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Abstract

In economics and social science, network data are regularly observed, and a thorough
understanding of the network community structure facilitates the comprehension of
economic patterns and activities. Consider an undirected network with n nodes and K
communities. We model the network using the Degree-Corrected Mixed-Membership
(DCMM) model, where for each node i = 1, 2, . . . , n, there exists a membership vector
⇡i = (⇡i(1),⇡i(2), . . . ,⇡i(K))0, where ⇡i(k) is the weight that node i puts in community
k, 1  k  K. In comparison to the well-known stochastic block model (SBM), the
DCMM permits both severe degree heterogeneity and mixed memberships, making
it considerably more realistic and general. We present an efficient approach, Mixed-
SCORE, for estimating the mixed membership vectors of all nodes and the other DCMM
parameters. This approach is inspired by the discovery of a delicate simplex structure
in the spectral domain. We derive explicit error rates for the Mixed-SCORE algorithm
and demonstrate that it is rate-optimal over a broad parameter space. Our findings
provide a novel statistical tool for network community analysis, which can be used to
understand network formations, extract nodal features, identify unobserved covariates
in dyadic regressions, and estimate peer effects. We applied Mixed-SCORE to a political
blog network, two trade networks, a co-authorship network, and a citee network, and
obtained interpretable results.

Keywords. Citee network, coauthorship network, communities, node embedding, po-
litical blogs, SCORE, simplex, spectral clustering, trade network.
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1 Introduction

Many economic activities happen on networks. Some examples of economic networks are

the international trade networks, high-school friendship networks, stock co-jump networks,

and job information networks. We denote a network with n nodes by its adjacency matrix

A 2 R
n⇥n, with Aij = 1 if there is an edge between nodes i and j and Aij = 0 otherwise.

In network econometrics, there is a surge of interests in understanding the interplay

between network topology and economic activities (Graham, 2020). The literature can be

divided into two categories, formation and consequence. Research in formation treats the

network itself as the object of interest and studies the mechanism of forming the network.
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One popular model is the dyadic regression model, including the famous gravity model for

bilateral trade (Tinbergen, 1962) as a special example. In this model, E[Aij ] is a function of

the dyadic covariates Xij and nodal covariates Y i and Y j , and the main goal is estimation

and inference of parameters of this function. Another popular model is the strategic model

of network formation (Jackson and Wolinsky, 1996). In this model, each node has a utility

function ui(A) that depends on the whole network, so deletion/addition of an edge affects

the utilities of all nodes. Given these utility functions {ui}
n
i=1, the network is in equilibrium

if no node wishes to delete an edge and no pair of nodes wish to add an edge. The problems

of interest include estimation and inference of these utility functions, e.g., by using network

moment statistics (Miyauchi, 2016). Research in consequence treats the network as given

information and aims to study influence of network structure on economic outcomes. There

is a line of literature on estimation of the linear-in-means models (Manski, 1993; Bramoullé

et al., 2009). In the simplest case of no covariates, let yi be the response of node i and di be

the degree of node i; the linear-in-means model assumes yi = ↵+�
P

j(d
�1
i Aij)yj + ✏i, with

✏i’s being i.i.d. noise. The parameter � captures the ‘peer effect’ and is of main interest.

Independent of the econometric literature, there is also a body of statistical literature

on network data analysis, where the main interest is fitting a probabilistic, easy-to-interpret

model for an observed network. Pioneered by Bickel and Chen (2009), the stochastic block

model (SBM) has attracted much attention. SBM assumes that nodes are divided into a

few communities, and E[Aij ] is determined by community memberships of two nodes. Dif-

ferent from the formation literature of network econometrics, there are usually no observed

covariates and the adjacency matrix A is the only available data. Many methods have been

proposed for estimating the underlying community structure from A.

Recently, the two lines of literature have crossed. There are many interests in applying

statistical network models in econometrics. Auerbach (2022) proposed a joint regression and

network formation model, where the goal is learning latent nodal features from the network

and using these features in the regression. Chen et al. (2020) used network modeling to

estimate the Bernoulli probability matrix E[A]. They replaced A by dE[A] in fitting a network

auto-regression model, in hopes of improving the estimation of peer effects. Graham (2015)

combined the dyadic regression in econometrics and the latent space model in statistics to

account for both observed and unobserved covariates in network formation.

Unfortunately, despite these encouraging progresses, we note two problems. First, both

the statistical literature and the econometric literature have been largely focused on some

classical and idealized network models, such as the stochastic block model (SBM) and the
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graphon (Lovász and Szegedy, 2006). Second, recent developments in statistical network

analysis have suggested new ideas in network modeling, but such ideas are largely unknown

in the area of network econometrics. The SBM and graphon models are often too ideal-

ized for real networks. Many real networks have the so-called severe degree heterogeneity,

meaning that the degree of one node is higher than another by 10 or even 100 times (Jin

et al., 2021b, Table 1). Also, many networks have the so-called mixed-membership, meaning

that different network communities overlap with each, and a node may belong to multiple

communities (Airoldi et al., 2008); for such networks, the SBM is too idealized, which does

not model either mixed-membership or severe degree heterogeneity. The graphon model

is also too idealized. It does not model severe degree heterogeneity and requires that the

nodes are exchangeable (an assumption that is hard to check and is too strong for many real

networks). It is therefore desirable to (a) develop more realistic network models and new

algorithms, and (b) introduce the most recent developments in statistical network analysis

to the area of network econometrics.

We propose the Degree-Corrected Mixed-Membership (DCMM) model as a more suit-

able network model. Compared with SBM, DCMM allows for both severe degree hetero-

geneity and mixed membership and it is much broader. Compared with graphon, DCMM

accommodates severe degree heterogeneity and does not require node exchangeability. Since

many real networks have strong mixed-membership, an interesting problem is how to esti-

mate the mixed-memberships of nodes. We propose a fast spectral method, Mixed-SCORE,

for estimating network mixed-memberships, and show that it is rate-optimal in a decision

theory framework. Given the interesting connections between the two areas (statistical net-

work analysis and network econometrics) we discuss above, our model and method not only

provide new contributions to the former but also provide new opportunities to the latter.

For example, for many existing works in network econometrics that used SBM or graphon as

the network model, we may improve the results by using the more realistic DCMM model.

Also, our method is useful in several problems of network econometrics. For example, one

can use the output of our method to understand network formation, create nodal features,

estimate the Bernoulli probability matrix, and learn the unobserved dyadic covariates.

In what follows, we first present a motivating example. In this example, DCMM has a

relatively simple form. We use this example to illustrate why DCMM is a reasonable model

and how to use the output of our method to answer real questions of interest.
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Figure 1: The political blog network and the output of Mixed-SCORE. Left: A visualization
of the network (figure source: Adamic and Glance (2005)), where blue/red colors indicate
the manually assigned community labels by Adamic and Glance (2005), and yellow/purple
colors indicate the edges between two commmunities. Right: The estimated pi (x-axis) and
✓i (y-axis) by the Mixed-SCORE algorithm.

1.1 A motivating example: Political blog network

The 2004 U.S. Presidential Election was the first presidential election in the United States in

which blogging played an important role. Adamic and Glance (2005) recorded the linkages

of political blogs in a single day snapshot before the election. We use the data to construct

an undirected network, where each node is a blog and two blogs are connected by an edge if

they have links between them (one-way or reciprocal). The giant component of the network

has n = 1222 nodes. We assume each blog has a political orientation parameter pi 2 [�1, 1],

where pi > 0, pi = 0 and pi < 0 corresponds to liberal, neutral and conservative. A node

with pi = 1 is extremely conservative, while a node with pi = 0.2 is only mildly conservative.

We also assume each blog has a popularity score ✓i > 0. The larger ✓i, the more influence of

the blog. Suppose the edges are independently generated. We model the edge probability

between two nodes as a function of their political orientations and popularities: 1

P(Aij = 1) = ✓i✓j · (↵+ �pipj), 1  i < j  n. (1.1)

Here, ↵ > 0 is the baseline effect, and � > 0 captures the effect of political orientations on

linkage probabilities. When two blogs are both liberal or both conservative, �pipj > 0, so

they are more likely to be linked. When one blog is liberal and the other is conservative,

�pipj < 0, so they are less likely to be linked. The more extreme of political orientations of

1Model (1.1) is not identifiable, as we can multiple (α,β) by a scalar c and divide each θi by
p
c to make

the edge probabilities invariant. For identifiability, we let α+ β = 1. This is the same as the identifiability
condition we use for a general DCMM model (see Section 2).
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two nodes, the larger |�pipj | and the stronger effect on linkage probability. Besides political

orientations, the linkage probability is also affected by the popularity of nodes. Suppose two

blogs i and j have exactly the same political orientation, but blog i has a larger influence

in the internet. It is more likely for other blogs to link to blog i than blog j.

We propose a fast spectral method, Mixed-SCORE, for estimating (pi, ✓i) of each node

and the global parameters (↵,�). The details of this method will be deferred to Section 2.

Figure 1 plots (p̂i, ✓̂i) of political blogs. The points in the top left regions correspond to

influential and liberal blogs, and those in the top right region are influential and conservative

blogs. Some of these influential blogs are more ‘extreme’ than others in political orientation,

such as the liberal blog atrios.blogspot.com and the conservative blog hughhewitt.com.

Blogs with large ✓̂i typically have clear political orientations and are far away from being

neutral, with some exceptions like truthprobe.blogspot.com.

