the hypothesis of Theorem 3.1
holds. If t > (log(1/e) + log(1/6)) (1 v %(”/5)) 1/v, then

18" = B*||, < €llB® — B2

holds with probability at least 1 — & — d'.

Proof. By Theorem 3.1, (3.2) holds with probability at least 1 —§. By applying Markov’s
inequality, we have

t
m
e8 -l _ (1= (1 amdem) V) _
P ([8° = B, = ellB° = B*ll2) < — < <d,
9= 57l = U7 B71l) < o ], e
where the second and third inequalities hold by (3.2) and assumption on ¢ respectively. W

Corollary 3.2 presents the convergence of SGD with high probability, which is stronger
than the convergence in expectation. Furthermore, there is no requirement on the batch size
in invoking Corollary 3.2. This result is analogous to the recent theoretical analysis of phase
retrieval by randomized Kaczmarz [41] and SGD [40].

4. Numerical results. We study the empirical performance of GD and mini-batch SGD
for max-affine regression. The performance of these first-order methods is compared to AM
[14]. All of these algorithms start from the spectral initialization by Ghosh et al. [14]. We use a
constant step size 0.5 for GD. The step size for SGD is set to M adaptive to the batch size.
According to our covariate assumptions in Assumption 1.1 and Assumption 1.2, we consider
the following two scenarios; The first scenario involves Gaussian covariates, where x1,..., X,
are generated as independent samples from a random vector following Normal(0,I;). The
other scenario involves a uniform distribution, where x1,...,x, are generated as independent
samples from a random vector following Unif[—+/3,1/3]®?, which is also considered in the
numerical setting in [12]. We use spectral initialization for the Gaussian covariate model [12],
while for the uniform distribution case, we apply the multiple-restart random initialization
method [1].

First, we observe the performance of the three estimators for the exact parameter recovery
in the noiseless case. In this experiment, the ground-truth parameters 07, ..., ; are generated
as k random pairwise orthogonal vectors with k < d, and the offset terms are set to 0, i.e.,
b; = 0 for all j € [k]. By the construction, the probability assigned to the maximizer set
of each linear model will be approximately % In other words, the parameters mpa.x and
Tmin Of the ground truth concentrate around % where Ty is defined in (2.9) and mpax =
max;ex] P(x € C;) Furthermore, due to the orthogonality, the pairwise distance satisfies

107 — 0% |2 = V2 for all j # j' € [k]. Consequently, the sample complexity results for GD and

SGD by Theorem 2.1 and Theorem 3.1 simplify to an easy-to-interpret expression 6(k16d)
that involves only k£ and d for both Gaussian and uniform distribution scenarios. The sample
complexity result on AM [12] simplifies similarly.
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(a) Gaussian covariate

Figures 2a and 3a illustrate the empirical phase transition by the three estimators through
Monte Carlo simulations under the Gaussian covariate model. The median and the 90th
percentile of 50 random trials are displayed. In these figures, the transition occurs when
the sample size n becomes larger than a threshold that depends on the ambient dimension d
and the number of linear models k. Figure 2a shows that the threshold for both estimators
increases linearly with d for fixed k. This observation is consistent with the sample complexity
by Theorem 2.1 and Theorem 3.1. A complementary view is presented in Figure 3a for varying
k and fixed d. The thresholds in Figure 3a for GD and SGD are almost linear in & when
d is fixed to 50, which scales slower than the corresponding sample complexity results in
Theorem 2.1 and Theorem 3.1. A similar discrepancy between theoretical and empirical phase
transitions has been observed for AM [12, Appendix L]. We also observe that mini-batch SGD

This manuscript 1S for review purposes only.
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Figure 2: Phase transition of estimation error per the number of observations n and the
ambient dimension d in the noiseless case (The number of linear models k and the batch size
m are set to 3 and 64, respectively). The first row and the second row respectively show the
median and the 90th percentile of estimation errors in 50 trials.

outperforms GD and AM with a lower threshold for phase transition. It has been shown that
the inherent random noise in the gradient helps the estimator to escape saddle points or local

minima [23, 8].

This explains why SGD recovers the parameters with fewer samples than

GD. We also note that the relative performance among the three estimators remains similar
in both the median and the 90th percentile. This shows that SGD for noiseless max-affine
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regression does not suffer from a large variance, which corroborates the result in Corollary 3.2.

The phase transition boundaries in Figures 2b and 3b are higher with a larger success
regime relative to the corresponding results in Figures 2a and 3a. Recall that GD/SGD with
the multiple-restart random initialization involves multiple runs of GD/SGD. The performance
improvement is obtained at the cost of higher computational cost proportional to the number
of repetitions.

Figures 4 and 5 study the estimation error by mini-batch SGD under zero-mean Gaussian
noise with standard deviation ¢ = 0.1 in three different scenarios. In Figure 4, we focus
on observing how the batch size m affects the convergence speed and the estimation error.
Figure 4a and Figure 4b consider the scenario where the spectral method provides a poor
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Figure 3: Phase transition of estimation error per number of observations n and number of
linear models k in the noiseless case (The ambient dimension d and mini-batch size m are set
to 50 and 64 respectively). The first row and the second row respectively show the median
and the 90th percentile of estimation errors in 50 trials.

initialization due to a small number of observations. Consequently, GD and AM fail to
provide a low estimation error. In contrast, mini-batch SGD with a small batch size (m = 32
or m = 128) relative to the total number of samples (n = 1,500) converges to a small
estimation error (< 1072). In other words, there exists a trade-off between the convergence
speed and the estimation error determined by the batch size m. SGD with m = 128 converges
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Figure 4: Convergence of estimators for max-affine regression under additive white Gaussian
noise of variance o2 = 0.01 (k = 8 and d = 50). Comparison between Gaussian and Uniform

covariates.

slower to a smaller error than SGD with m = 32. This corroborates the theoretical result in
Theorem 3.1. However, as the batch size m further increases to m = 1,024 close to n = 1, 500,
SGD starts to fail like GD and AM. Again, this phenomenon is explained by the fact that the
noisy gradient in SGD avoids saddle points and local minima efficiently [23, §].

For the Gaussian and uniform covariates, Figure 4c and Figure 4d illustrate the com-
parison in a high-sample regime, where the number of samples is twice larger than that for
Figure 4a and Figure 4b, respectively. In this case, both GD and AM converge to a smaller
error than SGD. Moreover, AM converges faster than the other algorithms in the run time,
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Figure 5: Convergence of estimators for max-affine regression under additive white Gaussian
noise of variance o = 0.01 (k = 3, d = 500, and n = 8,000).

which is explained by the following two reasons. First, as discussed in Section 2, AM converges
faster than GD and SGD in the iteration count with a smaller constant for linear convergence.
Second, due to the small ambient dimension (d = 50), the gain in the per-iteration cost of
SGD O(kmd) over that of AM O(knd?) is not significant.

Lastly, Figure 5, compares the convergence of the estimators in the presence of noise
when d, k, and n are set as in Figure 1. On one hand, SGD converges faster than AM
with a significantly lower per-iteration cost O(kmd) than O(knd?) due to the large ambient
dimension (d = 500) and small batch size (m = 512 compared to n = 8,000). On the other
hand, SGD yields a larger error than the other two estimators. The estimation error bound
of SGD by Theorem 3.1 behaves similarly in this case.

5. Discussion. We have established local convergence analysis of GD and SGD for max-
affine regression under a relaxed covariate model with o-sub-Gaussian noise. The covariate
distribution characterized by the sub-Gaussianity and the anti-concentration generalizes be-
yond the standard Gaussian model. It has been shown that suitably initialized GD and SGD
converge linearly below a non-asymptotic error bound, which is comparable to the analo-
gous result on AM. Notably, when applied to noiseless max-affine regression, SGD empirically
outperforms GD and AM in both sample complexity and convergence speed.

Under a special case of the Gaussian covariate model, the spectral method by Ghosh et al.
[14] can provide the desired initial estimate. It is of great interest to extend their theory on
the spectral method to the relaxed covariate model. Moreover, the extension of the theoretical
result on GD and SGD to robust regression, where a subset of samples is corrupted as outliers,
is also an intriguing future direction.

Acknowledgement. The authors thank Sohail Bahmani for the helpful discussions.
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SUPPLEMENTARY MATERIALS: Max-Affine Regression via first-order
methods*

Seonho Kim' and Kiryung Leef

SM1. Tools. This section collects a set of standard results on concentration inequali-
ties, which will be used in the proofs of Theorem 2.1. The following lemma provides the
concentration of extreme singular values of sub-Gaussian matrices.

Lemma SM1.1 ([SM11, Theorem 4.6.1]).  Let {x;}I", be independent isotropic n-sub-
Gaussian random vectors in R®. Then there exists an absolute constant C > 0 such that

1< T
1=

Remark SM1.2. It has been shown that Lemma SM1.1 continues to hold when x; is sub-
stituted by & = [x;; 1] [SM3]. Indeed, multiplying a random sign to the last coordinate of &;
does not modify the outer product EZEZ-T whereas &; remains a sub-Gaussian vector.

