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ABSTRACT

We consider a robust phase retrieval problem that aims to re-
cover a signal from its absolute measurements corrupted with
sparse noise. The least absolute deviation (LAD) provides
a robust estimation against outliers. However, the corre-
sponding optimization problem is nonconvex. We propose an
“unregularized” iterative convexification approach to LAD
through a sequence of linear programs (SLP). We provide
a non-asymptotic convergence analysis under the standard
Gaussian assumption of the measurement vectors. The SLP
algorithm, when suitably initialized, linearly converges to the
ground truth at optimal sample complexity up to a numerical
constant. Furthermore, SLP empirically outperforms existing
methods that provide a comparable performance guarantee.

Index Terms— phase retrieval, outliers, least absolute de-
viation, linear program, convex optimization

1. INTRODUCTION

Phase retrieval refers to the recovery of signals from magnitude-

only measurements. It arises in numerous applications in-
cluding X-ray crystallography, diffraction and array imaging,
and optics [1-4]. We consider the robust phase retrieval from
the measurements that are corrupted with sparse noise. For
example, such a scenario arises in imaging applications [5].

A suite of methods designed for plain phase retrieval
has been adapted to address outliers. For instance, anchored
regression [6] and PhaseMax [7] formulate phase retrieval
as a linear program when provided with an initial estimate.
RobustPhaseMax [8] modifies these methods to offer robust
estimation by introducing an auxiliary variable to describe
the outliers. In another example, Reshaped Wirtinger Flow
(RWF) [9] and Amplitude Flow [10] follow a subgradient
descent approach. Median-RWF [11] is a variant of these
methods tailored for robust phase retrieval. Specifically,
Median-RWF identifies and excludes outliers in each itera-
tion by median-based thresholding on the consistency of the
current estimate to the measurements.

A different approach based on the least absolute devia-
tion (LAD) has been proposed in a later work [12]. LAD
has been a popular approach to regression with outliers. The
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LAD formulation of phase retrieval from squared magnitude
measurements is cast as a nonconvex optimization problem.
The prox-linear algorithm implements an iterative convexifi-
cation of LAD through linearization of the convex measure-
ment model and regularization on updates relative to the pre-
vious iterate.

All of these works guarantee the exact recovery by their
estimators under comparable conditions on sample complex-
ity and outliers. However, the empirical performance of
Median-RWF and the prox-linear algorithm has shown sig-
nificant improvement over RobustPhaseMax. In this paper,
we present an unregularized iterative convexification method
for LAD in robust phase retrieval. This method achieves a
performance guarantee comparable to previous estimators but
yields superior empirical results.

Notations : Boldface lowercase letters denote column vec-

tors. We use || - ||; and || - ||2 to denote the ¢ norm and the
Euclidean norm respectively. For brevity, the shorthand nota-
tion [n] denotes the set {1,...,n} forn € N.

2. PROBLEM FORMULATION AND ALGORITHM

We consider phase retrieval from magnitude measurements
corrupted with sparse noise. Let z, € R? and {a;}I", C
R? denote the unknown ground-truth signal and the known
measurement vectors. Then the measurements are written as

gi ifi € Iout
b = 1
{|<ai,.’1}*>| ifi € [m] \Iout (L

where It C [m] collects the unknown indices of outliers.
The LAD estimator given the measurements {(a;, b;) }1";
as in (1) minimizes the cost function given by
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The cost function in (2) is written as ¢(x) = (h o F)(x),
where h : R™ — R and F : RY — R™ are respectively
defined by

h(z) = |zi = Izl 3)
i=1

and

F(x) = (@i, z)] = )i, - )



A similar LAD estimator for a smooth measurement model
has been studied by Duchi and Ruan [12]. They adopted
an iterative algorithm formulated in the spirit of a Gauss-
Newton method for convex composite optimization [13]. In-
spired by their algorithm, we consider a similar iterative algo-
rithm given by

