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Figure 1: The accuracy rates for relative mean judgment tasks separated per color palette design family, with their average accuracy per
family (red line). We find that design families significantly influenced class comparison, with multi-hue categorical palettes providing the
highest performance (91.44%), followed by diverging (86.78%), perceptually-uniform sequential palettes (86.67%), multi-hue sequential

palettes (82.56%), and single-hue sequential palettes (81.11%).

Abstract

Existing guidelines for categorical color selection are heuristic, often grounded in intuition rather than empirical studies of
readers’ abilities. While design conventions recommend palettes maximize hue differences, more recent exploratory findings
indicate other factors, such as lightness, may play a role in effective categorical palette design. We conducted a crowdsourced
experiment on mean value judgments in multi-class scatterplots using five color palette families—single-hue sequential, multi-
hue sequential, perceptually-uniform multi-hue sequential, diverging, and multi-hue categorical—that differ in how they ma-
nipulate hue and lightness. Participants estimated relative mean positions in scatterplots containing 2 to 10 categories using
20 colormaps. Our results confirm heuristic guidance that hue-based categorical palettes are most effective. However, they also
provide additional evidence that scalable categorical encoding relies on more than hue variance.

CCS Concepts

¢ Human-centered computing — Information visualization; Empirical studies in visualization;

1. Introduction

People use scatterplots for a range of tasks [SHGF16, QR21,
Qua21], including comparing trends [HYFC14], exploring clus-
ters [QR20, QNWR22,JQL*23], and estimating values [GCNF13,
HWS21]. Designers commonly use mark color to encode cat-
egorical data in scatterplots [GCNF13]. However, categories
become harder to compare as the number of categories in-
creases [TQWS23]. Intentional design choices can provide robust
data interpretation as the number of categories increases; however,
most palette design guidelines are heuristic, often grounded in de-
signer intuition rather than quantitative evidence.
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One common guideline for categorical palette design is to max-
imize hue variation [Munl14, GLS16, RNAKI18, Sto06]. Tools like
ColorBrewer [HBO03] or Tableau offer categorical encodings that
embody this idea, first emphasizing nameable color differences,
then varying lightness and saturation as secondary factors to ex-
tend palettes to larger numbers of colors. The principles of effec-
tiveness and expressiveness [Mun14, Mac86] further suggest that
palettes emphasize hue variation over lightness to avoid uninten-
tionally implying order within a palette and to align with human
intuition. However, recent studies indicate that these principles may
not apply universally or uniformly [TQWS23]. Instead, they con-
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tend lightness variation can strengthen categorical perception, but
draw these conclusions by studying only palettes with strong base-
line hue variation. This study aims to examine traditional design
heuristics for categorical color encoding empirically.

We investigate these heuristics in multiclass scatterplots, measur-
ing performance across five design families of palettes character-
ized by their respective use of hue and lightness: categorical, single-
hue sequential, multi-hue sequential, perceptually-uniform multi-
hue sequential, and diverging (Figure 1). Classical visualization
guidelines encourage the use of hue-varying categorical palettes
and discourage other families that rely more heavily on light-
ness. However, recent exploratory analyses found that hue variation
alone may not be the strongest predictor of robustness in categori-
cal color encoding design [TQWS23]. Our approach explores this
tension in a class averaging task previously used to investigate the
role of color. We employed the task of judging the highest mean
y-values in multiclass scatterplots [GCNF13, TQWS23].

We conducted a crowdsourced experiment to explore the impact
of sequential, diverging, and categorical color palettes on categor-
ical perception. Our experimental results reveal that both enlarg-
ing hue variance (two-hue diverging or multi-hue sequential) and
emphasizing perceptual uniformity can benefit categorical percep-
tion and lead to more robust performance over larger numbers of
categories. We reconcile our results with current empirical design
guidelines grounded in studies of exclusively categorical palettes
[TQWS23], concluding that while hue variation dominates perfor-
mance, lightness variation and general perceptual distance also play
a notable role in categorical encoding design.

2. Related Work

We briefly review related literature about categorical perception in
scatterplots and color palette design and perception.

2.1. Categorical Perception in Scatterplots

Categorical perception [GH10] describes how people perceive dif-
ferent groups (or categories) of objects. Existing studies assessed
categorical perception in scatterplots for various tasks, such as mea-
suring the influence of shape, size, and color [Szal8,SS19,BSG17],
and approximating difference metrics between categorical chan-
nels [DBH14]. However, the emphasis on minimum differentiable
thresholds in these studies characterizes pairwise interactions be-
tween marks; the results may not generalize to holistic relationships
across an entire palette.

