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Abstract

When modeling and characterizing grain boundary networks (GBNs), there are situations where local
descriptors such as triple junction fractions (TJFs) and special boundary fractions are identical between
two microstructures, but the performance or properties between the two are distinct. These differences
are caused by higher length-scale features that cannot be identified using local structural descriptors.
Spectral graph theory (SGT) has been used previously to encode network length features, but did not
enable direct quantitative comparisons between the structures that cause property differences. In this
paper, we derive a harmonic representation of diffusion on GBNs based on SGT. This method enables
direct quantitative comparisons between GBNs for microstructures with different morphologies, and
identifies network length features responsible for structural and performance differences, which local
descriptors cannot explain. We show an interpretation of the eigenmodes generated by this method
that explains long-range structural causes of certain property differences. We apply this method to
a large library of microstructures, and identify structural classes through clustering. We show that
equal proportioned TJF and J1 dominated microstructures are the most sensitive to network length
differences because of boundary configurations, while J2-J3 dominated structures are the least sensitive.
This method also identifies network length features that result in anomalous percolation/non-percolation
compared to predictions based on local correlations alone.
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1. Introduction

In microstructural materials characterization,
the grain boundary network (GBN) is a high-
dimensional feature that describes the connectiv-
ity of grain boundaries [1]. As multiple macro-
scopic properties are dependent on the configura-
tion and properties of grain boundaries, interpret-
ing the structure of the GBN is important to under-
tanding the behavior of micro to macro structure-
property models [1–5].

Due to the high-dimensional nature of GBNs,
quantitatively describing the similarities and dif-
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ferences between them presents a challenge. Sta-
tistical measures such as triple junction fractions
(TJFs) are useful as long as the property of inter-
est does not depend on connectivity further than
a single triple junction; however, an example of
when this is not sufficient is for diffusivity along
grain boundaries. As diffusivity is path dependant,
a local connectivity descriptor such as TJFs may
not capture the full information needed to accu-
rately predict the macroscopic, or ensemble, mate-
rial property [1].

We will use Fig. 1 as an example throughout this
paper. Both microstructures in Fig. 1 have identi-
cal TJFs, calculated as the fraction of triple junc-
tions with 0, 1, 2, or 3 special boundaries, but there
is a non-negligible difference in Deff , the effective,
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or ensemble, diffusivity, calculated using a previ-
ously derived, high-contrast model [1]. Therefore,
there must be an underlying structural difference
that causes the property difference.
While we give diffusivity as a specific example,

there are varied applications where studies seek to
understand long range effects of grain boundaries.
Recent work in thermomechanical processing used
coincident site lattice (CSL) labels and twin-related
domains with maximum random boundary connec-
tivity (MRBC) to characterize GBN effects on cor-
rosion [5]. Another study on corrosion finds that
conditions at boundaries affect corrosion severity
through interrupting or allowing connected path-
ways [6].
The creep response of materials at high temper-

atures has also been shown to improve through
addition of specific nanograin stable GBNs [4].
This method used TEM, CSL, and twin boundary
characterization to visually identify specific GBN
length structures that reduced high temperature
creep, opposite to common grain boundary behav-
ior at high temperatures.
Other mechanisms such as fracture and percola-

tion can be modeled with higher fidelity by under-
standing the full connectivity of grain boundaries
through materials [2, 5, 7–11]. Studies such as these
rely on percolation theory and local measures such
as TJFs to determine failure criteria, but the con-
figuration spaces of these models are difficult to ex-
haustively search and test for failure conditions.
To overcome this limitation, recent studies seek

to create automatable, quantitative analysis of
highly connected components in materials. A field
of math that has shown success in achieving this
is Spectral Graph Theory (SGT), which allows for
analysis of sets of vertices, edges, and properties on
both [1, 12]. This has been applied in grain growth
simulations to quantify anisotropy, and to identify
and characterize abnormal grain growth [12].
The method used to calculate effective diffusivity

in Fig. 1 uses SGT, with a high contrast diffusiv-
ity model, to encode network length grain bound-
ary features and generate material property predic-
tions, derived in previous work [1]. SGT in this im-
plementation uses the Laplacian matrix representa-
tion of a meshed GBN, which encodes the full con-

nectivity information of the individual boundaries
[1]. The eigenvalues and eigenvectors of this matrix
form the spectrum of the meshed microstructure.
In our prior work [1], a single eigenpair was se-

lected from the spectrum of a GBN that repre-
sented the dominant microstructural feature con-
tributing to the effective, or ensemble, diffusivity.
This feature can be mapped back onto the mesh
of the microstructure to visualize and qualitatively
characterize the feature as either the dominant dif-
fusive path or the barrier to diffusion, depending
on the gradient of values [1]. However, this single
eigenpair is, by nature, a truncation of the total
information provided by the decomposition of the
Laplacian matrix.
In this paper, we show that a variation of this

harmonic Laplacian representation of GBN diffu-
sion, which uses all eigenpairs, can enable deeper
structural characterization for a broad range of
GBN configurations. We do this by:

1. Deriving a PDE representation of diffusion on
GBNs

2. Deriving a harmonic expansion representation
of the diffusion PDE

3. Developing a difference measure between two
microstructures based on this harmonic repre-
sentation

4. Showing that the harmonic representation en-
codes long-range GBN structure

Using these methods, we show how a harmonic
solution for GBNs can remove structure-property
ambiguity by testing if microstructures that are
well-separated in TJF space are also distinct in har-
monic space (explaining the dramatic differences
in properties for microstructures that are identical
according to local structural descriptors, such as
those shown in Fig. 1). Also, by studying spatial
clustering in the harmonic representation space, we
identify structural classes of GBNs, that were unde-
tectable using previously available tools, and which
explain differences in observed effective properties.