Tj+1 = argmin h(F(zy) + F'(z)(x —x1)  (5)
zER
where F'(x;) € R™*? denotes the Clarke’s generalized Ja-
cobian matrix at x; [14]. The algorithm by (5) is different
from the approach [12] in the following two aspects: 1) F' is
not a smooth mapping; ii) There is no explicit constraint on
the amount of update ||« — x||,. Note that the optimization
problem in each update by (5) is convex. Therefore, we con-
sider this approach as iterative convexification of the LAD
formulation for robust phase retrieval.
Furthermore, given h and F' respectively defined by (3)
and (4), the optimization in (5) can be solved by a simple
linear program. First, note that (5) is written as

m
Tpy1 = argminz Isign({a;, zk)){a;, &) — b;|.  (6)
xeRd T
Then, by introducing auxiliary variables ¢ := [t1;. ..
R™, (6) becomes equivalent to

itm] €

minimize (¢, 1,,)

@ER, (:)72,

subject to t; > sign({a;, xx)){a;, x) — b,

t; > —sign({a;, zx)){a;, ¢y + b;, Vi € [m],

(N

where 1,,, = [1,...,1]T € R™. In other words, since solving

(5) at each iteration executes a linear program, the iterative

algorithm in (5) involves a sequence of linear programs. For

this reason, we use the acronym SLP to refer to our method.

2.1. Comparison with the prox-linear method

Duchi and Ruan [12] considered a similar LAD with the cost
function £quaq = h © Fyuaq Where Fyuaa(z) = (|(a;, x)|? —
|b:|?)7 . Note that Fiyyaq is of class C'. Their prox-linear

algorithm is a variation of the Gauss-Newton method [13] so
that 1 is updated as a minimizer of

M Fauad (k) + Flyaa (@) (@ — 1)) + Al — 24|35

with respect to a, where F,, 4(®;) € R™*? is the Jacobian
matrix at & and A > 0 is a penalty parameter for the regular-
izer. The original Gauss-Newton method instead considered
a constraint on || — x||2. In the prox-linear algorithm, the
regularizer ensures that estimates are updated in close prox-
imity to the current one. This prevents overshooting in a de-
scent direction and favors the approximation of the local lin-
earization. As we demonstrate in the following section, suit-
ably initialized SLP even without any such regularizer shows
monotone linear convergence to the ground truth.

Due to the use of the quadratic measurement model and
the squared /5 regularizer, each iteration of the prox-linear
algorithm corresponds to a quadratic program (QP). In con-
trast, SLP avoids using the quadratic functions, allowing us
to utilize a simple linear program (LP) instead of QP. This re-
sults in significant computational savings, as QP has notably
higher computational costs compared to LP [15, 16]. To ac-
celerate solving those QPs, they also proposed the proximal
operator graph splitting method. However, the resulting algo-
rithm is still more computationally expensive than SLP as it
involves the multiplication and eigenvalue decomposition of
unstructured dense matrices in each iteration.

3. THEORETICAL RESULTS OF SLP ALGORITHM

[17]
In this section, we present the convergence of SLP with
respect to the following outlier model.

Assumption 1: The outliers are supported on arbitrarily
fixed set oyt with |15, = nm but their magnitudes |;| can
be adversarial.

Theorem 3.1. Let 0 € (0, 1) be fixed. Suppose that Assump-
tion 1 holds with n) € [0,1/4] and {a;}, are independent
copies of a ~ Normal(0, I;). Then there exist absolute con-
stants C,c > 0 and v, € (0,1) depending only on n, for
which the following statement holds for all €, € R® with
probability at least 1 — exp(—cd): If an initial estimate x
obeys dist (g, x,) < sin(2/25)||x||2 and

m > Cd, )
then the sequence (xy,),, oy by SLP satisfies
dist (g, z4) < Vf;'dist (xo, x4) , )
where dist(x, x,) = minge(+1y || — az,|2.

