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Abstract: The sensitivity of forecast-informed reservoir operating policies to forecast attributes (lead-time and skill) in many-objective
water systems has been well-established. However, the viability of forecast-informed operations as a climate change adaptation strategy
remains underexplored, especially in many-objective systems with complex trade-offs across interests. Little is known about the relation-
ships between forecast attribute and policy robustness under deep uncertainty in future conditions and the relationships between forecast-
informed performance and future hydrologic state. This study explores the sensitivity of forecast-informed policy robustness to forecast
lead-time and skill in the outflow management plan of the Lake Ontario basin. We create water supply forecasts at four different sub-
seasonal-to-annual lead-times and two levels of skill and further employ a many-objective evolutionary algorithm to discover policies
tailored for each forecast case, historical supply conditions, and six objectives. We also leverage a partnership with decision-makers
to identify a subset of candidate policies, which are reevaluated under a large set of plausible hydrologic conditions that reflect stationary
and nonstationary climates. Scenario discovery techniques are used to map attributes of future hydrology to forecast-informed policy per-
formance. Results show policy robustness is directly related to forecast lead-time, where policies conditioned on 12-month forecasts were
more robust under future hydrology. Policies tailored for noisier long-lead forecasts were more robust under a wide range of plausible
futures compared with policies trained to perfect forecasts, which highlights the potential to overfit control policies to historical information,
even for a forecast-informed policy with perfect foresight. The relationship between performance and the hydrologic regime is dependent on
the complexity of the interactions between control decisions and objectives. A threshold of objective performance as a function of supply
conditions can support adaptive management of the system. However, more complex interactions make it difficult to identify simple hydro-
logic indicators that can serve as triggers for dynamic management. DOI: 10.1061/JWRMD5.WRENG-6205. © 2024 American Society of
Civil Engineers.

Introduction

Water supply forecasts have a long history of use in reservoir
operations. Early efforts utilized simple statistical forecast models
of water supply based on hydrologic persistence, which were valu-
able for short-term (hourly-to-daily) operations and monthly
allocation decisions under near-average conditions (Van Der Beken
et al. 1980; Russell and Caselton 1971; Stedinger et al. 1984;
Wilson and Kirdar 1970). Over time, the sophistication of forecast-
informed reservoir operating policies grew with improvements
in the forecasts themselves (Faber and Stedinger 2001), but adop-
tion of forecast use in practice remained limited due to concerns
around skill and the risk attitudes of water managers, among other
factors (Rayner et al. 2005). Recently, though, there has been
renewed interest in forecast-informed policies, particularly in loca-
tions where water stress is growing and forecast skill has improved
significantly at longer lead times (weeks to months) and for more
extreme conditions using state-of-the-art forecasting systems
(Alexander et al. 2021; Delaney et al. 2020; Woodside et al. 2022;

Zarei et al. 2021). This has made water managers more comfortable
using forecasts to inform longer-term release decisions meant to
balance water supply, flood control, and other system objectives.
The promise of these forecast-based operating policies is poised
to grow further as artificial intelligence accelerates forecasting sys-
tem improvements (Khatun et al. 2023; Lam et al. 2022).

However, the value of forecasts to decision-making does not
necessarily increase proportionally with forecast skill. There is a
long literature exploring the sensitivity of forecast value to forecast
attributes (e.g., forecast skill and lead-time), most often in single
objective contexts (Anghileri et al. 2016; Faber and Stedinger
2001; Hamlet et al. 2002; Turner et al. 2017) but also in multiob-
jective settings (Denaro et al. 2017; Doering et al. 2021; Nayak
et al. 2018; Yang et al. 2021; Yao and Georgakakos 2001). This
work has highlighted that forecast value is dependent on multiple
factors, including forecast uncertainty, lead-time, management re-
gime, operating objective(s), and characteristics of the basin and
reservoirs themselves. While more accurate forecasts typically im-
prove forecast value for decision-making, uncertain forecasts can
still prove useful (Zhao et al. 2011; Zhao and Zhao 2014), and the
relationship between improved skill and value is not guaranteed to
be linear or even monotonic.

In a separate line of work, there is a growing focus on identify-
ing water resource planning and management strategies that can
effectively navigate long-term (i.e., decadal) uncertainty in future
conditions (Christensen et al. 2004; Culley et al. 2016; Fayaz et al.
2020; Herman and Giuliani 2018; Mereu et al. 2016). One ap-
proach is to identify static adaptation strategies that are robust
(i.e., provide satisfactory performance) across a range of future
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conditions (sometimes referred to as future states-of-the-world;
Herman et al. 2015). However, finding robust, static policies is
often difficult, particularly as the range of plausible futures grows
(Culley et al. 2016). In response, an alternative approach is to iden-
tify dynamic adaptation strategies that trigger changes in the system
(either operational or structural) based on the particular trajectory
of future conditions that unfolds over time (Herman et al. 2020).
This approach has been shown to hold significant promise (Arango-
Aramburo et al. 2019; Cradock-Henry et al. 2020; Haasnoot et al.
2020; Hall et al. 2019; Trindade et al. 2019), although there are
limits to the types of future change that dynamic operational adjust-
ments can address (Fayaz et al. 2020; Herman and Giuliani 2018).

Despite the recent proliferation of work in both forecast-
informed reservoir operations and long-term water resources plan-
ning under uncertainty, there has to date been only limited work
exploring how forecast informed operations can itself serve as a
long-term adaptation strategy to change, despite recent advocacy
for this approach (Wilson et al. 2021). Even a static operating
policy that is forecast-informed can in some sense be considered
dynamic, as the forecasts (and therefore operating decisions) will
change in character over time in response to long-term changes in
the underlying hydroclimate system. For example, if a system ex-
periences significantly wetter conditions over several decades, and
short-term forecasts are able to reflect that change via more fre-
quent forecasts of above-average water supply conditions, the fre-
quency of flood control-oriented operations will increase even
without changing the underlying structure of the policy.

The concept of forecasts as a climate change adaptation strategy
was explored in Steinschneider and Brown (2012), who showed
that dynamic reservoir operations based on seasonal water supply
forecasts, coupled with real-options risk hedging, was able to sig-
nificantly improve water supply reservoir operations under uncer-
tain nonstationary hydrology. More recently, in an unpublished
thesis, Goulart (2019) used synthetic short-term (three-day) stream-
flow forecasts and policy optimization to show that a single policy
tailored for forecast use significantly improved water supply oper-
ations regardless of the trajectory of future climate, although the
degree of improvement over a baseline, no-forecast policy did de-
pend on the nature of the future climate scenario. The authors also
showed that forecast-informed policies only trained to historical
data could improve water supply performance in the future, albeit
with a potential increase in flood risk. Cohen et al. (2020) explored
the use of probabilistic seasonal forecasts (including perfect fore-
casts) of water year type and snowpack-to-streamflow estimates as
an adaptation strategy in California. The authors found that perfect
forecasts significantly improved water supply performance under a
wide range of future climate scenarios, and some of these benefits
could be realized using probabilistic forecasts dynamically trained
through time to each scenario.