2. Methods

2.1. Derivation of the GBN Diffusion PDE
Consider the general form of the diffusion equa-

tion:
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Figure 1: Example of two microstructures with identical TJFs, but very different effective diffusivities.

∂C(r, t)

∂t
= ∇ · [D(C, r)∇C(r, t)] (1)

where C is the concentration of the diffusing
species, r is the position vector, D is the diffu-
sion coefficient, and t is time. Solving this equation
yields an expression for the the concentration field
C(r, t). In the present case, we are interested in
steady state diffusion, and we consider situations
in which the diffusion coefficient is not concentra-
tion dependent. Under these conditions, Eq. 1 can
be simplified to:

0 = ∇ · [D(r)∇C(r)] (2)

where D(r) makes explicit the position dependence
of the diffusion coefficient. Applying the product
rule we obtain

0 = D(r)∇2C(r) +∇D(r) · ∇C(r) (3)

where ∇2 is the Laplacian operator.
We impose Dirichlet boundary conditions in the

horizontal direction (X), and periodic boundary
conditions in the vertical direction (Y ), and we re-
strict our attention to the kinetic type-C regime, in
which intergranular diffusion dominates (i.e. diffu-
sion occurs only along the GBN) [1, 13, 14].

To numerically solve Eq. 3 in this context, we dis-
cretize the GBN into vertices and edges, thereby
constructing a graph representation of the GBN,
following the methods of Johnson et al. [1]. An
example of this GBN discretization with the speci-
fied boundary conditions is shown in Fig. 2, where
i and j are neighboring vertices connected by an
edge.
The discrete representation of GBNs requires the

assumption that between two vertices i and j the
grain boundary length, area, and diffusivity remain
constant. This means that that on eij, ∇D = 0,
which further simplifies Eq. 3 to:

0 = D∇2C (4)

A weighted undirected graph, G = (V,E,w), is
defined by the set of vertices, V , the set of edges, E,
and the corresponding set of edge weights, w [15].
Calculus operations exist in graph contexts, and al-
low for discrete analogs of continuous operators[16].
The weighted graph Laplacian is the discrete ana-
log of the Laplacian operator, and is defined as

(divw(∇wf))(xi) =
∑
xj∼xi

w(xi, xj)(f(xj)− f(xi))

(5)
where xi is a vertex of G, and the sum is over all
vertices, xj, that share an edge with xi (denoted
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Figure 2: Example of a GBN discretization and the bound-
ary values. The color of the interior edges represent Dij ,
red for 10−8 m2/s, and black for 10−15 m2/s. The green
edge represents the diffusion source, and the blue edge the
diffusion sink. The upper and lower edges are periodic.

xj ∼ xi), and f is the function of interest on the
vertices, which, for our purposes, corresponds to C,
the nodal concentrations.

Assuming constant properties on edges results in
a weighting function of the form wij = DijLij/Aij,
following a finite volume representation, where D is
the diffusivity assigned by the constitutive model to
that edge, L is the length of the edge, and A is the
cross-sectional area of the grain boundary, which
we set to be constant [1]. The diffusivity of a grain
boundary will be modeled with a simple bimodal
high-contrast constitutive model for special and
general grain boundaries [1, 7, 17, 18]. The con-
stitutive model we use will assign to special bound-
aries (<15° disorientation angle) a low diffusivity
(10−15m2/s), and to general boundaries (≥15° dis-
orientation angle) a high diffusivity (10−8m2/s).
The ratio between low- and high- diffusivity was
chosen to be consistent with reported differences
in kinetic type-C diffusion and boundary diffusion
differences in experiments [14, 18, 19].

In matrix form the Laplacian can be constructed

as

Lij =



∑
i∼m

DimAim

Lim

if i = j

−DijAij

Lij

if i ∼ j

0 otherwise

(6)

Note that the diffusivity is now included directly
in the weighted graph Laplacian.

Eq. 4 can now be written in the discrete form:

LCn = 0 (7)

where Cn is now a vector of length n, where n is the
number of vertices in G, and is the vector contain-
ing the concentrations at the graph vertices, and L
is the weighted graph Laplacian defined in Eq. 6.

Adding the Dirichlet boundary conditions re-
quires new definitions: The subset of vertices δF ⊂
V , called the exterior set, and F ⊂ V , which is the
interior set. Note that F ∪ δF = V . For simplicity
in calculations, vertex indices on the left surface of
each microstructure are reassigned a single vertex
index, called the source vertex, set at an arbitrary
concentration of 1 kg/m3, and vertex indices on the
right surface are combined into a single sink vertex
set at 0 kg/m3.

Visualization of these conditions can be seen in
Fig. 2. The edge weight information and results
remain unchanged by this index reassignment, it
merely simplifies the math required for calcula-
tions. The source and sink vertices are part of the
exterior set, while all others are part of the interior
set. The vertices can be ordered in such a way as to
partition the vector Cn into the concentrations on
the exterior vertices—which are set by the bound-
ary conditions—and the concentrations on the inte-
rior vertices—which are unknown. This also results
in a corresponding partition of the weighted Lapla-
cian. The Dirichlet boundary conditions can now
be included explicitly by augmenting the system of
equations in Eq. 7, creating the following boundary
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Figure 3: The concentration solution, Cn, for structure 2 shown in Fig. 1. The left figure shows the concentrations on the
mesh as modeled, while the right shows the interpolation of Cn so boundary properties can be seen alongside concentration.
A reminder that there is no diffusion through the bulk in this model.

value problem:

 1 0
0 1

0

Ln×δF Ln×n




csource
csink
c1
c2
...
cn


=



csource
csink
0
0
...
0


(8)

where Ln×δF is the sub-matrix of L corresponding
to the edges between the interior (F ) and exterior
(δF ) vertices (eij : i ∈ δF and j ∈ F ), Ln×n is the
sub-matrix corresponding to the edges between in-
terior vertices, and ci are the vertex concentrations.
Eq. 8 can be recast into a convenient form by first
carrying out the blockwise matrix multiplication

Ln×nCn + Ln×δF

[
csource
csink

]
=

0...
0

 (9)

and then solving for Ln×nCn to obtain

Ln×nCn = B (10)

with

B = −Ln×δF

[
csource
csink

]
(11)

As B is constant for a given microstructure and
set of boundary conditions, Eq. 10 can be recog-
nized as a Poisson equation, the more general in-
homogeneous version of the Laplace equation [16].
Eq. 10 can now be solved using standard matrix
methods to obtain the values of the concentra-
tion field evaluated at each interior vertex (i.e.,
Cn : V → R≥0 is a function over the vertex set)
[16].
The concentration vector can be visualized using

the GBN mesh as shown in Fig. 3. To enable si-
multaneous visualization of the spatial distribution
of GB properties and Cn, we interpolate the val-
ues of Cn across the grains (right panel of Fig. 3).
This is only for visualization, however, as there is
no diffusion through the crystal bulk in this model.
This visualization allows us to see qualitative cor-

relations between GBN structure and long-range
diffusion. However, Ln×n, C, and B are not di-
rectly usable for quantitative comparisons between
microstructures in their current form. For that we
turn to Spectral Graph Theory, and the ideas of
harmonic functions and domains.

2.2. Harmonic Representation of the PDE Solution

Spectral Graph Theory is the study of eigenvec-
tors of the matrix representations of graphs (such
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Figure 4: Example of an eigenvector term from Eq. 14 pro-
jected onto the GBN.

as the graph Laplacian, L), and has recently been
applied to the problem of intergranular diffusion [1].
In contrast to the previous study, the derivation of
Eq. 10 formulates the diffusion problem as an inho-
mogeneous partial differential equation, where the
relevant matrix representation is Ln×n, in contrast
to L [1].

While L is singular, Ln×n is non-singular. We can
therefore obtain the interior vertex concentrations
from Eq. 10 by inversion:

Cn = L−1
n×nB (12)

The matrix Ln×n admits the spectral decomposi-
tion Ln×n = UΛU−1, where Λ is the diagonal ma-
trix containing the eigenvalues of Ln×n, λ1 ≤ λ2 ≤
· · · ≤ λn, sorted in ascending order, and U is the
matrix whose columns comprise the correspond-
ing eigenvectors. Substituting this expression into
Eq. 12 we obtain

Cn =
(
UΛU−1

)−1
B

Cn = UΛ−1U−1B
(13)

and letting A = Λ−1U−1B we obtain

Cn = UA

=
∑
k

akuk
(14)

where ak is the k-th element of the vector A defined
above, and uk is the k-th eigenvector of Ln×n (i.e.,
the k-th column of U). Eq. 14 represents a har-
monic series expansion of Cn, where the uk are the
basis “functions” and the ak are the corresponding
coefficients. As the uk are defined uniquely only up
to a sign, we choose, as a convention, the sign that
ensures ak ≥ 0 ∀ k.
The eigenfunctions, uk : V → [−1, 1], represent

the eigenmodes of the microstructure for the dif-
fusion problem, and these can be visualized most
clearly in the same way that we first visualized Cn,
as a color gradient on the vertices and edges of the
GBN, as shown in Fig. 4.

2.3. Quantifying GBN Diffusion Response

While the spectral decomposition in Eq. 14 gives
quantitative parameters (the ak) that relate GBN
structure to macroscopic performance, they still
cannot be directly used for similarity or difference
comparisons.
If two microstructures had exactly the same sets

of eigenfunctions (uk), then comparisons could be
made simply using the L2-norm of the difference be-
tween their A vectors. However, since the domain
of the eigenfunctions (uk) is explicitly tied to a spe-
cific GBN discretization (V ), different GBNs may
exhibit different harmonics (uk). This is similar, in
part, to Fourier transforms applied over different
spatial domains, where the specific basis functions
for a plane and a disk are different [20]. Therefore,
direct comparisons of A are not guaranteed to be
comparisons of equivalent eigenmodes.
However, a similar problem exists in signal analy-

sis of musical instruments [21, 22]. While the geom-
etry of different musical instruments vary widely,
meaningful comparisons can still be made on the
basis of their frequency response (i.e., the way they
sound) [22].
The spectral formulation employed to obtain

Eq. 14 enables the definition of the power spec-
trum of Cn for each microstructure, which is simply
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Figure 5: Discrete power spectra of the GBNs shown in
Fig. 1. Note the differences and similarities in peak heights
and locations.

a plot of ak vs. λk, where the eigenvalues indicate
the spatial frequency of the corresponding eigen-
mode1, 2. As an example, Fig. 5 shows the power
spectrum of the microstructures from Fig. 1.
From Fig. 5 we can already begin to see the use-

fulness of this representation. Although the two
microstructures in Fig. 1 are indistinguishable us-
ing traditional structure metrics (the TJFs), the
power spectrum reveals that the dominant eigen-
modes of the two microstructures correspond to dif-
ferent spatial frequncies.

