& frontiers | Frontiers in Big Data

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Yanging Zhang,
Yunnan University, China

REVIEWED BY

Yubai Yuan,

The Pennsylvania State University (PSU),
United States

Yuanyuan Ju,

Kunming University of Science and
Technology, China

*CORRESPONDENCE
Elizabeth Newman
elizabeth.newman@emory.edu

RECEIVED 31 December 2023
ACCEPTED 29 April 2024
PUBLISHED 30 May 2024

CITATION

Newman E, Horesh L, Avron H and Kilmer ME
(2024) Stable tensor neural networks for
efficient deep learning.

Front. Big Data 7:1363978.

doi: 10.3389/fdata.2024.1363978

COPYRIGHT

© 2024 Newman, Horesh, Avron and Kilmer.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiersin Big Data

TYpE Original Research
PUBLISHED 30 May 2024
pol 10.3389/fdata.2024.1363978

Stable tensor neural networks for
efficient deep learning

Elizabeth Newman'*, Lior Horesh?, Haim Avron® and
Misha E. Kilmer*

!Department of Mathematics, Emory University, Atlanta, GA, United States, 2Mathematics and
Theoretical Computer Science, IBM TJ Watson Research Center, Yorktown, NY, United States,
SDepartment of Applied Mathematics, Tel Aviv University, Tel Aviv-Yafo, Israel, *Department of
Mathematics, Tufts University, Medford, MA, United States

Learning from complex, multidimensional data has become central to
computational mathematics, and among the most successful high-dimensional
function approximators are deep neural networks (DNNs). Training DNNs is
posed as an optimization problem to learn network weights or parameters that
well-approximate a mapping from input to target data. Multiway data or tensors
arise naturally in myriad ways in deep learning, in particular as input data and
as high-dimensional weights and features extracted by the network, with the
latter often being a bottleneck in terms of speed and memory. In this work,
we leverage tensor representations and processing to efficiently parameterize
DNNs when learning from high-dimensional data. We propose tensor neural
networks (t-NNs), a natural extension of traditional fully-connected networks,
that can be trained efficiently in a reduced, yet more powerful parameter space.
Our t-NNs are built upon matrix-mimetic tensor-tensor products, which retain
algebraic properties of matrix multiplication while capturing high-dimensional
correlations. Mimeticity enables t-NNs to inherit desirable properties of modern
DNN architectures. We exemplify this by extending recent work on stable neural
networks, which interpret DNNSs as discretizations of differential equations, to our
multidimensional framework. We provide empirical evidence of the parametric
advantages of t-NNs on dimensionality reduction using autoencoders and
classification using fully-connected and stable variants on benchmark imaging
datasets MNIST and CIFAR-10.
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1 Introduction

With the explosion of computing resources, including cloud-based storage and
accessible advanced hardware, learning from large-scale, multiway data has become
possible. Two distinct fields have emerged as the gold standards for handling
multidimensional data: tensor analysis for featurization and compression and deep
learning for high-dimensional function approximation. Both deep learning and tensor
methods have achieved strong performance in image and video recognition (Vasilescu and
Terzopoulos, 2002; Krizhevsky et al., 2012), medical imaging analysis (Omberg et al., 2007;
Ronneberger et al,, 2015), spatiotemporal weather analysis (Chattopadhyay et al., 2020; Li
et al.,, 2020), and more. This work focuses on leveraging advantages of tensor methods to
enhance deep learning design.

Fundamentally, deep learning approximates mappings from (high-dimensional)
inputs (e.g., images) to targets (e.g., classes) using deep neural networks (DNNs), which
are simply nonlinear, composite functions parameterized by learnable weights. Despite the
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success and flexibility of DNNG, the storage and computational
costs to design and apply these models can be a significant
impediment—there can be millions of network weights and
learning requires an immense amount of time and top-of-the-line
computational hardware (e.g., GPU clusters).

These computational challenges become bottlenecks for the
classic feed-forward neural network, which builds DNNs using
dense linear operators (matrices). Such operations uses network
weights in an highly inefficient manner, and composing many of
these dense matrices can require millions of weights, which is both
computationally demanding and can lead to algorithmic problems,
such as overfitting. To reduce these inefficiencies, we propose a new
type of fully-connected layer that replaces dense linear operators
with dense tensor operators. The proposed tensor operators can
reduce the number of network weights by an order of magnitude,
that leverage the inherent multidimensionality of the input data,
and offer the potential for distributed computation. Thus, we call
our architecture tensor neural networks (t-NNs).

The foundation of t-NNs is the j-product (pronounced
“star-M”), a family of tensor-tensor products which induces
an algebraic structure on a multidimensional space (Kernfeld
et al., 2015). The *p-framework provably encodes information
more efficiently than traditional matrix algorithms (Kilmer et al.,
2021) and has had success facial recognition (Hao et al., 2013),
tomographic image reconstructions (Soltani et al., 2016; Newman
and Kilmer, 2020), video completion (Zhang et al., 2014), image
classification (Newman et al,, 2018), and solving tensor linear
systems (Ma and Molitor, 2022). We call the xjs-product matrix-
mimetic; that is, familiar notions such as the identity and
transpose are well-defined for the multilinear operation. The
advantages of processing data multidimensionally including better
leveraging inherit multiway structure and reducing the number
of learnable network weights by an order of magnitude. The
matrix-mimeticity enables the proposed t-NNs to naturally extend
familiar deep learning concepts, such as backward propagation
and loss functions, and non-trivial architectural designs to tensor
space. We propose two additional extensions: tensor-based loss
functions and a stable multidimensional framework, motivated
by Haber and Ruthotto (2017), that brings topological advantages
of featurization.

1.1 Our contributions

Because of the popularity of this area of research, we want
to clarify the objectives and contributions of this paper from the
outset. Our contributions are the following:

e Tensor algebra and processing for efficient parameterization:
we introduce a basic framework for t-NNs, describe the
associated tensor algebra, and demonstrate the inherit
properties from stable network architectures. We also
derive the training algorithm for t-NNs, leveraging matrix-
mimeticity for elegant formulations. We show that this
tensor parameterization, compared to an equivalent matrix
approach, can reduce the number of weights by an order of
magnitude.
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e Tubal loss functions: our the algebraic structure imposed by
the xpr-product is applied end-to-end. This includes defining
new loss functions based on the outputs of the t-NN, which
are no longer scalars, but the high-dimensional analog called
tubes. This requires a new definition of tubal functions, and
opens the door to a wide range of new evaluation metrics.
These metrics offer more rigorous requirements to fit the
training data, and hence can yield networks that generalize
better.

Stable t-NNs: we demonstrate how matrix-mimeticity
preserves of desirable network architecture properties,
specifically stability. This will enable the development of
deeper, more expressive t-NNs.

Open-source code: for transparency and to expand the use
of t-NNs, we provide open-source at https://github.com/
elizabethnewman/tnn.

Scope: our goal is to explore a new algebraic structure
imposed on neural networks and its the advantages over
equivalent architectures. This paper serves as the introduction
of t-NNs and, similar to the original neural networks,
we consider fully-connected layers only. We acknowledge
that to obtain state-of-the-art results, we would need tools
like convolutional and subsampling layers and significant
hyperparameter tuning; however, these are outside the scope
of this paper. Convolutional layers apply multiple translation-
invariant filters to extract local connections; our t-NNs
examine the global structure of the data. Subsampling or
pooling layers reduce the dimensionality of our data and
hence provide multi-scale features; our t-NNs use no pooling
in order to preserve the algebraic structure. We address
extensions of t-NNs to convolutional and subsampling layers
in the conclusions.