These studies show the potential for forecast-informed opera-
tions as an adaptation strategy to climate change, including the ro-
bustness that forecast-based operations afford water systems under
deep uncertainty in future conditions. The studies also show how
the viability of forecast-based operations as a climate change adap-
tation strategy depends on the future states of the world to which
they are applied and the skill of the forecasts. However, in all cases,
the lead time of the forecasts were assumed a priori rather than
selected based on their contribution to performance in uncertain
future conditions. In addition, most of the previous work has fo-
cused on systems with one or two objectives (Steinschneider and
Brown 2012; Goulart 2019), and work that considered more than
two objectives used preselected adaptations without policy optimi-
zation (Cohen et al. 2020). The value of forecast information as an
adaptation to future hydroclimate conditions in systems with many

competing objectives remains underexplored, particularly when
complex policies must be optimized to accommodate different fore-
cast attributes. Similarly, while past work has mapped future hydro-
logic states (long-term wetting or drying) to forecast value (Goulart
2019; Cohen et al. 2020), these analyses have not considered how
this mapping depends on system objectives or the spatiotemporal
characteristics of those future hydrologic states (i.e., where and
in which seasons are hydrologic trends strongest).

The present study seeks to build on the previously cited work to
improve our understanding of how forecast-informed operating
policies are able to navigate shifting hydrologic regimes in multi-
objective water systems and how the viability of this approach
varies with forecast attribute (lead-time and skill) and type of future
condition. We explore these questions in a case study of the Lake
Ontario–St. Lawrence River (LOSLR) system, the levels and flows
of which are controlled by operations at the Moses Saunders Dam
on the St. Lawrence River. Semmendinger et al. (2022) found that
the current control policy of the Moses Saunders Dam is limited in
its ability to leverage forecast improvements to enhance multiob-
jective performance. Here, we build off the work in Semmendinger
et al. (2022) by employing many-objective optimization to adjust
the control policy using forecasts of different lead-times and skill
levels. We seek to identify alternative policies that can better
leverage forecast information and balance trade-offs between six
different system objectives. We also identify a subset of historically
optimal control policies, informed by forecasts of varying lead-time
and skill, and reevaluate how these control policies meet minimum
thresholds of performance under alternative stationary and nonsta-
tionary hydrologic traces (states-of-the-world) to quantify policy
robustness under future uncertainty. We then employ scenario
discovery (Groves and Lempert 2007) to identify complex relation-
ships between system performance for different objectives, forecast
attribute, and future hydrologic conditions across seasons and
locations in the system. The results of this work, developed in a
researcher–practitioner partnership (Badham et al. 2019; Syme
and Sadler 1994) with decision-makers in the LOSLR system,
are designed to directly support an ongoing review of the current
operating policy and the formulation and evaluation of new candi-
date operating policies for the Moses Saunders Dam.

Lake Ontario–St. Lawrence River System

Outflows from Lake Ontario are regulated at the Moses Saunders
Dam on the St. Lawrence River (Fig. 1) by the International Lake
Ontario–St. Lawrence River Board (Board of Control) under the
purview of the International Joint Commission (IJC). Lake Ontario
is the last lake in the series of hydrologically connected Great
Lakes, and the St. Lawrence River serves as the outlet of the Great
Lakes to the Atlantic Ocean. Outflows from the Upper Great Lakes
(via Lake Erie) are the primary inflow into Lake Ontario, in addi-
tion to inputs from local tributaries and over-lake precipitation and
losses from over-lake evaporation. Lake Ontario has a surface area
of approximately 19,010 km2, a watershed area of 64,025 km2, and
a volume of approximately 1,646 km3. Water levels vary season-
ally, rising in the spring and summer with increased snowmelt and
runoff and reduced over-lake evaporation and falling in the autumn
as over-lake evaporation rises due to temperature differences be-
tween colder air and warmer waters.

The IJC was established under the Boundary Waters Treaty of
1909 to manage the shared waterways between Canada and the
United States. Flow regulation on Lake Ontario began in the 1950s
when the Moses Saunders Dam was constructed as part of the
St. Lawrence Seaway project. The first control policies at the
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dam, including Plan 1958-A, Plan 1958-C, and Plan 1958-D, aimed
to minimize navigation costs while maximizing hydropower
production and providing reasonable protection for coastal ripar-
ians as required by the Boundary Waters Treaty of 1909, 1952
Order of Approval, and 1956 Supplemental Order of Approval.
Following the implementation of Plan 1958-D in 1963, the basin
experienced prolonged periods of low water supplies and water
levels. To maintain performance for system interests, like commer-
cial navigation, the Board of Control discretionarily deviated from
Plan 1958-D, later referred to as Plan 1958-DD (Plan 1958D with
deviations).

The Plan 1958-DD regime continued until 2017 when a new
regulation plan, Plan 2014, was implemented along with the 2016
Supplemental Order of Approval (International Joint Commission
2016). Plan 2014 was developed with the goal of reintroducing
more variable water levels to rehabilitate wetland health and
services while still providing the same level of benefits for com-
mercial navigation and hydropower interests (International Joint
Commission 2014). Despite efforts to balance impacts to system
stakeholders, a trade-off remains between more variable lake levels
for wetland health and more confined lake levels for coastal ripar-
ians. A few months after the implementation of Plan 2014, the
Upper Great Lakes and LOSLR basins experienced prolonged
periods of unprecedented water supplies. Lake levels on Lake
Ontario rose rapidly, resulting in the worst flood event on record
(International Lake Ontario–St. Lawrence River Board 2018). The
2017 flood record was broken just two years later in 2019. The
recent floods prompted the review of Plan 2014 and other candidate
plan alternatives. We leverage a partnership with the basin’s scien-
tific advisory board [the Great Lakes Adaptative Management
(GLAM) Committee] to develop findings that will support the
expedited review of Plan 2014.