2.4. Quantifying GBN Difference

To compare microstructures quantitatively using
their power spectra requires the definition of a dis-
tance or difference measure. Such a difference mea-
sure should have a small value for two microstruc-

1The usual definition of a power spectrum would employ
|ak|2; however, since ak ≥ 0 ∀ k there is no practical differ-
ence and we refer to ak vs. λk as the power spectrum.

2Because the values of Dij are small, for numerical sta-
bility we scale the edge weights in Ln×n by a factor of 1015.
Consequently the values of the λk are scaled by the same
factor.

tures with similar power spectra, and a large value
for two microstructures with very different power
spectra.
The power spectrum can be seen as a set of Dirac

delta functions of amplitude ak located at λk. The
discrete nature of these power spectra makes di-
rect comparisons overly strict. For example, in the
inset of Fig. 5, there are two peaks with similar
frequencies (log10(λ) ≈ −4.6) and amplitudes, but
since they are not exactly equal a Euclidean dis-
tance will not result in a small contribution to the
total distance as expected. We would expect that
the well separated peak from Structure 1 in the in-
set denotes a distinct feature and should contribute
to a large difference, but we would expect that
features close together, like the almost matching
peaks, would contribute a difference close to zero.
Moreover, direct comparison of two discrete power
spectra that are identical at all points but shifted
horizontally by an infinitesimal amount relative to
one another would yield as large a distance as two
power spectra that are completely unalike.
A solution that corrects for this discretization ef-

fect is to replace the discrete power spectra with
continuous ones by spreading out each peak. We
do this by replacing each peak in the discrete power
spectrum with a Gaussian of amplitude ak, cen-
tered at the corresponding λk, and having a stan-
dard deviation of σ (see Fig. 8).
The value of σ is chosen to be a single universal

value of σ = 0.05 for all microstructures, deter-
mined by a sensitivity analysis of σ vs. continuous
power spectrum distance, with the distance defined
by

d(A1, A2) =

√∑
i

[A1(λi)− A2(λi)]
2 (15)

where the λi are a universal set of quadrature
points. The optimal value of σ was selected to be
as small as possible while ensuring that the inter-
spectrum distances are stable against small pertur-
bations of σ (see Appendix A).

3. Results

Using an existing library of 1771 2D microstruc-
tures [2] having TJFs that spanned the TJ config-
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uration space, we calculated the A(λ) (i.e., the Cn

power spectra) for each as described in Sections 2.3
and 2.4.

3.1. The Eigenvalue Spectrum Encodes GBN
Structure

In Fig. 6, we present the eigenvalue spectra for a
diverse set of microstructures. This set includes the
bounds of all eigenvalue spectra, so all microstruc-
tures fall between these values. A notable feature
common to all of the spectra is a spectral gap or
jump, where the eigenvalues of a single microstruc-
ture have a large discontinuity.

At first glance, the index of the eigenvalue jump
appears to correlate with the fraction of low-angle
grain boundaries (LAGBs). This correlation holds
for all of the microstructures considered here, as
shown explicitly in Fig. 7. Therefore, the eigen-
value spectrum encodes the boundary composition
of a microstructure.

However, even for two microstructures with
nearly identical eigenvalue spectra there are dis-
tinct differences between the boundary configura-
tions, concentration gradients, and evenDeff (com-
pare the pairs of microstructures in the top-left and
top-right of Fig. 7).

The configurational differences are encoded in U ,
the eigenvectors of each microstructure. Fig. 9 il-
lustrates this. For a given eigenpair, if λk is lower
than the spectral gap then uk has gradients along
connected sections of LAGBs, and if λk is above the
spectral gap then uk has gradients along connected
section of HAGBs. U , the full set of eigenvectors,
describes the set of all connected (or isolated in
the case of the third eigenpair of Struct 1) sec-
tions of grain boundary types that exist in a given
microstructure. However, we do not know from
U alone which configurational attributes/features
contribute the most to performance.

3.2. The Power Spectrum Encodes the Structure-
Property Relationship

In Eq. 14 we defined the performance (Cn), the
structure (U), and the link between the two (A).
Using our original example from Fig. 1, we can

show how the power spectrum can be used to dis-
tinguish different GBNs, and identify the underly-
ing configurational causes of those differences, as
illustrated in Fig. 8.
First, both microstructures in Fig. 8 have iden-

tical TJFs, but very different Deff , which shows
the presence of a long range effect. Second, both
have very similar eigenvalue spectra, which from
Section 3.1 means that the large property differ-
ence is not caused by differences in LAGB length
fractions, but by a configurational difference (i.e.
specific eigenvectors in U).
By using the power spectra formulation of Eq. 14,

we can now identify eigenmodes that dominate the
performance of the respective GBNs and explain
their difference. Both power spectra exhibit the
spectral gap between low and high eigenvalues from
the eigenvalue spectra, but the peak heights (ak)
show that structure 2, the high Deff example, ex-
hibits stronger high λk eigenmodes than structure
1.
By selecting the 3 most dominant eigenvectors

of each microstructure, we can visualize the eigen-
vectors on the GBN mesh, as shown in Fig. 9. Of
immediate note, the eigenvectors with frequencies
above the spectral gap show gradients along the
high-angle grain boundaries (HAGBs), while sub-
gap eigenvectors show gradients along the LAGBs.
This follows the behavior expected of a spectral
embedding, where spectral distance between two
vertices is inversely related to the weight of the
edge connecting them [23]. Thus, high frequency
eigenmodes exhibit gradients along the high-weight
edges (in this case the HAGBs), and vice-versa.
The eigenvectors also highlight distinct features

of the respective GBNs (see Fig. 9). For structure 1
the three most dominant eigenmodes highlight, re-
spectively, (i) the primary barrier to percolation at
the perimeter of a HAGB cluster, (ii) the most con-
nected section of HABGs, and (iii) a local grouping
of LAGBs. The dominant eigenmodes of structure
2 highlight, respectively, (i) a cluster of HAGBs
leading to the deepest high-concentration diffusion
front, (ii) the percolating set of HAGBs, and (iii) a
local set of LAGBs.
In both cases, the two highest peaks in the re-

spective power spectra occur above the spectral
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Figure 6: Example microstructures and their corresponding eigenvalue spectra. Deff units are in m2/s