> 1% max(e, 62)> <06 where €= \/C(d + 10g(2/5))‘

n

Furthermore, we also use the results from the standard Vapnik—Chervonenkis (VC) theory
stated in the following lemmas.

Lemma SM1.3 ([SM10, Theorem 2]). Let V be a collection of subsets of a set X and
{z;}_, be n independent copies of a random variable x € X. Then it holds for all ¢ > 0 and
n>2/e that

P | sup
Vey

where Iy (n) denotes the growth function defined by

1 Z liz,evy —PlxeV)| > 6) < 411y (2n) exp(—ne®/16),
i=1

n'_

Hy(n) = max H(ﬂ{w1€V}?"'7ﬂ{wnEV}) Ve V}‘ .

T1,..., nE€X

Lemma SM1.4 ([SM8, Corollary 3.18]). Let V be a collection of subsets having VC dimen-
ston d. Then, for all n > d, the growth function of V is upper-bounded by

Ty (n) < (%)d.

The VC dimension of the k-fold intersection has been known in the literature (e.g. see [SM1]).
We will use the following lemma for the result for the intersection of size two. Since it was
given as an exercise in [SM8], we provide a proof for the sake of completeness.

*Submitted to the editors on March 17, 2024.
Funding: This work was supported in part by NSF CAREER Award CCF 19-43201.
TThe Ohio State University, Columbus, Ohio (kim.7604@osu.edu, kiryung@ece.osu.edu).
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Lemma SM1.5 ([SM8, Equation (3.53)]). Let V and W be collections of subsets of a
common set. Then their intersection given by VOW :={V W :V €V, W € W} satisfies
that

Hymw(n) < Hv(n)Hw(n), Vn € N.

Proof. For any VNW € VNW, we have

(Vzevewys - Hanevawy) = (Mzevys - Hanevy) © (Maews -+ Hanew}) s
where ® denotes the pointwise product. Therefore, the claim follows from the definition of
the growth function. [ |

Lemma SM1.6. Let Py be the collection of all polytopes constructed by the intersection of
k half spaces in R®. Then the growth function of Pj satisfies

on )k(d+1)

(SM1.1) Ilp, (n) < <d+ :

Proof. Let H; be the collection of all half spaces in R? for j € [k]. Then, by the construc-
tion of Py, we have P, = ﬂ?zl’Hj. Therefore, by inductive application of Lemma SM1.5, the
growth function of Py, satisfies

k
(SM1.2) Ip, (n) <[], ().
j=1

Furthermore, since the VC dimensions of half spaces in R% is d +1 (e.g. see [SMS, Section 3]),
Lemma SM1.4 implies

en d+1
M1. 114, < € k).
(M1 w < (725) . viel
The assertion is obtained by plugging in (SM1.3) into (SM1.2). [ ]

Finally, the following corollary is a direct consequence of Lemmas SM1.3, SM1.4, and SM1.5.

Corollary SM1.7. Let § € (0,1) and Py, be the collection of all polytopes constructed by the
intersection of k half-spaces in R%. Suppose that {z;} | are independent copies of a random
vector € R®. Then it holds with probability at least 1 — § that

(SM14)  sup |- S Mgz —Pl@e 2)| < 4\/10g(4/5) + 2k(d + 1) log(2en/(d + 1))
ZEPy, n i—1 n

SM2. Supporting lemmas. In this section, we list lemmas to prove Theorem 2.1. These
lemmas are borrowed from [SM9] and [SM3]. We improve on a subset of these results derived
with a streamlined proof.
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SM2.1. Worst-case extreme eigenvalues of partial sum of outer products of covariates.
A partial sum of the outer products of covariates, D, 7 EiEiT appears frequently in the proof.
The summation indices in Z often depend on covariates. The following lemma by Tan and
Vershynin [SM9] provides a tail bound on the worst-case largest eigenvalue of ), 7 &EZ-T when
the cardinality of Z is bounded from above.

Lemma SM2.1 ([SM9, Theorem 5.7]). Let § € (0,1/e), a € (0,1), and & = [x;,1] € RIH!
for i € [n]. Suppose that Assumption 1.1 holds. Then it holds with probability at least 1 —§
that

sup A\ <Z£Z ><C477 V1)van

Z:|Z|<an ieT

for some absolute constant Cy > 0, provided

(SM2.1) n> <d v W) :

(07

Remark SM2.2. In the original result, Tan and Vershynin assumed that {&;}} ; are iso-
tropic n-sub-Gaussian random vectors [SM9, Theorem 5.7]. Later, Ghosh et al. [SM3] showed
that the result also applies to the setting in Lemma SM2.1 through the following argument.
The outer product £i£iT remains the same as one multiplies a random sign to the last entry
of & which makes the random vector n-sub-Gaussian with 7 = max(n, 1).

Moreover, Ghosh et al. also derived analogous lower tail bound on the smallest eigenvalue
when the index set Z exceeds a threshold [SM3, Lemma 7]. Their proof strategy adopted an
epsilon-net approximation and a union bound argument. Our lemma below, derived by using
the small-ball method [SM6], provides a streamlined proof and a sharper bound.

Lemma SM2.3. Let a,d € (0,1) and &; = [x;, 1] € R fori € [n]. Suppose that Assump-
tion 1.2 holds. Then there exists an absolute constant C' > 0 such that if

(SM2.2) n > Ca~?(dlog(n/d) Vlog(1/6))

then it holds with probability at least 1 — § that

. T 2n o 1+C_1
($M243) e () =2 ()

i€ v

We compare Lemma SM2.3 to the previous result by Ghosh et al. [SM3, Lemma 7] when the
parameter 7y is treated as a fixed constant. They demonstrated that the worst-case minimum
cigenvalue in the left-hand side of (SM2.3) satisfies Q(na!t% ") if n > o~ max(4p, 1 (d+1)).
On one hand, their requirement in the sample complexity is less stringent than that in (SM2.2).
On the other hand, the lower bound in (SM2.3) is tighter than theirs by a factor of a* . When
these two results are applied to derive Theorem 2.1 with a substituted by 7y, the resulting

sample complexity O(r _4(1+<71)d) by Lemma SM2. 3 is smaller than O( _4(1+2C )d) by [SM3,

mln
Lemma 7]. The gain due to Lemma SM2.3 is ﬂ'mif ~, which is no less than k:4< . For example,

if the covariates are Gaussian ¢ = 1/2, then the gain is k5.
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Proof. Let T > 0 be an arbitrarily fixed threshold. If

an

n
(SM2.4) N(v) =) Vgwsry >n—
i=1

then it follows that

1 T

—Z(Ei,wz > %, VI C [n]:|Z] > an.

" 1€
Therefore, it suffices to show that (SM2.4) holds for all v € S¢ with probability 1 — §. Let
#H denote the collection of half-spaces in R? given by {x € R? : ™u > /T — w} for all

v = [u; w] € S Since the VC dimension of all half-spaces in R? is at most d + 1, by Lemmas
SM1.3 and SM1.4, it holds with probability at least 1 — §/2 that

(SM2.5) %N(v) > %[EN(’U) - c'\/ dlog(n/ d)n+ log(1/9) vy ¢ s,

where C’ > 0 is an absolute constant.
Moreover, it follows from Assumption 1.2 that

(SM2.6) %[EN(’U) =P ((@,u) +w> > T) > 1 (Tv)°.

By plugging in (SM2.6) into (SM2.5), we obtain that

lN(v) S (T C,\/dlog(n/d) +log(1/5)’ o e S

n n

Then (SM2.4) is satisfied for all v € S when T = % (%)Ci1 and C = (4C")2. This completes
the proof. u

SM2.2. Local estimates. In this section, we present local tail bounds which arise in
the proof of the main result. The following lemma, obtained as a direct consequence of the
triangle inequality and the definition of x in (2.11), provides a basic inequality that will be
used frequently throughout this section.

Lemma SM2.4. Suppose that B € N(B*), where N (3*) is defined as in (2.12). Then we
have

1(8; = Bjr) = (B = B2 < 201(85 — B )vall2, Vi # 5" € [K]-
Proof. Since B € N(3*), by the triangle inequality, we have

18 = By) = (B} = Bi)ll2 < 11B; = Bjll2 + 18y — By ll2 < 26p, Vi, j" € [K].

Furthermore, it follows from the definition of x in (2.11) that

K < |(Bf — Bj)alle, Vi # 4" € [k].

Then the assertion follows. [ |
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We also use the following lemma by Ghosh et al. [SM3], which is a consequence of Assump-
tions 1.1 and 1.2 respectively for the sub-Gaussianity and anti-concentration.

Lemma SM2.5 ([SM3, Lemma 17]).
1.2. If

Suppose that © € R? satisfies Assumptions 1.1 and

1
lo = "Iz < SlI(v")rall2,

then

P (([z;1],v")* <

qaum—mw%s<<

¢
uv—wm>?k%<wwﬂmm> |
@)l o=l

Intuitively, when the parameter vector 3 belongs to a small neighborhood of the ground-

k
truth, the partition sets (Cj)§:1 by B and (C;) - by the ground-truth @* will be similar.
]:

The next lemmas quantify the empirical measure on the event of = € C; N C;, for distinct
indices j and j’, and quadratic forms given as a partial summation indexed by the indicator

functions on this event.

