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We consider the problem of reconstructing rank-one matrices from random
linear measurements, a task that appears in a variety of problems in signal
processing, statistics, and machine learning. In this paper, we focus on the
Alternating Least Squares (ALS) method. While this algorithm has been
studied in a number of previous works, most of them only show convergence
from an initialization close to the true solution and thus require a carefully
designed initialization scheme. However, random initialization has often been
preferred by practitioners as it is model-agnostic. In this paper, we show
that ALS with random initialization converges to the true solution with e-
accuracy in O(logn + log(1/¢)) iterations using only a near-optimal amount
of samples, where we assume the measurement matrices to be i.i.d. Gaussian
and where by n we denote the ambient dimension. Key to our proof is
the observation that the trajectory of the ALS iterates only depends very
mildly on certain entries of the random measurement matrices. Numerical
experiments corroborate our theoretical predictions.

1. Introduction

1.1. Alternating minimization and low-rank matrix recovery problems

Suppose we are given observations of the form

yi = (Ai, Xo)p = Tr (AZX*> , 1<i<m (1)
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with known measurement matrices {A;}/*, C R"*"2 and our goal is to estimate an un-
known low-rank matrix X, € R"*"2 je. rank (X,) = r < min{nq;ne}. This problem
is ubiquitous in many applications such as matrix completion, blind deconvolution, and
phase retrieval. We refer to [1] for a comprehensive overview. Different approaches to
this problem have been established in the literature ranging from convex methods such
as nuclear norm minimization to non-convex methods based on matrix factorization such
as gradient descent and alternating minimization.

The method we want to consider in this paper is the Alternating Least Squares (ALS)
method. That is, we consider the non-convex loss function

V)= 53 (= A0V )

where U € R™*" and V € R™*", and we alternate between updating U and V/, i.e.,

Upy1 = argmin f (U, V;),
UcRn1 X7

Vi1 = argmin f (U1, V).
VeRn2 X

(3)

In each step, one needs to solve a linear least-squares problem, which can be achieved
efficiently via the conjugate gradient method, see, e.g., [2].

For low-rank matrix recovery, the ALS method has first been proposed in [3]. Later,
it was shown that given an initialization close to the ground truth, the ALS method
converges linearly to the ground truth solution using a near-optimal amount of samples
for the Matrix Sensing and Matrix Completion problem [4]. Moreover, it was shown
that such an initialization can be constructed via a so-called spectral initialization.

However, while the ALS method is popular among practitioners, they often use a
random initialization for the ALS method instead of a spectral initialization, see, e.g.,
[5]. One advantage is that random initialization is model-agnostic in contrast to spectral
methods. However, despite its importance in practice, the convergence of ALS from ran-
dom initialization remains poorly understood. Existing theory either shows convergence
starting from spectral initialization [4, 6] or with resampling, i.e., that for each iteration
fresh samples are used, see, e.g., [7, 8.

1.2. Our contribution

In this paper, we show that, if the A;’s are i.i.d. Gaussian measurement matrices and
if X, € R™*™ ig a rank-one matrix, then ALS with random initialization converges to
the ground truth in O(%) iterations to e-accuracy using only a near-optimal
amount of measurements. Note that the scenario that the ground truth matrix X, is a
rank-one matrix indeed appears in many applications such as Blind Deconvolution and
Phase Retrieval. To the best of our knowledge, this is the first result in the literature that
shows that the ALS iterates for low-rank matrix recovery converge to the true solution

starting from random initialization (without resampling at each iteration).



In our analysis, we establish that the convergence of ALS can be separated into two
distinct phases. In the first phase, we show that, starting from an initialization that is
near-orthogonal to the ground truth, the angle between the true solution and the ALS-
iterates is decreasing. More precisely, we show that the cosine of this angle is growing at
a geometric rate. As soon as our signal is aligned closely enough with the ground truth
signal, we enter the second phase. In this phase, our iterates converge linearly to the
ground truth. All of this is corroborated by numerical experiments, see Figure 1, which
indeed confirm that there is a sharp phase transition between those two phases.

We note that linear convergence in the second phase can essentially be deduced from
the aforementioned previous work [4]. Hence, the key difficulty in proving convergence of
ALS from random initialization lies in rigorously establishing the fact that the alignment
of the iterates with the true signal is increasing in the first phase. One major obstacle is
that there exist many saddle points in minimization of the quadratic loss in (2), see [9].
In particular, it is not clear whether the iterates of ALS can avoid such saddle points.

Our analysis establishes that, with high probability, ALS does not get stuck in saddle
points in the first phase. For that, we will show that, in the first phase, the ALS iterates
are nearly independent of certain entries in the measurement matrices A;. This allows
us to make much stronger statements than what would be possible by, for example,
solely relying on the loss landscape of f. To establish the “near-independence” of the
iterates to certain entries of the measurement matrices, we will construct an appropriate
(virtual) auxiliary sequence. Our construction is inspired by the use of auxiliary se-
quences in [10] to show convergence of gradient descent from a random initialization in
the phase retrieval problem. However, since the ALS method behaves quite differently
than gradient descent, the resulting proofs are also quite different.

We believe that the insights and proof techniques developed in this paper will also
pave the way for understanding the convergence of ALS starting from random initial-
ization in scenarios where the rank of the underlying signal is larger than one or where
more structured measurement matrices are used, for example, in the problem of Blind
Deconvolution.

2. Problem formulation

We consider the problem of estimating a rank-one matrix X, € R™*"2 from m random
linear measurements given by equation (1). In the following, we are going to assume
that the measurement matrices A; € R"*™2 are independent copies of a random matrix
with i.i.d. entries following the standard normal distribution N (0, 1).

We define the linear measurement operator A : R"*"2 — R™ by

1
Jm

where (A;, X)r = Tr (A] X) denotes the Frobenius inner product between A; € R"1*"2
and X € R™*"2 and [m] := {1,2,...,m}. Since X, is a rank-one matrix, we can assume

AX) = (=l Xr) (@)

i€[m]
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Figure 1.: Evolution of the iterates by randomly initialized ALS: The size of the ground
truth matrix Xo = u*v;r is given by ny = ng = 256. The number of mea-
surements is m = 3(n; + n2). By ¢ we count the iterates. The estimation
error is measured by the angle 6, between v; and v,. (a) sin(6;) vs number of
iterations t¢; (b) cos(;) vs number of iterations ¢; (c) sin(6;) vs cos(6;).



without loss of generality that X, = u*v*T for some u, € R™ and v, € R™. This implies
that the equation (1) can be equivalently written as

y=A (u*vj) .
Moreover, note that using this notation equation (2) can be written equivalently as

minimize flu,v) := % ly—A (uvT> 2. (5)

u

We will consider a solution to (5) by an Alternating Least Squares (ALS) method given
in Algorithm 1.

Algorithm 1: Alternating Least Squares

Input: linear measurement operator A : R"*"2 — R™  observation vector
y € R™ random initialization vy € R™?

fort=1,2,...do
Upr1/2 = argmin,, [ly — A (uv])
Ut+1 = ut+1/2/Hut+1/2H
Vpt1/o = argmin, [ly — A (uggrv") |2
V1 = Ut+1/2/””t+1/2||

end

I

Note that compared to (3) there is an additional normalization step in Algorithm 1.
However, we have added it only for the sake of convergence analysis and this normaliza-
tion step is not required for the reconstruction of Xj.

3. Main result

Our main result states that if the initialization vector vy € R™2 is chosen at random from
the sphere with uniform distribution, then ALS converges to the true solution with high
probability.

Theorem 1 (Convergence of ALS). Let u, € R™ \ {0} and v, € R™ \ {0}. Let
A R™M*"2 — R™ be the measurement operator as defined in (4), where Ay, ..., Ap €
R™*"2 gre independent copies of a random matriz whose entries are i.i.d. following
N(0,1). Let the observations in y € R™ be given by y = A (u*vj). Let vg € R™ be a
random initialization vector sampled from the unit sphere with the uniform distribution.
Then there exists an absolute constant C' > 0 such that if the number of measurements
m satisfies

m > C max(ny, ng) log? na, (6)

then with probability at least 1 — O(min(n1,n2)~1) the following holds. For every e > 0,

after
t>C log ngy n log(1/¢)
loglogne  loglogno

(7)



iterations, the estimates vy and uz from Algorithm 1 satisfy
max {sin (£ (ut, ux)) ;sin (£L(vg, v4)) } < €.

There are a few remarks in order regarding Theorem 1. We first note that the required
sample-complexity (6) is optimal up to log-factors. Indeed, the numbers of degrees of
freedom of the unknown rank-one matrix u*v:— € R™M*"2 ijg nq + ny — 1 and hence we
need to have at least at the order of max {ni;n2} measurements in order to recover the
underlying ground-truth matrix (see also [11]).

An upper bound on the number of iterations to achieve e-accuracy is given by inequal-
ity (7). As already mentioned in the introduction, our proof shows that convergence can
be separated into two distinct phases. Moreover, as it will become clear from our proof
the two summands in (7) can be attributed to Phase 1 and Phase 2 as follows

logng L log(1/¢)

— : 8
log log no log log no (8)

Phase 1 Phase 2

Since the initialization vector vg is sampled from the sphere with uniform distribution,
we expect that

[{vo, v)| = 1/+/na.

