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ABSTRACT

Real-world multi-agent systems are often dynamic and continuous,

where the agents co-evolve and undergo changes in their trajecto-

ries and interactions over time. For example, the COVID-19 trans-

mission in the U.S. can be viewed as a multi-agent system, where

states act as agents and daily population movements between them

are interactions. Estimating the counterfactual outcomes in such

systems enables accurate future predictions and effective decision-

making, such as formulating COVID-19 policies. However, existing

methods fail to model the continuous dynamic effects of treatments

on the outcome, especially when multiple treatments (e.g., "stay-

at-home" and "get-vaccine" policies) are applied simultaneously.

To tackle this challenge, we propose Causal Graph Ordinary Dif-

ferential Equations (CAG-ODE), a novel model that captures the

continuous interaction among agents using a Graph Neural Net-

work (GNN) as the ODE function. The key innovation of our model

is to learn time-dependent representations of treatments and incor-

porate them into the ODE function, enabling precise predictions

of potential outcomes. To mitigate confounding bias, we further

propose two domain adversarial learning-based objectives, which

enable our model to learn balanced continuous representations

that are not affected by treatments or interference. Experiments on
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two datasets (i.e., COVID-19 and tumor growth) demonstrate the

superior performance of our proposed model. 1
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1 INTRODUCTION

Many real-world multi-agent systems are dynamic and continuous,

where agents (nodes) interact and exhibit complex behaviors over

time. This results in time-evolving node trajectories and dynamic

interaction edges. An example is the spread of COVID-19 in the

U.S., where states act as agents and daily migration patterns across

states form interaction edges [14, 29]. Estimating the counterfactual

outcomes over time in such systems are crucial for various applica-

tions, such as formulating effective policies and designing medical

treatment plans [2, 3, 40]. This can achieve more accurate predic-

tions than non-causal methods by considering the influence of

1Our code implementation can be found at https://github.com/Jun-Kai-Zhang/CAG-
ODE.git.
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biased confounders. Confounders are variables that have influences

on treatments and outcomes. For example, the health status of the

residents in each state (confounders) can impact their level of adher-

ence to the state’s policies (treatments), which can influence future

confirmed cases/deaths (outcomes). Non-causal methods only learn

the statistical associations between treatments and outcomes from

observational data, which can have non-uniform treatment distri-

butions across confounder values, potentially leading to incorrect

predictions such as taking vaccines can increase the number of

confirmed cases for each state. Furthermore, causal inference for

multi-agent dynamical systems enables effective decision-making

by addressing causal questions such as "What if we remove a policy

at a specific time" or "What if we change the order of different

policies". Therefore, it serves as a promising tool for policymakers.

Traditionally, the standard approach for causal inference over

time is randomized controlled trials (RCTs) [5], which can be very

costly to obtain and can raise some ethical problems [3, 40]. Thus,

researchers have turned to using observational data and employed

methods like linear regression [35], recurrent neural networks

(RNNs) [4, 25], and Transformers [31] to estimate counterfactual

outcomes with time dependencies. However, causal inference for

multi-agent dynamical systems presents unique challenges.

One is that most existing methods [3, 40] assume that nodes are

independent, meaning their trajectories are determined solely by

their own treatments. Some [18] considers the influence of neigh-

boring nodes but only assumes static interactions among them,

which fails to capture situations such as daily population travel

patterns between states in the context of COVID-19.

In casual terms, influences of neighboring nodes can be catego-

rized into two parts: 1.) time-dependent neighborhood confound-

ing, where a node’s treatment and outcome may be confounded by

the covariates of its neighbors. For example, if cases in neighbor-

ing states rise (covariate), a state may implement a vaccine policy

(treatment) that affects future confirmed cases/deaths (outcome). 2.)

time-dependent interference, where the outcome of a node can be

influenced by the treatments of its neighbors. For example, a state

may have reduced future cases/deaths (outcome) if neighboring

states have implemented a vaccine policy (covariates), as higher

vaccination rates within the population flow network give stronger

protection. As the interaction edges evolve along with node trajec-

tories, the challenges lie in predicting the neighbors of each node

(edges) and then addressing the time-dependent neighborhood con-

founding and interference issues.

Another challenge is that current methods lack the ability to

capture the continuous and dynamic effects of multiple treatments

on such systems. For instance, the impact of a "stay-at-home" policy

may be most significant during its initial implementation, and when

a "get-vaccine" policy is subsequently introduced, the combined

effect of these policies can result in a different outcome. Existing

studies often focus on a single treatment [18, 40] or simply append

fixed multi-hot treatment representations when a node receives

them. These fixed treatment representations fail to differentiate the

influences of the same treatment administered at different times.

To tackle these challenges, we propose a novel causal inference

framework: the Causal Graph Ordinary Differential Equations

(CAG-ODE) to estimate the continuous counterfactual outcome of

a multi-agent dynamical system in the presence of multiple treat-

ments and time-varying confounding and interference. Building

upon the recent success of graph ordinary differential equations

(ODE) in capturing the continuous interaction among agents [13,

14, 17, 27], our key innovation is to learn time-dependent repre-

sentations of simultaneous treatments and incorporate them into

the ODE function to accurately account for their casual effects on

the system. As nodes and edges are jointly evolving, we utilize

two coupled treatment-induced ODE functions to account for their

respective dynamics. To mitigate confounding bias, we further de-

sign two adversarial learning losses, which enable our model to

learn balanced continuous trajectory representations unaffected by

treatments or interference. Experiments on both real and simulated

datasets demonstrate the effectiveness of our proposed model. The

primary contributions of this paper can be summarized as follows:

• Wepropose CAG-ODE to estimate continuous counterfactual

outcomes in multi-agent systems with evolving interaction

edges and multiple treatments.

• CAG-ODE features a novel treatment fusing module that

can capture the dynamic effects of treatment over time and

the combined effect of multiple treatments.

• Our method achieves the state-of-art results in counterfac-

tual estimation across varying systems, and can serve as a

promising tool for policymakers.

2 PRELIMINARIES AND RELATEDWORK

2.1 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of neural networks that

operate on graph-structured data by passing local messages [24, 42,

43]. They have been extensively employed in various applications

such as node classification, link prediction, and recommendation

systems [12, 16]. GNNs have shown to be efficient for approximat-

ing pair-wise node interactions and achieved accurate predictions

for multi-agent dynamical systems [22, 38]. The majority of existing

studies propose discrete GNN-based simulators where they take

the node features at time 𝑡 as input to predict the node features at

time 𝑡+1. To further capture the long-term temporal dependency

for predicting future trajectories, some work utilizes recurrent neu-

ral networks such as RNN, LSTM, or self-attention mechanism to

make predictions at time 𝑡 +1 based on the historical trajectory se-

quence [10, 11, 39]. However, they restrict themselves to learning a

one-step state transition function. Therefore, when we successively

apply these one-step simulators to previous predictions in order to

generate the rollout trajectories, error accumulates and impairs the

prediction accuracy, especially for long-range prediction.