Data and Methods

This analysis has four major components: forecast generation; pol-
icy optimization; candidate policy selection; and scenario discovery
(Fig. 2). Water supply forecasts are created at four lead times (1, 3,
6, and 12 month) and for two levels of skill (baseline and perfect)
over the historic water supply sequence [Fig. 2(a)]. These forecasts
are fed into a many-objective optimization algorithm to discover
policies that approximate the Pareto frontier for each combination
of forecast lead-time and skill [Fig. 2(b)]. The resulting policies are
subset using a set of satisficing criteria (i.e., minimal thresholds for
performance across objectives) and stakeholder input on policy
preferences [Fig. 2(c)]. This results in a small set of candidate pol-
icies, which are reevaluated on out-of-sample water supply condi-
tions and associated forecast information that reflect plausible
future hydrologic scenarios. Policy performance across these sce-
narios is used to define policy robustness, and scenario discovery is
performed to diagnose what exogeneous hydrologic variables most
often cause system failures for different cases of forecast attribute
[Fig. 2(d)]. These four components define a generalizable frame-
work to assess the impact of forecasts on water system robustness
under long-term hydrologic variability and change and can be ap-
plied to any water system for selected forecast lead times and skill
levels. In the following sections, we provide details on each of these
components in the context of the LOSLR system, with specific
methodological decisions tailored to support the ongoing expedited
review of the system’s current operational policy.

Forecast Generation

Regulation plans for the Moses Saunders Dam have traditionally
been developed and tested using simulation analysis over the

Fig. 1.Map of the Lake Ontario–St. Lawrence River (LOSLR) water system, with key locations within the baseline highlighted. The Moses Saunders
Dam is shown on the St. Lawrence River as the triangle. (Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and
the GIS User Community.)

© ASCE 04024009-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2024, 150(5): 04024009 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
O

R
N

EL
L 

U
N

IV
 L

IB
R

A
R

IE
S 

on
 0

8/
14

/2
4.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 



historical record of water supplies, which in this study runs from
1900 through 2020. All data are simulated at a quarter-monthly
(near-weekly) timescale, whereby there are 48 quarter-months in a
year. All water supply data (described here) are gathered from the
GLAM Committee.

The current management policy, Plan 2014, utilizes a trend-
based net total supply (NTS) forecast into Lake Ontario at a
12-month lead-time to inform release decisions (D. Lee, Determin-
istic forecasts for Lake Ontario plan formulation, unpublished
report). The NTS is the sum of flows into Lake Ontario from
the Upper Great Lakes via the Niagara River and the Welland Canal
and the net basin supply (NBS) of Lake Ontario, the latter which is
defined as the sum of over-lake precipitation and runoff into
the lake minus over-lake evaporation. For Lake Ontario, outflows
from Lake Erie drive the NTS term. Under Plan 2014, the annual
average NTS (i.e., the average NTS over the next year) is forecasted
using a first-order autoregressive (AR1) time-series model [Eq. (1)].
For any given quarter-month, the previous 48 quarter-months
(i.e., 12 months) of NTS are averaged [Eq. (1a)] and a Box-Cox
transformation is applied to the average [Eq. (1b)]. The transformed
average is input into an AR1 forecast model [Eq. (1c)], and the
output is backtransformed [Eq. (1d)] to obtain the forecasted annual
average NTS for the next 48 quarter-months

NTSp ¼ avgðNTSt−49∶NTSt−1Þ ð1aÞ

NTSp;bc ¼ Box − Cox transform ðNTSpÞ ð1bÞ

NTSf;bc ¼ AR1ðNTSp;bcÞ ð1cÞ

NTSf ¼ Box − Cox backtransform ðNTSf;bcÞ ð1dÞ

The parameters of the Box-Cox transformation (lambda) and
AR1 forecast model (first-order autocorrelation coefficient and
shift) in Plan 2014 were calibrated using the historical data from
1900 through 2000. In this study, we use a similar trend-based
forecast structure to create new forecasts at the 1-, 3-, 6-, and 12-
month lead-times. For example, rather than averaging the previous
48 quarter-months of water supplies [Eq. (1a)] for the 12-month lead
time, we average the previous 24 quarter-months of water supplies
for the 6-month lead time. For each forecast lead-time, we calculate
the rolling-average and then average the quarter-monthly values
across all years. To remove the effects of seasonality, we standardize
the rolling average by subtracting off this average and dividing by
the standard deviation of the rolling average across all years. The
standardized rolling averages are normally distributed, which neg-
ates the need to impose a Box-Cox transformation. We refit the
parameters in the AR1 forecast model for each lead-time using up-
dated data from 1900 through 2020, and all forecasts are unstand-
ardized before use. The updated AR1 parameters result in slightly
different forecasts at the 12-month lead-time when compared with
the embedded Plan 2014 12-month forecast model. The results from
forecast model training and testing as well as a comparison with the
Plan 2014 forecast model are shown in Supporting Information S1.
For each forecast lead-time, we create forecasts using the baseline
trend-model skill (hereafter status quo skill) as well as perfect skill
(i.e., perfect insight into future conditions). This results in a total
of eight unique forecast combinations across four lead-times and
two levels of skill developed for the historical record.

Policy Optimization

Plan 2014 conditions release decisions on estimated preproject out-
flows (i.e., outflows that would have occurred if the dam were not
there) with adjustments made for forecasted water supplies via a
sliding rule curve function (International Joint Commission 2014).

(a) (b)

(c)

(d)

Fig. 2. Workflow of analysis: (a) forecast generation; (b) policy optimization; (c) candidate policy selection; and (d) scenario discovery.
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Releases are determined on a quarter-monthly (i.e., near weekly)
time scale. Eq. (2) shows the preproject release term as a function
of lake level:

preproject release ¼ 555.823 × ðlevelontario − adj − 69.474Þ1.5
ð2Þ

where levelontario = the water level on Lake Ontario at the end of the
previous quarter-month; and adj = an adjustment factor for differ-
ential crustal movements. Releases are then prescribed as a function
of the preproject term and the water supply forecast in a sliding rule
curve composed of two release regimes for above and below aver-
age supply conditions [Eq. (3)]

release ¼

8>>>><
>>>>:

pre project release þ
�

NTSf − NTSh;avg
NTSh;max − NTSh;avg

�
P1

× C1; NTSf ≥ NTSh;avg

pre project release −
�

NTSh;avg − NTSf
NTSh;avg − NTSh;min

�
P2

× C2; NTSf < NTSh;avg

ð3Þ

where NTSf = the forecasted annual average NTS [calculated in
Eq. (1)]; NTSh;max = the historical maximum NTS; NTSh;min =
the historical minimum NTS; and NTSh;avg = the historical average
NTS and the threshold that designates which regime to follow. The
historical values in the control policy are calculated from the period
record from 1900 through 2000.

