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Abstract

We study concentration inequalities for the Kullback—Leibler (KL) divergence between the
empirical distribution and the true distribution. Applying a recursion technique, we improve
over the method of types bound uniformly in all regimes of sample size n and alphabet size k,
and the improvement becomes more significant when k is large. We discuss the applications
of our results in obtaining tighter concentration inequalities for L, deviations of the empirical
distribution from the true distribution, and the difference between concentration around the
expectation or zero. We also obtain asymptotically tight bounds on the variance of the KL
divergence between the empirical and true distribution, and demonstrate their quantitatively
different behaviors between small and large sample sizes compared to the alphabet size.
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1 Introduction and main results

Concentration inequalities of empirical distributions play fundamental roles in probability the-
ory, statistics, and machine learning. For example, the Kolmogorov—Smirnov goodness-of-fit test
relies on the Dvoretzky—Kiefer—Wolfowitz—Massart inequality |[Mas90] to control the significance
level, the widely used Sanov’s theorem |[CT12, Theorem 11.4.1] is proved via the method of types
concentration inequality, and the Vapnik—Chervonenkis [VC15| inequalites, chaining [Tall4] ideas,
among others, provide foundational tools for statistical learning theory, and allow us to control the
deviation of the empirical distribution from the true distribution under integral probability met-
rics [Ml97]. There have been works before that seek to improve well known concentration inequal-
ities by incorporating additional distributional information. For example, [BK"13] and [RST13, p
24] both provide distribution dependent improvements to the Hoeffding bounds for the case of
discrete distributions with support size = 2. Our focus, however, will be on improving uniform
concentration inequalities for discrete distributions with known support size that are distribution
independent.

This paper focuses on obtaining concentration inequalities of the Kullback—Leibler (KL) di-
vergence between the empirical distribution and the true distribution for discrete distributions.
The KL divergence is not an integral probability metric, which makes it difficult to apply the VC
inequality and chaining to obtain tight bounds. However, there is fundamental importance in un-
derstanding the behavior of the KL divergence. For example, what Sanov’s theorem reveals is that
as the sample size n — oo, under any distribution P, the probability of observing an empirical dis-
tribution @ is characterized as e "P(QIP)+o(n) = Also, due to the Pinsker inequality [CT12, Chapter
11], a concentration inequality for KL divergence also implies a concentration inequality for the
total variation distance, which will also be used in this paper to provide an improved concentra-
tion inequality for the L; deviation. Concentration inequalities for the KL divergence between
the estimated distribution and the real distribution in general exponential families were considered
in |Lai88,[Mail§].

Concretely, we obtain n ii.d. samples X" = (Xi, Xo,...,X,,) following distribution P =
(p1,p2,---,PK) € int(/\/lk)ﬂ where M}, denotes the space of probability measures with alphabet
size k. We are interested in concentration inequalities for the random variable

nkHP szk)g

Lint stands for interior and this assumption simply means that all p; are positive. This assumption is without loss
of generality because otherwise we could work with a smaller value of k.



where Pnk 2 (p1,p2, ..., Dx) is the empirical distribution obtained from the n samples. Throughout
this paper, log is the natural logarithm.

Probably the most well-known result on the concentration of D(P,1||P) is due to the method
of types |[Csi98, Lemma II.1], which is used in the proof of [CT12, Sanov’s Theorem 11.4.1]). It
states that for any € > 0, we have

- n+k—1\ _,.
P(D(Pn,k||P>Ze)g( - )

here (:;) is the binomial coefficient.
This bound is tight asymptotically when k, € are fixed and n — oo in the sense that

lim > log (IP’ (D(Pn,kup) > e)) — e 2)
n—oo n,

as shown by [CT12, Theorem 11.4.1], but it does not capture the correct dependence on k in the non-

asymptotic regime. In the modern era of big data, it is usually no longer a valid assumption that

the sample size is significantly larger than the parameter dimension, and a clear understanding

of the concentration inequalities in the non-asymptotic and large alphabet regime is becoming

increasingly important.

Example 1. When k = 2, it is well known that the upper bound can be improved [DZ10, Remark
(c) Theorem 2.2.5] to

P (D(PmQHP) > e) < 927", (3)

rather than the (n 4+ 1)e™"¢ bound from Equation . This fact is a consequence of a union bound
and the Sanov property of convex sets (Csi84, Theorem 1] and is proved in Lemma@ in Appendix@
for the convenience of the reader. It is also clear that if we want a uniform bound that works for all

A

P and €, then this bound is tight. Consider P = (%,3) and € =log?2. Then P (D(Pn,2||P) > e> =
P (ng = (1,0)U P, = (0, 1)) =2 %n = 2e7 "¢ where we have used the fact that D (]5”72”(%, %))

has maximum value log 2 which is attained at the extremal points of Ms.

Following the asymptotic tightness of Sanov’s theorem, we aim at bounds of the type

P (D(PmkHP) > €> < f(n, k)e—ne _ en(ﬁthresh_ﬁ)’ (4)
where €ihresh = W. The threshold €ihresn can be interpreted as the lower bound on e such
that becomes non-vacuous. Note that epnresn 1S defined with respect to a bound, but we will

not introduce subscripts to denote this and let the corresponding upper bound be clear by context.
For the method of types bound, we have

k—1. [(n+k—1 log (")
1 < resh — ——
08 < 1 ) < €thresh - (5)

Before we talk about improving €ihresh, however, we should see just how much we can hope to
improve it. To this end, we observe that there also exists a lower bound for €ipesn that follows
from Equations @ and below. Indeed, since for non-negative random variable X one has



o0 ptPTIP(X > t)dt, equation u
implies that

)p] < (Ethresh)p + % (6)

E[D(P,,

It also follows from [JVHW17, Lemma 21| that when n > 15k and P is the uniform distribution,
we have
k—1 Kk 1
+ - )
2n 20n?  12n?