Lemma SM2.6. Let (Cj)§:1 and (CJ*)

k
J

) be defined as in (2.4) and (2.10) respectively by 3

and B3*. Furthermore, let T be defined as in (2.9) by B*. Suppose that x € R and {z;}7,
satisfy Assumptions 1.1 and 1.2, and that the parameter p of N (B3*) in (2.12) satisfies (2.13)
for some numerical constant R > 0. Then there exists an absolute constant C' such that if

n>Cr 2

min

(SM2.7)

then with probability at least 1 — 0

(SM2.8)

1 n
w2

(kdlog(n/d) Vv log(1/0))

T'min

{wicc;nC;} 2 1

holds for all j € [k], B € N(B*%), and B* € RI*1,

Proof. Note that the left-hand side

of (SM2.8) is an empirical measure on the event

x € C;NC;. We first derive a lower bound on its expectation, which is written as

P(z €CjxeCj)

=P
(SM2.9) = (1

(xeCjlzeCy) P(xel))

—P(xgCleeC)) P(xel)).
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Then, by the construction of (C; )f 1 in (2.4), we have

[FD(:B €C]
Pz ¢

lz € C)
Cjmecy)

IP(ac €Cy)

<wec* 7 2P ((fs 1,850 2 ([ 11,8:), (fs 11, 85) 2 (fw; 11, 55))

J'#J

e 2P (s i) s 1,07,) <0)

J'#j

1 *
< Baea & P (1) 95,)" < (1] vy —j)?).

where the second i

B € N(B*) implies

(SM2.10)

J'#J

*

inequality holds since v; ;; = 3; — 3, and 'v] = B* s and the last
inequality follows from the fact that ab < 0 implies |b] < |a — b[ for a,b € R. Recall that
[vj50 = vF ll2 < 2p[|(v} ;) 1.4ll2 due to Lemma SM2.4. Furthermore, one
can choose the numerical constant R > 0 in (2.13) sufficiently small (but independent of &
and p) so that 2p < 0.1. Then it follows that

Ple e Ci) \ (v} )rall3 v — 3

]J/HQ
ik ) 1\\¢
< - _
= Paech <(2") 1°g<,o>>

(i) % <R2 22 (1+C1)><
< min
- . k2¢1

(i) k ;50 — v% I3 2[[(v7 2 )1:dll2
2 JyJ J5J )
|iB S C;/) S ( 2 log

T'min

R%x 142¢1

1’1’111’1

<77
- k

))

where (i) follows from Lemma SM2.5; (i) holds since alog'/?(2/a) is monotone increasing
for a € (0, 1]; (iii) follows from the fact that a < %log_lﬂ(l/b) implies alog'/?(2/a) < b for

b € (0,0.1]. Since
right-hand side of
into (SM2.9) yields

(SM2.11)

1
Tmin < %

once again R > 0 can be made sufficiently small so that the

(SM2.10) is at most % Then plugging in this upper bound by (SM2.10)

P CynCy) > % PlaeC)).

It remains to show the concentration of the left-hand side of (SM2.8) around the expecta-
tion. Recall that Cj and C} are constructed as the intersection of at most k£ half-spaces. Then
C;in C]* belongs to the set Po; defined in Lemma SM1.6 and, hence, we have

sup

JE[K],BEN(B*)
ﬂ* eRdJr

Z ]]{a:ZGZ}

=1

Z {mi€C;nCs} — (117 S Cj ﬂC* < sup

ZEPo
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Therefore, it follows from Corollary SM1.7 that with probability at least 1 — d

log(4/0) + 2k(d + 1) log(2en/(d 4 1))

1 n
(SM2.12) n Z“{wiecjmcj*.} >P(xelCinNC) - 4\/
i=1

holds for all j € [k], B € N(B*), and B* € R, The first summand in the right-hand side of
(SM2.12) is bounded from below as in (SM2.11). Then choosing C' in (SM2.7) large enough
makes the second summand less than half of the lower bound in (SM2.11). This completes
the proof. |

Next, the following lemma provides a slightly improved upper bound compared to the
analogous previous result [SM3, Lemma 6]. Moreover, Lemma SM2.7 is derived by using the
VC theory and provides a streamlined and shorter proof compared to previous work [SM3].

Lemma SM2.7. Suppose that Assumptions 1.1 and 1.2 hold, and that p satisfies (2.13) for
some numerical constant R > 0. Let 6 € (0,1/e). There exists an absolute constant C such

that if

(SM2.13) n > Ckn 0% (1og(k/8) v dlog(n/d))

min

then with probability at least 1 — 0

1 & 2 (Tmin) ¢
2 min 2
(SM214) E E ﬂ{miGijC;,}<|:mi; 1]’,0;,3") < k( ) ||vj7j’ —’U;-:j/”2
i=1

holds for all j € [k], B € N (B*), and B* € R4 where v; j = B; — B; and vi =B - B

The previous result [SM3, Lemma 6] showed that with probability at least 1 — § the
left-hand side of (SM2.14) is bounded from above by 5((#11;[5_1/14:) 10g%/ 2 (K / (7rmin 7S )))
if n > O(max(p,log(1/9))). In contrast, Lemma SM2.7 provides a smaller upper bound by
a logarithmic factor at the cost of increased sample complexity. However, the condition in
(SM2.13) is implied by another sufficient condition from another step of the analysis; hence,
it does not affect the main result in Theorem 2.1.

Proof. By the definition of (C; ) '_, in (2.4), it holds for any j # j’ that
x; € C;NC <= (&, B5) > (&, By), (& B)) > (& B))
(SM2.15) = (&, v55) >0, (&,v];) <0
— <€i,vj’j/><€i,v;j/> S 0.

Furthermore, by Lemma SM2.4, every 8 € N (8*) satisfies [[v; ;7 — v} ll2 < 2p|[(v] ;) 1.4ll2-
Therefore, it suffices to show that with probability at least 1 — &

2 T'min +C_1
(SM2.16) fz{gz, G &oo’ < = (F5) T e vlB
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holds for all (v, v*) € M, where
M= {(v,v") € R X R [lo — 0" < 2] (v)1.all2}-

Since ab < 0 implies |b| < |a — b| for a,b € R, each summand in the left-hand side of
(SM2.16) is upper-bounded by

Vg (6o <0h (6600 < Vg om2<igim o2} (66007
< V(w22 (o)) (€0 = 0%
Before we proceed to the next step, for brevity, we introduce a shorthand notation given by
(SM2.17) Spwor i= {€ € RITL: (€ v —v*)? > (€, v")?).

Then the left-hand side of (SM2.16) is bounded from above as

1 — L
E Z ﬂ {<£1,’U)<£“'U*>SO} <£7" ,U*>2 S E Z “ {giesv,'u*}<£i7 v — Iv*>2.
=1 i1

Next, we derive a tail bound on the empirical measure % Sy li¢es, .+ On the event for
& € Sy . Let Py denote the collection of all polytopes given by the intersections of two half-
spaces. Then S, ,+ belongs to P UPy. It follows from Lemma SM1.6 and [SM2, Theorem A]
that

on )C’(d—H)
)

(SM218) HPQUPQ (n) S <C”(d—|—1

for some absolute constant C’. Therefore, by Lemma SM1.3 and (SM2.18), we obtain that

($M2.19) SN RITNNELTIENS ¢ [l Togt

(v,v*)eEM

holds with probability at least 1 — %.
Similar to (SM2.10), we obtain an upper bound on the probability by using Lemma SM2.5
as follows:

Sup P(E € Spr) < Cy (W%g (i))c

(v,v*)eM
R226 1 (4¢TY ¢
<O S wmin
k26

min
—_———

«

(SM2.20) < M

This manuscript is for review purposes only.
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ND

224 where C7 > 0 is an absolute constant. By choosing the numerical constant C' > 0 in (SM2.13)
225 sufficiently large, we obtain from (SM2.19) and (SM2.20) that

J
226 (SM2.21) < sup Z {£i€5y.or} > a) < 3

(vo*)em M i=1

227 Furthermore, one can choose the numerical constant R > 0 small enough so that a € (0, 1).
228 Then, since (SM2.13) and (2.13) imply (SM2.1), by Lemma SM2.1, it holds with probability
229 at least 1 — /2 that

230 (SM2.22) sup |1 &gl || < (v 1)Van.
Tiz|I< % €T
231 Finally, by combining the results in (SM2.21) and (SM2.22), we obtain that with proba-
232 bility at least 1 — §
233 li“{(g Ve omy<0p (&, v*)2 < sup 12@ v —v*)?
20 1,0)(§i,v*)< (& = v
A Tz ™ ier
234 < sup ZﬁzET —v*[3
I IZ|< %" zeI
L)
235 < Cy(n* V1)RS % v — 0|3
236

237 holds for all (v,v*) € M, where C5 is an absolute constant. By choosing R > 0 sufficiently
238 small so that

2 1\
239 Cao(n? V1)RS < 5 <16> ,
240 we obtain the assertion in (SM2.16). [ ]
241 SM3. Proof of Theorem 2.1. The loss function ¢(3) is decomposed as
1 2
20 00B) = - (s, ) — (€ 7) — =
1 2
213 = 5 2 (@)~ maste )
(elean(3) ’
244 — (1 zn:zi (max(&i,ﬁj> max(&,ﬁ >> b i z22> .
n JE[K] JE[K] 2n pt
245 noise(B)
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Then the partial gradient of ¢(3) with respect to 3 is written as

1 — .
Ve l(B) = - ;:1 Viwicc) <§Ié?]§]<<§i,ﬂj> - E%?ﬁ(&ﬁﬂ - Zz> &
(SM3.1)

JEK]

1 & 1 &
= ; Vaiec) (xj;é?ﬁ(a,ﬁ» max(;, B; ) & - ; 2ilaiecéi

vﬁl ¢clean (B) vﬁlgnoise (,3)

where Cy,...,Ci are determined by 3 as in (2.4).

