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Abstract—In this work, we consider a network, where dis-
tributed information sources whose states evolve according to a
random process transmit their time-varying states to a remote esti-
mator over a shared wireless channel. Each source generates pack-
ets in a decentralized manner and employs a slotted random access
mechanism to transmit the packets. In particular, we are interested
in networks with a large number of low-complexity devices that
share low-capacity random access channels. Accordingly, we in-
vestigate update strategies for remote tracking of source states that
require eachupdate to constitute as fewbits as possible. To that end,
we develop update strategies requiring only one-bit of information
per update that employ a local cancellation strategy. We further
analytically compare the performance of the cancellation-enabled
update policy to the optimal policy that does not restrict the number
of bits for each update, which show that an asymptotic upper
bound of the optimality ratio is 13

√
2

12
. Through simulations, we

compare the proposed cancellation-enabled one-bit update policy
with zero-wait sampling and threshold-based sampling policies
that require more than one-bit of information per update. The
comparisons show that the cancellation-enabled update policy at its
optimal threshold level outperforms the multi-bit update policies.

Index Terms—Asymptotic analysis, distributed scheduling,
internet of things, random walks, remote estimation.

I. INTRODUCTION

THE Internet of Things (IoT) has attracted significant atten-
tion resulting in an ever growing number of applications

such as trafficmonitoring andhealthcaremonitoring systems [1].
In such systems, where distributed IoT devices/sensors are con-
nected to a remote monitor/controller, the sensors send update
packets with time-varying (sensing) information to the monitor
so that the monitor can track the state of the monitoring objects.
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To this end, it is crucial to send timely updates to keep the
monitor maintaining fresh information. The timely updates can
be challenging in an IoT network where many IoT devices are
communicating over a shared channel. This article tackles this
problem by developing strategies that require each update1 to
constitute as few bits as possible so that a large device population
can be served.
Age of Information (AoI) has been introduced and studied to

measure the freshness of information [2], [3], [4], [5], [6], which
is defined as the time that has elapsed since the latest packet
received at a remote monitor (or a receiver) was generated at a
source. In [3], the authors investigate the cases when the zero-
wait sampling is not age-optimal with a single source-receiver
pair. Networks with multiple sources updating a common re-
ceiver over a shared wireless channel are considered in [4],
[5], [6]. Centralized update policies with throughput constraints
are studied in [4], and decentralized update policies employing
a slotted random access with channel collision feedback are
studied in [5]. In [6], a sleep-wake update policy when each
source has a limited battery capacity is developed. None of these
designs apply to our setting since they characterize the timely
updates via age, whereas in our setting the timely updates are
characterized via the estimation error.
Recently, remote estimation has attracted much attention to

characterize the timely updates in IoT networks, which is also
the focus of our work. In this scenario, instead of AoI, the value
of information may be measured in terms of an estimation error,
which is an error between the actual state at a source and the
estimate at a receiver [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. In [7], optimal sampling policies
for a Wiener process are developed to minimize the Mean
Squared Error (MSE) with the frequency sampling constraints.
This problem is also studied when a communication channel
has random delay in [8] and it is shown that an optimal policy
is a threshold-type. Optimal sampling policies for an Ornstein-
Uhlenbeck (OU) process are investigated with a channel having
randomdelay [9] andwith average power constraint [10]. In [11],
[12], [13], a source whose state xt evolves as xt+1 = axt + wt,
wherea ∈ R andwt is an independent and identically distributed
(i.i.d.) random variable, are considered. In [11], update policies
to minimize theMSE subject to a sampling frequency constraint

1Throughout this article, we use ‘each update’ as a short-hand for ‘each update
packet’.

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:05:41 UTC from IEEE Xplore.  Restrictions apply. 



1932 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

are investigated. In [12] and [13], it is assumed that each update
pays a communication cost and update policies to minimize
estimation error plus communication costs.
In [14], [15], [16], [17], [20], [21], [22], a network where

n sources updating a common receiver is considered when the
state of each source is modeled as a Linear Time Invariant (LTI)
system with an independent zero-mean Gaussian noise [14],
[15], [16], [17], the Ornstein-Uhlenbeck (OU) process [22],
a zero-mean independent and identically distributed random
process [20] or a random walk with Gaussian steps [21]. In [14]
and [15], time-based (centralized) scheduling policies at the
receiver are investigated to minimize the average estimation
error covariancewhen atmost one source can update the receiver
at a time [14] or when at most m out of n sources can update
the receiver at a time and the communication channel has a
packet drop probability [15]. In [22], a centralized scheduling
policy is investigated tominimize themean squared error (MSE)
using the fact that the MSE of the OU process is proportional
to the variance of the OU process and the AoI. In [16] and [17],
decentralized scheduling policies are investigated, where each
source’s objective is to minimize its estimation error covariance
at the receiver subject to transmission power constraint. This
problem is modeled as a multi-player game, and a Nash equilib-
rium (NE) is found in [16]. In [15], a concept of correlated equi-
librium (CE)where the estimation performance can be improved
compared with NEs is introduced, and a strategy that achieves
the performance at the CE is proposed. In [20] and [21], dis-
tributed update policies for minimizing the expected estimation
error are investigated. In [20], each source makes sampling and
transmission decisions with or without local communication,
i.e., whether sources can communicate with each other or not
when the state of each source is a zero-mean independent and
identically distributed random variable. In [21], the authors
design distributed update policies depending on whether each
transmitter can observe the exact state of the source when the
state of each source is a random walk process with Gaussian
steps.
In [18], [19], a network with n independent source-receiver

pairs communicating over a shared channel is considered.
In [18], a centralized scheduling policy is proposed when each
transmission incurs a communication cost to minimize the av-
erage MSE plus communication costs. In [19], a decentralized
scheduling policy is investigated to minimize the transmission
power subject to a lower bound constraint on the successful
transmission probability.
In this work, we consider a networkwithn distributed sources

updating a common receiver over a shared wireless channel and
investigate decentralized update policies to minimize the esti-
mation error. Our work is different from other groups of works,
in which centralized (e.g., [14], [15], [18]) or game theoretic
(e.g., [16], [17] settings are considered. Further,we are interested
in networks with a large number of low-complexity devices
that share low-capacity random access channels. Such a setting
is becoming increasingly important in massive IoT networks
with an increasing number of low-complexity devices being
connected to the networks such as remote health monitoring or
smart architecture. Accordingly, we investigate update policies
(i.e., sampling and scheduling policies) that require each update

to constitute as few bits as possible. Thus, it is unsuitable for
the sampling policies proposed in [7], [8], [9], [10], [11], [12],
[13], [20] and [21] to be directly applied in this setting since
those sampling policies do not carefully deal with the number of
bits per sampling/transmission in the existence of transmission
failures. We also remark that part of the results in this work was
present in the conference version [23].
Our contributions can be summarized as follows.
� We formulate the remote tracking problem to minimize the
estimation error with a large number of low-complexity
devices updating a common receiver over a low-capacity
random access channel when the state of each information
source evolves according to a symmetric random walk.