2.2 Graph Ordinary Differential Equations for
Continuous Multi-agent Dynamical Systems

The dynamics of a multi-agent system can be captured by a series

of nonlinear first-order ordinary differential equations (ODEs) [13,

15, 28, 36], which describe how the states of 𝑁 dependent variables

co-evolve over continuous time: ¤𝒛𝑡𝑖 :=
𝑑𝒛𝑡

𝑖

𝑑𝑡
= 𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
. Here

𝒛𝑡𝑖 ∈ R
𝑑 denotes the state variable for agent 𝑖 at timestamp 𝑡 and 𝑔

denotes the ODE function that drives the system to move forward.

Given the initial states 𝒛01, · · · 𝒛
0
𝑁
for all agents and the ODE function
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𝑔, a numerical ODE solver such as Runge-Kutta [32] can be used to

evaluate 𝒛𝑇𝑖 at any desired time 𝑇 using Eqn (1):

𝒛𝑇𝑖 = 𝒛0𝑖 +
∫ 𝑇

𝑡=0
𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
d𝑡 . (1)

To model the interactions among agents, recent studies [13, 14, 34,

44] propose using a GNN as the ODE function 𝑔 which is learned

from observational data. Such GraphODE framework follows an

encoder-processor-decoder architecture. The encoder computes

latent initial states for all agents based on historical observations.

The GNN-based ODE function then predicts the latent trajectories

starting from the learned initial states. Finally, a decoder extracts

the predicted dynamic features. To regularize the generated trajecto-

ries, GraphODE frameworks often adopt a variational autoencoder

(VAE) structure [21], where the encoder samples initial states from

approximated posterior distributions. GraphODEs are promising in

making long-range predictions and can handle irregularly-sampled

observations effectively [13, 44].

2.3 Causal Inference Over Time

Time-dependent causal inference methods mainly differ in how

they deal with confounding. They differ from traditional statistical

time series analysis [1, 23, 45] which we do not discuss in this pa-

per. Traditionally, many statistical tools that are applied, such as

marginal structural models (MSMs) [35] utilize the inverse prob-

ability of treatment weighting (IPTW). Recently, representation

learning-based balancing approaches are proposed, which learn

representations that are not predictable of the treatments to ensure

unbiased outcome prediction [4, 31]. However, one major limitation

is that they are discrete methods, which can offer poor performance

on continuous systems such as the spread of COVID-19. There are a

series of works [3, 7, 9, 40] that estimate the continuous counterfac-

tual outcomes through neural ODEs or neural controlled differential

equations (CDEs). Despite their success, they assume that nodes

are independent of each other, regardless of their interactions. One

recent work [18] proposed to parameterize the ODE function with

a GNN for multi-agent settings. However, this model cannot handle

evolving graph structures and the effect of multiple treatments.

3 PROBLEM DEFINITION

We consider a dynamical system of 𝑁 agents as an evolving inter-

action graph G𝑡 = {V, E𝑡 }, where nodes V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } are
agents and E𝑡 are the weighted edges among them, denoting agents’

dynamic interaction that changes over time. Each node is associated

with time-varying causal characteristics, which we introduce in the

following along with the casual inference framework.

We follow the longitudinal causal inference setting for predict-

ing future potential outcomes as in [37]. We denote the observa-

tional data at timestamp 𝑡 as (X𝑡 ,W𝑡 ,A𝑡 ,Y𝑡 ), where X𝑡 ∈ R𝑁×𝑑1

represents the time-varying covariates (e.g., the health status of

residents) of 𝑁 agents.W𝑡 ∈ R𝑁×𝑁 represents the weighted adja-

cencymatrix, whose element𝑤𝑖→𝑗 ∈ R is the weight of the directed
edge that points from node 𝑖 to node 𝑗 and may be asymmetric.

A
𝑡 ∈ {0, 1}𝑁×𝐾 are time-dependent treatments, where A𝑡

𝑘 𝑗
= 1

denotes the 𝑘𝑡ℎ treatment assigned to node 𝑖 at timestamp 𝑡 , and 𝐾

is the number of heterogeneous treatments. Y𝑡 ∈ R𝑁×𝑑2 is the time-

dependent outcome, such as the number of confirmed cases in each

state, which can be part ofX𝑡 . The historical observations up to time

𝑡 is represented as H𝑡
=

{
X
𝑡
,W

𝑡
,A
𝑡
,Y
𝑡
}
, where X

𝑡
,W

𝑡
,A
𝑡
,Y
𝑡

contain all X𝑡
−
,W𝑡− ,A𝑡

−
,Y𝑡

− (𝑡− ≤ 𝑡). We aim to predict the unbi-

ased potential outcomes E
(
Y
𝑡+ (

A
𝑡+

= 𝑎
)
|H𝑡

)
under any treatment

assignment 𝑎2. Here, 𝑎 is the dynamic treatment trajectory (e.g.

sequences of state policies). As only one of the potential outcome

trajectories is observed for each treatment assignment, we refer to

the unobserved potential outcomes as counterfactuals [4, 40].

To make potential outcomes identifiable from observational data,

we follow three standard assumptions [4, 18, 40] below:

Assumption 1: Consistency. The potential outcome is equal

to the observed factual outcome if A𝑡 = 𝑎𝑡 : Y𝑡
+ (A𝑡 = 𝑎𝑡 ) = Y

𝑡+ .

Assumption 2: Overlap. At any time point 𝑡+, there is some

positive probability of treatment assignment regardless of the his-

torical observation: 0 < 𝑃 (A𝑡+ = 𝑎 | H𝑡 ) < 1, ∀H𝑡 , 𝑡 < 𝑡+.
The last assumption defines unconfoundedness (strong ignora-

bility) in dynamical systems. We first define the interference effects

caused by neighbors’ treatments of node 𝑖 as G𝑡𝑖 =
∑
𝑗∈N𝑖

1
|𝑁𝑖 |A

𝑡
𝑗 ∈

R
𝐾 , which is the proportion of treated nodes in node 𝑖’s neighbors

for each treatment type. We refer to G
𝑡
𝑖 as interference summary,

which assumes that a node is only influenced by treatments of its

immediate neighbors as in previous studies [18, 19, 30].