E[D(Fp il P)] = (7)

and for any n > 1, [Pan03, Proposition 1] shows

. k—1 k—1
BID(P,ulP)] < tog (14570 < £, 5)
n n
which means that Equation is tight up to constants. Together they imply that when 15k <n <
Ck and P is uniform, €ipresh 1S at least a constant because €inresh > 2. So we can 't, in general,
hope to get an €ihresh that is smaller than %

The contribution of this paper can be understood as obtaining uniformly smaller €, esn for all
configurations of n and k compared with the method of types bound in . These upper bounds on
€thresh follow from the concentration inequality presented in Theorem |3|stated in Section This
inequality is complicated and we thus present slightly looser but easier to use bounds alongside,
and spend Section understanding how Theorem [3| compares to the method fo types bound.

Naturally, one may ask whether our Theorem |3| provides the best non-asymptotic bound on the
KL deviation. Although this question appears non- -trivial, we hope to demonstrate through the
following results on the variance of D(P, ;|| P) that bounding }P’(D(Pn,kHP) > €) may not be the
right question to ask in this context.

Theorem 1. We have the following upper and lower bounds on the variance of D(P, klIP).

e There exists a universal constant C such that for any P € My, and any n,

A~ . 2
Var [D(Pn,kHP)] < min (ngk), 0k> .

n n?

e For a fized k, for any P € My, asymptotically as n goes to infinity,

DBkl P) B 3. (10)
20k — 1) < lim 4n*Var [D(Pn,kHP)} .

Here X%_l 1s the chi-square distribution with k — 1 degrees of freedom and hence has variance

2(k —1). Notationally, 2, means ‘converges in distribution’.

Observe that the asymptotic lower bound of Theorem [1] implies that in the variance upper
bound, the C terms is tight for large n. The variance bound O (%), is in fact tight when
n = 1. We prove Theorem [1]in Section [A.

Combining Theoremlw1th Equatlons 7) and (8| ., we observe that it requires at least n > k to
achieve vanishing expectation for D(P, k|| P) if P is uniform in My, but it only requires n > (log k)?
to achieve vanishing variance.



So, if n > 15k, and P uniform, then we have

E[D(P, | P)] = © (i)
and

. k k .
standard deviation of D(P, ;|| P) = O ({) < 0O <n> =E[D(P, ;|| P))].

N

In other words, in this regime the random variable D(P, ;|| P) is concentrating very tightly around
its expectation, and proving a concentration inequality of the type ]P’(D(]:’nkHP) > ¢) fails to

capture the different behavior of the expectation and the variance of D(P, ;|| P). In this context,
it may be more insightful to provide bounds for the centered concentration, i.e.,

P (ID(PollP) ~ EID(P | P)]| = €) (11)

for which Theorem 1| provides a bound via Chebyshev’s inequality, but we suspect stronger (expo-
nential) bounds are within reach.

The main technique we use in the variance bound for Theorem [1|is to break the quantity into
smooth (p; > %) and non-smooth (p; < %) regions. We then apply polynomial approximation
techniques inspired from [Pan03] / [BS04] when p; > L and then utilize the negative association
properties of multinomial random variables [JDP83]. Note that in [Pan03| such a polynomial
approximation technique provides a near-optimal scaling for E[D(PnkHP)] in the worst case, which
suggests that it might be useful in analyzing the variance too. The reason we go through the
effort of carefully handling dependent random variables in the proof of Theorem [I] is that the
Poissonized version of this problem gives an incorrect (and worse) scaling for the variance. We
show the following lower bound on the variance in the Poissonized version of the problem.

Theorem 2. Let ]57'?%' = (5, P51, ..., pL°) where each pEO' is independently distributed as POi(:pi),

where Poi(\) is a Poisson random variable with parameter \. Then for a fized k, as n — oo

VaD(EPSP) 2 N (0,1). (12)
1< lim nVar [D(P,j%i\\P)] .

This shows that the Poissonized version of the problem cannot give us the right scaling for the
variance (% as from Theorem (1) because of the asymptotic lower bound of % in the Poissonized
version.

The concentration inequality presented in Theorem [3| on KL divergence deviation can also be
translated into a concentration inequality for the L; deviation via Pinsker’s inequality. In fact,
we use a strengthened version of Pinsker’s inequality [WOS'03, Theorem 2.2] to obtain a bound
that, to our knowledge, beats the best known concentration inequality for the L, distance between
the empirical distribution and the true distribution for large k. We formally state these results in
Section [1.3]in Lemmall]and Theorem [4, To compare known results with our results from Theorem
we plot Figures [6] and

The rest of the paper is organized as follows. We present the details of Theorem [3]in Section[L.1],
compare the performance of this Theorem to the method of types in Section present the
improved L deviation inequality in Section and discuss future directions in Section The



proofs of main results are collected in the Appendices[A and [B] Appendix [C]states some auxiliary
lemmas and integrals that are used throughout this paper.

Notation: We use the notation a, < b, to denote that there exists a universal constant C' such
that sup, % < C. Notation a, < b, is equivalent to a, < by and b, < a,. Notation a, > b, means

that lim inf, % = 00, and a, < by is equivalent to by > a.. The sequences a,, b, are non-negative.