When Adamic and Glance (2005) collected this data set, they assigned a manual label

`i 2 {liberal, conservative} to each blog i by checking the host website directory or reading

blog posts. Our method does not need any manual efforts to label the blogs; using the sign

of p̂i, we can recover their manual labels with an accuracy of 95.5%. Meanwhile, people are

interested in not only the label of a blog but also the extremity of its political orientation,

as an extremely conservative blog and a mildly conservative blog can have different opinions

on issues such as abortion, gun control, and death penalties (Hindman et al., 2003). The

p̂i’s from our method help reveal such information that is not seen in manual labels.

We can use the output of Mixed-SCORE in several different ways. First, it is useful for

understanding the formation of links between blogs. Our method obtains �̂ = 1�↵̂ = 0.471.

It captures the effect of political orientation on link formation.2 Second, our method creates

two covariates, p̂i (‘political orientation’) and ✓̂i (‘influence’), for each blog. These covariates

will be useful in other tasks such as predicting the opinion of a blogger on a given topic.

Third, we obtain \E[Aij ] = ✓̂i✓̂j(↵̂ + �̂p̂ip̂j), which can be plugged into the linear-in-means

model to improve the estimation of peer effect. Let yi be an outcome of interest (e.g., the

frequency of a key word in blog posts). We fit a model yi = �+�q̂�1
i

P
j ✓̂j(↵̂+ �̂p̂ip̂j)yj+✏i,

where q̂i =
Pn

k=1 ✓̂k(↵̂ + �̂p̂ip̂k). Compared with the standard linear-in-means model, this

one better deals with measurement errors on the network itself.

2We focus on estimation in this paper. In a companion paper Jin et al. (2021a), we also provide a test for
testing against the null hypothesis β = 0. The p-value is < 10−7 for this political blog network, suggesting
a significant effect of political orientation on link formation.
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1.2 Main results and contributions

Model (1.1) is a special case of the Degree-Corrected Mixed Membership (DCMM) model to

be introduced in Section 2. In the DCMM model, the network has K perceivable communi-

ties. Each node has a mixed membership vector ⇡i 2 R
K , where ⇡i(k) � 0 is the weight that

node i puts on community k, satisfying
PK

k=1 ⇡i(k) = 1. When ⇡i is degenerate (i.e., ⇡i has

only one nonzero entry which is equal to 1, and the other entries are zero), we call node i a

pure node; otherwise, we call it a mixed node. In Model (1.1) for the political blog network,

K = 2, ⇡i = (1�pi
2 , 1+pi

2 )0, and a node is pure if and only if pi 2 {±1}. Each node also has a

degree heterogeneity parameter ✓i > 0. The probability of forming an edge between nodes

i and j is determined jointly by their mixed membership vectors and degree heterogeneity

parameters (see Section 2.1). Given the adjacency matrix A, we are interested in estimating

parameters of DCMM, especially the membership matrix Π := [⇡1,⇡2, . . . ,⇡n]
0. Estimation

of Π is known as the problem of mixed membership estimation (Airoldi et al., 2008).

In the statistical literature of network data analysis, many works focused on community

detection, which clusters nodes into K non-overlapping communities. Overlapping commu-

nity detection (Gregory, 2010) allows the assignment of a node to more than one community.

It is equivalent to a community detection problem with 2K non-overlapping communities.

Community detection is a clustering problem, so the methods and theory do not apply to

mixed membership estimation. Airoldi et al. (2008) is a pioneer work on mixed membership

estimation. They considered a special setting of DCMM with ✓1 = ✓2 = . . . = ✓n (i.e., no de-

gree heterogeneity) and assumed that ⇡i’s are i.i.d. generated from a Dirichlet prior. They

proposed a variational Bayes approach to computing the posterior of ⇡1, . . . ,⇡n. However,

in many real networks, degree heterogeneity is severe (Newman, 2003), so we must assume

unequal ✓i’s. Zhang et al. (2020) proposed the OCCAM algorithm for mixed membership

estimation. OCCAM has the nice property of accommodating degree heterogeneity, but it

requires a condition that the fraction of mixed nodes must be properly small, and so it does

not work for networks with a large fraction of mixed nodes.

We propose a new method Mixed-SCORE for network mixed membership estimation.

It is inspired by our discovery of a low-dimensional simplex geometry associated with the

leading eigenvectors of A. Using linear algebra, we establish an explicit connection between

this simplex and the target quantity Π. It leads to a fast spectral algorithm for estimating Π.

Compared with the existing methods of mixed membership estimation (Airoldi et al., 2008;

Zhang et al., 2020), Mixed-SCORE successfully deals with degree heterogeneity and allows

for an arbitrary fraction of mixed nodes. Furthermore, we also give a characterization of the
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error rate of Mixed-SCORE and show that it is rate-optimal for a wide range of settings.

In comparison, the competitors either have no theoretical guarantees (Airoldi et al., 2008)

or have non-optimal error rates (Zhang et al., 2020). Given Π̂ from Mixed-SCORE, we also

propose estimates of other parameters of DCMM.

1.3 Applications in network econometrics

We give a few examples of using our model and method in network econometrics.

Example 1: Economic outcomes are often affected by social influence. For example, a

high school student’s academic performance might depend on the attitudes and expectations

of his/her friends and family. Such a social influence is not directly observed, and a popular

solution is to collect network data and hope the unobserved social influence is revealed by

linking behavior in the network (e.g., students with similar reported friendships may have

similar family expectations (Auerbach, 2022)). Let yi 2 R be the outcome (e.g., academic

performance of a student) and Xi 2 R
p the observed features (e.g., school rating, family

income, etc.). Consider an unobserved social influence such as the family expectation. We

assume there are K extreme types of family expectation and the family expectation of a

student is represented by a mixed membership vector ⇡i 2 R
K . We model the network by

DCMM and the outcome by a regression yi = X 0
i�+f(⇡i)+ ✏i. This model is similar to the

model in Auerbach (2022), except that he models the network by graphon but we model it

by DCMM. We can apply Mixed-SCORE to obtain ⇡̂i and plug them into the regression.

Compared with the method in Auerbach (2022), our approach has some advantages: First,

we allow the social feature ⇡i to have an arbitrary dimension K, but in a graphon, ⇡i is a

scalar in [0, 1]. Second, our approach deals with severe degree heterogeneity and guarantees

that the estimated social feature is not biased by the student’s own friendship popularity.

Example 2: Understanding the social interactions or ‘peer effects’ in decision making is

of great interest in economics. To estimate the peer effect, we propose a new linear-in-means

model based on DCMM: Given a network generated from DCMM, let y = (y1, y2, . . . , yn)
0

store the response at each node and X = [X1, X2, . . . , Xn]
0 2 R

n⇥p store the feature vectors.

Define G 2 R
n⇥n by Gij = ⇡0

i⇡j/(
P

k:k 6=i ⇡
0
i⇡k), for i 6= j, and Gii = 0. For some parameters

↵,� 2 R and �, � 2 R
p, we model that y = ↵1n + �Gy + X� + GX� + ✏, where ✏ is the

noise vector. This model differs from the standard linear-in-means model (Manski, 1993) in

the definition of G. In the standard form, G is chosen as the normalized adjacency matrix.

However, the adjacency matrix itself has stochastic errors. For example, two friends in real

life may or may not be each other’s Facebook friend. Our G allows for a possibly nonzero
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peer effect between two nodes even when they are not directly connected by an edge. Under

this model, we can apply Mixed-SCORE to obtain ⇡̂i’s and then plug them into the model

for yi. A similar idea has been considered by Chen et al. (2020) for vector autoregression.

They model the network with SBM, but we use the more general DCMM model.

Example 3: The dyadic regression model (Graham, 2020) is a popular network model.

When there are unobserved covariates, how to make accurate parameter estimation is not

fully understood. Inspired by Graham (2015), we assume that an unobserved dyadic co-

variate is a function of unobserved nodal covariates and propose a dyadic regression model

with a DCMM-like structure. Let X 2 R
n⇥n be the adjacency matrix of a weighted network

(e.g., in the international trade network, Xij is the trade flow from country i to country

j). Suppose Xij ⇠ Poisson(�ij), with ln(�ij) =
PM

m=1 �m ln(Zm,i,j) + � ln(⇡0
iP⇡j) + ci + cj .

Here Z1, . . . , ZM are the observed dyadic covariates, ci is the fixed effect of node i, and

Uij := ⇡0
iP⇡j is an unobserved dyadic covariate, with (⇡i, P ) similar to those in DCMM (to

be introduced in Section 2.1). This model is connected to the model in Graham (2015): In

his model, Uij = g(⇠i, ⇠j ; �0), where ⇠i 2 R is an unobserved nodal covariate and g(·, ·; �0)

is a symmetric distance function; in our model, the latent covariate ⇡i can take an arbi-

trary dimension K. We introduce a practical algorithm in Section 5.1: We first construct a

network from the residuals of fitting a dyadic regression with only observed covariates; we

then apply Mixed-SCORE to obtain Ûij = ⇡̂0
iP̂ ⇡̂j ; last, we plug in Ûij and re-fit the dyadic

regression. Although this approach is mainly from a practical perspective, it points out a

new direction, that is, using spectral algorithms to learn unobserved covariates. Compared

with the existing approaches such as Markov Chain Monte Carlo and triad probit (Graham,

2020), the spectral approach is computationally fast and allows for multidimensional ⇡i’s.

Since the main focus of this paper is estimation of ⇡i, we leave a careful study of these

examples to future work. One of the key requirements for plugging ⇡̂i into a downstream

economic model is that the error on ⇡̂i can be well-controlled. In this paper, we provide

not only a method for estimating ⇡i but also the explicit error bounds. In the case that the

network is properly dense, the error bound reduces to E[n�1
Pn

i=1 k⇡̂i�⇡ik2] = O(n�1K3),

suggesting that the errors on ⇡̂i are negligible for downstream tasks (please see the discus-

sions following Theorem 3.2).