Hence, we start with an initialization with is near-orthogonal to the ground truth. How-
ever, as the (8) shows we only need O(; Olgoigzm) iterations to obtain an iterate which is
closely aligned with the ground truth. After that, we enter the second phase. In this

phase, ALS converges linearly to the ground truth as can be seen from the corresponding

log(1/¢) )

log log no
At the end, we stress again that crucially all of this is proven without the need for
sample splitting, i.e., for each ALS step the same measurements are used.

upper bound on the number of iterations O (

4. Related Work and Discussion

There has been a flurry of work on low-rank matrix recovery over the last fifteen years.
For this reason, we will only provide a selective overview of the topic, highlighting
the results which are most relevant to our work. In fact, many different algorithmic
approaches have been proposed for the low-rank matrix recovery problem. The nuclear
norm minimization approach [12] has been studied for Matrix Completion in [13, 14, 15],
for Phase Retrieval in [16, 17, 18], for Robust PCA in [19], and for Blind Deconvolution
in [20] as well as its extension to the Blind Demixing problem in [21, 22]. We refer also to
the overview article [23] for further pointers to the literature. Several other approaches,
which have been proposed in the literature, are the projected gradient method [24], the
iterative greedy algorithm [25], and the Iteratively Reweighted Least Squares (IRLS)
algorithm [26, 27].

In recent years, there has been a flurry of work on non-convex approaches based on
matrix factorization due to their small memory footprint and their low computational



burden. These approaches can roughly be categorized as first-order methods based on
gradient descent, e.g. [28, 29], and as methods based on alternating least squares (ALS)
[4], which is also the method studied in this paper. We refer to [30] for an overview of
non-convex approaches based on matrix factorization.

Non-convex gradient descent: Non-convex methods based on gradient descent
have been studied for the Matrix Sensing problem [29], for Blind Deconvolution [31, 32],
its extension to Blind Demixing [33] as well as for the Phase Retrieval problem [28, 34].
However, all of these papers above only guarantee local convergence for gradient descent.
That is, convergence is only guaranteed if one picks initialization in a neighborhood of
the true solution. In most of these works, such an initialization is constructed via a
so-called spectral initialization.

To obtain more insights into the global convergence properties of non-convex gradient
descent based on matrix factorization people started to analyse the landscape of the loss
function. More precisely, this line of research tries to show that the landscape is benign
in the sense that (i) all local minima are in fact global minima and (ii) saddle-points
have at least one direction of strictly negative curvature. For the matrix sensing problem
[9], for the phase retrieval problem [35], and for the matrix completion problem [36, 37]
it has been shown that the landscape of the loss function is benign. In [38] it has been
shown that properties (i) and (ii) already imply convergence of gradient descent to a
global minimum. However, [39] provides an example, that shows that this property does
not rule out exponentially slow convergence. In particular, this means that properties (i)
and (ii) do not guarantee convergence in polynomial time. Motivated by this, in [10] the
authors showed that in the Phase Retrieval problem with Gaussian measurement vectors
gradient descent converges to the ground truth starting from random initialization by
using a near-optimal amount of iterations and measurements. In the case of symmetric
low-rank matrix sensing, this was also shown in [40, 41]. However, these results require
a random initialization which is chosen sufficiently small. For the asymmetric scenario,
similar results [42, 43] have only recently been obtained for the population loss case. It
remains an open problem to show an analogous result in the finite sample case.

Alternating Least Squares: In general, ALS has been widely used in a broad class
of applications including low-rank approximation of data [44] and imaging [45]. In the
context of low-rank matrix recovery, ALS approaches are arguably less well studied than
methods based on gradient descent. There are several papers that study ALS (or some
variants) for the matrix completion problem. However, these works either require fresh
samples at each other iteration [7, 8, 46] or they show local convergence starting from a
spectral initialization [6].

In [47, 48, 49], the authors propose to use alternating minimization combined with
a projection step to recover a rank-one matrix with sparse entries from linear random
measurements. However, their analysis requires an initialization close to the ground
truth, which is a major bottleneck in the analysis. It is an interesting avenue for future
work to see whether our analysis can also be extended to this algorithm.

For the phase retrieval problem, the Error Reduction (ER) algorithm has been pro-
posed [50, 51]. While this method can be interpreted as an alternating minimization
method, it is different from the ALS algorithm studied in this paper. Local convergence



from a spectral initialization for the ER algorithm, in a setting where the measurements
are Gaussian, has been first established in [52], the analysis in this paper requires fresh
samples for each iteration. This assumption has been removed by Waldspurger in [53],
which showed local converge without sample splitting. Convergence from a random ini-
tialization has been established in [54], however using a (suboptimal) sample size at the
order of n3/2.

The above discussion illustrates that our understanding of global convergence of non-
convex methods in low-rank matrix recovery is still in its infancy. This paper contributes
to this line of research by establishing the first convergence result from random initial-
ization for the ALS method.

Auxiliary sequences: As already discussed in the introduction, in this paper, we
construct a (virtual) auxiliary sequence to establish mild dependence of our ALS iterates
on certain entries of the measurement matrices. For optimization tasks, such auxiliary
sequences appeared before in [55], where the authors used a slightly different construc-
tion (leave-one-out sequences) to establish that the iterates depend only weakly on the
individual measurements. In [56, 57], the authors used leave-one-out sequences to show
that gradient converges fast to the global optimum, when initialized in a local neigh-
borhood, in several low-rank matrix recovery problems. In [58], leave-one-out sequences
were used to improve bounds for the required sample complexity of the nuclear norm
minimization approach in matrix completion.

5. Proof ideas and auxiliary sequences

In this section, we illustrate the main ideas for proving Theorem 1. We will also introduce
some necessary notation. Moreover, we will define a (virtual) auxiliary sequence, which
will be a key ingredient in our proof.

5.1. Notation

Without loss of generality, we assume throughout the proof that ||u.| = |jv.]] = 1.
Furthermore, we set n := max(ni,ny). Moreover, the following shorthand notations will

be used throughout this section. We consider the orthogonal decomposition of u; given by

Uy = uy—ku#, where ulu ‘= fgty With g == (ug, ug) and uj- = ut—uy denote the projection

of u; into the subspace spanned by u, and its orthogonal complement. Consequently,
Hu,UH and |lui-| respectively correspond to the cosine and sine of the angle between wu;
and u,. These will be used as metrics for convergence. Similarly, v; is decomposed as

v =v; + v, where vt” ‘= M0y with Ay := (vy,v¢) and vj := vy — vy. In an analogous
; _ _ | 1
fashion, we set f1;11/9 = (U, U1 1/2). Then we have that w0 = Uy g9 T Upyy o where

l — 1 ._ ll
Upyyjg '= Hipr/2Ue AN Uy o 3= fheg1/a = Uy -

By C > 0 we denote an absolute numerical constant, whose value may change from
line to line.



5.2. First-order necessary conditions

Suppose that vy € R is given and that usy1 is calculated via Algorithm 1. Then it
must hold that

Vuf (eg1/2,0:) = 0.
By explicitly calculating the gradient it follows that

[A*.A (qu/zvtT — u*vj)] vy = 0.

Note that by using ||v¢|| = 1 this expression can be rearranged as

wirp = (v + [(1d = A A) (w300 = wo]) | v (9)

This identity will be used frequently in our analysis.

5.3. Analysis in population loss

To gain some intuition, we first consider the scenario where the number of samples m
is going to infinite, i.e., the population loss scenario. Note that since Aq,..., A,, are
independent copies of a random matrix with i.i.d. standard Gaussian entries, it follows
that in the scenario the measurement operator A is isotropic, i.e., E [A*A] = Id. Hence,
it follows from Equation (9) that in this case

Upy1/2 = (Vsy Up) U (10)

This implies that a single step of Algorithm 1 exactly recovers u, up to a scale factor
(under the assumption that (v, v:) # 0). The update on v,/ that follows will provide
ut+1v;1 /2= uyv, . In other words, ALS from any nondegenerate initialization converges
in a single iteration.

5.4. Analysis in the finite-sample scenario

At the sample level, the normal equation in (9) deviates from the population-level equa-
tion (10) by the factor [(Id — A*A) (w4120 — u.v, )] vy For this reason, we do not
expect that one iteration will recover the signal as in the population loss scenario. Nev-
ertheless, in the first convergence phase we aim to show that

I ”“ltlﬂ/z” I
ugqll = ——= > |lvg I, (11)
Hut-i-l/QH

meaning that the iterates become more aligned with the ground truth in each iteration.
To show this, we first decompose u; 1/ into its parallel and its perpendicular part, i.e.,

U172 = “J:|+1/2 + utl+1/2' We obtain that

uz|t|+1/2 = (Vg Uy ) Uy + (U, [(Id —A*A) (utH/QUtT — u*vj)] Vg ) Uy (12)



d
an uiﬂ/2 = (Id Us Uy ) [(Id A*A) (Ut+1/21);r - u*vj)] vt

A standard approach to deal with the deviation term is to invoke the well-known Re-
stricted Isometry Property (RIP), see Section 6.1 as well as Lemma 9, which yields

||“t+1/2” =1C Hvt | (13)
as well as
H“t+1/2 (Vs ve)us || < Hvt | (14)

for a RIP-constant 0 < 6 < 1. While inequality (13) will turn out to be sufficient to
show (11), inequality (14) will not suffice. The reason is that ideally we would like to
have that

) oll 2 o) = (s 00} (15)

However, this does not follow from (14). The reason for this is that we start from random
initialization, which yields that vg € R™ is almost orthogonal to the ground truth v, in
the sense that vaH = |(vg, vx)| ~ 1/\/n2 (and, consequently ||vy || is very close to 1).

In particular, this implies that (14) is rather vacuous. Hence, we need to find other
approaches to deal with the expression

‘(u*, {(Id —A*A) (utﬂ/gv; - u*vj)} Vg ) Uy

(16)

n (12). Note that we obtained inequality (14) via the Restricted Isometry Property
(RIP), which is a uniform bound, i.e., it holds for all vectors u;; /5 € R" and v; € R"2.
In particular, it may be suboptimal for particular choices of vy and u; /5. For example,
assume for a moment that v; and w1/, would be independent of the measurement
operator A (which of course is not the case). Under this assumption we could hope to
derive much stronger concentration bounds than what could be obtained by a uniform
estimate induced by the Restricted Isometry Property.