In the remainder of the proof, we will use the following shorthand notation to denote the
pairwise difference of parameter vectors and the probability measure on the largest partition
by the ground-truth model:

v = B — By, vj*»’j, =07 — B, and Tmay = Héz[i]z](P (a: € C*)
j
Below we show that the following lemmas hold under the condition in (2.15). The proof is
provided in Appendix SM3.1.

Lemma SM3.1. Under the hypothesis of Theorem 2.1, if (2.15) is satisfied, then with proba-
bility at least 1—4 the following inequalities hold for all j € [k], B* € R¥+1) and Bt € N(B*):
(SM3.2)

2 min 14¢t
<Vﬂjﬁde‘"““(ﬁt),ﬁ§-—ﬁ}>2§<W16) 184 — B33 - mk 3 ol - s |
J'#]
(SM3.3)
2(1+ ¢h
IV, (@3 S (s + 7™ ) 1185 = Bl + =— 37 ofyr = o5
33’ #3
and
(SM3.4) HV groise (gt H G\/kdlog(n/d) + log(1/9)
. , 5 '

NLD
The remainder of the proof shows that the assertion of the theorem is obtained from

(SM3.2), (SM3.3) and (SM3.4) via the following three steps.

Step 1: We prove by induction that all iterates remain within the neighborhood N (8%).
Suppose that B¢ € N'(B*) holds for a fixed ¢t € N. By the triangle inequality, for any j € [k],
the next iterate B'*! satisfies

187" = Bll2 = 118} — 1V ,L(8") = B5 12

(SM3.5) < 18] = 1V, L9 (B") = B} 2 + il Vg, 27 () |2 -
Aclcan Ar:(:ise

This manuscript is for review purposes only.
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272 Then it remains to show

273 (SM3.6) 1857 = B5ll2 < Actean + Auoise < kp,  Vj € [K].

274 Note that the first summand in the right-hand side of (SM3.5) satisfies

3% Adean = 185 = B3 113 — 26(V, €9 (8"), 8] = B]) + 11|V, £ (B") |13
277 Therefore, it follows from (SM3.2) and (SM3.3) that

1\ 14¢1 2
S (16) i 18 -8 g 2 ety
J G'#T
2(14¢71) o)
279 +M201 ('ﬂ'max"i‘ﬂ'min ) H/Bt 18 HQ mln Z H’U 7.9 ,]
J'#7
4 (1 1+ 14¢-1 2(1+¢ 1
” _ (1 L) e (e + ) ) - 18
2 (1 \I+CTh14¢T! 2(1+¢71)
~ \16 KT min C 2
s (SM3.T) -+ 2 () 5k + = szgm St vl
282 3"7:g'#d
283 We set the step size u to be
14¢71
w .
284 (SM3.8) p= min__
i

285 where w is a constant that will be specified later and 7 is given by

-1
286 (SM3.9) T 1= Tmax + Wr2n(11n+< ),
287 Putting the choices of v and 7 respectively by (SM3.8) and (SM3.9) into (SM3.7) yields
(SM3.10)
14¢t -1 2(1+¢71) 2(14¢7Y)
% (%) e Lurr?rfiln—‘rC ) Cflol')27-[-rnin (Wmax + T in ) ¢ <112
Aclean = 1- + 9 Hﬁ] - Bj H2
T T
¢t 2(14¢
2(8) " wm ) Gt L
+ Bk T 22 > w5 =il
. J'3'#
288 14¢1 2(1‘5‘471) 2(14¢ 1)
4 (1 ¢
5 36 W Crw?m,
< 1— % (16) min + 1 min Hﬂ; . ﬁ;”%
T T
2 (11Tt 2(14¢TY) 2(14¢1)
+ (2 (16) YT min i Clw27rmin max H'v —vr, 2
51 T 1<j#5'<k J
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Next, since B¢ € N(8*), by the definition of N'(3*) in (2.12), we have

SM3.11 t_ B35, < kp.
( ) ljg?éllﬂ] Billz < kp

Furthermore, by Lemma SM2.4, we also have

t
(SM3.12) (s [|vg 0 — vy

o, < 2Kp.

Then plugging in (SM3.11) and (SM3.12) into (SM3.10) yields

2(1+¢71) 1+t
. 2 /1 4
() A < 1 T ( (5)  (2-3)+cwas 4))

T Y
2(14¢1) 12 (1\14+¢!
<1- Mmin ‘w2 (16) + 5w
(SM3.13) T 5
2(14+¢1) 12 (1) 14+¢C
S 1— Tnin w Y (16) ’
T
o
which is rewritten as
Com2<_1+<—1)
(SM3.14) A < (rp)? (1= 2
i

For fixed v and (, ¢ is a positive numerical constant. Due to the choice of 7 by (SM3.9), we
have

220467 220467
min — min < 1
2(1+¢1 ’
T T max + Trrrfjn+4 )

Furthermore, one can choose w > 0 sufficiently small so that wcg < 1. Then the upper bound
in the right-hand side of (SM3.14) is valid as a positive number.
If Apoise is upper-bounded as
-1
cowWQ(HC )

(SM315) Anoise S Hpmiinv
2T

then, by the elementary inequality 1 — v/1 — a > a/2 that holds for any « € (0,1), we have

2(14¢71)

(SM3.16) Anoise < #ip [ 1 - \/1 _ O min
-

Then (SM3.14) and (SM3.16) yield (SM3.6). Therefore, it suffices to show that (SM3.15)
holds.
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Due to the inequality in (SM3.4), we have

0\/l<:dlog(n/d) +log(1/9)
Jn ;

By the choice of u in (SM3.8), we obtain an upper bound on Ajise given by

HV enmse IBt H2 < vj c [k}]

14¢71
noise W nin o+/kdlog(n/d) +log(1/6
(SM3.17) Ancise = 1 [V, °%¢(8)]|, < —min— - v/ kdlog( \//ﬁ) g(1/9)

The condition in (2.15) implies

2 —2(1+<*1)
(SM3.18) n> ¢ . Mmin (kdloggn/d) +1log(1/9))

K2p

One can choose the absolute constant C' > 0 in (2.15) and (SM3.18) as large enough so that
(SM3.18) and (SM3.17) imply (SM3.15). This completes the induction argument in Step 1.

Step 2: Next we show that all iterates also satisfy

(SM3.19) 18 = B||, < VI—v |8 - B*|, + C/W\/’f(kdlog(n/d) +1log(1/9))

n

We use the fact that 3! € N(8*), which has been shown in Step 1. By the update rule of
gradient descent and the triangle inequality, the left-hand side of (SM3.19) satisfies
1B = B2 = 18" — pVpt(B") — B2
< 18" = uV gt (8Y) — B*||2 + 1| V™™ (8|2

k k
(SM3.20) = | D118, = By — Vg e (B3 + | p2 Y |1V, em0e(8Y)]13

j=1 j=1

-~

Bclean Bnoise

Below we derive an upper bound on each of the summands on the right-hand side of (SM3.20).
First we show that

k
(SM321) Bclean = (1_1/>ZH’3§ _’8;”;
=1

Since B¢ € N(B*), the inequality in (SM3.21) holds if there exist constants u, A € (0, 1) such

that

(SM3.22)
k

Z <Vﬁ3 gclean (Bt) B] >

=1

k
er qelean(gty|2 4 = Znﬁj Bil3. VB e N(BY).