1.2 Organization

This paper is organized as follows. In Section 2, we give
a brief outline of related work combining tensors and deep
learning. In Section 3, we give the background notation on tensor-
tensor products. In Section 4, we formally introduce tensor neural
networks (t-NNs) and tubal loss functions. In Section 5, we extend
t-NNs to stable architectures and outline a Hamiltonian-inspired
architecture. In Section 6, we provide numerical support for using t-
NN over comparable traditional fully-connected neural networks.
In Section 7, we discuss future work including implementations for
higher-order data and new t-NN designs.

2 Related work

The high dimensional nature of neural network weights has
driven the need to reduce the number of weights through structure.
Early studies, such as LeCun et al. (1989), demonstrated that
neural networks could learn faster from less data and generalize
better by removing redundant weights. Following the observation,
several works showed that structured weights, such as convolutions
(Krizhevsky et al., 2012), low rank weight matrices (Denil et al.,
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2013), and Kronecker-structured matrices (Jagtap et al.,, 2022),
could perform well with significantly fewer parameters.

Tensor methods for compression high dimensional data and
operators grew in popularity concurrently with the development
of structured operators for neural networks. Many popular tensor
frameworks are designed to featurize multiway arrays (Tucker,
1966; Carroll and Chang, 1970; Harshman, 1970; de Lathauwer
et al.,, 2000; Kolda and Bader, 2009) or to approximate a given
high-dimensional operator (Oseledets, 2011; Cichocki et al., 2016).
Because the weights and features of deep neural networks are
notoriously high-dimensional, tensorized approaches have gained
traction. In Novikov et al. (2015), the authors combine efficient
tensor storage and processing schemes with DNN training,
resulting up to seven times fewer network weights. This work
specifically used the tensor train style of weight storage, which
is notable for compression of very high dimensional data, but
does not have linear algebraic motivations in this context. Further
studies followed, such as Chien and Bao (2018) that used multiway
operations to extract features convolutionally. This work computes
a Tucker factorization of convolutional features rather than treating
tensors as operators. Similar layer contraction approaches, called
tensor regression layers, have appeared in works such as in Cao
etal. (2017) and Kossaifi et al. (2020). These approaches utilize low-
rank Tucker-based factorizations to successfully reduce the number
of weights in a network without sacrificing performance. These
are more similar in spirit to pooling layers of convolutional neural
networks rather than operations that preserve multilinearity. Many
more studies have connected tensors and neural networks, and we
recommend the survey (Wang et al., 2023) for a more complete
history of the intersection of the two fields.

As we eluded to in the previous paragraph, in this work, we
take a notably different perspective on tensors. We consider tensors
as multiway operators and process our layers under this tensor
operation. This provides a linear algebraic structure that enables
us to extend desirable neural network structure to high dimensions
with ease. Because of our strong algebraic foundation, we are able to
express forward and backward propagation simply; in comparison,
other tensor frameworks require heavy indexing notation. We share
and achieve the same goal as other tensor approaches of reducing
the number of network weights.

3 Background and preliminaries

To motivate our multidimensional neural network design, we
start by introducing our notation and the tensor algebra in which
we work. We use MATLAB indexing notation throughout the paper,
such as selecting the j-th column of a matrix via A(:,) or A, ;.

3.1 Tensor preliminaries

Let A € R™>*"2X" be a real-valued, third-order tensor. Fixing
the third-dimension, frontal slices A® ¢ RMXM2 are matrices
for k = 1,..
.le € R™X*IX" are matrices oriented along the third dimension

.,n. Fixing the second-dimension, lateral slices

for j = 1,...,my. Fixing the first and second dimensions, tubes

ajj € R are vectors oriented along the third dimension for
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i = 1,...
in Figure 1. While this paper focuses on real-valued, third-order

,mp and j = 1,...,my. We depict these partitions
tensors (three indexes), we note all of the presented concepts
generalize to higher-order and complex-valued tensors.

We interpret tensors as t-linear operators (Kilmer and Martin,
2011; Kernfeld et al., 2015). Through our operator lens, it is possible
to define analogous matrix algebraic properties for tensors, such as
orthogonality and rank. Thus, this framework has been described as
matrix-mimetic. We describe the fundamental tools to understand
how tensors operate for this paper, and refer the reader to Kilmer
et al. (2013, 2021) and Kernfeld et al. (2015) for details about the
underlying algebra.

We define a product to apply matrices along the third
dimension of a tensor (i.e., along the tubes).

Definition 3.1 (mode-3 product). Given A € R™*"™*" and M €
R the mode-3 product, denoted A = A x3 M, outputs an
my x my X £ tensor with entries

Adir, i, k) =y Alir, ia, )Mk, j)
j=1

foriy=1,...,m,ip=1,...,my,andk=1,...,¢.

The mode-3 product can be generalized along any mode; see
Kolda and Bader (2009) for details.

Next, we define the facewise product to multiply the frontal

slices of two third-order tensors in parallel.

Definition 3.2 (facewise product). Given A € R™M*Exm and B €
REXm2Xn the facewise product, denoted C = A A B, returns an
m; X my X n tensor where

c — Ap®

fork=1,...,n.

Combining Definition 3.1 and Definition 3.2, we define our
tensor operation, the xyr-product, as follows:

Definition 3.3 (xp;-product). Given A € Rmixtxn 13 o RExmyxn,
and an invertible n x #n matrix M, the p-product outputs an
my X my X n tensor of the following form:

AxyB=(ArB)x;M L.

where X = X x3 M.

We say that .A and B live in the spatial domain and A and
B live in the transform domain. We perform the facewise product
in the transform domain, then return to the spatial domain by
applying M~! along the tubes. If M is the identity matrix, the
*pr-product is exactly facewise product. If M were the discrete
Fourier transformation matrix (DFT), we obtain the t-product
(Kilmer and Martin, 2011). In this case, the frontal slices of .Z
correspond to different frequencies in the Fourier domain and are
therefore decoupled.
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FIGURE 1

Tensor notation. (A) A is a third-order tensor, (B) A, are lateral slices, (C) A% are frontal slices, and (D) aj are tubes.

We can interpret the p;-product as a block-structured matrix
product via

X(l) B
X(z) B®@
A*MBE(M_1®I,”1) M®I,)
NG B
struct(LA) unfold(13)
(1)

where ® is the Kronecker product (Petersen and Pedersen, 2012).
The block matrix structure, struct(.A), depends on the choice
of transformation, M. We consider two familiar examples: the
facewise product (M = I,) and the t-product (M = F,, the DFT
matrix):

A
A®
M=1I, struct(A) = bdiag(A) = . (2a)
Al
AD A L AQ
AD AN ... A®
M =F, struct(.A) = bcirc(A) =

A A=1) [ A
(2b)

While we never explicitly form Equation (2), the block
structure will be helpful for subsequent analysis.