The key insight is that we can indeed establish that w5 and v; are nearly indepen-
dent of certain entries of the measurement matrices {4;};",, which will allow us to go
beyond the suboptimal estimates obtained via the Restricted Isometry Property.

More precisely, to show this near-independence, we introduce a new set of measure-
ment matrices {Ai}?lp which are obtained by substituting partial entries of the original
measurement matrices as independent copies. This allows us to define a new measure-
ment operator A, which is constructed using the new measurement matrices {A;}7,.
Then an auxiliary sequence of estimates (4, 7;) is obtained from the ALS algorithm
starting from the same random initialization vg, but replacing A with the new mea-
surement operator A. For a detailed and precise description of the construction of this
auxiliary sequence, we refer to the next subsection.

Next, we are going to establish that the trajectory of the auxiliary sequence will stay
close to the trajectory the original sequence. Using this property, we expect that we can

10



replace the expression (16) by

‘(u*, [(Id —A*A) (fLHl/gﬁtT — u*v*T)] Ut ) Uy

as we expect those terms to be nearly the same. By leveraging that u; and v; are
independent of certain entries of {4;};~,, we can now derive much stronger estimates
for the above expression than what would be possible by solely relying on the RIP. These
estimates allow us to show (15), from which we can in turn deduce (11). By inductively
repeating these arguments we obtain that our iterates become more and more aligned
with the ground truth signal until we enter the second convergence phase.

To show convergence in the second phase we then rely on well-known estimates induced
by the Restricted Isometry Property of the measurement operator A.

5.5. Auxiliary sequences

As our measurements follow a rotation-invariant distribution, we can assume without
loss of generality that u, = e; € R™ and v, = e; € R™. Here, with a slight abuse of
notation, e; denotes the first standard basis vector such that the first entry is 1 and the
other entries are 0. The ambient dimension will be clear from the context. We introduce
an auxiliary measurement operator A, which is defined by

A(X) = (jﬁ@,xm)idm]

with the matrix 4; given by

(i) = {(Ai)j,k if (j#£1and k1) or (j,k) = (1,1),

~

(Aj)jr else,
where (4;) ;& are independent copies of (A;); . We observe that it follows directly from
the definition of the operator that

y=A <u*v;r> =A (u*v;r) .

For our analysis we will need the following auxiliary sequences {4}, and {v;},. They
are computed via the same algorithm as {u;} and {v;} except that the measurement
operator A is replaced by A. We set 9y = vg, that is, the auxiliary sequences start from
the same initialization. Then for ¢t > 0, the auxiliary sequences are iteratively updated
by alternating least squares in the following four steps: Given vy, 1, the updates are
computed via

- 2 U
7 . : ~ T ~ . t+1/2
Ut41/2 = argml? y—A <uvt ) ’ ) Ut41 = m7
u€R"— t+1/2
- 2 v
~ . ~ T t+1/2
'l)t+1/2 = argmin Hy — .A <'LLt’l) > H N Vt+1 ‘= m
vER™2 t+1/2

11



Let f:R™ x R"™ — R be defined by
- 1 - T |12
o = o 2w [
Then its gradients with respect to v and v are respectively given by
Vof (u,v) = A* (fl (UUT> — y) v,
- o T
Vof (u,v) = [A* <.A (uvT) — y)} u.

We will now introduce some additional definitions, which will ease the notation in our
proofs. For each i € [m], we consider the decomposition 4; = D; + O;, where

D; = u*uIAiv*vI + (I, — u*uI)AZ-(In2 — ’U*UI),

0; = u*uin(In2 — U*’UI) + (Inl — u,mj) Aiv*vj.

Moreover, we set

0; = uou) Ai(I,, — v,v] ) + (Inl - u*u;r) Ajvw,
We observe that it follows directly from these definitions that for all i € [m]

A, =D; + O,

This allows us define the following linear operators

D (X) ::< ! <Di,X>F> ;

i€[m]

Note that it follows immediately from these definitions that A and A can be decomposed
as

A=D+0O and A=D+0O.

Throughout the proof we need to show that the original sequence and the true sequence
stay close to each other. For that, we will establish that the inequalities

~ L ~
max { sy = @l |l sy = @01} < corsallufy |

12



and
~ 1 ~1
max { ully — 1 lvd — F5ll } < carrallol

hold (see Lemma 13), where ¢; is defined as

1 t
=1 -1 17
Ct < + logm) ( )

for any natural number t. Note that this implies that in the first few iterations, where

||u1|t| 11|, respectively HUtHHH, is small, the original iterates and the iterates from the aux-
iliary sequence are close to each other. In particular, this shows that, in the beginning,
the ALS trajectories (or the virtual trajectories) do depend only mildly on {O;}7",,
respectively {O;} .

As already noted in Section 4, in [10] an auxiliary sequence with similar properties
has been constructed for the analysis of gradient descent for the phase retrieval problem.
However, as the algorithms under consideration are quite different, the proofs which show
that the auxiliary sequences stay close too each other are quite different. As it turns
out, a key difficulty in our proof lies in showing that the auxiliary sequence and the
original sequence are still close after the normalization step (see Lemma 13 and its proof
in Appendix B.4).

6. Proof of Theorem 1

In this section, we will provide the details for the proof of Theorem 1. We first list
several concentration inequalities, which will be used throughout the proof. They are
consequences of the Restricted Isometry Property (RIP) of the measurement operator A
and also of the near-independence of auxiliary sequences from the measurement matrices.
Then the main proof arguments will be built upon these results.

6.1. Concentration inequalities

We proceed with the proof of Theorem 1 under a set of events on A and A, which hold
with high probability. These events are stated in Lemmas 3, 4, and 5, whose proofs are
deferred to the appendix. First note that the linear operator A satisfies the restricted
isometry property.

Lemma 1 (A special case of [59, Theorem 2.3]). Let A be the linear operator defined in
(4). There exists a numerical constant Cy such that if

m > Cyd 2 max(ny, ng),
then with probability at least 1 — O (exp(—cm))
L=0)ZlIF < AP < (1 +8)Z]F (18)

holds for all matrices Z € R™*"™2 with rank at most 4.

13



The following results, whose proof is deferred to Appendix A.1, are direct consequences
of the restricted isometry property and will be used throughout the remainder of the
proof.

Lemma 2. Suppose that A satisfies the restricted isometry property in (18) with constant
0 > 0. Then for all u € R™ v € R, we have

l0*D (w) || < sl (19)
D0 (w) || < sl (20)

and
100 = Po) (wo™) Il < dlluv |, (21)

where the orthogonal projection Po : R"*"2 — R™MX"2 js defined as
Po (Z) = uwu. Z (In2 - v*vj) + (Im - u*u;r) Zuw, .
Moreover, if (u1v{ ,ugvy ) = 0 holds, then we have that
(A (wre] ) A (w20 )] < 8llure] |l lluzod | (22)

By construction, A and O satisfy the same properties in Lemmas 1 and 2.
Next, recall that u, = e;. We will also use the following standard concentration result,
whose proof can be found in Appendix A.2.

Lemma 3. With probability at least 1 — O (exp (—cmin {m;min(nyi,ng)})) it holds that

= Z;(Anl,loz-] w| <4/ (23)
and

1 | & ~

—| ;(Ai)llei u, g4\/§. (24)

Finally, by construction the auxiliary sequences are independent from the off-diagonal
blocks of the measurement matrices. Therefore we obtain the following lemmas, which
are proved in Appendices A.3 and A .4.

Lemma 4. Let T € N and let n > 0. With probability at least 1 — =t — O (exp (—cm)),
it holds for all t € [T] that

1 n 5 logT + lo .
=130 @) 0 0t £ ) R e (25)
m m

Li=1 d
and _ -
1 " ~ logT +logn | .
LIS™ (A O] | 5 /BT R8T gy, 2
—| D (401,01 | % ——2 0 e (26)
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Lemma 5. Let T € N and let n > 0. With probability at least 1 — n~' it holds for all
t € [T simultaneously that

ﬁngfa@xmmﬁmw#Fwswbgﬁf%m-M(wgﬂ@#f)u<w>

and

t) ARy ez VY RO O I T e

The inequalities in Lemmas 3, 4, and 5 together with the RIP of the measurement
operators A and A imply the following inequalities in Lemma 6, Lemma 7, and Lemma
8. The proofs are also deferred to Appendices A.5, A.6, and A.7

Lemma 6. Suppose that egs. (23) to (26) hold. Furthermore, suppose that both A and
A satisfy the RIP with constant § > 0. Then it holds that

| [(#ra-ae4) () 1ﬂ<<ij+“”¢hH~0+MM—wn

Lemma 7. Suppose that eqs. (23) to (28) hold. Moreover, suppose that the measurement
operators A and A satisfy RIP with constant 6 > 0 and that we have twg1/2ll <2 as
well as [|Tyq1/2|| < 2. Then it holds that

(44 =) (esrgon”) 4

logT + logn ny _ - -
Sy B el (8 /2 ) 1+ 06 — vl + Sl1Turp — el

Lemma 8. Suppose that egs. (25) to (28) hold. Furthermore, suppose that the measure-
ment operator A satisfies RIP with constant § > 0 and that ||t /5|| < 2. Then there
exists an absolute constant C' > 0 for which it holds that

)(A <u* (vf‘)T> A(u*v ))‘ < §||vit —th‘H—}—CUW (29)
(o (1)) o (st () )0
< Olluziaye = i poll + 2600 — G + Cy @'

Remark 1. The inequalities in Lemmas 3 to 8 will be used to analyze the update of uy
to ug+1 given vy by the normal equation in (9) (by the least-squares minimization step
and by the normalization step in Algorithm 1). To analyze the ALS update from vy to
Vel giwven ugyr1 we will need analogous inequalities in order to be able to analyze these
updates. Due to symmetry of the problem, the statements and proofs of these analogous
results can be obtained in an analogous way. For this reason, to keep the presentation
concise we omit the statements and proofs of analogous versions of these lemmas.

and

(30)
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6.2. Phase 1: From random initialization to a local neighborhood of the
ground truth

Since the initialization vector vg € R™ is chosen from the sphere with uniform distribu-
tion, with probability at least 1 — O (n; 1)7 the random initialization vy € R"2? satisfies

v (31)

1
oll = I, 02} 2 e

Then the following proposition illustrates the convergence properties of the ALS iterates
{ut}, and {v:}, to a neighborhood of v, in Phase 1.