1.1 The Kullback—Leibler concentration inequality

3 3
Define co = m,¢1 =2, K 1 = 1,dy = max{n, 5} = 5.

2X4AX6X...xm

2X4x6X...xm—1 .92 mis odd,m >3

A L3x5..xm—1 7y is even,m > 2
Cm =
1x3x5...xm

Cw [t < e mis even
K211 = (2m) "7~ < /2 )
. e -5 .
7=0 1xX3X...xm S %( %)m m is odd

Observe that ¢, behaves as 1/% for large m and that for all positive integers m, K, <

VaG/Em

Theorem 3. For all n,k > 2 and P € My, we have, for universal constants Cy = (%) ~ 3.1967
and C = 30% % ~ 2.9290, the following, where c,, and K,, are defined as in (@) and (E)

k—2 k—2 ’

. 13 evn . _ 361\/61»0 e3n
P (D(BupllP) =€) < e |23 Ky ()| < e |22 [0 5 1
(PasllP) = ) < [ZO 11(%)]_6 oo Vare (2 \Vami |

(15)

The table that follows contains slightly looser but much more easily used and interpreted versions
of the upper bound in @



More interpretable upper bounds for P (D(Pn,kHP) > e), Co = (%) ~ 3.1967

Parameter Range Upper Bound

3< k< /nCo+2 < /Con>k )
Cie — ] e
k
k
5<k< Con\ .
e ik (=) e

Con
n—co+2§k§n00+2 Cke se ¢ ¢
e

Con e
k> nCo+2 ) (ncoe 7 +k:)e

The key technique we employ to prove Theorem |3]is a recursive approach to reduce the problem
with alphabet size k to a problem with alphabet size k — 1. Since we have good bounds for k& = 2,
we can induct from this case to obtain bounds for higher values of k. We formalize this and present

a proof in Appendix

1.2 Comparison with the method of types bound

In this section we compare the results of Theorem [3| to the Method of Types bound to better
understand what improvements it yields.

The contribution of this theorem can be understood as obtaining uniformly smaller €p esn for
all configurations of n and k compared with the method of types bound in . Our Theorem
implies the following €ihresh:



€thresh 1Mprovement using the upper bound from Theorem |§L Cy = (26—) ~ 3.1967, C1 ~ 2.9290

Parameter Range €thresh (Theorem [3)
3<k<+ynCo+2 klog (\/ CO") + log(Cye)
n
C
3§k§%+2 k:log(w/ +1og(Crk)
n
nC
G0 Ly <k < Gyt 2 et £ 1og(Cik)
e n
Con
k>nCy+2 log (nCOBT + /{:) + log(Ch)
n

To better compare the improvement of €gpresn in Theorem [3] with the method of types bound,

Theorem
we upper bound the ratio €throsn (Theore for several scalings of n, k after letting n — oo.
€shresh (method of types) )




€thresh 1IMprovement using the upper bound from Theorem@, Co = (5—) ~ 3.1967, C7 = 2.9290

Parameter Range €thresh (Theorem [3) Upper bound on ratio
Ethresh (method of types)
k = o(n) %
klog <,/CO"> + log(Cye)
log (n+k 1)
k= nCo 1 1
€ klog <\/ CO”) + log(C1k) 3 T 0.8125
log (1 + C%)
k =nCy ﬁ + log(clk) 1 1
log (" o ~ 0.6758
2 1
€ log (1 + E)

To compute the upper bound on the asymptotic ration in the table, we use the lower bound on
Ethresh (method of types) from equation

We notice that the constant improvement on the exponent €ipesn provided by Theorem |3] can
be viewed as a power function improvement on the tail probability. For & = o(n), the asymptotic
ratio of at least % implies at least a square root improvement on the prefactor to the method of
types bound. In fact, for regimes where k < (”CO)S, we can obtain a better €ipresn than the one
obtained using the bound in Theoremlby letting F = {P,x € My : D(P,||P) > ¢)} in Lemma@

which gives a different bound on P (D( k|| P) > e) and is proved in Appendix |Cl The €iphresh OnE

(k—1)log (2(k — 1))

n

obtains from Lemma [6] is

. One can observe that this is smaller than the €pesn values in the table above when 2(k — 1) <

%, which is satisfied when k < (”CO) In particular, this shows that for any k& < (”00)3 we

get

6thresh(fnethod of types) B M
6thresh(LeHlHla @ - IOg k .

For any k that is polylogarithmic in n, this is a superconstant improvement.

To further illustrate the results, we plot the log of the upper bounds we obtain from Theorem
and from the method of types bound (along with the trivial upper bound one on probability) in
Figures and [l In the numerical plots in these figures which accompany the cartoon plots,
we have set P to be the uniform distribution and used Monte Carlo simulations to calculate and
plot the true probabilities.
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Figure 1: Cartoon plot and Numerical plot- log (]P’ (D(PmkHP) > e)) vs € for large n

Observe that for large n, Theorem [3|is a significant improvement over the Method of types bound.
Our cartoon plot on the left is corroborated with a numerical plot in which we fix P to be uniform
and also plot a Monte Carlo estimate of the true probabilities.
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Figure 2: Cartoon plot and Numerical plot- log (IP (D(Pn’k.HP) > e)) vs € for medium n

When n is medium sized, Theorem [3|is a significant improvement over the method of types bound
and we can see it is much closer to the true probabilities than in the regime of Figure Our
cartoon plot on the left is corroborated with a numerical plot in which we fix P to be uniform and
also plot a Monte Carlo estimate of the true probabilities.
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Figure 3: Cartoon plot and Numerical plot- log (]P’ (D(Pmk”P) > e)) vs € for small n