The remaining of this paper is organized as follows. In Section 2, we formally introduce

our model and method. In Section 3, we state the theoretical results. In Sections 4-5, we

present the simulations and real data, respectively. We conclude the paper with discussions

in Section 6. The technical proofs are relegated to the online supplementary material.
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2 A spectral method for network membership estimation

2.1 The DCMM model

Consider an undirected network with n nodes. Suppose the network contains K communi-

ties. Each node has a mixed membership vector ⇡i = (⇡i(1),⇡i(2), . . . ,⇡i(K))0, where the

entries of ⇡i are nonnegative and sum to 1. We interpret ⇡i(k) as the fractional weight that

node i puts on community k. If node i puts 100% weight on community k, then ⇡i(k) = 1

and ⇡i(`) = 0 for all other ` 6= k; we say that ⇡i is degenerate and call node i a pure node

of community k. If node i is not a pure node of any community, we call it a mixed node.

Each node also has a degree heterogeneity parameter ✓i > 0. Let P 2 R
K,K be a symmetric

nonnegative matrix. Recall that A 2 R
n⇥n is the adjacency matrix of the network. Since we

do not allow for self-edges, the diagonal entries of A are all zero. We assume that the upper

triangle of A (excluding the diagonal) contains independent Bernoulli variables, where for

any 1  i, j  n and i 6= j,

P(Aij = 1) = ✓i✓j ⇥
KX

k=1

KX

`=1

⇡i(k)⇡j(`)Pk` = ✓i✓j ⇥ ⇡0
iP⇡j . (2.2)

Take Model (1.1) for the political blog network for example. It is a special case with K = 2,

⇡i = (1�pi
2 , 1+pi

2 )0 and P being a 2⇥2 matrix whose diagonal entries are equal to ↵+� and

the off-diagonal entries are equal to ↵ � �. The parameters in (2.2) are not identifiable.

For identifiability, we assume that the diagonal entries of P are equal to 1 (see Section A.1

of the supplementary material for a proof of model identifiability).

We call (2.2) the degree-corrected mixed membership (DCMM) model. DCMM includes

several popular network models as special cases. The stochastic block model (SBM) is a

special DCMM where ✓i’s are equal to each other (i.e., no degree heterogeneity) and all ⇡i’s

are degenerate (i.e., no mixed membership). The MMSBM model (Airoldi et al., 2008) is

a special case with equal ✓i’s (but ⇡i’s can be non-degenerate). The DCBM model (Karrer

and Newman, 2011) is a special case where all ⇡i’s are degenerate (but ✓i’s can be unequal).

DCMM can also be viewed as an equivalence to the OCCAM model (Zhang et al., 2020),

except that ⇡i’s are re-normalized by their `2-norms in the OCCAM model.

It is convenient to express (2.2) in a matrix form. Write Θ = diag(✓1, ✓2, . . . , ✓n) 2 R
n,n

and Π = [⇡1,⇡2, . . . ,⇡n]
0 2 R

n,K . Introduce an n⇥ n matrix Ω = ΘΠPΠ0Θ. It is seen that

Ωij = ✓i✓j · ⇡
0
iP⇡j . By Model (2.2), E[Aij ] = Ωij for all 1  i 6= j  n. It follows that

A = Ω� diag(Ω) +W, with W := A� E[A] and Ω := ΘΠPΠ
0
Θ. (2.3)
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We call Ω, diag(Ω), and W the “main signal”, “secondary signal” and “noise” respectively.

Remark 1: DCMM distinguishes from the latent space models (Handcock et al., 2007)

or graphons (Lovász and Szegedy, 2006; Pensky, 2019) by not requiring exchangeability of

nodes. In DCMM, we have no assumptions saying that ✓i’s and ⇡i’s are i.i.d. drawn from

some distributions. We treat all of them as unknown parameters.

Remark 2: DCMM has an interesting connection to the dyadic regression model. In

DCMM, we can view ✓i and ✓i as nodal covariates, and ⇡0
iP⇡j as a dyadic covariate, but a

major difference is that these covariates are unobserved.

2.2 The simplex structure in the spectral domain

We first consider an oracle case where we observe the “main signal” matrix Ω in (2.3). We

would like to construct an estimate of Π from Ω. Note that Ω is a rank-K matrix. For

each 1  k  K, let �k be the kth largest eigenvalue of Ω in magnitude, and let ⇠k 2 R
n be

the associated eigenvector. Write Λ = diag(�1, . . . ,�K) and Ξ = [⇠1, ⇠2, . . . , ⇠K ]. Jin (2015)

proposed a normalization of eigenvectors called the SCORE normalization. It constructs a

matrix R 2 R
n⇥(K�1) containing the entry-wise ratios of eigenvectors, where

R(i, k) = ⇠k+1(i)/⇠1(i), 1  i  n, 1  k  K � 1. (2.4)

Let ri 2 R
K�1 denote the i-th row of R. Viewing each ri as a point in the (K�1)-dimension

Euclidean space, there is a simplex structure for the point cloud {ri}1in:
3

Lemma 2.1 (The simplex geometry in R). Consider Model (2.2) and assume that P is

non-singular, P (Π0Θ2Π) is irreducible, and each community has at least one pure node. The

following statements are true: (1) All entries of ⇠1 are strictly positive, so that the matrix R

in (2.4) is well-defined. (2) There exists a K-vertex simplex S ⇢ R
K�1, whose vertices are

denoted by v1, v2, . . . , vK , such that each ri is contained in S and that ri falls on one vertex of

S if and only if node i is a pure node. (3) Let wi 2 R
K
+ contain the barycentric coordinates of

ri in S. The vector wi is connected to ⇡i through the equation wi = (⇡i�b1)/k⇡i�b1k1, where
b1 2 R

K is the vector defined by b1(k) = [�1+v0kdiag(�2, . . . ,�K)vk]
�1/2, �1,�2, . . . ,�K are

the nonzero eigenvalues of Ω, and � denotes the entrywise product between two vectors.

We call S the Ideal Simplex. Lemma 2.1 inspires a method to recover Π from Ω. Step 1:

Obtain R from (2.4). Step 2: By the second claim of Lemma 2.1, we can retrieve the vertices

3By definition, the simplex S spanned by v1, v2, . . . , vK is the set of points r such that r =
P

K

k=1
βkvk for

some nonnegative vector β with kβk1 = 1. If v1, v2, . . . , vK are affinely independent, S is non-degenerate;
and we call v1, . . . , vK the vertices of S and β the barycentric coordinate vector of r.
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Figure 2: Illustration for why the simplex exists and the role of SCORE normalization (K = 3).
Left: rows of Ξ (blue points). The point cloud is contained in a simplicial cone, and it is desirable
to normalize the cone to a simplex. Middle: rows of R (red: pure nodes; green: mixed nodes). It
shows that the SCORE normalization successfully produces a simplex. Right: rows of Ξ normalized
by row-wise `1-norm (for visualization, we have projected these points to R

2). This normalization
fails to produce a simplex.

v1, . . . , vK by computing the convex hull of the point cloud {ri}1in. Step 3: Given the

vertices, we obtain the barycentric coordinate vector wi for each node i (by solving a simple

linear equation); we also compute the vector b1 using the definition in Lemma 2.1; by the

third claim of Lemma 2.1, we can recover ⇡i from wi / ⇡i � b1 and k⇡ik1 = 1.

Remark 3 (Why the simplex exists and the crucial role of the SCORE normalization).

In the proof of Lemma 2.1, we will see that the rows of Ξ are contained in a simplicial cone

with K supporting rays, where all the pure nodes in one community are on one supporting

ray, and the mixed nodes are in the interior of the cone. The SCORE normalization (2.4)

transforms the simplicial cone to a simplex and provides a direct link between the simplex

and Π. Interestingly, other normalizations of eigenvectors (e.g., to normalize each row of Ξ

by its own `1-norm) fail to produce a simplex structure. See Figure 2.

2.3 The Mixed-SCORE algorithm for estimating Π

We extend the aforementioned method of recovering Π to the real case where A, instead of Ω,

is observed. For 1  k  K, let �̂k be the kth largest eigenvalue of A in magnitude, and let

⇠̂k 2 R
n be the associated eigenvectors. Write Λ̂ = diag(�̂1, . . . , �̂K) and Ξ̂ = [⇠̂1, . . . , ⇠̂K ].

We propose the following algorithm:

Mixed-SCORE algorithm for estimating Π. Input: A,K. Output: ⇡̂i, 1  i  n.

• SCORE step. Fix a threshold T > 0 (T = log(n) by default). Obtain (�̂1, ⇠̂1), . . . , (�̂K , ⇠̂K)

and define R̂ = [r̂1, r̂2, . . . , r̂n]
0 as the matrix where for 1  i  n and 1  k  K � 1,

R̂(i, k) = sign(⇠̂k+1(i)/⇠̂1(i)) ·min
�
|⇠̂k+1(i)/⇠̂1(i)|, T

 
. (2.5)
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Figure 3: Left: rows of R (many rows are equal so a point may represent many rows). Middle:
each point is a row of R̂ (it is seen that we have strong noise and many outliers, so we may have
poor results if we hunt for vertices directly). Right: same as the middle panel except that a triangle
(solid blue) estimated by SVS is added. In all panels, dashed triangle is the Ideal Simplex, and
red/green points correspond to pure/mixed nodes respectively. The figure suggests (a) the rows of
R̂ are quite noisy, with many outliers, and (b) SVS works reasonably well.

