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Abstract—We consider the multivariate max-linear regression
problem where the model parameters β1, . . . ,βk ∈ Rp need to be
estimated from n independent samples of the (noisy) observations
y = max1≤j≤k β

T
j x + noise. The max-linear model vastly

generalizes the conventional linear model, and it can approximate
any convex function to an arbitrary accuracy when the number of
linear models k is large enough. However, the inherent nonlinearity
of the max-linear model renders the estimation of the regression
parameters computationally challenging. Particularly, no estimator
based on convex programming is known in the literature. We
formulate and analyze a scalable convex program given by
anchored regression (AR) as the estimator for the max-linear
regression problem. Under the standard Gaussian observation
setting, we present a non-asymptotic performance guarantee
showing that the convex program recovers the parameters with
high probability. When the k linear components are equally likely
to achieve the maximum, our result shows a sufficient number of
noise-free observations for exact recovery scales as k4p up to a
logarithmic factor. This sample complexity coincides with that by
alternating minimization (Ghosh et al., 2021). Moreover, the same
sample complexity applies when the observations are corrupted
with arbitrary deterministic noise. We provide empirical results
that show that our method performs as our theoretical result
predicts, and is competitive with the alternating minimization
algorithm particularly in presence of multiplicative Bernoulli noise.
Furthermore, we also show empirically that a recursive application
of AR can significantly improve the estimation accuracy.

Index Terms—nonlinear regression, convex programming, max-
linear model, empirical processes, and sample complexity

I. INTRODUCTION

WE consider the problem of estimating the parameters
β⋆,1, . . . ,β⋆,k ∈ Rp that determine the max-linear

function
x ∈ Rp 7→ max

j∈[k]
⟨β⋆,j ,x⟩ , (I.1)

from independent and identically distributed (i.i.d.) observa-
tions, where [k] denotes the set {1, . . . , k}. Specifically, given
the data points x1, . . . ,xn ∈ Rp, and denoting the value of a
max-linear function, with parameter β, at these points by

fi(β) := max
j∈[k]

⟨xi,βj⟩ , (I.2)

we observe the nonlinear measurement

yi = fi(β⋆) + wi ,

of the parameter vector β⋆ = [β⋆,1; . . . ;β⋆,k] ∈ Rkp where
wi denotes noise for i ∈ [n].

The most relevant prior work studied an alternating minimiza-
tion (AM) algorithm to solve a slightly more general problem
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of max-affine regression [1]. Each iteration consists of a step to
identify the maximizing linear models followed by least-squares
update of model parameters. However, we observed that their
empirical performance significantly degrades with outliers,
mainly due to the sensitivity of the “maximizer identification”
step. Leveraging recent theory for convexifying nonlinear
inverse problems in the original domain [2], [3], [4], we propose
an alternative approach by convex programming. Due to the
inherent geometry of the formulation, the convex estimator
provides stable performance in the presence of adversarial
noise. It is worth mentioning that Ghosh et al. [1] considered
a random noise model, whereas we consider a deterministic
“gross error” model. Nevertheless, in the noiseless case, both
results achieve exact parameter recovery at comparable sample
complexities.

A. Convex estimator
The common estimators for β⋆ such as the least absolute

deviation (LAD), i.e.,

minimize
β

1

n

n∑
i=1

|fi(β)− yi| , (I.3)

are generally hard to compute as they involve nonconvex
optimization. Given an “anchor vector” θ, we study the
estimation of β⋆ through anchored regression (AR) that
formulates the estimation by the convex program

maximize
β

⟨θ,β⟩

subject to
1

n

n∑
i=1

(fi(β)− yi)+ ≤ η,
(I.4)

where (·)+ denotes the positive-part function. The parameter η
should be chosen so that the feasible set of (I.4) is not empty.
The anchored regression can be interpreted as a convexification
of the LAD estimator. Since the observation functions (I.2) are
convex, the LAD is nonconvex mainly due to the effect of the
absolute value operator in (I.3). This source of nonconvexity
is removed in anchored regression by relaxing the absolute
deviation to the positive part of the error. The linear objective
that is determined by the anchor vector θ acts as a “regularizer”
to prevent degenerate solutions and guarantees exact recovery
of the true parameter β⋆ under certain conditions on the
measurement model in the noiseless scenario.

Anchored regression has been originally developed as a
scalable convex program to solve the phase retrieval problem
[2], [5] with provable guarantees. Anchored regression is
highly scalable compared to other convex relaxations in this
context [6], [7] that rely on semidefinite programming. The
idea of anchored regression is further studied in a broader
class of nonlinear parametric regression problems with convex
observations [4] and difference of convex functions [3].
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B. Background and motivation

A closely related problem is the max-affine regression
problem. A max-affine model generalizes the max-linear model
in (I.1) by introducing an extra offset parameter to each
component. Alternatively, by fixing any regressor to constant
1, each linear component in (I.1) has its range away from the
origin, which turns the model into a max-affine model. Thus
methods developed for the two models are compatible. For the
sake of simplicity, we use the description in (I.1). If necessary,
a coordinate of xi can be fixed to 1 for all i ∈ [n].

Since the max-affine model can approximate a convex
function to an arbitrary accuracy, it has been utilized in
numerous applications, particularly in machine learning and
optimization. Recently it has been shown that an extension
called the max-affine spline operators (MASOs) can represent
a large class of deep neural networks (DNNs) [8], [9], [10].
They leveraged the model to analyze the expressive power of
various DNNs. Max-affine model has also been leveraged to
approximate Bregeman divergences in metric learning [11]
and utility functions in energy storage and beer brewery
optimization problems [12].

As mentioned above, the max-affine and max-linear regres-
sion problems are challenging due to the inherent nonlinearity
in the model. In the literature, the max-affine regression
problem has been studied mostly as a nonlinear least squares
[13], [14], [15], [12], [1], [16]:

β̂ = argmin
[β1;...;βk]

n∑
i=1

(
max
1≤j≤k

⟨xi,βj⟩ − yi

)2

. (I.5)

By utilizing a special structure in (I.5), a suite of iterative
optimization algorithms have been developed [13], [14], [15].
The fact that (I.1) is a special case of piecewise linear function
allows us to divide x1, . . . ,xn into k partitions based on their
membership in the polyhedral cones

Cj := {w ∈ Rp : ⟨w,β⋆,j − β⋆,l⟩ ≥ 0, ∀l ̸= j} , j ∈ [k],
(I.6)

which are pairwise almost disjoint1 and cover the entire space
Rp. In other words, Cj is determined according to which
component achieves the maximum in the max-linear model
in (I.1). If this oracle information is known a priori, then the
estimation is divided into k decoupled linear least squares
given by

β̂j = argmin
βj

∑
i∈Cj

(⟨xi,βj⟩ − yi)
2
, j ∈ [k]. (I.7)

However, since the oracle partition information is not available
in practice, various adaptive partitioning methods have been
studied. Magnani and Boyd [13] proposed the least-squares
partition algorithm, which is an alternating minimization
algorithm that progressively refines the estimates for both
model parameters and partitions similar to the k-means
clustering algorithm. Hannah and Dunson [15] proposed the
convex adaptive partitioning (CAP) method, which is a greedy
algorithm that builds a partitioning of covariates through

1We say two sets are almost disjoint whenever their intersection has
measure zero with respect to an underlying measure.

dyadic splitting and refit. They have shown that the CAP
method is asymptotically consistent. Balász [12] proposed the
adaptive max-affine partitioning algorithm, which combines
AM and CAP using a cross-validation scheme and significantly
reduces computation time by partitioning at the median. The
performance of all these algorithms critically depends on
the initialization. Moreover, they proposed an initialization
scheme based on a random search, but its search space grows
exponentially in p. In a later work, Ghosh et al. [1] further
improved the random search method by using a spectral method
so that the size of the search space does not depend on p, even
though it grows exponentially in k. Their initialization scheme
remains a practical method when k = O(1). Toriello and
Vielma [14] formulated (I.5) as a mixed integer program based
on the “big-M” method. Similar to other methods based on
mixed integer programming, their method also suffers from
a high computational cost and does not scale well to large
instances. Ho et al. [16] applied the DC algorithm [17] to a
reformulation of (I.5) as a difference-of-convex program. They
showed, empirically, fast convergence of their algorithm to a
local minimum.

The aforementioned methods demonstrated satisfactory em-
pirical performance on selected benchmark sets at a tractable
computational cost. However, except for the method of Ghosh
et al. [1], these methods lack non-asymptotic statistical guar-
antees even under reasonable simplifying assumptions. A non-
asymptotic analysis for the alternating minimization method is
first established in [1] which also provides a provably accurate
initialization scheme.