The multipliers (C1 and C2) and exponents (P1 and P2) in
Eq. (3) are sets of constants, some of which are determined by com-
paring the forecasted supply to a threshold of wet conditions (Tw)
and forecast confidence (CI99):

C1 ¼
�
C1w; ðNTSf − CI99Þ ≥ Tw

C1m; otherwise
ð4Þ

Eq. (4) shows that, when there is high confidence in wet basin
conditions, releases increase by setting C1 to C1w. Additionally,
during extremely dry conditions (designated when water levels
fall below some threshold, Ld), the rule curve release in Eq. (3)
is further reduced by Fd

release ¼ release − Fd if levelontario < Ld ð5Þ

When necessary, the rule curve release is adjusted to ensure it
does not violate flow limits for various system constraints. For
example, during ice formation, releases are limited to prevent an
ice jam, and, during the navigation season, flows are limited to
maintain safe velocities for transiting ships. If the rule curve release
exceeds or falls below any of these limits, the release is set to
whichever limit is most constraining. Therefore, at any given time,
either releases follow the rule curve or the flow prescribed under the
most limiting system constraint. In addition to these operational
limits, Plan 2014 includes quarter-monthly thresholds for extreme
high and low water levels, known as the H14 criteria (International
Joint Commission 2016). When these thresholds are exceeded, the
Board of Control has the authority to deviate from the Plan 2014
release regime (the rule curve and operational limit flows) to main-
tain system integrity. A more detailed description of the Plan 2014
operational limits can be found in the management plan documen-
tation (International Joint Commission 2014, 2016).

All parameters of this control policy [coefficient and power
parameters in Eq. (3)] were calibrated during the initial develop-
ment of Plan 2014 in the 2000s to maximize multiobjective system
performance (International Lake Ontario–St. Lawrence River
Study Board 2006). Performance was measured using a large num-
ber of performance indicators that represent seven major objectives:

coastal flood control upstream of the Moses Saunders Dam; flood
control downstream of the dam; commercial navigation; hydro-
power production; municipal and industrial water supply; recrea-
tional boating; and wetland health and services. The parameters
governing supply adjustments were calibrated using trial and error
(as opposed to a formal optimization algorithm).

In this analysis, key parameters within the Plan 2014 control
policy are formally optimized using the Borg multiobjective evolu-
tionary algorithm (Hadka and Reed 2013). We optimize a total
of 13 decision variables: the supply adjustments applied to the fore-
casted NTS [NTSh;max, NTSh;avg, and NTSh;min in Eq. (3)]; the
threshold that determines what regime to follow [NTSh;avg in
Eq. (3) but set as a separate parameter in the optimization], the rule
curve coefficients and powers [C1m,C1w,C2, P1, and P2 in Eq. (3)];
thresholds of basin conditions [Tw in Eq. (4)]; forecast confidence
interval [CI99 in Eq. (4)]; and dry condition adjustments [Ld and Fd
in Eq. (5)]. Importantly, we only explore alternative values for the
parameters of the current rule curve but do not attempt to identify
an alternative structure for the release rule. We also do not adjust
the operational flow constraints in the optimization procedure.
These design choices were made to (1) help communicate study
results to system stakeholders, who are familiar with the current
rule curve structure; and (2) ensure legal requirements that govern
system management and are enforced in the current constraint set
are respected.

For each combination of forecast lead-time (n ¼ 4) and skill
level (n ¼ 2), we replace the NTSf term in Eq. (3) with the respec-
tive forecast trace and allow Borg to optimize the 13 decision var-
iables over the historic supply record (1900–2020). Based on initial
convergence tests, we allow Borg to iterate over 100,000 function
evaluations. At the ith iteration of the algorithm, Borg will identify
Ni sets of policy parameters, each set defining a unique control
policy for a particular forecast scenario. Each unique control policy
can be used to simulate a quarter-monthly time-series of flows over
the historical period (1900–2020), which are then routed through
the system to calculate water levels along Lake Ontario and the St.
Lawrence River. Objective functions, described in more detail here,
relate these flows and levels to system performance for different
stakeholder groups. Borg modifies the decision variables in the next
function evaluation based on the objective values from the current
evaluation, with the goal of identifying new policies that expand the
Pareto front of possible solutions at each iteration. For each of the
eight forecast scenarios, we allow Borg to optimize policies across
five random seeds and then pool nondominated polices across those
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seeds to represent the final, Pareto-approximate set of policies for a
given forecast lead time and skill level.

We focus on six objectives in this analysis: flood risk upstream
of the Moses Saunders Dam; flood risk downstream of the dam;
commercial navigation; hydropower production; recreational boat-
ing; and wetland health and services. We do not consider the ob-
jective of municipal and industrial water supply, as this objective is
largely insensitive to system operations. Models for the six selected
objectives were adapted from those developed by the GLAM sci-
entific advisory board. Flood risks upstream and downstream of the
dam are defined based on the number of homes inundated at differ-
ent water levels on Lake Ontario and the St. Lawrence River, which
were compiled in a recently developed decision-support tool pro-
duced by the GLAM Committee (Great Lakes–St. Lawrence River
Adaptive Management Committee 2021). Models for commercial
navigation costs, value of hydropower production, and recreational
boating costs are based on the impact models developed in the
evaluation of Plan 2014 before implementation, and which were
updated in 2017–2018 with stakeholder feedback. Commercial nav-
igation and recreational boating costs are primarily a function of
time of year and water levels on Lake Ontario and the St. Lawrence
River, while hydropower production is primarily a function of Lake
Ontario water levels and releases from the Moses Saunders Dam.
Ecosystem health is based on the area of meadow marsh, which
is calculated following the methodology described in Wilcox and
Xie (2007) and Wilcox and Bateman (2018). The presence of
meadow marsh area is dependent on water levels fluctuating at cer-
tain times of the year (e.g., the growing season) to flood and dewater
certain areas of shoreline to promote biodiversity. More details on
the models used for each objective are presented in Supporting
Information S2.

Candidate Policy Selection

Results from the policy optimization provide a large set of math-
ematically optimal policies that maximize performance for each
system objective or provide a nondominated trade-off in perfor-
mance across objectives. To help select a small set of candidate
policies for further analysis, we solicited feedback from decision-
makers in the LOSLR region to identify minimal thresholds of
performance across the six system objectives. The minimal thresh-
olds of performance, or satisficing criteria, indicate whether a plan
is realistically implementable. These minimal thresholds of perfor-
mance aremeant to only serve as a starting point to filter policies and
discover trade-offs among system objectives in new candidate plans.
The satisficing criteria are informed by the Boundary Waters Treaty
of 1909, 2016 Supplemental Order of Approval (International Joint
Commission 2016), and discussions with Board of Control mem-
bers, representing various system interests. Performance under Plan
2014 is considered as a baseline, and the satisficing criteria are
expressed as percent improvements or reductions from Plan 2014
performance. The following criteria were decided upon for a control
policy to be considered a candidate plan:
1. No worse than Plan 2014 performance for upstream riparian

protection (0% reduction);
2. No worse than Plan 2014 performance for downstream riparian

protection (0% reduction);
3. No worse than Plan 2014 performance for commercial naviga-

tion (0% reduction);
4. Slight reduction from Plan 2014 performance for hydropower

production (0.5% reduction);
5. Slight reduction from Plan 2014 performance for meadow

marsh (5% reduction); and

6. Moderate reduction in from Plan 2014 performance for recrea-
tional boating (20% reduction).
We note that Plan 2014 increased the value of hydropower from

the previous management plan (Plan 1958DD), so a 0.5% reduction
in the value of hydropower from Plan 2014 is equivalent to a return
to Plan 1958DD in this objective (and hence viewed as satisficing).