� We develop update strategies that require one-bit of infor-
mation per update as a case of particular interest. We first
consider a natural benchmark update policy and reveal that
the benchmark policy will not be able to make the system
stable in terms of estimation error under some conditions.

� We then introduce an improvement on the benchmark
policy that employs a local cancellation strategy, which
makes the system always stable. We further compare the
performance of the cancellation-enabled update policy to
the optimal policy that does not restrict the number of bits
for each update.

� We suggest how the proposed one-bit update policy can be
applied to more general source models.

� We compare the proposed one-bit update policy with
zero-wait sampling and threshold-based sampling policies
that require more than one-bit of information per update
through simulations. Numerical results show that the pro-
posed one-bit update policy outperforms the multi-bits
update policies, which implies that the proposed one-bit
update policy is more beneficial when we consider trans-
mission power that is usually increasing as the packet size
(i.e., the number of bits per update) increases.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the problem. In
Section III, we develop and analyze update strategies that require
only one-bit of information per update. In Section IV, we extend
our results to more general source models. In Section V, we
compare the proposed one-bit update policy with other update
policies through simulations. In Section VI, we conclude our
work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a fundamental scenario of n distributed infor-
mation sources (e.g., sensors) whose states evolve according
to a random process, and one remote estimator (e.g., sink or
collector) that aims to remotely track the time-varying state of
the sources over a shared wireless channel, as shown in Fig. 1. In
this work, we are interested in developing strategies for remote
tracking of source states that require one-bit of information
per update as a particular interest, which will be explained in
Section II-B.
Considering a time-slotted system operation, we let xi,t de-

note the state of source i at the beginning of time t, which
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Fig. 1. System model.

evolves over integer values according to a simple random walk.
In particular, xi,t evolves as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (1)

where wi,t is given by

wi,t =

⎧⎪⎨
⎪⎩
1, with probability pi,

0, with probability 1− 2pi,

−1, with probability pi,

(2)

for some pi ∈ [0, 0.5]. The transition probability pi is known to
each source. Note that the noise wi,t is independent and iden-
tically distributed (i.i.d.) with a zero-mean and finite variance,
and that it is symmetric, i.e., P (wi,t = 1) = P (wi,t = −1). We
note that such a basic evolution lies at the foundation of many
important estimation and control mechanisms. By varying the
pi parameter, this process can capture more and less variable
source evolution. After developing our results for this model,
we will also discuss more general state evolution in Section IV.
Let Ui,t ∈ {0, 1} denote the packet generation (or sampling)

decision of source i at time slot t, where Ui,t = 1 implies that
source i generates a new packet at time slot t. At the end of
time slot t− 1, the packet generation decision Ui,t is made
in a decentralized manner by each source based on their own
observations up to time slot t− 1. Each source maintains a
First-ComeFirst-Served (FCFS) queue, and the newly generated
packet is stored in the queue. The queue length of source i at
time slot t is denoted by Qi,t.

In view of the low-complexity nature of communication ca-
pabilities of these devices, we assume a slotted random access
channel for wireless updates whereby if more than one sources
transmit packets simultaneously, then all the transmissions fail
due to a packet collision. Let Zi,t ∈ {0, 1} denote the indicator
variable for the successful transmission of source i at time slot
t. The source i transmits the packet with probability μi ∈ (0, 1]
(which is to-be-determined), and idles with probability 1− μi.
We assume that if queue i is empty (i.e., Qi,t = 0) then source
i transmits a dummy packet.2 Then, we have

γi := E[Zi,t] = μi

∏
j �=i(1− μj). (3)

2This assumption makes the mathematical analysis more tractable. In prac-
tical operation, letting source i idle when it has no packet to send can give
more transmission opportunities to the other sources and improve the system
performance.

Fig. 2. A trajectory of the virtual error ẽi,t of source i.

If source i is the only source transmitting a packet at time slot
t, then the packet is successfully transmitted to the estimator
(i.e., Zi,t = 1). We assume that the communication channel is
error-free and each transmission is done within a time slot.
Let x̂i,t denote the estimated state of source i at the estimator

at time slot t, which can be updated using information received
by time slot t. Let ei,t denote the informationmismatch (or error)
between xi,t and x̂i,t, i.e.,

ei,t = xi,t − x̂i,t. (4)

We assume that xi,0 = x̂i,0 for all i ∈ {1, . . ., n}.

B. One-Bit Update Policy At the Sources

In this work, we consider a low-overhead sampling policy,
whereby each update constitutes one-bit of information so that
the shared channel load isminimized for each transmission. This
is especially important for wireless channels that serve a large
population, as expected in future IoTnetworks. Thismotivates us
to consider a threshold-type packet generation policy, whereby
Δi ∈ N denotes the (state) threshold used for sampling. To
describe this policy more explicitly, let ẽi,t denote the virtual
error of source i, which is a variable being held by each source
i and is updated as

ẽi,t+1 =

{
0, if Ui,t = 1,

ẽi,t + wi,t, if Ui,t = 0.
(5)

Here, the packet generation decision Ui,t under the above
threshold-base policy at time slot t is given by

Ui,t =

{
1, if |ẽi,t + wi,t| = Δi,

0, otherwise.
(6)