Subsequent studies have explored people’s abilities to compare
values between larger numbers of categories. An initial experi-
ment focused on comparing mean values in scatterplots, indicating
that performance remained consistent as the number of categories
increased from two to three [GCNF13]. More recently, Tseng et
al. [TQWS23] further extended the mean estimation task to more
complex scatterplots with up to ten categories, finding that both the
number of categories and discriminability of colors significantly
impact people’s abilities to compare categories. However, these
studies focused on a limited number of colors with an emphasis on
color palettes that primarily varied in hue. Tseng et al.’s exploratory
analysis suggested that lightness may play a larger role than hue in
predicting palette robustness across varying category numbers. We

extend this observation to consider a wider range of color design
choices that vary along both hue and lightness.

2.2. Color Palette Design and Perception

Prior work offers a range of design guidelines and measures for
effective colormap design [BTS*17]. For example, we can com-
pute the perceptual distance between two colors using metrics
from color science like CIEDE2000 [SWDO0S5] or from visualiza-
tion [Szal8]. Guidelines further note that hue variation and light-
ness difference specifically impact people’s color palette interpre-
tation [TQWS23, KRCO02]. As the difference between colors in-
creases, perceptual distance metrics become less useful. However,
measures such as color name difference [HS12] provide a met-
ric for color uniqueness or relatedness for larger color differences
[GLS16]. Color palettes also must consider people’s aesthetic pref-
erences, which, contrary to categorical color design recommenda-
tions, may increase with hue similarity [SP11, PSS13]. For exam-
ple, pair preference models human preference using aesthetic color
appearance factors including lightness and saturation [SP11].

These metrics inform broader design guidelines for assem-
bling sets of colors into colormaps for representing data.
Perceptually-uniform colormaps improved accuracy and response
time when comparing values [LH18]. Diverging colormaps sup-
port more robust pattern perception than sequential colormaps in
heatmaps [RNAK18]. Reda & Szafir [RS20] found that increased
color name variability improves graphical inference. Color design
tools like Colorgorical [GLS16] leverage these findings using a set
of color perception, aesthetic, and naming models to score palettes.

Effective color use goes beyond task alignment. For example,
people more effectively interpret visualizations when colors align
with their corresponding semantic concepts [SLWF18, KWS19].
Schloss et al. [SGS*18] found that people use implicit color as-
sociations to infer values from colormaps, such as dark-is-more
or opaque-is-more biases. Follow-up studies suggest semantics
are as important as perceptual measures in categorical visualiza-
tion [MYS*21].

Despite numerous perceptual measures relevant to categorical
color palette design, most guidelines for constructing color ramps
are loosely-defined qualitative heuristics, posing challenges for
users without professional experience [SWS19]. We take a step to-
wards better bridging heuristic and perceptual measures in categori-
cal colormap design by investigating hue, lightness, and uniformity
variations across different palette design families.

3. Methodology

We analyzed how the color palettes used to distinguish categories
impact people’s abilities to reason with multiclass scatterplots. We
conducted a crowdsourced study measuring how well people com-
pare category means over varying category numbers (N = 2 — 10)
and five color palette families (Figure 1). These families systemat-
ically vary in hue and lightness, representing common perceptual
properties used in palette design. Given the importance of overall
perceptual discriminability and uniformity between categories, we
additionally tested perceptually-uniform sequential palettes to un-
derstand whether uniformity may play a role in categorical encod-
ing, where color differences between marks tend to be larger than
in standard unit steps with continuous encodings. We hypothesized:
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H1: Categorical palettes will perform better than all other
palettes. Categorical palettes are designed with best practices and
principles for categorical data encoding. These palettes emphasize
hue variations while conforming to effectiveness and expressive-
ness principles for categorical data [Munl14], unlike diverging or
sequential palettes designed to communicate quantitative data.

H2: Diverging palettes will perform better than sequential
palettes. Diverging palettes encourage people to cluster data by
using hue to indicate the end and middle points of a distribu-
tion. This grouping may reduce people’s abilities to estimate quan-
titative statistics within a palette compared to sequential encod-
ings [LH18]; however, this reduction may indicate stronger group-
ing cues than sequential palettes with similar hue variation which
outperform diverging palettes on quantitative estimation tasks.

H3: Multi-hue sequential palettes will perform better than
single-hue sequential palettes. Prior experiments reported using
multi-hue palettes to represent data could help people distinguish
data and find correlations [LH18,SKR99,Lev96,BI107]. Given hue’s
importance in palette design heuristics, we anticipate palettes vary-
ing more in hue will lead to better performance.