Figure 7: Correlation of the length fraction of low angle
grain boundaries against the normalized eigenvalue jump
index. Dashed line given for 1 to 1 reference.

gap, and therefore highlight configurational differ-
ences related to HAGB clusters, whereas the third
highest peak occurs below the spectral gap and
therefore highlights an important configuration of
LAGBs.
Although insightful, a visual comparison of

eigenmodes across all 1771 microstructures would
be infeasible. To identify overarching trends across
the large library of microstructures, we require a
numerical difference or distance measure between
GBNs, which the power spectrum also furnishes.

3.3. Power Spectrum Classification of GBNs

As there are a large number of pairwise compar-
isons in our dataset we turn to clustering to help
classify and understand the trends and features of
our microstructures. Since we do not know the
number of clusters a priori, we turn to unsuper-
vised clustering to identify broad similarities and
differences.
We use affinity propogation (AP) clustering with

the elements of the similarity matrix defined by

sij = −d(Ai, Aj) (16)

and the exemplar preference defined by the median
similarity of each spectrum to all others (i.e., the
exemplar preference of the i-th spectrum is given by
the median of the i-th row of s) [24]. An exemplar
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Figure 8: Structures 1 and 2 from Fig. 1 (top left), together with their respective eigenvalue spectra (top right) and
power spectra (bottom). Though both structures have identical TJFs and nearly identical eigenvalue spectra, the power
spectrum shows that there are differences in the dominant eigenmodes, which explain the differences in concentration
profiles and effective properties.

Figure 9: Visualization of the 3 most dominant eigenmodes for the two structures from Fig. 1. Note the locations of the
gradients in the eigenvectors.
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is a member of the cluster that falls near the center
of the cluster, and will be used as a reference point
representing that cluster.
AP clustering found 117 clusters from the 1771

microstructures. These can be visualized by sorting
the pairwise distance matrix by cluster, colored by
d(Ai, Aj), as shown in Fig. 10. Each black square
shows the bounds of the clusters found.
Since most clusters have values close to 0 within

the squares, and values much higher than 0 out-
side the square but in the same row/column, the
clusters are generally well-formed, or well sepa-
rated from each other. However, certain clusters
in Fig. 10, such as those in the bottom right, are
very similar in value to surrounding clusters as ev-
idenced by low d(Ai, Aj) values in the same rows.
This can happen due to misclassification error from
AP as a result of the unsupervised nature of this
clustering algorithm.
To validate the separation of clusters, we can

use the exemplar of each cluster as reference points
for mean comparisons. For example, given a single
cluster exemplar, we expect that microstructures in
the exemplar’s cluster would have d(Aexemplar, Aj)
near 0, while the distance from the exemplar to
all other microstructures would be far from 0.
Therefore, we would also expect that the mean
d(Aexemplar, Aj) for all microstructures in the ex-
emplar’s cluster to be close to 0, while the mean
d(Aexemplar, Aj) for all other microstructures be sig-
nificantly larger.
If we use the cluster ID assigned by AP as a

grouping variable, we can use ANOVA and Tukey-
Kramer (HSD) post-processing to identify if, for a
given exemplar, there are specific overlapping clus-
ters. We can repeat this process for all 117 cluster
exemplars to find if this significant mean separation
holds true for each cluster.
ANOVA reveals that most clusters are well

formed at the 0.01 significance level, with all ex-
emplars having at least one significantly different
cluster mean. Using Tukey-Kramer (HSD) post-
processing, out of the 13,689 mean comparisons to
exemplars grouped by cluster label, 13,488 were
found to be significantly different at the 0.01 level
as illustrated in Fig. 11. Therefore, 98.53% of clus-
ter pairs were found to be well separated, with

98.01% found significant at 0.001 level.

To spatially visualize the quality of the cluster-
ing, we used t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) on the continuous power spectra
for dimensionality reduction. Fig. 12 shows the re-
sulting 2D embedding with each point representing
one of the 1771 microstructures, colored by clus-
ter ID. The distance between any two points in
Fig. 12 approximates the high-dimensional pairwise
distance between the power spectra of the corre-
sponding microstructures.

For clarity when discussing the clusters, we will
focus on a subset of 55 clusters that represents
the largest subset whose separations are jointly
pairwise significant at the 0.01 significance level.
Fig. 12 shows how this maximal subset removes
much of the overlap between neighboring clusters.

4. Discussion

We found that spectral information of GBNs en-
codes structural and performance information that
classical GBN descriptors could not, and that this
new information could be used to identify distinct
clusters in the harmonic space. Out of 117 clusters,
a subset of 55 clusters formed a jointly pairwise
significant subset. From this subset of clusters, we
will show how this spectral information enhances
our understanding of current GBN descriptors, and
how the spectral structure informs the properties of
microstructures.