In other words, when ẽi,t + wi,t hits the threshold Δi or −Δi,
a packet with one-bit information is generated and sent to its
queue with the value +1 for Δi or −1 for −Δi, and the value
ẽi,t+1 is reset to 0. Fig. 2 shows a trajectory of virtual error ẽi,t,
where a new packet with the value +1 is generated at time slot
τ . We will provide an explanation of the relationship between
the error ei,t and the virtual error ẽi,t in Section II-C.
Next, we provide a few interesting facts about the absolute

estimation error performance of such a threshold-based one-bit
update rule. These are interesting in explicitly characterizing
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how the error relates to the threshold level Δi and the source
dynamics pi.
Theorem 2.1: Under the threshold-based one-bit update pol-

icy with thresholdΔi, the long-term expectation of virtual error
ẽi,t of source i is given by

E[|ẽi,∞|] = Δ2
i−1
3Δi

. (7)

Further, the long-term expectation of update decision Ui,t of
source i is given by

E[Ui,∞] = 2pi

Δ2
i
. (8)

Proof: The virtual error ẽi,t is a finite-state Markov chain
with 2Δi − 1 states from (5) and (6). Thus by solving global
balance equations, we can obtain its stationary distribution

πi,k = Δi−|k|
Δ2

i
for k ∈ {−Δi + 1, . . .,Δi − 1}, (9)

from which we can obtain the long-term expected virtual error
E[|ẽi,∞|]:

E[|ẽi,∞|] =
Δi−1∑

k=−Δi+1

kπi,k =
Δ2

i − 1

3Δi
. (10)

Further, since each source independently generates a packet,
we can consider ẽi,t as an independent renewal process, which
is reset to 0 upon every packet generation. In [24], it is shown
that

E[Ui,∞] = lim
t→∞P (Ui,t = 1) = 2pi

Δ2
i

(11)

using Blackwell’s renewal theorem (Theorem 4.6.2 in [25]).
�

C. Estimation At the Receiver

Now that we described the policy at the sources, we turn to
the corresponding estimation process at the receiver. We denote
V k
i,t ∈ {−1, 1} for k ∈ {1, . . ., Qi,t} as the value of k-th packet

in queue i at time slot twithV 0
i,t = 0,wherek = 1 is the index for

the head of the queue. IfZi,t = 1, then the packet with value V 1
i,t

is successfully sent to the receiver and we have V k
i,t+1 = V k+1

i,t .
Then, at the receiver, the estimate x̂i,t is updated as

x̂i,t+1 = x̂i,t + V 1
i,tZi,tΔi. (12)

In other words, when a new packet is received from source
i, the estimated x̂i,t is either increased by Δi if the received
information is 1, or decreased by Δi if −1 is received. Thus,
the virtual error ẽi,t is the (actual) error after the last generated
packet is delivered to the receiver. By the definition of the error
ei,t in (4) and the virtual error ẽi,t in (5), we have that

ei,t = ẽi,t +Δi

Qi,t∑
k=1

V k
i,t (13)

with ei,0 = ẽi,0 = 0. This implies that the error ei,t at time t can
be measured using the virtual error ẽi,t plus the sum of values of
the packets stored in the queue at time t. We refer to Appendix
A for detailed proof.

Fig. 3. A Markov chain generated by the evolution of estimation error ei,t
under the optimal policy.

D. Distributed Remote-Estimation Problem

Given the one-bit update policy at the sources and the estima-
tion policy at the receiver, the goal of the remote tracking prob-
lem is to optimize the choices of thresholdsΔ � {Δ1, . . .,Δn},
and the probabilitiesμ � {μ1, . . ., μn} for random access trans-
missions that minimize the mean absolute estimation error.
Mathematically, our objective is to design (Δ,μ) given the
source dynamics p � (p1, . . ., pn) to minimize the expected
average absolute-error over infinite time horizon:

min
Δ,µ

J(Δ,μ) = lim
t→∞

1

tn

t∑
s=1

n∑
i=1

Eπ [|ei,s|] . (14)

III. DESIGN AND ANALYSIS OF ONE-BIT UPDATE POLICIES
FOR REMOTE ESTIMATION

In this section, we attack the problem formulated in the previ-
ous section by designing one-bit update policies for distributed
remote tracking. At the outset, it is even unclear whether there
exists a policy that can guarantee a bounded absolute estima-
tion error. In fact, in Section III-B, we investigate a class of
First-Come-First-Serve (FCFS) policies to find a condition on
the (source-dynamics, threshold-level) pairs, (p,Δ), that can
be stabilized by such policies. The negative result from this
design motivates us in Section III-C to propose an improved
class of policies that employ a cancellation strategy within
the transmission queues in order to guarantee stability for all
possible source dynamics p.

A. Optimal Sampling Without Constraints on Information Size

We first consider the estimation error minimization problem
over a randomaccess channelwithout constraints on information
size. That is, the source can generate a packet with the exact
state information at the time the packet is generated. Since
transmission time is not stochastic, an optimal update policy
is to generate a packet with value xi,t (or ei,t) and make a
transmission with probability μi at every time slot. Hence,
letting γi = μi

∏
j �=i(1− μj) be the probability of successful

transmission for source i, the evolution of the estimation error
ei,t can be viewed as a Markov chain with +1 or −1 with
probability (1− γi)pi and returning to 0 with probability γi
as shown in Fig. 3.
It is not difficult to see that the error evolution process {ei,t}t

is an ergodic Markov chain since it returns to 0 with probability
γi > 0 from all states. Hence, there exists a unique steady state
distribution. Let eopt∞ (μ) denote the long-term estimation error
under the optimal sampling policy with activation probabilities
μ. The next theorem provides the long-term expected absolute
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errorE[|eopt∞ (μ)|] and the entropyH(ei,∞(μ)) of the estimation
error ei,∞ for each source i under the optimal sampling policy
given a set of activation probabilities μ.

Theorem 3.1: The long-term expected absolute error of the
optimal sampling policy with activation probabilities μ is given
by

E[|eopt∞ (μ)|] = 1

n

n∑
i=1

1√
β2
i +2βi

, (15)

and the entropy of the estimation error eopti,∞(μ) for source i is
given by

H(eopti,∞(μ)) = log
(√

1 + 2
βi

)
+ 1√

β2
i +2βi

log
(
1 + βi +

√
β2
i + 2βi

)
,

(16)

where βi =
γi

2(1−γi)pi
and γi = μi

∏
j �=i(1− μj).

