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Learning from complex, multidimensional data has become central to

computational mathematics, and among the most successful high-dimensional

function approximators are deep neural networks (DNNs). Training DNNs is

posed as an optimization problem to learn network weights or parameters that

well-approximate a mapping from input to target data. Multiway data or tensors

arise naturally in myriad ways in deep learning, in particular as input data and

as high-dimensional weights and features extracted by the network, with the

latter often being a bottleneck in terms of speed and memory. In this work,

we leverage tensor representations and processing to e�ciently parameterize

DNNs when learning from high-dimensional data. We propose tensor neural

networks (t-NNs), a natural extension of traditional fully-connected networks,

that can be trained e�ciently in a reduced, yet more powerful parameter space.

Our t-NNs are built upon matrix-mimetic tensor-tensor products, which retain

algebraic properties of matrix multiplication while capturing high-dimensional

correlations. Mimeticity enables t-NNs to inherit desirable properties of modern

DNN architectures. We exemplify this by extending recent work on stable neural

networks, which interpret DNNs as discretizations of di�erential equations, to our

multidimensional framework. We provide empirical evidence of the parametric

advantages of t-NNs on dimensionality reduction using autoencoders and

classification using fully-connected and stable variants on benchmark imaging

datasets MNIST and CIFAR-10.
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1 Introduction

With the explosion of computing resources, including cloud-based storage and

accessible advanced hardware, learning from large-scale, multiway data has become

possible. Two distinct fields have emerged as the gold standards for handling

multidimensional data: tensor analysis for featurization and compression and deep

learning for high-dimensional function approximation. Both deep learning and tensor

methods have achieved strong performance in image and video recognition (Vasilescu and

Terzopoulos, 2002; Krizhevsky et al., 2012), medical imaging analysis (Omberg et al., 2007;

Ronneberger et al., 2015), spatiotemporal weather analysis (Chattopadhyay et al., 2020; Li

et al., 2020), and more. This work focuses on leveraging advantages of tensor methods to

enhance deep learning design.

Fundamentally, deep learning approximates mappings from (high-dimensional)

inputs (e.g., images) to targets (e.g., classes) using deep neural networks (DNNs), which

are simply nonlinear, composite functions parameterized by learnable weights. Despite the
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success and flexibility of DNNs, the storage and computational

costs to design and apply these models can be a significant

impediment—there can be millions of network weights and

learning requires an immense amount of time and top-of-the-line

computational hardware (e.g., GPU clusters).

These computational challenges become bottlenecks for the

classic feed-forward neural network, which builds DNNs using

dense linear operators (matrices). Such operations uses network

weights in an highly inefficient manner, and composing many of

these dense matrices can require millions of weights, which is both

computationally demanding and can lead to algorithmic problems,

such as overfitting. To reduce these inefficiencies, we propose a new

type of fully-connected layer that replaces dense linear operators

with dense tensor operators. The proposed tensor operators can

reduce the number of network weights by an order of magnitude,

that leverage the inherent multidimensionality of the input data,

and offer the potential for distributed computation. Thus, we call

our architecture tensor neural networks (t-NNs).

The foundation of t-NNs is the ⋆M-product (pronounced

“star-M”), a family of tensor-tensor products which induces

an algebraic structure on a multidimensional space (Kernfeld

et al., 2015). The ⋆M-framework provably encodes information

more efficiently than traditional matrix algorithms (Kilmer et al.,

2021) and has had success facial recognition (Hao et al., 2013),

tomographic image reconstructions (Soltani et al., 2016; Newman

and Kilmer, 2020), video completion (Zhang et al., 2014), image

classification (Newman et al., 2018), and solving tensor linear

systems (Ma and Molitor, 2022). We call the ⋆M-product matrix-

mimetic; that is, familiar notions such as the identity and

transpose are well-defined for the multilinear operation. The

advantages of processing data multidimensionally including better

leveraging inherit multiway structure and reducing the number

of learnable network weights by an order of magnitude. The

matrix-mimeticity enables the proposed t-NNs to naturally extend

familiar deep learning concepts, such as backward propagation

and loss functions, and non-trivial architectural designs to tensor

space. We propose two additional extensions: tensor-based loss

functions and a stable multidimensional framework, motivated

by Haber and Ruthotto (2017), that brings topological advantages

of featurization.

1.1 Our contributions

Because of the popularity of this area of research, we want

to clarify the objectives and contributions of this paper from the

outset. Our contributions are the following:

• Tensor algebra and processing for efficient parameterization:

we introduce a basic framework for t-NNs, describe the

associated tensor algebra, and demonstrate the inherit

properties from stable network architectures. We also

derive the training algorithm for t-NNs, leveraging matrix-

mimeticity for elegant formulations. We show that this

tensor parameterization, compared to an equivalent matrix

approach, can reduce the number of weights by an order of

magnitude.

• Tubal loss functions: our the algebraic structure imposed by

the ⋆M-product is applied end-to-end. This includes defining

new loss functions based on the outputs of the t-NN, which

are no longer scalars, but the high-dimensional analog called

tubes. This requires a new definition of tubal functions, and

opens the door to a wide range of new evaluation metrics.

These metrics offer more rigorous requirements to fit the

training data, and hence can yield networks that generalize

better.

• Stable t-NNs: we demonstrate how matrix-mimeticity

preserves of desirable network architecture properties,

specifically stability. This will enable the development of

deeper, more expressive t-NNs.

• Open-source code: for transparency and to expand the use

of t-NNs, we provide open-source at https://github.com/

elizabethnewman/tnn.

• Scope: our goal is to explore a new algebraic structure

imposed on neural networks and its the advantages over

equivalent architectures. This paper serves as the introduction

of t-NNs and, similar to the original neural networks,

we consider fully-connected layers only. We acknowledge

that to obtain state-of-the-art results, we would need tools

like convolutional and subsampling layers and significant

hyperparameter tuning; however, these are outside the scope

of this paper. Convolutional layers apply multiple translation-

invariant filters to extract local connections; our t-NNs

examine the global structure of the data. Subsampling or

pooling layers reduce the dimensionality of our data and

hence provide multi-scale features; our t-NNs use no pooling

in order to preserve the algebraic structure. We address

extensions of t-NNs to convolutional and subsampling layers

in the conclusions.

1.2 Organization

This paper is organized as follows. In Section 2, we give

a brief outline of related work combining tensors and deep

learning. In Section 3, we give the background notation on tensor-

tensor products. In Section 4, we formally introduce tensor neural

networks (t-NNs) and tubal loss functions. In Section 5, we extend

t-NNs to stable architectures and outline a Hamiltonian-inspired

architecture. In Section 6, we provide numerical support for using t-

NNs over comparable traditional fully-connected neural networks.

In Section 7, we discuss future work including implementations for

higher-order data and new t-NN designs.

2 Related work

The high dimensional nature of neural network weights has

driven the need to reduce the number of weights through structure.

Early studies, such as LeCun et al. (1989), demonstrated that

neural networks could learn faster from less data and generalize

better by removing redundant weights. Following the observation,

several works showed that structured weights, such as convolutions

(Krizhevsky et al., 2012), low rank weight matrices (Denil et al.,
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2013), and Kronecker-structured matrices (Jagtap et al., 2022),

could perform well with significantly fewer parameters.