Assumption 3: Strong Ignorability for Multi-Agent Dy-

namical Systems. Given the historical observations, the potential

outcome trajectory is independent of the treatments and interfer-

ence summary: Y𝑡
+ (A𝑡 = 𝑎) ⊥ A

𝑡+ ,G𝑡
+ | H𝑡 , ∀𝑎, 𝑡 .

It ensures that it is sufficient to only condition on the historical

observations and graph sequences up to 𝑡 to block all backdoor

paths so as to estimate the potential outcome in the future. With

these three assumptions, the potential outcome trajectory can be

identified as:

E

(
Y
𝑡+ (A𝑡 = 𝑎) | H𝑡

)
= E

(
Y
𝑡+ | A𝑡+ ,G𝑡+ ,H𝑡

)
.

This enables us to estimate the potential outcomes by training

a machine learning model using observational data, and to use

the same model to predict counterfactual outcomes given new

treatment trajectories.

4 THE PROPOSED MODEL: CAG-ODE

In this section, we present Causal GraphODE (CAG-ODE) to predict

continuous counterfactual outcomes for multi-agent dynamical sys-

tems with evolving interaction edges and dynamic multi-treatment

effects. Following the framework of GraphODEs [13, 14, 18, 34, 44],

CAG-ODE adopts the encoder-ODE generative model-decoder ar-

chitecture described in Sec. 2.2 to capture the continuous interaction

among agents. As nodes and edges are jointly evolving, we utilize

two coupled ODE functions [14] for the evolution of nodes and

edges respectively. Contrary to GraphODEs, CAG-ODE can per-

form causal reasoning by injecting treatment effects into the ODE

functions, which we call treatment-induced coupled graph ODE. The

multi-treatment effects are captured by a novel treatment fusing

module that assigns temporal weights to the treatments using an

2The potential outcome can also be formalized using do operation [33]
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Treatments

Treatment

Fusing

1
2

K

…
…

Z
t = Z

0 + ∫
t

τ=0

GNN(Zτ, A
τ, W

τ)dτ

W
τ = fedge(Zτ)

Treatment Induced Coupled GraphODE

PredictionObservation

Treatments

Latent Representation

Encoder Decoder

Agents

Factual Outcome

Counterfactual Outcome L = L⟨Y⟩ + λ ⋅ L⟨W⟩ + α ⋅ L⟨A⟩ + β ⋅ L⟨G⟩ + γ ⋅ LKLTraining Loss:

Figure 1: Overall Framework of CAG-ODE. The encoder first computes the latent initial states. Then the treatment-induced

coupled ODE functions predict the continuous trajectories over time. Treatment representations learned through the fusing

module are incorporated into the ODE functions to enable counterfactual prediction. Finally, the decoder outputs the predicted

dynamics. Treatment and interference balancing losses are designed to ensure unbiased counterfactual predictions.

attention mechanism. As time-dependent confounders can result

in a biased distribution of treatment assignments and imbalanced

interferences due to the evolving graph structure, CAG-ODE uti-

lizes two adversarial learning losses to ensure unbiased estimations

of counterfactual outcomes. The overall framework is depicted in

Figure 1. We now discuss each module in detail.

4.1 Spatial-Temporal Initial State Encoder

The encoder of CAG-ODE infers the posterior distributions from

the historical observations and then samples the latent initial states

from them. It follows the architecture described in [14]. As the

evolution of different nodes is mutually influenced, we calculate

the initial states for all nodes simultaneously considering their

interactions over time. The initial states of edges are derived from

the initial states of nodes.

Dynamic Node Representation Learning. We construct a

graph to represent the spatial-temporal structure of multi-agent

dynamical systems, with each node corresponding to an agent’s

observation at a particular timestamp. There are two types of edges:

spatial edges at the same timestamp and temporal edges across

different timestamps. The spatial edges are formed according to the

adjacency matrices, denoted as𝑤𝑖 (𝑡 )→𝑗 (𝑡 ) . For the temporal edges,

we only consider edges from an agent’s own previous observations

to later observations, denoted as𝑤𝑖 (𝑡 )→𝑖 (𝑡 ′ ) , where 𝑡
′
= 𝑡 + 1.

The latent representations of observations are learned from this

spatial-temporal graph through an attention mechanism approach.

The propagation among 𝐿 GNN layers is depicted in Equation(2).

𝒉𝑙
𝑖 (𝑡 ′ ) = 𝒉𝑙

𝑖 (𝑡 ′ ) + 𝜎
©­«

∑︁
𝑗 (𝑡 ) ∈N𝑖 (𝑡 ′ )

𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) ×𝑾𝑣𝒉̂

𝑙−1
𝑗 (𝑡 )

ª®¬
,

𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) = 𝑤 𝑗 (𝑡 )→𝑖 (𝑡 ′ ) × 𝛼𝑙𝑗 (𝑡 )→𝑖 (𝑡 ′ ) ,

𝛼𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) =

(
𝑾𝑘 𝒉̂

𝑙−1
𝑗 (𝑡 )

)𝑇 (
𝑾𝑞𝒉

𝑙−1
𝑖 (𝑡 ′ )

)
· 1
√
𝑑
, (2)

𝒉̂𝑙−1
𝑗 (𝑡 ) = 𝒉𝑙−1

𝑗 (𝑡 ) + TE
(
𝑡 − 𝑡 ′

)
,

TE(Δ𝑡)2𝑖 = sin

(
Δ𝑡

100002𝑖/𝑑

)
,TE(Δ𝑡)2𝑖+1 = cos

(
Δ𝑡

100002𝑖/𝑑

)
.

Here, 𝒉𝑙
𝑖 (𝑡 ) represents the agent 𝑖 at time 𝑡 from layer 𝑙 . The at-

tention score 𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) is defined as the product of edge weights

𝑤 𝑗 (𝑡 )→𝑖 (𝑡 ′ ) and affinity score 𝛼𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′ ) , which is computed using

the representations of the sender and receiver nodes. Additionally,

we incorporate temporal embedding, denoted as TE, into the sender

node’s representation to establish temporal distinction. Then, the

final representation is obtained from the 𝐿 layer as 𝒉𝑖 (𝑡 ) = 𝒉𝐿
𝑖 (𝑡 ) .

Sequence Representation Learning. Then, we employ self-

attention to compute the sequence representation of observed tem-

poral information for each node, where 𝒉̂𝑖 (𝑡 ) = 𝒉𝑖 (𝑡 ) + TE(𝑡).