• VH (vertex hunting) step. Use the rows of R̂ to estimate the vertices of Ideal Simplex

(details below). Denote the estimated vertices by v̂1, v̂2, . . . , v̂K .

• MR (membership reconstruction) step. Obtain an estimate of b1 by

b̂1(k) = [�̂1 + v̂0kdiag(�̂2, . . . , �̂K)v̂k]
�1/2, 1  k  K. (2.6)

For each 1  i  n, solve ŵi 2 R
K from the linear equations: r̂i =

PK
k=1 ŵi(k)v̂k,

PK
k=1 ŵi(k) = 1. Define a vector ⇡̂⇤

i 2 R
K by ⇡̂⇤

i (k) = max{0, ŵi(k)/b̂1(k)}, 1  k 
K. Estimate ⇡i by ⇡̂i = ⇡̂⇤

i /k⇡̂⇤
i k1, 1  i  n.

In Step 1, R̂ is an estimate of the matrix R in (2.4). In Step 3, b̂1 is an estimate of b1

in Lemma 2.1. These two steps are similar to those in the oracle case. Step 2 is however

very different from in the oracle case: The point cloud {r̂i}1in is noisy. It is no longer

possible to retrieve the vertices of the Ideal Simplex by simply computing the convex hull

of these points. We call the estimation of v1, v2, . . . , vK the vertex hunting (VH) problem.

We introduce several VH algorithms. A summary of these algorithms is in Table 1.

The first possible VH approach is to use Successive Projection (SP) (Araújo et al., 2001).

SP is a greedy algorithm. It starts by setting v̂1 as the data point r̂i that has the largest

Euclidean norm among r̂1, r̂2, . . . , r̂n. Then, for 2  k  K successively, it projects r̂i’s to

the orthogonal complement of Span(v̂1, . . . , v̂k�1) and finds the data point with the largest

Euclidean norm after projection; the estimated kth vertex v̂k is set as the corresponding r̂i.

However, the SP algorithm frequently underperforms numerically. The Ideal Simplex is

highly corrupted by noise and outliers (see Figure 3), but SP is well-known to be sensitive

to outliers. To overcome the challenge, we propose Sketched Vertex Search (SVS). SVS is a

two-stage algorithm. In the denoise stage, we cluster n points into L clusters by k-means,

12



Table 1: Comparison of four versions of SVS (for completeness, we analyze all versions theoretically.
Numerically, we recommend SVS and SVS* for they have better performances).

Using exhaustive search in 2nd stage Using SP in 2nd stage

L < n SVS SVS*
L = n CVS SP

for a tuning integer K ⌧ L ⌧ n. The center of each cluster (called a “local center”) is

the average of many nearby points and thus robust to outliers. In the second stage, we

estimate K vertices from these L “local centers”. The full algorithm is as follows:

Sketched Vertex Search (SVS) for vertex hunting. Input: K, a tuning integer L � K,

the point cloud r̂1, r̂2, . . . , r̂n. Output: vertices v̂1, v̂2, . . . , v̂K .

• Denoise. Apply the classical k-means algorithm to {r̂i}1in assuming there are L

clusters. Denote the centers of the clusters by m̂1, m̂2, . . . , m̂L 2 R
K�1.

• Vertex search. For any K distinct indices 1  j1 < . . . < jK  L, let H(m̂j1 , . . . , m̂jK )

be the convex hull of m̂j1 , . . . , m̂jK , and

dL(j1, · · · , jK) = max
1jL

distance
�
m̂j , H{m̂j1 , · · · , m̂jK}

�
.4 (2.7)

Find 1  ĵ1 < ĵ2 < . . . < ĵK  L that minimizes (2.7). Output v̂k = m̂ĵk
, 1  k  K.

The tuning integer L can be chosen in a data-driven fashion. For each L 2 [K +1, 3K], let

dL(R̂) = dL(ĵ1, · · · , ĵK) be the same as in (2.7) and �L(R̂) = min{j1,...,jK}

�
max1kK{kv̂(L)jk

�
v̂
(L�1)
k k}

�
, where the minimum is taken over all permutations of {1, 2, . . . ,K}. The quan-

tity �L(R̂) tracks the change of estimated vertices when we increase the tuning parameter

from (L� 1) to L. We select L by (if there is a tie, pick the largest integer):

L̂⇤
n(A) = argminK+1L3K{�L(R̂)/(1 + dL(R̂))}. (2.8)

We also consider three variants of SVS. The first is SVS*, where in the second stage we

apply SP to the L “local centers”. The second is Combinatorial Vertex Search (CVS), where

we take L = n in SVS (i.e., the denoise stage is skipped, so in the second stage, each r̂i is

viewed as a local center). In the last variant, we take L = n in SVS*, so it reduces to SP.

For practical use, we recommend SVS and SVS*; they have the denoise step by k-means,

which is crucial for good numerical performance.

We view Mixed-SCORE a generic algorithm and treat VH as a “plug-in” step. For each

VH approach, we can plug it in and obtain a different version of Mixed-SCORE. We denote

4For a point v and a set H, distance(v,H) is the Euclidean distance from v to H. When H is a simplex,
this distance can be easily computed via a standard quadratic programming.
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them by Mixed-SCORE-X, e.g., for X 2 {SVS, SVS*, CVS, SP}. Mixed-SCORE can also

be used with other possible VH approaches.

The complexity of Mixed-SCORE mainly comes from obtaining the first K eigenvalues

and eigenvectors of A, which is O(nK2), and the VH step, which is O(nK2) if we use the SP

algorithm. Hence, Mixed-SCORE-SP is a polynomial-time algorithm. Mixed-SCORE-SVS

is also a polynomial-time algorithm if (K,L) are both finite.

Remark 4 (Comparison with the standard PCA). The standard PCA approach creates

a K-dimensional vector xi = Ξ̂0ei for each node i. These vectors do not have real meanings

and are hard to interpret; moreover, each xi is determined by all the parameters of DCMM

and cannot faithfully represent the community structure among nodes. In comparison, the

⇡̂i’s from Mixed-SCORE have clear interpretations.

2.4 Estimation of Θ and P

We are also interested in estimating the other parameters of DCMM. Among all the param-

eters, Π is the hardest to estimate. Once Π̂ is obtained, estimation of (Θ, P ) is comparably

easy. Therefore, as a byproduct, we use the output of Mixed-SCORE to construct estimates

of (Θ, P ). Recall that �1, . . . ,�K are the nonzero eigenvalues of Ω and ⇠1, . . . , ⇠K are the

associated eigenvectors. Let v1, v2, . . . , vK be the vertices of the Ideal Simplex and b1 be as

in Lemma 2.1. The next lemma is proved in the supplementary material.

Lemma 2.2. Let Λ = diag(�1, . . . ,�K), V = [v1, . . . , vK ], and B = diag(b1)[1K , V 0]. If the

conditions of Lemma 2.1 hold, then P = BΛB0 and ✓i = ⇠1(i)/(⇡
0
ib1), 1  i  n.

After running Mixed-SCORE, we collect the following quantities: (i) the leading eigen-

vector ⇠̂1; (ii) the estimated vertices V̂ = [v̂1, v̂2, . . . , v̂K ]; (iii) a vector b̂1; (v) the estimated

mixed membership vectors in Π̂ = [⇡̂1, ⇡̂2, . . . , ⇡̂n]
0. Inspired by Lemma 2.2, we let

P̂ = B̂Λ̂B̂0, and ✓̂i = ⇠̂1(i)/(⇡̂
0
ib̂1), 1  i  n. (2.9)

3 Theoretical properties

We state some regularity conditions. Recall that ✓i’s are the degree parameters in Model (2.2).

Let ✓max = maxi ✓i, ✓min = mini ✓i, ✓̄ = n�1
Pn

i=1 ✓i, and ✓̄⇤ =
q

n�1
Pn

i=1 ✓
2
i . Define

errn = errn(Θ) = [(✓3/2max✓̄
3/2)/(✓min✓̄

2
⇤)] ·

q
log(n)/(n✓̄2). (3.10)

Assumption 1. ✓max  C, and errn ! 0.
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Here, the interesting range for ✓i is from O(n�1/2) (up to a multi-log(n) term) to O(1),

so the first condition is mild. To appreciate the second condition, note that when ✓max 
C✓min, errn ⇣

p
log(n)/(n✓̄2), where n✓̄2 is the order of the expected average node degree.

Therefore, the condition of errn ! 0 is the same as that the average node degree grows to

1 faster than log(n), which is mild. Introduce a K ⇥K matrix G = Kk✓k�2(Π0Θ2Π).

Assumption 2. kPkmax  C, kGk  C, and kG�1k  C.

The first one is seen to be mild. For the other two conditions, it is instructive to consider

a special case where all nodes are pure. In this case, G = Kk✓k�2·diag(k✓(1)k2, . . . , k✓(K)k2),
where k✓(k)k2 =

P
i2Ck ✓

2
i . Therefore, the two conditions reduce to that of maxk k✓(k)k2 

Cmink k✓(k)k2, which is only mild. Denote by �k(PG) the k-th largest right eigenvalue of

PG, and by ⌘k 2 R
K the associated right eigenvector, 1  k  K.

Assumption 3. |�2(PG)|  (1� c1)�1(PG), and c1�n  |�K(PG)|  |�2(PG)|  c�1
1 �n,

where �n 2 (0, 1) and c1 2 (0, 1) is a constant.