Proposition 1. There exists a numerical constant ¢ > 0 for which the following holds.
Suppose that

i) A and A satisfy RIP with constant § = m.

i) m > 672 (ma + ns) log s log |, where T = [ logna ],

i) eqs. (23) and (24) hold.
iv) egs. (25) to (28) hold for all t € [T] with n = na.
v) vy satisfies (31).

vi) Analogous inequalities of i) and iv) hold for updating vy to viy1 given uipy (see
Remark 1) with n = na.

Then for every t € [T it holds that

(log ng)*
lef > (logm2)* - gl > 5 (32)

\/ N2 log n9

and
max { o] = s o = a1} < earlle], (33)

where ¢; s defined in (17) until we have that

min { o}, uf] } > 1 (34)
Proof of Proposition 1. It suffices to only consider the case when the initialization vector
vo € R™ does not satisfy (34). Otherwise there is nothing to prove.

We are going to show by induction that (32) and (33) hold until condition (34) is
fulfilled. In particular, note that by our choice of 7" this immediately implies that (34)
holds for some t < T'. For the base case, observe that for ¢ = 0 the two inequalities in
(32) and (33) are satisfied since we have vy = ¥y by definition and since we assume that
inequality (31) holds.

For the induction step, suppose that the statements hold for some natural number ¢
with ¢ < T. Then we will show that the statements also hold for ¢ + 1 whenever (34)
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is not yet satisfied. To this end, we first show that the estimation error and the norm
of the next least-squares update w4/, are upper-bounded as shown in the following
lemma. It is proved in Appendix B.1.

Lemma 9. Suppose that A satisfies RIP for 0 < 6 < 1 and ||v¢|]| = 1. Then it holds that

Hut+1/2 - (U*ath*H Hvt [ (35)

In particular, it follows that

g ol < T H’Ut I (36)

Moreover, for § < 1 5, we have that

w12l < 2. (37)
Analogously, since A also satisfies the RIP with the same constant § and since ||7;| = 1
holds, we also have
_ - 6
e = Gons ]| < o5l (39)
J
1 <1
Iaz51 /2]l < =597, (39)
g1 /2]l < 2. (40)

Given the upper estimates in egs. (37) and (40), the next lemma, proven in Appendix B.2,
shows that the distances between the least-square updates of the original and auxiliary
sequences stay close each other.

Lemma 10. Under the hypothesis of Proposition 1, suppose that eqs. (37) and (40) hold.
Let t € N and assume furthermore that the inequalities (32) and (33) hold. Then there
exists an absolute constant Cy > 0 for which the followings hold:
)y =y ol < (et + C18(1+ c20)) 10} (41)
o = i1l < Ca8 (1) o] (42)
The upper estimates in (41) and (42) imply that ||ut+1/2|| is close to Hvt‘ ||, which is stated
in the following lemma, see Appendix B.3.

Lemma 11. Under the hypothesis of Proposition 1, suppose that egs. (37), (41) and (42)
hold. Moreover, let t € N and assume that the inequalities (32) and (33) hold. Then
there exists an absolute constant Cy > 0 for which the followings hold:

(1= Cod(1 + o)) [[ulyy | < ol < U+ Cob (U tean)) [l (43)

17



Remark 2. Later on, we will in fact only use the upper bound on \|ut+1/2\| in inequality

(43). As there is no additional effort required in proving the lower bound as well, we also
decided to include it in this manuscript.

41(1)‘;%%-‘ , it follows that co; is bounded from above by an absolute

constant for all ¢ < T, which is formally stated in the following lemma.

Moreover, since T' = [

Lemma 12. Then for all t < 2T < {%1 + 1 it holds that ¢; defined in (17)

satisfies ¢y < C for an absolute constant C'.

Proof. For all t < 2T we have

1
ct+1=exp (tlog (1+ ))
log no

(a)
< exp (t/logna)
< exp (2T'/logns)

1 2
<
=P <2log log na + log n2>
<C,

where (a) follows from the elementary inequality log (1 4+ z) < x for > 0. O

Hence, for sufficiently small ¢ > 0, (43) implies that

Sl < (4)

el

The next lemma, proved in Appendix B.4, shows that the original and auxiliary se-
quences stay close in fo-distance under the conditions derived above.

Lemma 13. Under the hypothesis of Proposition 1, suppose that egqs. (41) to (43) hold.
Moreover, suppose that ¢ > 0 is chosen small enough (smaller than an absolute constant
depending only on C1,Cy,Cs). Then it follows that

max { [ufyy =@ ufis = I} < caeen -l (45)

We further proceed with the following lemma, which shows how the estimation error
propagates with the normalization. The proof is provided in Appendix B.5.

Lemma 14. Suppose that ||v|| = 1 and that for fized t € N and real numbers 0 < § <
a < 1 it holds that

w1y 12 > ool (46)

||ut+1/2||2 < BHUt I2. (47)
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Then, whenever vt‘ # 0, it holds that
ol o)

B+(a—B)ol|2 ~ £+v))2

12 > (48)

and, moreover,
g )12 (49)

2
Jugpall” < | 5
allv;|

Note that due to (36) with § < 3 and due to (44) the assumptions in Lemma 14 are

satisfled with a = 1 and 8 = 462. Therefore, with § = Tog, and HvJH < amy Ve
obtain that

lly2 2641
b > UL Zlognay e (Blogna) Ty
T 1662 + o) |2 “\

(50)

Since we have shown (45) and (50) this finishes the induction step for uy41. With exactly
the same reasoning we can then prove the inequalities

2logno 2t
lofll > (— Hv I, (51)

c

max { ol = 80,11 [vh = 551} < carvallol -

This shows inequalities (32) and (33) for ¢ + 1. Note that by choosing ¢ < % inequality
(51) implies (32). This completes the induction step. O

6.3. Phase 2: Linear convergence by RIP

We enter the second phase as soon as the iterates are sufficiently aligned with the ground
truth solution, that is when condition (34) is satisfied. Once we enter the second phase,
our iterates converge linearly to the ground truth as it is shown by the next proposition,
which describes the second phase.

Proposition 2. There exists a numerical constant ¢ > 0 for which the following holds.
Suppose that A satisfies RIP with constant 6 = h > < o

/
. ‘
STogny and cither |

U{ log no
HuyH > fogmy Jor some t € N. Then it holds that for all t >t
1 1 2(t—1) 1 1 2(t—1)+1
1 1 L
il <5 (g ) Ml o bl (gm) Il G2

Proof. Due to the symmetry of the argument, we may assume without loss of generality
that

/

ll ¢
o/l > oo =88 (53)
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Next we show that

gy Il < Hle (54)

By choosing the absolute constant ¢’ small enough, we may assume that § < % Then
by Lemma 9 and the RIP of A we have

H“iﬂ/z — (Ui, v < 5””5” = 25””#”'

This implies

1
gy ol < 26]|07 |
as well as
1
Il =0 = [l 1= v l] < g ja= 00 vidua | < 26110 < 26, (55)
where in the last inequality we used that ||th-|| <||v§|]| = 1. In particular, the inequality

in (55) implies that

3
g,y ol = gl = 26> 5 o],

where the last inequality follows from (53). Hence, setting o = 1% and 8 = 462, Lemma
14 and (53) yield

3 1
eI < g eI (56)

sty P < —2—
olle]|

This shows (54). Next, one can show by induction that for t > £

/ /
1 c 1 c 1
U < | — ) ||lv and |lv < | — ) || .
” t+1” —= <2\/§10gn2> H t H H t—i—lH —= (2\/510gn2) H t+1”

The proof of these inequalities is analogous to the proof of (54) except that in (56) we

can use the estimate ||vl|\|2 5 due to [Jof||? < [luiy|I* £ § instead of the weaker

estimate Hvt| | > Finally, one can choose ¢ small so that (52) is satisfied. O

log ng "

6.4. Finishing the proof of Theorem 1

We deduce from (32) in Proposition 1 that Phase 1 is completed after
i< log na

™~ loglog no (57)

iterations. Next, one observes immediately by a direct calculation that sin (Z£(us, uys)) =
|lui|| and sin (£(vi,v4)) = |Jvi-||. Moreover, one obtains from inequalities in (52) of
Proposition 2 that after

\_ i< los1/2)
log log no

iterations it holds that max {||ui"[|; ||vi||} < e. Together with (57) this finishes the proof
of Theorem 1.
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Figure 2.: Phase transition of reconstruction error

7. Numerical experiments

We present a set of Monte Carlo simulations to compare the theoretical bound in Theo-
rem 1 to the empirical performance of ALS from random initialization. According to the
assumptions of Theorem 1, the measurement matrices were generated as independent
copies of a random matrix with i.i.d. standard Gaussian entries. Observations were
obtained without noise. In the first experiment, we compare the performance of ALS
methods respectively from random initialization and from spectral initialization. Fig-
ure 2 plots the phase transition of the reconstruction error in this experiment. We vary
the matrix size from 8 to 256 while the oversampling factor m/(n; +mn2) is between 1 and
3. As shown in Figures 2a and 2b, ALS from spectral initialization has larger success
regime so that the reconstruction is achieved from fewer observations. In these plots,
we displayed the median of the normalized reconstruction error over 100 random trials.
Figure 2b shows that compared to ALS from spectral initialization, the phase transition
for ALS from random initialization occurs at a higher oversampling factor. The amount
of excess observations scales as a poly-log of the matrix size, which coincides with the
result in Theorem 1.