The expected estimation error E[|eopt∞ (μ)|] and the entropy
H(eopti,∞(μ)) can be obtained from the steady-state distribution of
ei,∞, which is obtained by solving global balance equations for
the Markov chain represented in Fig. 3. The detailed proof is in
AppendixB.Note that source igenerates and transmits an update
packet with the exact value of the error eopti,t (μ) ∈ Z, which
implies that the average information size (i.e., the number of
bits required to deliver eopti,t (μ)) is lower-bounded by the entropy

H(eopti,t (μ)) by Shannon’s source coding theorem.
Note that γi is the probability of successful transmission for

source i, which becomes very small as the number n of sources
becomes large in general. Then, as canbe expected, both the error
E[|eopt∞ |] and the entropy H(ei,∞) increase as n is increasing.
In the following sections, we will design an update policy that
requires one bit of information and compare the estimation error
between the optimal policy and the proposed policy.

B. Benchmark Analysis for First-Come First-Serve Updates
for a Single Source

To develop a basic understanding of the system operation,
let us consider the operation of the one-bit update and random-
access service policy in a single source case. Suppose that the
source uses a threshold level of Δ and achieves a transmission
success probability of μ in each transmission. The next theorem
establishes a condition between Δ, p, and μ that would make
the FCFS update policy unstable.
Theorem 3.2: Under the threshold-based one-bit sampling

and the First-Come First-Serve update policy, ifΔ ≤
√

2p
μ , then

the system is unstable, i.e.,

lim
t→∞E[|e∞|] = ∞. (17)

This follows from the fact that, to make the system stable, the
source has to make the queue stable and the condition for queue
stability is that, in the long-term, the arrival ratemust be less than
the service rate, i.e., 2p

Δ2 < μ, [28]. The detailed proof using [29]
is in Appendix C. In the next section, we shall show that this
deficiency can be eliminated through a cancellation mechanism
within the transmission queue of each source.

C. One-Bit Update Policies With Packet Cancellation

The performance of FCFS update policy revealed that the
estimation error will be unbounded if 2pi

Δi
> γi, where γi =

μi

∏
j �=i(1− μj). In this subsection, we introduce an improve-

ment on these benchmark policies with substantial improve-
ment. To that end, we first note that the dynamics of xi,t in
(2) is symmetric, i.e.,P (xi,t0+t = x |xi,t0 = 0) = P (xi,t0+t =
−x |xi,t0 = 0), due to symmetry of noise wi,t. Using this sym-
metry of the dynamics, we can manipulate the FCFS queue
if the information of packets in the queue can be accessed.
If the values of the newly generated packet and the packet at
the tail of the queue are the opposite, then those two packets
cancel each other and are discarded from the queue before
transmission. Let Di,t ∈ {0, 1} be the indicator variable for
this event, whereDi,t = 1 indicates the packet cancellation oc-
curs. Note that E[Di,t] =

1
2E[Ui,t]P{Qi,t > 0} since P (xi,t =

Δi | Ui,t = 1) = P (xi,t = −Δi | Ui,t = 1) = 1
2 from symme-

try of the dynamics of xi,t.
Under this cancellation-enabled policy, the values of all the

packets at queue i must be the same at all times, i.e., V 1
i,t =

· · · = V
Qi,t

i,t . We assume that departure happens after arrival.
Under this queueing discipline, the queue lengthQi,t evolves as

Qi,t+1 = Qi,t + Ui,t − 2Di,t − Zi,tI{Qi,t > 1}
− Zi,tI{Qi,t = 1}((1− Ui,t) + Ui,t(1−Di,t))

− Zi,tI{Qi,t = 0}Ui,t. (18)

Note thatDi,t = 1 implies thatUi,t = 1 andQi,t > 0 by its def-
inition. Further, since we are assuming departure-after-arrival,
Zi,t can be 1 only if (a) Qi,t > 1, (b) if Qi,t = 1, either a new
packet is not generated (Ui,t = 0) or a packet is generated (Ui,t)
and the packet cancellation does not occur (Di,t = 0), or (c) if
Qi,t = 0, a new packet is generated (Ui,t = 1).

D. Analysis of One-Bit Updates With Cancellation

In this subsection, we present fundamental results on the error
performance of cancellation-enabled one-bit update policies that
is introduced in the previous subsection. We start with the next
lemma that establishes the strongly ergodic (non-stationary)
nature of the transmission queue-length {Qi,t}t.
Lemma 3.1: For each source i, the queue length process

{Qi,t}t≥0 under the cancellation-enabled one-bit update policy
described in (18) forms a strongly ergodic Markov Chain for
any Δi > 0, μi > 0, and pi ∈ [0, 1/2].
Note that the non-stationary property of the queue length

process {Qi,t}t≥0 comes from the packet generation probability
λi,t = P (Ui,t = 1), which converges to λi =

2pi

Δ2
i
. Hence, the

non-stationary Markov chain generated by {Qi,t} converges to
a (stationary) Markov chain shown in Fig. 4 and it can be shown
that the Markov chain is ergodic. The detailed proof using [30],
[31] is in Appendix D.
In contrast to theFCFSpolicyperformance (seeTheorem3.2),

Lemma 3.1 proves that cancellation-enabled update policy can
stabilize the error level for anyΔi > 0, μi > 0 and any feasible
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Fig. 4. A Markov chain generated by the queue length process {Qi,t}t≥0

with λi = E[Ui,∞] = 2pi
Δ2

i

and γi = μi

∏
j �=i

(1− μj).

pi.3 Specifically, it proves that there exists a unique steady-state
distribution for the queue length process {Qi,t}t≥0 under the
cancellation-enabled update policy.
It is intractable to solve global balance equations for the

Markov chain in Fig. 4. Thus, we instead investigate the asymp-
totic behavior of the Markov chain and obtain the steady-state
distribution for the large numbern of sources.Note that the prob-
ability γi of successful transmission for each source i decreases
as the number n of sources increases since μi ∈ (0, 1). Now,
we consider a behavior of threshold Δi to achieve an optimal
estimation error. Lemma 3.1 implies that the queuewill be stable
for any Δi > 0, μi > 0 and pi ∈ [0, 1/2], and the long-term
expected virtual error E[|ẽi,∞|] in (10) is finite for Δi < ∞.
Since, under the cancellation-enabled policy, we can write the
error ei,t as

ei,t = ẽi,t +ΔiV
1
i,tQi,t, (19)

the network will be stable for anyΔi in terms of the estimation
error. However, when the number n of sources is large, a small
threshold Δi will result in a large queue length Qi,t since the
(steady state) probability λi =

