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Abstract—We consider regression of the max-affine model
that combines multiple affine models via the max function. The
max-affine model ubiquitously arises in applications such as
multiclass classification and auction problems. It also generalizes
the forward model in phase retrieval and rectifier linear unit
activation function. We present a non-asymptotic convergence
analysis of mini-batch stochastic gradient descent (SGD) for max-
affine regression when the model is observed at random locations
following the sub-Gaussianity with anti-concentration. Under
these assumptions, a suitably initialized SGD converges linearly to
the ground truth. Due to its low per-iteration cost, SGD converges
faster than alternating minimization and gradient descent in run
time. Our numerical results corroborate the presented theoretical
results.

I. INTRODUCTION

The max-affine model combines k affine models in the form
of

y = max
j∈[k]

(
⟨x,θ⋆j ⟩+ b⋆j

)
(1)

to produce a piecewise-linear mutivariate functions, where x
and y respectively denote the covariate and the response, and
[k] denotes the set {1, . . . , k}. The max-affine model arises
in applications in statistics, machine learning, economics, and
engineering. For example, the max-affine model has been
adopted for multiclass classification problems [1], [2] and sim-
ple auction problems [3], [4]. Moreover, the max-affine model
also represents well-known models in signal processing and
machine learning as special cases. For example, the instance
of (1) for k = 2 with b⋆1 = b⋆2 = 0 and θ⋆1 = −θ⋆2 = θ⋆

reduces to
y = |⟨x,θ⋆⟩| (2)

which is the forward model in phase retrieval. Similarly, the
rectified linear unit (ReLU)

y = max(⟨x,θ⋆⟩, 0) (3)

is written in the form of (1) for k = 2 with θ⋆1 = 0 and
θ⋆2 = θ⋆. Also note that (1) includes the affine cases of (2)
and (3) by taking b⋆1 and b⋆2 as nonzero scalars (e.g. [5]).

The regression parameters in (1) can be estimated via a
nonlinear least squares given by

min
{θj ,bj}k

j=1

1

2n

n∑
i=1

(
yi −max

j∈[k]
(⟨xi,θj⟩+ bj)

)2

(4)
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where {xi, yi}ni=1 denotes the set of observations. A mini-
mizer to (4) is not uniquely determined since the estimator
is invariant under the permutation of the indices for the
component linear models. Furthermore, the nonlinearity in (1)
with the max function makes the least squares in (4) non-
convex. Therefore, it is challenging to estimate the ground-
truth parameters even up to the inherent equivalence class.

To tackle the problem (4), alternating minimization has been
widely used for max-affine regression [6]–[8]. Since the max-
affine model in (1) combines the k affine models through the
max function, the inputs x1, . . . ,xn are naturally partitioned
into disjoint subsets concerning the linear model that attains
the maximum with each input. If the partition by the ground-
truth linear models is known a priori, then the model param-
eters can be estimated via k decoupled linear least squares.
The least-squares partition algorithm [6] iteratively refines
the parameter estimate by alternating between partitioning and
least squares. The partitioning step has been further improved
in later studies [8], [9]. The resulting alternating algorithms
have shown better empirical performance in computation and
accuracy.

In a series of recent papers, Ghosh et al. proposed a spectral
initialization method so that the least-squares partition algo-
rithm from the spectral initialization can provide a theoretical
performance guarantee [10]–[12]. They showed the linear
convergence of the alternating minimization (AM) algorithm
with the spectral initialization under the standard Gaussian
covariate assumption in the presence of sub-Gaussian noise
[12]. Moreover, they extended the convergence theory of the
alternating minimization algorithm to a more general sub-
Gaussian covariate model with the anti-concentration property
[10], [11]. Their analysis outlines the sufficient number of
samples required to accurately recover the parameters starting
from a suitably initialized parameter.