Tensor methods for compression high dimensional data and

operators grew in popularity concurrently with the development

of structured operators for neural networks. Many popular tensor

frameworks are designed to featurize multiway arrays (Tucker,

1966; Carroll and Chang, 1970; Harshman, 1970; de Lathauwer

et al., 2000; Kolda and Bader, 2009) or to approximate a given

high-dimensional operator (Oseledets, 2011; Cichocki et al., 2016).

Because the weights and features of deep neural networks are

notoriously high-dimensional, tensorized approaches have gained

traction. In Novikov et al. (2015), the authors combine efficient

tensor storage and processing schemes with DNN training,

resulting up to seven times fewer network weights. This work

specifically used the tensor train style of weight storage, which

is notable for compression of very high dimensional data, but

does not have linear algebraic motivations in this context. Further

studies followed, such as Chien and Bao (2018) that used multiway

operations to extract features convolutionally. This work computes

a Tucker factorization of convolutional features rather than treating

tensors as operators. Similar layer contraction approaches, called

tensor regression layers, have appeared in works such as in Cao

et al. (2017) and Kossaifi et al. (2020). These approaches utilize low-

rank Tucker-based factorizations to successfully reduce the number

of weights in a network without sacrificing performance. These

are more similar in spirit to pooling layers of convolutional neural

networks rather than operations that preserve multilinearity. Many

more studies have connected tensors and neural networks, and we

recommend the survey (Wang et al., 2023) for a more complete

history of the intersection of the two fields.

As we eluded to in the previous paragraph, in this work, we

take a notably different perspective on tensors. We consider tensors

as multiway operators and process our layers under this tensor

operation. This provides a linear algebraic structure that enables

us to extend desirable neural network structure to high dimensions

with ease. Because of our strong algebraic foundation, we are able to

express forward and backward propagation simply; in comparison,

other tensor frameworks require heavy indexing notation.We share

and achieve the same goal as other tensor approaches of reducing

the number of network weights.

3 Background and preliminaries

To motivate our multidimensional neural network design, we

start by introducing our notation and the tensor algebra in which

we work.We useMATLAB indexing notation throughout the paper,

such as selecting the j-th column of a matrix via A(:, j) or A:,j.

3.1 Tensor preliminaries

LetA ∈ R
m1×m2×n be a real-valued, third-order tensor. Fixing

the third-dimension, frontal slices A(k) ∈ R
m1×m2 are matrices

for k = 1, . . . , n. Fixing the second-dimension, lateral slices
EAj ∈ R

m1×1×n are matrices oriented along the third dimension

for j = 1, . . . ,m2. Fixing the first and second dimensions, tubes

aij ∈ R
1×1×n are vectors oriented along the third dimension for

i = 1, . . . ,m1 and j = 1, . . . ,m2. We depict these partitions

in Figure 1. While this paper focuses on real-valued, third-order

tensors (three indexes), we note all of the presented concepts

generalize to higher-order and complex-valued tensors.

We interpret tensors as t-linear operators (Kilmer and Martin,

2011; Kernfeld et al., 2015). Through our operator lens, it is possible

to define analogous matrix algebraic properties for tensors, such as

orthogonality and rank. Thus, this framework has been described as

matrix-mimetic. We describe the fundamental tools to understand

how tensors operate for this paper, and refer the reader to Kilmer

et al. (2013, 2021) and Kernfeld et al. (2015) for details about the

underlying algebra.

We define a product to apply matrices along the third

dimension of a tensor (i.e., along the tubes).

Definition 3.1 (mode-3 product). GivenA ∈ R
m1×m2×n andM ∈

R
ℓ×n, the mode-3 product, denoted Â ≡ A ×3 M, outputs an

m1 ×m2 × ℓ tensor with entries

Â(i1, i2, k) =

n∑

j=1

A(i1, i2, j)M(k, j)

for i1 = 1, . . . ,m1, i2 = 1, . . . ,m2, and k = 1, . . . , ℓ.

The mode-3 product can be generalized along any mode; see

Kolda and Bader (2009) for details.

Next, we define the facewise product to multiply the frontal

slices of two third-order tensors in parallel.

Definition 3.2 (facewise product). Given A ∈ R
m1×ℓ×n and B ∈

R
ℓ×m2×n, the facewise product, denoted C ≡ A △ B, returns an

m1 ×m2 × n tensor where

C(k) = A(k)B(k)

for k = 1, . . . , n.

Combining Definition 3.1 and Definition 3.2, we define our

tensor operation, the ⋆M-product, as follows:

Definition 3.3 (⋆M-product). GivenA ∈ R
m1×ℓ×n,B ∈ R

ℓ×m2×n,

and an invertible n × n matrix M, the ⋆M-product outputs an

m1 ×m2 × n tensor of the following form:

A ⋆M B = (Â △ B̂)×3 M
−1.

where X̂ ≡ X×3 M.

We say that A and B live in the spatial domain and Â and

B̂ live in the transform domain. We perform the facewise product

in the transform domain, then return to the spatial domain by

applying M−1 along the tubes. If M is the identity matrix, the

⋆M-product is exactly facewise product. If M were the discrete

Fourier transformation matrix (DFT), we obtain the t-product

(Kilmer and Martin, 2011). In this case, the frontal slices of Â

correspond to different frequencies in the Fourier domain and are

therefore decoupled.
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A B C D

FIGURE 1

Tensor notation. (A) A is a third-order tensor, (B) EAj are lateral slices, (C) A(k) are frontal slices, and (D) aij are tubes.

We can interpret the ⋆M-product as a block-structured matrix

product via

A ⋆M B ≡ (M−1 ⊗ Im1 )




Â
(1)

Â
(2)

. . .

Â
(n)



(M⊗ Iℓ)

︸ ︷︷ ︸
struct(A)




B(1)

B(2)

...

B(n)




︸ ︷︷ ︸
unfold(B)

(1)

where ⊗ is the Kronecker product (Petersen and Pedersen, 2012).

The block matrix structure, struct(A), depends on the choice

of transformation, M. We consider two familiar examples: the

facewise product (M = In) and the t-product (M = Fn, the DFT

matrix):

M = In struct(A) = bdiag(A) =




A(1)

A(2)

. . .

A(n)




(2a)

M = Fn struct(A) = bcirc(A) =




A(1) A(n) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n) A(n−1) · · · A(1)



.

(2b)

While we never explicitly form Equation (2), the block

structure will be helpful for subsequent analysis.

3.2 Matrix-mimetic tensor algebra

The ⋆M-product yields a well-defined algebraic structure.

Specifically, suppose we have tubes a, b ∈ R
1×1×n. Then,

⋆M ≡ vec(a)⊤ M⊤ diag(M vec(b))M−⊤

︸ ︷︷ ︸
R[b]

(3)

a b

where vec :R1×1×n → R
n×1 turns a tube into a column vector.

The ⋆M-product of tubes (3) is equivalent to post-multiplying by

the structured matrix, R[b]. Note that R[·] implicitly depends on

the choice ofM, but we omit explicitly writing this dependence for

notational simplicity. The tubes form a matrix subalgebra which

dictates the algebraic structure imposed on the high-dimensional

space (Kernfeld et al., 2015). As a result, the ⋆M-product is matrix-

mimetic and yields several familiar concepts.