H4: Perceptually-uniform sequential palettes will perform bet-
ter than other sequential palettes. Many popular sequential
palettes are perceptually non-uniform [SWS19]. Perceptual dis-
tance metrics help align colors with human perception [GPML* 16,
TQWS23] and have commonly been applied in color measure-
ment and palette design [GLS16,HS12,SWDO05]. We anticipate that
more uniform steps between colors will improve people’s abilities
to distinguish colors across palettes by ensuring a sufficient mini-
mum difference between pairs of categories and perceived category
differences that are proportional to the number of categories.

3.1. Task & Stimuli

We used a relative mean judgment task from previous stud-
ies [GCNF13, SHGF16, HWS21, TQWS23]. As in Tseng et
al. [TQWS23], we asked participants to estimate the category with
the highest average y-value (e.g., “Which category has the high-
est average mean value?”). This task required participants to first
find the data points of each category and then estimate statistical
values over all points in that category such that confusion between
categories (colors) leads to errors in estimation.

We generated each scatterplot as a 400px x 400px graph using
D3. Scatterplots were rendered on a white background using two
orthogonal black axes with 13 unlabeled ticks. We generated point
positions according to the data distribution methods in Tseng et
al. [TQWS23] with a “medium” hardness level and 15 points with
a four-pixel radius-filled circle in each category to generate 180
datasets. We selected 20 color palettes for five color families (four
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Figure 2: Example stimuli for three palette types.
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per family). Figure 1 shows the palettes and Figure 2 the example
stimuli. We chose these color palettes from expert-crafted examples
based on their performance in previous studies [SWS19, TQWS23],
their high relative lightness magnitude or variance [ZHMO09], and
high perceptual distance between colors [SWDO5]. For categorical
palettes, colors were randomly selected. We sampled colors from
continuous palettes by mapping them to the range [0, 1] and using
uniform data steps to choose the corresponding categorical colors.

3.2. Procedure & Participants

Our study involved three phases: (1) informed consent and color-
blindness screening, (2) task description and tutorial, and (3) formal
study. Participants initially gave consent per IRB guidelines, pro-
vided demographics, completed an Ishihara test for colorblindness,
and then were introduced to the tasks. Participants clicked on a data
point in the category with the highest average y-value in a scatter-
plot. We randomly divided the 20 color palettes into 4 groups with
each group containing one palette from each family. Each partici-
pant responded to 45 stimuli containing one combination of each
palette from certain group X category number (2—10) presented in
random order with a random dataset. We randomly assigned the
group when participants started the study. To avoid learning or fa-
tigue effects, three engagement checks were randomly placed along
with the formal questions. The engagement checks had three cate-
gories with large differences in their means.

We recruited 112 U.S. and Canada-based participants via MTurk.
Data from 100 participants (63 male, 37 female, aged 24-65) with-
out CVD and passing all engagement checks were analyzed, with
each receiving $3.00 compensation. The anonymized data, stimuli,
results, and infrastructure for our study can be found on OSF.

4. Results

Accuracy was the primary dependent measure. To compare perfor-
mance across palette designs and category numbers, we conducted
a two-factor ANOVA with color palette family and number of cat-
egories as independent variables and Tukey’s HSD with o0 = 0.05
and Bonferroni correction for post-hoc analysis.

Color Families: Our results show that color palette families sig-
nificantly impact performance (F(4,95) = 12.25,p < .0001). As
shown in Figure 1, categorical palettes (91.44% accuracy) signifi-
cantly outperformed diverging (86.78%), perceptually-uniform se-
quential multi-hue (86.67%), sequential multi-hue (82.56%), and
sequential single-hue palettes (81.11%), supporting H1. Diverging
and perceptually-uniform multi-hue palettes outperformed sequen-
tial single-hue palettes. These findings partially support H2: diverg-
ing palettes outperformed single-hue sequential palettes.

Our results partially support H3: perceptually-uniform multi-
hue sequential palettes performed better than single-hue sequen-
tial palettes; however, perceptually-uniform multi-hue palettes
did not outperform general multi-hue sequential palettes. In par-
tial support of H4, perceptually uniform multi-hue sequential
palettes performed marginally better than non-uniform multi-hue
palettes. However, further analysis revealed that perceptually uni-
form palettes traversed a larger range of color differences than
non-uniform multi-hue palettes. Given the larger range of dif-
ferences and predictable difference structure imparted by unifor-


https://osf.io/scqjb/?view_only=77c68f9aa476446f973451db7792c0e0

4of 5

Sequential Multi-Hue

Al Sequential Single-Hue (Perceptually Uniform)