The first item is a mild eigen-gap condition. In the second item, the quantity �n captures

the ‘distinction’ between communities and can be interpreted as the “signal strength” of

the DCMM model, where �n = O(1) is the case of “strong signal” and �n = o(1) is the

case of “weak signal” (�n is a component in the error rate to be introduced). We assume

�2, . . . ,�K are at the same order. This is only for convenience and can be relaxed (e.g.,

�2, . . . ,�K split into several groups and those in the same group are at the same order).

Assumption 4. min1kK ⌘1(k) > 0, and
max1≤k≤K ⌘1(k)
min1≤k≤K ⌘1(k)

 C.

In Section A.2 of the supplementary material, we show that this assumption is satisfied

in either of the following cases: As n ! 1, (a) all entries of PG are lower bounded by a

constant, (b) K is fixed and P tends to a fixed irreducible matrix P0, (c) K is fixed and G

tends to a fixed irreducible matrix G0, and (d) the maximum and minimum row sums of P

are at the same order and ⇡i’s are i.i.d. generated from a Dirichlet distribution.

3.1 Large-deviation bounds for R̂

The following entry-wise large-deviation bounds for matrix R̂ plays a key role in our anal-

ysis. Let R̂ = [r̂1, r̂2, . . . , r̂n]
0 be as in (2.5). Let R = [r1, r2, . . . , rn]

0 be as in (2.4).

Theorem 3.1 (Large-deviation bounds for R̂). Consider the DCMM model where Assump-

tions 1-4 hold. Suppose
p

K log(n)  T  1 for T in (2.5). Let errn be as in (3.10) and

�n as in Assumption 3. With probability 1� o(n�3), there exists an orthogonal matrix H 2
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R
K�1,K�1 such that max1in kHr̂i�rik  CK3/2��1

n errn. If, additionally, ✓max  C✓min,

then with probability 1� o(n�3), max1in kHr̂i � rik  CK3/2(n✓̄2�2
n)

�1/2
p

log(n).

In Theorem 3.1, (K,�n, ✓̄) may all vary with n. Among them, �n captures the “strength

of community signals”, where we either have �n = O(1) or �n ! 0 reasonably fast, so the

claims applies to both the cases of “strong signals” and “weak signals”.

The proof of Theorem 3.1 is based on a row-wise large deviation bound for the eigenvec-

tors of the adjacency matrix (Lemma D.2 in the supplement). In the literature, there were

few results about row-wise deviation bounds for eigenvectors of a network adjacency matrix

(Abbe et al., 2020; Fan et al., 2022, 2020). They focused on moderate degree heterogeneity

and assumed that the nonzero population eigenvalues are at the same order, so they do not

apply to our setting. We need non-trivial efforts to prove Lemma D.2 and Theorem 3.1.

3.2 Rates of Mixed-SCORE with a generic but efficient VH step

Mixed-SCORE has a plug-in VH step, and the goal of the VH step is to estimate the vertices

v1, . . . , vK of the ideal simplex. In this section, we present the rate of Mixed-SCORE for

a generic but efficient VH step. Next in Section 3.3, we discuss the rate of Mixed-SCORE

for all 4 proposed VH step in Table 1 (where the rate can be much faster in some cases).

Definition 1 (Efficient VH). We call a VH step efficient if it satisfies that max1kK kHv̂k�
vkk  Cmax1in kHr̂i � rik, where H is the orthogonal matrix in Theorem 3.1.

For our proposed VH methods in Table 1, CVS and SP are efficient under Assumptions

1-4, and SVS and SVS* are efficient if some additional conditions hold; see Section 3.3.

For any estimate Π̂ = [⇡̂1, ⇡̂2, . . . , ⇡̂n]
0 for Π, we measure the error by the mean squared

error (MSE) E[ 1n
Pn

i=1 k⇡̂i � ⇡ik2]. Recall that errn is defined in (3.10).

Theorem 3.2 (Error of Mixed-SCORE). Consider the DCMM model where Assumptions

1-4 hold. Let Π̂ be the estimate of Π by Mixed-SCORE with a generic but efficient VH step.

Then, E[ 1n
Pn

i=1 k⇡̂i � ⇡ik2]  CK3��2
n err2n + o(n�2). If additionally ✓max  C✓min, then

E[ 1n
Pn

i=1 k⇡̂i � ⇡ik2]  CK3(n✓̄2�2
n)

�1 log(n) + o(n�2).

We now discuss the implication of Theorem 3.2 on economic applications. For simplicity,

we consider a case where ✓max ⇣ ✓min, K = O(1) and �n � C. By Theorem 3.2, the MSE is

O((n✓̄2)�1 log(n)). For a dense network, ✓̄ ⇣ 1, and the MSE becomes O(n�1 log(n)), which

is quite negligible. Suppose we have a downstream economic model yi = ↵ + ⇡0
i(�1)� + ✏i,

where yi is an outcome of interest and ⇡i(�1) is the sub-vector of ⇡i by dropping the last
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coordinate (to remove co-linearity). We plug in the ⇡̂i’s fromMixed-SCORE and let �̂ be the

least-squares coefficient. It can be shown that |�̂��|2 = O
�
n�1

Pn
i=1 k⇡̂i�⇡ik2

�
+OP(n

�1).

Therefore, as long as n✓̄2 � log(n), we have consistency on �̂. Furthermore, using the faster

rates in Section 3.3, we can further remove the log(n) factor in MSE; as a result, when the

network is dense, we also have root-n consistency of �̂.

Remark 5 (Rate optimality). Jin and Ke (2017) derived a minimax lower bound for

the case where K is finite and that ✓i’s are equal. They showed that for any estimate Π̂,

there is a constant c0 > 0 such that 1
n

Pn
i=1 k⇡̂i � ⇡ik2 � C/(n✓̄2�2

n) with probability � c0.

Comparing it with Theorem 3.2, the error rate of Mixed-SCORE is optimal (up to a log(n)

factor) for DCMM with ✓max  C✓min.

Remark 6 (Comparison with the rate of the OCCAM algorithm (Zhang et al., 2020)).

Since the theory of OCCAM does not allow �n = o(1) or K diverging with n, we compare

two methods only in the case that K  C and �n � C. The rate of Mixed-SCORE reduces

to (n✓̄2)�1/2, but the rate of OCCAM cannot be faster than (n✓̄2)�1/5, which is strictly

slower. Also, OCCAM works only if the fraction of mixed nodes is properly small (hinged

in Assumption-B of Zhang et al. (2020)). For example, when K = 3, P = 0.9I3 + 0.1131
0
3,

and ⇡i =
1p
3
13 for all mixed nodes, the fraction of mixed nodes has to be < 1/4.

Remark 7 (Comparison with theory of community detection). Community detection is

a less challenging problem, where ⇡i’s are known to be degenerate. It has exponential rates

(Gao et al., 2018), but membership estimation only achieves polynomial rates (Jin and Ke,

2017). Consider an example with K = 2, ⇡i
iid⇠ Dirichlet(↵0), and P (Aij = 1) = n�1⇡0

iP⇡j ,

where Pkm = a ·1{k = m}+b ·1{k 6= m}. As n ! 1, ↵0 is fixed but (a, b) can depend on n.

This is equivalent to a DCMM with ✓̄ ⇣ n�1/2pa and �n ⇣ (a�b)/a. Write I = (a�b)2/a.

The rate of Mixed-SCORE is O(I�1/2
p

log(n)), but when ⇡i’s are all degenerate, the rate

of community detection is exp(�O(I)).

Given the results for Π̂, we further study the estimates (Θ̂, P̂ ) defined in Section 2.4.

Theorem 3.3 (Estimation of (Θ, P ) in DCMM). Under the conditions of Theorem 3.2, with

probability 1�o(n�3), kP̂�Pk  C(K2+K3/2��1
n )errn and kΘ̂�Θk2F  Ck✓k2K3��2

n err2n.

3.3 Rates for Mixed-SCORE with proposed VH steps, and faster rates

Section 3.2 analyzes a generic Mixed-SCORE algorithm with an efficient VH step. In this

subsection, we discuss Mixed-SCORE with each specific VH approach in Table 1. First, we

consider CVS and SP. The following theorem shows that CVS and SP are both efficient,

and Mixed-SCORE-CVS and Mixed-SCORE-SP attain the rate in Theorem 3.2.
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Theorem 3.4. Consider the DCMM model where Assumptions 1-4 hold and each commu-

nity has at least one pure node. Let H be the orthogonal matrix in Theorem 3.1. If we apply

either CVS or SP to rows of R̂, then with probability 1� o(n�3), max1kK kHv̂k � vkk 
Cmax1in kHr̂i � rik, so both CVS and SP are efficient. Moreover, for Mixed-SCORE-

CVS or Mixed-SCORE-SP, E[ 1n
Pn

i=1 k⇡̂i � ⇡ik2]  CK3��2
n err2n + o(n�2).

Next, we consider Mixed-SCORE-SVS and Mixed-SCORE-SVS*. SVS and SVS* use

a denoise stage, which provides a significant advantage in numerical performance, but also

makes them harder to analyze. For this reason, we only consider two settings. In the first

setting, we assume all ⇡i’s for mixed nodes are iid drawn from a continuous distribution. In

the second setting, ⇡i’s form several loose clusters. Owing to space limit, we only present

Setting 1 here. Setting 2 is in Section B of the supplementary material.

Setting 1. Let S0 = S0(e1, e2, . . . , eK) be the standard simplex in R
K , where the vertices

e1, e2, . . . , eK are the standard Euclidean basis vectors of RK . Fix a density g defined over

S0. Let R = {⇡ 2 S0 : g(⇡) > 0} be the support of g. Suppose there is a constant c0 > 0

such that R is an open subset of S0, and distance(ek,R) � c0, 1  k  K. Let �v(⇡) be the

point mass at ⇡ = v. Fixing constants ✏1, . . . , ✏K > 0 with
PK

k=1 ✏k < 1, we invoke a random

design model where ⇡i’s are iid drawn from f(⇡) =
PK

k=1 ✏k · �ek(⇡) +
�
1�

PK
k=1 ✏k

�
· g(⇡).

