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Abstract—The use of robots to assist first responders in
disaster response has seen increasing adoption as underlying
technologies mature. They are inherently adept at real-time
knowledge acquisition and are able to perform a myriad of
pre-stabilization tasks within hazardous environments in lieu
of jeopardizing human lives. Heterogeneous robots operating
in teams can collaborate to facilitate first responders’ decision
making by providing situational awareness (what is happening
and when). However, the cognitive load placed on the human
must be carefully managed; too much information and the human
becomes overwhelmed, too little, and the human becomes over-
reliant on the autonomy and hence complacent. Both lead to poor
outcomes, with the potential loss of lives. Our work in progress’s
approach to this shared autonomy problem is to apply distributed
machine learning to identify behaviors of interest from temporal
changes to LiDar or video images. The overarching goal is a
conceptual framework where a heterogeneous team of robots
(aerial, ground robots equipped with different sensing, and com-
putational capabilities) may rapidly learn the pertinent aspects
of an unfamiliar dynamic terrain, and accordingly, improve
the decision making and projection capabilities of human first
responders. Essentially, robots working together to collect and
disseminate actionable knowledge in the expedited manner to
save human lives.

Index Terms—distributed learning, disaster response, human-
robot interaction.

INTRODUCTION

Disasters are discrete naturally occurring or man-made
events that surpass local resources purposed for respond-
ing to, and containing its consequence [1]. While there are
no single accepted model for the management of disasters,
activities commonly cluster about four phases: prevention,
preparedness, response, and recovery [2]. The application of
robotics to this domain historically concerns response efforts
[3], although there are emergent applications in recovery
efforts to reestablish normal operations. As such, we curtail
our discourse to robots in response work. Response activities
typically progresses in the systematic manner with distinct
stages that include damage assessment, and search and rescue
as priorities. After forty-eight hours the mortality rate peaks;
so response is viewed as a race against time, balancing the
urgency to reach as many survivors, while being deliberative as

not to incur additional risks to responders and victims alike [1].
These activities are data intensive, time constrained and may
be unsafe for humans and animals. The domain’s requirement
characteristics that informs our approach include:

• Incomplete and uncertain information from disparate
sources required for decision making from situational
awareness.

• An overloaded or damaged communication infrastructure.
• Limited resources with rapidly changing needs.

These characteristics combined with the nature of the work
has attracted the attention of the robotics research community
to leverage the potential of the domain to save and protect
human lives.

One of the first uses of robots in disaster response was in
the aftermath of the world trade center bombings, searching
for victims of the attack [4]. They are primarily employed in
acquiring situational and environmental awareness (reconnais-
sance and mapping), interacting with survivors and structures,
and in support activities such as creating and sustaining a
communication backbone. In order to cover the most area
under these timing constraints, disaster robotics researchers are
exploring the use of large dissimilarly capable and equipped
teams of robots working in concert with responders. These
heterogeneous robotic teams collaborating with humans has
the potential to gather actionable data and provide services far
in excess of the same number of machines operating indepen-
dently. Their ability to keep human responders out of harms
way combined with the proficiency in providing specialized
capabilities is becoming more recognized and valued. This
value is not without its challenges. To realize competency,
these teams should autonomously form coalitions to merge
individual capabilities, and coordinate tasks allocation towards
a central goal. Furthermore, failures, once detected, must be
handled in a methodical and systematic manner. The proba-
bility that a failure is detected and correctly handled is called
coverage. The inclusion of coverage for autonomous multi-
robot teams in crisis response is critical to mission success yet
remains largely unexplored. This work specifically addresses
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dissimilarly equipped terrestrial and aerial robots within the
response phase, focusing on environmental mapping, and
identifying behaviors of operational interest as primary thrusts.

In our context, behaviors that would foster situational aware-
ness are those about human and animal movement within
a search space or structural safety concerns such as slight
movements in the support system of a building that may signal
collapse.
Our overarching goal is autonomy assisted crisis response
using a peer-to-peer distributed learning approach under
coverage constraints. For a large team of robots, we need
to optimize coverage and task assignments within the search
space. The distributed learning paradigm uses a large number
of nodes coordinating to train a model, orchestrated by a cen-
tral server. While the training data is decentralized, a solitary
central server introduces a single point of failure. Additionally,
the communication from the nodes to the central server incurs
high costs. Distributed learning has a high potential to congeal
knowledge for human situational awareness, and to automate
task allocation, however its low tolerance to failure and high
communication overhead would render it infeasible for the
demands of a typical crisis scenario. Recently there have been
approaches to decentralize the global model by offloading
to a random subset of nodes [5] or to distribute over a
network/graph where node only communicate with one-hop
neighbors [6]. In our approach, robots are (re)dispatched from
a base that serves to replenish power. We address the central
server concern by utilizing these bases as computational re-
sources. Decentralization occurs by using dynamic selection of
bases, based on evolving capabilities (communication range,
power reserve, location) to support global knowledge distribu-
tion. The realization of optimal subset network approach may
be impactful to several other domains beyond crisis response.