For small n, Theorem [3|is much better than the Method of types bound. As demonstrated by our
numerical plot, Theorem |3 and the true probabilities (for P uniform and computed via a Monte
Carlo simulation) are more or less the same. Hence in the regime of high dimensional distributions
or very little data, Theorem [3|is essentially tight.

nCo+2 <k, Co = (&) ~ 3.1967, C; =~ 2.9290
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Figure 4: Cartoon plot and Numerical plot- log (IP’ (D(PmkHP) > e)) vs € for very small n

When n is much smaller than k, qualitatively the picture is still the same as in Figure |3l Theorem
[3’s improvement over the method of types bound is enough that it numerically almost matches the
Monte Carlo estimates of the true probabilities. (Plotted for P uniform.)
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Figure 5: Numerical plot- log (IP’ (D(PmkHP) > e)) vs n. This plot illustrates the fact that as n
decreases, Theorem [3|is a more and more significant improvement to the method of types bound.

1.3 Tightening L, deviation inequalities

Having obtained results bounding the probability of a large KL deviation of the empirical distri-
bution from the true distribution, we can now make use of Pinsker’s inequality relating the L;
distance between two distributions to the KL divergence between them to obtain bounds on the
probability of L; deviation between the empirical and true distributions. We see that our bounds
improve on the state-of-the-art bound from [WOS'03, Theorem 2.1] in the regime when k = n.
We first state some definitions and known results.

k

1Bor — Plli 2> [p; — pj
j=1

Definition 1. Suppose P is a discrete distribution with alphabet size k. Then,

A ; _
Tp = ,glnga[i{] min (P(A),1 -P(A4)).

Note that mp < % for any P.
Definition 2. For p € [0, 3)

1 1—p
o(p) = log :
1—-2p p

and by continuity set p(3) = 2.
Observe that ¢(p) > 2 for all p € [0, 3].

Lemma 1. From [WOST 03, Theorems 2.1 and 2.2/, and with wp, ¢(p) as defined in Definitions
(1 and

12



o Let P be a probability distribution in My. Then for all n,k,e-
~ no(w )52
P (1P~ Pl > ¢) < (28 —2) ™5

o Let P,Q be a probability distributions in My. Then we have the following strengthened Pinsker
inequality

D(Q|IP)

- P 2 .
@~ Pl < 2/ == 5

Now, with the slightly strengthened version of the Pinkser inequality from Lemma [l| we can get
the inequality

D(PulIP)

P(1Pak~ Pl 2 ) <P |2
¢(mp)

which combined with Theorem |3] allows us to obtain the following bounds on the L; deviation
probability.

Theorem 4. For all n,k > 2 and P € My, we have, for universal constants Cy = (—) ~ 3.1967
and Cy = 34, /40 ~ 29290, the following, where ¢y, and K, are defined as in Equations |13 and

c2 2me

Equation[14 and with 7p, ¢(p) as defined in Definitions[1] and [J

A ne(m )e 3
IP)(HPTL,k*PHl > 5) <e § T 24 ZKz 1 ] (16)

I k—2 i
_ne(p)e | 3¢ do e3n
< 1 — — E — 1 . 17
= ¢ Co 2me |\ 4 1 ( 21 + ( )

=

We can make these bounds more interpretable in the same way as in Theorem |3|in the table
following it. Here we note the regimes of k and n for which Theorem {4] actually provides better
bounds than Lemma [1] and compare the two in the following table.

Comparing upper bounds for P (HPnk — Pl > e> from Lemma |1|and Theorem 4| Cy = (2—) ~ 3.1967
Parameter Range Theorem [
Lemma ly [WOS103, Theorem 2.1]
k _'n.cp(rrl_-,-)e2
" (28 —2) e
LCO +2<k< LCO +2 Con _ne(rp)e?
4 e Cik — | e 4
k
n n T 62 n ™ 52
% 4o <p Crke Bt =" (2 - 2) N
e

13



Hence for large enough k, Theorem [4] outperforms Lemma [1]in the regimes listed above. Of
course, keeping in mind that L; distance between probability distributions takes a maximum value
of 2, this improvement is only meaningful if either of these upper bounds does better than the trivial
upper bound of 1 on any probability. However, since p(mp) > 2 for all P € My, this happens even
for n < k. We illustrate this and the difference between Lemma [I] and Theorem [4] in Figures [6]
and Observe that the smaller n becomes, the more significantly improved our results become
compared to known bounds and approach the true probabilities (as computed using Monte Carlo
simulations). For the Monte Carlo simulation of true probabilities, we have set P to be the uniform
distribution.

nC 49 < <2 49 Cp= (&)~ 3.1967, C; ~ 2.9290

=)

+

T~ 0 log(Prob (Empirical L1 deviation = epsilon)) vs epsilon, k = 100, n=30
—~ 0 & T T T
w -
Al :
= % 20 4
~ =2
A g £
I w -i0F *tfm ]
< 5 *
<Q§ E" Gk **DD |
— K *DD
N— = &DD
By T 80t o A
— P £ ki
& —e— Lemma 1{WOS*03, Theorem 2.1] £ D
- —-— Theorem 4 g 10or *E
‘ ‘ ) T *0
: : | =
S qb -0 ---Lemma 1 *S
0 4 k1 nCy 1 Crk M 2 — 4 -Theaorerm 4
gy % )T og(C1k) np(mp) —& —Monte Carlo estimate of true probability
_140 T T T T T T 1 1 1
n(mp) o 0z 04 06 08 1 12 14 16 18 2

€ epsilon

Figure 6: Cartoon and numerical plots- log (IP’ (Hpnk — Pl > e)) vs € for medium n.