The following is similar to errn in (3.10), and quantifies the “faster rate” aforementioned.

err⇤n = err⇤n(Θ) = [(✓1/2max✓̄
3/2)/(✓min✓̄⇤)] · (n✓̄

2)�1/2. (3.11)

Theorem 3.5. Consider the DCMM model where Assumptions 1-4 hold and ⇡i’s are as in

Setting 1. Let H be as in Theorem 3.1. There exists a constant L0(g, ✏1, . . . , ✏K) > 0 such

that, if we apply SVS or SVS* to rows of R̂ with L � L0, then with probability 1� o(n�3),

max1kK kHv̂k � vkk  C
�
n�1

Pn
i=1 kHr̂i � rik2

�1/2
. Moreover, for Mixed-SCORE-SVS

or Mixed-SCORE-SVS*, E[ 1n
Pn

i=1 k⇡̂i � ⇡ik2]  CK3��2
n (err⇤n)

2 + o(n�2).

By Theorem 3.5, the rates of Mixed-SCORE-SVS and Mixed-SCORE-SVS* are faster

than those of Mixed-SCORE-SP and Mixed-SCORE-CVS. In fact, by (3.10)-(3.11), we have

err⇤n/errn = [✓̄⇤/(✓max

p
log(n))]. Since ✓̄⇤/✓max  1 and ✓̄⇤/✓max may tend to 0 rapidly, we

have the following observations: 1) The rate here is faster than that of Theorem 3.2 by at

least a factor of log(n). 2) The rate here can be much faster than that of Theorem 3.2 if

✓̄⇤/✓max ! 0 rapidly. As an example, suppose ✓1 = . . . = ✓n�1 = ↵n and ✓n = n�↵n, where

0 < � < 1/2 is a constant; in this case, err⇤n/errn = ✓̄⇤/(✓max

p
log(n))  n��/

p
log(n),

and so the rate here is much faster than that of Theorem 3.2. Once we have a faster rate

for Π̂, we also enjoy a faster rate for the proposed (Θ̂, P̂ ) in Section 2.4 (proof is omitted).
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Figure 4: Comparison of VH methods (black: truth; blue: SP; yellow: CVS; red: SVS). Left: The
case of weak noise. CVS and SVS perform well, but SP performs less satisfactorily (possible reason:
SP is a greedy algorithm). Middle: The case of strong noise. SVS performs well, but SP and CVS
perform unsatisfactorily. This is because SVS is much less sensitive to outliers. Right: Robustness
of SVS to the choice of L (y-axis is maxk kHv̂k � vkk2).

Remark 8. The faster rates here are because SVS and SVS* use a denoise stage, which

improves the accuracy in vertex hunting and so in membership estimation. The improved

rate is not due to the more strict setting considered here (in fact, in Setting 1 and Setting

2, if we use SP and CVS for VH in Mixed-SCORE, then we do not have a much faster

rate). For more general settings, Mixed-SCORE-SVS or Mixed-SCORE-SVS* continue to

enjoy this faster rate, as supported by numerical experiments in Section 4.

4 Simulations

Experiment 1 (Comparison of VH approaches). We view Mixed-SCORE as a generic

algorithm, where we can plug in any VH approach. In Table 1, we list four VH approaches.

We now compare SP, CVS and SVS (the performance of SVS* is very similar to SVS, thus

omitted). Fix (n,K) = (500, 3). P is a matrix whose diagonals are 1 and off-diagonals are

0.3. Each community has 50 pure nodes. For ⇡i’s of the remaining 350 nodes, half of them

are iid drawn from Dirichlet(0.6, 0.2, 0.2), and half are iid drawn from Dirichlet(0.3, 0.4, 0.3).

We consider two cases: (a) Weak noise (✓i ⌘ 0.7, and the network is denser) (b) Strong noise

(✓i ⌘ 0.4, and the network is sparser). We choose L as in (2.8), but we also investigate SVS

for all L 2 {4, 5, 6, . . . , 15}. We report the average of maxk kHv̂k�vkk2 over 100 repetitions.

The results are in Figure 4. We observe the following: (i) In the strong signal case, three

methods perform similarly. (ii) In the weak signal case, CVS and SP are significantly worse

than SVS. (iii) The performance of SVS is insensitive to the choice of L. The results confirm

our claims in Section 2.3 and Section 3.3 that the de-noise stage in SVS plays a crucial role

in improving the numerical performance.

Experiments 2-4 (Performance of Mixed-SCORE-SVS). From now on, we fix the VH
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approach as SVS. The tuning integer L is chosen from data using (2.8). In the literature,

other mixed membership estimation approaches only work for MMSBM. The only exception

is OCCAM Zhang et al. (2020). OCCAM assigns to each node a non-negative “membership”

vector with unit `2-norm; we renormalize them by their `1-norms and use them as the

estimated ⇡i. Fix n = 500 and K = 3. For 0  n0  160, let each community have

n0 number of pure nodes. Fixing x 2 (0, 1/2), let the mixed nodes have four different

memberships (x, x, 1�2x), (x, 1�2x, x), (1�2x, x, x) and (1/3, 1/3, 1/3), each with (500�
3n0)/4 number of nodes. Given ⇢ 2 (0, 1), P has diagonals 1 and off-diagonals ⇢. Fixing

z � 1, we generate the degree parameters such that 1/✓i
iid⇠ U(1, z), where U(1, z) denotes

the uniform distribution on [1, z]. The tuning parameter L is selected as in (2.8). For each

parameter setting, we report n�1
Pn

i=1 k⇡̂i � ⇡ik2 averaged over 100 repetitions.

Experiment 2 (fraction of pure nodes). Fix (x, ⇢, z) = (0.4, 0.1, 5) and let n0 range in

{40, 60, 80, 100, 120, 160}. As n0 increases, the fraction of pure nodes increases from around

25% to around 95%. See Figure 5 (left). When the fraction of pure nodes is < 70%, Mixed-

SCORE significantly outperforms OCCAM; when the fraction of pure nodes is > 70%, the

two methods have similar performance.

Experiment 3 (purity of mixed nodes). We call max1kK{⇡i(k)} the “purity” of node

i. Fix (n0, ⇢, z) = (80, 0.1, 5) and let x range in {0.05, 0.1, 0.15, · · · , 0.5}. In our settings,

there are four types of mixed nodes. For the first three types, their purity is (1� 2x)1{x 
1/3}+x1{x > 1/3}. Therefore, as x increases to 1/3, these nodes become less pure; then, as

x further increases, these nodes become more pure. See Figure 5 (middle). It suggests that

membership estimation is harder as the purity of mixed nodes decreases. Mixed-SCORE

outperforms OCCAM in almost all settings, especially when x is close to 1/3.

Experiment 4 (degree heterogeneity). Fix (x, n0, ⇢) = (0.4, 80, 0.1) and let z range in

{1, 2, · · · , 8}. Since 1/✓i
iid⇠ U(1, z), a larger z means the lower average degree and more

severe degree heterogeneity (so the problem is harder). See Figure 5 (right). Mixed-SCORE

uniformly outperforms OCCAM. Interestingly, when z is small (so the problem is “easy”),

Mixed-SCORE is very accurate, but the performance of OCCAM is unsatisfactory.

Experiments 5-8. For space limit, we have relegated them to the supplement. Exper-

iment 5 studies settings where the matrix P varies. Experiment 6 studies settings where

⇡i’s drawn from a continuous distribution. Experiment 7 further investigates robustness of

Mixed-SCORE-SVS to the choice of L. Experiment 8 compares Mixed-SCORE with the

latent space modeling of networks Handcock et al. (2007).
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Figure 5: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n�1
P

n

i=1
k⇡̂i � ⇡ik2).

5 Real data applications

5.1 The international trade networks and the trade triangles

There are two lines of literature on the analysis of international trade networks. The first is

the gravity model (Anderson and Van Wincoop, 2003). It fits a generalized linear model for

trade flows using countrywise ‘size’ covariates and pairwise ‘trading cost’ covariates. The

second is in physics, which studies the topology of trade networks (Serrano and Boguná,

2003). Mixed-SCORE is useful in both approaches.

Combination of Mixed-SCORE and gravity models. LetX(i, j) be the trade flow

from country i to country j. The (general) gravity model assumesX(i, j) ⇠ Poisson(�(i, j)),

with ln(�(i, j)) =
PM

m=1 ↵mGm(i) +
PM

m=1 �mGm(j) +
PS

s=1 �sDs(i, j) + ci + cj , where

G1, . . . , GM are the (log) ‘size’ covariates, D1, . . . , DS are the (log) ‘trading cost’ covariates,

and ci’s are the fixed effects of countries. We fit this model using Poisson pseudo maximum

likelihood and let �̂(i, j) denote the fitted value. We define two ‘p-values’ for each country

pair: Q1(i, j) = P(Poisson(�̂(i, j)) > X(i, j)) and Q2(i, j) = P(Poisson(�̂(i, j)) < X(i, j)).