Although the main result in Theorem 1 is restricted to the rank-1 case, empirically,
ALS from random initialization continues to work at a small oversampling factor when
the rank of the unknown matrix becomes larger. We conducted the same experiment in
Figure 1 in the rank-r case, which is plotted in Figure 3. One can observe that the same
phase transition in Theorem 1 occurs in the rank-5 case.

8. Discussion

We have shown that ALS from random initialization converges to the rank-one ground-
truth matrix in the low-rank matrix sensing setting (with high probability). In our
analysis, we observed that the trajectory of the iteration can be separated into two

21



sin(6;)

10% ¢

—iterations from random initialization
-------- spectral initialization

Figure 3.: Evolution of the estimation by randomly initialized ALS over iteration (rank-
5 case): ny = ng = 256, r = 5, m =
between subspaces spanned by U and Uy is denoted by ;. (a) sin6; vs t; (b)
cos 0y vs t; (c) sin @y vs cos b;.

5 10 15 20 25 30 35

40

—iterations from random initialization

-------- spectral initialization

10 15 20 25 30 35 40
t

(b)

e

f|—e—iterations from random initialization

x spectral initialization

10!
cos(6;)

(c)

22

2r(ny + ng — r). The principal angle




distinct phases: in the first one, the iterates converge from random initialization to a
local neighborhood in O (logn/loglogn) iterations. In the second phase, the iterates
converge linearly to the ground truth. This is aligned with our numerical experiments,
where a sharp phase transition is visible.

We expect that the convergence analysis in this paper will shed light on the conver-
gence of ALS starting from random initialization in more general settings. For example,
empirically, ALS from random initialization was shown to be successful if the ground
truth has a rank higher than one. It would be interesting to see whether our analysis can
be extended to this setting. Moreover, it would be interesting to examine the scenario
when the measurement matrices are more structured such as in the Matrix Completion
problem.

Moreover, our result requires a sample size at least in the order of nlog?n, whereas,
for example, approaches based on convex relaxation such as nuclear-norm minimization
only need in the order of n samples. It would be interesting to examine whether it is
possible to remove the additional log-factors in our result.
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A. Proofs of concentration inequalities

A.1. Proof of Lemma 2

The inequality in (22) is well known (see, e.g., [60, Exercise 6.24]). In fact, since we
assumed the RIP to hold for all matrices of rank at most 4 in (18), we even obtain the
stronger statement that

(A(21), A(Za)) — (Z1, Za)r| < 0| Z1|lF - | 22| - (58)

for all matrices Z; and Zs of rank at most 2 (see [60, Section 6].
We are going to derive the other inequalities in (19), (20), and (21) from (58). For
that, we note first that
O*D = Pp A" A(ld — Po).

Then there exist & € R™ and § € R™ with ||| = ||§|| = 1 such that
0D (weT) || = [(@57. 0D (w0 ))r].
Then it follows that the left-hand side of (19) is upper-bounded by
|o*D (WT) | =|@5",0D ( )>F\
= (237, PoA* A(ld — Po) (uvT)>F\
— |(APo (:UyT> ,Ad - Po) (uvT)>\

&) -

< 0llPo(@g")llF - [|(1d = Po)(uv") |
< dl|z5 " ||p - lluv ||

= Olfull - [vll,

where (a) is due to (58) and the fact that Po(29' and (Id — Po) (uwv") have rank at
most 2 each. This proves inequality (19). Inequality (20) can be derived in an analogous
way.

In order to show inequality (21), we again note there is & € R™ and § € R™ with
IZ|l = ||g]| = 1 such that

100 = Po) (wo™) Il = [{#5", (0"O = Po) (w) ]
holds. From O = APgy it follows that
[ (O"0 = Po) ( ) I =[(A (730 Ty ) A(Po (uvT))> —(Po(&§"), Po (UUT)>F|-

Then it follows from (58) that

(00 —Po) (w") | < 61Po(@llr - [Po(woT)r
< Sllul - o

This finishes the proof.
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A.2. Proof of Lemma 3

Note that the first entry of the vector Y ", (A;)1,10;e1 € R™ vanishes. Conditioned on
{(A;)1,1}7,, all other entries are i.i.d. random variables with distribution N(0, > |[(4;)1.1]%).
In particular, this implies that conditioned on {(A;)11}/",; with probability at least

1 — O (exp (—cnq)) we have that

H i (A1, OielH <2, |m i (A)7 ;- (59)
1

This is the standard concentration of the norm of a Gaussian vector (see, e.g. [61,
Theorem 3.1.1]). Similarly, it holds with probability at least 1 — O (exp (—em)) that

m

Z ’ (Ai)1,1 2 < 2m. (60)

i=1

Inserting inequality (60) into inequality (59) provides the first assertion in Lemma 3.
The second assertion can be obtained analogously.

A.3. Proof of Lemma 4

We prove only the first assertion. The proof for the second assertion is analogous. We
first note that by the concentration of the norm of Gaussian vector (e.g., [61, Theorem
3.1.1]), it holds with probability at least 1 — O (exp (—em)) that

m

Z | (Ai)1,1 > <2m. (61)

=1

In the following we will proceed conditioned on this event. Since by definition the first
entry of 0, vanishes, only the first entry of O;5;" is non-zero due to the structure of
the matrix O;. In particular, we have that

0,0, = <OZT61,1775J‘>61.

This implies that

Al @

We observe that 0y and (A4;), ; are independent of O; for all i € [m| due to their defini-
tions. Hence, conditioned on {(4;)1,1}7, and v it holds that

)

_ L=, 0T -1 LINmyoT, L

i =l eTen sty o] = G 20T ety (4, |
i=1 i=1

(OF 1,5 (Ai)y 1 ~ N (0, (A [I57]) . for all i € [m]
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and, hence,

1 & :
P > (0 er, 0y (Ai)y ~ N
=1

(A; )1 1HUtlH

In particular, conditioned on {(A4;)1,1}}%; and v; we obtain by a union bound that with
probability 1 — n~! it holds for all ¢ € [T] simultaneously that

By inserting (61) into the above inequality and by integrating over all events {(A;)1,1}1",
which satisfy (61), the first assertion in Lemma 4 is obtained. The second assertion in
Lemma 4 is obtained analogously.

A.4. Proof of Lemma 5
We note that {(D Uiy o (0 L)Upﬁ#}fnl is independent from {O;el}zl. This im-

i Yp1/2 i
m
plies that conditioned on {(DZ, “t+1/2 ( L)T>FﬁtJ_}i:1 we have
m m T
SO i (D o(5) Ve ~ | S (D (0) DRI A (0,1)
=1 i=1

m
Hence, we obtain that conditioned on {<D“ut+1 /2( L)T> FﬁtL}. ) with probability
1=

1 —n~1 it holds for all ¢ € [T] simultaneously that

1, 5 5 5 logT" + logn u“ . -
> (0T s Dy o) | 5 BB S Dt g (64) D2

i=1 i=1

logT +1logn .| - T
= \/T‘Hvt [ - Z t+1/2 L) )

logT +logn | . . )T
— /s loen ‘|rv#||~HA(uf+l/2 ()]
logT + logn L I\ T
<[P wan (5) )|

This finishes the proof of the first assertion. The second assertion is obtained analogously.
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A.5. Proof of Lemma 6

Recall without loss of generality that we assumed u, = e; and v, = e;. This implies
that we have

{(A*A) UV, } (ZA (Aj, ugv)] ) Uy = % (i A; (Ai)171> Uy
=1
and
KA*_A) UV, } % <§: A, Al,u*v F> Uy = % (i A, (Ai)1,1> Ug.
Then it follows that
() ) -

In order to proceed recall that we have~dec0mp0si~tion A; = D; +0O; and fli =D;+ Oz
for all ¢ € [m]. This implies that A; — A; = O; — O;. Hence, we obtain that

[[(a-2:4) (wal)] ]

I
Sl
=
—
L
|
[
~—r

s 0] a

IA
3=
=

»:Q

>4

i=1

IA
3=

ol 21 [S amao

—(a) =:(b) =i(c)

-+ 2]

K

(62)

We estimate the three summands in the right-hand side of (62) individually.

Estimating (a): In order to upper-bound the first summand (a) we note that by the
triangle inequality it holds that

al
m
Then (23) and (25) respectively imply that

2l [Enio]w - 2[5

of ol = 1 [0

2 [Saanso

=1

61 ||vt”|\<4\/ [l

Al H (63)

111

()111
=1
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and

i“ UtJ_H§ /logT—i—logn.
m m

Plugging in these two estimates into (63) provides

al £ BT+ [

Estimating (b): It follows from the restricted isometry property that

W
m

where in the last line we used Lemma 2.

[ m

LIS (a0,

Li=1

=

] = [(©9) o) ] v,

Estimating (c): By an analogous argument as for the first summand (a) we obtain for

the third summand (c) that
1 logT" +lo ni, -
7H w”gﬂqu Ry FAl
m m m

Hence, by summing up these estimates we have shown that

[ [(4a-A2) (wo] )] a1 < € (\/ el \/Euﬁt“\) + 8l =

which finishes the proof.