4.1. Correspondence between Power Spectrum
Clusters and Existing Structural Descriptors

From Fig. 8 we showed how two classical GBN
descriptors, TJF and special boundary fraction,
were insufficient to explain a structure-performance
difference. We can use the t-SNE representation of
the spectral clusters, first shown in Fig. 12, to vi-
sualize the general trends of both TJF and LAGB
length fraction on the spectral clusters, as shown
in Fig. 13. In the top panel of Fig. 13, the t-SNE
points are colored according to the TJF color map-
ping shown in the tetrahedron, the middle panel is
colored according to cluster, and the bottom panel
is colored according to LAGB length fraction.
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Figure 10: Distance matrix sorted by clusters found by AP. Each pixel corresponds to a single pairwise comparison.
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Figure 11: Significance at the 0.01 level found by HSD on
the Cluster Means. Yellow indicates statistical significance
at the 0.01 level, while blue indicates that the difference
between clusters is not significant at this level.

Overall, the t-SNE embedding of the spectral
information separates the J3-J2 corners (black-
yellow) from the J1-J0 corners (pink-blue). The
clusters themselves follow this trend, where clusters
consist of a mixture of J3-J2 or J1-J0 TJ types. The
J1 corner (pink) and the center of the TJF tetrahe-
dron (light gray), however, are spread out in the t-
SNE embedding, with few concentrated sections of
J1 dominant microstructures. This is a clear exam-
ple of when there are distinct clusters in harmonic
space, but overlap in TJF space.

We show examples of this overlap in Fig. 14. The
t-SNE embedding shows how some of these overlap-
ping TJF clusters are also close in the embedding,
but there are some clusters that are also distinctly
separate. The power spectra of each cluster help
show the reasons for the varying distances in the
embedding space, where Clust 3 has a distinct high
λk peak in a different location than Clust 2 and 4,
but also has a distinct low λk peak that does not
exist in Clust 1.

By analyzing the overlap of clusters in the TJF
space in this way, we find that the J1 corner and

Figure 12: t-SNE using d(Ai, Aj). All points are colored by
cluster ID. The maximal subset represents the largest subset
of clusters whose separations are jointly pairwise significant.
Since the clusters are tightly grouped and there is limited
color space, clusters that have similar colors, but are sepa-
rated by distance, are distinct clusters.
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Figure 13: t-SNE embeddings for clusters, TJF, and special
boundary fraction. Outlined markers in the cluster represent
the exemplar of the cluster.

the center of the TJ tetrahedron are the most sen-
sitive to configurational changes, while the J2-J3
edge is the least sensitive to configurational varia-
tions. That is, GBNs with equal numbers of all TJ
types or a high population of J1-type TJs might
change cluster affiliation or have large changes in
performance with the application of a small per-
turbation to their structure, whereas GBNs with a
high population of J2 and/or J3-type TJs are sta-
ble against such perturbations (compare Figs. 13
and 15).
The correlations between t-SNE and the length

fraction of LAGBs are similarly distinct in the
embedding space. It is interesting to note that
the spreading seen from the J1 dominated struc-
tures correlate well with length fractions close to
0.5, while the extreme length fractions are more
localized to the J3 and J0 dominated structures.
Microstructures with near parity between LAGB
length fraction and HAGB length fraction have
more possible configurations than microstructures
dominated by a single boundary type. Therefore,
the presence of many distinct clusters with a LAGB
length fraction of about 0.5 supports our observa-
tion that power spectra can differentiate boundary
configurations, and that distinguishing GBNs near
this LAGB length fraction requires more informa-
tion than the two classical descriptors (p and Ji)
provide.

4.2. Correlation between Power Spectrum and Per-
formance

The two performance measures we consider as
properties are Deff , the effective diffusivity, and
Cn, the concentrations at the vertices. With the
new understanding of configurations from the spec-
tral clustering method, we can better describe the
underlying microstructural causes of differences in
performance.
Using the same t-SNE embedding as previously

discussed, we show how Deff is distributed through
the embedded harmonic space, shown in Fig. 15.
The top tile shows the same cluster colorings as
Fig. 13, the middle tile shows Deff plotted on a log-
arithmic scale to show clearly when a HAGB per-
colating path exists, with yellow representing per-
colating microstructures and blue non-percolating,
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Figure 14: Examples of clusters that overlap in TJ space (near the J1 corner), but have clear visual differences in power
spectra, as well as similarities and differences in the t-SNE embedding. Note the similar locations and peak heights in the
respective power spectra within clusters and the different locations and peak heights between clusters.

and the bottom tile showing the average of all ver-
tex concentrations for each microstructure.

A previous study used three-body nearest-
neighbor correlations to predict the percolating
condition of microstructures, where the percola-
tion threshold, pc, of LAGBs was calculated from
the TJFs [11]. The value of pc for HAGBs can
be calculated in the same way, and, since Deff

is dependent on the percolation of HAGBs rather
than LAGBs, we use this HAGB version of pc here.
We can compare the actual HAGB percolation
state of each microstructure (percolating or non-
percolating HAGBs) to the state predicted from the
Ji in this way (which encode only short-range corre-
lations). When using the HAGB pc predicted from
the TJFs to predict percolation, we find 61 type 1
(false-positive) and 189 type 2 (false-negative) er-
rors in this data set, as shown in Fig. 16. These are
cases where long-range structure (beyond emergent
structure based solely on local correlations) plays
a definitive role in the effective properties of the
GBN.

Since the pc predicted in this way is informed
only by local correlations, these errors may be
caused by network level effects, which we can ana-
lyze using the power spectra. For a homogeneous

Figure 15: t-SNE embedding colored by Cluster, Deff , and
mean concentration respectively. Note the inverse relation
between Deff and concentration at (-10,0).
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Figure 16: Type 1 and type 2 errors found from pc, embedded into t-SNE. Note the local correlations with mean C.

GBN with a single boundary type, the expected
concentration behavior would be a linear gradient
across the microstructure from source to sink. With
our stated boundary conditions, Cn would have an
average value of about 0.5 kg/m3.