When n is comparable to k, we plot cartoon versions of the previously known bounds from Lemma
and our bounds from Theorem {4, The latter shows a non-trivial but slight improvement, and
we corroborate this plot with a numerical plot for £ = 100, n = 90 with P uniform (and hence
o(mp) = 2). In the numerical figure we also plot a Monte Carlo estimate of the true probabilities,
which provides a baseline to aim for.
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Figure 7: Cartoon and numerical plots- log <IP’ (||15n,k — Pl > e)) vs € for small n.

When n is smaller to k, we plot cartoon versions of the previously known bounds from Lemma
and our bounds from Theorem |4, The latter shows a significant improvement, and we corroborate
this plot with a numerical plot for £ = 40, n = 20 with P uniform (and hence ¢(7p) = 2). In the
numerical figure we also plot a Monte Carlo estimate of the true probabilities, which provides a
baseline to aim for. We observe that the bounds from Theorem |4|are closer to the true probabilities
compared with that from Lemma

2 Future directions

We hope this work opens more doors than it closes. Motivated by equation , we conjecture the
following bound, which appears non-trivial to prove or disprove for general n and k:

Conjecture 1.
D E—1\" —ne
P (D(Pmk”P) > e) < (14522 geme, (18)
n

Note that we can’t hope to get €inresn values much better than those implied by Conjecture
because as n grows, for k = o(n), the €resh we get from Conjecture goes to © (%) which we
know is a lower bound on €ipyresh-

In fact, with the fact that 2n - D(P, ;|| P) is asymptotically x?_, from Theorem |1, we can make
a conjecture for the centralized concentration using known results for sub-exponential random
variables.

Conjecture 2. There exist two constants g1 > 0, g2 > 0 such that for any t > 0,

n2t2

P (ID(BuillP) — EID(Bus|P)] = 1) < gre” ™ LT 1) (19)
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Moreover, we note that the L; deviation inequalities depend on P, while the KL divergence
deviation bounds are uniform. It might be interesting to look at how to get better KL divergence
deviation bounds that depend on some parameter of the distribution P.

After initial dissemination of this work, in follow up work |Agr19, Thm 1.2] provided another
KL divergence concentration bound. Their bound performs better than Theorem [3| when

k—1 k—1
(log2+1)<e<<log2+\/%>.
n n k

Moreover, although they do not state this, their result immediately implies sub-Gaussian concentra-

tion for the square root of the KL divergence ( D(Pnk.HP)) for a restricted range of parameters.

Their result states that for e > % (log2+1),

k—1
P (D(]E’mkHP) > e) <e " (26 (ke—nl — log 2)> .

Using the facts that § —log(12z) > 0 if z > 10 and that (26 (kffl — log 2)) < 12774, we can see
that their result implies that for ¢ > 10%

P (D(PmkHP) > e) <e ¥,

Since both the total variation (L;) distance and Hellinger distance are upper bounded by a constant
times the square root of the KL divergence, this result implies sub-Gaussian concentration for the
empirical distribution in both these distance metrics for a restricted range of parameters. It would
be interesting to see if one can obtain such a scaling for the whole range of parameters.
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A Proof of Theorem [T

In this Section, we prove Theorem [Il In Subsection we prove Equation [9] which says that

. 2
Var [D(Pn,kup)} < min <6(3+1°gk), C’k) ,

n n?

and in Subsection we prove Equation [10] which says that asymptotically

2nD(Po k| P) = X3

and
2(k—1) < hm 4n2D(P, x| P)).

Hence we have an upper bound and an asymptotic lower bound on Var [D(PnkHP)}

A.1 Showing Var [D(Pn,kup)] < min (M C%)

n

To prove Equation [9]in Theorem [1} our goal is to upper bound

Var [D(pnkHP] Var ;}dpzlog

In what follows in Appendix [A, ¢ denotes a constant independent of k and n, though its value
might change from line to line.

A.1.1  Var [D(Pn,kIIP)} < w
We first show that

6(log k + 3)?

. (20)

Var [D(P | P)] <

Indeed, decomposing

. 1 1
Var [D(PnkHP)} = Var E —Di log + Z Di log — | <2 Var Z —pilog — | + Var Z pilog —
ielk] t el : iclk] ¢ iclk] ¢

The first term is the plug-in entropy estimator, whose variance was shown in [JVHW17, Lemma
15] to be upper bounded by

1 2(1 2
ick] pi

Regarding the second term, since each term is increasing respect to p;, by the negative association
property of multinomial distribution (There are many references for negative association properties.
For example, one could consult [JDP83, Definition 2.1, Property P6, and Section 3.1(a)]) we obtain

D D PP tog2(1 /) < 3 Pitog? (/i) < 7 21+ low(1 /1))

i€[k] i€[k] i€[k] 1€[k]
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ko 1 ,

= Z %Pz‘(l + log(1/pi))
i€[k]

< (1 +logk)?

=

n

where in the last step we used the fact that x(1 + In(1/z))? is a concave function on (0, 1] along

with Jensen’s inequality.
6(log k+3)?
.