𝒖𝑖 =
1

𝑁

𝑇∑︁
𝑡=1

(𝒂𝑇𝑖 𝒉̂𝑖 (𝑡 ) 𝒉̂𝑖 (𝑡 ) ), 𝒂𝑖 = tanh

((
1

𝑁

𝑇∑︁
𝑡=1

𝒉̂𝑖 (𝑡 )

)
𝑾𝑎

)
. (3)
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Finally, the mean and variance of the posterior distribution is

obtained through a neural network 𝑓ddist from the sequence repre-

sentation 𝒖𝑖 .

𝒛0𝑖 ∼ 𝑞𝜙 (𝒛
0
𝑖 |H

0) = N(𝝁𝑧0
𝑖
, 𝜎2

𝒛
0
𝑖

), 𝝁
𝒛
0
𝑖
, 𝜎

𝒛
0
𝑖
= 𝑓dist (𝒖𝑖 ) .

Next, the latent initial state for an edge is given by 𝒛0𝑖→𝑗 =

𝑓edge ( [𝒛0𝑖 , 𝒛
0
𝑗 ]), where 𝑓edge is parameterized by a neural network

and [, ] is concatenation operation.

4.2 Treatment Fusing

To conduct causal inference with CAG-ODE, we propose to inject

the dynamic effects of multiple treatments into the ODE function.

Treatments can have time-varying effects in multi-agent dynamical

systems and they can occur simultaneously, resulting in a com-

bined effect. To model such complex behaviors, we propose a novel

treatment fusing module that assigns temporal weights to mul-

tiple treatments through an attention mechanism. The temporal

weight of treatment at timestamp 𝑡 is dependent on both the start

time of each treatment and the occurrence of other treatments as

shown in Eqn (4). Let 𝒆𝑘 ∈ R𝐾 be the one-hot representation of

treatment 𝑘 . We first add it with the temporal encoding TE[14, 41]

to account for the time elapsed since the start of the treatment 𝑡 ′.
Here A

𝑡
𝑖𝑘

∈ {0, 1} is an indicator showing whether treatment 𝑘

would be applied to agent 𝑖 at timestamp 𝑡 . Therefore the computed

treatment representation 𝒐̂𝑡
𝑖𝑘

becomes zero when A
𝑡
𝑖𝑘

= 0, to ensure

computational efficiency. A contraction matrix W𝑞 is then used to

transform this sparse representation into a more compact form.

𝒐̂𝑡
𝑖𝑘

= A
𝑡
𝑖𝑘
𝒆𝑘 + TE

(
𝑡 − 𝑡 ′

)
1[A𝑡

𝑖𝑘
= 1], 𝒐𝑡

𝑖𝑘
= W𝑞 𝒐̂

𝑡
𝑖𝑘
,

TE(Δ𝑡)2𝑖 = sin
(
Δ𝑡/𝑀2𝑖/𝑑

)
,

TE(Δ𝑡)2𝑖+1 = cos
(
Δ𝑡/𝑀2𝑖/𝑑

)
, 𝑀 = 10000.

(4)

To account for the combined effect of simultaneous treatments,

we compute the combined treatment representation as a weighted

sum of all in-effect treatments at timestamp 𝑡 (Eqn 5). We first

compute an attention vector𝑚𝑡𝑖 as the tanh-transformed average

of all the treatment representations, 𝒐̂𝑡𝑖 𝑗 . Each treatment’s weight is

derived from the dot product of its representation and𝑚𝑡𝑖 , thereby

integrating each treatment’s influence into 𝒐𝑡𝑖 .

𝒐𝑡𝑖 =
1

𝐾

∑︁
𝑘

(
𝒎𝑡𝑖

⊤
𝒐̂𝑡
𝑖𝑘
𝒐̂𝑡
𝑖𝑘

)
,𝒎𝑡𝑖 = tanh

((
1

𝐾

∑︁
𝑘

𝒐𝑡
𝑖𝑘

)
W𝑚

)
. (5)

The fusing operation has a time complexity of 𝑂 (𝐾) if having K

treatments and therefore is able to scale up to larger systems.

4.3 Treatment-Induced GraphODE

We use two coupled ODEs to predict the latent trajectories for nodes

and edges respectively, accounting for their co-evolution [14]. We

incorporate the learned treatment representations into the ODEs to

enable counterfactual predictions in the future. Specifically, the co-

evolution of nodes and edges is depicted in Eqn 6. The co-evolution

depends on all historical information implicitly as Z𝑡 embeds the

trajectories up to time 𝑡 . W̃𝑡
𝐴

= D
−1
W
𝑡
𝐴
is the normalized ad-

jacency matrix and D is the diagonal degree matrix defined as

D𝑖𝑖 =
∑
𝑗 W

𝑡
𝐴𝑖 𝑗

. 𝑓𝑒 , 𝑓self, 𝑓edge2value are all implemented as Multi-

Layer Perceptrons (MLPs). To incorporate the treatment effect into

the function, we use a linear transformation W to merge the latent

states of nodes Z𝑡 and the treatment representation 𝑶𝑡 . In this way,

the latent trajectories of agents are affected not only by their own

past trajectories and treatments but also by the trajectories and

treatments of their interacting agents.

dZ𝑡

d𝑡
= 𝜎

(
W̃
𝑡
𝐴W[Z𝑡 ,O𝑡 ]

)
− Z

𝑡 + Z
0,

d𝒛𝑡𝑖→𝑗

d𝑡
= 𝑓𝑒

( [
𝒛𝑡𝑖 , 𝒛

𝑡
𝑗

] )
+ 𝑓self

(
𝒛𝑡𝑖→𝑗

)
,

W
𝑡
𝐴𝑖 𝑗

= 𝑓edge2value

(
𝒛𝑡𝑖→𝑗

)
, W̃

𝑡
𝐴 = D

−1
W
𝑡
𝐴 .

(6)

4.4 Outcome Prediction

Given the treatment representations, the ODE functions, the latent

initial states for nodes and edges, and the latent trajectories for all

agents can be determined using any black-box ODE solver. Finally,

we compute the predicted trajectories for each agent and their

interactions based on the decoding likelihoods in Eqn (7), where

𝑓decN and 𝑓decE are node and edge decoding functions respectively.

They output the means of the normal distributions 𝑝 (𝒚𝑡𝑖 |𝒛
𝑡
𝑖 ) and

𝑝 (𝒘𝑡𝑖→𝑗 |𝒛
𝑡
𝑖 ), which we treat as the predicted values from our model.