Theorem 3.1 establishes a local linear convergence of
SLP, implying that without any regularizer, an estimate by
SLP converges to the ground truth by avoiding overshooting
while staying within a neighborhood of the ground truth. As
shown in (8), the sample complexity m to recover the ground
truth, x,, is linearly dependent on d. This sample complexity
is comparable with the results of [8, 11, 12] for exact recovery
of ground truth.

While the estimators have comparable results with respect
to sample complexity and initialization, there exist subtle dif-
ferences in the assumptions on outliers and the computational
costs among these estimators.

First, we compare the degree of adversary in assumptions
on outliers. Hand and Voroninski [8] assumed the highest ad-
versary so that the support and magnitudes of sparse noise
can be chosen depending on all measurement vectors in their
analysis of RobustPhaseMax. Assumption 1, which coincides



with the assumption by Zhang et al. [11] for Median-RWEF,
considers an arbitrarily fixed support of sparse noise but the
magnitudes can be adversarial. Duchi and Ruan [12] used the
lowest adversary so that the support of sparse noise is chosen
randomly. They considered two distinct models on the depen-
dence of magnitudes of sparse noise on measurement vectors.

More importantly, the faction of outliers is not clearly
specified in the analysis of RobustPhaseMax and Median-
RWE. They only presented that there exists a numerical con-
stant so that if the fraction of outliers is below the thresh-
old, then the exact recovery is achieved with high probabil-
ity. In contrast, the analysis of the prox-linear algorithm [12]
and SLP (Theorem 3.1) demonstrated that these methods can
tolerate the fraction of outliers up to 1/4. As shown in the
numerical results in Section 4, RobustPhaseMax showed in-
ferior empirical performance. It provides exact recovery with
high probability for only a small fraction of outliers 7. In con-
trast, other methods, such as Median-RWF, prox-linear algo-
rithm, and SLP, improve the tolerance level for outliers.

Moreover, the theoretical results can also be compared
in terms of their computational costs. RobustPhaseMax is
solved using a single linear program, making it the most
computationally efficient method. However, this comes at
the expense of its inferior empirical performance. The per-
iteration cost of Median-RWF is lower than those of both
the prox-linear algorithm and SLP. Yet, these latter methods
offer better empirical performance. While the analysis of the
prox-linear algorithm indicates faster quadratic convergence
compared to the linear convergence of SLP, the per-iteration
cost of SLP is significantly lower. As a result, we were not
able to obtain a direct comparison of computational cost in
theory. Empirically, however, SLP converges faster than the
prox-linear algorithm and does so with reduced computa-
tional costs, as shown in Section 4.

Finally, all convergence analysis by Theorem 3.1 and pre-
vious work [8, 11, 12] require an initialization within a neigh-
borhood of the ground truth. The size of the basin of con-
vergence was determined as an explicit numerical constant
in [8] and up to a numerical constant in Theorem 3.1 and
[11, 12]. Various initialization techniques for robust phase
retrieval have been developed with performance guarantees
[11,12]. These initialization methods apply to all of the con-
sidered robust estimators (RobustPhaseMax, Median-RWF,
prox-linear algorithm, and SLP) so that they provide the de-
sired accuracy without amplifying sample complexity in the
subsequent estimator.

4. NUMERICAL RESULTS

This section studies the empirical performance of SLP rel-
ative to its theoretical analysis in Theorem 3.1 and to the
competing methods for robust phase retrieval. In all exper-
iments, we generated observations and signals as follows.

j.i.d.
The measurement vectors are generated so that {a; }7" , "R

Normal(0, I;), which has been employed in Theorem 3.1
and all analogous theoretical analyses of the other methods.
The ground truth signal is generated as x, ~ Normal(0, 1)
independently from the measurement vectors. The outlier
indices are randomly selected. We consider various random
and deterministic scenarios for the outlier magnitudes. This
setting is slightly different from the uniform performance
guarantee in Theorem 3.1. Recall that all considered methods
require an initial estimate. For this purpose, we adopt the
spectral method by Zhang et al. [11].
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Fig. 1: Phase transition of success rate by SLP per the number
of measurements m and the dimension d. The outlier mea-
surements are randomly generated with respect to the Cauchy
distribution. The fraction of outliers is fixed to n = 0.25.