C. Contributions

We provide a scalable convex estimator for the max-linear
regression problem that is formulated as a linear program and
is backed by statistical guarantees. Under the standard Gaussian
covariate model, the convex estimator (I.4) is guaranteed to
recover the regression parameters exactly with high probability
if the number of observations n scales as π−4

minp up to some log-
arithmic factors where πmin is defined as minj∈[k] P (g ∈ Cj)
for g ∈ Normal(0, Ip). This sample complexity implicitly
depends on k (i.e., the number of components) through πmin.
Particularly, when the k linear components form a “well-
balanced partition” in the sense that they are equally likely to
achieve the maximum, the smallest probability πmin is close
to 1/k and the derived sample complexity reduces to k4p up
to the logarithmic factors. This is comparable to the sufficient
condition for exact recovery n = O(kpπ−3

min) of alternating
minimization algorithm [1] in the noise-free scenario. Monte
Carlo simulations show that our proposed convex estimator,
as a convexification of the LAD estimator, exhibits robustness
against outliers, whereas AM appears to be fragile in the
presence of impulsive noise. Furthermore, the repetition of AR
significantly improves the accuracy of the estimation.

II. ACCURACY OF THE CONVEX ESTIMATOR

In this section, we provide our main results on the estimation
error of the convex program in (I.4). We consider the
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anchor vector θ constructed from a given initial estimate
β̃ = [β̃1; . . . ; β̃k] ∈ Rkp as

θ =
1

2n

n∑
i=1

∇fi(β̃) =
1

2n

n∑
i=1

k∑
j=1

1{xi∈C̃j}ej ⊗ xi, (II.1)

where

C̃j :=
{
w ∈ Rp : ⟨w, β̃j − β̃l⟩ ≥ 0, ∀l ̸= j

}
, j ∈ [k]

(II.2)
and ej ∈ Rk denotes the jth column of the k-by-k identity
matrix Ik for j ∈ [k]. Since fi is differentiable except on a set
of measure zero, with a slight abuse of terminology, ∇fi in
(II.1) is referred to as the “gradient”. In (II.1), the choice of
anchor vector follows from the geometry of convex equations
[4, Section 1.4]. In particular, in the noiseless case, β⋆ would
be a solution to

maximize
β

⟨θ,β⟩

subject to fi(β) ≤ yi, ∀i ∈ [n].

if it satisfies the Karush–Kuhn–Tucker condition

−θ +
n∑
i=1

λi∇fi(β⋆) = 0

for some λ1, . . . , λn ≥ 0. In other words, the anchor vector
θ needs to be in the cone ({∇fi(β)}ni=1). The choice of θ in
(II.1) is inspired by this condition.

The following theorem illustrates the sample complexity and
the corresponding estimation error achieved by the estimator
in (I.4). The estimation error is measured as the sum of the ℓ2
norms of the difference between the corresponding components
of the ground truth β⋆ and the estimate β̂.

Theorem 1: Let {Cj}kj=1 and {C̃j}kj=1 be respectively
defined as in (I.6) and (II.2). Let θ be as in (II.1) and {xi}ni=1

be independent copies of g ∼ Normal(0, Ip). Then there exist
absolute constants c, C > 0, for which the following statement
holds for all w ∈ Rn with probability at least 1− δ: Suppose
that β̃ is independent of {xi}ni=1 satisfies

∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2
∥β⋆,j − β⋆,j′∥2

≤

min

(
0.1,

cπ4
min

2k
log−1/2

(
k

cπ4
min

))
, ∀j, j′ ∈ [k] : j ̸= j′.

(II.3)
If the feasible set of the optimization problem in (I.4) is not
empty and the number of observations satisfies

n ≥ C ζ−2
(
4p log3 p log5 k + 4 log(1/δ) log k

)
, (II.4)

where

ζ := min
j∈[k]

√
π

32
P2{g ∈ Cj} − 2max

j∈[k]

√
P{g ∈ C̃j△Cj},

then the solution β̂ to (I.4) obeys

k∑
j=1

∥β⋆,j − β̂j∥2 ≤
2

ζ

(
η +

1

n

n∑
i=1

(wi)+

)
. (II.5)

To make the optimization problem in (I.4) feasible, it suffices
to include the ground-truth β⋆ in the feasible set, i.e.

η ≥ 1

n

n∑
i=1

(−wi)+, (II.6)

The error bound in (II.5) reduces to 2
ζn

∑n
i=1 |wi| when the

parameter η is chosen so that the equality in (II.6) is achieved.
In practice, the noise entries are unknown and this error cannot
be achieved. If η, as a parameter that determines the power
of the adversary, is chosen so that η ≥ ∥w∥1/n, then the
resulting error bound becomes 4∥w∥1

nζ . In particular, if η satisfies
η ≥ ∥w∥∞, then the resulting error bound will be 4∥w∥∞

ζ . The
latter condition will be readily satisfied in practical applications.
Furthermore, as shown in the empirical sensitivity analysis in
Section III, the estimation error does not crucially depend on
the choice of η.

A. Comparison with an oracle estimator

Assuming that the additive noise is i.i.d. sub-Gaussian with
zero mean and variance σ2, the error bound in (II.5) becomes
Õ(σ/ζ), which implies that our estimator is not consistent.
However, in the adversarial noise setting which is our focus,
we can compare the performance case of our estimator with
an oracle-assisted estimator, similar to the analysis carried out
in [18] for the matrix completion problem. In this scenario,
the error bound by the convex estimator nearly matches the
performance of an oracle-assisted estimator (up to a factor
determined by β⋆).

Lemma 1: Consider the same regression problem as in
Theorem 1 with {xi}ni=1 being independent copies of g ∼
Normal(0, Ip). Suppose that {Cj}kj=1 in (I.6) is given as the
oracle information. Then there exists an absolute constant
C > 0 such that if

n ≥ Cπ−2
min max(kp log(n/p), log(1/δ)), (II.7)

then the estimates {β̂j}kj=1 obtained through the decoupled
least-squares (I.7) satisfy

sup
∥w∥∞≤η′

k∑
j=1

∥β⋆,j − β̂j∥2 ≳
π
3/2
minη

′

πmax
(II.8)

with probability at least 1− δ, where πmax := maxj∈[k] P(g ∈
Cj).

Proof: See Appendix A.
One expects that the oracle estimator nearly achieves the

optimal performance. However, since the lower bound by
Lemma 1 does not vanish as n increases to infinity, the oracle
estimator is also biased in the presence of adversarial noise.
Note that the lower bound in (II.8) remains the same with
the feasible set substituted by ∥w∥1 ≤ nη′. Furthermore, if η
achieves the equality in (II.6), then the error bound in (II.5)
implies

sup
∥w∥1≤nη′

k∑
j=1

∥β⋆,j − β̂j∥2 ≤
2η′

ζ
. (II.9)

Therefore, in this scenario, the error bound in (II.9) matches that
by the oracle estimator up to an extra factor O(πmax/ζπ

3/2
min).
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In particular, if πmax ≈ πmin ≈ 1/k, then the error by the
convex estimator is sub-optimal up to a factor k5/2 relative to
the oracle estimator.

B. Initialization

Theorem 1 provides an error bound by the convex estimator
given an initial estimate satisfying (II.3). Finding such an initial
estimate is not a trivial task. Ghosh et al. [1] proposed an
initialization scheme that consists of dimensionality reduction
by a spectral method [1, Algorithm 2], followed by a low-
dimensional random search [1, Algorithm 3]. It has been shown
that if the observations are corrupted with independent sub-
Gaussian noise, then the initialization scheme provides an
estimate within a certain neighborhood of the ground-truth
in a polynomial time when k = O(1). Their proof only uses
the fact that the maximum magnitude of sub-Gaussian noise
entries is bounded with high probability. Below, we extend the
analysis of their initialization scheme to the scenario where
the noise vector w is a fixed deterministic vector under the
only condition that ∥w∥∞ ≤ η′.

To this end, we first recall the first stage in their initialization
scheme that extracts the eigenvectors corresponding to the k
dominant eigenvalues of the following matrix:

M̂ =
2

n

n/2∑
i=1

yixi

n/2∑
i=1

yixi

⊤

+
2

n

n/2∑
i=1

yi (xix
T
i − Ip) .

(II.10)
Let M̃ denote the noise-free version of M̂ , i.e.,

M̃ =
2

n

n/2∑
i=1

(
max
j∈[k]
⟨β⋆,j ,xi⟩

)
(xix

T
i − Ip)+

2

n

n/2∑
i=1

(
max
j∈[k]
⟨β⋆,j ,xi⟩

)
xi

n/2∑
i=1

(
max
j∈[k]
⟨β⋆,j ,xi⟩

)
xi

⊤

.

Then the ground-truth parameter vectors β⋆1 , . . . ,β
⋆
k are in the

columns space of EM̃ . Ghosh et al. [1] derived a tail bound
on the perturbation of those eigenvectors due to sub-Gaussian
noise. We provide an analogous perturbation analysis in the
deterministic noise setting. The following lemma provides
upper bounds on the contributions of the noise to the two
summands in the right-hand side of (II.10).