A small value of Q1(i, j) implies that the observed trade flow is significantly higher than the

fitted one, and a small value of Q2(i, j) indicates the opposite. We construct two undirected

networks. In the first one, there is an edge between nodes i and j if min{Q1(i, j), Q1(j, i)} <

0.05. In the second network, edges are defined similarly except that Q1 is replaced by Q2.

We call them the gravity-under-shooting (GUS) network and gravity-over-shooting (GOS)

network, respectively. For each network, we apply Mixed-SCORE to obtain (Π̂, Θ̂, P̂ ) and

then construct a new nodal covariate, U(i) = ln(✓̂(i)), and a new dyadic covariate, H(i, j) =

ln(⇡̂0
iP̂ ⇡̂j). We use them as surrogates of those unobserved covariates in the gravity model

and plug them back to re-fit the gravity model. As explained in Example 3 of Section 1.3,

we assume here that the unobserved covariates have a DCMM-like structure, which has the

same spirit as the model in Graham (2015). Our proposed ‘Mixed-SCORE + refitting’ is a
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Table 2: Combination of Mixed-SCORE and gravity model. The bigger model has two new covari-
ates created by Mixed-SCORE. The F statistic for model comparison is 928.56 (p-value < 2.2e-16).
We note that these coefficients are not supposed to be directly compared with the fitted coefficients
in Column 2 of Table 2 in Head et al. (2010), because they use panel data but we only use one year’s
data (this also explains why our standard errors are considerably smaller).

Before After
Covariate Meaning Coef. Pval Coef. Pval

distw weighted distance -.832 (.012) <2e-16 *** -.722 (.011) <2e-16 ***
rta regional trade agreement dummy .429 (.026) <2e-16 *** .429 (.022) <2e-16 ***
contig contiguity dummy .415 (.022) <2e-16 *** .403 (.019) <2e-16 ***
comlang off common official language dummy .242 (.022) <2e-16 *** .181 (.019) <2e-16 ***
comcur common currency dummy -.167 (.031) 7e-08 *** .005 (.027) .852
dyadic GUS new trade cost covariate (GUS) 1.294 (.033) <2e-16 ***
dyadic GOS new trade cost covariate (GOS) -.337 (.037) <2e-16 ***

proxy approach to fitting the model we introduce there.

To test the performance of our approach, we use an edited version of the gravity data set

in Head et al. (2010) (available in the R package gravity). The original data set contains

the bilateral trade flows for 166 countries in 1948-2006. We only use the data in 2006. This

edited version includes a nodal covariate, gdp, and five dyadic covariates, distw, rta, contig,

comlang off and comcur (their meanings are in Column 2 of Table 2). Compared with the

original gravity model fitting in Head et al. (2010), this edited version does not provide all

covariates, so it serves as a good example of unobserved covariates. Since there is only one

year of data, we did not include any nodal covariate, because their effects will be absorbed

into the fixed effect ci; all five dyadic covariates were included. We constructed the GUS

and GOS networks as above and ran Mixed-SCORE separately on these two networks. We

set K = 3 for both networks.5 It gave rise to two new dyadic covariates HGUS and HGOS

(again, we did not include the new nodal covariates because of the fixed effects ci). The

results are in Table 2, where both new covariates created by Mixed-SCORE are significant.

The other coefficients have mild changes and slightly smaller standard errors after re-fitting,

except the coefficient of comcur. Initially, the coefficient of comcur is negative, with a very

small p-value. This contradicts our common sense: sharing common currency should not

have a significantly negative impact on trading. After adding the Mixed-SCORE covariates,

the coefficient of cumcur becomes positive and insignificant. It suggests that our proposed

approach is potentially useful in correcting the bias caused by unobserved covariates.

To appreciate what information Mixed-SCORE captures, we check the rows of R̂ for the

GUS and GOS networks. Owing to space limit, we only discuss the GUS network here but

relegate the results of the GOS network to the supplementary material (see Section H). The

5We also tried other values of K. For different K, the networks and Mixed-SCORE output are different,
but the newly created covariates and the subsequent gravity model fitting are similar.
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edges in the GUS network indicate significant under-estimation of trade flows in the initial

gravity model. Therefore, if r̂i and r̂j are close, the two countries may have unmodeled

connections that benefit trade. The rows of R̂ and the estimated simplex (which is a triangle

sinceK = 3) for GUS are shown in Figure 6a. We have some observations: (a) The 3 vertices

may be interpreted as Caribbean (top), Former Soviet Union (bottom left), and Western

African (bottom right). (b) United States, Canada and Mexico are close. These countries

are in the North American Free Trade Agreement (NAFTA). The benefit of NAFTA cannot

be fully captured by the regional trade agreement dummy rta (Anderson and Yotov, 2016)

and is further revealed in the covariates created by Mixed-SCORE. (c) United States and

Russia are far away from each other - a consequence of the historical confrontation between

two countries (Hufbauer and Oegg, 2003). (d) High-GDP countries tend to be in the interior

of the triangle (i.e., they have low ‘trading costs’ with many countries). This is consistent

with economic theory that good ‘tradability’ can boost economic growth (Waugh, 2010).

(e) United States (with the highest GDP) is not in the deep interior of the triangle but on

an edge. Interestingly, this position is farthest from the Former Soviet Union vertex.

Remark 9. In re-fitting the gravity model, an alternative approach is replacing H(i, j)

by ln(bΩij), where bΩ is an arbitrary estimate of Ω. Using the output of Mixed-SCORE, we

can obtain an estimate bΩMS by bΩMS
ij = ✓̂i✓̂j · ⇡̂

0
iP̂ ⇡̂j . Since ✓̂i and ✓̂j will be absorbed into

the fixed effects, this approach is equivalent to the approach we have used above. However,

we may plug in a different estimate of Ω, such as bΩPCA =
PK

k=1 �̂k⇠̂k⇠̂k, where �̂k and ⇠̂k

are the kth eigenvalue and eigenvector of A. In Section I of the supplementary material, we

compare the two estimates of Ω and find that bΩMS has much better numerical performance.

The reason is that bΩMS utilizes the DCMM model structure, not just low-rankness of Ω.

Remark 10. In the recent literature of gravity modeling of trade data, it has become

common to use panel data and to include the importer-year and exporter-year fixed effects

(Weidner and Zylkin, 2021). We did not use panel data because Mixed-SCORE only applies

to static networks. In a working paper, we extend Mixed-SCORE to dynamic networks. It

will be useful for analysis of panel data. We leave this to future work.

Remark 11. In the analysis of panel data, an interesting approach is using the pairwise

fixed effects (Weidner and Zylkin, 2021) to account for unobserved covariates. However, for

our example here where we only use one year’s data, this approach will introduce n(n�1)/2

free parameters, but we only have n(n� 1) observed trading flows; therefore, this approach

will have the issue of over-fitting. In comparison, our Mixed-SCORE approach only allows

for O(nK) free parameters and does not have this over-fitting issue.
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(a) The GUS network after gravity model fitting.
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Figure 6: Rows of R̂ and the estimated simplex (K = 3, so the simplex is a triangle). Left: Orange
dots are top 15 countries with highest GDPs. Right: Green dots are 35 manually-picked economies.

Using Mixed-SCORE for network analysis of the world trade web. Studying

the network topology of the world trade web is a problem of interest (Serrano and Boguná,

2003). These works do not require observing any covariates. They build networks directly

from trade flows and study the topology of these networks (e.g., power law degree distri-

bution, latent community structure, centrality metric, clustering coefficient, etc.). We will

show that Mixed-SCORE is useful for creating low-dimensional embeddings of countries in

these networks. We downloaded the trade in services data from https://data.wto.org/.

For each pair of economies (i, j), we aggregated the total service export from economy i to

economy j during 2014-2018 (we used the numbers reported by economy i). There are 202

economies in total, but we removed European Union and Extra EU Trade, as their data

partially overlap with the data of individual countries. This gave rise to a 200⇥ 200 weight

matrix X. We symmetrize X to Y = (X +X 0)/2. Let u = (u1, u2, . . . , u200)
0 contain the

row sums of Y . Define Z = [diag(u)]�1/2Y [diag(u)]�1/2, where each entry of Z is in [0, 1]. 6

Let µ and � be the mean and standard deviation of all nonzero entries of Z. We construct

an undirected network, where each economy is a node and there is an edge between i and

j if and only if Z(i, j) � µ+ �. We restrict it to the giant component, which has n = 116

nodes. We call this network the trade-in-service (TIS) network. We applied Mixed-SCORE

6One may use GDP or population to normalize, but here we are primarily interested in the case with no
observed covariates. We follow the literature to use total trade flows to normalize.
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with K = 3.7 The rows of R̂ are displayed in Figure 6b.8 This creates an embedding of all

economies into a 2-dimensional latent space. We have some noteworthy observations. (a)

The point cloud fits well with a triangle, which we call the ‘trade triangle’. The three ver-

tices may be interpreted as three different regions: ‘North Africa’ (top vertex in Figure 6b),

‘Southeast Asia’ (bottom left vertex), and ‘Central/South Europe’ (bottom left vertex).

(b) It agrees to economic theory that geographic proximity plays a key role in trade. In

Figure 6b, countries that are geographically close tend to cluster together; e.g., countries in

Southeast Asia (Thailand, Vet Nam, Malaysia, etc.), East Asia (China, Japan, Korea, etc.),

North America (USA, Canada, Mexico, etc.), West Europe (UK, France, Germany, etc.),

East Europe and West/Central Asia (Russian, Kazakhstan, Turkey, Bulgaria, etc.) and so

on. (c) The node embedding contains more information than geographical proximity. For

example, Singapore is geographically close to Southeast Asian countries, but it is closer

to East Asian countries in the trade triangle; West European countries are geographically

closer to East European countries, but they are closer to North American countries in the

trade triangle. These can be explained by trading agreements and historical trading rela-

tionships. The above supports that Mixed-SCORE is useful for node embedding. Imagine

that we are given the trade flows of a new product or service, with little known information;

we can apply Mixed-SCORE to visualize the locations of countries in the embedded space

and gain useful insights for next-step modeling.