A.6. Proof of Lemma 7
It follows from A =D + O and A =D + O that
AA— X A= (D+0)(D+0) - (D+@)* (p+0)
=D*O+0"D+0*0—-D*0O—-0"D—-0"0O (64)
=1 (0-0)+(0-0) D+ (0°0-00).
Using decomposition in (64) and the triangle inequality we obtain that

[ (4= ) (o ”) |

<[> (o- D<WWWtHQW%HKO—@YD)@HW@W%W

=:(II)

-[l(or0-9)] (i) o

=:(I1I)
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We estimate these three summands separately.
Bounding (I): Note that
H K (0-0)) (ienryer”) ]
2] [(Pr(0-0)) ()" + a5 o)) ]
2[ (7 (0-0)) (oo ] + | [0 (0-0)) (haatshT)]

(c)
<25|WHVAWWLH+H%+VﬂWWWD

(d) )
< 26 (|1}, o)l + 201511

where equality (a) follows from the definition of © and O; Inequality (b) follows from the
triangle inequality; Inequality (c) is due to Lemma 2 and the assumption that ||0;]| = 1;
Inequality (d) follows from |7 || = 1 and ||t4q ]| < 2.
Bounding (II): By definition of D we have that

[((0-0)"D) (w105 7) | 5 = [((0 - 0) D) (&, p (@) + ()T ] o
Hence by the triangle inequality it follows that

|[((0-0) ) (ssyan7) ]

* T
A 1 <1 ~
<[ [((0-0)) (e )] + [ [((0-0) ) (e (2) )] ]

=) =:(85)

Estimating (§): In order to bound the first term we note that

. ~\ * T -
| [((0=0)"2) (@l ateT) ] 1] = Nathsall -1 [ [((0 - 0) 2) (wol)] ]
Moreover note that
S\ K T N 1
((0-0) 2) (wel)] s =
m
Note that this is exactly the term, which appeared already in the inequality chain (62).

Hence, by exactly the same argument, since we assumed that egs. (23) to (26) hold, we
then obtain that

[((0-0) ) (#oi7)] 5 (65
S el - I (\/ ST ¢ [l + st —@H) -
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Estimating (§§): In order to bound term (2) we note that

((0-0)2) (st (5] 1= 55015800 (54) s (00
Due to the triangle inequality it follows that

1 T ~
D17ut+1/2 (Ut ) >Oivt

H— Dzvut+1/2 <th‘)T> (O O)vt

+ H;im (it vto) () 150

—(d)

1 X N N A
L S0t () e
K

=:(e)

We will estimate the summands individually.

Estimating (b), (¢), and (d) : By the consequences of RIP in Lemma 2, the term (b)
is upper-bounded by

1 & T
~1 ~ 1 1 - ~
| = > D adige (5) )r0: (@ = wo) || < Sl ol - 5411 15 = wel) < 20115 = we,
=1

where we used ||@5 , || < 2 and ||5;*| < 1. Similarly we obtain that

t+1/2|

S 2(5”’1)} — Vg || < 2(5”1},5 — Ut”

1 LONT, -
H% ‘ Dl7ut+1/2 ( — Vg ) ) FO;vy
=1

| So40n, (10— wihage) () )rOwwn]| < Sl i ol < St o~ jol
=1

34



Estimating (a): By the triangle inequality it holds that

H;L iﬂ% ﬂtL+1/2 (ﬁtL)T>FOiﬁt
ZZI m (66)
2 000 (52 0 | 0 (0 ],
— 3

We estimate the two summands individually. Note that from the definition of O; and
0% it follows that only the first entry of O;0; " is non-zero. It follows that

S50 5) 10 = S50 )

Hence, it follows from (27) that
1 & ~ N\ T ~ logT + logn - _
| > i (6%) et || 5 (/220 A (@) T) |
i=1
< [logT + logn
~Y m Y

where in the second inequality we used the RIP of A as well as the assumption ||t /9| <
2. This provides an upper bound on the first summand of the right-hand side in (66).
In order to bound the second summand we first choose a vector u € C™ that satisfies
llull =1, (u,us) =0, and

H% i<Di»atL—i—1/2 (17tL)T>FOﬂ7tHH = ;i(Di,aﬁl/Q (ﬁtL>T>F<Oﬂ7t”,U>.
i=1

.
) (O] i, 5|

Such a vector exists due to the definitions of O; and ¢, and the fact that the vector
0,3, is orthogonal to u,. Hence, we obtain that

1 T
H% > (Di i (17tL) ) rO;
=1

m

) = %Z(Di,atﬂlm <~t¢)T>F<O¢7u ﬁtH)T)F

1=1
YA (ﬂtil/z (”}L>T) A (“ (ﬁt”f))
<t () e (1) 1

~ L ~ L -
< Sl goll - e - el - (1)

(iv) -
< 265,

35



where the identity (i) follows from our choice of u and the definition of D; and O;;
Equation (#7) follows from the definition of A; Inequality (7i7) is due to the consequences
of RIP in Lemma 2; Inequality (iv) is obtained by || | <2, |lul| =1 and ||5,] < 1.
Hence, we have shown that

logT +1
(@) S BT ).

Estimating (e): We can upper-bound this term in an analogous way to term (a), which

yields that
log T 4 logn
() S 4/ ==+ 0.

Summing up terms yields that

(88) = +(d) + ()

logT—Hogn -
\/ + 8]l a | + 8|5, — v + 0|ty g1 /2 —Ut+1/2H5||”t|| (67)
logT+ logn - - ~
5\/ — + 5||Ut”|| + 6|5t — vel| + 0| Tpp1/2 — wigrs2ll-

By combining (65) and (67), we obtain
(1) = (§) + (89)

logT +1 5
S il (4 EEEEE 1 2 -

log T+ logn . _ ~

N \/T 3100+ 8115, = vell + 8112 — el
logT + logn

< \/T Y — ) 15N+ 8116 — vell + Sl j2 — g ol

Bounding (I1]): Observe that
|[(0°0~0°0)] (isrjot) 5|
@ H(O 0 - 6°0) (i, u5) + oy o) )] ”tH
<[ [(0r0-0°0) (al,,n@)7)] o + || [(00 - 0°0) (it o)) 5]
< || [©0 ~ Po) (i1 o)) [ ] + | [ (o - ©°0) (s, o007 | 1]
+[[ 070~ Po) (#5120 | + || [ (Po — 0°0) (o))
< 25 (Jlal, ol - 15 + 2o - 1)

©) _
< 45 (JJafy. ol + 15

t+1/2‘

36



where the identity (a) follows from the definition of @ and O; Inequality (b) is due to
Lemma 2; Inequality (c) follows from ||7;|| = 1 and ||t /2] < 2.

Finally, by combining the upper estimates of (I), (II), and (III), we obtain
| (44 =24 (dssori”)
<(I)+ (II) + (II1)
< 0 (N, 4ol + 1001)

log T + log n ~ 5 i
’ <\/7+ ot \/2> [N + 115 = vell + |12 = tera o

+6 (qurlt‘+1/2H + HUJJH)

logT + logn ny - - - -
ISLY E— + {0+ pove 51| + (5Hul|+1/2H + 6|5t — vell + Ol py1 /2 — g y2ll-

This completes the proof.

A.7. Proof of Lemma 8
The RIP of A provides

u ( (vg)T) A(w]))
<[ (o (o = 3) ) (sl | e (o (54) ) oA ()] 09

< S|t — ot + ’(A (u* (ﬁtl>T) JA (u*vj>>’
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The second term in the right-hand side of (68) is rewritten as

m

o (s (54) ") A (] = ] 3t (5) ot T

=1

(Aj, uy (ﬁtL>T>F (Ai)1q

)

I
3=

1

=

(O, uy <5tL>T>F (Ai)l,l ’

I
3=

ﬁ
Il
—

(Ai)1,1 Oi, ux (77tJ_>T>F‘

3=

-
I
—

I
3=

—_

(A)11 Oiv, )

=

I
Sl=
M

(Ai)y, 01|

(2

1

Hence, the assumption in (25) implies
T logT + logn
o ()" o) 5
m
Inserting this inequality into (68) yields inequality (29).

It remains to show the inequality in (30). By applying the triangle inequality several
times in combination with the RIP of A we obtain that

e (s1) ") (st (1) )
< bl g = T poll + 201w — G| - lugsy ol + ’(A <u* (@L>T> LA <ati+1/2 (ﬁtL>T>>’

T T
< bl o = ol + 4800 — it [0 (e (5) ) A (500 () )

)

(69)

where in the last inequality we used that [|u, | soll <2, which holds by Lemma 9 due to
the RIP of A. Next, we note that

(<,4 (u* (ﬁﬁ)T) A (atim (ﬁ#)TM _

(Ao () Yt ity (50) |

Sl

.
Il
—

(O, uy ( J_>T> <Dwut+1/2 <6L)T>F‘

I
3=
NE

N
Il
—

T

I
3=

-
I
_
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Hence, it follows from (27), the RIP of A, and ||y /5| < 2 that

(o () ") 4 (e () ) T it
< logT + logn
B ET

Combining this inequality with (69) yields (30).

B. Proofs of Lemmas in Phase 1
B.1. Proof of Lemma 9

It follows from the normal equations that

Up41/2 — (Vse, 1) U
= [(Id —A*A) <ut+1/QUtT - “*”*Tﬂ Ut
- [(Id — A" A) <(Ut+1/2 — (Vs vr) ) vI)] vt [(Id - A4 (u* (<v*’vt>UtT a UI))} v

In the following we will set for convenience that Ay = (v4,v¢). Then we obtain by the
previous calculation, the triangle inequality, and the Restricted Isometry Property that

Hut+1/2 |
<[ [aa = a) (e 4172 = Aewe) o )] ]| + | {10 = A7) (s g = 2)T) ]
<0 (Hut+1/2 — M| + || Avy — U*H) )

where in the last line we have used that ||v|| = 1. Rearranging terms yields that

‘/\tvt — Uil (70)

o
[ue1/2 — At < m)

We compute that
AU — Uy = /\fv* + )\tvtL — Uy = ()\% — 1) Vy + /\tvtl.
Due to 1 — A2 =1 — (v,,v;)? = |Jvi||? and \? = HU,'JHZ this implies that

2
Iheve = vel® = (1= AZ) " Mluel® + N [foi[|?

1
= Jloi 14 + ol 12 lv |12

where in the last line we used that Hvy 12 4 [lvi||? = |Jve]|? = 1. Together with (70) this
shows (35). Since HutL—i-l/QH < Hut+1/2 - <v*,vt>u*H this implies (36). In order to prove
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inequality (37) we note that

et /2ll < [lwgpiye — (e v usl + [(0x, ve) || us ]

< 1_5HU§H + [{ve; v1)

S1=s T [(vxs v) |

<2
where the third line follows from inequality (35) and from |[u.|| = 1. In the last line we
used the assumption that § < 3 and [|v;|| = ||vs| = 1. This shows inequality (37).