Lemma 2: Suppose that x1, . . . ,xn
i.i.d.∼ Normal(0, Ip)

and w := (w1, . . . , wn) ∈ Rn are arbitrary fixed. Then the
following inequalities hold with probability at least 1− δ:∥∥∥∥∥ 1n

n∑
i=1

wixi

∥∥∥∥∥
2

≲ ∥w∥∞ ·
√

p+ log(1/δ)

n
,∥∥∥∥∥ 1n

n∑
i=1

wi (xix
T
i − Ip)

∥∥∥∥∥ ≲

∥w∥∞ ·max

(√
p+ log(1/δ)

n
,
p+ log(1/δ)

n

)
.

(II.11)
Proof: See Appendix C.

Let Û be a matrix whose columns are the k dominant
eigenvectors of M̂ . Furthermore, let the columns of U⋆ be

the eigenvectors of the noise-free component of EM̃ . Then,
plugging the results in Lemma 2 into the proof of [1, Lemma 8]
yields that∥∥∥ÛÛ T −U⋆ (U⋆)

T
∥∥∥2
F
≲(

∥w∥2∞ +maxj∈[k] ∥β⋆,j∥21
λ2
k(EM̃)

)
kp log3(pk/δ)

n

(II.12)

holds with probability at least 1 − δ. This is analogous to
[1, Theorem 2] which addresses the case of the sub-Gaussian
noise. The remainder of their initialization scheme does not
depend on any assumption on the noise model. Therefore, the
resulting initial estimate satisfies (II.3) if

n ≳
k6 log(k/πmin)

π13
min

·

max

{
∥w∥2∞ log

(
1 +

maxj∈[k] ∥β⋆,j∥2k4 log1/2(k/πmin)

π5.5
min

)
,

(
∥w∥2∞ +max

j∈[k]
∥β⋆,j∥21

)
k3p log3(n/k) ·maxj∈[k] ∥β⋆,j∥2

λ2
k(EM̃)

}
.

(II.13)
The condition in (II.13) is obtained by applying the initial-
ization condition (II.3) and substituting σ by ∥w∥∞ in [1,
Equation 20]. The requirement for the initial point of anchored
regression (II.3) is more relaxed in terms of the dependence on
πmin, compared to the similar requirement for the alternating
minimization method [1, Theorem 1]. Furthermore, for both
anchored regression and alternating minimization, the sample
complexity of the initialization dominates that of the subsequent
stages of the algorithms.

In the above paragraphs, we have shown that the anchored
regression combined with the spectral initialization provides
a stable estimate in the presence of an arbitrarily fixed
deterministic noise of bounded magnitudes. However, this result
does not extend to the adversarial noise setting in Theorem 1
and Lemma 1. Maximization over ws that obey ∥w∥∞ ≤ η′

in (II.11), can be addressed effectively by taking the union
bound over extreme points of ℓn∞ ball with the radius η′ and
choosing δ = 2−nδ̄ with δ̄ ∈ [0, 1] denoting overall error
probability. Therefore, the terms p+log(1/δ)

n in (II.11) are equal
to p+n log(2)+log(1/δ̄)

n , which are clearly bounded from below
by log 2. Consequently, in the adversarial setting, the error in
the spectral method does not vanish as n grows, and the desired
accuracy for the initialization scheme cannot be established.
Considering a relaxed condition ∥w∥1 ≤ nη′ exacerbates the
situation and the error bound in the spectral method becomes
even larger.

C. Compariosn with alternating minimization in computational
cost

This section compares AR and AM in their computational
costs. First, AR is implemented via an equivalent formulation
with auxiliary variables t := [t1; . . . ; tn] ∈ Rn as
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maximize
(βj)kj=1,(ti)

n
i=1

⟨θ, [β1; . . . ;βk]⟩

subject to ti ≥ 0, ⟨xi,βj⟩ − yi ≤ ti,
1

n

n∑
i=1

ti ≤ η,

∀i ∈ [n], ∀j ∈ [k] .
(II.14)

To compute the computational costs for (II.14), we
further reformulate it into the form of a linear program
minAs=b,s≥0⟨c, s⟩ by introducing an additional nk + 1 aux-
iliary variables to convert the second and third inequality
constraints into equality constraints. Then, we have nk + 1
equality constraints and 2pk + nk + n+ 1 variables. By [19],
finding its exact solution costs Õ (((n+ p)k)c) with c ≈ 2.38.
In contrast, with finitely many operations, AM can find only an
approximate solution. The per-iteration cost of AM is O(nkp2).
In the noiseless case, due to the linear convergence of AM, the
total cost to obtain an ϵ-accurate solution is O(nkp2 log(1/ϵ)).

In a special case where the observations are almost equally
distributed over the linear components of the max-linear
model, we have πmin ≈ πmax ≈ 1/k. Consequently, the
sample complexity for both estimators is Õ(pk4). Thus, the
computational costs for AR and AM become Õ(p2.38k12)
and Õ(p3k5), respectively. When p is much larger than k
(specifically, p > k14, the computational cost of AR is
significantly lower than that of AM. However, in the opposite
scenario, AM is more cost-effective. We summarize the
comparison with respect to the computational cost, sample
complexity and model assumption in Section II.

III. NUMERICAL RESULTS

We present a set of Monte Carlo simulations to evaluate
the performance of the estimator by anchored regression
numerically. The experiments were designed to illustrate the
following perspectives on the estimation performance: i) The
empirical phase transition on exact recovery without noise
corroborates Theorem 1; ii) Further iterations of AR with
updated anchor vectors significantly reduce the estimation
error; iii) AR provides a competitive empirical performance
with additive Gaussian noise to AM; iv) AR provides a
stable estimation in the presence of sparse noise, where the
performance of AM significantly deteriorates. We implement
AR by the linear program given in (II.14). Since (II.14) is
in the standard form of a linear program, it can be solved
efficiently by readily available software such as CPLEX and
Gurobi [20]. AR is compared to the version of AM by Ghosh
et al. [1]. For a fair comparison, we let both methods start
from the same initial estimate, which will be specified later.

In the Monte Carlo simulations, the regressors x1, . . . ,xn
are generated as independent copies of a random vector
following Normal(0, Ip), as assumed in Theorem 1. For
each run, the estimation error is measured up to permutation

2The spectral initialization is not included in this comparison. To
incorporate the initialization into the analysis, it is necessary to modify the
noise model from an adversarial noise model to a gross error model as discussed
in Section II-B.

ambiguity, that is, the error is calculated as the minimum
of
∑k
j=1 ∥β̂π(j) − β⋆,j∥2/

∑k
j=1 ∥β⋆,j∥2 over all possible

permutation π over segment indices, where (β⋆,j)
k
j=1 and

(β̂j)
k
j=1 denote the ground-truth parameters and their estimates,

respectively.
Since both AR and AM algorithms operate provided suitably

initialized parameter, it is crucial to obtain an initial estimate,
which lands near the ground-truth parameter. To this end,
throughout the simulations, we apply the heuristic known as the
AM with repeated random initialization in [12], summarized
as follows: One repeats the following procedure for q ∈ [m]:
i) Randomly generate parameters βrq,1, . . . ,β

r
q,k ∈ Rp. ii) Run

the AM algorithm from given initial estimates for Iinit iterations
and obtain estimates βoq,1, . . . ,β

o
q,k. Then choose the set of

parameters βoq′,1, . . .β
o
q′,k, which achieves the least empirical

loss in (I.5), i.e.

q′ = argmin
q∈[m]

n∑
i=1

(
max
1≤j≤k

⟨xi,βoq,j⟩ − yi

)2

.

Throughout all simulations, the initialization parameters are
set to m = 200 and Iinit = 10. Moreover, the maximum
iteration number for the AM algorithm, denoted by IAM, is
set to IAM = 120.
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(b) AM

Fig. 1: Phase transition of recovery rate for varying n and p
in the noiseless case (k = 5).

Figures 1 and 2 illustrate the empirical phase transition
of exact recovery in the noise-free scenario as a function of
the sample size n per varying dimension parameters, which
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Fig. 2: Phase transition of recovery rate for varying n and k
in the noiseless case (p = 20).
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TABLE I: Comparison of local convergence of AR and AM.2

Method Cost for ϵ-accuracy Cost for an ideal instance Sample complexity Covariate model Noise model

AR Õ
(
((n+ p)k)2.38

)
Õ(p2.38k12) Õ

(
π−4
minp

)
Gaussian Adversarial

AM [1] O(nkp2 log(1/ϵ)) Õ(p3k5) O(π−3
minkp) Gaussian Sub-Gaussian

Algorithm 1: Iterative Anchored Regression (IAR)

1: Input: data {xi, yi}ni=1; initialized parameter β̃ ∈ Rkp;
fidelity upper bound η; max. number of iterations IIAR

2: Output: estimated parameter β̂ ∈ Rpk

3: for i = 1 to IIAR do
4: Compute anchor vector θ from β̃ by (II.1)
5: Estimate β̂ by anchored regression in (II.14)
6: β̃ ← β̂
7: end for

are the ambient dimension p and the number of segments k.
The reconstruction is determined as success if the normalized
estimation error is below 10−5. The recovery rate is calculated
as the ratio of success out of 50 trials. In this simulation,
we assume that k ≤ p. To satisfy the “well-balance partition”
condition, we generate the ground-truth parameter vectors so
that they are mutually orthogonal one another.