The Pareto approximate policies for all eight forecasting sce-
narios were pooled and screened using these satisficing criteria,
thereby determining which combinations of forecast lead-time and
skill contribute the most satisficing policies under the historical re-
cord. Policies from each forecast scenario that meet the satisficing
criteria were further screened in deliberation with our partners in
the GLAM Committee based on stakeholder preference in order
to select a handful of final candidate policies for further in-depth
analysis.

Robustness and Scenario Discovery

The final candidate policies are reevaluated using the historic sup-
ply trace from 1900 to 2020 (for which they were optimized), a
stochastically generated set of 500 centuries of water supply data
based on historical statistics from 1900 to 2000 (Fagherazzi et al.
2007), and a climate-change-driven supply data set composed of
159 centuries of plausible future supply traces (Steinschneider
2022). The stochastic traces were generated using a multivariate
contemporaneous mix of shifting mean and ARMA processes fit
to NBS for the 1900–2000 reference period (Sveinsson and Salas
2006), coupled with space-time disaggregation procedures (Mejia
and Rousselle 1976; Stedinger et al. 1984). These stochastic traces
provide plausible realizations of natural hydroclimate variability
assuming stationarity, which include wetter and drier periods that
were not experienced during the 1900–2000 reference period. We
note that the period between 2001 and 2020 was relatively wet
compared with the 1900–2000 reference period, so the stochastic
climate traces are drier on average compared with the historic sup-
ply trace from 1900 to 2020. The climate-change driven supply
traces were developed using long short-term memory (LSTM)
artificial recurrent neural networks that use input time-series of
quarter-monthly precipitation and average temperature to predict
NBS into each of the five Great Lakes, Ottawa River flows, and
ice conditions on the St. Lawrence River using midcentury (2036–
2065) projections of precipitation and temperature across the entire
Great Lakes basin. These data were derived from the recently
released CMIP6 climate model projection database (Eyring et al.
2016). The projections, taken from 46 separate GCMs and four
different emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5), were downscaled to the Great Lakes Basin using the
delta method (note that not all GCMs have projections for each
emission scenario). The historical precipitation between 1952 and
2019 were adjusted on a monthly basis to reflect change factors
derived for each combination of GCM and emission scenario.
Each century, or trace, from the three data sets is referred to as a
distinct state-of-the-world, for a total of 660 states-of-the-world in
the reevaluation (one historic trace, 500 stochastic traces, and 159
climate-change traces). In each state-of-the-world, forecasts at a
selected lead-time and skill level are generated, flows and water
levels are simulated using the candidate policy, and all objectives
are reestimated to quantify system performance under that particu-
lar century of supply conditions.

For each candidate policy, we identify the future states-of-the-
world for which the satisficing criteria are met, which are based on
percent changes in objective function values relative to the baseline
performance of Plan 2014 (see Candidate Policy Selection). Impor-
tantly, we define the satisficing criteria conditional on Plan 2014
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performance separately for each state-of-the-world, rather than Plan
2014 performance under the historical record. Therefore, a candi-
date policy can be satisficing for a particular state-of-the-world
even if its absolute objective scores are poor, as long as they com-
pare favorably with the score of Plan 2014 under that state-of-
the-world. We then define the robustness of a given policy as the
fraction of states-of-the-world in which the satisficing criteria are
met (Hadjimichael et al. 2020).

Scenario discovery (Bryant and Lempert 2010; Groves and
Lempert 2007) is then performed to help explain why a given can-
didate policy does or does not meet the satisficing criteria for differ-
ent states-of-the-world. Eleven variables are used to represent
distinct hydrologic features for each state-of-the-world, as shown
in Table S1. We use cumulative annual NTS and Ottawa River
flows into the St. Lawrence River to represent average water supply
conditions upstream and downstream of the dam, respectively.
We also consider seasonal versions of these variables (December–
February, March–May, June–August, September–November). Last,
we consider the average ice condition on the St. Lawrence River,
where higher values indicate a higher frequency of unstable ice
conditions (or ice formation periods) that are highly sensitive to
air temperature and can constrain releases from the Moses Saunders
Dam. We use gradient boosted trees (Schapire 2009) to develop
mapping among these 11 hydrologic variables and the occurrence/
nonoccurrence of satisficing performance for each state-of-the-
world. The parameters of the gradient boosted trees were calibrated
using a grid search with average precision scoring as the evaluation
metric. The gradient boosted trees return relative feature importance
(Pedregosa et al. 2011) to identify which hydrologic variables are
most useful in predicting whether a candidate policy will provide
satisficing performance under a given future state-of-the-world.
Ultimately, this analysis helps to determine which hydrologic fea-
tures of a particular future cause a candidate plan to underperform
the current status-quo regulation plan.

Results

A total of 4,034 policies were identified across the eight separate
optimization runs for each forecast lead-time and skill level, with
734, 472, 265, and 435 (697, 578, 466, and 387) policies identified
for the 12-, 6-, 3-, and 1-month status quo (perfect) forecast sce-
narios. Among this larger set, 257 control policies met the satisfic-
ing criteria under historical water supply conditions. Fig. 3 shows
the breakdown of the 257 satisficing policies by forecast lead-time
and skill level as well as the entire set of nondominated policies
pooled across all forecasting scenarios (gray lines). Within each
lead-time panel, policies that meet the satisficing criteria are col-
ored, and the line type is drawn to the forecast skill, where light
blue lines correspond to status quo skill and dark blue lines corre-
spond to a perfect forecast. Policies that are part of the Pareto front
but do not meet the satisficing criteria are colored in gray. Plan
2014 performance is shown as the solid red line. The 12-month
lead-time contributes the most satisficing policies (205), followed
by the 6-month (25), 3-month (23), and 1-month (4) lead-times,
respectively. At longer lead-times, both levels of forecast skill con-
tribute satisficing policies, with 100 (105) satisficing policies using
perfect (status-quo) forecasts for the 12-month lead time and 13
(12) policies for the 6-month lead. However, at shorter lead-times
(1- and 3-month), the ability of policies to meet the satisficing cri-
teria is heavily dependent on forecast skill. At the 3-month lead-
time, the optimization algorithm discovers 22 satisficing policies
using perfect forecasts and only one satisficing policy using status
quo forecasts. At the 1-month lead-time, the optimization algorithm

discovers four satisficing policies using perfect forecasts and no
satisficing policies using status quo forecasts.