We have developed an analogous theory for the first-order
methods including the gradient descent (GD) and stochastic
gradient descent (SGD) [13]. In this paper, we report a
subset of these results on stochastic gradient descent in the
noiseless case. A stochastic gradient descent method has been
widely used to solve nonlinear least square problems [14]–
[17]. In particular, as illustrated in Figure 1, SGD empirically
outperforms GD and AM on the max-affine regression problem
in the noiseless case.

Figure 1 compares AM, GD, and a mini-batch SGD on
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Fig. 1. Convergence of estimators for noise-free max-affine regression (k = 3,
d = 500, and n = 8, 000).

random 10 trials where the parameter vectors {β⋆j }
k

j=1
are

selected randomly from the unit sphere. We plot the median
of relative errors versus the average run time. The relative
error is measured up to the equivalence class given by the
permutations of linear models, that is, the error is calculated as
the minimum of log10

(∑k
j=1 ∥β̂π(j) − β⋆j ∥22/

∑k
j=1 ∥β⋆j ∥22

)
over all possible permutation π over [k], where {β̂j}kj=1

denote the estimated parameters. While the theoretical analysis
of AM and GD showed that both algorithms converge at
least linearly to the ground-truth under comparable sample-
complexity conditions, empirically, GD converges slower than
AM in runtime. On the other hand, a mini-batch SGD con-
verges much faster than AM in this experiment. Our main
result derives a theoretical analysis of SGD that explains this
empirical observation.

A. Main results

We perform the convergence analysis of the SGD estimator
under the covariate model by [10]. They assumed that co-
variate vectors x1, . . . ,xn are independent copies of random
x ∈ Rd satisfying the following two properties.

Assumption 1.1 (Sub-Gaussianity): The covariate distribu-
tion satisfies

∥⟨v,x⟩∥ψ2
≤ η, ∀v ∈ Sd−1.

Assumption 1.2 (Anti-concentration): The covariate distri-
bution satisfies

sup
w∈R

P((⟨v,x⟩+ w)2 ≤ ϵ) ≤ (γϵ)ζ , ∀v ∈ Sd−1.

The class of covariate distributions by Assumptions 1.1 and 1.2
generalize far beyond the standard independent and identically
distributed Gaussian distribution. For example, the uniform
and beta distributions satisfy Assumptions 1.1 and 1.2. There-
fore, the result derived in this more general setting will apply
to a wider range of applications.

This paper provides the first theoretical analysis of a mini-
batch stochastic gradient descent estimator for max-affine
regression under Assumptions 1.1 and 1.2. An informal
version of the main result is stated below.

Theorem Let β⋆ ∈ Rk(d+1) collect ground-truth parameters
(θ⋆j , b

⋆
j )j∈[k]. Within a neighborhood of β⋆, a mini-batch

stochastic gradient descent with Õ(Cβ⋆k5d) observations
converges linearly to β⋆ where Cβ⋆ is a constant that may
implicitly depend on k through β⋆, but are independent of d.

In addition, we present numerical results demonstrating
that stochastic gradient descent recovers the ground-truth
parameters significantly faster from fewer observations than
alternating minimization and gradient descent.

B. Organizations and Notations

The rest of the paper is organized as follows: Section II
describes the gradient descent algorithm and introduces ge-
ometric parameters to state the main result in Section III.
Section IV presents numerical results to demonstrate the
empirical behavior of the gradient descent estimator. Finally,
Section V concludes the paper with remarks and discussions
on future directions.

Boldface lowercase letters denote column vectors, and bold-
face capital letters denote matrices. The concatenation of two
column vectors a and b is denoted by [a; b]. For column
vector a ∈ Rd+1, a subvector of a with the first d entries will
be denoted by (a)1:d. Various norms are used throughout the
paper. The spectral norm, Frobenius norm, Euclidean norm,
and sub-Gaussian norm will be respectively denoted by ∥ · ∥,
∥ · ∥F, ∥ · ∥2, and ∥ · ∥ψ2

. Moreover, Bd
2 and Sd−1 will denote

the d-dimensional unit ball and unit sphere with respect to the
Euclidean norm. For two scalars q and p, we write q ≲ p if
there exists an absolute constant C > 0 such that q ≤ Cp.
We adopt the big-O notation so that q ≲ p is alternatively
written as q = O(p). With the tilde on the top of O, we
ignore logarithmic factors. Lastly, the set {1, . . . , n} will be
denoted by [n] for n ∈ N.