These two variance upper bounds complete the proof of the fact Var [D(PnkHP)} <

A.1.2 Var [D(PmkHP)} <Ck
We now show the other part of Equation [9] that there exists some absolute constant C

Var [D(Pn7k|]P)} < c%. (21)

We rewrite the KL-divergence as

A A 2 A
i pi—pi)* | N T .
mbgl=§:<(lZ)+m—m+&>+§:<w%;+m—m+Mﬂﬂ

i€[k] " pi>l/n bi pi<l/n ’
5 — m:)2 3
DI DD S (A (A R
bi p;
pi>1/n t pi>1/n pi<l/n ¢
5 (Di—p;)? L . . .
where A; = p; log Bt — topin pfl) +pi — pi = pilog(pi/pi) — D7 /pi + bi-
Hence
5 — m:)2 5
Var [D(PnkHP)} = Var Z M + Z A+ Z (ﬁi (log pl) +pi — ﬁi>
pi>1/n pi pi>1/n pi<l/n pi

A2 5.
<9 | Var Z M + Var Z A; | + Var Z <]§¢<log?>+pi—ﬁi>

pisim Pl pi>1/n pi<l/n ‘

=W =Va =V
(22)

We bound the terms Vi, V5 and V3 separately.

Bounding Vi:
We first state the following result which we use here and prove in Lemma [7) in Appendix
Let P, = (p1, P2, - .., Dr) be the empirical distribution. Denote

~Bi—p)® 1-pi
Di n

Then, for any ¢ # j,

(I =p)(A+2(n = 3)pi(1 - pi))
n3p;
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2(pi +pj) — 1+ 2(n — 3)pip;
3 )
n

E[X:X;] =

Now defining I = {i : np; > 1} we use Lemma |7 as follows. It is clear that >, ;p; < 1 and

Now, using the fact that for the terms we are concerned with (i € I), np; > 1, that (1 —p;) < 1
and n — 3 < n, we can write, using Lemma [7] that

3np; 3
E[X?] < 22 = = 23
X< 5= (23)

Similarly, using Lemma, [7] and the facts that p;p; < p;, n —2 <n, =1 <0, we get

Dj +np;

E[X;X,] <2 3

Using these two inequalities, we can now easily upper bound Vj

Vi= ) EXiX;) =) EX]+) ) E[XX]]

igel iel i€l j#i
3 pj + np; 3k 1+ nkp;
DA IO e e AP IE e
iel iel j#i iel
3k k+nk Tk
St E S
Tk
V< —. 24
i< (24)

Bounding Va:
We want to upper bound V5 = Var (ZpiZI/n Ai> where A; = p;log(pi/pi) — p2/pi + pi. The first
step we take towards this is to obtain the following upper bound -

Vo = Var Z Al <c Z E[Af] (25)

pi>1/n pi>1/n

Recall that throughout this Section, ¢ is an absolute constant independent of n and k but may
change from line to line. Equation [25]is saying is that we can decompose the variance of the sum
in V5 into a sum of squared expectations.

The standard way of obtaining such an inequality is via the Negative Association properties [JDP83]
of multinomial random variables. In particular, we know that multinomial random variables are
negatively associated, disjoint monotone functions of negatively associated random variables are
negatively associated, and the variance of sums of negatively associated random variables is sub-
additive. However, the hitch is that A;’s are not monotone in p;. Hence our strategy will be
to decompose A; as the sum of monotone functions (in p;), and use the properties of negatively
associated random variables on those to decompose the variance of a sum into a sum of variances.
We use the notation f(z,y) = xlog(x/y) + x — 22 /y. Then

ST (e,) = log(e/y) +2 — 2efy =log(1 +2) — 22,

20



with z = (z/y) — 1. The derivative is zero at z = 0 <= x = y and at some z* € (—1,0) satisfying
log(1+ z*) = 2z*, in which case x = (1+ z*)y. Hence the function f(z,y) is decreasing in z on the
interval [0, (1 + 2*)y], increasing on the interval [(1 + 2*)y,y|, and decreasing on [y, 1]. Also note
that f(0,y) = f(y,y) = 0. Observe that A; = f(p;, pi)-

Hence the decomposition A; = AZ(.l) + AZ@) + AE?’) with

AD = 1(p; < 1+ 27k (F(ivps) — £+ 253 pi)) s
(

AP = 1{p; < (14 2} F((1+ 2%)pispi) + 105 € [(1+ 25)pi, il } (i i),
AP = 1{p; > pi} f (i, i)

holds. Furthermore, AEI),A?) and AES) are all monotonic in p;. We make the following two
observations that
E[AAP] = ElAP AP =0,

®3)

because the support of A;” is disjoint from the supports of Agl) and Agz)' Also,

EAAP] = EALEAP),

]

because wherever AZ(-I) is non-zero, Al@) is a constant and hence can be pulled out of the expectation.

Using these two observations, and after some algebra, we can obtain the following inequality
Var (A1) + var (AP) + var (A7) < E[A], (26)

Thus using the negative association of (p1,...,pg), the fact that Agl), Az@) and AZ(.S) are all mono-
tonic in p;, and Equation [26] we get

Vo <3| Var Z Al(-l) + Var Z AZ(.Z) + Var Z Al(-?’)

pi>1/n pi>1/n pi>1/n
<3 Z Var (A£1)> + Z Var (A?)) + Z Var (AE?’))
pi>1/n pi>1/n pi>1/n
<3 Y E[A]].

pi>1/n

which proves Equation
To further bound this quantity, we introduce the following lemma.

Lemma 2. For every x > —1, these standard logarithmic inequalities
r<(14+x)log(l+z) < (1+2x)(x)
hold.