3.2 Matrix-mimetic tensor algebra

The xp-product yields a well-defined algebraic structure.
Specifically, suppose we have tubes a,b € R1X" Then,

/ o ? = vec(a) M' diagMvec(b)M~ "  (3)
a b R[b]

where vec: R>1X7 s R"%! turps a tube into a column vector.

The xpr-product of tubes (3) is equivalent to post-multiplying by
the structured matrix, R[b]. Note that R[-] implicitly depends on
the choice of M, but we omit explicitly writing this dependence for
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notational simplicity. The tubes form a matrix subalgebra which
dictates the algebraic structure imposed on the high-dimensional
space (Kernfeld et al., 2015). As a result, the xp/-product is matrix-
mimetic and yields several familiar concepts.

Definition 3.4 (xp-identity tube). The identity tube e € R!*!1*"
under the xp7-product is

e=1xM1,
where 1isthe 1 x 1 x n tube containing all ones.
This gives rise to the notion of an identity tensor.

Definition 3.5 (xps-identity tensor). A tensor Z € R™*™*" ig the
identity tensor if Z(i,i,:) = efori = 1,...
*r-identity tube.

,m where e is the

Note that if the size of third dimension is equal to one (i.e.,
n = 1), then Definition 3.5 collapses into the identity matrix.
This is a hallmark of our *j/-framework and matrix-mimeticity; the
product and definitions reduce to the equivalent matrix definitions
when the third dimension is removed.

Definition 3.6 (xps-transpose). Given A €  R™M>M2X1_ jtg

transpose B = AT € R"™ XM > jg

B0 — @AWy

fork=1,...,n.

Note that if our transformation M is complex-valued, the
transpose operator in the transform domain performs the conjugate
transpose. However, because we are working with real-valued
tensors in the spatial domain, the transpose will be real-valued
as well.

4 Tensor neural networks (t-NNs)

In general, neural networks are parameterized mappings from
an input space ) to the target space C. These mappings are
composite functions of the form

FNN(90) Efd(fz(fl(>01)>02))>0d) (4)

Each subfunctionﬁ(~, 0]-) forj = 1,...,d is called a layer. The

goal is to find a good set of weights § = (01, ...,0,) € ® such that
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Fan(y, 0) =~ ¢ for all input-target pairs (y,¢) C D. Here, © is the
parameter space and D C ) x C is the data space.

The most common layer of feed forward neural networks (4)
consists of an affine transformation and pointwise nonlinearity of
the form

Yj :f}(yj_l,oj) = Uj(Wij—l +b]) (5)

where W; e R™>*™Mi-1 is a weight matrix, bj € R™i is a bias vector,
and oj: R — Risaone-dimensional nonlinear activation function,
applied entrywise. In practice, activation functions are monotonic,
such as the sigmoid function, o(x) = 1/(1 + e™¥), or Rectified
Linear Unit (ReLU), o(x) = max(x,0). We call Yj the features of
layer j and y, € Y are the input features. Notationally, we use
0; = (W}, b)) to collect all of the learnable weights for layer j.

4.1 Improved parameterization with the
*pm-product

When designing a neural network, we seek to balance a
simple parameter space with an expressive feature space. However,
traditionally fully-connected layers like (5) use parameters in a
highly inefficient manner. We propose new tensor fully-connected
layers for a more efficient parametrization while still creating a rich
feature space. Specifically, we consider the following tensor forward
propagation scheme:

571‘ = 0j(W; *um 5’]‘71 + Bj): (6)

forj=1,...,d. Suppose our input features Yo =Y € Visof size
my X 1 x n. I:Iere, the weight tensor W is of size mj11 x m; x n
and the bias 1B; is of size m;1; x 1 x n. The forward propagation
through Equation (6) results in a tensor neural network Fin,(-,6)
where 6 = (W), Bj)dzl.

Through the illustration in Figure 2, we depict the number
of weight parameters required to preserve the size of our feature
space using either a dense matrix (Figure 2A) or a dense tensor
under the *p-product (Figure 2B). Using the *js-algebra, we can
reduce the number of weight parameters by a factor of n while
maintaining the same number of features (i.e., maintaining a rich
feature space). Beyond the parametric advantages, the multilinear
*pr-product incorporates the structure of the data into the features.
This enables our t-NNs to extract more meaningful features, and
hence improve the richness of our feature space.

4.2 The training problem

Training a (tensor) neural network is posed as a stochastic
optimization problem given by

glin E L(Fpun (D, 0), ¢) + AR(6), 7)
€0

where L : R™Ma+1X1X1 5 ¢ — R is the loss function that measures
the misfit between the network prediction and the true target.
The expectation is taken over all input-target pairs V,0) € D.
The additional function R: ® — R regularizes the weights to
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promote desirable properties (e.g., smoothness), weighted by a
regularization parameter A > 0.

4.3 Tubal loss (t-loss) functions

The loss function is chosen based on the given task. For
regression, we often use mean squared error, and for classification,
which is the focus of this paper, we often use cross entropy.
Cross entropy loss, related to the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951), measures the distance between two
probability distributions. In practice, we first transform the network
outputs into a set of probabilities using exponential normalization.
Specifically, we use the softmax function h:RP — AP, defined
entrywise as

exi

W)= ——
[h(x)] e

fori=1,...,p, (8)

where A? is the p-dimensional unit simplex.

To preserve the algebraic integrity of t-NNs, we introduce
a tubal variant of the softmax function. Drawing inspiration
from Lund (2020), a tubal function, we start by defining tubal
functions generally.

Definition 4.1 (tubal function). Given b € R " a tubal
function f:R>X1" . RIXIX® acts on the action of b under the

*pr-product; that is,

=M' f(Mvecb)) M~T  (9)

pointwise function

fb) =

tubal function

f(R[b])

matrix function

In practice, a tubal function is applied pointwise in the
transform domain.

We note that the pointwise function in Definition 4.1 is
equivalent to applying a matrix function to the eigenvalues of
the matrix R[b]. We provide a visualization of the effects of
tubal functions compared to applying an entry-wise function in
Example 4.2.

Example 4.2 (Visualizations of tubal functions). Consider the
following RGB image B € RIP0X169X3 of 3 Tufts Community
Apeal elephant (TCA, 2023), where 3 is the number of color
channels (Figure 3A). We rescale each entry of 13 between 0 to 1
and consider the following transformation matrix:

111 11 0
M=|0 11| and M'=] 0 1 -1 (10)
001 00 1

To illustrate the effect of using tubal functions, we compare
applying various functions as pointwise functions (i.e., independent
of M) and as tubal functions using Equation (9) in Figure 3B.

Tubal functions are able to capture shared patterns among
the tubes that entrywise operators ignore. Each choice of tubal
function highlights different features of the image, such as the body
with f(x) = max(x,0) and the heart with f(x) = tanh(x). In
comparison, the entrywise counterparts do not bring new insights
or structure. A striking difference occurs for f(x) = sign(x). The
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A
-
Yj W; yi-1
n? x 1 n2 x n? n? x 1

FIGURE 2

Comparison of network parameterizations to preserve the number of features of layer j — 1 and layer j. The matrix mapping requires n* weights in W;
and tensor mapping requires n® weights in W;. (A) Matrix linear mapping. (B) Tensor %y -mapping.