II. PROBLEM FORMULATION

We formulate a mini-batch SGD algorithm for the least
squares estimator. First, we rewrite the model in (1) as

y = max
j∈[k]

⟨ξ,β⋆j ⟩

where ξ := [x; 1] ∈ Rd+1 and βj := [θj ; bj ] ∈ Rd+1. Then
the quadratic loss function is given by

ℓ(β) :=
1

n

n∑
i=1

1

2

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

︸ ︷︷ ︸
ℓi(β)

(5)

where β = [β1; . . . ; βk] ∈ Rk(d+1).
Let It be a set of m indices which are selected uniformly

random with replacement from [n] for t ∈ {0} ∪ N. Here the
parameter m denotes the batch size. Then a mini-batch SGD
with step size µ updates the estimate by

βt+1 = βt − µ
1

m

∑
i∈It

∇βℓi(β
t), ∀t ∈ {0} ∪ N,



where ∇βℓi(β
t) is explicitly computed as follows. A sub-

gradient of each summand of the cost function in (5) with
respect to the jth block βj is written as

∇βj
ℓi(β) = 1{xi∈Cj}

(
max
j∈[k]

⟨ξi,βj⟩ − yi

)
ξi, ∀i ∈ [n],

(6)
where C1, . . . , Ck ⊂ Rd are determined by β as

Cj := {w ∈ Rd : ⟨[w; 1],βj − βl⟩ > 0, ∀l < j and

⟨[w; 1],βj − βl⟩ ≥ 0, ∀l > j}.

The set Cj contains all inputs maximizing the jth linear
model.1 Note that each Cj is determined by k− 1 half spaces
given by the pairwise difference of the jth linear model
and the others. Then the gradient ∇βℓi(β) is obtained by
concatenating {∇βj

ℓi(β)}kj=1 by

∇βℓi(β) =
k∑
j=1

ej ⊗∇βj ℓi(β),

where ej ∈ Rk denotes the jth column of the k-by-k identity
matrix Ik for j ∈ [k]. Moreover, ℓi(β) is differentiable except
on a set of measure zero, with a slight abuse of terminology,
∇βℓi(β) in (6) is referred to as the “gradient”.

III. CONVERGENCE ANALYSIS OF MINI-BATCH
STOCHASTIC GRADIENT DESCENT

We present a convergence analysis of a mini-batch stochas-
tic gradient descent estimator. The analysis depends on a set
of geometric parameters of the ground-truth model. The first
parameter πmin describes the minimum portion of observa-
tions corresponding to the linear model which achieved the
maximum least frequently. It is formally defined as a lower
bound on the probability measure on the smallest partition set,
i.e.

min
j∈[k]

P(x ∈ C⋆j ) ≥ πmin, (7)

where C⋆1 , . . . , C⋆k are polytopes determined by

C⋆j := {w ∈ Rd : ⟨[w; 1],β⋆j − β⋆l ⟩ > 0, ∀l < j and

⟨[w; 1],β⋆j − β⋆l ⟩ ≥ 0, ∀l > j}.

The next parameter κ quantifies the separation between all
pairs of distinct linear models in (1) so that the pairwise
distance on two distinct linear models satisfy

min
j′ ̸=j

∥(β⋆j )1:d − (β⋆j′)1:d∥2 ≥ κ. (8)

Given the conditions in (7) and (8), we state our main
result as the following theorem, which presents the local
linear convergence of a mini-batch stochastic gradient descent
estimator.

1In case of a tie when the multiple linear models attain the maximum for
a given sample, we assign the sample to smallest index among the multiple
indices. In the analysis with random xis, the event of duplicate maximizing
indices will happen with probability 0 for any absolutely continuous proba-
bility measure. Therefore, the choice of a tie-break rule will not affect the
analysis.