The remainder of this paper is organized as follows. In the
next section we present an indicative scenario to contextualize
the approach. Next we introduce the approach itself in section
II, then conclude.

I. INDICATIVE SCENARIO

Consider a situation in the aftermath of an earthquake in a
densely populated city. The initial damage that has occurred
is subject to a cascading effect as the systems upon which
the city depends ( utilities, transportation, communication, and
residential and commercial buildings) are interconnected [7].
This has led to maps and way-points of the infrastructure to
be rendered useless. As is typical, the situation is highly dy-
namic, hazardous and evolving. The primary focus is damage
assessment and search and rescue; success is predicated on
minimizing the time taken to accomplish sub-tasks.
Several search and rescue teams comprising of human,animals
and robots will deployed to the disaster area, also known as
the hot zone. Their initial task is to assess the new landscape
with the forefront concern to save and preserve human life.
Search and rescue activities are performed along with damage
assessment. The robots will need to assess structural integrity
and debris, identifying areas of risk and safe routes for

humans. As such there is a necessity to ascertain ground truths
as to risks to humans to begin, and while, conducting the work.
To exacerbate the challenge we can assume communication
has been disrupted and alternative methods will need to be
employed.

As such, a team of dissimilarly equipped robots (heteroge-
neous) is first deployed to search for survivors by detecting
biological motion and collect situational data via SLAM to
determine safe paths for first responders incursion. Each robot
gathers data, incrementally refining the model and map until
their power resources are near depletion. They then return to a
base to be recharged, their data downloaded, and they are re-
dispatched. To get the most pertinent information as soon as
possible, the teams should be first sent to high-value locations
that are most likely to be risky. A Deep learning model will
be employed, to predict the risk at each location overlayed
with probable survivors. The results will inform subsequent
redeployments for confirmation using alternate or more precise
sensing.

After collecting sensing data at a new location, a team
needs to decide whether or not to start the model re-training
procedure. Although updating the machine learning model can
improve situation awareness for the robotics team, the model
training procedure is time and resource intensive. The decision
should be made based on several factors, including the new
collected sensing data, how the current model’s prediction re-
sults match the collected ground truth, the available resources
and capability of the team, and the the probability of meeting
another robot for exchanging updated the local model. The
problem is non-trivial as the disaster response teams may not
be able to communicate with each other and each team needs
to make decisions towards realizing global optimization based
on their limited local information.

II. APPROACH

A. Distributed Learning of Temporal Changes to Images

In the context of machine learning to support situational
awareness for disaster response, we seek to learn the safe
paths for human responders and the existence of biological
movement (survivors) based on direct sensing and deriving
knowledge from temporal changes to SLAM liDar or video
images. For example, if a sequence of image shows rapid
changes in a small area for a relatively smooth object, this may
indicate the presence of a human. Similarly slower changes
observed in larger objects may indicate imminent collapse.
Since the movement of biological and structural elements are
non-exact, it is well suited to be framed as an semi-supervised
classification problem. Discerning between biological (human
and animal) and object movement is based on the biological
systems typically having more degrees of freedom therefore
exhibiting more complex patterns of motion [9].

The distributed learning of what image changes mean de-
pends on refining models across multiple robots and their bases
as nodes. In a large multi-dimensional data-set such as that in
the scenario, we necessarily require this parallelized approach
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to overcome the computational limitations of the size of the
dateset.
Framing the Problem: If we divide the area A in a grid
pattern (MxN) the approach is to: (1) dispatch robots min-
imizing redundancy to tile m,n where m ∈ M and n ∈ N ;
(2) optimize the correct classification of temporal anomalies as
α, biological , β structurally relevant shifts, or other; and (3),
facilitate situational awareness by complete a coverage map
of A in a manner that tiles are notated by probabilities of the
existence of α and β . In a naive manner we may structure the
problem at (2) as one of logistical regression to binary classify
α the existence of biological movement or not.
Data Partitioning : Each tile is assigned to a different robot
as a computing node. Let Dij represent the dataset on tile i, j.
Local Model Updates: Each robot will independently com-
putes local updates to the model parameters based on its
tile anomaly presence. In some occasions the robot may call
for assistance from another (see [10] for a more granular
treatment of assistive behavior) In this case the sub-team will
collaborate to ensure coverage. To compute gradients for the
log-likelihood:

−1/ri

ri∑
j=1

(yij − ρij)Xij (1)

Where: ri is the number of instances on robot i; yij is the true
label of instance j on robot i; ρij is the predicted probability
of instance j on node i; and, Xij is the feature vector.
Communication and Aggregation: Robots communicate
their local updates to their bases that act as a central coordi-
nator or parameter server. This involves aggregating the local
updates to update the global model parameters.

B. Assuring Coverage

Within a particular tile, especially in a disaster response
scenario, a particular terrestrial robot may not have the lo-
comotion capability (wheeled, tracked, legged). When this
occurs blindspots may occur in the LiDar image due to
an obstruction as in Figure 1 In this event a robot will
summon assistance to complete coverage as in Figure 2. In our
simulation we demonstrate the feasibility of Lidar coverage
through coordinated relocation as in Figure 3.

Once coverage is achieved the subsequent task is to effec-
tively merge sensor readings.

Figure 4 provides the processing schema for our multi-robot
LiDAR based situational awareness strategy. The workflow
begins with locally optimized RANSAC processing [11] to de-
tect lines for constructing landmarks. The detected landmarks
are compared with existing previously detected landmarks
through the Association Processing. The Landmark Tracking
establishes tracks and feeds these into the SLAM processing
which integrates the Robot IMU data with the track positions
of the landmarks.

The LiDAR point clouds are also passed to the Blob
Detection after the RANSAC removes the larger landmark
feature points to detect moving targets. The core of the

Fig. 1. Lidar image showing blind spot

Fig. 2. SLAM

work associated with identification of biological and structural
behaviors occurs in the moving object association
and moving object tracking. This is implemented by
modifying the python based Motion Tracker Beta [12]. Al-
though this platform is purposed for video, we have had some
promising initial results with Lidar temporal differentiation.

Another class of moving objects that is of key impor-
tance are fellow robots. They identify each other through
their tracks and in the Multi-Robot fusion the maps of the
various robots are integrated into a single map that is in a
centralized coordinate system rather than the individual robot-
centric systems. As discussed in subsection II-B, robots will
coordinate relocation to assure coverage at this juncture. Both
the landmarks tracking and the object tracking are performed
via Kalman filters. As the RANSAC processing converts the
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Fig. 3. Simulation Platform showing two robots coordinating coverage by relocation

Fig. 4. Processing for Multi-robot LiDAR

r-theta information into x-y linear objects a traditional Kalman
filter can employed for the landmarks. The blob detections are
tracked using the Extended Kalman filter since their detections
remain in r-theta space.

C. Survivor Social Aspects - Framing

Within search and rescue, survivors more likely will be
cognitively distressed due to injury and lack of contact with
the outside world. The social interaction with a rescuing
robot should be carefully managed as these dependents may
experience scare and isolation. As such social role framing as
a structure of expectation is required to ensure the appearance
of support, companionship and calming [13].

D. Risk

We introduce a very simple model for predicting the risk
of a location, which can be specified as (x, y, z, G⃗, L⃗) → R,
where (x, y, z) denotes the longitude, latitude, and altitude

of the location, G⃗ denotes gas transmission pipelines, and L⃗
denotes hazardous liquid transmission pipelines. When a team
finishes assessing the risk at its current location, it runs the
risk prediction model, calculates the risks of nearby locations,
and select one with the highest risk as it next target. As
the model is developed for general purpose and cannot fit
exactly into the city after the earthquake, a team t1 will use
its risk assessment results to re-train the model by updating
its parameters w1. When t1 meets with another team t2 whose
updated parameters are denoted as w2, the two teams exchange
their parameters and use the federated average algorithm [8] to
calculate a new optimal parameter set w′ = FedAvg(w1, w2).
The procedure is shown by Figure 5.

III. CONCLUSION

In this paper we introduced our approach to foster situa-
tional awareness in first responders using a distributed learning
methodology with sensor fusion. We have presented some pre-
liminary simulation results performed on real lidar equipped
robots towards proof of principle. There are several critical
aspects that we intend to address or are being investigated in
parallel.
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