Figure 1 shows the phase transition of success and fail-
ure by SLP through Monte Carlo simulations. The success
is defined by the criterion dist(Z, z,) < 107> with Z denot-
ing an estimate. The empirical success rate out of 50 trials
is displayed. The transition occurs at the boundary where the
number of measurements is proportional to the ambient di-
mension. This empirical result corroborates our theoretical
finding in Theorem 3.1.

Next, we compare the empirical performance of SLP
to RobustPhaseMax, Median-RWF, and the prox-linear al-
gorithm. Figure 2 displays the phase transition of these
methods for a range of the outlier fraction 7 in three scenar-
ios of the outlier magnitudes. As 7 increases, m increases
for the spectral method to provide a good initialization for
the successful recovery of estimators. The first scenario by
Zhang et al. [11] draws &; from the uniform distribution
on (—d||x|3/2,d||z.||3/2). In the second scenario, &; is
drawn from a Cauchy distribution with median 0 and mean-
absolute-deviation 1. The third scenario sets &; to 0. The last
two scenarios have been considered by Duchi and Ruan [12].
Similar to Figure 1, the success rate out of 50 trials is plotted.
The ambient dimension is set to d = 100.

RobustPhaseMax, while providing the strongest theo-
retical performance guarantee, shows the worst empirical
performance in the comparison. There is no consistent dom-
inance between Median-RWF and the prox-linear algorithm.
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Fig. 2: Phase transition of success rate per the measure-
ment ratio m/d and the fraction of outliers 7 for various out-
lier magnitude models. For each outlier model: the top-left
shows RobustPhaseMax, the top-right depicts Median-RWF,
the bottom-left presents prox-linear method, and the bottom-
right illustrates SLP.

Median-RWF outperforms the prox-linear in the first sce-
nario, but the other way around in the other scenarios. In

contrast, SLP consistently outperforms all the other methods
in the three considered scenarios with a significantly lower
threshold for the phase transition.
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Fig. 3: Convergence of SLP and the prox-linear algorithm in
the iteration count.

In the last experiment, we compare the convergence
speed of SLP and the prox-linear algorithm. Here, we set
m = 1,500,d = 200, and » = 0.3 under the Cauchy
distribution scenario in Figure 2. Figure 3 illustrates how
log,, dist(xk, €. ) decays over the iteration index k. The me-
dian over 10 trials is plotted. In their theoretical analyses, the
prox-linear algorithm converges faster at a quadratic rate than
the linear convergence of SLP in Theorem 3.1. However, as
shown in Figure 3, SLP empirically converges significantly
faster than the prox-linear algorithm in the iteration count.
Furthermore, due to a lower per-iteration cost of SLP than
that of the prox-linear algorithm, the gap in the empirical con-
vergence of the two methods will be more significant when it
is measured in the flop count.

5. CONCLUSION

The least absolute deviation (LAD) has been a popular sta-
tistical method for regression in the presence of outliers. We
consider a sequence of linear programs (SLP) to solve a LAD
formulation of robust phase retrieval with the magnitude-only
measurement model. As an unregularized Gauss-Newton
type algorithm, SLP provides a significantly lower per-
iteration cost than a similar approach known as the prox-
linear algorithm [12].

We established a local convergence analysis of SPL un-
der the standard Gaussian measurement when the support of
sparse noise is arbitrarily fixed but magnitudes can be adver-
sarial. A suitably initialized SPL converges linearly to the
ground truth when the number of measurements m is pro-
portional to the signal length d and the outlier fraction is up
to 1/4. The performance guarantee holds with high proba-
bility for all signals. This theoretical result is comparable to
existing prior art in the literature. Furthermore, the numeri-
cal results show that SPL outperforms the existing guaranteed
methods for various outlier models.
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