𝒚𝑡𝑖 ∼ 𝑝 (𝒚
𝑡
𝑖 |𝒛

𝑡
𝑖 ) = 𝑓decN (𝒛

𝑡
𝑖 ), 𝒘

𝑡
𝑖→𝑗 ∼ 𝑝 (𝒘

𝑡
𝑖→𝑗 |𝒛

𝑡
𝑖 ) = 𝑓decE (𝒛

𝑡
𝑖 ) . (7)

We implemented all of our decoders using two-layer fully con-

nected neural networks. The node feature decoder’s input dimen-

sion matches the latent state dimension 𝑑 , while the output dimen-

sion is one, reflecting our outcome of interest. The edge decoder’s

input dimension is 2𝑑 and the output dimension is 1. The treatment

decoder also has an input dimension equal to the latent state’s di-

mension 𝑑 . However, its output dimension matches the number of

distinct treatments, predicting the probability of each treatment

being chosen. Lastly, the interference decoder’s input dimension

is the sum of the latent state dimension and the treatment embed-

ding dimension, i.e. 2𝑑 . Its output dimension mirrors the number

of treatment options. For all decoders, the latent hidden dimension

is half of their respective input dimensions.

We calculate the reconstruction loss of model predictions for

nodes 𝑌 𝑡𝑖 and edges𝑤𝑡𝑖→𝑗 as:

𝐿⟨𝑌 ⟩ =
1

𝑁

1

𝑇

∑︁
𝑡

∥Y𝑡 − Ŷ
𝑡 ∥22, 𝐿

⟨𝑊 ⟩
=

1

𝑁 2

1

𝑇

∑︁
𝑡

∥W𝑡
𝐴 − Ŵ

𝑡
𝐴∥

2
𝐹 .

4.5 Domain Adversarial Learning

In observational data, treatment assignments are not randomized

but are biased based on time-varying confounder values. This can

lead to increased variance and bias in counterfactual estimation [40].

In multi-agent dynamical systems, unbalanced interference from

neighboring agents further exacerbates this effect and alters the

state of each agent. To obtain an unbiased counterfactual predic-

tion, we need to ensure that the distribution of latent representa-

tion trajectories is invariant to treatments and interference [18].

This guarantees that the treatments cannot be inferred from the

latent trajectory representations and that the interference is not
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predictable when the treatment is combined with the latent repre-

sentation.

To achieve this, we incorporate two adversarial learning losses

into the optimization objective function and use gradient reversal

layers for the implementation.

Treatment Balancing The treatment combinations Â𝑡 can be

predicted using a decoder from the latent state 𝒛𝑡𝑖 . Formally, Â𝑡𝑖 · =
Φ𝐴 (𝑟 (𝒛𝑡𝑖 )), where Φ𝐴 is a neural network attempting to recover

treatments from the latent state 𝒛𝑡𝑖 , and the gradient reversal layer,

denoted by 𝑟 , reverses the sign of gradient during back-propagation.

The treatment balancing can be expressed as the maximization of

the following loss term through the construction of min-max games:

𝐿⟨𝐴⟩ = − 1

𝑁

1

𝑇

1

𝐾

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

∑︁
𝑗∈{0,1}

1[(A𝑡
𝑖𝑘

= 𝑗)] log(Φ𝑗,𝑘
𝐴

(𝑟 (𝒛𝑡𝑖 ))),

where Φ
𝑗,𝑘
𝐴

represents the logits of 𝑑𝐴 (·) for predicting 𝑗 on 𝑘-th
treatment. Note that we achieve treatment balancing by letting

the latent representations 𝒛𝑡𝑖 not be predictable for each individual

treatment. This is because the representation of multiple treatments

is essentially a linear combination of individual treatments. If each

individual treatment is not predictable based on 𝒛𝑡𝑖 , then it is also

impossible to use such representation to predict when multiple

treatments occur together.

Interference Balancing Similar to treatment balancing, the in-

terference prediction can be represented as Ĝ𝑡𝑖 = Φ𝐺 (𝑟 ( [𝑍 𝑡𝑖 , 𝐴
𝑡
𝑖 ])),

where 𝑑𝐺 denotes a neural network designed to estimate inter-

ference. As interference is a continuous variable, we employ con-

tinuous domain adversarial training to accomplish interference

balancing. By incorporating a gradient reversal layer, interference

balancing can be achieved by minimizing the following loss term:

𝐿⟨𝐺 ⟩
=

1

𝑁

1

𝑇

1

𝐾

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

∥Φ𝐺 (𝑟 ( [𝒛𝑡𝑖 , 𝒐
𝑡
𝑖 ])) − G

𝑡
𝑖 ∥

2
2𝑑.

Overall Loss The overall training objective is defined as the

weighted summation of node reconstruction loss, edge reconstruc-

tion loss, treatment balancing loss, and interference balancing loss.

Since we follow the VAE framework, we also incorporate a KL

divergence loss to add regularization towards the sampled initial

states, which is defined as: 𝐿𝐾𝐿 = KL
[∏𝑁

𝑖=1 𝑞𝜙

(
𝒛0𝑖 | H0

)
∥𝑝

(
Z
0
) ]
.

Therefore, the overall training loss is formalized as:

𝐿 = 𝐿⟨𝑌 ⟩ + 𝜆𝐿⟨𝑊 ⟩ + 𝛼𝐿⟨𝐴⟩ + 𝛽𝐿⟨𝐺 ⟩ + 𝛾𝐿𝐾𝐿 .

5 EXPERIMENTS

5.1 Experiment Setup

5.1.1 Datasets and Experiment Configuration. We evaluate the

performance of our model using two datasets: 1.) The COVID-

19 dataset, which captures the daily COVID-19 trends of U.S.

states from April.12.2020 to Dec.31.2020. The daily population flows

among states are represented as dynamic edges. Treatments are

state-level COVID-19 policies. We ask the model to predict the

daily confirmed cases in each state. 2.) The Tumor Growth simu-

lation dataset [8], which describes the tumor growth dynamics

in different regions of patients, where they may receive differing

treatments. We aim to predict the tumor volumes in each region.

Additional details about the datasets can be found in Appendix A.

We predict trajectory rollouts across varying lengths and use

Root Mean Square Error (RMSE) as the evaluation metric. Specifi-

cally, we train our model in a sequence-to-sequence setting where

we split the trajectory of each training sample into two parts [𝑡1, 𝑡𝐾 ]
and [𝑡𝐾+1, 𝑡𝑇 ]. We condition the model on the first part of observa-

tions and predict the second part. To fully utilize the data points

within each trajectory, we generate training and validation sam-

ples by splitting each trajectory into several chunks using a sliding

window. Details can be found in Appendix B.