B
<« *M
Y; W Y1
nxlxn nXnxn nx1lxn

B®)
B

BM

FIGURE 3

rescaled between 0 and 1 after applying the respective function.

Comparison of entry-wise and tubal functions applied to roughly piecewise constant image. (A) Image and color channels of elephant image. The
elephant is almost piecewise constant with easily distinguishable RGB values. (B) Effects of tubal functions under the transformation (10). Images are

max(z,0)

sign(z) tanh(z)

pointwise

tubal

entrywise operator turns all pixels white because the RGB entries
are all nonnegative. In contrast, the tubal equivalent is applied in
the transform domain, and hence reveals meaningful features of
the image.

Note that the results depend on the chosen tubal function and
transform M. We deliberately chose M to emphasize green and blue
channels and diminish the effect of the red channel, enabling easy-
to-interpret distinctions between tubal and entrywise functions.

We can now define a tubal softmax function based on the
traditional softmax function in (8).

Definition 4.3 (tubal softmax). Consider a lateral slice X €
RP*1Ixn 49 ap x lvector of 1 x 1 X n tubes. Then, the tubal softmax
function b : RP*1X1 — APX1X7 performs the following mapping:

-1

p
()i = | > exp(x) | #ar exp(xy)
j=1

for i = 1,...,p where h(;t') € RPXIX7 3nd the exponential
functions are applied as tubal functions. Here, AP*!*" is the

tubal-equivalent of p-dimensional unit simplex.
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We interpret h(.3€') as a vector of “tubal probabilities” in that the
tubes sum to the identity tube

‘?:1 [h(X)]; = 25):1 [(Zle exp(xj))_l *M exp(xi):|

P exp(x) _I*M SF | exp(x;)
( j ) [ ]
= €.

Through Definition 4.3, we demonstrate the parallels between
tubal functions and traditional functions; the similarities are a
direct consequence of a matrix-mimetic tensor framework.

The last step to define the tubal cross entropy function that
converts the output of tubal function to a scalar. Recall, traditional

cross entropy Lee : RP x {1,...,p} — R for one sample is given by

(11)

where x is the output of the network, ¢ is the corresponding target
class, and h is the softmax function. We generalize (11) to a tubal
variant as follows:

Lee(x,¢) = — log[h(x)]c

Definition 4.4 (tubal cross entropy (t-cross entropy)). The
cross entropy function Lyce : AP f

tubal
.,p} — R4 is given by

Lice(X, ©) = —|| vec(log[h(X)] 1,1l

frontiersin.org
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where h is the tubal softmax function, log is applied as a tubal
function, c is the index corresponding to the target class, and || - [l
is a vector norm.

The intuition behind Definition 4.4 is the following. If we have
good features .5(, then [h(jc')]c,l,; ~ e, the identity tube, and the
remaining tubes will be closer to 0. In the transform domain,
[h(3c') X M]1,: &~ 1 and the remaining entries will be close to
zero. When we apply the log pointwise in the transform domain,
the tube log[h(.sc') X M]g1: ~ 0 and the remaining entries will
be large negative numbers. As a result, Lice is smallest when the
[h(.;()]c,l,: ~ e, as desired.

In practice, if g-norm corresponds to a finite integer, we
can instead use || log[h(.sc')]c,l,; ||Z for t-cross entropy for easier
derivative computations. For numerical benefits when training,
we consider normalized versions based on the number of tubal
entries, e.g., multiply by 1/n. These suggested modifications should
not change performance in theory, but could change preferred
training hyperparameters.

4.4 Backward propagation with t-NNs

The workhorse of neural network training is backward
propagation (Rumelhart et al., 1986; Bengio et al., 1994; Shalev-
Shwartz et al., 2017; Nielsen, 2018), a method to calculate the
gradient of the objective function (7) with respect to the weights.
With gradient information, one can apply standard stochastic
gradient optimization techniques to train.

In the x)s-framework, for an orthogonal transformation M, the
backpropagation formulas are analogous to the matrix case. For
example, the derivatives of the xj;-product are

i_.[W*M 57] =W/ xy 357
0y
and %V[W V= WY (12)

where 9 X indicates a direction or perturbation of the same size as
X. For full details on the derivation, we refer the reader to Newman
(2019).

The simplicity of the back-propagation formulas (12) is
one of the hallmarks of our choice of leveraging a matrix-
mimetic tensor framework. Other tensor-based neural network
designs (Wang et al., 2023) often require complicated indexing and
non-traditional notation which, in addition to being cumbersome,
can preclude extending more sophisticated neural network
architectures to higher dimensions. The xp-framework yields
derivative formulations that are easy to interpret, implement,
and analyze.

5 Stable t-NNs

As the depth (number of layers) of a network increases,
gradient-based training is subject to numerical instability such
as vanishing or exploding gradient problem (Bengio et al., 1994;
Shalev-Shwartz et al., 2017). To avoid these instabilities, one can
interpret deep neural networks as discretizations of differential
equations (Ee, 2017; Haber and Ruthotto, 2017; Haber et al,
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2018) and analyze the stability of forward propagation as well
as the well-posedness of the learning problem; i.e., whether the
classifying function depend continuously on the initialization of
the parameters (Ascher, 2010). By ensuring stability and well-
posedness, networks can generalize better to similar data and can
classify data more robustly.

We emphasize that the notion of stability is related to
the formal numerical analysis definition in the Lyapunov sense
(i.e., stability of dynamical systems). This is a property of the
model itself and independent of the data. From a statistical and
foundational learning theory perspective, neural networks are
typically over-parameterized models, which tend to overfit. In this
context, stability can promote better generalization by imposing
constraints of the structure of the weight matrices, effectively
reducing the number of degrees of freedom. The tensorial structure
imposes additional constraints and further reduces the number of
parameters, which can again lead to better generalization.

5.1 Well-posed learning problem criterion

Consider the residual neural network (He et al., 2016) with
tensor operations, given by

V=Y 1 +hoWisu Y1 +8B) forj=1,....d, (13)

where 57]' € RMXIXn Wy, ¢ RM*MXn and Bj € R™* X1 Wwith
the addition of the step size h, we can interpret Equation (13) as a
forward Euler discretization of the continuous ordinary differential
equation (ODE)

ay() L
= Y(0) = o

(14)

cOW®) «u Y1)+ B(t)  with

for all t € [0, T] where T is the final time corresponding to the
depth of the discretized network.

The stability of non-autonomous ODEs like (14) depends on
the eigenvalues of the Jacobian with repsect to the features. To
perform analogous analysis for tensor operators, it is useful to
consider the equivalent block matrix version of the xj;-product in
Equation (1) where W %y 57 = struct(W) unfold(ii). It follows
that we can matricize (14) via

% unfold(Y(t)) = o (struct(W(t)) unfold(Q)(t)) + unfold(B(1))).
(15)

The Jacobian of the matricized system (15) with respect to

-

unfold(Q)(¢)) is
J(t) = diag(o”’ (x(1))) struct V(1))

where x(f) = struct(W(t)) unfold(QXt)) + unfold(B(1)) and
J(t) € R™>™M" Tn most cases, the activation function o is non-
decreasing, and thus the entries in diag(c’(x(¢))) are nonnegative.
As aresult, the stability and well-posedness of the ODE relies on the
eigenvalues of struct(WW(t)). As described in Haber and Ruthotto
(2017), the learning problem is well-posed if

Re(A;(struct(W(1)))) ~ 0 fori=1,...,mn, (16)
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where A;(A) is the i-th eigenvalue of A. This criterion implies
that the imaginary part of the eigenvalues drive the dynamics,
promoting rotational movement of features. This produces stable
forward propagation that avoids features diverging and prevents
inputs from distinct classes from converging to indistinguishable
points; the latter would lead to ill-posed back propagation and
hence an ill-posed learning problem.