100
95

100
95
90
85
80
75
70
65
60
56

100

Les
3 80
575
270
65
60
55

50 50
2 3 4 5 6 7 8 9 10
Number of Categories

2 3 4 5 6 7 8 9 10
Number of Categories

2 3 4 5 6 7 8
Number of Categories

9 10

C. Tseng et al. / Revisiting Categorical Color Perception in Scatterplots

Categorical Sequential Multi-Hue Diverging

100
95
90
85
80
75
70
65
60
56

50 50
2 3 4 5 6 7 8 9 10
Number of Categories

2 3 4 5 6 7 8
Number of Categories

9 10 2 3 4 5 6 7 8

Number of Categories

9 10

Figure 3: Accuracy rates broken down by category number separated by color palette families. We found that categorical palettes were more
robust to increasing numbers of categories, with other families dropping in performance for six or more categories.

mity, one might expect perceptually-uniform palettes to dramati-
cally outperform non-uniform palettes, contrary to the relatively
small difference in our findings. Part of this difference may per-
tain to degradation in perceptual distance metrics at larger differ-
ences [HS12, GLS16]. Future work should explore the role of per-
ceptual uniformity and related metrics in categorical palette design.

Number of Categories: Our results confirm Tseng et al.’s find-
ings [TQWS23] that performance decreased as the number of cat-
egories increased. Our results reveal a significant effect of the num-
ber of categories on judgment accuracy (F(8,91) = 20.68,p <
.0001): people were less accurate with higher numbers of cate-
gories (Figure 3). For every family, the accuracy rate decreased
as the number of categories increased. However, the categorical
palettes remained relatively robust even with higher numbers of cat-
egories. Sequential and diverging palettes remained notably robust
to small numbers of categories (less than six).

5. Discussion

When designing categorical encodings, our results empirically con-
firm heuristic guidance that hue is the most significant factor. How-
ever, other factors also likely play a role in encoding robustness.
Key findings and design implications from our study include:

Categorical palettes effectively encode categorical data. Pre-
dominantly hue-varying categorical color palettes achieved the
highest and most robust accuracy among all palette types. This
finding validates heuristic best practices for categorical encoding
design. Further, it provides evidence in support of the expressive-
ness and effectiveness principles [Mun09, QWW*24]: palettes that
maximize intuitive categorical attributes outperformed those that
maximize ordinal attributes (i.e., sequential and diverging palettes).

Hue is the primary factor for effective palette design, but may
be insufficient when considered alone. The average performance
and robustness of multi-hue sequential palettes were higher than
single-hue. This finding aligns with several existing studies [LH18,
SKR99, Lev96, B107], which indicate multi-hue sequential palettes
make it easier to find correlations between certain colors.

However, our results also indicate that hue alone is insufficient
to explain performance. For example, mean overall performance
and robustness for the single-hue and non-uniform multi-hue color
palettes were nearly identical despite multi-hue palettes having
greater hue variation, more nameable hues, and larger overall
perceptual distance between colors. Diverging palettes performed
slightly better overall and were more robust than sequential palettes

with as many or more distinct hues. These results, coupled with
findings from previous exploratory studies that indicate the impor-
tance of lightness variation in categorical encodings [TQWS23],
suggest an interplay between lightness, hue, and categorical per-
ception. These variations may also relate to perceived ordering or
similar factors. Understanding these factors and their interactions
is important future work.

Increasing category numbers influences performance. Our ex-
periments support that adding more categories significantly reduces
categorical perception accuracy [TQWS23]. Further, these findings
partially replicate the subitizing phenomenon found in past work
by revealing a noticeable performance drop between five and six
classes [TQWS23,HW12]. In our case, performance appears to fall
rapidly between five and six categories but remains relatively sta-
ble for six to ten categories. This stability may indicate a change in
the perceptual strategy used to process larger numbers of categories
that should be interrogated in future work.

Our results provide mixed evidence of how palette design might
influence this threshold. We did not find a significant drop in cate-
gorical palettes; however, diverging palettes, which are essentially
two single-hue sequential palettes joined by white in our study, ex-
hibited the same “S”-shaped dip in performance at six categories as
sequential palettes, with slightly higher average performance after
six categories. Exploring this tension and how design might miti-
gate (or leverage) changing perceptual strategies in categorical data
visualization is important future work.

Limitations & Future Work: This study examines design factors
in categorical encodings using a small set of expert encodings for
mean estimation. While largely consistent with Tseng et al.’s find-
ings [TQWS23], discrepancies in categorical palette performance
rankings, possibly due to varied study settings, require further anal-
ysis. Contrary to expectations, perceptually-uniform palettes with
larger average color step sizes did not significantly outperform non-
uniform ones, suggesting a need for more research into the impact
of perceptual metrics on palette design. Future work should also
explore the potential misinterpretation of category ordering in se-
quential encodings to more holistically characterize color palette
design’s role in expressiveness and effectiveness.
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