2pi

Δ2
i
of packet generation is rela-

tively larger than the probability γi of successful transmission.
Hence, increasingΔi as n becomes large is necessary to achieve
an optimal estimation error.
Note that λi and γi are dependent on the number n of

sources, so for the following discussion, we use λn,i and γn,i,
respectively, to clarify their dependency on n. With λn,i and γn,i
decreasing as n → ∞ and the assumption that γn,i/λn,i → ci
for some ci > 0 as n → ∞, we can observe, in Fig. 4, that
the transition probability from state k to k − 2 (i.e., 1

2λn,iγn,i)
is dominated by the transition probabilities from state k to
k − 1 and from state k to k + 1 as n → ∞, which consist of
λn,i(1− γn,i) and γn,i(1− λn,i) terms. Hence, the Markov
chain asymptotically becomes a birth-death process as n → ∞,
which is tractable to obtain the steady-state distribution as in the
following lemma.
Lemma 3.2: Assume that limn→∞ limt→∞

γn,i

λn,i,t
= ci for

some ci > 0. Then, when the number n of sources is sufficiently
large, the steady-state distribution θn,i = (θn,i,k)

∞
0 of the queue

3There is an intuition about the stability of the cancellation-enabled update
policy. Note that the cumulative arrival process evolves as a symmetric random
walk with the cancellations of packets since, given a packet arrival, the packet
is equally likely to have a positive or negative value. This grows at the rate
O(

√
t). On the other hand, the cumulative service process with any positive

probability of transmission grows at the rate of O(t). Hence, the queue length
process remains stable for any positive probability of transmission from each
source.

length process {Qi,t}t≥0 for source i under the cancellation-
enabled one-bit update policy described in (18) is given by

θn,i,0 ∼
(
1 +

λi(1−γi)((1−λi)γi+
1
2 λi(1−γi))

(1−λi)γi((1−λi)γi+
1
2 λi)

)−1

,

θn,i,k ∼ λi(1−γi)θi,0
(1−λi)γi+

1
2 λi

(
1
2 λi(1−γi)

(1−λi)γi+
1
2 λi(1−γi)

)k−1

(20)

for k = 1, 2, . . ., where λi = λn,i = limt→∞ P (Ui,t = 1) =
2pi

Δ2
i
, γi = γn,i = μi

∏
j �=i(1− μj) and xn ∼ yn means that

limn→∞ xn

yn
= 1.

The detailed proof is in Appendix E. For the rest of the paper,
we omit the subscript n to save space.
From (19), (9), (20) and the fact thatP (V 1

i,t > 0 |Qi,t > 0) =

P (V 1
i,t < 0 | Qi,t > 0) = 1

2 by the symmetry of dynamics, we
can obtain the steady state distribution of ei,∞ and further the
expected estimation errorE[|ei,∞|]. However, it is intractable to
optimize μi andΔi that minimize E[|ei,∞|] mainly due to (20).
Hence, in the next section, we propose an alternative choice of
μi and Δi and compare the expected estimation error E[|ei,∞|]
between the proposed policy and the optimal policy studied in
Section III-A.

E. Comparison of Optimal and Cancellation-Enabled Updates

The intractability of minimizingE[|ei,∞|]mainly comes from
the steady state distributionθi of each source i in (20).Hence,we
instead propose an alternative choice of μ and Δ and compare
its estimation error to that of the optimal policy. Let eopt∞ (μ)
and ecxl∞ (μ,Δ) denote the long-term estimation error under the
optimal policy with parameter μ and the cancellation-enabled
policy with parameters μ and Δ, respectively.

1) Activation probabilities μ: We consider μ that mini-
mizes E[|eopt∞ |] instead of E[|ecxl∞ |] since E[|eopt∞ |] de-
pends only on μ given p. Note, in Theorem 3.1, that
βi =

γi

2(1−γi)pi
→ 0 as γi → 0, i.e., as n → ∞, and thus

β2
i is dominated by βi as n → ∞. Further, we have that√

1
2βi

=
√

pi

γi
− pi →

√
pi

γi
asn → ∞. From this asymp-

totic behavior for a large number n of sources, we use
activation probabilities μasym that solves the following
convex optimization problem:

μasym := arg min
µ

1

n

n∑
i=1

√
pi

μi

∏
j �=i(1−μj)

. (21)

The convexity of the objective function can be shown by
showing that the leading principal minors of the Hessian
matrix of

√
pi

μi

∏
j �=i(1−μj)

are positive. For completeness,

we provide the detailed proof in Appendix F.
2) ThresholdsΔ: Given a set p of state transition probabili-

ties and a set μ of activation probabilities, let

Δµ
i = 


√
2pi

γi
� or

⌈√
2pi

γi

⌉
, (22)

where γi = μi

∏
j �=i(1− μj). Note that both choices of

Δµ
i in (22) result in the same asymptotic performance

since both of them become close to
√

2pi

γi
as n → ∞, and

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:05:41 UTC from IEEE Xplore.  Restrictions apply. 



KANG et al.: REMOTE TRACKING OF DISTRIBUTED DYNAMIC SOURCES OVER A RANDOM ACCESS CHANNEL WITH ONE-BIT UPDATES 1937

that λi ≈ γi as n → ∞ since λi =
2pi

(Δµ
i )2

, which makes
the steady state distribution θi of the queue length process
{Qi,t} of source i in (20) simpler4:

θi,0 ∼ 3− 2γi
6− 5γi

, θi,k ∼ 2− 2γi
6− 5γi

1

3k−1
for k ≥ 1. (23)

Next, we compare the expected long-term estimation er-
rorE[|ecxl∞ (μasym,Δµasym

)|] of the cancellation-enabled
update policy with parameters μasym andΔµasym

to that
of the optimal policy in the following theorem.