1\3\‘:
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Indeed, the condition in (SM3.22) and B € N (B*) imply

k

Bclean = Z ||Bt uvﬁjgdean(l@t) - B;Hg

(SM3.23)

k

> 1185 - ﬁHerZMHVﬁ]ﬁdean(ﬂt H2—2u2ﬂt B}, Vg, 4 (8")
Jj=1 Jj=1 j=1

k

< 1B -B;l3 - W\Zﬂﬂt B3

j=1 j=1

=(1 —uA)Z I8¢ — B33
j=1

Next we show that (SM3.22) holds. Due to (SM3.2) and the elementary inequality ||a +
310 b3 < 2||al|2 + 2]||b]|3, it holds for all j € [k] that

(SM3.24)
(V

2

1
16

ﬁjgclean(ﬁt)7 B; . /3;>

il

1+¢t _ 1
) s X (18- s+ e -

33’ #3

)

By taking the summation of (SM3.24) over j € [k], we obtain

(SM3.25)

k 6 (L)HC’I 4+¢ g
clean 16 min
> (Vg (s, B — B;) > 2 - > 1185 - B33
—

Jj=1

Furthermore, by using (SM3.3) and the elementary inequality ||a+bl|3 < 2||a||3+2|b||3 again,

we obtain

(SM3.26)

clean 1 *
1V, (83 < C1 (e + o< ) 185 — 8513

20, (1+C D) ) )
T 3 (18- 85l + 185 - B3 B) -
3'45'#]

Summing the equation in (SM3.26) over j € [k] yields

(SM3.27)
k

J=1

2(1+¢71Y)

Sy Ak — 1) i
> IV, (813 < ¢y (wmax+7ri&+< b A g )ZI\@—@H?

k?

< O (e + o 4 4 )ZH@ gl
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By combining (SM3.25) and (SM3.27) with p as in (SM3.8), we obtain a sufficient condition
for (SM3.22) given by

¢ 14¢! ! 21+ 1)
% (%) 7Trnirf WTin Cl (Wmax + 57 )
(SM3.28) - > S 2
2 (ﬂ-max + T min )

By choosing w > 0 small enough, (SM3.28) is satisfied when A is chosen as

(SM3.29) A = min(eem it 1)

min

for an absolute constant ca > 0. Hence, we have shown that the condition in (SM3.22) holds
with u and A specified by (SM3.8) and (SM3.29).

Next we consider the second summand on the right-hand side of (SM3.20). The inequality
in (SM3.4) implies

p2o’k(kdlog(n/d) +log(1/0))

k
(SM3.30) Bl = 12 Y | V5,085 <
j=1

Finally, plugging in (SM3.23) and (SM3.30) into (SM3.20) provides the assertion (SM3.19).
This completes the proof of Step 2.

Step 3: We finish the proof of Theorem 2.1 by applying the results in Step 1 and Step 2.
Plugging in the expression of v = puA with g and A as in (SM3.8) and (SM3.29) provides

(kdlog(n/d) + log(1/9))

k (kdlog(n/d) + log(1/0))

A P

a

< (1= N80 = Bl + Ca 70 y

—
N

n
® (1= N2 (8% = B2+ Cs - WJ ' \/k(kdlog(n/ci) +log(1/9))
(1= )2 90— Bl + Cy - oy (o)D) £ g1/,

where (a) follows from the elementary inequality \/ 1—t<1—t/2foranyt e (0,1); (b) holds
by the choice of 7 in (SM3.9); (c¢) holds since 7, < k.

SM3.1. Proof of Lemma SM3.1. We show that each of (SM3.2), (SM3.3), and (SM3.4)
holds with probability at least 1 —¢/3. We also note that for simplicity, we proceed on the
proofs using B and v; ;. Therefore, the assertions in (SM3.2), (SM3.3), and (SM3.4) can be
completed by substituting 3 and v; ;» with Bt and vj J respectively.

Proof of (SM3.2): We show that (SM3.2) holds with high probability under the following

condition

(SM3.31) n > €1 (log(k/8) V dlog(n/d)) Km0+,

min
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which is implied by the assumption in (2.15). We proceed with the proof under the following
three events, each of which holds with probability at least 1 — /9. First, since (SM3.31)
implies (SM2.13), by Lemma SM2.7, it holds with probability at least 1 — §/9 that

1 = .
L S e 6,
(SM3.32) JHHE

2 T'min 1+¢1 * . * *
<srCig) X oy —wiyld Vi€, vB e N(BY), v8" € R
35 #3

Moreover, since (SM3.31) also implies (SM2.7), by Lemma SM2.6, it holds with probability
at least 1 — 0/3 that

1 - Tmin .
(SM3.33) EZu{miecjnc;} > =, ViElk], VB e N(B), V8" € R4HL.

Lastly, since (SM3.31) is a sufficient condition to invoke Lemma SM2.3 with o = myin/4, it
holds with probability at least 1 — §/9 that

(SM3.34) inf ( Zgﬂ) (”fgn)lﬂ_l .

. Tmin™
T[> "} o

Therefore, we have shown that (SM3.32), (SM3.33), and (SM3.34) hold with probability at
least 1 — /3. The remainder of the proof is conditioned on the event that {&;}} ; satisfy
(SM3.32), (SM3.33), and (SM3.34).

Let B* € R4l B3 € N(B*), and j € [k] be arbitrarily fixed. For brevity, we will use the
shorthand notation h; := B8; — 3. Then the left-hand side of (SM3.2) is rewritten as

(V, 6™ (B), ;)

1 & .

k n
1 *
- E Z Z ]]{wiECjﬁC;}<Eiaﬁj - ,6j1><£i, h]>
7'=11i=1
1< )
= — Z “{m1€C ﬂC* £7,7 + - Z Z ‘“{mlec mc* El?ﬁ' 18]/><£“ h]>

n
hy'#g =1

By the inequality of arithmetic and geometric means, we have

(&, B — By)&i hy) = (&8 — B} + B] — B} (&, hy)
= (&, hj + v} ;)& hy)
> (&, hy)? B <€iv"’g*',j'>2 S _<£i7U;j,>2.
2= 5 > 5
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Therefore, we obtain

(SM3.35)
(Vg, (" (B8), h Z“{m,ec ne:y(&is by Z Z“{mlec nCs} (&, 0] )7
hy'#g =1
(%) ()
By (SM3.33) and (SM3.34), the first summand in the right-hand side of (SM3.35) is bounded

from below as

2 (Tmin 1+t
(SM3.36) (=~ () Il
Moreover, due to (SM3.32), (xx) is bounded from above as
1/ min ) 167!
(SM3.37) (o6 < o (F2) Y Mgy =l
J'5'#]

Then, plugging in (SM3.36) and (SM3.37) into (SM3.35) provides

(Vg £(B), hj)

2 (Tmin\ 16 ! 1 1 Al 1111—’1—5 * 12
> (55 Il (g > Mgy =iyl

33’ #3
2 (Min\ 1167
:§< i) Iz — 10k z;é lvia =
J

This completes the proof.

Proof of (SM3.3): The proof is based on the condition

(SM3.38) n > Oy (log(k/8) V dlog(n/d)) kim - 20+¢™H

which is implied by (2.15). We will proceed under the following four events, each of which holds

with probability at least 1 — §/12. First, since (SM3.38) implies (SM2.13), by Lemma SM2.7,

(SM3.32) holds with probability at least 1 — d/12. Next, since (C*) | are included in the
j=

set of intersection of k half-spaces in R%, by Corollary SM1.7 and (SM3.38), it holds with

probability at least 1 — 0/12 that

1 < . ,
(SM3.39) ~D Veweyy <P (x€C)), Vi€ k]
=1

We also consider the event given by

(14

)
(SM3.40) Z {mec,nes) < 2nc <k2> . Vi#j, VB eN(BY)
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for some numerical constant ¢ € (0,1). Note that (SM3.38) is a sufficient condition to invoke
Lemma SM2.7 with probability at least 1 —3/12. Therefore, all intermediate steps in the proof
of Lemma SM2.7 hold. In particular, due to the inclusion argument in (SM2.15), x; € C; ﬂC;,
implies &; = [x;;1] € SU 5 for any j # j’, where S,, 5 is defined in (SM2.17). Then,
(SM2.21) with « as in (SM2 20) implies (SM3.40). The last event is defined by

(SM3.41)
2(1+¢

)
%ncax )\max< Z€’£Z> < Cy(n*V1)a, Vac {%}U{P(mecj*)}fl

|I|<2om =

By (SM3.38), Lemma SM2.1, and the union bound over j € [k], (SM3.41) holds with prob-
ability at least 1 — 0/12. Thus far we have shown that (SM3.32), (SM3.39), (SM3.40), and
(SM3.41) hold with probability at least 1 — /3. We proceed conditioned on the event that
{&}7_, satisfy these conditions.