Over the historic hydrological trace, similar trade-offs among
system objectives persist across forecast lead-time and skill level,
although to varying degrees. The largest trade-offs that emerge are
among the benefits for coastal riparians, commercial navigation,
and recreational boating as well as among wetland health, commer-
cial navigation, and recreational boating. The optimization algo-
rithm was not able to discover any policies that outperformed
Plan 2014 across all six system objectives. The coastal riparian ob-
jectives, both upstream and downstream, appear more sensitive to
forecast skill. On average, policies using perfect forecasts outper-
form those using status quo forecasts across forecast lead-time for
most objectives, although this is not the case for hydropower pro-
duction and recreational boating. Policies conditioned on perfect
forecasts do not result in improved performance for every objective
due to the structure of the Plan 2014 control policy that we opti-
mize. The Plan 2014 control policy was developed for a status quo
forecast, and even when policy parameters are optimized for a new
forecast with greater accuracy, the current structure of the control
policy is not able to leverage these improved forecasts to improve
outcomes across all objectives. This point is revisited in more detail
later in this text.

Before selecting individual policies for additional analysis, we
first assess whether the larger set of satisficing policies under his-
torical supply conditions remains satisficing under alternative water
supply conditions. Here, each policy that meets the satisficing cri-
teria for the historic supply trace (one state-of-the-world) is reeval-
uated for the stochastically generated and climate-change supply
traces (659 additional states-of-the-world). By conducting this
analysis for all satisficing policies identified for the historical trace
(shown in Fig. 3), we ensure that insights remain generalizable and
are not specific to individually selected policies. Fig. 4 shows the
total number of historically satisficing policies that meet the satis-
ficing criteria across each forecast lead-time and skill level in each
state-of-the-world, where redder states-of-the-world are drier and
bluer states-of-the-world are wetter. The number of satisficing pol-
icies is greatest for the historical supply trace (triangles in Fig. 4), as
this was the trace used to initially define satisficing policies. The
number of policies that remain satisficing for alternative states-of-
the-world decreases below the number for the historical trace and
can range from near the historical number of policies to zero pol-
icies. This suggests that the identification of satisficing policies is
dependent on the water supply trace used to define satisficing per-
formance, and the policies explored here are somewhat overfit to
the historical trace to which they were optimized. However, this
effect is less stark for policies informed by a 12-month lead fore-
cast. For these policies, for which there were 205 that were satis-
ficing under the historical water supply trace, between 20 and 50
policies remain satisficing for approximately 75% of the out-of-
sample states-of-the-world tested, depending on the level of fore-
cast skill. This decreases significantly for policies operated with
shorter lead-time forecasts, such that the few satisficing policies
under the historical trace are satisficing under most alternative
states-of-the-world. Finally, we note that the number of satisficing
policies across forecast lead-times and skill levels is generally in-
dependent of the long-term average hydrologic conditions (dry or
wet) of a given state-of-the-world, as seen in Fig. 4, by the lack of
stratification in the coloration of points for any scenario of forecast
lead-time and skill level. The one exception is for the 3-month
perfect forecast, where policies tend to perform better under wetter
conditions.

The comparison of policies using status quo and perfect
forecasts is helpful to establish the lower and upper bounds of
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Fig. 3. Parallel axis plot of nondominated policies aggregated across policies optimized for: (a) 12-month; (b) 6-month; (c) 3-month; and (d) 1-month
lead-time. System objectives shown on the x and y axes are normalized performance from 0 (worst performance) to 1 (best performance) for a given
objective. A single line across all objectives represents a control policy, i.e., a specific combination of decision variables. Within each lead-time panel,
policies that meet the satisficing criteria are highlighted, and the line type is drawn to the forecast skill. The minimum and maximum policy
performance across all optimal policies for each objective are displayed as the percent difference from Plan 2014 performance, where positive values
are equivalent to better performance and improvements over Plan 2014. Some forecast lead-times do not have satisficing policies across both forecast
skill levels and, therefore, do not have both skill levels highlighted.
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forecast-informed policy performance. In addition, results from
Figs. 3 and 4 suggest that only policies using 12- and 6-month lead
time forecasts are competitive with Plan 2014 for cases of perfect
and status-quo forecast skill. Therefore, we proceed by selecting
four final candidate policies from the 6- and 12-month lead-times
for more in-depth analysis (one from each combination of forecast
lead-time and skill level). Based on stakeholder feedback, we se-
lected as our final candidates those policies that exhibited the
largest improvements in coastal riparian protection (particularly up-
stream on Lake Ontario) under the historical water supply trace,
while still minimizing reductions in performance for other objec-
tives. In particular, we select final candidate policies that balance
improvements for upstream riparians without major reductions in
recreational boating, which is one of the starkest trade-offs that
emerge from the full set of satisficing policies. These selected pol-
icies are colored yellow in Fig. 3.

Fig. 5 shows whether each of the four selected candidate pol-
icies are satisficing for all states-of-the-world, which have been
ordered based on their average water supply conditions. The pol-
icies that are satisficing for a particular state-of-the-world and
objective are colored blue, while the policies that fail to meet
the satisficing criteria are colored red. Policies that are not satisfic-
ing can fail to meet the satisficing criteria in multiple ways and to
varying degrees. Therefore, for each policy, we show in varying
shades of red the degree to which satisficing criteria are not met
for individual objectives. Failures are normalized from zero to
one across each system objective, where a failure score of one
is the most severe failure. The number of objectives that fail to meet
the satisficing criteria for each state-of-the-world are colored white,
gray, yellow, orange, and red and correspond to 0, 1, 2, 3, and 4
objective failures, respectively.

Fig. 5 shows that satisficing behavior varies by objective
and candidate policy. The selected 12-month status quo policy

meets the satisficing criteria in 536 out of 660 states-of-the-world,
i.e., a robustness score of ∼80% [Fig. 5(a)]. Of the remaining 124
states-of-the world where the satisficing criteria are not met, a large
majority (112) of them exhibit failures in only one objective
(the wetland index). These failures tend to occur in drier states-
of-the-world. The 12-month status quo policy fails in 10 states-of-
the-world for two objectives and two states-of-the-world for three
objectives. These failures are spread across upstream coastal flood-
ing, downstream coastal flooding, commercial navigation, and rec-
reational boating. There are no failures in hydropower production.