B.2. Proof of Lemma 10

We will first show the following auxiliary inequality:
1y = @y ol < (et + O (cor + D) [0l + Colluy o — iy ol (71)
where C > 0 is an absolute constant chosen large enough.
Proof of inequality (71): Recall that u;,/, satisfies
Ut41/2 — (v, vi)ue = [(Id — A*A)(Utﬂ/ﬂ: - U*UI)]W-
Then it follows that
Up 172 — (U1, Ve )us = [(Id — A*A)(ut—&—l/QU: — w0, )],
which is equivalently rewritten as
Il o _ T A* T _ T
Ugi1/2 (U, Vi) ux = (uxvy , (Id — A*A) (Ug1 20p — Uy ) U (72)
Similarly /o also satisfies

iy, 1y — (0 vt = (a0 T, (1d = A" A) (@100 — ] s (73)
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We obtain from (72) and (73) that

ul gy =l =00 = T v ue o+ (], (1 — A7 A) (g 1y00] — wew]))
(u*vtT, (Id — A A)(ut+1/gvt — U*UT»FU*
= (0 — B, vt + (s (0 = 0) ", (1d = A" A) (g1 o0 — wv]) P
<U*UtT> (Id — A A)(ut+1/2vt UV, ) (Id — A -A)(ut-i-l/QUt - U*UT)>U
= (0 — B, v + (s (v = 0) ", (1d = A" A) (w100 — wv]) P
+ (et (1d — A" A) (w0 ) = (1d = A*A) (G127 1)) Fus
V)

U*’l)tT

( A*A — A> (u*v*T))Fu*

e+ (e (v — ) (1 — A" A) gy 0] — w30 ) iy
+ (udy ", (Id — A*A) <ut+1/2vzsT - fbt+1/217tT>>Fu*

(G ,(A*A A* A> (atﬂ /Qv}T>>FU*

+ (uedy ,(AA A*A) (uwI))Fu*.

:< Uta *

It follows from the triangle inequality, the restricted isometry property, and the Cauchy-
Schwarz inequality that

Iy o =y ol Sl0l = 0|+ Sllor = el - g ool = wev] 1w

+ 011Gt - [wer1jov) — Tiggrp28e |7+ H [(A*A — A*A) (aHl/QﬁtTﬂ ﬁtH
+1 [(A A~ 4°A) (woo])] a1l
<o) = G + 8llve = Gell (ol - loell + lewell - o)
+ 0|l (luesryo = degayall - NJoell + Nl@ega o]l - lve — a¢ll)
n :(/t*/t - A*A) (am /zﬁﬁﬂ 5
+ (fl*fl - A*A) (uwj)] ﬁtH

<Jlof — M| + 56]|ve — Tl + 26 wry1 /o — pga ol
[ [(A A= a4) (7)1
n :(A*A—A*A) (u*uj)] all,

where in the last inequality we have used the assumptions [|usq1 /2]l < 2 and |G /2| < 2.
Recall from Lemma 7 that

(4= 24 (o) 5

IOgT || ni ~|| ~ ~ (74)
ST ol (84 /) N+ 81— ol + Bl s = vl
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From Lemma 6 it follows that

HKﬁﬂ_mAMm@ﬂ@chQﬂﬁ7+¢gwmo+ww—my (75)

This implies that there is an absolute constant C; > 0 such that

[ = ||
t+1/2 “t+1/2||

. ~ log T n - . _
ﬂﬂ—ww+a<wnl+(Mé+®WJWMMJ+Mw—wMWMHm—WHMO-

By using Assumption (32) and Condition ii) of Proposition 1, we obtain that

I

I =l
144172 = Ge ol

<oy = 5| + Co (31151 + dllef |+ Olfoe = 5ll + Bllues1 /2 = v o)

with an absolute constant Cy > 0 chosen large enough. By using the triangle inequality
and Assumption (33) we obtain that

Iy o = gy ol < N0l = a1+ Co8(1 + ean)llo) | + Codllugsrj = T poll,
where C3 > 0 is an absolute constant chosen large enough. By using the triangle
inequality, by rearranging terms, and using the elementary inequality 1/(1 —z) < 1+ 2x
for 0 < x < 1/2 it follows that

a1 = il oll < (1 C0) ol = G+ Cab (1 -+ ean)lol | + Cdllety o = ol

where Cy > 0 is an absolute constant chosen large enough and we have used that § > 0
is chosen small enough. Using Assumption (33) we obtain that

10 = )y ol < carllod |l + Cad (L + can)l[o) | + Cudllud o — iy ol

< ((1+2Cu0) cor + Cud ) ol + Cudlluiy jo = i o
This shows the auxiliary inequality (71).

Proof of inequality (42): Having established the auxiliary inequality (71), we can in
the next step prove inequality (42). It follows from the normal equations that

utL+1/2 =P, [(Id — A*A)(Ut+1/2’[1;r — u*vj)]vt,

U1y = Pt [(1d = A" A) (g1 /20 — waw])]0r.
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Hence, we obtain that

Huif—l/Q - ﬂt+1/2||
<A — A" A) (g1 /2v¢ — v, )]og = [(1d = A A) (g1 /90T = wev])]a]|
<||1(Ad — A" A) (g 17207 op = [(1d = A*A) (Gig 1195 )] 0|
=:(I)
+ 1[1d — A*A) (0] o — [(1d — A°A) (we0] )]
=:(I1)

We estimate the first term by

(a)
IO S0 = A A) (1007 = 10 Yol + | [(1d = A A) gy 28] (01— 1) |

(552 (i)
(<b)<5Hut+1/gvt — Gyy1/20t |7+ Ol gp1 00 || Fllve — G

[ [(A A= A4) (rsrgonT) 4
(c)

<Ol tes1 /2 — figsr ol + 30]|vr — B + H :(A*A - A*A) (am/ﬂyj)} 7

@ [logT ni\ | - 5 _
SyET ool + (3 /22 ) 1+ 8161 = el + g — el

In inequality (a) we used the triangle inequality and in inequality (b) we used the Re-
stricted Isometry Property. In inequality (c) we used the triangle inequality as well as
|t41/2]] < 2. Inequality (d) follows from inserting inequality (74). In the next step, we
are going to estimate summand (I7). For that, we observe

ID) </11d = A ) o)) (v = 5) | + || [ (A4 - 4%4) (weo] )] a1

- logT ny .
S%WFWN+CQ/g +w1mmo,
m m

where in the second inequality we have used inequality (75) and that A satisfies the
Restricted Isometry Property. Hence, we have shown that

g 12 = @ poll U+ D]

logT n B 5 B

Sy ol (5 /) 00+ 81 vl + Ol = vl
logT

<y == +&HW+@+Mm)mM+&m—wwwme il

ul
+ ‘5” Upyio — t+1/2“’
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where for the last line we used the triangle inequality. Next, we obtain that

1 -1
Hut+1/2 — Uy ol

SOt 1| + 6115 + 811 — vell + 81131 o — wjoll + S, g — gy ol

where we have used Assumption (32) and Condition ii) of Proposition 1. By rearranging
terms and using our assumption § < 1/2 we obtain that

lugiays = Tl S Sl + 810 + 8116 — vell + 3,y o — 1y ol
By using the triangle inequality and Assumption (33) we obtain that
1
15 = @ oll S (1 + o) o] || + 5||ut+1/2 t+1/2|!-
By inserting the auxiliary inequality (71) we obtain that

L ~ ~
”Ut+1/2 - ut+1/2” SO (1 + cat) ||Ut|H + 52”“t+1/2 “t+1/2”-

By rearranging terms we obtain that

1 ~ 1
ity o — @ity ol S 6 (1 +c20) [[0] .

This shows the claimed inequality (42).

In order to finish the proof, it remains to prove inequality (41). For that, it suffices
to note that this inequality follows from inserting inequality (42), which we have just
shown, into the auxiliary inequality (71).

B.3. Proof of Lemma 11

For convenience, we set Ay = (v, vy). We compute that

[|u t+1/2” |<ut+1/27u*>|
|<ut+1/2 — Ay, U*) + )\t<u*7 u*>’

= (U172 — Mtse, Ux) + (Vg, Vi)
It follows from the triangle inequality and [(vs, vy)| = ||vt| || that

ol = ot o = My )| < ol I1 <l ol + (g1 = M, )] (76)
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Hence, we need to bound |(u 4 /2 — Aty uy)| from above. For that purpose we compute
that

Up41/2 — AUy
= [(Id — A*A) <Unt+1/2vtT u*”;r> Ut
=\ :(Id —A*A) (Ut+1/2vt — Usx UT [ Id—A"A) (ut""l/Qvt T Ukl )} tJ_
- [Id A*A) (ut+1/2vt>]vti [Id AA)( )}U#
| (
A

Id — A*A) Ut+1/2vt>] tl‘i‘[AA)(**)}UtL

v
T 1L
(Ut+1/2U )

:u + A [(Id A

_ )
+ |a =) (w0 (v#)w v+ () (o) o

A [(10 = A7) (oo — o )] o [(1d — 474) (0] )| it
(g o010 [(Id A*A) <u (U#)Tﬂ [(Id A*A) <ut+1/2 (v#‘)T>] vt
+ [y (wend)] ot

It follows that

|<Ut+1/2 — AUy, Uy) |

<N\ - H { (Id — A*A) (Ut+1/2vt u*vT)} V|| + | Ae] - H { (Id — A*A) (Ut+1/2UT>:| th‘H

o] | |00 = ) (o (o)) o o, |00 = ) (o () )] o)
M(A A) (weo] )] vt )|
:||v Il - H [ (Id — A*A) (ut+1/2v: - u*v;rﬂ ’U*H + HvllH . H [(Id - A*A) (utH/QUIﬂ U,}H

+ lufy ol - | [(Id N <u* (#)T)] ot || + A (“#1/2 (vtL)T> A (o))
A (wa] ) A <u (@)TM.