5.1.2 Baselines and Model Variants. We conduct a comparative

analysis of our model with three baseline models: one non-causal

continuous multi-agent baseline CG-ODE [14], and two causal mod-

els: TE-CDE [40] and COVID-POLICY [29]. TE-CDE [40] is a causal

model that employs continuous-time differential equations to cap-

ture temporal event dependencies. COVID-Policy [29] is another

causal model designed specifically for assessing the impact of pub-

lic health policies on COVID-19 outcomes. To further analyze the

performance of our model, we also compare variants of our model.

Each variant excludes a specific component to assess its individual

impact on performance. The variants include models without treat-

ment balancing, interference balancing, both components or the

attention module.

5.1.3 Training Details. We employ the AdamW optimizer, as pro-

posed in the study by Loshchilov et al. [26], to train our model. The

initial learning rate is set at 𝜂 = 0.005, and the batch size is set as 8

to accommodate memory constraints.

The Graph Neural Network (GNN) used for the encoder has a

singular layer with a hidden dimension of 64. Similarly, the GNN

that parameterizes the ODE function is also comprised of a sin-

gle layer. The dimension of the latent state is set at 20, and the

dimension for the embedded treatments is 5. We assign a weight

of 10 for both the treatment balancing term 𝛼 and the interference

balancing term 𝛽 . Additionally, the weight designated for the edge

reconstruction error 𝜆 is set at 0.5.

5.2 Performance Evaluation

We evaluate the performance of our model, CAG-ODE, as well as

the baselines using Root Mean Square Error (RMSE) across different

prediction lengths. The results are shown in Table 1 and Table 2, re-

porting the factual and counterfactual outcomes respectively. As the

COVID-19 is a real-world dataset that does not have counterfactual

outcomes, we evaluate only the Tumor Growth dataset in Table 2.

To ensure consistent comparison, we align the prediction periods

of all models with weekly intervals on the COVID-19 dataset, sim-

ilar to the statistical baselines derived from their official weekly

submissions to the CDC, as done in [14]. To assess the accuracy

of short-term and long-term predictions, the prediction lengths

for the COVID-19 and Tumor Growth datasets are set to 7, 14, 21

days and 14, 21, and 28 days, respectively. We include longer-range

predictions on the Tumor-Growth dataset in Appendix C

Factual Outcome Predictions. Table 1 shows that our model,

CAG-ODE, consistently outperforms the baseline models across

all prediction lengths for both datasets. This underscores the ef-

fectiveness of our model in capturing the dynamic interactions
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Table 1: Root Mean Square Error (RMSE) for factual outcome evaluation across prediction lengths (the duration for which

predictions are made). For the COVID-19 dataset, we report the mean and standard deviation accuracy with multiple runs.

Dataset Covid-19 Tumor Growth

Prediction Length 7-days 14-days 21-days 14-days 21-days 28-days

CG-ODE 4063 ± 68 4454 ± 100 4659 ± 63 18.37 21.00 24.58

TE-CDE 7999 ± 212 7470 ± 289 6832 ± 243 55.45 55.38 71.23

COVID-POLICY 4008 ± 44 4128 ± 60 3963 ± 59 20.07 25.93 29.29

CAG-ODE 3710 ± 29 3925 ± 44 3933 ± 40 10.91 10.82 14.84

w/o 𝐿⟨𝐺 ⟩ 3800 ± 60 3987 ± 40 3990 ± 49 15.57 16.28 16.62

w/o 𝐿⟨𝐴⟩ 3840 ± 35 4100 ± 53 4069 ± 49 17.90 14.69 20.19

w/o 𝐿⟨𝐺 ⟩ ,𝐿⟨𝐴⟩ 3793 ± 23 4089 ± 79 3953 ± 38 17.28 16.72 24.36

w/o attention 3867 ± 61 3958 ± 31 4256 ± 55 18.91 17.55 34.45

among objects, especially over longer time periods. Comparing

our model with TE-CDE, we observe a performance gap that high-

lights the benefits of incorporating interference balancing and spa-

tial correlation in the model. Additionally, our model outperforms

the COVID-POLICY model, indicating its broader generalizability

across different types of data due to modeling dynamic interactions.

Furthermore, our model exhibits proficiency in both short-term

and long-term predictions. For instance, it achieves promising re-

sults for 21-day predictions on the COVID-19 dataset and 28-day

predictions on the Tumor Growth simulation dataset. The analysis

of our model variants further emphasizes the importance of each

component in the model. Particularly, the model variant excluding

the attention module has the weakest performance, indicating the

significance of our time-embedding attention module in effectively

representing the treatment.

Counterfactual Outcome Predictions. In the context of a

multi-agent dynamical system, the total number of possible treat-

ments for all nodes is 𝑶 (𝐾 ×2𝑁 ), making it infeasible to enumerate

all treatment combinations. To assess the robustness of each model

to counterfactual treatment scenarios, we perform an experiment

where we randomly flip a certain percentage of observed treatments.

In Table 2, we evaluate the performance when 25%, 50%, and 75% of

all observed treatments in each experiment are randomly flipped.

The purpose of this experiment is to examine the robustness of the

models to counterfactual treatment scenarios, and since CG-ODE

does not incorporate causal modeling, it is excluded from this ex-

periment. CAG-ODE outperforms others by a wide margin across

all settings. These findings collectively demonstrate the superiority

of our proposed model, CAG-ODE, in capturing the dynamics of

multi-agent systems and making accurate predictions across differ-

ent time horizons. We additionally include the visualization of the

learned balanced latent representations in Section 5.4.

5.3 Case Study about COVID-19 Policies

We conduct a case study to show the impact of different treatments,

e.g., COVID-19 related policies, on the COVID-19 dataset as shown

in Figure 2. Specifically, we consider four different policy inter-

vention methods and report the resulting average changes in the

number of daily confirmed cases across all states in the U.S.

First, we focus on the removal of policies in three states that

have the highest number of announced policies during the time

frame of the COVID-19 dataset. By masking out these policies,

we observe an increase in the average number of confirmed cases

across states in the future. This increase is attributed to both in-state

disease spread and population flow to other states. The removal

of policies exacerbates the spread of COVID-19 over an extended

period, as shown in Figure 2(a), indicating that our model captures

the dynamic interference resulting from agents’ interactions.