Definition 3.4 (⋆M-identity tube). The identity tube e ∈ R
1×1×n

under the ⋆M-product is

e = 1×M−1,

where 1 is the 1× 1× n tube containing all ones.

This gives rise to the notion of an identity tensor.

Definition 3.5 (⋆M-identity tensor). A tensor I ∈ R
m×m×n is the

identity tensor if I(i, i, :) = e for i = 1, . . . ,m where e is the

⋆M-identity tube.

Note that if the size of third dimension is equal to one (i.e.,

n = 1), then Definition 3.5 collapses into the identity matrix.

This is a hallmark of our ⋆M-framework andmatrix-mimeticity; the

product and definitions reduce to the equivalent matrix definitions

when the third dimension is removed.

Definition 3.6 (⋆M-transpose). Given A ∈ R
m1×m2×n, its

transposeB ≡ A⊤ ∈ R
m2×m1×n is

B̂
(k)

= (Â
(k)
)H

for k = 1, . . . , n.

Note that if our transformation M is complex-valued, the

transpose operator in the transform domain performs the conjugate

transpose. However, because we are working with real-valued

tensors in the spatial domain, the transpose will be real-valued

as well.

4 Tensor neural networks (t-NNs)

In general, neural networks are parameterized mappings from

an input space Y to the target space C. These mappings are

composite functions of the form

FNN(·, θ) ≡ fd(· · · f2(f1(·, θ1), θ2) · · · ), θd). (4)

Each subfunction fj(·, θ j) for j = 1, . . . , d is called a layer. The

goal is to find a good set of weights θ ≡ (θ1, . . . , θd) ∈ 2 such that
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FNN(y, θ) ≈ c for all input-target pairs (y, c) ⊂ D. Here, 2 is the

parameter space andD ⊂ Y × C is the data space.

The most common layer of feed forward neural networks (4)

consists of an affine transformation and pointwise nonlinearity of

the form

yj = fj(yj−1, θ j) = σj(Wjyj−1 + bj) (5)

whereWj ∈ R
mj×mj−1 is a weight matrix, bj ∈ R

mj is a bias vector,

and σj :R → R is a one-dimensional nonlinear activation function,

applied entrywise. In practice, activation functions are monotonic,

such as the sigmoid function, σ (x) = 1/(1 + e−x), or Rectified

Linear Unit (ReLU), σ (x) = max(x, 0). We call yj the features of

layer j and y0 ∈ Y are the input features. Notationally, we use

θ j ≡ (Wj, bj) to collect all of the learnable weights for layer j.

4.1 Improved parameterization with the
⋆M-product

When designing a neural network, we seek to balance a

simple parameter space with an expressive feature space. However,

traditionally fully-connected layers like (5) use parameters in a

highly inefficient manner. We propose new tensor fully-connected

layers for a more efficient parametrization while still creating a rich

feature space. Specifically, we consider the following tensor forward

propagation scheme:

EYj = σj(Wj ⋆M EYj−1 + EBj), (6)

for j = 1, . . . , d. Suppose our input features EY0 = EY ∈ Y is of size

m0 × 1 × n. Here, the weight tensor Wj is of size mj+1 × mj × n

and the bias EBj is of size mj+1 × 1 × n. The forward propagation

through Equation (6) results in a tensor neural network Ftnn(·, θ)

where θ ≡ (Wj, EBj)
d
j=1.

Through the illustration in Figure 2, we depict the number

of weight parameters required to preserve the size of our feature

space using either a dense matrix (Figure 2A) or a dense tensor

under the ⋆M-product (Figure 2B). Using the ⋆M-algebra, we can

reduce the number of weight parameters by a factor of n while

maintaining the same number of features (i.e., maintaining a rich

feature space). Beyond the parametric advantages, the multilinear

⋆M-product incorporates the structure of the data into the features.

This enables our t-NNs to extract more meaningful features, and

hence improve the richness of our feature space.

4.2 The training problem

Training a (tensor) neural network is posed as a stochastic

optimization problem given by

min
θ∈2

E L(Ftnn( EY, θ), c)+ λR(θ), (7)

where L :Rmd+1×1×n × C → R is the loss function that measures

the misfit between the network prediction and the true target.

The expectation is taken over all input-target pairs ( EY, c) ∈ D.

The additional function R :2 → R regularizes the weights to

promote desirable properties (e.g., smoothness), weighted by a

regularization parameter λ > 0.

4.3 Tubal loss (t-loss) functions

The loss function is chosen based on the given task. For

regression, we often use mean squared error, and for classification,

which is the focus of this paper, we often use cross entropy.

Cross entropy loss, related to the Kullback–Leibler (KL) divergence

(Kullback and Leibler, 1951), measures the distance between two

probability distributions. In practice, we first transform the network

outputs into a set of probabilities using exponential normalization.

Specifically, we use the softmax function h :Rp → 1p, defined

entrywise as

[h(x)]i =
exi

∑p
j=1 e

xj
for i = 1, . . . , p, (8)

where 1p is the p-dimensional unit simplex.

To preserve the algebraic integrity of t-NNs, we introduce

a tubal variant of the softmax function. Drawing inspiration

from Lund (2020), a tubal function, we start by defining tubal

functions generally.

Definition 4.1 (tubal function). Given b ∈ R
1×1×n, a tubal

function f :R1×1×n → R
1×1×n acts on the action of b under the

⋆M-product; that is,

f (b)
tubal function

≡ f (R[b])
matrix function

≡ M⊤ f (M vec(b))
pointwise function

M−⊤ (9)

In practice, a tubal function is applied pointwise in the

transform domain.

We note that the pointwise function in Definition 4.1 is

equivalent to applying a matrix function to the eigenvalues of

the matrix R[b]. We provide a visualization of the effects of

tubal functions compared to applying an entry-wise function in

Example 4.2.

Example 4.2 (Visualizations of tubal functions). Consider the

following RGB image B ∈ R
150×169×3 of a Tufts Community

Apeal elephant (TCA, 2023), where 3 is the number of color

channels (Figure 3A). We rescale each entry of B between 0 to 1

and consider the following transformation matrix:

M =



−1 1 1

0 1 1

0 0 1


 and M−1 =



−1 1 0

0 1 −1

0 0 1


 . (10)

To illustrate the effect of using tubal functions, we compare

applying various functions as pointwise functions (i.e., independent

ofM) and as tubal functions using Equation (9) in Figure 3B.

Tubal functions are able to capture shared patterns among

the tubes that entrywise operators ignore. Each choice of tubal

function highlights different features of the image, such as the body

with f (x) = max(x, 0) and the heart with f (x) = tanh(x). In

comparison, the entrywise counterparts do not bring new insights

or structure. A striking difference occurs for f (x) = sign(x). The
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A B

FIGURE 2

Comparison of network parameterizations to preserve the number of features of layer j− 1 and layer j. The matrix mapping requires n4 weights in Wj

and tensor mapping requires n3 weights in Wj. (A) Matrix linear mapping. (B) Tensor ⋆M-mapping.

A B

FIGURE 3

Comparison of entry-wise and tubal functions applied to roughly piecewise constant image. (A) Image and color channels of elephant image. The

elephant is almost piecewise constant with easily distinguishable RGB values. (B) E�ects of tubal functions under the transformation (10). Images are

rescaled between 0 and 1 after applying the respective function.

entrywise operator turns all pixels white because the RGB entries

are all nonnegative. In contrast, the tubal equivalent is applied in

the transform domain, and hence reveals meaningful features of

the image.