By the RIP of A and the assumption [|u;1/2| < 2 we obtain that

| [aa = a) (ui1jo0] = ww] )] e < lluesajord = ww] e
<6 (lluesa ol - Noell + o 1)

=90 (Hut+l/2H +1)
< 3.

45



Furthermore, it follows from the Restricted Isometry Property and the assumption
|us1/2ll <2 that

| [ = av4) (sl )] ot | < Slluagoll - ol - ol < 26
and
| [(Id —AA) <u (@)Tﬂ o || < ol - o |2 < 6
We obtain that
(U g1/2 = At )|
< 5olJo] |+ allul., | + | (A <uti+1/2 (vg)T) A (o) )]+ (A (we] ) A (u (vti)TM.

Recall from Lemma & that

o (i (5) ) A () <ol i+ 02T

and

T T . . logT
A (o0 (1)) A (g (58) )] < Bt = ol + 280 = 1+ € 25T

Inserting these estimates into the above inequality we obtain that

[(Uig1/2 = A, Us) |

- - logT
< 50wy |+ Slluy ol + Sllea o — i joll + 380 — 5 + 204/ =

S 01+ ca) ol | + 0y, ol

where in the last line we used Assumptions (32), (33), Condition ii) of Proposition 1, and
(42). By inserting this estimate into (76) and by rearranging terms we obtain inequality
(43). This finishes the proof.
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B.4. Proof of Lemma 13

Part 1 (Estimating HUL_I - 71]&'4-1”)

:  First, we are going to estimate H%_H - ﬂ,UHH
We compute that
[ il
_ Uir1/2 Uir1/2
Judsy =iyl = | - |
i i ”Ut+1/2” ||Ut+1/2||
el = e ol o]
w12l - 141 2]l
o = arll | [Ieajell = Nevspall] Nl
Hut+1/2|| ||Ut+1/2|| ||Ut+1/2||
I o I v R e H
B Hut+1/2H ||Ut+1/2|| t+1
1 =
t+1/2 — Y4172 ||Ut+1/2 - Ut+1/2|\
i -
Hut+1/2H Hut+1/2H
«(8) =:(§8)
We estimate the two summands separately.
Estimation of (§): We obtain that
a1 = s ol @ |
t+1/2 t+1/2 S (CQt + 016(1 +02t)) || t ||
Hut+1/2|| ||Ut+1/2||
®) [|u +1/2|| (77)
< (CQt + 01(5(1 + Cgt)) (1 + C2(5(1 + Cgt))
HUt+1/2H

— (et + C10(1+ e20)) (1+ C6(1 + ) |
where in inequality (a) we have used Assumption (41) and in inequality (b) we have used
Assumption (43).

Estimation of (§§): By the triangle inequality we have

Hut+1/2_ut+1/2” H | <
21172l el =

) ul ol i, [
Upr172 = Upp) H I+ t+1/2 t+1/2 ” I
[ s [ s

(78)

Then we estimate the two summands in the right-hand side of (78) individually. It
follows from (77) that the first summand is upper-bounded by

H st/ — t+1/2||

”qu/z” || t+1H < (car + C1o(1 +c2t)) (1 + C26(1 + cay)) Hut+1” H“t+1”
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Moreover by Assumptions (42) and (43) the second summand is upper-bounded by

G310 = ol @ g [
gl < C18 (1 + cap) — - [y |
[y i [ s
I
() g poll
< C16 (14 ca) (L + C26(1 + c2r)) UMGRTCLY ||“1|t|+1“
Hut+1/2H

= C10 (14 cat) (14 Cod(1 + can) ufy | - 1 -
By combining the two estimates and inserting them into (78), we obtain that

Tey1y2 — werpell | - _
LB i | < (ear + 2C18(1 + ea0)) (1+ C20(1+ e20)) [l |- 13,
||Ut+1/2||
Combining the estimates: By combining the estimates for (§) and (§§) it follows

that

Hultl—i-l - ﬂ’z‘t‘—&—l”

< (§) + (88)
< (et + C16(1 + car)) (1 + Cod(1+ c20)) [Jul |
+ (c2e + 2C10(1 + e20)) (1 + Ca0(1 + can) [luf || - 17
< (car +2016(1 + 1)) (1 + Cod(1 + car)) [l |
o+ (car + 2C10(1 + ean)) (1 + C0(1 + c20)) iy | (Nl + Nl =l
which is rearranged as

(1= (car +2C10(1 + 20)) (14 Cod(1 + e20)) lful ) Nl — il

< (eat + 2C10(1 + e20)) (1 + Coo (1 + ) oy I (1 + ) (79)
Due to Lemma 12 we have co; < 1. Therefore one can choose ¢ in (34) as a small absolute
constant so that § = ;1o satisfies
gn2
1
(car +2018(1 + e21)) (1 + Cod(1 4 e20)) gy || < 5 (80)

en, since — <1+ 2z for 0 <z < , 1t Tollows from an that
Then, since - 2z for 0 1/2, it follows from (79) and (80) th
[ ~ || I

[y = g
< (142 (e +2C10(1 + e2)) (14 Cod (1 + ea0) [l )

)
(20 +2C1(1+ ) (1+ Co0(1+ ean)) [l || (1 + [l

(&%) (itd) o

Cgc 3 030 |
<|1 1
< (14 o) (et o Y ek (51)
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for some absolute constant C'3, where the second inequality follows from the assumptions
and the fact that coy < Cy due to Lemma 12. Indeed,

C — C
”ut-‘rlH < log no and 5 ~ 4logng?
the above conditions imply

(i) = 142 (cor + 2C15(1 + car)) (1 + Cod(1+ e21)) ||l |

2 1 1
<1+ (Cy+ Cl(Co—i- )C . 1+C2<Co+ )C ‘ c ‘
4logno 4logno log ng

Then we need to choose C'5 so that

Co+w . 1+M < Cs.
4logno 4log no

The constant C'5 also needs to satisfy

201(00+1)C Cor + C3C

(i1) = cor +2C16(1 4 car) < car + < cat
log no log ngo
Cy(Co+1 C
(iii) = 1+ Cod(1 + cz) < 14 20 F Ve Cse
log 1o log ng
and
Cgc

=1 <1 1 .
(iv) =1+ ||Ut+1|| <1+ Alogng = log 1

This is implied by
1
max {201(00 +1),C5(Co+ 1), 4} < (4.
Thus, there exists an absolute constant C'3 > 0 that satisfies the above conditions. Then

one can choose an absolute constant ¢ > 0 small enough so that the upper bound in (81)
reduces to

faly —al < (1 ) em + —— [l (82)
+ log na log na +

=iC2t+1

Thus we have shown the claimed bound for Hut 1 ut -

Part 2 (Estimating [|ui;, — 47, ]|): Analogous as in the beginning of the proof, where

: : I =
we provided an estimate for ||u;,; — 4, ||, we can show that

i - _
1 N ||“t+1/2 - “t+1/2|| G172 — tes1 2|l
Jugr1 — @l < gl
Hut+1/2H Hut—i-l/ZH
By using the triangle inequality and Haf:HH <1 it follows that
s o)
Hut+1/2 t+1/2H H“t+1/2 t+1/2H

luisr — Gl <
i i Hut+1/2H ”Ut+1/2”
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We are going to estimate the two summands individually. By Assumptions (42) and
(43), the first summand is upper-bounded by

2Hu

S

) 2C16(1 + car)|v} |
HWH/QH

il
14172 ~ Yiprpall ¢

IN

||Ut+1/2||
(b)
< 2C16(1 + ca) (1 + C20(1 + c2t)) [luesa |-

Moreover, we use the estimate from the inequality chain (77) to obtain that

ul
H“t+1/2 Uyl
Hut+1/2 |

< (e2t + C16(1 4+ car)) (1 + Co(1 4 c21)6) ||“1|t|+1\|-

Hence, by inserting these estimates into (83), we obtain that

gy — || < (car + 3C15(1 + ea)) (1+ Ca(1 + e20)3) [Jul 4 |
046 046
< 1+
8 (C“ lognz) ( log 3 ) I t“”

C4C C4C
=1{(1 1+
[( " 10%"2) et log ny < 10% )] I Hl”

for some absolute constant Cy, where the second inequality is dervied similarly to that
of (81). Since co; < 1, by choosing ¢ as a small enough absolute constant so that

5 1
uiyy — G| < [(1 + lognz> 2t

Then combining (82) and (84) provides (45). This finishes the proof.

] ld ol = cxalld ol (84)

B.5. Proof of Lemma 14
We observe that

2 (a) H t+1/2H
o +1/2H

lul 2
Uit1/2

gl

”“t+1/2” + ”ut—i-1/2H2
Il
O __aludip_
Bllvi- |12 + allvg||?
|H2

(2 allv;
B+ (a—B) o))

In equality (a) we used the definition of u;1 /5. Inequality (b) from the inequalities (46)
and (47). Equality (c¢) is due to ||v¢|| = 1. This shows the first inequality in (48), from
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which the second inequality can be deduced immediately. In a similar manner we obtain
that

”“tLH/zHQ
”Uzt+1/2”2

L ”2
t+1/2

1
luzall* =

I

eyl + ety o2
o Bl
Bl + allv) |12
< B

" a2

12
t”a

v

which finishes the proof.
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