Proof. For x = —1, the inequality is true because —1 < 0 < 0. Hence now suppose = € (—1,1]. We
then have that
1+2>0
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so dividing on throughout by 1 4 x, we only need to show that

z

— —log(1 <0< z-—log(l

T2 og(l+x) <0<z—log(l+x)
fa(z)

fi(z)
for all x € (—1,1]. To do this, observe that f1(0) =0 (f2(0) = 0). If we can show that
fiz) <0 (0= fo(x)) for 0 <z <1

and
0< fi(z) (fi(x) <0)for —1<2<0,

then we are done. Computing the derivative shows that these conditions hold because

N
fl(x) - (1 +l‘)2
and .
/ —
This concludes the proof of the lemma.
O
Using the Lemma with z = % — 1 yields
<M_1> gmlogmgpi(pi_l) |
Di pi bi  Pi \Di
Rearranging and multiplying throughout by p; yields
A . 2
(i —m) <A <o
bi
Hence,
. 2
E[A2 <E (W) .
T Di
Now, using Lemma [7] and the relaxation in Equation [23] we obtain
3 (1—p)? 8
2 %
EAT] 52<nz+n2 el
Plugging this bound into the inequality V5 < 3 Zpizl /n E [AZQ] we obtain
ck
Vo< . (27)

Bounding Vs:
To upper bound V3, we again split into a sum of monotone functions and use negative association
of multinomial random variables. Note that

. Di R . Di R
Va=Var | > (pilogf>+ S i-p)| <2 Var| > (pz‘logf> +Var [ > (i — i)

pi<l/n ! pi<l/n pi<l/n ! pi<l/n

22



pi — Pi is monotone decreasing in p; and hence we can upper bound the variance of the sum by the
sum of the variance using negative association. To do the same for the p; log % term, note that

0
— <xlog$> zlogf—i—l ,
ox D P

which is positive when x > p. Since p; < 1/n, whenever p; > %, we have p; log % is increasing in
pi. It is also clear that 0 = Olog IQJ < %log nip. Since the variance computation only cares about the

values of p; log Biat p, = % for I € {0,1,...,n} and we have shown that the function is monotone
increasing When restricted to this set of inputs, we can again use negative association to upper
bound the variance of the sum by the sum of the variance. This gives us

Va<2| ) Var (pllog > > Var(p . (28)

pi<l/n pi<l/n

Note that Var (p; — p;) = Var(p;) = @ < 1/n? when p; < 1/n. On the other hand

E[ﬁ?log”ﬂ =Z< )pz (1=pi)"” ” 5 log”
bi j=1 np;
1 n
< B3 (6) ot
7=1
<<
—_— n2 b

using that (7;) < (en/j)? and np; < 1, and that ;él(%}i) (z log? %) <1

Using these bounds and the fact that Var (ﬁi log 197) <E [ﬁf log? %}, and that the summation in
Equation [28 has at most k terms, we conclude that

VSSjo (29)
n

Having shown that for some constant ¢ we have V; < c¢-% 2 for i =1,2,3 (Equations H
we now use Equation [22]to complete the proof of Equation [21] which finishes Subsubsection [A 1 2

Combining the results of Subsubsections [A.1.1 and [A.1.2 immediately completes the proof of
Equation [9/in Theorem [1] which finishes Subsection

)

A2 Showing 2(k— 1) < lim 4n*Var [D(ﬁn,kup)}

The idea behind Equation[L0]in Theorem|[l]is a use of the well known delta method in statistics. Here
we need a second order multivariate version of the delta method. One can consult [VdV00, Chapter
3] for an introduction to the Delta method. The idea behind the delta method is that to understand
the asymptotic distribution of a functional of a random variable whose asymptotic distribution we
understand, one can use a Taylor approximation of the functional to the desired precision. We
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want to show the following.
For a fixed k, for any P € My, asymptotically as n goes to infinity,

~ D
2n.D(PokllP) = Xi-1,
20k —1) < lim 4n*Var [D(Pn,kup)] .

Here X%q is the chi-square distribution with k& — 1 degrees of freedom and hence has variance
2(k —1). If we have

A~

D
QnD(Pn,kHP) — Xsz

then using Slutsky’s Theorem [VdV00, 2.8] and the Continuous Mapping theorem [VdV00, 2.3], we

obtain

(2nD(B,|P) ~ B20D(Bus|P)]) 2 (63 — Bl 1))

Keeping in mind that
Var (X%fl) =2(k—1),

the asymptotic variance lower bound in Theorem [1] follows from this by applying Fatou’s Lemma
[Car00, 18.13] on the sequence of positive random variables

(2nD (B, 11P) ~ E20D (B, PY))

Hence we now only need to show that 2nD (P, || P) 2, Xz

First, let us compute a Taylor series approximation of D(Q||P). To do that, we need to parametrize
P with k — 1 variables. Hence, let us consider

k—1
P = (p17p27 vy Pl—1, 1-— ij)
7=1

with parameters pq, ..., pp—1. Define
k—1
pe=1-Y _pj
j=1

and given a (k x 1) vector V, let V_j denote the (k — 1 x 1) vector obtained from V by removing
the k" component. We need the first and second order derivatives of

k—1
4i dk
D(QIIP) = Z%’ log = + qx log ——7——
i—1 pi 1—=3 01D

at P. Here Q = (q1,q2, ..., qx). Let
G = VQ—kD(QHP)’Q—k:P—k

be a (k — 1 x 1) vector and denote its i*" component by Vg_, D(Q||P)|g_,~p_, (i) Let

H2V% DQIP)lg-r.,
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be a (k—1x k—1) matrix and denote its (i, 7)*" entry by V2 L D@Q|IP)|q_,=P_,(i,7). For notation,
let 0 be the (k — 1 x 1) all-zeros vector, 1 be the (k — 1 x 1) all-ones vector,

and diag(P~}}) be the (k—1x k—1) matrix with P~} on its diagonal, and Zj_; be the (k—1xk—1)
identity matrix.
We can calculate that

Yy o 1-xly,
. . q; j=11J bi =157
G(i) = Vo_, DQ|P)|g_,=p_, (i) =log — —log ——1—— =log— —log ——7—— = 0.
i r r bi 1-— 25:11 Py bi 1-— 25:11 pj
So,
G = vQ—kD(QHP)’Q—k:P—k =0.
. . = L F ]
H(i,j) = 7% D@IP)lg e (i:]) = { o T
w e T T 1T
So,

1. P
HE:V54}XQHPHQ%:R%::Effr+dmgU{£)

For the rest of Subsection denote the empirical distribution with n draws Pnk by P, suppressing
the subscripts which are obvious by context for this subsection.