Coloring the markers by mean concentration on
the t-SNE embedding (Fig. 15), we can see that
the areas correlating with the J3 and J0 corners
(the homogeneous single boundary type regions)
exhibit a mean Cn of 0.5 kg/m3, as expected. How-
ever, there are microstructures with significantly
higher or lower average concentration, especially in
the previously mentioned J1 region. Since the ex-
ceptions are well localized in the t-SNE embedding,
and the embedding uses the power spectrum and
not Cn, the power spectra enable the interpreta-
tion of the non-average behavior.

From Eq. 14 we have the direct link (A) between
structure (U) and performance (Cn). To interpret
this, remember that the sign of all uk was chosen to
ensure that ak ≥ 0 ∀ k. Therefore, a positive value
in uk represents a positive concentration contribu-
tion of magnitude ak · uk for each vertex n.

From our results in Section 3.2, we know that
eigenvectors highlight connected sections of bound-
aries of a given type and we expect a steady gra-
dient from source to sink. Therefore, if the con-
centration average is skewed, and the eigenvector
contributions are strictly additive, then the devi-
ation of mean Cn from 0.5 kg/m3 is caused by a
connected set of boundaries of a given type that do
not connect the source and sink.

We show a specific example of this in Fig. 17,
where we take 3 microstructures that all have iden-
tical TJFs and similar Deff , but very different Cn

and power spectra. Fig. 17 shows the power spec-
trum of each microstructure, as well as the mean
concentration colored t-SNE coordintates and Cn

responses for each.

This allows us to illustrate an interesting link
between the microstructure and the power spec-
trum, where Struct 3 only has a single, small am-
plitude, peak above the spectral gap, despite hav-
ing an identical TJF and comparable connectivity
to the other two microstructures. This signature
in the power spectrum is indicative of the HAGB
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Figure 17: An example of three microstructures with identical TJF, similar Deff , but different Cn and power spectra
behavior. The three structure markers in t-SNE (bottom-left) are colored the same as their respective power spectra (top).

cluster being connected only to the diffusion sink
and implies that the HAGBs do not contribute sig-
nificantly to Cn, leading to a sharp concentration
gradient near the diffusion source that stops at the
highly connected HAGB section, resulting in a low
value of mean Cn (since most vertices have nearly
the same concentration as the sink). This explains
one of the false-positives identified earlier (percola-
tion is predicted from the short-range correlations
encoded in the Ji, but is not actually observed due
to long-range effects).

A similar behavior occurs when a highly con-
nected, but non-percolating, HAGB section is con-
nected to the diffusion source, where instead the
concentration is very high throughout the concen-
tration profile (most vertices have essentially the
same concentration as the source).

Speaking more generally, the power spectrum
clustering distinguished these disconnected fea-
tures, shown in Fig. 15, with the high and low mean
Cn groupings in t-SNE. When considering mean Cn

greater than 0.8 kg/m3 or less than 0.2 kgm−1, we

find that 20 of the 61 type 1 errors exhibit the sharp
concentration gradient behavior.

Plotting the power spectra of all clusters enables
the identification of connected boundaries that are
disconnected from the source and sink, as shown in
Fig. 18. The general trend is that microstructures
with low Deff are dominated by low frequency
eigenmodes, and GBNs that exhibit high Deff are
dominated by high frequency eigenmodes. How-
ever, there are many low frequency dominated clus-
ters that also have significant contributions from
high frequency eigenmodes. Interpreting such sig-
natures in the context of the results just discussed
suggests that these microstructures have highly in-
terconnected HAGBs that are well connected with
the diffusion source, but do not percolate.

Understanding the type 2 errors is more difficult,
as the only way to currently understand the con-
figurational differences that cause a microstructure
to percolate unexpectedly is by directly investigat-
ing individual dominant eigenvectors for each mi-
crostructure. Future work could focus on finding
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Figure 18: Power spectra of all microstructures, sorted according to cluster first and Deff of exemplars second. Note
the general trend of transitioning from dominant low frequency peaks to dominant high frequency peaks as Deff of the
cluster exemplar increases.

and automating the identification and classification
of specific eigenvectors, which would allow for anal-
ysis of these specific cases.

4.3. Applications to Experimental Data

While we have focused a majority of this work on
simulated microstructures, this methodology can
be applied to experimentally obtained samples. To
illustrate this, we will apply the methods of the
present work to an experimental dataset from Ran-
dle et al [25, 26].

This dataset contains nickel samples in a refer-
ence state and a grain boundary engineered (GBE)
state, where at least 50% of all grain boundaries
were Σ3. We make the same assumptions from
Section 2.1 while applying our method to these mi-
crostructures, and used MTEX and grain recon-
struction code to generate the GBN meshes from
the available grain boundary segment data [27–30].

As Σ3 GBs have unique properties and there is a
large population of them in this dataset, we adapt

our hypothetical constitutive model accordingly.
Specifically, following the logic of previous diffu-
sion work on FCC polycrystals, we consider both
Σ3 GBs and LAGBs (<15° disorientation) as “spe-
cial” boundaries and therefore assign them both the
same low diffusivity as before. We note that this
assumption does not hold for all systems [19, 32–
34]. Additionally, since these microstructures are
non-periodic we set the upper and lower borders to
have Neumann boundary conditions, which, conve-
niently, does not change the derived calculations in
Section 2.1.