Let 8* € R“ B € N(B*), and j € [k] be arbitrarily fixed. Then the partial gradient of
¢lean(3) with respect to the jth block 3; € R4 of B € RF@+1) is written as

€[k]

Vi, (40 (8) = %Z Vaiec)) <<si,ﬂ]> max(€, 3] >) &
i=1
1 n
= > D Uaiecines ) ((&.8)) — (&.87)) &

e =1

(SM3.42) = fz {ziec;nez ) (&is B — Z Z“{m ec;nesy (&is B — Bjnéi

hy'#g =1

By using the identity (&, 8; — 8}) = (&, B; — B} + 8] — Bj,), (SM3.42) is rewritten as
(SM3.43)

1 « 1 -
Va LM(B) = =Y Vimec;) (& B = BE+ = D > Vimec,nery (&8 — B
n i—1 n J

j'i'#d i=1
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444 Then it follows from (SM3.43) that

e v Kclean 2
49 Bj (8) 9
9 2
0 |1 & . 1 g o o
146 52“{3}&@}(&,@' - BN&|| +2 - Z Zﬂ{wiGCjﬁC]’f,}<€iaﬁj = Bj)&i
i=1 2 3§l i=1 )
447 ‘ Z {z;€C; }5@ Z {z;€C;} 5175] /83>
448 +2-0) - Z U ec,ncy€ibi - Z Va,ec,ne,y €0 87 — B))’°
33 #3 i=1 i=1
1 ¢ ’
149 <2. ||n > Vwecp&itl | 18 — B3
i=1
(a)
(SM3.44)
. RN T 1 - \2
450 +2 L max | Z ﬂ{micjmc;,}&& o Z Z “{:ciecjnc;,}@i, B; — Bj)7,
i=1 glgl#g =1
152 where (i) holds since |la + b||3 < 2||a||3 + 2||b||3 and (ii) holds since C; NC} and C; N Cj; are
453 disjoint for any [ # I’ € [k]. An upper bound on (b) is provided by (SM3.32). It remains to
154 derive upper bounds on (a) and (c).
455 First, we derive an upper bound on (a). By the triangle inequality, we have
k n
156 (SM3.45) VIOESM DS Vaicesnes&ikl
j'=1 lli=1

157 For the summand indexed by j' = j, due to the set inclusion C; N C; C C}, we obtain that

458 Y Vmeenent &bl =Y meen &l

459 =1 i=1

160  Therefore, by (SM3.39) and (SM3.41), we have

Z &g}

(Vv 1),/P(x e Cr)
< (772 V 1)\/ Tmax

Z {z:€Cy }5251

z \Z|<2nn:>(mec*
461 (SM3.46)

N
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where the last inequality holds by the definition of myax. Similarly, by (SM3.40) and (SM3.41),
we have

1+¢71

(SM3.47) S (P v1)e <7Tmz‘> , Vi #

D Vmee, mc;,}EiEz'T
i=1
Then by plugging in (SM3.46) and (SM3.47) to (SM3.45), we obtain

@) S (Fmax + o< ) 185 = B

for an absolute constant C7. Finally, since an upper bound on (b) is given by (SM3.47),
plugging in the obtained upper bounds to (SM3.44) provides the assertion.

Proof of (SM3.4): By the variational characterization of the Euclidean norm and the
triangle inequality, we have

_Enoise _
[Vas 8l = i

n

1 n
= 2l (g,ec;y (@i, w) + w)
i=1

n “—

n

1
n Z %l wsec;yw

=1

(SM3.48) < sup + sup

w|<1

(A) B)

9

where BY denotes the unit ball in £4. Note that (A) and (B) depend on 3 only through Cj,
which are determined by B according to (2.4). For any 3 and any j € [k], the corresponding
Cj is given as the intersection of up to k affine spaces. Therefore, it suffices to maximize
|‘V3j£n°ise(B)H2 over C; € Pj_; for a fixed j, where Pj_; is defined in the statement of
Lemma SM1I.6.

We proceed under the event that the following inequalities hold:

1 n
M3.4 - xi ] <1
(SM3.49) n;xwz <1l+e
and
1 n
(SM3.50) ~> Vewee) —P@EC)| <e; VG €Pr
1=1

for some constant €, which we specify later. The remainder of the proof is given conditioned
on (zx;)_, satisfying (SM3.49) and (SM3.50).

First, we derive an upper bound on (A) in (SM3.48). Note that (A) corresponds to the
supremum of the random process

1 n
Zu = ﬁ Z ziﬂ{xiecj}@i,u)
=1
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over u € BY. The sub-Gaussian increment satisfies

o 1<
_ i el o — )2
| Zu Zu'HwQS\/ﬁ n;ﬂ{miecj}(wuu u’)
Lo 1/2
g T /
S% n;ﬂ{miecj}mimi llw— w2
Lo 1/2
o
< — =) xx] Nlu—
< lm el vl
ov1+e ,
< ——llu—ul,

n

where the third step follows from the inequality

<

)

n
1 E T
- .’1:7;.'1:7:
n
1=1

which holds deterministically, and the last step follows from (SM3.49). Then, by applying a
version of Dudley’s inequality [SM11, Theorem 8.1.6], we obtain that

1 ¢ .
n Z Ve, ) TiT;
=1

p <sup 2] > AL ( | Ve N B i + \/loga/a))) <s.

ueBY

By the elementary upper bound on the covering number N (B, |-|l5,n7) < (3/n)F (e.g. see
[SM11, Example 8.1.11]) and the definition of (A) in (SM3.48), we have

(SM3.51) (A) < \/020 + )(d +log(1/9))

~
n

Y

holds with probability 1 — 6/3. Then we apply the union bound over C; € Pj_;. It follows
from (SM1.1) that

sup (A) < \/02(1 + €)(log(1/9) + kdlog(n/d))
Ci€Ps n

holds with probability 1 — §/9.
Next we derive an upper bound on (B) in (SM3.48). Note that (B) is rewritten as the
absolute value of

1 n
1=

Conditioned on (x;)!"_; satisfying (SM3.50), o is a sub-Gaussian random variable that satisfies

Eo =0 and
2 n 2
5 O 1 o’ (P(x €Cj)+e)

This manuscript is for review purposes only.



o NN
oo

SM22 SEONHO KIM AND KIRYUNG LEE

The standard sub-Gaussian tail bound implies

P <’Q| - \/02020]3’(33 €Cj) +e) log(1/6)> <5

n

By taking the union bound over C; € Pj;_; and utilizing the inequality in (SM1.1), we obtain
that

wp (B) < \/02([P’(2L'GCj)+€)(kdlog(n/d)+log(1/5))
C;€Pk-1 n

(SM3.52) < \/

holds with probability 1 — §/9.
Finally it remains to show that (SM3.49) and (SM3.50) hold with probability 1 — /3 for
€ satisfying

2(1 + €) (kdlog(n/d) + log(1/5))

n

< \/ kp(log(n/d) +log(1/6))
n
This is obtained as a direct consequence of Lemmas SM1.1 and SM1.3. One can choose the
absolute constant C' in (2.15) large enough so that € < 1. Then the parameter € in (SM3.51)
and (SM3.52) will be dropped. This completes the proof.

SM4. Proof of Theorem 3.1. The proof will be similar to that for Theorem 2.1. We will
focus on the distinction due to the modification of the algorithm with random sampling. The
partial subgradient in the update for the mini-batch stochastic gradient descent algorithm is
given by

1 X 1
- Zvﬁlfi( Z (@;€Ci} (maX<€uﬂ ) — %?ﬁ(gin@j)) & - Zzz‘ﬂ{miecl}ﬁm

i€l ZEIt i€l .
Vﬁ[ e;lolse (:Bt)

vﬁl é;::lean (I@t)

where C1,...,C are determined by 3¢ as in (2.4).

As shown in Section SM3, (2.15) invokes Lemma SM3.1 and hence (SM3.2) holds with
probability 1 — §/3. Next, we show that under the condition (2.15), the statements of the
following lemma hold with probability 1 — 26/3. The proof is provided in Appendix SM4.1.

Lemma SM4.1. Suppose that the hypothesis of Theorem 3.1 holds. If (2.15) is satisfied,
then the following statement holds with probability at least 1 — 20/3: For all j € [k], B* €
REHD and Bt € N(B*), we have

(SM4.1)
Zv gclean 25
zelt 2
d +log(n/d) 14¢1 I%n—’l—nil
(wm) (v ™) I8 = B3+ 2= 3 Iohy = wivl)

"yl
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and

(SM4.2)

Z v Enmse

ZEIt

m n

<. (d +log(n/d) |, kdlog(n/d) + log(1 /5))
2

Then we show that the assertion of the theorem follows from (SM3.2), (SM4.1), and
(SM4.2) via the following three steps.