The selected 12-month perfect policy meets the satisficing cri-
teria in 267 out of 660 states-of-the-world, i.e., a robustness score
of ∼40% [Fig. 5(b)]. Notably, robustness for this perfect-forecast
policy is less than that for the policy designed with noisier (status-
quo) forecasts. Similar to the 12-month status-quo policy, the
12-month perfect policy tends to fail in only the wetland objective
(373 states-of-the world), although failures to meet minimum per-
formance for the wetland indicator do not appear more frequent in
dry states-of-the-world. There are an additional 17 states-of-the
world that fail across two objectives, which is primarily due to fail-
ures in upstream coastal flooding under dry conditions. In the driest
states-of-the-world, failures can occur across three objectives
(wetland indicator, upstream flooding, and commercial navigation).

The candidate policies that utilize forecasts at the 6-month lead-
time are significantly less robust than 12-month forecast policies,
with robustness scores of ∼11% and ∼12% for the status-quo and
perfect forecast cases, respectively [Figs. 5(c and d)]. For most
states-of-the-world, there are at least one or two system objective fail-
ures. Across both levels of forecast skill, there are pronounced fail-
ures for upstream coastal riparians. The 6-month status quo policy
is unable to meet minimum levels of performance for downstream
coastal riparians across most states-of-the-world and upstream
flooding and recreational boating in wetter states-of-the-world.

Fig. 4. The number of candidate policies that meet the satisficing criteria (y axis) across each combination of forecast type (x axis) for the 660 states-
of-the-world. Individual states-of-the-world are shown within the boxplots and shaded according to their relative dryness/wetness (based on their
long-term average NTS). The points are shaped according to the supply data set (historic supplies, climate-change supplies, stochastic supplies).
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The 6-month perfect policy fails in hydropower production and up-
stream flooding across states-of-the-world and the wetland indicator
in drier states-of-the-world.

The percentage of states-of-the-world that are satisficing for
each policy varies depending on whether supply traces are derived
from the stochastic or climate-change data sets and which objec-
tives are being evaluated (Table 1). For some objectives (e.g., down-
stream coastal impacts, commercial navigation, recreational
boating), the percentage of satisfying policies is relatively insensi-
tive to the particular supply data set used across all four candidate
policies. For other objectives, like hydropower production, the per-
centage of satisfying policies is insensitive to supply data set for
three of the four candidate policies, but there are large differences
for the 6-month perfect forecast policy. Differences between the
stochastic and climate-change driven traces are most consistently
observed across multiple policies for upstream coastal impacts
and wetland health. For upstream coastal impacts, performance
tends to be better under the stochastic supply traces for all policies;
for wetland health, performance is better under the climate-change
traces for all policies except the 6-month perfect forecast policy.

Similar to Fig. 5, the percentage of satisfying policies for wetland
health drops considerably for stochastic and climate-change based
supply data sets when policies use perfect forecasts instead of status
quo forecasts.

The equal or lower robustness of perfect forecast policies com-
pared with status-quo forecast policies at both lead-times is some-
what unintuitive. However, these results are consistent with the
findings in Semmendinger et al. (2022) and are likely related to
complex interactions between forecast information and policy
structure that can lead to overfitting. One example of this occurs
during flood events on Lake Ontario. With perfect insight into fu-
ture conditions, water levels are often drawn down well in advance
of a flood event. However, as water levels on Lake Ontario de-
crease, the hydraulic head of the system also decreases and so does
the preproject term in the rule curve. Thus, if the drawdown occurs
too early before a flood, outflows will decline right as water sup-
plies increase, and the drawdown will reverse before the flood event
peaks. This can eliminate the flood control benefits of the original
drawdown. During the historical trace (for which the system was
optimized), this undesirable progression can be avoided through

(a)

(b)

(c)

(d)

Fig. 5. System performance for individual objectives in plausible states-of-the-world across the selected (a) 12-month status quo; (b) 12-month
perfect; (c) 6-month status quo; and (d) 6-month perfect candidate policies. Each tile shows whether or not the selected candidate policy meets
the satisficing criteria for every combination of plausible state-of-the-world (x axis) and performance indicator (y axis). Tiles are filled according
to the satisficing criteria. Failures to meet the satisficing criteria are shaded by the normalized severity of the failure. The y axis is arranged by system
objective, where UC is upstream coastal impact, DC is downstream coastal impact, CN is commercial navigation, HP is hydropower production, WH
is wetland health and services, and RB is recreational boating. The last element in the y axis, #F, is the number of objective failures for the associated
state-of-the-world. The x axis is arranged from drier to wetter states-of-the-world. The historic state-of-the-world is outlined in black.
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overfitting of the policy parameters. However, this may not be the
case for out-of-sample hydrologic states-of-the-world to which the
policy was not trained. For the policy trained to noisier (status-quo)
forecasts, policy parameters cannot be as overfit for specific floods
because the historical forecasts are wrong in different ways prior to
different floods in the historical record. This then produced a policy
that generalized better to new hydrologic traces.

To better understand why different candidate polices fail to meet
the satisficing criteria under different states of the world, we em-
ploy scenario discovery on the four selected policies. Fig. 6 shows
the results from the gradient boosted trees classification for two of
these policies (6-month status quo and 12-month perfect). The
points shown in Plot (ii) are shaded by if minimum performance
thresholds are or are not met for the objective of interest, with
darker shades indicating the severity of failure (as defined by a

normalized deficit to the satisficing criterion). For the 6-month sta-
tus quo policy, the flooding objective for upstream coastal riparians
failed to meet minimum performance levels in 298 states-of-the-
world [Fig. 6(a)]. The gradient boosted trees found downstream
winter water supplies into the St. Lawrence River as the most in-
fluential hydrologic variable for this type of failure, followed by
autumn downstream supplies [Fig. 6(a)]. Fig. 6(a)(ii) shows how
failures in the upstream coastal flooding objective vary with these
two hydrologic variables. In the stochastic and climate-change-
based water supply data sets, there is a clear relationship between
above-average combinations of autumn and winter downstream
supplies and failures to meet minimum performance for upstream
coastal riparians. This result highlights the complex interactions
that occur spatially through the system, where, in this case, high
water supplies downstream on the St. Lawrence River require lower
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Fig. 6. Results from the gradient boosted tree classification mapping hydrologic state variables to satisficing or nonsatisficing performance for
the (a) status quo 6-month policy and upstream coastal riparian objective; and (b) perfect 12-month policy and meadow marsh ecosystem objective.
Factor maps for all combinations of forecast attributes and objectives are in the supplemental material. Plot (i) in each panel shows the influence
(as percent importance) of each hydrologic variable. Plot (ii) shows each state-of-the-world plotted with its two most influential factors as the
axes (most influential on x axis). Points are shaped according to the respective supply data set, with the historic record shown as the larger triangle.
States-of-the-world are shaded if minimum performance thresholds are or are not met for the objective of interest.