We can be more concrete about the eigenvalues because in
Equation (1), struct(WW(t)) is block-diagonalized in the transform
domain. Thus, we can equivalently write Equation (16) as follows:

Re(hi(W® (1)) ~ 0 (17)

fori = 1,...,mand k = 1,...,n. In short, if the eigenvalues of
each frontal slice in the transform domain have a real part close
to zero, the t-NN learning problem will be well-posed, save one
more requirement.

A subtle, yet important requirement for stability is that the
weights change gradually over time (i.e., layers). This ensures that
small perturbations of the weights yield small perturbations of
the features. To promote this desired behavior, we imposed a

smoothing regularizer in (discrete) time via

d—1
Ramooth (W), BYL) = Y IWit1 = Wili: + 1B — Bjll;.
j=1

(18)

5.2 Hamiltonian-inspired stable t-NNs

While theoretically useful, it is impractical to evaluate the
eigenvalues of the weight tensors to satisfy the well-posedness
condition (17) as we train a network. Instead, motivated by
the presentation in Haber and Ruthotto (2017), we implement
a forward propagation that inherently satisfies (17) independent
of the weights. This forward propagation scheme is inspired by
Hamiltonian dynamics, which we briefly describe and refer to
Ascher (2010) and Brooks et al. (2011) for further details. We define
a Hamiltonian as follows:

Definition 5.1 (Hamiltonian). Let y(t) € R™*1, z(t) e R™*!,
and t € [0, T]. A Hamiltonian H : R™*1 x R™=*1 % [0, T] — R is
a system governed by the following dynamics:

dy dz

— = V,H(y(t),z(t), 1) and I

dt = —VyH(y(1), 2(t), 1).

Intuitively, the Hamiltonian H describes the total energy of the
system with y as the position and z as the momentum or velocity.
We can separate total energy into potential energy U and kinetic
energy T; that is, H(y, z,t) = U(y) + T(z). This separability ensures
the Hamiltonian dynamics conserve energys; i.e.,

dH _ dy dz

oYV H+ZV,H=0

= 1
e~ dt Y dt (19)

In terms of neural networks, energy conservation (19) ensures
that network features are preserved during forward propagation,
thereby avoiding the issue of exploding/vanishing gradients and
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enabling the use of deeper networks. Additionally, Hamiltonians
are symplectic or volume-preserving in the sense that the
dynamics are divergence-free. For neural networks, this ensures
the distance between features does not change significantly,
avoiding converging and diverging behaviors. We also note that
Hamiltonians are time-reversible. This ensures that if we have well-
posed dynamics during forward propagation, we will have similar
dynamics for backward propagation.

5.3 Discretizing Hamiltonians with leapfrog
integration

To preserve the benefits of Hamiltonians in the discretized
setting, we symmetrize the Hamiltonian (Definition 5.1) and use a
leapfrog integration method (Skeel, 1993; Ascher, 2010; Haber and
Ruthotto, 2017). For t-NNs, we write the new system in terms of the
*pr-product (with slight abuse of notation)

d || 0 W@ R0
i |:i’(t)i| = <|:—W(t)T 0 } M |:Z’(t):| +b(t)> (20)

where 57(0) = 5)0 and 2(0) = 0. Here, ji(t) indicates the data
features and é(t) is an auxilary variable not related to the data
directly. We add the bias tube, b(t), to each element. The equivalent
matricized version of Equation (20) is

dt | unfold(Z(t))

d | unfold(QX(t))
dt

. 0 struct(WW(t))
=7\ - structOWV(t)) T 0

unfold(J)(t))
|:unfold(2(t)):| + b(t)) ‘

21

The (matricized) system (21) is inherently stable, independent
of the weight tensors W(t), because of the block antisymmetric
structure. The eigenvalues of antisymmetric matrices are purely
imaginary, which exactly satisfy the stability condition in
Equation (17).

We discretize Equation (20) using the leapfrog method, a
symplectic integration technique, defined as

Z,1=Z_ 1 —hoOW su Y +bj) (22a)
Vit =Y +hoWjprsu 2,1 +bj1)  (22b)

forj=0,...,d — 1. We demonstrate the benefits of stable forward
propagation (22) in Example 5.2.

Example 5.2 (Trajectories of stable t-NNs). We construct a dataset
in R® randomly drawn from a multivariate normal distribution
with mean of 0 and a covariance matrix of 3I5. The points are
divided into three classes based on distance to the origin with yellow
points inside a sphere with radius r = 3.5, green points inside a
sphere with radius R = 5.5, and purple points outside both spheres.
We train with 1200 data points and store the data as 1 x 1 x 3 tubes.
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We forward propagate using one of two integrators with
weights and biases as 1 x 1 x 3 tubes:

Forward Euler y;.; =y; + ho (Wjt1 #um y; + bj11) (232)
= - T 1 b
Leapfrog Livy T - ha(w]H *M Y+ bjy1)
Vis1 =Y+ ho (Wj+1 *m Z;1 +bjt1)
(23b)

We create a network with d = 32 layers and use a step size of
h = 2. We use the discrete cosine transform for M. We train for
50 epochs using Adam (Kingma and Ba, 2015) with a batch size of
10 and a learning rate of y = 1072, To create smoother dynamics,
we regularize the weights using Equation (18) with regularization
parameter . = 107*/h. We illustrate the dynamics of trained
networks in Figure 4.

The dynamics in Figure4 show the topological benefits
of leapfrog integration. The data points exhibit smoother,
rotational dynamics to reach the desired linearly-separable
final configuration. In comparison, forward Euler propagation
significantly changes topology during forward propagation. Such
topological changes may yield ill-posed learning problems and poor
network generalization.

6 Numerical results

We present two image classification problems to compare
tensor linear layers and stable tensor neural networks to
comparable matrix versions. Overall, the results show that t-NN
trained with tubal loss functions generalize better to unseen data
than equivalent matrix networks, and can do so with 20-30 times
fewer network weights.

6.1 Experiment setup and hardware

We implement both tensor and matrix frameworks using
PyTorch (RRID:SCR 018536) (Paszke et al., 2017). All of the code
to reproduce the experiments is provided in https://github.com/
elizabethnewman/tnn. All experiments were run on an Exxact
server with four RTX A6000 GPUs, each with 48 GB of RAM.
Only one GPU was used to generate each result. The results we
report are for the networks that yielded the best accuracy on the
validation data.

We train all models using the stochastic gradient method
Adam (Kingma and Ba, 2015), which uses a default learning rate
of 1073, In most cases, we select hyperparameters and weight
initialization based on the default settings in PyTorch. We indicate
the few exceptions to this at the start of the corresponding sections.
We also pair the stochastic optimizers with a learning rate scheduler
that decreases the learning rate by a factor of y every M steps. In all
cases, we used the default y = 0.9 and M = 100. This is a common
practice to ensure convergence of stochastic optimizer in idealized
settings (Bottou et al., 2018). We utilize a weight decay parameter
in some experiments to reduce overfitting.