Note that the results depend on the chosen tubal function and

transformM. We deliberately choseM to emphasize green and blue

channels and diminish the effect of the red channel, enabling easy-

to-interpret distinctions between tubal and entrywise functions.

We can now define a tubal softmax function based on the

traditional softmax function in (8).

Definition 4.3 (tubal softmax). Consider a lateral slice EX ∈

R
p×1×n as a p×1 vector of 1×1×n tubes. Then, the tubal softmax

function h :Rp×1×n → 1p×1×n performs the following mapping:

[h( EX)]i =




p∑

j=1

exp(xj)




−1

⋆M exp(xi)

for i = 1, . . . , p where h( EX) ∈ R
p×1×n and the exponential

functions are applied as tubal functions. Here, 1p×1×n is the

tubal-equivalent of p-dimensional unit simplex.

We interpret h( EX) as a vector of “tubal probabilities” in that the

tubes sum to the identity tube

∑p
i=1[h(

EX)]i =
∑p

i=1

[(∑p
j=1 exp(xj)

)−1
⋆M exp(xi)

]

=
(∑p

j=1 exp(xj)
)−1

⋆M

[∑p
i=1 exp(xi)

]

= e.

Through Definition 4.3, we demonstrate the parallels between

tubal functions and traditional functions; the similarities are a

direct consequence of a matrix-mimetic tensor framework.

The last step to define the tubal cross entropy function that

converts the output of tubal function to a scalar. Recall, traditional

cross entropy Lce :R
p×{1, . . . , p} → R+ for one sample is given by

Lce(x, c) = − log[h(x)]c (11)

where x is the output of the network, c is the corresponding target

class, and h is the softmax function. We generalize (11) to a tubal

variant as follows:

Definition 4.4 (tubal cross entropy (t-cross entropy)). The tubal

cross entropy function Ltce :1
p×1×n × {1, . . . , p} → R+ is given by

Ltce( EX, c) = −‖ vec(log[h( EX)]c,1,:)‖q
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where h is the tubal softmax function, log is applied as a tubal

function, c is the index corresponding to the target class, and ‖ · ‖q
is a vector norm.

The intuition behind Definition 4.4 is the following. If we have

good features EX, then [h( EX)]c,1,: ≈ e, the identity tube, and the

remaining tubes will be closer to 0. In the transform domain,

[h( EX) × M]c,1,: ≈ 1 and the remaining entries will be close to

zero. When we apply the log pointwise in the transform domain,

the tube log[h( EX) × M]c,1,: ≈ 0 and the remaining entries will

be large negative numbers. As a result, Ltce is smallest when the

[h( EX)]c,1,: ≈ e, as desired.

In practice, if q-norm corresponds to a finite integer, we

can instead use ‖ log[h( EX)]c,1,:‖
q
q for t-cross entropy for easier

derivative computations. For numerical benefits when training,

we consider normalized versions based on the number of tubal

entries, e.g., multiply by 1/n. These suggested modifications should

not change performance in theory, but could change preferred

training hyperparameters.

4.4 Backward propagation with t-NNs

The workhorse of neural network training is backward

propagation (Rumelhart et al., 1986; Bengio et al., 1994; Shalev-

Shwartz et al., 2017; Nielsen, 2018), a method to calculate the

gradient of the objective function (7) with respect to the weights.

With gradient information, one can apply standard stochastic

gradient optimization techniques to train.

In the ⋆M-framework, for an orthogonal transformationM, the

backpropagation formulas are analogous to the matrix case. For

example, the derivatives of the ⋆M-product are

∂

∂ EY
[W ⋆M EY] = W⊤ ⋆M ∂ EY

and
∂

∂W
[W ⋆M EY] = ∂W ⋆M EY

⊤
(12)

where ∂X indicates a direction or perturbation of the same size as

X. For full details on the derivation, we refer the reader to Newman

(2019).

The simplicity of the back-propagation formulas (12) is

one of the hallmarks of our choice of leveraging a matrix-

mimetic tensor framework. Other tensor-based neural network

designs (Wang et al., 2023) often require complicated indexing and

non-traditional notation which, in addition to being cumbersome,

can preclude extending more sophisticated neural network

architectures to higher dimensions. The ⋆M-framework yields

derivative formulations that are easy to interpret, implement,

and analyze.

5 Stable t-NNs

As the depth (number of layers) of a network increases,

gradient-based training is subject to numerical instability such

as vanishing or exploding gradient problem (Bengio et al., 1994;

Shalev-Shwartz et al., 2017). To avoid these instabilities, one can

interpret deep neural networks as discretizations of differential

equations (Ee, 2017; Haber and Ruthotto, 2017; Haber et al.,

2018) and analyze the stability of forward propagation as well

as the well-posedness of the learning problem; i.e., whether the

classifying function depend continuously on the initialization of

the parameters (Ascher, 2010). By ensuring stability and well-

posedness, networks can generalize better to similar data and can

classify data more robustly.

We emphasize that the notion of stability is related to

the formal numerical analysis definition in the Lyapunov sense

(i.e., stability of dynamical systems). This is a property of the

model itself and independent of the data. From a statistical and

foundational learning theory perspective, neural networks are

typically over-parameterized models, which tend to overfit. In this

context, stability can promote better generalization by imposing

constraints of the structure of the weight matrices, effectively

reducing the number of degrees of freedom. The tensorial structure

imposes additional constraints and further reduces the number of

parameters, which can again lead to better generalization.

5.1 Well-posed learning problem criterion

Consider the residual neural network (He et al., 2016) with

tensor operations, given by

EYj = EYj−1 + hσ (Wj ⋆M EYj−1 + EBj) for j = 1, . . . , d, (13)

where EYj ∈ R
m×1×n, Wj ∈ R

m×m×n, and EBj ∈ R
m×1×n. With

the addition of the step size h, we can interpret Equation (13) as a

forward Euler discretization of the continuous ordinary differential

equation (ODE)

d EY(t)

dt
= σ (W(t) ⋆M EY(t)+ EB(t)) with EY(0) = EY0

(14)

for all t ∈ [0,T] where T is the final time corresponding to the

depth of the discretized network.

The stability of non-autonomous ODEs like (14) depends on

the eigenvalues of the Jacobian with repsect to the features. To

perform analogous analysis for tensor operators, it is useful to

consider the equivalent block matrix version of the ⋆M-product in

Equation (1) where W ⋆M EY ≡ struct(W) unfold( EY). It follows

that we can matricize (14) via

d

dt
unfold( EY(t)) = σ (struct(W(t)) unfold( EY(t))+ unfold( EB(t))).

(15)

The Jacobian of the matricized system (15) with respect to

unfold( EY(t)) is

J(t) = diag(σ ′(x(t))) struct(W(t))

where x(t) = struct(W(t)) unfold( EY(t)) + unfold( EB(t)) and

J(t) ∈ R
mn×mn. In most cases, the activation function σ is non-

decreasing, and thus the entries in diag(σ ′(x(t))) are nonnegative.