An example comparison is shown in Fig. 19 for a
reference state and engineered nickel sample. The
increased proportion of Σ3 boundaries is visible
both spatially in the GBN map and spectrally from
the increased low eigenvalue peak (and diminished
high eigenvalue peak) in the power spectrum of
the GBE sample. More interestingly, the most
dominant eigenvector shows how the increased pro-
portion of Σ3 boundaries interrupts the connectiv-
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(a) Reference state Ni sample (b) Grain boundary engineered Ni sample

(c) Power Spectra of both structures

Figure 19: Example of the methods applied to analysis of grain boundary engineered sample against a reference sample.
Note that the engineered sample is still dominated by high diffusivity boundaries, but has much less connectivity than the
reference sample. In the IPF maps, the perimeter grains are not colored because some perimeter edges were not included
in the dataset so that these are not closed regions. This, however, only affects the visualization and has no impact for the
purposes of the present analysis.

ity of high angle boundaries, resulting in a more
spatially sparse dominant eigenvector for the engi-
neered sample.

However, even with the grain boundary engineer-
ing we can see that the high-angle boundaries are
still dominant in the diffusion equation, meaning
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Figure 20: Example of applying the power spectra methodology to 3D microstructures according to the model presented
in previous work [31]. The most dominant eigenvector is shown. Note the changing concentrations and eigenvectors along
grain boundary planes.

that in order to affect diffusion in this model more
strongly a sample would need greater fractions of
connected Σ3 or low angle boundaries than are cur-
rently present.

4.4. Extension to 3D

Previous work by the authors extended the ki-
netic type-C regime diffusivity model to 3D mi-
crostructures using a finite volume method, which
provides a simple extension to the current work
[31]. We simulate and mesh a 1 cm3 grain growth
morphology microstructure using Neper Polycrys-
tal for this example [35].

We use the same boundary conditions as the
previous work, with Dirichlet conditions in the X-
direction, using the same values as in Section 2.1,
and Neumann in all other directions [31]. This
means that the boundary conditions are applied to
a plane, rather than a line (as in the 2D case).

However, once these conditions are set and prop-
erties have been assigned to each boundary, there

are no additional changes needed to the methods
to achieve the power spectra or eigenvector embed-
dings. This simple extension is shown in Fig. 20 for
the example 3D microstructure. Thus, the same
tools can be employed to analyze 3D microstruc-
tures.

Further extensions can be made to this model
in similar ways, as long as a graph representation
is defined and maintained through the derivation.
Model additions such as bulk transport or triple
line specific effects can be derived and analyzed us-
ing the same methodology. This would require an
understanding of, and model values for, the bulk
diffusivity and TJ specific diffusivity to apply to the
graph edges, as well as expanding the finite volume
method of the 3D model to account for tetrahedral
elements. Even more general, other property equa-
tions follow a similar harmonic form, such as the
heat equation, and can be derived in a way that al-
lows the current analysis to be done for other GBN
structure property models [36].
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5. Conclusions

Since there are situations where microstruc-
tures can have identical local structural measures,
yet large property differences due to long range
grain boundary network (GBN) effects, we cre-
ated a method for encoding, comparing, and in-
terpreting complete GBN connectivity and struc-
tural information through a harmonic representa-
tion. This representation encodes both composi-
tional and long-range configurational information
into a descriptor: the GBN power spectrum.
Here we summarize the insights gleaned and ca-

pabilities demonstrated by application of the GBN
power spectrum to the problem of intergranular dif-
fusion:

• We showed how microstructures can be
compared, even with different morphologies,
boundary configurations and discretizations,
via the power spectrum descriptor.

• We showed how this descriptor enables iden-
tification of network length effects that cause
property differences that classical GBN de-
scriptors (TJF and p) could not. We provided
a physical interpretation of the eigenmodes of
the power spectrum, identifying structural fea-
tures that influence effective properties.

• We applied this descriptor to a large library of
microstructures, and found multiple classes of
structural similarities through clustering.

• We compared and interpreted these clusters in
the context of our GBN power spectrum de-
scriptor and the classical descriptors, finding
that microstructures with either equal propor-
tions of TJ boundary types or with high J1
populations have properties that are very sen-
sitive to perturbations of boundary configura-
tions, while microstructures with high J2-J3
populations are very stable against the similar
perturbations.

• We also found conditions where the cur-
rent descriptor can identify and explain unex-
pected percolation or lack of percolation in mi-
crostructures, compared to predictions based
on local correlations alone.

• We showed examples of how this method and
analysis can be applied to experimental and
3D microstructures.

We anticipate that the GBN power spectrum ap-
proach may enable characterization of GBNs and
their impact on performance, both for diffusion and
more generally. Extension to other properties of
interest (e.g., heat transfer or fracture) may be ac-
complished by selection of appropriate weights in
the GBN Laplacian.
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Appendix A Sensitivity Analysis of Dis-
tance Measure

To select the standard deviation of the Gaussian
we performed the calculation from Eq. 15 for all
1771 microstructures for each σ in the range of
[0.001, .1] incrementing by 0.001 length steps. We
calculated an estimated gradient of Eq. 15 as the
first order difference over σ to test for stability of
Eq. 15 vs σ.

The results of these two operations can be seen in
Fig. 21, where each line is a single microstructure,
the top tile is the distance vs σ, and the bottom
tile is the derivative estimate of the top tile. To
avoid losing information by oversmoothing we se-
lect the smallest σ possible that ensures that the
calculated distances, d(Ai, Aj), are stable against
perturbations of sigma. We find σ = 0.05 to be
the smallest value of σ where the gradient is at a
locally stable value.
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Figure 21: Sensitivity analysis of d(Ai, Aj) vs σ for all microstructures. The goal was to select a σ as small as possible
that would also ensure d(Ai, Aj) would be stable against small perturbations of σ.
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