For the tensor networks in all experiments, we use the discrete
cosine transform for M, which is a close, real-valued version of the
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discrete Fourier transform (DFT). The DFT matrix corresponds to
the t-product, which has been shown to be effective for natural
image applications (Kilmer and Martin, 2011; Hao et al., 2013;
Newman et al., 2018).

6.2 MNIST dimensionality reduction

The MNIST dataset (LeCun et al., 2010) is composed of 28 x 28
grayscale images of handwritten digits. We train on 50, 000 images
and reserve 10,000 for validation. We report test accuracy on
10,000 images not used for training nor validation. For NNs, we
vectorize images and store as columns, resulting in a matrix of size
282 x b where b is the number of images. For t-NNs, we store the
images as lateral slices, resulting in a tensor of size 28 x b x 28.

In this experiment, we train an autoencoder to eﬂiciently
high-dimensional MNIST data
dimensional subspace. Autoencoders can be thought of as

represent the in a low-
nonlinear, parameterized extensions of the (truncated) singular
value decomposition. Our goal is to solve the (unsrpervised)
learning problem

min Ey~y [l faec (fenc (¥ Oenc)s @ dec) — Y”% (24)

enc>V dec

where fenc : Y — Z is the encoder and fec : Z2 — ) is the decoder.
Here, Z is the latent space that is smaller than the data space; in
terms of dimension, we say dim(Z) < dim()/). Note that the mean
squared error (MSE) tubal loss is the same as the MSE loss function
when using an orthogonal transformation matrix, as we have done
in our experiments. We describe the NN and t-NN autoencoder
architectures used in Figure 5 and report results in Figure 6.

We observe that the t-NN outperforms the NN autoencoders
with similar numbers of weights with an order of magnitude
smaller training and validation loss and test error as well as
qualitative improvements of the approximations. The neural
network autoencoder with the same feature space dimensions,
NN(560,280), performs best in terms of the loss and error metrics,
but requires over 20 times more network weights than the t-NN
autoencoder. The t-NN layers are able capture spatial correlations
more effectively using multilinear operations, resulting in quality
approximations with significantly fewer weights.

6.3 MNIST classification

We use the same MNIST dataset as for the autoencoder
example. We train for 20 epochs using Adam with a batch size of
32 and a learning rate of 1072, We add Tikhonov regularization
(weight decay) with a regularization parameter of A = 10~%. We
use the PyTorch defaults for the other optimizer hyperparameters.
For the t-cross entropy loss, we use a squared ¢;-norm and
normalize by the number of entries in the tube.

We compare four different two-layer neural network
architectures, described in Table 1. We use either cross entropy loss
or t-cross entropy loss, depending on the architecture.
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FIGURE 4

Comparison of feature trajectories for stable t-NNs with forward Euler (23b) and leapfrog integration (23a). Each image contains the features at a
particularly layer of a trained network (layersj=0,4,..., 32). The forward Euler network resulted in a test accuracy of 90% and the leapfrog network
resulted in a test accuracy of 93.50%. As expected, the leapfrog trajectory is smoother and contains rotational dynamics. The colors are linearly
separable at the last layer, indicating good classification performance.

y1 = o(Wi™y + bi™) 7 = o(W5™y1 + b5™) H z1 = o(W{*z + b3™) ¥ = Wiz, + bg
ng%z R™ Rd R™ RQSQ
Vi = o (W™ xy Y + BS™) Z = o(W5™ oy Y1 + By™) @ 21 = o(W wp xn 2 + BS™) V= Wy 2, + Bl
R28><1><28 RmxleS Rdxlx28 RmxleS R28X1X28

name 0]

NN(40,10) 64,394
NN(21,280) 45,794
NN(560,280) 1,193,864
t-NN(20,10) 44,744

FIGURE 5

Description of MNIST autoencoder architectures with o (x) = tanh(x). (Top) Four-layer matrix autoencoder NN(m,d) with first width m and latent
space dimension d. (Middle) Four-layer tensor autoencoder t-NN(m,d) with first width m and latent space dimension d. For notational simplicity, we
omit the vector lateral slice notation for the t-NN. (Bottom) Table of networks that we use. We pick sizes relative on the dimensions of t-NN(20,10).
The first network NN(40,10) is given more features in the first layer of the encoder. The second network NN(21,280) is given the same number of
latent space features and a corresponding width to have roughly the same number of weights as the t-NN. The third network NN(560,280) is given

the same number of features on both layers as the t-NN.

size of the images in Figure 8. The t-NN features from the first
layer contain more structure than the NN features with square
weights. This reflects the *p-operation, which first acts along

We report the convergence and accuracy results in Figure 7 and
Table 2, respectively.
The t-NN architecture with cross entropy loss outperforms all

networks in terms of test accuracy and accuracy per class. The
second-best performing network is the t-NN with t-loss. These
results are evidence that the features learned from the tensor linear
layer (layer 1) are better than those learned by a dense matrix
layer. We further note that matrix network NN with square weights
has the same final layer shape as the t-NN with cross entropy
loss; the only difference between the networks is the first layer.
We depict the learned features of each network that preserves the
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the tubes (rows of the images in Figure 8). We also observe that
the features of NN are more extreme, close to +1 and —1, the
limits of the range of the activation function o(x) = tanh(x).
In comparison, the features extracted from the t-NN with t-loss
offer more variety of entries, but still hits the extreme values
often. This demonstrates that t-NNs still produce rich feature
spaces and are able to achieve these features with about 20 times

fewer weights.
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FIGURE 6

(Left) Convergence of the loss for the autoencoder example. The t-NN converges to a lower loss more quickly than the NNs. The validation loss
closely follows the training loss, indicating good generalization. (Right) Autoencoder approximations to test images. The top row contains the true
test images y and the subsequent rows contains the approximations to the true image y = fec(fend (¥, fenc), @dec) for various autoencoder
architectures. To the right of each row, we report the average test error, ﬁ Xy&ym Ily — ¥ll2. Compared to the first two NN autoencoders, the

t-NN produces clearer approximations and a test error an order of magnitude smaller. The autoencoder NN(560,280) does produce the smallest test
error, but requires over 20 times more network weights than the t-NN autoencoder.

TABLE 1 Description of MNIST two-layer network architectures with o (x) = tanh(x).

Name ‘ rchitecture ‘ Layer 1 ‘ Layer 2 ‘ 0]
Wi:39 x 282 W:10 x 39

NN W,0(Wiy, +b1) +b, 31,015
b1:39 x 1 by:10 x 1
W,: 282 x 282 W,: 10 x 287

NN, square W10 (W1y, +by) + b, 623,290
by:28% x 1 by: 10 x 1

- - W,: 28 x 28 x 28 W,: 10 x 28%

t-NN W, unfold(o (W *p Yo + B1)) + b, 30,586

B;:28 x1x28 by:10 x 1
~ - - W;:28 x 28 x 28 W,: 10 x 28 x 28
t-NN, t-loss W sy 0 (Wi xy Yo + B1) + B, 30,856

B1:28 x 1 x 28

By:10 x 1 x 28

The t-NN architectures were chosen to preserve the size of the images. The NN width of 39 is chosen to be as small as possible such that the NN architecture does not have fewer parameters
than the t-NN architecture. The final column reports the total number of learnable weights.