Theorem 3.1: Let δ ∈ (0, 1/e), yi = maxj∈[k]⟨ξi,β⋆j ⟩ for
i ∈ [n] with ξi = [xi; 1], and {xi}ni=1 being independent
copies of x ∈ Rd satisfying Assumptions 1.1 and 1.2.2 Then
there exist absolute constants C,R > 0 and c, ν ∈ (0, 1), for
which the following statement holds with probability at least
1− δ: If the initial estimate β0 belongs to a neighborhood of
β⋆ given by

N (β⋆) :=

{
β ∈ Rk(d+1) : max

j∈[k]
∥βj − β⋆j ∥2 ≤ κρ

}
with

ρ := min

(
Rπ

ζ−1(1+ζ−1)
min

4kζ−1 · log−1/2

(
kζ

−1

Rπ
ζ−1(1+ζ−1)
min

)
,
1

4

)
,

then for any m < n and all β⋆ satisfying (7) and (8), the
sequence (βt)t∈N by a mini-batch stochastic gradient descent
method with step size µ = cmin (1,m/(d+ log(n/δ)))
satisfies

EIt
∥∥βt − β⋆

∥∥
2
≤(

1−min

(
1,

m

d+ log(n/δ)

)
cν

)t
∥β0 − β⋆∥2

(9)

for all t ∈ N, provided that

n ≥ Cπ
−4(1+ζ−1)
min k4 (kd log(n/d) + log(1/δ)) .

There are a few remarks in order. First, Theorem 3.1 estab-
lishes a local convergence result of a mini-batch stochastic
gradient descent. The basin of convergence is given as a
neighborhood around the ground truth and the radius depends
on k, κ, and π−1

min. Furthermore, the number of sufficient
observations scales linearly in d and polynomial in π−1

min

and k. Note that the parameter κ becomes small when the
ground-truth max-affine model involves similar affine models.
Also the parameter πmin is small when there exist degenerate
affine models which rarely attain the maximum. In either both
of these cases, the regression problem becomes challenging.
Theorem 3.1 explains how these parameters propagate to the
requirements on the initialization and sufficient samples for
the linear convergence.

To obtain the required initial estimate, one may use spectral
initialization by [12, Algorithm 2, 3], which consists of
dimensionality reduction followed by a grid search. They
provided a performance guarantee of a spectral initialization
scheme under the standard Gaussian covariate assumption [12,
Theorems 2 and 3]. Therefore, the reduction of Theorem 3.1
to the Gaussian covariate case combined with [12, Theorems 2
and 3] provides a global convergence analysis of mini-batch
stochastic gradient descent, which is comparable to that for
alternating minimization [12]. Even in this case, the number
of sufficient samples for the success of spectral initialization
overwhelms that for the subsequent stochastic gradient descent

2To simplify the presentation, we assume that the parameters η, ζ, γ in
Assumptions 1.1 and 1.2 are fixed numerical constants in the statement and
proof of Theorem 3.1. Therefore, any constant determined only by η, ζ, γ
will be treated as a numerical constant.



step. Since multiple steps of their analysis critically depend
on the Gaussianity, it remains an open question whether the
result on the spectral initialization generalizes to the setting
by Assumptions 1.1 and 1.2.

Second, the analysis of Theorem 3.1 focuses on the noise-
less case and the linear convergence of SGD in the iteration
index applies regardless of the batch size. The behavior of
SGD in the noiseless max-affine regression is quite different
from the existing analysis of SGD in general [18]. When the
cost function in the form of ℓ(β) =

∑n
i=1 ℓi(β) is smooth and

strongly convex, it has been shown that if β⋆ is the minimizer
of all summands {ℓi(β)}ni=1, SGD converges linearly to β⋆

[19, Theorem 2.1]. Although the cost function in the noiseless
max-affine regression does not satisfy these properties, they
hold locally near the ground truth, whence establishing the
local linear convergence of SGD.