As a result, the stability and well-posedness of the ODE relies on the

eigenvalues of struct(W(t)). As described in Haber and Ruthotto

(2017), the learning problem is well-posed if

Re(λi(struct(W(t)))) ≈ 0 for i = 1, . . . ,mn, (16)
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where λi(A) is the i-th eigenvalue of A. This criterion implies

that the imaginary part of the eigenvalues drive the dynamics,

promoting rotational movement of features. This produces stable

forward propagation that avoids features diverging and prevents

inputs from distinct classes from converging to indistinguishable

points; the latter would lead to ill-posed back propagation and

hence an ill-posed learning problem.

We can be more concrete about the eigenvalues because in

Equation (1), struct(W(t)) is block-diagonalized in the transform

domain. Thus, we can equivalently write Equation (16) as follows:

Re(λi(Ŵ
(k)
(t))) ≈ 0 (17)

for i = 1, . . . ,m and k = 1, . . . , n. In short, if the eigenvalues of

each frontal slice in the transform domain have a real part close

to zero, the t-NN learning problem will be well-posed, save one

more requirement.

A subtle, yet important requirement for stability is that the

weights change gradually over time (i.e., layers). This ensures that

small perturbations of the weights yield small perturbations of

the features. To promote this desired behavior, we imposed a

smoothing regularizer in (discrete) time via

Rsmooth({Wj, EBj}
d
j=1) =

d−1∑

j=1

‖Wj+1 −Wj‖
2
F + ‖EBj+1 − EBj‖

2
F .

(18)

5.2 Hamiltonian-inspired stable t-NNs

While theoretically useful, it is impractical to evaluate the

eigenvalues of the weight tensors to satisfy the well-posedness

condition (17) as we train a network. Instead, motivated by

the presentation in Haber and Ruthotto (2017), we implement

a forward propagation that inherently satisfies (17) independent

of the weights. This forward propagation scheme is inspired by

Hamiltonian dynamics, which we briefly describe and refer to

Ascher (2010) and Brooks et al. (2011) for further details. We define

a Hamiltonian as follows:

Definition 5.1 (Hamiltonian). Let y(t) ∈ R
my×1, z(t) ∈ R

mz×1,

and t ∈ [0,T]. A Hamiltonian H :R
my×1 ×R

mz×1 × [0,T] → R is

a system governed by the following dynamics:

dy

dt
= ∇zH(y(t), z(t), t) and

dz

dt
= −∇yH(y(t), z(t), t).

Intuitively, the Hamiltonian H describes the total energy of the

system with y as the position and z as the momentum or velocity.

We can separate total energy into potential energy U and kinetic

energy T; that is,H(y, z, t) = U(y)+T(z). This separability ensures

the Hamiltonian dynamics conserve energy; i.e.,

dH

dt
=

dy

dt
∇yH +

dz

dt
∇zH = 0 (19)

In terms of neural networks, energy conservation (19) ensures

that network features are preserved during forward propagation,

thereby avoiding the issue of exploding/vanishing gradients and

enabling the use of deeper networks. Additionally, Hamiltonians

are symplectic or volume-preserving in the sense that the

dynamics are divergence-free. For neural networks, this ensures

the distance between features does not change significantly,

avoiding converging and diverging behaviors. We also note that

Hamiltonians are time-reversible. This ensures that if we have well-

posed dynamics during forward propagation, we will have similar

dynamics for backward propagation.

5.3 Discretizing Hamiltonians with leapfrog
integration

To preserve the benefits of Hamiltonians in the discretized

setting, we symmetrize the Hamiltonian (Definition 5.1) and use a

leapfrog integration method (Skeel, 1993; Ascher, 2010; Haber and

Ruthotto, 2017). For t-NNs, we write the new system in terms of the

⋆M-product (with slight abuse of notation)

d

dt

[
EY(t)
EZ(t)

]
= σ

([
0 W(t)

−W(t)⊤ 0

]
⋆M

[
EY(t)
EZ(t)

]
+ b(t)

)
(20)

where EY(0) = EY0 and EZ(0) = 0. Here, EY(t) indicates the data

features and EZ(t) is an auxilary variable not related to the data

directly. We add the bias tube, b(t), to each element. The equivalent

matricized version of Equation (20) is

d

dt

[
unfold( EY(t))

unfold( EZ(t))

]
= σ

([
0 struct(W(t))

− struct(W(t))⊤ 0

]

[
unfold( EY(t))

unfold( EZ(t))

]
+ b(t)

)
.

(21)

The (matricized) system (21) is inherently stable, independent

of the weight tensors W(t), because of the block antisymmetric

structure. The eigenvalues of antisymmetric matrices are purely

imaginary, which exactly satisfy the stability condition in

Equation (17).

We discretize Equation (20) using the leapfrog method, a

symplectic integration technique, defined as

EZj+ 1
2
= EZj− 1

2
− hσ (W⊤

j+1 ⋆M EYj + bj+1) (22a)

EYj+1 = EYj + hσ (Wj+1 ⋆M EZj+ 1
2
+ bj+1) (22b)

for j = 0, . . . , d − 1. We demonstrate the benefits of stable forward

propagation (22) in Example 5.2.

Example 5.2 (Trajectories of stable t-NNs). We construct a dataset

in R
3 randomly drawn from a multivariate normal distribution

with mean of 0 and a covariance matrix of 3I3. The points are

divided into three classes based on distance to the origin with yellow

points inside a sphere with radius r = 3.5, green points inside a

sphere with radius R = 5.5, and purple points outside both spheres.

We train with 1200 data points and store the data as 1×1×3 tubes.
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We forward propagate using one of two integrators with

weights and biases as 1× 1× 3 tubes:

Forward Euler yj+1 = yj + hσ (wj+1 ⋆M yj + bj+1) (23a)

Leapfrog

{
zj+ 1

2
= zj− 1

2
− hσ (w⊤

j+1 ⋆M yj + bj+1)

yj+1 = yj + hσ (wj+1 ⋆M zj+ 1
2
+ bj+1)

(23b)

We create a network with d = 32 layers and use a step size of

h = 2. We use the discrete cosine transform for M. We train for

50 epochs using Adam (Kingma and Ba, 2015) with a batch size of

10 and a learning rate of γ = 10−2. To create smoother dynamics,

we regularize the weights using Equation (18) with regularization

parameter λ = 10−4/h. We illustrate the dynamics of trained

networks in Figure 4.

The dynamics in Figure 4 show the topological benefits

of leapfrog integration. The data points exhibit smoother,

rotational dynamics to reach the desired linearly-separable

final configuration. In comparison, forward Euler propagation

significantly changes topology during forward propagation. Such

topological changesmay yield ill-posed learning problems and poor

network generalization.

6 Numerical results

We present two image classification problems to compare

tensor linear layers and stable tensor neural networks to

comparable matrix versions. Overall, the results show that t-NN

trained with tubal loss functions generalize better to unseen data

than equivalent matrix networks, and can do so with 20–30 times

fewer network weights.

6.1 Experiment setup and hardware

We implement both tensor and matrix frameworks using

PyTorch (RRID:SCR 018536) (Paszke et al., 2017). All of the code

to reproduce the experiments is provided in https://github.com/

elizabethnewman/tnn. All experiments were run on an Exxact

server with four RTX A6000 GPUs, each with 48 GB of RAM.