0 &
% 10 g
2 [}
S
&

-e- NN: train spges NN, square: train + t-NN: train sfiff= t-NN, t-loss: train

10-1 80 [+ @)+ NN: valid +:3¢:+ NN, square: train « s+ t-NN: valid NN, t-loss: valid |

0 2 4 6 g 10 12 14 16 18
epoch
FIGURE 7

Loss and accuracy convergence for MNIST with four different two-layer neural networks. To see the differences clearly, we omit the initial accuracy,
which was close to 10% for each network. The t-NN with cross entropy loss (orange diamonds ¢) produces the best training (darker, solid) and
validation (lighter, dashed) accuracy. The t-NN with t-loss (green squares B) performs second best with in terms of accuracy, demonstrating the
benefits of tensor operator layers. Despite having the greatest number of weights, the NN with square weights (purple x's) performs worst in terms
of accuracy

We note that the t-NN network with t-cross entropy loss  use tubal losses, we require high values for many frontal slices.

performs well, and we gain insight into the beneifts of t-losses  This creates a more rigorous classification requirement and, as

from the accuracy per class in Figure 9. We observe that when we  we will see in subsequent experiments, can yield networks that
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TABLE 2 MNIST training, validation, and test accuracy per class and overall for the four architectures.

NN 97.05 96.54 90.58 89.73 93.03 88.91 92.36 91.91 87.79 84.57 91.33
.g NN, square 96.67 93.85 92.58 84.82 94.84 89.11 97.91 88.76 77.98 85.56 90.24
=
- t-NN 98.98 99.64 97.12 97.88 98.29 96.06 98.68 97.60 93.30 95.59 97.36
t-NN, t-loss 97.28 97.06 95.97 91.09 94.92 92.50 97.26 92.26 91.99 91.61 94.22
NN 96.90 96.46 89.50 89.79 92.13 89.94 92.28 91.33 88.85 81.02 90.94
= NN, square 94.50 93.36 90.60 84.68 94.99 89.83 97.36 89.26 77.81 82.16 89.52
<
g t-NN 97.60 99.29 95.40 97.01 97.34 95.66 96.75 97.08 92.47 93.26 96.26
t-NN, t-loss 96.20 97.08 94.80 90.94 93.46 93.60 97.26 92.46 92.16 89.21 93.76
NN 98.16 97.18 89.44 92.18 93.08 88.00 90.50 89.49 87.58 85.43 91.20
z NN, square 97.14 94.89 92.44 85.84 95.01 88.79 97.49 87.45 78.23 83.35 90.11
8 t-NN 98.67 99.38 95.25 97.03 98.37 94.96 97.08 96.50 93.74 94.05 96.55
t-NN, t-loss 98.16 98.33 95.35 93.66 95.21 91.59 97.18 90.66 93.94 91.08 94.57

The t-NN architecture with cross entropy loss consistently produces the highest accuracy. The bolded values indicate the highest accuracy for the class and dataset.

Original

NN, square

t-NN, t-loss

FIGURE 8
Features from first layer of NN, square, t-NN with cross entropy, and t-NN with t-cross entropy networks. Both t-NN features contain more structure
because the xy-operation respects spatial correlations

true = 7, predicted=7 true = 3, predicted=3 true = 5, predicted=6 true = 8, predicted=2

l()

] ]
<
3]

frontal slice

FIGURE 9

Illustration of t-softmax of MNIST test images using t- NN with t-loss. The top row are the test images Vel and the bottom row are the
values of the tubal softmax of the output Finn( V,0) e R10x1x28 shown in the transform domain. Each row of the tubal softmax images corresponds to
a different class and each column to a different frontal slice. The row with the largest £,-norm corresponds to the predicted class, where the top row
corresponds to class 0 and the bottom row corresponds to class 9. The left two images were predicted correctly and the right two images were
predicted incorrectly

R28x1x28
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TABLE 3 Description of CIFAR-10 Hamiltonian network architectures with o (x) = tanh(x).

Hamiltonian layers

Final layer

10|

Wi (3-32%) x (3-32%) Wai1:10 x 3072 4 layers: 37,779,470
NN

bi:1x1 bsr1:10 x 1 8 layers: 75,528,210

Wi (3-32) x (3-32) x 32 Wi 10 x (3 - 322) 4 layers: 1,210, 506
t-NN

bj: 1x1x32 bgy1:10 x 1 8 layers: 2,390,282

Wi (3:32) x (3-32) x 32 Wa1:10 x (3 -32) x 32 4 layers: 1,210,816
t-NN, t-loss

Bj:1x1x32 Bii1:10 x 1 x 32 8 layers: 2, 390, 592

The architectures were chosen to preserve the sizes of the CIFAR-10 images. The final column || reports the total number of learnable weights.

250
epoch

FIGURE 10

Loss and accuracy convergence for CIFAR-10 with different Hamiltonian network depths. We only show the convergence for the t-NN with t-cross
entropy loss, which achieved a top validation accuracy of at least 54.37%, compared to the t-NN with cross entropy loss, which topped out at
54.32%. For the accuracy, we start with epoch 5 to highlight the differences between networks.
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TABLE 4 CIFAR-10 training, validation, and test accuracy per class and overall for the four architectures.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck  Overall ‘
NN4 99.95 100.00 99.95 100.00 99.98 99.97 100.00 99.97 100.00 100.00 99.98
£ | NN8 99.90 99.97 99.80 99.95 99.93 100.00 100.00 100.00 99.93 99.93 99.94
g
NN 74.12 79.97 60.44 43.02 59.82 65.27 65.66 88.47 77.14 74.83 68.84
t-NN8 76.09 81.15 61.12 35.80 69.04 58.83 62.52 91.45 76.94 75.28 68.79
NN4 54.57 62.77 40.85 29.58 39.36 42.77 58.24 59.52 70.84 60.06 51.99
= NN 62.08 65.54 39.76 33.92 38.53 43.36 62.34 56.62 70.74 59.06 53.30
S
Rt 59.51 68.32 49.11 32.68 49.53 52.25 51.41 73.62 67.64 62.86 56.83
t-NN8 60.43 66.63 47.12 23.37 53.79 44.82 47.90 73.24 65.33 59.86 54.37
NN4 57.30 64.70 40.60 28.10 38.30 42.10 57.30 58.20 69.20 57.90 51.37
7 | NN8 62.60 63.10 40.70 33.20 39.10 44.80 61.60 55.30 69.00 55.80 52.52
T 61.00 66.90 48.40 34.40 48.10 54.70 54.50 72.50 67.30 63.30 57.11
t-NN8 62.60 67.30 48.70 25.20 52.50 46.70 50.20 72.90 63.40 60.10 54.96

The t-NN architectures with t-cross entropy loss produce the highest overall validation and test accuracy, the traditional metrics to indicate generalization ability. The bolded values indicate the

highest accuracy for the class and dataset.

generalize better. Additionally, the distribution of values in the
tubal softmax function is reflective of the predicted class. For the
second image (true = 3), the two most likely predicted classes
were, in order, 3 and 8. Qualitatively, the particularly handwritten
3 has similarities to the digit 8, and the tubal softmax captures
this similarity. For the cases that were incorrectly predicted the
digit, the handwritten image had structure emblematic of the
predicted class and second most likely predicted class matched the
true label.
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6.4 CIFAR-10

The CIFARI10 dataset (Krizhevsky and Hinton, 2009) is
composed of 32 x 32 x 3 RGB natural images belonging to
ten classes. We train on 40,000 images and reserve 10,000 for
validation. We report test accuracy on 10, 000 images not used for
training nor validation. For NNs, we vectorize images and store as
columns, resulting in a matrix of size (3 - 322) x b where b is the
number of images. For t-NNs, we store the images as lateral slices
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separated color channels of the original images.