Third, Theorem 3.1 is directly comparable to the analogous
result for alternating minimization under the same covariate
model [11, Theorem 1]. The convergence parameter ν in (9)
is larger than 3/4 for alternating minimization. However, in
our analysis, ν is smaller than 3/4, particularly for large k and
π−1
min, which would lead to slower convergence with respect to

the iteration index. On the other hand, the per iteration cost
of alternating minimization O(knd2) is higher than that of
a mini-batch stochastic gradient descent O(kmd) by a factor
of dn/m. Therefore, as shown in Figure 1, for small batch
sizes, the convergence speed of SGD in run time is faster than
alternating minimization.

IV. NUMERICAL RESULTS

We study the empirical performance of the mini-batch SGD
estimator for max-affine regression. Further, we compare the
mini-batch SGD to alternating minimization estimator [12]
and full GD. Considered estimators start from the spectral
initialization method by Ghosh et al. [12]. According to
Theorem 3.1, the step size of the mini-batch SGD and GD
are set to 1/2min(1,m/d) and 1/2 respectively.

In all experiments, covariates x1, . . . ,xn are gener-
ated as independent copies of a random vector following
Normal(0, Id).
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Fig. 2. Phase transition of estimation error per number of observations n and
ambient dimension d in the noiseless case (number of linear models k and
mini-batch size m are set to 3 and 64 respectively).
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Fig. 3. Phase transition of estimation error per number of observations n and
number of linear models k in the noiseless case (ambient dimension d and
mini-batch size m are set to 50 and 64 respectively).

First, we observe the empirical phase transition of exact re-
covery in the noiseless case through Monte Carlo simulations.
In this experiment, the ground-truth parameters θ⋆1 , . . . , θ

⋆
k

are generated as random mutually orthogonal vectors with
k < p, and the offset terms are set to 0, i.e., b⋆j = 0 for
all j ∈ [k]. By the construction, the probabilities assigned to
the maximizer set of each linear model become similar. In
other words, πmax and πmin concentrate around 1/k where
πmax := maxj∈[k] P(x ∈ C⋆j ). Furthermore, due to the
orthogonality, the pairwise distance ∥θ⋆j − θ⋆j′∥2 =

√
2 for

all j ̸= j′ ∈ [k]. Consequently, the sample complexity
result for SGD by Theorem 3.1 simplifies to an easy-to-
interpret expression Õ(k17d) that involves only k and p. The
result on alternating minimization [10] simplifies similarly.
Figures 2 and 3 illustrate the empirical phase transition by the
three estimators, where the median of normalized estimation
error over 50 random trials is displayed. In these figures, the
transition occurs when the sample size n becomes larger than
a threshold that depends on the ambient dimension d and the
number of linear models k. Figure 2 shows that the threshold
for both estimators increases linearly with d for fixed k.
This observation is consistent with the sample complexity by
Theorem 3.1. A complementary view is presented in Figure 3
for varying k while d is fixed to 50. The threshold in Figure 3
for the SGD estimator is almost linear to k when p is fixed
to 50. This rate is slower than the corresponding result in
Theorem 3.1. A similar discrepancy between theoretical and
empirical phase transitions has been observed for alternating
minimization [10, Appendix L]. Figures 2 and 3 illustrates
that a mini-batch stochastic gradient descent outperforms AM
and GD. Since the inherent random noise in the gradient helps
the estimator to escape the saddle points or local minima as
studied in [20], [21], SGD recovers the parameter with fewer
samples compared with the GD.

V. CONCLUSION

We have established a local convergence analysis of a
mini-batch SGD for max-affine regression with noise-free
observations. The covariate distribution is characterized by



the sub-Gaussianity and anti-concentration, and generalizes
beyond the standard Gaussian model. It has been shown that
a mini-batch stochastic gradient descent estimator from a
suitable initialization converges linearly to the ground truth.
Due to a low per-iteration cost of SGD, overall, it provides
faster convergence in run time than alternating minimization
and GD.
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