Figure 1 shows that for both AR and AM, the phase transition
occurs when n grows linearly with p while k is fixed to 5. This
observation qualitatively coincides with the sample complexity
by Theorem 1. A complementary view is provided by Figure 2
for varying k while p is fixed to 20. Here, the phase transition
occurs when n is proportional to kt for some constant t ∈ (1, 2).
The order of this polynomial is smaller than the corresponding
result by Theorem 1, where n is proportional to k4. A similar
gap between theoretical sufficient condition and empirical phase
transition was observed for AM in the noise-free setting [21,
Appendix L]. Overall, as shown in these figures, AR and
AM provide similar empirical performance in the noiseless
scenario.

In practice, observations are often corrupted with noise.
Next, we study the estimation under two noise models. In
these experiments, the ground-truth parameter vectors are
i.i.d Normal(0, Ikp). Furthermore, to deduce statistical per-
formance, the median of the estimation error in 50 trials is
observed.

First, we consider the i.i.d. Gaussian noise model, i.e. yi =
fi(β⋆) + ϵi, where {ϵi}ni=1 are i.i.d following Normal(0, σ2).
To track the change of the estimation performance as a function
of the noise strength, the dimension parameters are fixed as
p = 30 and k = 6. AM has shown to be consistent, with an
error rate that vanishes as n grows[1]. Its empirical estimation
error decays similarly in the experiment. However, we observe
that AR has a larger estimation error compared to AM, which
remains nontrivial even for large n. We conjecture that this
bias term is due to the regularizer with an imperfect anchor
vector. In fact, as the anchor vector is obtained from a more
accurate initial estimate, the result estimation error decays
accordingly. Motivated by this observation, we consider a
modification of AR with further iterative refinements, which we

call the iterative anchored regression (IAR). The first iteration
of IAR is equivalent to AR, but in the subsequent iterations,
the anchor vector is refined by using the estimate from the
previous iteration. The entire IAR algorithm is summarized
in Algorithm 1. The number of iterations in IAR is set to
IIAR = 40. Figure 3 shows that with more iterations the
performance of iterative AR becomes as good as that of AM.
Moreover, for small n (e.g. n ≤ 1, 000), IAR provides a
smaller estimation error than AM. Moreover, we also study the
sensitivity to the choice of the parameter η in (I.4). The need
to tune this parameter can be a weakness of AR since AM
does not involve any such parameter. As shown in Figure 4,
the estimation error by AR does not critically depend on η.
In this experiment, we vary η around η⋆ that achieves the
equality in (II.6) with ±50% margin. Within this range, the
estimation error remains small. Also, note that the minimum
estimation error is achieved when η is slightly smaller than η⋆.
It still remains to set the value of η within this range. Since the
observations are corrupted with i.i.d. noise in this experiment,
we applied a 5-fold cross-validation to estimate the validation
error. Figure 4 suggests that choosing an η value that yields
the smallest prediction error will likely result in the smallest
estimation error.

Next, we study the empirical performance of the estimators
under a gross error model. In Section II, we have shown that
the theoretical analysis of AR combined with the initialization
by Ghosh et al. [1] applies to this model. Specifically, each
observation is corrupted by a sparse noise according to the
multiplicative Bernoulli model with probability φ, that is,
P{yi = −fi(β⋆)} = φ and P{yi = fi(β⋆)} = 1 − φ
for i ∈ [n]. The multiplicative Bernoulli noise model has a
similarity with the Massart noise [22, Definition 1.1]. Similar
to the previous experiment, we compare AR to IAR and AM.
Furthermore, we also study the performance of a variation
of AM in which the least squares update is substituted by
LAD. It will be denoted by AM-LAD. Figure 5 illustrates
the estimation error in this setting where p = 30 and k = 6.
Unlike the case of Gaussian noise, AR outperforms AM in the
presence of multiplicative Bernoulli noise. Furthermore, IAR
and AM-LAD achieve exact recovery over the range of φ in
this experiment.

IV. PROOF OF THEOREM 1

We prove Theorem 1 in two steps. First, in the following
proposition, we present a sufficient condition for stable esti-
mation by convex program in (I.4). Then we derive an upper
bound on ϱ in the proposition, which provides the sample
complexity condition along with the corresponding error bound
in Theorem 1.
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Fig. 3: Estimation error versus the number of observations n under Gaussian noise of variance σ2 (k = 6 and p = 30): repeated
random initialization (black line with square markers), AR (green line with triangle markers), iterative AR (blue line and circle
markers), and AM (red dashed line). All methods start from the repeated random initialization.

Fig. 4: Estimation error and validation error via cross-validation
by AR for varying η (k = 3, p = 30, and n = 1, 500): The
dotted vertical line indicates the location of η⋆ that achieves
the equality in (II.6).

Proposition 1: Under the hypothesis of Theorem 1, suppose
that β̃ satisfies

ϱ := inf
j∈[k]

w∈Sp−1

E1Cj (g) |⟨g,w⟩| − sup
j∈[k]

w∈Sp−1

E1C̃j\Cj
(g)⟨g,w⟩+

− sup
j∈[k]

w∈Sp−1

E1Cj\C̃j
(g)⟨g,w⟩+ > 0 . (IV.1)

Then there exists an absolute constant c > 0 such that if

n ≥ cϱ−2
(
4p log3 p log5 k + 4 log(δ−1) log k

)
, (IV.2)

then the solution β̂ to the optimization problem in (I.4) obeys

k∑
j=1

∥β⋆,j − β̂j∥2 ≤
2

ϱn

n∑
i=1

|wi| (IV.3)

with probability 1− δ.
Proof: We first show that there exists a constant c > 0

such that the condition in (II.3) implies ζ > 0. Hence, we
consider

min
j∈[k]

√
π

32
P2{g ∈ Cj}︸ ︷︷ ︸
(i)

− 2max
j∈[k]

√
P{g ∈ C̃j△Cj}︸ ︷︷ ︸

(ii)

> 0.

(IV.4)
It follows from the definition of πmin that (i) in (IV.4) is
bounded from below as

(i) ≥
√

π

32
π2
min. (IV.5)

It only remains to find an appropriate upper bound on (ii).
Since {Cj}kj=1 consists of disjoint sets (except their boundaries
corresponding to sets of measure zero), for a fixed j ∈ [k], the
symmetric difference between C̃j and Cj is written as

C̃j△Cj =
(
∪j′ ̸=j C̃j ∩ Cj′

)
∪
(
∪j′ ̸=jCj ∩ C̃j′

)
.

Therefore, we obtain

(ii) ≤ 2
√
2k max

j∈[k]
max

j′∈[k]\{j}

√
P
(
g ∈ C̃j ∩ Cj′

)
. (IV.6)

Moreover, since

g ∈ C̃j ∩ Cj′ =⇒ gTβ̃j ≥ xT
iβ̃j′ , xT

iβ⋆,j′ ≥ xT
iβ⋆,j

=⇒ gT(β̃j − β̃j′) ≥ 0, gT(β⋆,j − β⋆,j′) ≤ 0

=⇒ gT(β̃j − β̃j′) · gT(β⋆,j − β⋆,j′) ≤ 0,
(IV.7)
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Fig. 5: Estimation error versus the number of observations n under multiplicative Bernoulli noise model with probability φ
(k = 6 and p = 30): repeated random initialization (black line with square markers), AR (green line with triangle markers),
IAR (blue line with circle markers), AM (red dashed line), and AM-LAD (magenta line with asterisk markers). All methods
start from repeated random initialization.

with [1, Lemma 9], (ii) in (IV.6) is further upper-bounded by

(ii)

≤ 2
√
2k·

max
j∈[k]

max
j′∈[k]\{j}

√
P
(
gT(β̃j − β̃j′) · gT(β⋆,j − β⋆,j′) ≤ 0

)
≤ C
√
k ·max

j∈[k]
max

j′∈[k]\{j}

(√
∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2

∥β⋆,j − β⋆,j′∥2

· log1/4
(

2∥β⋆,j − β⋆,j′∥2
∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2

))
,

(IV.8)
for an absolute constant C > 0. Then, by plugging in (IV.5)
and (IV.8) to (IV.4), we obtain a sufficient condition for (IV.4)
as

C
√
kmax
j∈[k]

max
j′∈[k]\{j}

√
∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2

∥β⋆,j − β⋆,j′∥2
·

log1/4

(
2∥β⋆,j − β⋆,j′∥2

∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2

)
<

√
π

32
π2
min.

(IV.9)
For a fixed j′ ∈ [k] \ {j}, let

a =
∥(β̃j − β̃j′)− (β⋆,j − β⋆,j′)∥2

∥β⋆,j − β⋆,j′∥2
and b =

π4
min

k
.