Theorem 3.3: The optimality ratio of the cancellation-
enabled one-bit update policy with parameters μasym and
Δµasym

is asymptotically upper bounded by 13
√
2

12 as n → ∞,
i.e.,

lim
n→∞

E[|ecxl∞ (µasym,Δµasym
)|]

E[|eopt∞ (µasym)|] ≤ 13
√
2

12 ≈ 1.5321. (24)

Note, from (19), that we can obtain

E[|ei,t|] ≤ E[ẽi,t] + ΔiE[Qi,t] for all t, (25)

and thatE[|ẽi,∞|] is given in (10) andE[Qi,∞] for large n can be
obtained using (23), from which we can obtain the upper bound
of the optimality ratio. The detailed proof is in Appendix G.
Theorem 3.3 implies that the cancellation-enabled one-bit

policy is not far from the optimal policy in termsof the estimation
error. However, from Theorem 3.1, we can see thatH(ei,∞) →
∞ as n → ∞, i.e., the average packet length becomes longer.
Therefore, in terms of transmission power, the update policy
with one bit of information becomes more beneficial than the
optimal policy.

IV. EXTENSION TO MORE GENERAL SOURCE DYNAMICS

A. Symmetric Dynamics With Finite Variance

In this section, we investigate the estimation error minimiza-
tion problem described in (14), but with a different type of
source, where the state evolution of each source is a Gaussian
random walk. This problem has also been studied in [21], but
our work is different from [21] in that we consider a scenario
where each update must constitutes a limited number of bits.
Suppose that the state xi,t of source i changes as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (26)

where wi,t is a Gaussian random variable with zero mean and
finite variance σ2

i . A new packet is generated (i.e., Ui,t = 1) if
|ẽi,t + wi,t| ≥ Δi for Δi ∈ (0,∞), and the virtual error ẽi,t is
updated as

ẽi,t+1 = ẽi,t + wi,t −ΔiI{ẽi,t + wi,t ≥ Δi}
+ΔiI{ẽi,t + wi,t ≤ −Δi}. (27)

Also, the source randomly accesses the channel with the suc-
cessful transmission probability of μi ∈ (0, 1). Then, the next

4It can be easily shown that |γi − 2pi
(Δ

µ
i
)2
| → 0 as n → ∞. The choice of

this specific threshold Δi is for obtaining analytical results in Theorem 3.3 by
simplifying the steady-state distribution of the queue length process in (20).

theorem provides the long-term expected absolute error perfor-
mance under the cancellation-enabled one-bit update policy.
Theorem 4.1: Under the cancellation-enabled one-bit update

policy with parameter (μ,Δ) when a noise of source i is a
Gaussian random variable with zero mean and finite variance
σ2
i , we have

E[|ei,∞|] ≤ σ2
i+P(|ẽi,∞|≥Δi)Δ

2
i

2ΔiP(|ẽi,∞|≥Δi)
+

ΔiE[Ui,∞]
2γi

+ Δi

2 , (28)

where γi = μi

∏
j �=i(1− μj).

To prove this, we first show that the virtual error process ẽi,t
with a Gaussian noise with zero mean and finite variance σ2

i

forms a positive Harris recurrent Markov chain with a unique
invariant distribution. If one can show that the virtual error
process ẽi,t with an arbitrary symmetric noise with zero mean
and finite variance σ2

i forms a positive Harris recurrent Markov
chain with a unique invariant distribution, then Theorem 4.1
holds for the particular symmetric noise. The detailed proof
using [32], [33], [34] is in Appendix H.
Note that P (|ẽi,∞| ≥ Δi) > 0 for Δi ∈ (0,∞); otherwise,

i.e., P (|ẽi,∞| ≥ Δi) = 0 for Δi ∈ (0,∞), the system is natu-
rally stable with E[|ei,∞|] < Δi. Further, from Theorem 4.6.2
in [25], we haveE[Ui,∞] = limt→∞ P (Ui,t = 1) = 1

E[T ] , where
T is the packet generation period. Since P (|ẽi,∞| ≥ Δ) > 0,
we have E[T ] ∈ [1,∞). Thus, the upper bound in (28) is fi-
nite, which implies that the system is always stable for any
σ ∈ (0,∞). Further, if one can analytically obtain the long-term
probabilityP (|ẽ∞| ≥ Δ) of packet generation and the long-term
expected packet generation periodE[U∞], then one can optimize
the upper bound in (28) and have a sub-optimal update policy.

B. Asymmetric Dynamics

In this section, we consider an asymmetric noise and apply
the cancellation-enabled one-bit update policy. Suppose that the
state xi,t of source i changes as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (29)

where

wi,t =

⎧⎪⎨
⎪⎩
1, with prob. pi,

0, with prob. 1− pi − qi,

−1, with prob. qi,

(30)

where pi, qi ∈ [0, 1] such that pi + qi ≤ 1 and pi − qi = αi.
Note that E[xi,t+1 − xi,t |xi,t] = αi, i.e., the state xi,t is

drifted by αi. We assume that the amount αi of drift is known
to the receiver. Then, the receiver updates the estimate x̂i,t for
source i as

x̂i,t+1 = x̂i,t − αi + V 1
i,tZi,tΔi, (31)

where Zi,t = 1 if a packet is arrived from source i and V 1
i,t is

the sign of the received information. That is, the receiver makes
a correction by the amount of drift at each time slot. Then, the
estimation error ei,t = xi,t − x̂i,t evolves as

ei,t+1 = ei,t + wi,t − αi − V 1
i,tZi,tΔi, (32)
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Fig. 5. Cancellation-enabled policy for m-dimensional source dynamics,
where the packet cancellation occurs at the sourcem’s queue.

and the virtual error ẽi,t evolves as

ẽi,t+1 = ẽi,t + wi,t − αi −ΔiI{ẽi,t + wi,t − αi ≥ Δi}
+ΔiI{ẽi,t + wi,t − αi ≤ Δi}. (33)

Since wi,t − αi is an asymmetric random variable with
mean 0, we may not have P (ẽi,t > 0 | |ẽi,t| ≥ Δi) = P (ẽi,t <
0 | |ẽi,t| ≥ Δi), which is the property that the cancellation-
enabled update policy is built on. However, we show that the
symmetric property holds for a large number n of sources in the
following theorem.
Theorem 4.2: For the virtual error process ẽi,t defined in (33),

we have

lim
n→∞P (ẽi,t > 0 | |ẽi,t| ≥ Δi)

= lim
n→∞P (ẽi,t < 0 | |ẽi,t| ≥ Δi)= 1/2. (34)

Note that Δi → ∞ as n → ∞ by the choice of μ and Δ
in Section III-E. Then, it can be shown that the virtual error
ẽi,t is equally likely to be positive or negative when it exceeds
threshold Δi for a sufficiently large n (i.e., large Δi) using
analysis ofMartingales [26]. The detailed proof is inAppendix I.
From Theorem 4.2, we can use the cancellation-enabled up-

date policy with drift adjustment and obtain the result on the
optimality ratio represented in Theorem 3.3.