We then explore the effect of changing the starting time of a

specific policy for all states. We changed the "No Public Gatherings"

policy starting time for each state to be 15 days earlier, 15 and 30

days later respectively. As shown in Figure 2(b) when announcing

the policy earlier, we observe a decrease in the average number of

daily confirmed cases in the future, while announcing the policy

later leads to an increase. This intuitive outcome highlights the

capability of our model to capture the causal relationships between

policy interventions and COVID-19 spread.

Next, we analyze the impact of the top three most frequent

policies across all states by removing them separately. As shown in

Figure 2(c), the "Public Gatherings" policy has the largest effect in

reducing the spread of COVID-19, even though the most frequent

policy is "Emergency Funds". This demonstrates the potential of our

model in assisting policymakers to identify the relative importance

of each policy over time.

Finally, we study the effects of different orders in policy an-

nouncements, specifically focusing on the simultaneous or closely

timed announcements of "No Public Gatherings" and "No Traveler

from Outside States" policies. We change the announcement dates

for the two policies in each state to mimic three scenarios shown

in Figure 2 (d). We found that initializing the announcement of "No

Public Gatherings" early generally contributes to a reduction in

the spread of COVID-19 compared with "No Traveler from Out-

side States". We further analyzed the daily population flow during

the given time frame and found that the majority of population

flows are within the same states, indicating that residents of each

state pose a high risk of virus transmission compared to people

from other states. These insights suggest prioritizing the earlier

announcement of the "No Public Gatherings" policy over the "No

Traveler from Outside States" policy can better mitigate the spread

of COVID-19.

These case study results demonstrate the effectiveness of our

model CAG-ODE in capturing the complex interactions between

treatments, disease spread, and population flow, providing valuable

insights for policymakers in making informed decisions.
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Table 2: Root Mean Square Error (RMSE) for counterfactual Outcome evaluation on the Tumor Growth dataset with treatment

flipping ratio. Treatment F.R. (Treatment Flipping Ratio) represents the ratio of treatments that are flipped.

Prediction Length 14-days 21-days 28-days

Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

TE-CDE 95.61 103.2 100.8 98.65 103.0 97.93 118.3 124.0 121.4

COVID-POLICY 21.32 22.37 23.31 26.63 26.83 27.00 32.01 32.16 32.21

CAG-ODE 17.23 16.98 16.96 18.64 18.84 18.85 19.91 19.88 19.87

w/o 𝐿⟨𝐺 ⟩ 20.62 20.53 20.51 19.70 19.60 19.55 21.10 21.41 21.38

w/o 𝐿⟨𝐴⟩ 22.17 22.35 22.35 20.19 20.10 20.09 20.83 21.14 21.15

w/o 𝐿⟨𝐺 ⟩ , 𝐿⟨𝐴⟩ 19.78 19.75 19.71 19.34 19.29 19.27 21.31 21.40 21.34

w/o attention 19.09 18.37 18.13 22.16 21.78 21.65 27.70 27.44 27.38

(a) Remove partial states’ policy. (b) Change policy start date. (c) Remove policy across states. (d) Change relative time of policies.

Figure 2: Case Study for changing different policies on the COVID-19 dataset.

(a) "State-of-Emergency" w/o.

Treatment Balancing.

(b) "State-of-Emergency" with

Treatment Balancing.

(c) "No-Public-Gathering" w/o.

Treatment Balancing.

(d) "No-Public-Gathering" with

Treatment Balancing.

Figure 3: Treatment Balancing Visualization on the COVID-19 Dataset.

5.4 Visualization of Learned Balanced
Representations

To further understand the effect of treatment balancing loss in CAG-

ODE, we visualize the 2-D T-SNE projections of the latent repre-

sentations of nodes on the COVID-19 dataset, i.e. 𝒛𝑡𝑖 as shown

in Figure 3. Specifically, we visualize the latent node representa-

tions under two different treatments: "State-of-Emergency" and "No-

Public-Gathering". Under each treatment (policy), we use different

colors to denote whether a node receives such treatment (treated)

or not (control). As shown in Figure 3(a) and (c), the distributions

of the learned representations are more distinguishable between

the two groups, compared with Figure 3(b) and (d) which have

the treatment balancing loss. This indicates that CAG-ODE indeed

learns balanced latent representations by employing the treatment

balancing loss.

6 CONCLUSION

In this paper, we introduce the causal graph ODE (CAG-ODE) as a

model for estimating continuous counterfactual outcomes in multi-

agent-dynamical systems with evolving interaction edges and dy-

namic multi-treatment effects. Our model builds upon existing

GraphODEs and incorporates causal reasoning for multi-agent dy-

namical systems. We propose a novel treatment fusing module that

captures the dynamic effects of multiple treatments occurring simul-

taneously. Through extensive experiments on both the real-world

and the simulated datasets, we demonstrate the superior perfor-

mance of our model across various prediction settings, validating

its effectiveness. Furthermore, we leverage our model to analyze

policy effects analysis on the COVID-19 dataset, providing valuable

insights for policymakers.
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A APPENDIX

A DATASET DESCRIPTION

A.1 COVID-19 Dataset

Our experiments used the dataset provided by the Johns Hopkins

Coronavirus Resource Center (JHU) 3 from April 12th to December

31st, 2020. That is, we consider 264 time points, with each point

representing one day. The dataset contains a comprehensive range

of information, but for our experiments, we focus on up to 7 specific

features. These features include the daily counts of confirmed cases,

deaths, recovered cases, active cases, incident rate (cases per 100,000

people), mortality rate (calculated as the number of recorded deaths

multiplied by 100 divided by the number of cases), and testing rate

(total test results per 100,000 people). It’s worth noting that while

the JHU dataset provides cumulative data for confirmed, deaths,

recovered, and active cases, our experiments andmodels specifically

consider the daily increases in these features (e.g., the number of

new cases reported each day).

To capture dynamic interaction edges, we use a temporal mobil-

ity flow network among a selection of 47 states based on COVID-19

USFlows [20].

The treatments are represented as statewide policies that aim to

combat the spread of COVID-19. We identify 58 different statewide

policies enacted throughout 2020, from the data given by the De-

partment of Health & Human Services 4. Each state enacted around

20 of these policies during the time period of April 2020 to Decem-

ber 2020, where the dataset provides the start and end dates of each

enacted policy. In our model, treatments are encoded such that for

each time point, the value is either 1 or 0 depending on whether

the particular policy is enacted (for a given state) at that time or

not, respectively.