Since a, b ∈ (0, 0.1] and a ≤ b
2 log

−1/2(1/b) imply
a log1/2(2/a) ≤ b, if one chooses c in (II.3) so that c < π

32C2 ,
then (II.3) implies (IV.9) for all distinct j, j′ ∈ [k]. In the
remainder of the proof, we will assume that (IV.4) holds.

We show that, for a sufficiently large ρ > 0, the following
three conditions cannot hold simultaneously:

1

n

n∑
i=1

(fi(β⋆ + z)− yi)+ ≤ η , (IV.10)

∥z∥1,2 > ρ , (IV.11)

⟨θ, z⟩ ≥ 0 . (IV.12)

Therefore, assuming (IV.11) and (IV.12) hold, it suffices to
show

L(z) := 1

n

n∑
i=1

(fi(β⋆ + z)− yi)+ > η . (IV.13)

To this end, we derive a lower bound on L(z) as follows:

L(z) ≥ 1

n

n∑
i=1

(fi(β⋆ + z)− fi(β⋆))+ −
1

n

n∑
i=1

(wi)+

(a)

≥ 1

n

n∑
i=1

(⟨∇fi(β⋆), z⟩)+ −
1

n

n∑
i=1

(wi)+

=
1

n

n∑
i=1

|⟨∇fi(β⋆), z⟩|
2

+
1

n

n∑
i=1

⟨∇fi(β⋆), z⟩
2

− 1

n

n∑
i=1

(wi)+

=
1

n

n∑
i=1

|⟨∇fi(β⋆), z⟩|
2

+
1

n

n∑
i=1

⟨∇fi(β⋆), z⟩
2

− ⟨θ, z⟩+ ⟨θ, z⟩ − 1

n

n∑
i=1

(wi)+

(b)
= ⟨θ, z⟩ − 1

n

n∑
i=1

(wi)+ +
1

n

n∑
i=1

|⟨∇fi(β⋆), z⟩|
2

+
1

n

n∑
i=1

⟨∇fi(β⋆)−∇fi(β̃), z⟩
2

(c)
= ⟨θ, z⟩ − 1

n

n∑
i=1

(wi)+ +
1

n

n∑
i=1

k∑
j=1

1Cj
(xi)|⟨xi, zj⟩|

2

+
1

n

n∑
i=1

k∑
j=1

{1Cj (xi)− 1C̃j
(xi)}⟨xi, zj⟩

2
, (IV.14)

where (a) holds by the convexity of fi, which implies

fi(β⋆ + z) ≥ fi(β⋆) + ⟨∇fi(β⋆), z⟩ ,

(b) follows from (II.1), and (c) is obtained by calculating
∇fi(β) at β = β⋆ and β = β̃. We further proceed by obtaining
lower bounds on the last two terms in (IV.14) by the following
lemmas, which are proved in Appendices D and E.
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Lemma 3: Let (Vz)z∈Rkp be a random process defined by

Vz :=
1

n

n∑
i=1

k∑
j=1

1Cj (xi) |⟨xi, zj⟩| ,

where x1, . . . ,xn are i.i.d. Normal(0, Ip). Then, for g ∼
Normal(0, Ip) and any δ ∈ (0, 1), there exists an absolute
constant c1 > 0 such that

V := inf
∥z∥1,2=1

Vz ≥ min
j∈[k],w∈Sp−1

E1Cj
(g) |⟨g,w⟩|

− c1

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ/2.
Proof: See Appendix D.

Lemma 4: Let (Qz)z∈B1,2
be a random process defined by

Qz :=
1

n

n∑
i=1

k∑
j=1

{
1C̃j

(xi)− 1Cj (xi)
}
⟨xi, zj⟩ ,

where x1, . . . ,xn are i.i.d. Normal(0, Ip). Then, for g ∼
Normal(0, Ip) and any δ ∈ (0, 1), there exists an absolute
constant c2 > 0 such that

Q := sup
∥z∥1,2=1

Qz ≤ max
j∈[k],w∈Sp−1

E1C̃j\Cj
(g)⟨g,w⟩+

+ max
j∈[k],w∈Sp−1

E1Cj\C̃j
(g)⟨g,w⟩+

+ c2

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ/2.
Proof: See Appendix E.

Since Vz are Qz are homogeneous in z, we obtain that the
third term in the right-hand side of (IV.14) is written as Vz

and lower-bounded by

Vz

2
≥

V ∥z∥1,2
2

. (IV.15)

Similarly, the last term in the right-hand side of (IV.14) is
written as −Qz and lower-bounded by

−Qz

2
≥ −

Q∥z∥1,2
2

. (IV.16)

Furthermore, by Lemmas 3 and 4, the condition in (IV.2)
implies that

V −Q ≥ c3ϱ > 0 (IV.17)

holds with probability 1− δ for an absolute constant c3 > 0.
Then we choose ρ so that it satisfies

ρ =
2

V −Q
·

(
η +

1

n

n∑
i=1

(wi)+

)
.

Next, by plugging in the above estimates to (IV.14), we obtain
that, under the event in (IV.17), the conditions in (IV.11) and
(IV.12) imply

L(z) ≥ ⟨θ, z⟩ − 1

n

n∑
i=1

(wi)+ +
(V −Q)∥z∥1,2

2

> − 1

n

n∑
i=1

(wi)+ +
(V −Q)ρ

2

= − 1

n

n∑
i=1

(wi)+ +
1

n

n∑
i=1

(wi)+ + η

= η .

This lower bound implies (IV.13). Therefore we have shown
that the three conditions in (IV.10), (IV.11), and (IV.12) cannot
hold simultaneously. It remains to apply the claim to a special
case.

Let ẑ = β̂ − β⋆. Recall that both β̂ and β⋆ are feasible
for the optimization problem in (I.4). Moreover, since β̂ is
the maximizer, it follows that ⟨θ, β̂⟩ ≥ ⟨θ,β⋆⟩, which implies
⟨θ, ẑ⟩ ≥ 0. Therefore the conditions in (IV.10) and (IV.12) are
satisfied with z substituted by ẑ. Since the three conditions
cannot be satisfied simultaneously, the condition in (IV.11)
cannot hold, i.e. ẑ satisfies

∥ẑ∥1,2 ≤ ρ ≤ 2

ϱ

(
η +

1

n

n∑
i=1

(wi)+

)
. (IV.18)

Since the noise vector w was arbitrary, (IV.18) holds for any
w. Furthermore, since the random processes in Lemma 3 and
Lemma 4 do not depend on the noise w, the conclusion of the
theorem applies to an adversarial noise without amplifying the
error probability.

Next, we use the following lemma to obtain a lower bound
on ϱ in (IV.1).

Lemma 5: Let A ⊂ Rp be of finite Gaussian measure and
g ∼ Normal(0, Ip). Then we have

inf
w∈Sp−1

E1A(g) |⟨g,w⟩| ≥
√

π

32
P2{g ∈ A}

and
sup

w∈Sp−1

E1A(g)⟨g,w⟩+ ≤
√

P{g ∈ A} .

Proof: For an arbitrarily fixed ϵ > 0, let Sϵ ⊂ Rp denote
the set defined by

Sϵ := {x ∈ Rp : |⟨x,w⟩| < ϵ} .

Then we have

E1C(g)|⟨g,w⟩| ≥ ϵE1C(g)1Sc
ϵ
(g)

= ϵE (1C(g)− 1C(g)1Sϵ(g))

≥ ϵE (1C(g)− 1Sϵ(g))

= ϵ (P{g ∈ C} − P{g ∈ Sϵ}) . (IV.19)

Moreover, since ⟨g,w⟩ ∼ Normal(0, 1), P{g ∈ Sϵ} is upper-
bounded by

P{g ∈ Sϵ} = P{|⟨g,w⟩| < ϵ} =
∫ ϵ

−ϵ

1√
2π

e−u
2/2du ≤ ϵ

√
2

π
.

(IV.20)
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By plugging in (IV.20) to (IV.19), we obtain

E1C(g)|⟨g,w⟩| ≥ ϵ

(
P{g ∈ C} − ϵ

√
2

π

)
. (IV.21)

Since the parameter ϵ > 0 was arbitrary, one can we
maximize the right-hand side of (IV.21) with respect to ϵ
to obtain the tightest lower bound. Note that the objective is
a concave quadratic function and the maximum is attained at
ϵ =

√
π/8P {g ∈ C}. This provides the lower bound in the

first assertion. Next, by the Cauchy-Schwarz inequality, we
obtain the upper bound in the second assertion as follows:

E1A(g)⟨g,w⟩+ ≤
√
E (1A(g))

2
√

E⟨g,w⟩2+

=
√
E1A(g)

√
E⟨g,w⟩2

2

=

√
P{g ∈ A}

2
.