C. Multi-Dimensional States

Lastly, we consider a problem of multi-dimensional states.
Suppose that each source i is observingmi different dynamics,
where each dynamics is one-dimensional as we have inves-
tigated throughout this article. Let xi,k,t denote the state of
kth dynamics observed by source i at time t, and let xi,t =
[xi,1,t, . . ., xi,mi,t]

T for mi ∈ N, where xi,k,t ∈ R. The objec-
tive is to minimize:

lim
t→∞

1

tn

t∑
s=1

n∑
i=1

1

mi

mi∑
k=1

E[|ei,k,t|]. (35)

We assume that xi,1,t, . . ., xi,mi,t are independent each other.
Then, the source can locally use the cancellation-enabled for
each xi,k,t with thresholdΔi,k, which can beΔ

µasym

i,k if xi,k,t is
a symmetric randomwalkwith parameter pi,k, generate a packet
containing the values ofmi local queues at every time slot, and
if the packet is not successfully transmitted to the receiver then
the packet is discarded at the end of the time slot as shown in
Fig. 5.
Since xi,1,t, . . ., xi,mi,t are independent, we can obtain the

optimality ratio obtained in Theorem 3.3 (i.e., asymptotic upper

Fig. 6. A trajectory of the state xi,t of source i.

bound of 13
√
2

12 ). However, in the multi-dimensional case, each
local queue has three types of information (i.e., three quanti-
zation bins): +1, 1 and 0, where +1 and −1 are the value of
packet if exists, and 0 means that the error does not exceed the
threshold.5 Hence, by the Shannon’s entropy theorem [27], the
average data length is upper-bounded by log2 3mi since there is
3mi number of quantization bins.

V. NUMERICAL RESULTS

In this section, we verify the performance of our threshold-
based one-bit update policies. We first compare four differ-
ent one-bit update policies: updates without packet cancella-
tion proposed in Section III-B (denoted by No-pck-cancel),
cancellation-enabled updates (denoted by Pck-cancel) proposed
in Section III-C, threshold-based updates with one bit inspired
by [8] (denoted by Th-based (1 b)), and one-bit updates with
freshest information inspired by the optimal policy in Section II-
I-A (denoted by Fresh-info (1 b)). Given (Δ, μ), the Th-based
(1 b) policy tries to generate a new packet after a successful
transmission thus the queue being empty. If ẽt ≥ Δ (or≤ −Δ),
then a packet having Δ (or −Δ) is generated and the virtual
error ẽt decreases (or increases) by Δ, i.e., ẽt+1 = ẽt −Δ
(or ẽt+1 = ẽt +Δ). If |ẽt| < Δ, then it waits until ẽt hits the
thresholds Δ or −Δ. The Fresh-info (1 b) policy generates a
packet if |ẽt| ≥ Δ with the corresponding sign at the beginning
of each time slot, and if the packet is not successfully trans-
mitted to the receiver, then the packet is discarded at the end
of the time slot6. For example, suppose that xi,0 = x̂i,0 = 0,
(xi,t)

7
t=1 = (1, 2, 1, 0, 1, 2, 3) and Δi = 2 as in Fig. 6, and that

no packets have been successfully delivered to the receiver for
t = 1, . . ., 7. Then, under the Pck-cancel policy, the queue has
three packets with the value +1, −1 and +1 generated at time
2, 4 and 6 at the end of time 7, and the virtual error ẽi,7 at time 7
is 1. On the other hand, the queue has one packet with the value
+1 generated at time 2 under the Th-based (1 b) policy at the
end of time 7, and the queue has one packet with the value +1
generated at time 7 under the Fresh-info (1 b) before discarding
the packet at the end of time 7.
We first consider remote tracking of a single source. The

source has transition probability p = 0.4 and activation prob-
ability μ = 0.04, and the simulations run for T = 105 time slots

5For 1-dimensional case, the 0 can be replaced by not sending a packet.
6Under Th-based (1 b) policy, the generated packets are not discarded. How-

ever, under Fresh-info (1 b) policy, the generated packets are discardedwhenever,
at the end of the time slot, the generated packet at the beginning of the time slot
is not delivered to the receiver. Thus, they can be viewed as non-preemptive and
preemptive policies, respectively. In addition, the cancellation-enabled one-bit
update policy can be viewed as a preemptive policy.
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Fig. 7. Average absolute error of four different one-bit update policies for a
single source with different thresholdsΔ given p = 0.4 and μ = 0.04.

and are averaged over 200 repetitions. Fig. 7 shows the average
absolute error of four different one-bit update policies with
respect to thresholdΔ. For No-pck-cancel policy, the thresholds

Δ >
√

2p
μ ≈ 4.4741 is the stability condition as stated in Theo-

rem3.2,while the other three policies (Pck-cancel, Th-based and
Fresh-info) make the system always stable. Further, Pck-cancel
policy outperforms the other one-bit update policies for all Δ.
Next, consider remote tracking of multiple homogeneous

sources with pi = p = 0.4 for all i. Since the sources have the
same dynamics, it is reasonable to set the activation probabil-
ities μ = 1

n for all the sources given n number of sources in
the system. For the cancellation-enabled one-bit updates, we
use two different thresholds: one is the threshold Δμasym