Overall, the model receives input data for a total of 264 time

points, covering each of the 47 states, and includes 7 features. Along-

side this, the model is also provided with treatments and a mobility

graph. Prior to being used as input for our models, the data is nor-

malized. However, when calculating the test loss for comparison

with other baseline models, the output is unnormalized. Our goal

is to predict either the number of confirmed cases or the number

of deaths for a future period of 7, 14, or 21 days.

A.2 Tumor Growth Dataset
We extend the state-of-the-art pharmacokinetic-pharmacodynamic
(PK-PD) model of tumor growth proposed by [8] to simulate a more
complex scenario where multiple tumor regions within a single
patient interact with each other. The original model characterizes
patients suffering from non-small cell lung cancer and models the
evolution of their tumor under the combined effects of chemother-
apy and radiotherapy. For a detailed description of the original
model, we refer the readers to the original paper [8]. In our ex-
tended model, we incorporate two new terms: an interference term
and a neighborhood covariate term. The volume of the tumor in

3https://coronavirus.jhu.edu/about/how-to-use-our-data
4https://catalog.data.gov/dataset/covid-19-state-and-county-policy-orders-9408a
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where the parameters 𝐾 , 𝜌 , 𝛽𝑐 , 𝛼𝑟 , 𝛽𝑟 are sampled from the prior

distributions described in [8], and 𝑒𝑖𝑡 ∼ 𝑁 (0, 0.012) is a noise

term that accounts for randomness in the tumor growth. The prior

means for 𝛽𝑐 and 𝛼𝑟 are adjusted to create three patient subgroups

𝑆 (𝑖) ∈ {1, 2, 3} as described in [3]. The chemotherapy drug concen-

tration follows an exponential decay with a half-life of 1 day. The

time-varying confounding is introduced by modeling chemother-

apy and radiotherapy assignment as Bernoulli random variables,

with probabilities 𝑝𝑐 and 𝑝𝑟 depending on the tumor diameter. For

more details, we refer the reader to the paper [3]. For our newly

defined interference and neighborhood covariate terms, we set the

hyperparameters 𝜄𝑐 and 𝜄𝑟 to 0.01, and 𝜅 to 0.001. These values

were carefully chosen to reflect the strength of the interference

and neighborhood covariates in the dataset. The number of tumors

in each patient 𝑁𝑖 is fixed to 15, and for each tumor region, the

number of edges connected between the tumor regions is defined

randomly from the range of 22 to 45. For additional experiments

shown in Appendix C, the number of tumor regions for each pa-

tient is fixed to 5, and the number of edges ranges from 6 to 10. The

dataset is input into our model similar to the COVID-19 dataset.

Both chemotherapy and radiotherapy are encoded into 0 or 1 value

depending on whether it was applied at a specific time point. The

input data consists of 60-time points with 4 features, which include

tumor volume, patient type, and the two treatments. The data is

normalized for model input but unnormalized for test loss calcula-

tion. The model’s objective is to predict tumor volume for future

periods of 14, 21, or 28 days. We also create a longer-range dataset

with 120-time points, which is described in C.

B DATA SPLITTING

We train our model in a sequence-to-sequence setting, where we

split the trajectory of each training sample into two parts [𝑡1, 𝑡𝐾 ]
and [𝑡𝐾+1, 𝑡𝑇 ]. We condition the model on the first part of observa-

tions and predict the second part. To fully utilize the data points

within each trajectory, we generate training and validation sam-

ples by splitting each trajectory into several chunks using a sliding

window with three hyperparameters: the observation length and

prediction length for each sample, and the interval between two

consecutive chunks (samples). We summarize the procedure in

Algorithm 1, where 𝐾 is the number of trajectories and 𝑑 is the

input feature dimension. For both datasets, we set the observation

length to be 7 and the interval to be 3. We ask the model to make

predictions at varying lengths for evaluation.
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Prediction Length 35-days 49-days 63-days

Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CAG-ODE 35.00 34.68 34.50 34.12 37.92 37.88 46.71 47.28 48.12

Table 3: Root Mean Square Error (RMSE) for counterfactual outcome evaluation on the longer-range Tumor Growth dataset

with treatment flipping ratio: 25%, 50%, 75%.

Algorithm 1: Data Splitting Procedure.

Input: Original Training trajectories 𝑋input ∈ R𝐾×𝑁×𝑇×𝑑 ;
Observation length 𝑂 ; Prediction length𝑀 ; Interval 𝐼 ;

Trajectory length 𝑇 .

Output: Training samples after splitting 𝑋train.

1 sample_length = 𝑂 +𝑀 ;

2 num_chunk = (𝑇 - sample_length )//interval + 1;

3 for i in range (0,K) do

4 for j in range(0,num_chunk,I) do

5 Generate the split training sample as

𝑋input [𝑖, :, 𝑗 : 𝑗 + sample_length, :]
6 Add the training sample to the training set 𝑋train.

7 end

8 end

C LONGER-RANGE PREDICTION FOR THE
TUMOR GROWTH DATASET

In Table 3, we evaluate the performance of our model. An extended

version of the simulation dataset with a range of 120 days was used

in the experiment. The considered prediction lengths are 35, 49,

and 63 days.

As anticipated, the prediction errors exhibit a moderate increase

with longer prediction lengths, as the added duration poses a greater

challenge for accurate predictions. Note that the prediction error

remains relatively stable when the treatment flipping ratio is in-

creased from 25% to 75%. This observation suggests that the utiliza-

tion of treatment balancing and interference balancing techniques

effectively mitigates the risk of overfitting to confounding factors,

ensuring CAG-ODE’s robustness.

D MODEL IMPLEMENTATION DETAILS

We use the fourth-order Runge-Kutta method from the torchdiffeq

python package [6] as the ODE solver, for solving the ODE systems

on a time grid that is five times denser than the observed time

points. We also utilize the Adjoint method described in [6] to reduce

memory use.

E LIMITATIONS

One limitation of CAG-ODE is that when inferring the future tra-

jectories of nodes, we simply assume that all nodes are connected

and jointly infer such edge evolution. This would bring huge com-

putational costs when generalized to large-scale dynamical systems.

In the future, we will consider more efficient sampling methods

to accelerate the edge inference procedure to scale up our model.
Another line of future work would be how to model more com-

plex multiple treatment effects, including competing, hierarchical

relationships.

F BROADER IMPACTS

Our work significantly enhances the performance of causal in-

ference over multi-agent dynamical systems, which can poten-

tially benefit a wide range of fields including public health, biology,

physics, and robotics. Our work also advances the recent study of

continuous graphODE for modeling multi-agent system dynamics,

providing an efficient tool for further research on AI for science.
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