Finally, by applying Lemma 5 to each of the expectation
terms in ϱ, we obtain a lower bound on ϱ given by

ϱ ≥ min
j∈[k]

√
π

32
P2 {g ∈ Cj} −max

j∈[k]

√
P
{
g ∈ Cj \ C̃j

}
−max
j∈[k]

√
P{g ∈ C̃j \ Cj}

≥ min
j∈[k]

√
π

32
P2 {g ∈ Cj} − 2max

j∈[k]

√
P
{
g ∈ Cj△C̃j

}
,

(IV.22)

where the second inequality holds since C̃j△Cj = (C̃j \ Cj) ∪
(Cj \ C̃j) for all j ∈ [k]. This implies that (II.4) is a sufficient
condition for (IV.2). Moreover, substituting ϱ in (IV.3) by the
lower bound in (IV.22) provides (II.5). This completes the
proof of Theorem 1.

A. Tightness of the lower bound on ϱ

In (IV.22), we obtain a lower bound on ϱ by Lemma 5. We
show through the following example that the lower bound is
tight in terms of its dependence on P {g ∈ Cj} for j ∈ [k].

Example 1: Let p = 2. Then C̃j \Cj and Cj \ C̃j are Lorentz
cones. Let θCj

, θCj\C̃j
and θC̃j\Cj

denote the angular width of

Cj , Cj \ C̃j , and C̃j \ Cj respectively. Furthermore, we assume
that

min
j∈[k]

P {g ∈ Cj} ≥ max
j∈[k]

P
{
g ∈ Cj△C̃j

}
. (IV.23)

In this case, the parameter ϱ in Proposition 1 is expressed as

ϱ =

√
2Γ(3/2)

Γ(1)

[
min
j∈[k]

2

π
sin2

(
θCj

4

)
−max
j∈[k]

1

π
sin

(
θC̃j\Cj

2

)

−max
j∈[k]

1

π
sin

(
θCj\C̃j

2

)]
. (IV.24)

When θC is small enough, sin(θC) ≈ θC holds by the Taylor
series approximation. Hence, there exists absolute constants
c1 > 0 and c2 > 0 such that

ϱ = c1 min
j∈[k]

P2{g ∈ Cj} − c2 max
j∈[k]

P{g ∈ C̃j△Cj} .

This example shows that ζ in Theorem 1 is tight in the sense
that the dominating term in both ϱ and ζ is proportional to the
squared probability measure of the smallest Cj .

Let θCj
denote the angular width of Cj . Without loss of

generality, we may assume that minj∈[k] θCj
≤ π. Furthermore,

the assumption in (IV.23) implies that the angular width of
Cj△C̃j is at most π for all j ∈ [k]. Therefore, the identity in
(IV.24) is obtained by applying the following lemma, proved
in Appendix B, to the infimum/supremum of expectation terms
in (IV.1).

Lemma 6: Let C be a polyhedral cone in R2 and g ∼
Normal(0, I2). Suppose that the angular width of C, denoted
by θC satisfies 0 ≤ θC ≤ π. Then we have

inf
w∈S1

E1C(g) |⟨g,w⟩| =
2
√
2Γ(3/2)

πΓ(2)
sin2

(
θC
4

)
and

sup
w∈S1

E1C(g)⟨g,w⟩+ =

√
2Γ(3/2)

πΓ(2)
sin

(
θC
2

)
.

Proof: See Appendix B.

V. DISCUSSION

As discussed in Section III, the proposed convex estimator
provides a comparable error bound relative to an oracle estima-
tor in the adversarial noise case. However, it does not provide
a consistent estimator with random noise. This inconsistency
arises due to the maximization of the correlation with the anchor
vector θ. Since the direction of the anchor vector does not
coincide with the ground truth, the convex estimator introduces
a bias. As a way to mitigate the bias in the convex estimator,
we propose the iterative anchored regression that recursively
refines the anchor vector to better align its direction with that
of the ground truth. We have demonstrated that the iterative
anchored regression empirically provides an exact recovery
of the ground-truth parameters in the presence of outliers.
Hence, it would be fruitful to pursue the theoretical analysis
of the iterative anchored regression, particularly in terms of its
behavior in the presence of outliers and random noise. Each
iteration solves a linear program, which costs Õ (((n+ p)k)c)
with c ≈ 2.38 as discussed in Section II-C. Therefore, the
per-iteration cost of the iterative anchored regression might
be higher than that of the alternating minimization, which is
O(nkp2). To further alleviate the computational cost of the
iterative version, one might consider warm-start strategies in
interior-point methods for linear programming (e.g. [23]).

APPENDIX

A. Proof of Lemma 1

For brevity, we introduce the shorthand notations

Aj =
n∑
i=1

1Cj (xi)xix
T
i, and bj =

n∑
i=1

1Cj (xi)yixi.
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Then, since each Cj is given by the intersection of (k − 1)
half-planes in Rp, by [24, Theorem 2], it holds with probability
at least 1− δ/3 that

sup
j∈[k]

∣∣∣∣∣ 1n
n∑
i=1

1Cj (xi)− P(g ∈ Cj)

∣∣∣∣∣ ≤
C1

√
log(3/δ) + kp log(n/p)

n
,

(A.1)

which implies

c2nπmin ≤
n∑
i=1

1Cj
(xi) ≤ C3nπmax, ∀j ∈ [k]. (A.2)

Moreover, by [25, Theorem 5.7], with probability at least
1− δ/3, we have

sup
I:|I|≤αn

λmax

(∑
i∈I

xix
T
i

)
≤ C4

√
αn

provided

n ≥ max

(
p,

log(3/δ)

α

)
. (A.3)

We also use the following claim: If

n ≥ C5β
−2 max(p log(n/p), log(3/δ)), (A.4)

then it holds with probability 1− δ/3 that

inf
I⊂[n]:|I|≥βn

λmin

(∑
i∈I

xix
⊤
i

)
≥ c6nβ

3. (A.5)

Proof of Claim: For an arbitrarily fixed T > 0, we have

1

n

∑
i∈I
⟨ξi,v⟩2 ≥

βT

2
, ∀I ⊂ [n] : |I| ≥ βn (A.6)

provided

N(v) :=
n∑
i=1

1{x:⟨x,v⟩2>T}(xi) > n− βn

2
. (A.7)

Since {x : ⟨x,v⟩2 > T} is consists of two half-spaces in Rp,
by [24, Theorem 2], there exists an absolute constant C7 > 0,
for which it holds with probability at least 1− δ/3 that

1

n
N(v) ≥ 1

n
EN(v)−C7

√
p log(n/p) + log(3/δ)

n
, ∀v ∈ Sp−1.

(A.8)
Moreover, due to [21, Lemma 15], we have

1

n
EN(v) = P

(
|⟨x,v⟩|2 > T

)
≥ 1−

√
eT . (A.9)

Plugging in (A.9) into (A.8) yields

1

n
N(v) ≥ 1−

√
eT−C7

√
p log(n/p) + log(3/δ)

n
, ∀v ∈ Sp−1.

Then (A.7) is satisfied for all v ∈ Sp by T = β2

16e and C5 =
(4C7)

2.
Since (II.7) implies (A.3) and (A.4), combining the above

results provides that

c8nπ
3
min ≤ λmin(Aj) ≤ λmax(Aj) ≤ C9n

√
πmax, ∀j ∈ [k],

holds with probability 1− δ. Then the least squares solution
in (I.7) is written as β̂j = A−1

j bj and satisfies

∥β⋆,j − β̂j∥2 ≥
λ
1/2
min (Aj)

λmax(Aj)

∥∥∥(wi)i:xi∈Cj

∥∥∥
2

≥ c10π
3/2
min√

nπmax

∥∥∥(wi)i:xi∈Cj

∥∥∥
2
≥ c11π

3/2
min

πmax

∥∥∥(wi)i:xi∈Cj

∥∥∥
∞
.

(A.10)
Then taking a sum over j ∈ [k] and maximizing over w
satisfying ∥w∥∞ ≤ η′, we obtain

sup
∥w∥∞≤η′

k∑
j=1

∥β⋆,j − β̂j∥2 ≥
c12π

3/2
minη

′

πmax
.

This completes the proof.

B. Proof of Lemma 6

We first prove the first assertion. Since C is a cone, it follows
that g ∈ C if and only g/∥g∥2 ∈ C. Moreover, Bayes’ rule
implies

E1C(g) |⟨g,w⟩| = P {g ∈ C}E [ |⟨g,w⟩| | g ∈ C] .

Therefore we have

inf
w∈S1

E1C(g) |⟨g,w⟩|

= inf
w∈S1

P {g ∈ C}E
[
∥g∥2

∣∣∣∣⟨ g

∥g∥2
,w⟩

∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
(a)
= inf

w∈S1
P {g ∈ C}E [∥g∥2]E

[ ∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
(b)
=

√
2Γ(3/2)

Γ(2)
inf

w∈S1

θC
2π

E

[ ∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
,

(A.11)

where (a) holds since ∥g∥2 and g/∥g∥2 are independent and
(b) follows from E∥g∥2 =

√
2Γ(3/2)/Γ(2) and

P{g ∈ C} = P

{
g

∥g∥2
∈ C
}

=
θC
2π

.