Step 1: We show that every iterate remains within the neighborhood N(3*) by the induction
argument. Therefore, we illustrate that if we suppose 3! € N(8*) holds for a fixed t € N,
we show @1 € AM(B*) in expectation. By the update rule of SGD with batch size m, the
triangle inequality gives

(SM4.3)
4187 — Bl < By | B — 1 3V, 6808 — 5| +uEs, | = Y v, (s
Zelt 2 ZGIt 9
Aclean Anoisc
We will show that
(SM44) [Eltuﬁ;—‘rl - B;HQ < Aclean + Anoise < Rp, V] S [k]

By applying Jensen’s inequality, we can obtain an upper-bound Agjean in (SM4.3):

A% <E;

clean = t

— - 7Zv gclean ,6*

i€l

(SM4.5)

—> Vgt ﬁt

=Hﬁ§-—6ﬂ!%—2m&t< > Vg (8, 8] - ,6;->+M2[Eh

i€l zelt
Due to the expectation, the second term in (SM4.5) simplifies to
(SM4.6) < >V, (B, 8] - ﬂ;> = (Vg "™ (8"), B} - B),
Zelt

where Vg (94" (8") is defined in (SM3.1). Then, (SM3.2) gives a lower bound on (SM4.6).
Furthermore, an upper bound on the third term in (SM4.5) is given by (SM4.1). Putting the
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561 bounds (SM3.2) and (SM4.1) in (SM4.5) provides

clean =
4 1\ -1 d+log(n/é -1
563 (1 - <16> prt e o <1 Y m(/)> (,/wmax 4 wite ) 185 — Bl
(SM4.7)
2 (yﬁ”) e 1!
» ~ \ 16 HT in d+ log(n/é) t 2
564 + 7 +C1 (1 - IZ”‘ > w5 vl

3

566 Let us choose the step size u following

wrlte™! m
567 (SM4.8 = fIA——
o7 ) H T ( d—+ log(n/5)>

568 for a numerical constant w, which we specify later, and 7 defined as

569 (SM4.9) T 1= \/Mmax + ernJirrfil'

570  Taking p by (SM4.8) and 7 by (SM4.9) in (SM4.7) yields
(SM4 10)
A?

clean

< (- (o)

1+¢~1 o(14ct 2 2( 1+C 14¢7t
(%) ¢ (’L}’]Tm(in—s_C ) C W (V Tmax + Tinin ) " 12
185 — Bl

2

T T

1

H¢T 2(14¢7Y) -1
571 (in m . % (1) YT min n Clw27ri1(iln+< : Z Hvt. L, — 2
d +log(n/d) 5Tk 7k it g
4 (11T (14T 2(14+¢71)
fio(iam Y[ e T Ot 18 - 852
= d +log(n/d) T T ’ ’
+¢h2(14¢7Y) -t
(1A m ] % (T16) WT i n Clw27rr2n(iln+< ) max HU _ ot
d + log(n/d) 5T T 7= 7

ot
3
\V]

Due to B¢ € N(B*) defined in (2.12), we have (SM3.11) and (SM3.12) by Lemma SM2.4.

This manuscript is for review purposes only.



ot
J
w

583
584

585

586

ot
[0¢)
J

588

589
590

591

592
593

SUPPLEMENTARY MATERIALS: FIRST-ORDER MAX-AFFINE REGRESSION SM25

Inserting (SM3.11) and (SM3.12) into (SM4.10) gives

2(14+¢71) 1+¢!
. 4 1 2
242 _ Mwmin ¥ A 2= 1-2 144
(Kp) " Actean = T A d + log(n/d) ~ \ 16 5 +Cw (1 +4)

2(14+¢71) 12 ¢ 1\14+¢7!
STl (o (S,
(SM4.11) <1-— ot (1 A— )
’ - T d+log(n/d) )’
where ¢ is the numerical constant defined in (SM3.13). We represent (SM4.11) as
(SM4.12) A2 < (kp)? (1 oy (1 A m)) .
cean — T d + log(n/d)

We note that by (SM3.13), ¢ is a positive absolute constant given v and (. On the other
hand, the choice of 7 in (SM4.9) provides a bound
1211(1111%71) Wf{l(i]111+<71)
T Rl
Since (1 Am/(d +log(n/d)) < 1, one can set w > 0 such that wey < 1, which makes the upper
bound in the right-hand side of (SM4.12) a positive scalar belonging in (0, 1).
By following the arguments in (SM3.15) and (SM3.16), if

s

2(1+¢71)
(SM4.13) Anoise < Kp <COMISH> (1 : clJrk)Z(n/&)
T
holds, we have
ML A ) ) cow7rr2n(iln+cfl) A m
. noise > Kp T d+ IOg(n/é)

Since the upper bounds (SM4.12) and (SM4.14) satisfies (SM4.4) it suffices to show (SM4.13).
By (SM4.2), we have

Zv enmse IBt

zEIt

m n

2 _ J\/(d—i— log(n/d) y kdlog(n/d) + log(l/é))
2

for all j € [k]. After applying Jensen’s inequality, we consider the choice of p given in (SM4.8).
Then, we have

2
Anoie = 1Er, |- 3"V, 00980 < oy |En || 57 Vg ()
(SM4.15) "ien, ) m i ,
owms (L m d+log(n/9) | kdlog(n/d) + log(1/9)
T d +log(n/d) m n :
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SM26 SEONHO KIM AND KIRYUNG LEE

Since (2.15) implies (SM3.18), we can choose a sufficiently large absolute constant C' > 0 in
(SM3.18) such that (SM3.18) and (SM4.15) result in (SM4.13). We complete the proof of
induction argument in Step 1.

Step 2: In this step, we show that every iterate obeys

Er (870 =87, <
(SM4.16) VT=o |6 = B, + Cuor Vi (\/d+log(n/5) v\/kdlog(n/d)ﬂogu/a))

m n

In Step 1, we showed 3¢ € N'(3*). By following the argument (SM4.3), we have
(SM4.17)

1 1 .
18— Blle < Er |6 — e 3 Valen(8) - 5| | ST Va0
1€l 2 iel 2
2 1 2
< \|En ||B —n— Zv (elean (@) — B|| + | Er, || — > Vglioie(s)
ZEIt 2 m i€l 2
B:l;an Bnoise

where the last inequality holds by the Jensen’s inequality. We first show an upper bound on
Bejean in (SM4.17):

k
(SM4.18) Blean < (1=) > |18 = B35 -
j=1

By following the argument in (SM3.23), (SM4.18) holds if there exist constants p, A € (0,1)
such that for all B¢ € N (B*),

k
Z[Eft < ZV Eclean IBt Bt /8;>
7=1 1€l
ZV gclean

2 k
S M A
52@ +5 2185 - B3
ze[t j=1

Hence, we show (SM4.19).First, since (SM3.2) holds, (SM3.25) holds. Also, the left-hand side
in (SM4.19) can be computed as (SM4.6). Thus, by (SM4.6) and (SM3.25), we obtain a lower
bound on the left-hand side of (SM4.19):

(SM4.19)

k 6 (%)PFC L ﬂ_lJ.rC_ k
(SM4.20) Z[E1t< > Vgt (ah), B - ﬂ;> > > 18- 8515
j=1 J=1

5)
i€l

Furthermore, to obtain an upper bound on first term in the right-hand side of (SM4.19),
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SUPPLEMENTARY MATERIALS: FIRST-ORDER MAX-AFFINE REGRESSION SM27

applying (SM4.1) with the elementary inequality ||a + b||3 < 2||a||% + 2||b|% provides

(SM4.21)
clean d+1 0 B *
B SAAD o (1y e ((mmiﬁ IR

’LEIt

2

2”3551 t t * 1|2
+ k Z (|B BJH2+ HB Bj’H?) :
J"g'#d

Taking summation on (SM4.21) over j € [k] yields

k 2
Z [EIt Z V Eclean
(SM4.22) = e 2
d+10g(n/6)\ [ ——  1ict | 1ee\ o 2
Scl <1vm> ( 7Tm&x—’_ﬂ-min +47rm1n )ZH’B;_’B;HZ
j=1

Putting the bounds (SM4.20) and (SM4.22) in (SM4.19) with p chosen in (SM4.8), we have
a sufficient condition for (SM4.19):

—1 _
£(3)" ety O (VA + ol
vy \16 >

5 B 2 <\/7Tmax + 7T'I1n—;§7 )

+

(SM4.23)

(SM4.23) is satisfied when we choose w > 0 small enough and A as in (SM3.29). Hence, we
have shown (SM4.18) with v = uA where p and X are chosen by (SM4.8) and (SM3.29).

Next, we bound Bygise in (SM4.17). By (SM4.2), we obtain an upper bound on Bygjge:
2
no1se — 2 Z Ey, Z v Enmse
(SM4.24) m i ,

< kpilo? (d—i—lo?i(n/é) y kdlog(n/dl—i— log(1/5)> '

Finally, putting (SM4.18) and (SM4.24) in (SM4.17) gives (SM4.16). We complete the proof
of Step 2.

Step 3: We finish the proof of Theorem 3.1 using the results demonstrated in Step 1 and Step
2. By substituting the expression v = pA , where we choose p and A\ according to (SM4.8)
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and (SM3.29) respectively, into (SM4.16), we obtain

Er|B" — B2
(1= )2 8 = B + € = \/k <d+ os(0/0) , hlog(n/ ) + 1og<1/6>>
D 12— Bt G 270 . \/k (d—i—lo?i(n/d) , kdlog(n/d;—i— log(1/5)>

O 1 a2 10— B 4 G Wa ‘ \/k | <d+ log(n/) ,, kdlog(n/d) + 10g(1/6)>

max m n

9 (L= a0 180 — 3 + Cs - ok \/k <d+ log(n/s) . kdlog(n/d) + log(l/é))

m n

where 1) (a) follows from the inequality /1 —t < —t/2+ 1 for any ¢ € (0,1); ii) (b) holds by
the choice of 7 in (SM4.9); iii) (c) is a result of w1, < k.