Only one GPU was used to generate each result. The results we

report are for the networks that yielded the best accuracy on the

validation data.

We train all models using the stochastic gradient method

Adam (Kingma and Ba, 2015), which uses a default learning rate

of 10−3. In most cases, we select hyperparameters and weight

initialization based on the default settings in PyTorch. We indicate

the few exceptions to this at the start of the corresponding sections.

We also pair the stochastic optimizers with a learning rate scheduler

that decreases the learning rate by a factor of γ everyM steps. In all

cases, we used the default γ = 0.9 andM = 100. This is a common

practice to ensure convergence of stochastic optimizer in idealized

settings (Bottou et al., 2018). We utilize a weight decay parameter

in some experiments to reduce overfitting.

For the tensor networks in all experiments, we use the discrete

cosine transform forM, which is a close, real-valued version of the

discrete Fourier transform (DFT). The DFT matrix corresponds to

the t-product, which has been shown to be effective for natural

image applications (Kilmer and Martin, 2011; Hao et al., 2013;

Newman et al., 2018).

6.2 MNIST dimensionality reduction

TheMNIST dataset (LeCun et al., 2010) is composed of 28×28

grayscale images of handwritten digits. We train on 50, 000 images

and reserve 10, 000 for validation. We report test accuracy on

10, 000 images not used for training nor validation. For NNs, we

vectorize images and store as columns, resulting in a matrix of size

282 × b where b is the number of images. For t-NNs, we store the

images as lateral slices, resulting in a tensor of size 28× b× 28.

In this experiment, we train an autoencoder to efficiently

represent the high-dimensional MNIST data in a low-

dimensional subspace. Autoencoders can be thought of as

nonlinear, parameterized extensions of the (truncated) singular

value decomposition. Our goal is to solve the (unsrpervised)

learning problem

min
θ enc ,θ dec

Ey∼Y ‖fdec(fenc(y, θ enc), θdec)− y‖22 (24)

where fenc :Y → Z is the encoder and fdec :Z → Y is the decoder.

Here, Z is the latent space that is smaller than the data space; in

terms of dimension, we say dim(Z) < dim(Y). Note that the mean

squared error (MSE) tubal loss is the same as the MSE loss function

when using an orthogonal transformation matrix, as we have done

in our experiments. We describe the NN and t-NN autoencoder

architectures used in Figure 5 and report results in Figure 6.

We observe that the t-NN outperforms the NN autoencoders

with similar numbers of weights with an order of magnitude

smaller training and validation loss and test error as well as

qualitative improvements of the approximations. The neural

network autoencoder with the same feature space dimensions,

NN(560,280), performs best in terms of the loss and error metrics,

but requires over 20 times more network weights than the t-NN

autoencoder. The t-NN layers are able capture spatial correlations

more effectively using multilinear operations, resulting in quality

approximations with significantly fewer weights.

6.3 MNIST classification

We use the same MNIST dataset as for the autoencoder

example. We train for 20 epochs using Adam with a batch size of

32 and a learning rate of 10−2. We add Tikhonov regularization

(weight decay) with a regularization parameter of λ = 10−4. We

use the PyTorch defaults for the other optimizer hyperparameters.

For the t-cross entropy loss, we use a squared ℓ2-norm and

normalize by the number of entries in the tube.

We compare four different two-layer neural network

architectures, described in Table 1. We use either cross entropy loss

or t-cross entropy loss, depending on the architecture.
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FIGURE 4

Comparison of feature trajectories for stable t-NNs with forward Euler (23b) and leapfrog integration (23a). Each image contains the features at a

particularly layer of a trained network (layers j = 0, 4, . . . , 32). The forward Euler network resulted in a test accuracy of 90% and the leapfrog network

resulted in a test accuracy of 93.50%. As expected, the leapfrog trajectory is smoother and contains rotational dynamics. The colors are linearly

separable at the last layer, indicating good classification performance.

FIGURE 5

Description of MNIST autoencoder architectures with σ (x) = tanh(x). (Top) Four-layer matrix autoencoder NN(m,d) with first width m and latent

space dimension d. (Middle) Four-layer tensor autoencoder t-NN(m,d) with first width m and latent space dimension d. For notational simplicity, we

omit the vector lateral slice notation for the t-NN. (Bottom) Table of networks that we use. We pick sizes relative on the dimensions of t-NN(20,10).

The first network NN(40,10) is given more features in the first layer of the encoder. The second network NN(21,280) is given the same number of

latent space features and a corresponding width to have roughly the same number of weights as the t-NN. The third network NN(560,280) is given

the same number of features on both layers as the t-NN.

We report the convergence and accuracy results in Figure 7 and

Table 2, respectively.

The t-NN architecture with cross entropy loss outperforms all

networks in terms of test accuracy and accuracy per class. The

second-best performing network is the t-NN with t-loss. These

results are evidence that the features learned from the tensor linear

layer (layer 1) are better than those learned by a dense matrix

layer. We further note that matrix network NNwith square weights

has the same final layer shape as the t-NN with cross entropy

loss; the only difference between the networks is the first layer.

We depict the learned features of each network that preserves the

size of the images in Figure 8. The t-NN features from the first

layer contain more structure than the NN features with square

weights. This reflects the ⋆M-operation, which first acts along

the tubes (rows of the images in Figure 8). We also observe that

the features of NN are more extreme, close to +1 and −1, the

limits of the range of the activation function σ (x) = tanh(x).

In comparison, the features extracted from the t-NN with t-loss

offer more variety of entries, but still hits the extreme values

often. This demonstrates that t-NNs still produce rich feature

spaces and are able to achieve these features with about 20 times

fewer weights.
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FIGURE 6

(Left) Convergence of the loss for the autoencoder example. The t-NN converges to a lower loss more quickly than the NNs. The validation loss

closely follows the training loss, indicating good generalization. (Right) Autoencoder approximations to test images. The top row contains the true

test images y and the subsequent rows contains the approximations to the true image ỹ = fdec(fend(y, θenc), θdec) for various autoencoder

architectures. To the right of each row, we report the average test error, 1
|Ytest |

∑
y∈Ytest

‖y− ỹ‖2. Compared to the first two NN autoencoders, the

t-NN produces clearer approximations and a test error an order of magnitude smaller. The autoencoder NN(560,280) does produce the smallest test

error, but requires over 20 times more network weights than the t-NN autoencoder.

TABLE 1 Description of MNIST two-layer network architectures with σ (x) = tanh(x).

Name Architecture Layer 1 Layer 2 |θ |

NN W2σ (W1y0 + b1)+ b2
W1 : 39× 282 W2 : 10× 39

31, 015

b1 : 39× 1 b2 : 10× 1

NN, square W2σ (W1y0 + b1)+ b2
W1 : 28

2 × 282 W2 : 10× 282

623, 290

b1 : 28
2 × 1 b2 : 10× 1

t-NN W2 unfold(σ (W1 ⋆M EY0 + EB1))+ b2
W1 : 28× 28× 28 W2 : 10× 282

30, 586
EB1 : 28× 1× 28 b2 : 10× 1

t-NN, t-loss W2 ⋆M σ (W1 ⋆M EY0 + EB1)+ EB2

W1 : 28× 28× 28 W2 : 10× 28× 28
30, 856

EB1 : 28× 1× 28 EB2 : 10× 1× 28

The t-NN architectures were chosen to preserve the size of the images. The NN width of 39 is chosen to be as small as possible such that the NN architecture does not have fewer parameters

than the t-NN architecture. The final column reports the total number of learnable weights.