Then it remains to compute the expectation in (A.11). Below
we show that

inf
w∈S2

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

4

θC
sin2

(
θC
2

)
(A.12)

and

sup
w∈S2

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

2

θC
sin

(
θC
2

)
.

(A.13)
Let T = {a, b} ⊂ S1 satisfy that C is the conic hull of
T . Then let z be the unit vector obtained by normalizing
(a+b)/2. Then we have ∠(a, z) = θC/2 and ∠(b, z) = θC/2.
Let ϕ : S1 → R be defined by ϕ(w) := ∠(z,w). Since
the conditional expectation applies to |⟨g/∥g∥2,w⟩|, which
is invariant under the global sign change in w, it suffices to
consider w that satisfies 0 ≤ ϕ(w) ≤ π. Since g/∥g∥2 is
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uniformly distributed on the unit sphere, the expectation term
in (A.12) is written as

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ .

(A.14)
It follows from the assumption on the range of θC and ϕ(w)
that −π/2 ≤ ϕ(w)−θC/2 ≤ π and 0 ≤ ϕ(w)+θC/2 ≤ 3π/2.
We proceed by separately considering the complementary
cases for (θC , ϕ(w)) given below.

Case 1: Suppose that

−π

2
≤ ϕ(w)− θC

2
< ϕ(w) +

θC
2
≤ π

2
. (A.15)

Then ϕ(w) is constrained by

0 ≤ ϕ(w) ≤ π/2− θC/2 . (A.16)

Furthermore, the integral in (A.14) is rewritten as∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ =

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ

= sin

(
ϕ(w) +

θC
2

)
− sin

(
ϕ(w)− θC

2

)
= 2 cos (ϕ(w)) sin

(
θC
2

)
. (A.17)

Since sin(θC/2) ≥ 0, the expression in (A.17) monotonically
decreases in ϕ(w) for the interval given in (A.16). Thus
the maximum (resp. minimum) is attained as 2 sin(θC/2) at
ϕ(w) = 0 (resp. 2 sin2(θC/2) at ϕ(w) = π/2− θC/2).

Case 2: Suppose that

−π

2
≤ ϕ(w)− θC

2
<

π

2
< ϕ(w) +

θC
2
≤ 3π

2
. (A.18)

Then ϕ(w) satisfies

π

2
− θC

2
≤ ϕ(w) ≤ π

2
+

θC
2

(A.19)

and the integral in (A.14) reduces to∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ

=

∫ π
2

ϕ(w)− θC
2

cos θdθ −
∫ ϕ(w)+

θC
2

π
2

cos θdθ

= 2− sin

(
ϕ(w)− θC

2

)
− sin

(
ϕ(w) +

θC
2

)
= 2− 2 sin (ϕ(w)) cos

(
θC
2

)
. (A.20)

Since cos(θC/2) ≥ 0 for all θC ∈ [0, π], the maximum (resp.
minimum) is attained as 2 sin2(θC/2) at ϕ(w) = π/2− θC/2
(resp. 4 sin2(θC/4) at ϕ(w) = π/2).

Case 3: Suppose that

π

2
≤ ϕ(w)− θC

2
< ϕ(w) +

θC
2
≤ 3π

2
. (A.21)

Then we have
π

2
+

θC
2
≤ ϕ(w) ≤ π (A.22)

and∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ

=

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
(− cos θ)dθ

= sin

(
ϕ(w)− θC

2

)
− sin

(
ϕ(w) +

θC
2

)
= −2 cosϕ(w) sin

θC
2

. (A.23)

The maximum (resp. minimum) of (A.23) is attained as
2 sin(θC/2) at ϕ(w) = π (resp. 2 sin2(θC/2) at ϕ(w) =
π/2 + θC/2).

By combining the results in the above three cases, we obtain
(A.12) and (A.13). Then substituting the expectation term in
(A.11) by (A.12) provides the first assertion.

Next we prove the second assertion. Similarly to (A.11), we
have

sup
w∈S1

E1Cj (g)⟨g,w⟩+

= sup
w∈S1

P {g ∈ C}E

[
∥g∥2 ·

〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]
(a)
= sup

w∈S1

P {g ∈ C}E [∥g∥2]E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]
(b)
=

√
2Γ(3/2)

Γ(2)
sup
w∈S1

θC
2π

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]
,

where (a) holds since ∥g∥2 and g/∥g∥2 are independent, (b)
follows from E∥g∥2 =

√
2Γ(3/2)/Γ(2), and

P{g ∈ C} = P

{
g

∥g∥2
∈ C
}

=
θC
2π

.

If suffices to show that

max
w∈S1

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]
=

2

θC
sin

(
θC
2

)
.

(A.24)
Since g/∥g∥2 is uniformly distributed on the unit sphere S1

and u+ = (u+ |u|)/2 for all u ∈ R, we have

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]

=

∫ ϕ(w)+θC/2

ϕ(w)−θC/2

cos θ + | cos θ|
2θC

dθ

=
1

2

(
1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ + 1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ

)

=
1

2

(
E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C
]

+ E

[〈
g

∥g∥2
,w

〉 ∣∣∣∣ g

∥g∥2
∈ C
] )

.

(A.25)
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As shown above, the first term in (A.25) is maximized at
ϕ(w) = 0 and the maximum is given in (A.13). Furthermore,
the second term in (A.25) is rewritten as∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ = sin

(
ϕ(w) +

θC
2

)
− sin

(
ϕ(w)− θC

2

)
= 2 cosϕ(w) sin

(
θC
2

)
. (A.26)

Since sin (θC/2) ≥ 0, the expression in (A.26) is a decreasing
function of ϕ(w) ∈ [0, π]. Hence, the maximum is attained at
ϕ(w) = 0 as

max
w∈S1

2 cosϕ(w) sin

(
θC
2

)
= 2 sin

(
θC
2

)
. (A.27)

Since the two terms in (A.25) are maximized simultaneously,
by plugging in the above results to (A.24), the second assertion
is obtained.

C. Proof of Lemma 2

By construction, we have

1

n

N∑
i=1

wixi ∼ Normal

(
0,
∥w∥22
n2

Ip

)
.

Then, the concentration of the Euclidean norm of a standard
Gaussian vector guarantees, with probability at least 1− δ/2,
that ∥∥∥∥∥ 1n

n∑
i=1

wixi

∥∥∥∥∥
2

≲
∥w∥2
n

(
√
p+

√
log(1/δ)) (A.28)

for some absolute constant C. This implies the first bound in
(II.11).

Next, we want to obtain an upper bound on the second term
in (II.11). By the variational characterization of the spectral
norm, we have∥∥∥∥∥ 1n

n∑
i=1

wi (xix
T
i − Ip)

∥∥∥∥∥ ≤ sup
u∈B

p
2

∣∣∣∣∣ 1n
n∑
i=1

wi
(
(xT
iu)

2 − 1
)∣∣∣∣∣ .

(A.29)
For brevity, we introduce a shorthand notation to denote the
following random process

Yu :=
n∑
i=1

wi
(
(xT
iu)

2 − 1
)
,

indexed by u ∈ B
p
2. Then, for u,u′ ∈ B

p
2, we have

Yu − Yu =
n∑
i=1

wi⟨xi,u− u′⟩⟨xi,u+ u′⟩.

Therefore, we bound the subexponential norm of each summand
as

∥wi⟨xi,u− u′⟩⟨xi,u+ u′⟩∥ψ1

≤ wi∥⟨xi,u− u′⟩∥ψ2
· ∥xi,u+ u′∥ψ2

≲ wi∥u− u′∥2.

Applying the Bernstein inequality (e.g. see [26, Theorem 2.8.1])
then yields

P
(
|Yu − Yu′ | ≥ c

(√
t∥w∥2∥u− u′∥2 + t∥w∥∞∥u− u′∥2

))
≤ 2 exp(−t),

(A.30)
for any t ≥ 0 and an absolute constant c. Then, the process
Yu has mixed tail increments (i.e, see [27, Equation 12]) with
respect to the metrics (d1, d2) where d1(a, b) = ∥w∥∞∥a−
b∥2 and d2(a, b) = ∥w∥2∥a− b∥2 for any a, b ∈ B

p
2. Hence,

applying [27, Corollary 5.2] with the bound on γ-functional
(i.e, see [27, Equation 4]) provides

sup
u∈B

p
2

|Yu|

≲ ∥w∥2
(∫ ∞

0

√
logN (Bp2, ∥ · ∥2, η)dη +

√
log(1/δ)

)
+ ∥w∥∞

(∫ ∞

0

logN (Bp2, ∥ · ∥2, η)dη + log(1/δ)

)
(b)

≤ ∥w∥2(
√
p+

√
log(1/δ)) + ∥w∥∞(p+ log(1/δ)),

holds with probability at least 1−δ/2 where (b) holds due to an
upper bound on the covering number N(Bp2, ∥·∥2, η) ≤ (3/η)p

(e.g. see [26, Example 8.1.11]). This implies the second bound
in (II.11).