Features from the trained 4-layered Hamiltonian networks of both the matrix and tensor parameterized cases for four different training images
(top-to-bottom: dog, horse, truck, ship). For the t-NN, we use the better-performing network with t-cross entropy loss. Here, Layer O shows the
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(Left) Average time per epoch to train a Hamiltonian network for a fixed batch size. We ran each depth for five epochs and the maximum standard
deviation of time was on the order of 10~ relative to the average time. (Right) Time ratio average r = NN epoch/t-NN epoch. As the depth of the
network grows, the time per epoch for NNs takes almost 1.75 times longer than for t-NNs.

and stack the color channels vertically, resulting in a tensor of size
(3-32) x b x 32. We train for 500 epochs using Adam with a batch
size of 32. We use a learning rate of 1073 that decays after every
100 epochs by a factor of 0.9. We use the PyTorch defaults for the
other optimizer hyperparameters. For the t-cross entropy loss, we
use a squared £;-norm and normalize by the number of entries in
the tube.

We compare the performance of the Hamiltonian networks
with dense matrix operators and dense tensor operators for
various numbers of layers (d = 4,8). In conjunction with
the Hamiltonian network, we use the smoothing regularizer (20)
with a regularization parameter of A = 1072, We describe the
network architectures and number of parameters in Table 3. The
NN architectures require more than 30 times the number of weights
than the t-NN architectures. We compare the convergence and
accuracy results in Figure 10 and Table 4, respectively.
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There are several key takeaways from the numerical results.
First, the depth of the network did not significantly change
performance in this experiment. We state this observation
cautiously. We observe this behavior for a certain set of fixed
hyperparameters (e.g., step size h, learning rate, regularization
parameter ,..). The interaction of the hyperparameters and
performance is complex and a complete ablation study is outside
of the scope of this paper. A second takeaway is that the t-NN
trained with the tubal loss generalizes better the NN networks
and better than t-NNs with cross entropy loss (not shown for
simplicity; see Figure 10 for details). This behavior is especially
apparent when looking at the test loss in Table 4. The t-NN
with four Hamiltonian layers and t-loss performs well overall,
obtaining almost 5% better overall test accuracy. In comparison,
the matrix NN quickly overfits the training data and thus does
not generalize as well. In terms of the test accuracy per class,
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accuracy (best validation)
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FIGURE 13

highest validation accuracy during training.
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(Left) Convergence of the accuracy for the CIFAR-100 experiment. To delineate the performance on the validation data, we show the first 100
epochs out of 500 total. The t-NN with t-loss converges to the highest validation accuracy and avoids the generalization gap longest out of all
presented networks. (Right) Final accuracy for the training, validation, and test data. We report the results using the networks that produced the

the t-NN architectures achieve the best performance in all but
two classes.

To look into the performance further, we examine the extracted
features of Hamiltonian NNs and t-NNs in Figure 11. We see
that the NN and t-NN features share similarities. Both features
gradually remove the structure of the original image at similar
rates. The t-NN architecture achieves this pattern with significantly
fewer network weights (over 30 times fewer). The noisy artifacts
differ between the two architectures. In particular, we see that the
t-NN layers produce blockier artifacts because of the structured
*)1-operation.

In the last numerical study in Figure 12, we explore how quickly
we can train Hamiltonian t-NNs compared to NNs. In addition to
an order of magnitude fewer weights, training t-NNs takes less time
than training NNs. As we increase the depth of the networks, we
see that each NN epoch takes approximately 1.75 times longer to
complete. This performance could potentially be further improved
if we optimized the %p-product, e.g., using fast transforms instead
of matrix multiplication.

6.5 CIFAR-100

The CIFAR100 dataset (Krizhevsky and Hinton, 2009) is
composed of 32 x 32 x 3 RGB natural images belonging to
100 classes. We train on 40,000 images and reserve 10,000 for
validation. We report test accuracy on 10,000 images not used
for training nor validation. We use the same setup and training
parameters as the CIFAR1O experiment (Section 6.4). For all
experiments, we use Hamiltonian networks with a depth of d = 16,
a step size of h = 0.25, and a regularization parameter » = 1072,
We report the accuracy results in Figure 13.

Observing the results in Figure 13, the conclusions are the same
as in the CIFAR-10 experiment. Specifically, training with the t-NN
and t-loss produces the best test accuracy, about a 4% improvement
from the comparable NN network. This demonstrates that the
benefits of dense tensor operations over dense matrix operations
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can be realized for more challenging classification problems and
motivates further development of these tools to improve state-of-
the-art convolutional neural networks and other architectures.

7 Conclusion

We presented tensor neural networks (t-NNs) as a new
approach to parameterize fully-connected neural networks. We
operate using the ps-product which can reduce the number of
network weights by an order of magnitude while maintaining
the same expressiveness. We introduced tubal loss functions
that are an algebraically-consistent t-NN architecture. Because
the *)-framework gives rise to a tensor algebra that preserves
matrix properties, we extended the notion of stable neural
networks to t-NNs, which enable the development of deeper,
more expressive networks. Through numerical experiments
on benchmark image classification tasks, we demonstrated
that t-NNs offer a more efficient parameterization and, when
trained with tubal loss functions, can generalize better to
unseen data.

Our work opens the door to several natural extensions. First,
we note that while this paper focused on imaging benchmark
problems in machine learning, the xj/-framework can be applied
to many data sets, including dynamic graphs (Malik et al,
2021), longitudinal omics data (Mor et al., 2022), and functional
magnetic resonance imaging (fMRI) (Keegan et al., 2022). Second,
we could use tensor parameterizations to improve convolutional
neural networks (CNNs), just as we used t-NN layers to improve
fully-connected networks. CNNs are state-of-the-art for image
classification and rely on convolution operations. The x3s-product
is, in some sense, a convolution based on the transformation
M; in fact, when M is the discrete Fourier transform, the result
is a circulant convolution. A t-CNN could offer more efficient
parameterization and a greater range of convolutional features that
could increase the expressibility of the network. Third, we could
extend the use of tubal loss functions to any network architecture.
Tubal loss functions offer more stringent requirements to fitting
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data which can mitigate overfitting. Additionally, tubal loss
functions foster a new level of flexibility to evaluate performance,
such as various norms to transform tubal probabilities into scalars
and new measures of accuracy per frontal slice. Fourth, we can
consider learning the operator M based on the data or allowing the
operator to evolve with the layers. Lastly, we can explore methods
to improve t-NN efficiency on CPUs and GPUs by exploiting the
parallelize of the xjr-products.
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