5.2 The coauthor and citee network of statisticians, and Fan’s group

The study of coauthorship networks and citation networks is common in applied social sci-

ence (Barabâsi et al., 2002). The goal is using scientific publications in a field to study the

development of the field itself. It is useful for discovering whether all sub-areas (‘communi-

ties’) are developed in a healthy and balanced way and whether any particular sub-area is

under-developed and needs more allocation of resources (Foster et al., 2015). For example,

Andrikopoulos et al. (2016) studied the coauthorship network for Journal of Econometrics.

In this subsection, we use a data set from Ji and Jin (2016). It consists of bibtex and cita-

tion data of 3, 248 papers published in four top-tier statistics journals, Annals of Statistics,

Biometrika, Journal of American Statistical Association, and Journal of Royal Statistical

7For the adjacency matrix, the scree plot shows the elbow point is either at K = 3 or K = 4. We applied
Mixed-SCORE with both K = 3 and K = 4. It turns out that for K = 3, the plot of the rows of R̂ (see
(2.5)) fits better with the simplex structure, and the results are easier to interpret, so we choose K = 3.
Furthermore, we set T = 2 log(n) and L = 25 in Mixed-SCORE.

8The point associated with Montenegro is far away from the data cloud, which we treat as an outlier and
do not show in the figure.
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Society -Series B, during 2003–2012.

The coauthorship network. Ji and Jin (2016) defined a coauthorship network, where

each node is an author, and two authors have an edge if they coauthored 2 or more papers in

the data range. The giant component of the network contains 236 authors. Ji and Jin (2016)

suggest that this is the “High Dimensional Data Analysis” group, which has a “Carroll-

Hall” sub-group (including researchers in nonparametric and semi-parametric statistics and

functional estimation) and a “North Carolina” sub-group (including researchers from Duke,

North Carolina, and NCSU). In light of this, we consider a DCMMmodel assuming (a) there

are K = 2 communities called “Carroll-Hall” and “North Carolina” respectively, and (b)

some nodes have mixed memberships in two communities. We applied Mixed-SCORE, and

the results are in Table 3. It was argued in Ji and Jin (2016) that the “Fan” group (Jianqing

Fan and collaborators) has strong ties to both communities. Our results confirm such a

finding but shed new light on the “Fan” group: many of the nodes (e.g., Yingying Fan, Rui

Song, Yichao Wu, Chunming Zhang, Wenyang Zhang) have highly mixed memberships, and

for each mixed node, we can quantify its weights in two communities. For example, both

Runze Li (former graduate of UNC-Chapel Hill) and Jiancheng Jiang (former post-doc at

UNC-Chapel Hill and current faculty member at UNC-Charlotte) have mixed memberships,

but Runze Li is more on the “Carroll-Hall” community (weight: 73%) and Jiancheng Jiang

is more on the “North Carolina” community (weight: 62%).

Table 3: Left and Middle: high-degree pure nodes in the “Carroll-Hall” community and the “North
Carolina” community. Right: highly mixed nodes (data: Coauthorship network).

Name Deg. Name Deg. Name Deg. Estimated PMF

Peter Hall 21 Joseph G Ibrahim 14 Jianqing Fan 16 54% of Carroll-Hall
Raymond J Carroll 18 David Dunson 8 Jason P Fine 5 54% of Carroll-Hall
T Tony Cai 10 Donglin Zeng 7 Michael R Kosorok 5 57% of Carroll-Hall
Hans-Georg Muller 7 Hongtu Zhu 7 J S Marron 4 55% of North Carolina
Enno Mammen 6 Alan E Gelfand 5 Hao Helen Zhang 4 51% of North Carolina
Jian Huang 6 Ming-Hui Chen 5 Yufeng Liu 4 52% of North Carolina
Yanyuan Ma 5 Bing-Yi Jing 4 Xiaotong Shen 4 55% of North Carolina
Bani Mallick 4 Dan Yu Lin 4 Kung-Sik Chan 4 55% of North Carolina
Jens Perch Nielsen 4 Guosheng Yin 4 Yichao Wu 3 51% of Carroll-Hall
Marc G Genton 4 Heping Zhang 4 Yacine Ait-Sahalia 3 51% of Carroll-Hall
Xihong Lin 4 Qi-Man Shao 4 Wenyang Zhang 3 51% of Carroll-Hall
Aurore Delaigle 3 Sudipto Banerjee 4 Howell Tong 2 52% of North Carolina
Bin Nan 3 Amy H Herring 3 Chunming Zhang 2 51% of Carroll-Hall
Bo Li 3 Bradley S Peterson 3 Yingying Fan 2 52% of North Carolina
Fang Yao 3 Debajyoti Sinha 3 Rui Song 2 52% of Carroll-Hall
Jane-Ling Wang 3 Kani Chen 3 Per Aslak Mykland 2 52% of North Carolina
Jiashun Jin 3 Weili Lin 3 Bee Leng Lee 2 54% of Carroll-Hall

The citee network. Ji and Jin (2016) also defined a citee network: there is an edge

between two authors if they have been cited at least once by the same author (other than

themselves). The giant component of this network contains 1790 authors. Ji and Jin (2016)

suggested that the network has three meaningful communities: “Large Scale Multiple Test-

ing” (MulTest), “Spatial and Nonparametric Statistics” (SpatNon) and “Variable Selection”
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Figure 7: Left: rows of R̂ and the estimated simplex. Right: node purity v.s. degree; x-axis is ✓̂(i)
(grouped with an interval of .2; we plot the mean and standard deviation of k⇡̂ik1 in each group).

Table 4: Estimated PMF of the 12 nodes with the highest degrees in the Citee network.

Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect

Jianqing Fan 977 0.365 0.220 0.415 Peter Buhlmann 742 0.527 0.121 0.352
Raymond Carroll 850 0.282 0.294 0.424 Hans-Georg Muller 714 0.413 0.237 0.350
Hui Zou 824 0.348 0.225 0.427 Yi Lin 693 0.417 0.137 0.446
Peter Hall 780 0.501 0.032 0.467 Nocolai Meinshausen 692 0.462 0.125 0.413
Runze Li 778 0.282 0.226 0.491 Peter Bickel 692 0.529 0.216 0.255
Ming Yuan 748 0.391 0.166 0.444 Jian Huang 677 0.572 0 0.428

(VarSelect). We thereby set K = 3 and apply Mixed-SCORE. Figure 7 (left) plots the rows

of R̂ 2 R
n,2, where a simplex (triangle) is clearly visible in the cloud. Table 4 shows the

estimated PMF of high degree nodes (please also see Table 3 in the supplementary mate-

rial). The results confirm those in Ji and Jin (2016) (especially on the existence of three

communities aforementioned), but also shed new light on the network. First, high-degree

nodes in VarSelect are frequently observed to have an interest in MulTest, and this is not

true the other way around (e.g., compare Jianqing Fan, Hui Zou with Yoav Benjamini,

Joseph Romano). Second, the citations from SpatNon to either MulTest or VarSelect are

comparably lower than those between MulTest and VarSelect. This fits well with our im-

pression. Conceivably, a node with higher degree tends to be more senior and so tends to

be more mixed. Figure 7 (right) is the plot of the node purity, max1kK{⇡̂i(k)}, versus

the estimated degree heterogeneity parameter ✓̂(i). The results show a clear negative cor-

relation between two quantities (especially on the right end, which corresponds to nodes

with high degrees), which indicates that nodes with higher degrees tend to be more mixed.

6 Discussion

There have been independent interests on networks from both the econometric literature

and the statistical literature. Recently, the use of statistical network models in economic

problems has received increasingly more attention. However, the statistical models used in

network econometrics are largely limited to the classical models, such as SBM and graphon.
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Recent developments in statistical network analysis have suggested new ideas in network

modeling, but such ideas are largely unknown in the area of network econometrics. In this

paper, we make two contributions: 1) We provide a new tool for estimating community

structure and creating nodal features from network data. 2) We offer a new network model

that accommodates severe degree heterogeneity and mixed memberships and is more suit-

able for real data; we also equip it with a fast spectral algorithm for estimating parameters

of this model. For many existing works in network econometrics that use SBM or graphon

as the network model, we may improve the results by using the more realistic DCMM model

introduced here. This will inspire interesting future research.

The design of our algorithm includes several novel ideas, e.g., discovering the simplex

structure in the spectral domain and the correct steps to estimate Π from the simplex.

We have also proposed new vertex hunting algorithms, which have much better numerical

performance than the existing algorithms such as successive projection. Theoretically, we

derive the explicit error bounds for Π̂ and show that it is rate-optimal under some conditions.

For future research, first, it is unclear how to estimate K from data. Jin et al. (2022)

proposed a stepwise goodness-of-fit procedure for estimating K when there is no mixed

membership (i.e., the DCMM model reduces to DCBM). It is an interesting question how

to combine Mixed-SCORE with this approach for estimating K under DCMM. Second,

we mention several applications of our work in network econometrics (see Section 1.3). It

is of great interest to study each application more carefully. For example, can we get a

theoretical guarantee for using Mixed-SCORE in these problems? We briefly discuss it in

the paragraph below Theorem 3.2, but more rigorous theoretical studies are needed. We

leave these open problems to future work.

Data and code: The code for implementing Mixed-SCORE and different VH algorithms

is available at https://github.com/ZhengTracyKe/MixedSCORE. This link also contains

all the real networks used in this paper.
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