D. Proof of Lemma 3

For any z satisfying ∥z∥1,2 = 1, we have

Vz ≥ min
∥z∥1,2=1

EVz − sup
z∈B1,2

|Vz − EVz| . (A.31)

In what follows, we derive lower estimates of the summands
in the right-hand side of (A.31).

First, we derive a lower bound on min∥z∥1,2=1 EVz . Since
x1, . . . ,xn are i.i.d. Normal(0, Ip), we have

EVz = E
1

n

n∑
i=1

k∑
j=1

1Cj
(xi) |⟨xi, zj⟩| = E

k∑
j=1

1Cj
(g) |⟨g, zj⟩|

=

k∑
j=1

∥zj∥2E1Cj (g)

∣∣∣∣〈g, zj
∥zj∥2

〉∣∣∣∣ ,
where z = [z1; . . . ; zk]. Then EVz is lower-bounded by

EVz ≥ ∥z∥1,2 inf
j∈[k],w∈Sp−1

E1Cj (g) |⟨g,w⟩| .

Next, we show that (Vz−EVz)z∈B1,2 is concentrated around
0 with high probability by using the following lemma.

Lemma 7: Suppose that A1, . . . ,Ak be disjoint subsets in
Rp. Let (Uz)z∈B1,2

be a random process defined by

Uz :=
1

n

n∑
i=1

k∑
j=1

1Aj (xi)⟨xi, zj⟩+ , (A.32)

where x1, . . . ,xn are i.i.d. Normal(0, Ip). Then, for any δ ∈
(0, 1), there exists an absolute constant c > 0 such that

sup
z∈B1,2

|Uz − EUz| ≤ c

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

(A.33)
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holds with probability at least 1− δ.
Proof: We first show that Uz has sub-Gaussian increments

with respect to the ℓk∞(ℓp2)-norm, i.e.

∥Uz − Uz′∥ψ2
≲

√
log k√
n

∥∥∥(zj)kj=1 −
(
z′
j

)k
j=1

∥∥∥
ℓk∞(ℓp2)

.

(A.34)
Since A1, . . . ,Ak are disjoint, it follows that

|Uz − Uz′ | ≤ 1

n

n∑
i=1

k∑
j=1

1Aj (xi)
∣∣⟨xi, zj − z′

j⟩
∣∣

≤ 1

n

n∑
i=1

max
1≤j≤k

∣∣⟨xi, zj − z′
j⟩
∣∣ (A.35)

holds almost surely, where the last step follows from Hölder’s
inequality. We proceed with the following lemma.

Lemma 8 ([28, Lemma 2.2.2]): Let g ∼ Normal(0, Ip) and
a1, . . . ,ak ∈ Rp. Then∥∥∥∥max

j∈[k]
|⟨g,aj⟩|

∥∥∥∥
ψ2

≲
√

log kmax
j∈[k]
∥aj∥2 .

It follows from (A.35) and Lemma 8 that

∥Uz − Uz′∥ψ2
≤

∥∥∥∥∥ 1n
n∑
i=1

max
j∈[k]

∣∣⟨xi, zj − z′
j⟩
∣∣∥∥∥∥∥
ψ2

≲
1

n

√√√√ n∑
i=1

∥∥∥∥max
j∈[k]

∣∣⟨xi, zj − z′
j⟩
∣∣∥∥∥∥2
ψ2

≲

√
log k√
n

max
j∈[k]

∥∥zj − z′
j

∥∥
2

=

√
log k√
n

∥∥∥(zj)kj=1 −
(
z′
j

)k
j=1

∥∥∥
ℓk∞(ℓp2)

,

where the second inequality follows from [26, Proposi-
tion 2.6.1].

Since Uz has a sub-Gaussian increment as in (A.34), by [26,
Lemma 2.6.8], which says that centering does not harm the
sub-gaussianity, we also have

∥(Uz − EUz)− (Uz′ − EUz′)∥ψ2

≲

√
log k√
n

∥∥∥(zj)kj=1 −
(
z′
j

)k
j=1

∥∥∥
ℓk∞(ℓp2)

. (A.36)

Therefore Dudley’s inequality [29] applies to provide a tail
bound on the left-hand side of (A.33). Specifically it follows
from a version of Dudley’s inequality [26, Theorem 8.1.6] that

sup
z∈B1,2

|Uz − EUz| ≲
√
log k√
n

(∫ ∞

0

√
logN(B1,2, ∥·∥ℓk∞(ℓp2)

, η)dη + u diam (B1,2)

)
(A.37)

holds with probability at least 1− 2 exp(−u2). Note that the
diameter term in (A.37) is trivially upper-bounded by

diam(B1,2) = sup
z,z′∈B1,2

∥z − z′∥ℓk∞(ℓp2)
≤ 2 .

Moreover, since B1,2 ⊆
√
pB1, where B1 denotes the unit ball

in ℓ1, we have∫ ∞

0

√
logN(B1,2, ∥·∥ℓk∞(ℓp2)

, η)dη

≤
∫ ∞

0

√
logN(

√
pB1, ∥·∥ℓk∞(ℓp2)

, η)dη

≲
√
p log3/2 p log2 k ,

where the second inequality follows from Maurey’s empirical
method [30] (also see [31, Lemma 3.4]). By plugging in these
estimates to (A.37), we obtain that

sup
z∈B1,2

|Uz − EUz| ≲
(
p log3 p log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ.
Note that C1, . . . , Ck are disjoint except on a boundary, which

corresponds to a set of measure zero. Since the standard multi-
variate normal distribution is absolutely continuous relative to
the Lebesgue measure, these null sets can be ignored in getting
a tail bound on the infimum of the random process (Vz)z∈B1,2 .
Moreover, Vz is written as Vz = V +

z + V −
z , where

V +
z :=

1

n

n∑
i=1

k∑
j=1

1Cj
(xi)⟨xi, zj⟩+

and

V −
z :=

1

n

n∑
i=1

k∑
j=1

1Cj (xi)⟨xi,−zj⟩+ .

Since (V +
z )z∈B1,2 and (V −

z )z∈B1,2 are in the form of (A.32),
by Lemma 7, we obtain that

sup
z∈B1,2

|Vz − EVz| ≤ sup
z∈B1,2

∣∣V +
z − EV +

z

∣∣+ sup
z∈B1,2

∣∣V −
z − EV −

z

∣∣
≲

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

(A.38)

holds with probability at least 1− δ/2.
Finally, the assertion is obtained by plugging in the above

estimates to (A.31).

E. Proof of Lemma 4

Note that Qz is decomposed into

Qz =
1

n

n∑
i=1

k∑
j=1

1C̃j\Cj
(xi)⟨xi, zj⟩

+
1

n

n∑
i=1

k∑
j=1

1Cj\C̃j
(xi)⟨xi,−zj⟩ .

(A.39)

Then the summands in the right-hand side of (A.39) are
respectively upper-bounded by

Q′
z :=

1

n

n∑
i=1

k∑
j=1

1C̃j\Cj
(xi)⟨xi, zj⟩+
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and

Q′′
z :=

1

n

n∑
i=1

k∑
j=1

1Cj\C̃j
(xi)⟨xi,−zj⟩+ .

We upper-bound supz∈B1,2
Q′

z and supz∈B1,2
Q′′

z to get an
upper bound on supz∈B1,2

Qz through (A.39) by the triangle
inequality. Specifically, we show that there exists an absolute
constant c > 0 such that

sup
∥z∥1,2=1

Q′
z ≤ sup

j∈[k],w∈Sp−1

E1C̃j\Cj
(g)⟨g,w⟩+

+ c

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

(A.40)

and

sup
∥z∥1,2=1

Q′′
z ≤ sup

j∈[k],w∈Sp−1

E1Cj\C̃j
(g)⟨g,w⟩+

+ c

(
p log3 p log5 k + log(δ−1) log k

n

)1/2

hold simultaneously with probability at least 1− δ/2.
Due to the symmetry, it suffices to show that (A.40) holds

with probability 1− δ/4. By the triangle inequality, it follows
that

sup
∥z∥1,2=1

Q′
z ≤ sup

∥z∥1,2=1

EQ′
z + sup

z∈B1,2

|Q′
z − EQ′

z| .

Then, similar to Lemma 3, we derive (A.40) through the con-
centration of the maximum deviation, that is, supz∈B1,2

|Q′
z −

EQ′
z|, and an upper bound on supz∈B1,2

EQ′
z . The supremum

of the expectation is upper-bounded as

EQ′
z = E

k∑
j=1

1C̃j\Cj
(g)⟨g, zj⟩+

≤ max
j∈[k],w∈Sp−1

E1C̃j\Cj
(g)⟨g,w⟩+

k∑
j=1

∥zj∥2 .

Moreover, since C̃1, . . . , C̃k are disjoint (except on a set of
measure zero), by Lemma 7, we obtain that

sup
z∈B1,2

|Q′
z − EQ′

z| ≲
(
p log3 p log5 k + log(δ−1) log k

n

)1/2

(A.41)
holds with probability at least 1 − δ/4. This provides the
assertion in (A.40).
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