Table 1. Percentage of satisficing traces for each selected policy, objective, and supply data set

Policy Supply Data Set UC DC CN HP WH RB

12-month status quo Stochastic 98.8 94.0 99.6 100 87.2 99.8
Climate-change 96.2 94.3 96.9 100 90.6 100

12-month perfect Stochastic 99.2 99.8 100 100 43.0 96.6
Climate-change 82.4 98.1 93.7 100 57.2 100

6-month status quo Stochastic 59.0 21.2 94.8 100 93.6 65.4
Climate-change 41.5 19.5 88.1 100 95.6 44.7

6-month perfect Stochastic 61.8 94.6 100 55.0 70.8 100
Climate-change 47.8 90.6 100 0.0 57.9 100

Note: The stochastic and climate-change driven data sets contain 500 and 159 traces, respectively. The columns show the percentage of satisficing traces for
each objective, including upstream coastal impacts (UC), downstream coastal impacts (DC), commercial navigation (CN), hydropower production (HP),
wetland health and services (WH), and recreational boating (RB).
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releases from the Moses Saunders Dam to control downstream
flooding. This can then lead to flooding challenges on Lake
Ontario. The 6-month status quo candidate policy appears to strug-
gle with this dynamic more than the original Plan 2014, leading to
many states-of-the-world that fail the satisficing criteria for the up-
stream flooding objective.

A similar result is seen for the meadow marsh objective and the
12-month perfect forecast policy, although the relationship between
hydrologic variables and objective failures is slightly more complex
[Fig. 6(b)]. The meadow marsh objective, which is a proxy for
wetland health, failed to meet minimum performance levels in
353 states-of-the-world. Here, lower downstream winter and spring
water supply conditions tend to cause the 12-month perfect forecast
policy to underperform Plan 2014 in the meadow marsh objective
[Fig. 6(b)(i)]. However, there is not a clear threshold for failures as
a function of supplies [i.e., red and blue points are not well sepa-
rated; Fig. 6(b)(ii)], likely due to the complicated and nonlinear
dynamics that drive the formation and preservation of meadow
marsh. This finding demonstrates the complexity of predicting sys-
tem objective failures based on a limited number of hydrologic
measures. For some objectives, one might be able to identify simple
mappings between hydrologic regimes and system vulnerabilities.
However, that is not the case for every objective.

Conclusion

This study contributes an understanding of how forecast-informed
reservoir operations can serve as a robust adaptation strategy to un-
certain, future hydrologic conditions in many-objective water sys-
tems. We focused on the viability of this approach as a function of
forecast attribute (lead-time and skill), type of future condition, and
the interaction between these two factors. These issues were ex-
plored in a case study of the LOSLR basin, where water levels
and flows in Lake Ontario and the St. Lawrence River are regulated
by the operating policy of the Moses Saunders Dam. We used
many-objective optimization to identify Pareto approximate control
policies tailored for forecasts at four different subseasonal to sea-
sonal lead times and two levels of skill, and then used a set of
satisficing criteria developed with basin stakeholders and decision-
makers to select a subset of promising control policies for further
analysis. These promising candidates were then reevaluated under
hundreds of plausible hydrologic regimes, including those that re-
flect stationary and nonstationary climate. Finally, we explored
how features of future hydrologic conditions across space and sea-
son influence the satisficing nature of forecast-informed policies, as
compared with a baseline policy.

Results showed that, for the LOSLR basin, policies conditioned
on 12-month forecasts were more robust under the future states-
of-the-worlds tested here than policies tailored for shorter lead-
time forecasts, especially the 1- and 3-month lead-times. While
forecast skill significantly affected the overall robustness of forecast-
informed operations based on shorter lead-times, this was not the
case for the 6- and 12-month forecast-based policies. In fact, policies
tailored for noisier long-lead forecasts were more robust under a
wide range of plausible futures as compared with those policies
trained to perfect forecasts. This result highlights the potential to
overfit control policies to historical information, even in the case
of a forecast-informed policy with perfect foresight.

We note that the robustness of 12-month policies compared
with other lead-times may be related to the mathematical formu-
lation of the release rule, which was kept the same as in the base-
line Plan 2014 control policy, which was originally formulated
to use 12-month lead forecasts. This choice was made to help

communicate the results of policy optimization to stakeholders
who were familiar with the existing control policy but likely limited
the identification of alternative policies better adapted to shorter-
term (and more variable) forecast information. These findings
support the need to explore alternative release functions through ap-
proaches like direct policy search (DPS; Quinn et al. 2017b), which
can use global approximating functions (e.g., neural networks, ra-
dial basis functions) to more flexibly map exogenous and system
state information to high-performing control decisions. We leave
this effort for future work.

Findings from the scenario discovery analysis showed that, for
some system objectives and policies (e.g., upstream coastal flood
control in the 6-month status quo policy), there are clear relation-
ships between performance and the hydrologic regime. A clear
threshold of system performance as a function of supply conditions
can directly support adaptive management of the system. If hydro-
logic conditions that trigger failures for specific objectives and con-
trol policies can be identified, system managers can carefully
monitor those specific hydrological variables over time to determine
if the system is approaching a state of vulnerability. This can then
be used to dynamically trigger changes in the control policy to bet-
ter manage emerging hydrologic conditions, although such action
requires confidence that recent trends toward vulnerable climate
states will continue and not revert to the historical mean state. This
strategy is further complicated if failures in some system objectives
cannot be easily predicted based on the hydrologic regime, as was
the case for meadow marsh under the 12-month perfect forecast-
based policy. Our results showed that complex relationships and
dynamics between control decisions and system objectives can
make it difficult to identify simple hydrologic indicators and thresh-
olds that can serve as triggers for dynamic management. In these
cases, alternative strategies may be needed for risk mitigation that
extend beyond what large-scale water infrastructure can provide
(e.g., land use management decisions that support more robust
coastal wetlands regardless of water level regulation policy).

Results of this work are being used to support the expedited re-
view of the current control policy of the Moses Saunders Dam, Plan
2014, and the exploration of alternatives by the GLAM Committee.
Through the researcher–practitioner partnership that underscored
the work presented in this study, we found disagreement around
appropriate system objectives to be among the largest hurdles in for-
mulating the problem explored in this work. As shown by Quinn
et al. (2017a), uncertainty in the underlying formulation of system
objectives can dramatically alter the interpretation of policy perfor-
mance. Therefore, a major avenue of future work will be to work
with system stakeholders to identify satisficing criteria and objective
functions that best represent evolving interests across the LOSLR
basin and, more broadly, to explore the sensitivity of forecast-
informed operations as a climate change adaptation strategy to the
underlying formulation of the many-objective control problem.
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