FIGURE 7

Loss and accuracy convergence for MNIST with four di�erent two-layer neural networks. To see the di�erences clearly, we omit the initial accuracy,

which was close to 10% for each network. The t-NN with cross entropy loss (orange diamonds �) produces the best training (darker, solid) and

validation (lighter, dashed) accuracy. The t-NN with t-loss (green squares �) performs second best with in terms of accuracy, demonstrating the

benefits of tensor operator layers. Despite having the greatest number of weights, the NN with square weights (purple ×’s) performs worst in terms

of accuracy.

We note that the t-NN network with t-cross entropy loss

performs well, and we gain insight into the beneifts of t-losses

from the accuracy per class in Figure 9. We observe that when we

use tubal losses, we require high values for many frontal slices.

This creates a more rigorous classification requirement and, as

we will see in subsequent experiments, can yield networks that
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TABLE 2 MNIST training, validation, and test accuracy per class and overall for the four architectures.

0 1 2 3 4 5 6 7 8 9 Overall

T
ra
in

NN 97.05 96.54 90.58 89.73 93.03 88.91 92.36 91.91 87.79 84.57 91.33

NN, square 96.67 93.85 92.58 84.82 94.84 89.11 97.91 88.76 77.98 85.56 90.24

t-NN 98.98 99.64 97.12 97.88 98.29 96.06 98.68 97.60 93.30 95.59 97.36

t-NN, t-loss 97.28 97.06 95.97 91.09 94.92 92.50 97.26 92.26 91.99 91.61 94.22

V
al
id

NN 96.90 96.46 89.50 89.79 92.13 89.94 92.28 91.33 88.85 81.02 90.94

NN, square 94.50 93.36 90.60 84.68 94.99 89.83 97.36 89.26 77.81 82.16 89.52

t-NN 97.60 99.29 95.40 97.01 97.34 95.66 96.75 97.08 92.47 93.26 96.26

t-NN, t-loss 96.20 97.08 94.80 90.94 93.46 93.60 97.26 92.46 92.16 89.21 93.76

T
es
t

NN 98.16 97.18 89.44 92.18 93.08 88.00 90.50 89.49 87.58 85.43 91.20

NN, square 97.14 94.89 92.44 85.84 95.01 88.79 97.49 87.45 78.23 83.35 90.11

t-NN 98.67 99.38 95.25 97.03 98.37 94.96 97.08 96.50 93.74 94.05 96.55

t-NN, t-loss 98.16 98.33 95.35 93.66 95.21 91.59 97.18 90.66 93.94 91.08 94.57

The t-NN architecture with cross entropy loss consistently produces the highest accuracy. The bolded values indicate the highest accuracy for the class and dataset.

FIGURE 8

Features from first layer of NN, square, t-NN with cross entropy, and t-NN with t-cross entropy networks. Both t-NN features contain more structure

because the ⋆M-operation respects spatial correlations.

FIGURE 9

Illustration of t-softmax of MNIST test images using t-NN with t-loss. The top row are the test images EY ∈ R
28×1×28 and the bottom row are the

values of the tubal softmax of the output Ftnn( EY, θ ) ∈ R
10×1×28, shown in the transform domain. Each row of the tubal softmax images corresponds to

a di�erent class and each column to a di�erent frontal slice. The row with the largest ℓ2-norm corresponds to the predicted class, where the top row

corresponds to class 0 and the bottom row corresponds to class 9. The left two images were predicted correctly and the right two images were

predicted incorrectly.
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TABLE 3 Description of CIFAR-10 Hamiltonian network architectures with σ (x) = tanh(x).

Name Hamiltonian layers Final layer |θ |

NN
Wj : (3 · 32

2)× (3 · 322) Wd+1 : 10× 3072 4 layers: 37, 779, 470

bj : 1× 1 bd+1 : 10× 1 8 layers: 75, 528, 210

t-NN
Wj : (3 · 32)× (3 · 32)× 32 Wd+1 : 10× (3 · 322) 4 layers: 1, 210, 506

bj : 1× 1× 32 bd+1 : 10× 1 8 layers: 2, 390, 282

t-NN, t-loss
Wj : (3 · 32)× (3 · 32)× 32 Wd+1 : 10× (3 · 32)× 32 4 layers: 1, 210, 816

EBj : 1× 1× 32 EBd+1 : 10× 1× 32 8 layers: 2, 390, 592

The architectures were chosen to preserve the sizes of the CIFAR-10 images. The final column |θ | reports the total number of learnable weights.

FIGURE 10

Loss and accuracy convergence for CIFAR-10 with di�erent Hamiltonian network depths. We only show the convergence for the t-NN with t-cross

entropy loss, which achieved a top validation accuracy of at least 54.37%, compared to the t-NN with cross entropy loss, which topped out at

54.32%. For the accuracy, we start with epoch 5 to highlight the di�erences between networks.

TABLE 4 CIFAR-10 training, validation, and test accuracy per class and overall for the four architectures.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Overall

T
ra
in

NN4 99.95 100.00 99.95 100.00 99.98 99.97 100.00 99.97 100.00 100.00 99.98

NN8 99.90 99.97 99.80 99.95 99.93 100.00 100.00 100.00 99.93 99.93 99.94

t-NN4 74.12 79.97 60.44 43.02 59.82 65.27 65.66 88.47 77.14 74.83 68.84

t-NN8 76.09 81.15 61.12 35.80 69.04 58.83 62.52 91.45 76.94 75.28 68.79

V
al
id

NN4 54.57 62.77 40.85 29.58 39.36 42.77 58.24 59.52 70.84 60.06 51.99

NN8 62.08 65.54 39.76 33.92 38.53 43.36 62.34 56.62 70.74 59.06 53.30

t-NN4 59.51 68.32 49.11 32.68 49.53 52.25 51.41 73.62 67.64 62.86 56.83

t-NN8 60.43 66.63 47.12 23.37 53.79 44.82 47.90 73.24 65.33 59.86 54.37

T
es
t

NN4 57.30 64.70 40.60 28.10 38.30 42.10 57.30 58.20 69.20 57.90 51.37

NN8 62.60 63.10 40.70 33.20 39.10 44.80 61.60 55.30 69.00 55.80 52.52

t-NN4 61.00 66.90 48.40 34.40 48.10 54.70 54.50 72.50 67.30 63.30 57.11

t-NN8 62.60 67.30 48.70 25.20 52.50 46.70 50.20 72.90 63.40 60.10 54.96

The t-NN architectures with t-cross entropy loss produce the highest overall validation and test accuracy, the traditional metrics to indicate generalization ability. The bolded values indicate the

highest accuracy for the class and dataset.

generalize better. Additionally, the distribution of values in the

tubal softmax function is reflective of the predicted class. For the

second image (true = 3), the two most likely predicted classes

were, in order, 3 and 8. Qualitatively, the particularly handwritten

3 has similarities to the digit 8, and the tubal softmax captures

this similarity. For the cases that were incorrectly predicted the

digit, the handwritten image had structure emblematic of the

predicted class and second most likely predicted class matched the

true label.