SM4.1. Proof of Lemma SM4.1. We will show that both (SM4.1) and (SM4.2) hold with
probability at least 1 —4/3. Furthermore, for simplicity, we proceed on the proofs using 3 and
v; j» instead of using Bt and vj-, J in the statements of Lemma SM4.1. Thus, we complete the
assertions in (SM4.1) and (SM4.2) by substituting B and v; ; with 3" and v; j» respectively.
Proof of (SM4.1): We show that with high probability, (SM4.1) holds if

(SM4.25) n > €4 (log(k/8) V dlog(n/d)) Km0+,

Note that (2.15) is a sufficient condition for (SM4.25). We proceed with the proof under the
following six events, each of which holds with probability at least 1 —d/18. First, by the proof
of (SM3.3) in Subsection SM3.1, (SM4.25) is a sufficient condition to invoke (SM3.3) with
probability at least 1 —0/18. Next, by following the argument for (SM3.39), (SM4.25) is a suf-
ficient condition to invoke (SM3.39) with probability at least 1 —¢/18. Furthermore, (SM4.25)
implies (SM2.13) and is a sufficient condition to invoke Lemma SM2.7 and Lemma SM2.1 with
probability at least 1 — §/18 respectively. Hence, by following the arguments for (SM3.40),
(SM3.41), and (SM3.32), (SM3.40), (SM3.41), and (SM3.32) hold with probability at least
1 — 0/18 respectively. The last event is defined as

(SM4.26) max 1€&:&7 || < d+log(n/d).
en

By Lemma SM1.1 and the union bound over i € [n], (SM4.26) holds with probability at least
1—5/18.

Since we showed that (SM3.3), (SM3.39), (SM3.40), (SM3.41), (SM3.32), and (SM4.26)
hold with probability at least 1 — /3, we will move forward with the remainder of the proof
by assuming those conditions are satisfied.
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Let B* € R¥1 3 € N(B*%), and j € [k] be arbitrarily fixed. By the argument in [SM7,
Equation 7], we decompose

Z V gclean

1

2 m-1 clean
(SM427) @), + = IVa e B3

Jll

(A) (B)

where we define I := {iy,...,i,} C [n] and Vg][dean(,@) in (SM3.1).
Note that (SM3.3) gives an upper bound on (B):
(SM4.28)
-1 2(14+¢1) (1+C
<7Tma.x + Tinin ) Hﬁj B*HQ mm Z HvJJ ’U*, j’
J'#G

B <™

It remains to show the bound on (A). By following arguments (SM3.43), we decompose
Vg, (5% (B3) following
(SM4.29)

vﬁjgzglean(ﬂ) = “{miGCj}<€i7/3] ﬁ] El Z { i€C; ﬂC* £Z7ﬁj IB;/>£’L7 Vi € [T'L]
G'#d

Then it follows from (SM4.29) that for any i € [n],

Hvﬁjgglean(ﬂ)HQ

2
2
<2Hu{w1€c}<a,ﬁj & +2 So1 {mccynes ) & 8] = B3
3':3'#3 9
€T |[Viwicc,y 6B - B2 + 2 et X Ve } 6085 =5
35" #7
(iii)
(SM4'30) S (d+10g(n/5))' “{mZGC}<€Zuﬁ] Z ﬂ{m €C; ﬂC,}<£u/3] /3]> )
"5 #d

where (i) holds due to [la + b||3 < 2||a||3 + 2||b||3; (ii) holds since C; N Cf and C; N Cy are

disjoint for any [ # I’ € [k]; and (iii) holds by (SM4.26).
Applying the expectation on (SM4.30) yields
(SM4.31)

E; Hvﬁjeil (B)H; S;

(d+ log(n/5)) N . Z {zicC;} 5175] :63 + Z Z ﬂ{m eC; ﬂC* <£l7ﬂ] /3] >
J'#5 =1

(a) (b)
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An upper bound on (b) is provided by (SM3.32). It remains to derive an upper bound on (a).
The triangle inequality provides

k

(SM4.32) (@) <>

j'=1

> Vaeeren &€l | - 185 = 851,

=1

For the summand indexed by j' = j, the set inclusion, C; N C; C C; yields

Z aiec;nesy€ibi 3 Z Uziecyibi-
=1 i=1

Therefore, by (SM3.39) and (SM3.41), we have

" Z {mlec*}&fz

max
I |Z|<2nP(zEC))

Zszez
(P V1),/P(x e Cy)
< (772 V 1)\/ T'max

where the last inequality holds by the definition of myax. Similarly, by (SM3.40) and (SM3.41),
we have

(SM4.33)

AN

(SM4.34) ec;ne:&ikl

plte™!
S VIVe| =], Vi #]
Then by plugging in (SM4.33) and (SM4.34) into (SM4.32), we obtain

(@) S (Vima + s ) 185 - 81

Finally, applying obtained upper bounds on (a) and (b) in (SM4.31) gives
(SM4.35)

1 A0
() 5 LR (b Bt |3, - 2+ T B 5 ol

m
gl #g

Putting (SM4.28) and (SM4.35) in (SM4.27) completes the proof.

Proof of (SM4.2): We proceed with the proof under the following three events, each of
which holds with probability at least 1 — §/9. First, (2.15) invokes (SM3.4) with probability
at least 1 — §/9. Next, by following the same argument in the proof of (SM4.1), (SM4.26)
holds with probability at least 1 — §/9. The last event is the following:

IR 2 2 Clog(1/9)
. — - < — .
(SM4.36) - ;:1 z; <o (1 + -
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SUPPLEMENTARY MATERIALS: FIRST-ORDER MAX-AFFINE REGRESSION SM31

Since {z;}!'_, are i.i.d o-sub-Gaussian random variables, the Bernstein’s inequality yields that
(SM4.36) holds with probability at least 1 — /9.
We have shown that (SM3.4), (SM4.26), and (SM4.36) hold with probability at least
1 — /3. For the remainder of the proof, we assume that those conditions are satisfied.
Then, by the argument in [SM7, Equation 7], we decompose

2
1 i 2 m-—1 i 2
_ E[Ell Hvﬁjg’rillmse(ﬁ)HQ_i_ T||v,3j£n0156(18)”27

2 ~"

(A) (B)

1 noise
LS v

el

(SM4.37)  E;

where we define I := {i1,...,ipn} C [n] and Vg, "°5¢(3) in (SM3.1).
(SM3.4) gives an upper bound on (B):

(SM4.38) (B) < ©kdlog(n/d) +log(k/9)

~
n

The remaining step is to obtain a bound on (A). Since we have

noi 2
[V, 65(B)|;, < Nz &arll3 < 1€, &1, 1127, <d + log(n/6)27

J

where the last inequality holds by (SM4.26), applying the expectation and (SM4.36) gives an
upper bound on (A):

(A) S L Zn:zf <d+log(n/5)> < o? (1 Vv <log(1/6))1/2> (d+10g<n/5>>

(SM4.39) i=1
< o2 (d + log(n/5)>7

m

where the last inequality hold by (2.15). Putting the results (SM4.38) and (SM4.39) into
(SM4.37) reduces to (SM4.2).

SMb5. Discussion on the proofs of [SM5, Theorem 1] and [SM4, Theorem 1]. In the
proof of [SM5, Theorem 1], they claimed that n > 62 implies [SM5, Equation (45)]. They
showed that [SM5, Equation (45)] follows from [SM5, Lemmas 10 and 11]. Their [SM5,
Lemma 10] presents the concentration of the supremum of an empirical measure via the VC
dimension and [SM5, Lemma 11] computes an upper bound on the VC dimension of the feasible
set of the maximization. According to their proof argument, the number of observations n
should be proportional to the VC dimension dlog(n/d) to obtain the concentration in [SM5,
Equation (45)]. Their sufficient condition n > 62 for [SM5, Equation (45)] missed the
dependence on the VC dimension. We suspect that this is a typo. While it does not ruin
their main result, the sample complexity in [SM5, Theorem 1] might need to be corrected
accordingly. Specifically, between [SM5, Equation (32) and (33)], the parameter ¢ in [SM5,
Lemma 6] was set to § = Ck_27rr6nin to upper-bound the second summand in the right-hand
side of [SM5, Equation (32)]. Therefore, the corrected sample complexity of [SM5, Lemma 6]
increases to O(k*dr_!?) so that it dominates the sample complexity for part (b) in [SMS5,

min
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Proposition 1] (n 2 kdr_> ). Consequently, the sample complexity in [SM5, Theorem 1] will
increase by a factor k37" .

Next, we report another mistake in their analysis under the generalized covariate model
[SM4, Theorem 1]. They mistakenly omitted the dependence of o in the sample complexity.
A careful examination of their proof on page 48 in [SM3] will reveal that they use the same
technique as in their other analysis in the Gaussian covariates case [SM5]. Therefore, we
expect that their sample complexity should depend on the noise variance o2 to ensure that
the next iterate belongs to the local neighborhood of the ground truth (refer to the proof of

their Theorem 1 on page 1865 in [SM5]).

X
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