=


√

2p
1
n (1− 1

n )n−1 �, which is the threshold obtained in Section III-E,
and another one is the optimal threshold Δ∗, which is numeri-
cally found through exhaustive search. For Th-based (1 b) and
Fresh-info (1 b) policies, the optimal thresholds Δ are also
numerically found. The simulations run for T = 105 time slots
and are averaged over 200 repetitions.
Fig. 8 shows the average absolute error of four different one-

bit update policies with respect to the number n of sources with
and without dummy packets, which are assumed for analytical
simplicity. Under no dummy packet assumption (denoted by
No dum.), each source tries a transmission only when it has
an update packet in its queue. Fig. 8(a) shows that, under the
dummy packet assumption, the gap between the cancellation-
enabled one-bit updates with thresholds Δμasym

and Δopt is
unnoticeable, and Pck-cancel policies with Δμasym

and Δopt

outperform the other two update policies. On the other hand,
Fig. 8(b) shows that, without the dummy packet assumption,
the gap between Pck-cancel with Δopt and Fresh-info (1 b)
is unnoticeable. In the numerical simulations, it is observed
that, at the optimal threshold obtained by exhaustive search,
Fresh-info policy generates update packets less frequently than
Pck-cancel policy. Note that if a source sends update packets
too frequently then the source generates too much traffic on
the network resulting in the performance degradation. On the
other hand, if a source sends update packets too occasionally,
then its estimation error will be large, which also results in
the overall performance degradation. With dummy packets, a
source under Fresh-info policy cannot use the benefit giving
more transmission chances to the other sources. Further, note
that removing dummy packets improves the error performance

Fig. 8. Average absolute error of four different 1-bit update policies for
homogeneous sources with the different number n of sources given p = 0.4.

for all update policies. Asmentioned in Section II-A, the dummy
packet assumption is made for the tractability of the mathemati-
cal analysis, but itwouldbemorebeneficial not to use the dummy
packets in practical operation. It will also be an interesting open
problem to analyze the performance of the system without the
dummy packet assumption.
Next, we compare the cancellation-enabled one-bit update

policy with three different update policies with perfect informa-
tion: the optimal policy in Section III-A, which keeps the queue
with the freshest packet (denoted by Fresh-info (perf. info.)),
threshold-based update policy in [8] (denoted by Th-based (perf.
info.)), and zero-waiting update policy (denoted by ZW (perf.
info.)). Note that “perfect information” means that the policy do
not restrict the number of bits for information, i.e., the packet can
have the exact value at the time it is generated. The Zero-waiting
policy generates a new packet with the actual state value after
successful transmission. The Th-based (perf. info.) policy is
similar with the Th-based (1 b) policy except that, if ẽt ≥ Δ
(or≤ −Δ), a packet having the actual value ẽt is generated and
the virtual error ẽt becomes 0. If |ẽt| < Δ, then it waits until ẽt
hits the thresholds Δ or −Δ.
Fig. 9 shows the average absolute error of the four different

update policies with respect to thresholdΔ with a single source
having transition probability p = 0.4 and activation probability
μ = 0.2. The simulations run for T = 105 time slots and are
averaged over 100 repetitions. As can be seen, the Pck-cancel
policy outperforms the zero-waiting and threshold-based update
policies with perfect information at its optimum threshold level.
Fig. 10 shows the optimality ratio of average absolute error

with respect to the number n of homogeneous sources with
p = 0.4. The simulations run for T = 105 time slots and are
averaged over 500 repetitions. It can be seen that the optimality
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Fig. 9. Average absolute error of the 1-bit Pck-cancel policy and three different
M bits update policies for a single source with different thresholds Δ given
p = 0.4 and μ = 0.2.

Fig. 10. Optimality ratio of three different update policies for homogeneous
sources with the different number n of sources given p = 0.4.

Fig. 11. Optimality ratio of five different update policies for homogeneous
sourceswith different numbern of sourceswhen a noise is a zero-meanGaussian
random variable with variance 4.

ratio converges to some constant as the number n of sources
becomes large for all three update policies. In general, transmis-
sion time and power increase as the packet size (i.e., the number
of bits for the state information) increases. This suggests that
the cancellation-enabled one-bit update policy could be greatly
beneficial for applications where transmission power or shared
channel capacity is limited.
Next, we consider the general source dynamics studied in

Section IV: random walks with (i) a Gaussian noise and (ii)
an asymmetric noise. Figs. 11 and 12 show the optimality ratio
of five different update policies when a noise is a zero-mean
Gaussian random variable with variance 4 and when a noise
is an asymmetric noise with parameters p = 0.5 and q = 0.3,
respectively. The simulations run for T = 105 time slots and
are averaged over 500 repetitions. As can be seen in Figs. 11
and 12, the optimality ratio converges to some constant and

Fig. 12. Optimality ratio of five different update policies for homogeneous
sources with different number n of sources when a noise is asymmetric with
p = 0.5 and q = 0.3.

the Pck-cancel policy outperforms the others at its optimum
threshold level.

VI. CONCLUSION

Motivated by massive IoT network applications, we consid-
ered the scenario of a large number of low-complexity devices
updating their evolving state to a receiver over low-capacity ran-
dom access channels. In particular, we developed decentralized
update policies that require one-bit of information per update for
minimizing the expected absolute (estimation) error when states
of sources evolve according to symmetric random walks. We
first studied a benchmark first-come first-serve (one-bit) update
policy and showed that this policywill fail to stabilize the system
under some conditions. Then, we introduced a cancellation-
enabled one-bit update policy that improves the performance of
the benchmark policy and makes the system always stable. We
proposed a choice of parameters for the cancellation-enabled
policy and showed that the cancellation-enabled policy with
the sub-optimal parameters has optimality ratio 13

√
2

12 to the
optimal policy that does not restrict the number of bits for each
update. Through simulations, we identified that the sub-optimal
parameters are robust to errors compared with the optimal pa-
rameters obtained through exhaustive search, and compared the
cancellation-enabled one-bit update policy with zero-wait sam-
pling and threshold-based sampling policies that require more
than one-bit of information per update. The numerical compari-
son showed that the cancellation-enabled update policy at its op-
timal threshold level outperforms the multi-bits update policies.
This suggests that the cancellation-enabled one-bit update policy
could be greatly beneficial for applications where transmission
power or shared channel capacity is limited. Further, analytical
comparison between update policies used in the simulations can
be an interestingopenproblem, especially a comparisonbetween
the cancellation-enables one-bit update policy and the one-bit
update policy with the freshest information.
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