6.4 CIFAR-10

The CIFAR10 dataset (Krizhevsky and Hinton, 2009) is

composed of 32 × 32 × 3 RGB natural images belonging to

ten classes. We train on 40, 000 images and reserve 10, 000 for

validation. We report test accuracy on 10, 000 images not used for

training nor validation. For NNs, we vectorize images and store as

columns, resulting in a matrix of size (3 · 322) × b where b is the

number of images. For t-NNs, we store the images as lateral slices
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FIGURE 11

Features from the trained 4-layered Hamiltonian networks of both the matrix and tensor parameterized cases for four di�erent training images

(top-to-bottom: dog, horse, truck, ship). For the t-NN, we use the better-performing network with t-cross entropy loss. Here, Layer 0 shows the

separated color channels of the original images.

FIGURE 12

(Left) Average time per epoch to train a Hamiltonian network for a fixed batch size. We ran each depth for five epochs and the maximum standard

deviation of time was on the order of 10−2 relative to the average time. (Right) Time ratio average r = NN epoch/t-NN epoch. As the depth of the

network grows, the time per epoch for NNs takes almost 1.75 times longer than for t-NNs.

and stack the color channels vertically, resulting in a tensor of size

(3 · 32)× b× 32. We train for 500 epochs using Adam with a batch

size of 32. We use a learning rate of 10−3 that decays after every

100 epochs by a factor of 0.9. We use the PyTorch defaults for the

other optimizer hyperparameters. For the t-cross entropy loss, we

use a squared ℓ2-norm and normalize by the number of entries in

the tube.

We compare the performance of the Hamiltonian networks

with dense matrix operators and dense tensor operators for

various numbers of layers (d = 4, 8). In conjunction with

the Hamiltonian network, we use the smoothing regularizer (20)

with a regularization parameter of λ = 10−2. We describe the

network architectures and number of parameters in Table 3. The

NN architectures requiremore than 30 times the number of weights

than the t-NN architectures. We compare the convergence and

accuracy results in Figure 10 and Table 4, respectively.

There are several key takeaways from the numerical results.

First, the depth of the network did not significantly change

performance in this experiment. We state this observation

cautiously. We observe this behavior for a certain set of fixed

hyperparameters (e.g., step size h, learning rate, regularization

parameter λ,...). The interaction of the hyperparameters and

performance is complex and a complete ablation study is outside

of the scope of this paper. A second takeaway is that the t-NN

trained with the tubal loss generalizes better the NN networks

and better than t-NNs with cross entropy loss (not shown for

simplicity; see Figure 10 for details). This behavior is especially

apparent when looking at the test loss in Table 4. The t-NN

with four Hamiltonian layers and t-loss performs well overall,

obtaining almost 5% better overall test accuracy. In comparison,

the matrix NN quickly overfits the training data and thus does

not generalize as well. In terms of the test accuracy per class,

Frontiers in BigData 14 frontiersin.org



Newman et al. 10.3389/fdata.2024.1363978

FIGURE 13

(Left) Convergence of the accuracy for the CIFAR-100 experiment. To delineate the performance on the validation data, we show the first 100

epochs out of 500 total. The t-NN with t-loss converges to the highest validation accuracy and avoids the generalization gap longest out of all

presented networks. (Right) Final accuracy for the training, validation, and test data. We report the results using the networks that produced the

highest validation accuracy during training.

the t-NN architectures achieve the best performance in all but

two classes.

To look into the performance further, we examine the extracted

features of Hamiltonian NNs and t-NNs in Figure 11. We see

that the NN and t-NN features share similarities. Both features

gradually remove the structure of the original image at similar

rates. The t-NN architecture achieves this pattern with significantly

fewer network weights (over 30 times fewer). The noisy artifacts

differ between the two architectures. In particular, we see that the

t-NN layers produce blockier artifacts because of the structured

⋆M-operation.

In the last numerical study in Figure 12, we explore how quickly

we can train Hamiltonian t-NNs compared to NNs. In addition to

an order of magnitude fewer weights, training t-NNs takes less time

than training NNs. As we increase the depth of the networks, we

see that each NN epoch takes approximately 1.75 times longer to

complete. This performance could potentially be further improved

if we optimized the ⋆M-product, e.g., using fast transforms instead

of matrix multiplication.

6.5 CIFAR-100

The CIFAR100 dataset (Krizhevsky and Hinton, 2009) is

composed of 32 × 32 × 3 RGB natural images belonging to

100 classes. We train on 40, 000 images and reserve 10, 000 for

validation. We report test accuracy on 10, 000 images not used

for training nor validation. We use the same setup and training

parameters as the CIFAR10 experiment (Section 6.4). For all

experiments, we use Hamiltonian networks with a depth of d = 16,

a step size of h = 0.25, and a regularization parameter λ = 10−2.

We report the accuracy results in Figure 13.

Observing the results in Figure 13, the conclusions are the same

as in the CIFAR-10 experiment. Specifically, training with the t-NN

and t-loss produces the best test accuracy, about a 4% improvement

from the comparable NN network. This demonstrates that the

benefits of dense tensor operations over dense matrix operations

can be realized for more challenging classification problems and

motivates further development of these tools to improve state-of-

the-art convolutional neural networks and other architectures.

7 Conclusion

We presented tensor neural networks (t-NNs) as a new

approach to parameterize fully-connected neural networks. We

operate using the ⋆M-product which can reduce the number of

network weights by an order of magnitude while maintaining

the same expressiveness. We introduced tubal loss functions

that are an algebraically-consistent t-NN architecture. Because

the ⋆M-framework gives rise to a tensor algebra that preserves

matrix properties, we extended the notion of stable neural

networks to t-NNs, which enable the development of deeper,

more expressive networks. Through numerical experiments

on benchmark image classification tasks, we demonstrated

that t-NNs offer a more efficient parameterization and, when

trained with tubal loss functions, can generalize better to

unseen data.

Our work opens the door to several natural extensions. First,

we note that while this paper focused on imaging benchmark

problems in machine learning, the ⋆M-framework can be applied

to many data sets, including dynamic graphs (Malik et al.,

2021), longitudinal omics data (Mor et al., 2022), and functional

magnetic resonance imaging (fMRI) (Keegan et al., 2022). Second,

we could use tensor parameterizations to improve convolutional

neural networks (CNNs), just as we used t-NN layers to improve

fully-connected networks. CNNs are state-of-the-art for image

classification and rely on convolution operations. The ⋆M-product

is, in some sense, a convolution based on the transformation

M; in fact, when M is the discrete Fourier transform, the result

is a circulant convolution. A t-CNN could offer more efficient

parameterization and a greater range of convolutional features that

could increase the expressibility of the network. Third, we could

extend the use of tubal loss functions to any network architecture.

Tubal loss functions offer more stringent requirements to fitting
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data which can mitigate overfitting. Additionally, tubal loss

functions foster a new level of flexibility to evaluate performance,

such as various norms to transform tubal probabilities into scalars

and new measures of accuracy per frontal slice. Fourth, we can

consider learning the operatorM based on the data or allowing the

operator to evolve with the layers. Lastly, we can explore methods

to improve t-NN efficiency on CPUs and GPUs by exploiting the

parallelize of the ⋆M-products.
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