Lemma 3. [VdV00, 2.18] By the multivariate central limit theorem, we have that
\ﬁ€<ﬁLk——PLk)§2>A/(6,E>,
where ¥ is a (k — 1 x k — 1) matriz with
. —Ppipj i F]
¥(i,5) = { R
pi(l—pi) i=3j
Observation 5.
YH =T 1
Now we can write our Taylor Series expansion as

~ ~ 1 ~ T ~
nMﬂMH:nmmm+Mﬂ@q—Ra+ijq—R”_mmgq—ﬂﬂ+mﬁﬂmmmm&
—— 2
0

0 :=Quadratic term

Let Z be a random variable that is distributed as N (6, E). Because of the fact that quadratic

(and cubic and higher order) maps are continuous, we can use the Continuous Mapping theorem
along with Lemma [3] to get

1
Quadratic term o, §ZTH Z.
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Because the higher order terms all contain cubics or higher powers of (f{k — P,k>, each of which

are only pre-multiplied by an n, we again have (because of Lemma , by the Continuous mapping
theorem -

Higher order terms 2o,

Now, using Slutsky’s Theorem, we get
5 D 1 7 L7
D(P, ||P) — 52 HZ+0= 52 HZ.

So all that remains to be done to complete the proof of Equation [10| of Theorem [1]is to show that
2ZTHZ is distributed as x7_,. Quadratic forms of multivariate Gaussian random variables are
well studied and we have the following result from [JK70, Chapter 29 (Quadratic Forms in Normal
Variables)] which we state here for the reader’s convenience.

Lemma 4. If Z is a m x 1 multivariate Gaussian Random variable with mean 0 and nonsingular
covariance matriz V, then the quadratic form ZT AZ is distributed as

i )\joQ,
j=1

where A\1 > Ao > ... > A\, are the eigenvalues of VA and W;’s are i.i.d. N (0,1) random variables.
Applying Lemma I to our quantity of interest ZTHZ, coupled with Obbervation I which

says that all the k — 1 eigenvalues of X H are 1) says that Z7 HZ is distributed as Z W2, which
j=1
is exactly the definition of a X7 ; random variable. This concludes our proof of the fact that

2nD(P, x| P) 2, X4_,, and concludes the proof of Theorem

A.3 Variance lower bounds in the Poissonized model

In this section we prove Theorem [2| which demonstrates why it was necessary to handle the de-
pendencies and cancellations in Theorem (1| as we did rather than simply use the Poissonization
technique to work with independent random variables which are much easier to work with. We
have PPO' = (p?o', ]350', . ﬁ,ﬁo') where each pPo' is independently distributed as %, where Poi())
is a P01sson random variable with parameter \. We want to show that

VaD(PRS|P) 25 N (0,1)
1< lim nVar [D(Pg%iup)] .

Just like in Subsection [A.2] 1 < hm nVar[ (PP%'HP)} follows from fD(PP‘,;'|]P) — N(0,1)

using a combination of Slutsky’s Theorern the Continuous mapping theorem, and Fatou’s Lemma.
Hence we only need to show

ViD(EFS|IP) 2 N (0,1).

The key difference between the lower bound in this model and in the multinomial model is that
for the Poissonized model, we do not have a constraint of the form Zl (PP = 1, which we did
in the multinomial model in Subsection |A This means we use k parameters in our Taylor series
expansion for the delta method, and most importantly, the first order derivative does NOT vanish.
We first make the following two observations -
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Observation 6. Asn — oo,

Poi(np;) — np; D
— — N (0,1).

Proof. We can view Poi(np;) as a sum of n i.i.d. Poi(p;) random variables because of the properties
of Poisson random variables. The statement then follows from a simple application of the Central
Limit Theorem. O

Observation 7. VoD(Q||P)(i) = 1+log £ = Vo D(Q||P)|g=p = T
Armed with these two observations, we write the Taylor series expansion -
VnD(PYS||P) = v/n D(P||P) +Vn (VoD(Q|P)|g=pr)" (PPO' — P) +Second and higher order terms.
———
0

Using Observation[6]and the fact that ’Second and higher order terms’ have quadratic or higher pow-
ers in <15np ‘,’J — P only premultiplied by a /n, we obtain that Second and higher order terms 2o
Using Observations [6] and [7} we get

i D
Vi (VoD(Q| P gp)” (PP° P) 2 N (0,1).
Using Slutsky’s Theorem, this completes the proof of
VaD(EPRI|P) 2 N (0.1),

which completes the proof of Theorem [2] and ends Subsection

B Proof of Theorem [3

B.1 Using conditional probabilities and chain rule to reduce the size k£ problem
to a size £ — 1 problem

Now we begin our proof of Theorem @ In what follows, P will be a distribution that may change
from line to line and may even mean two different things in the same line. The only important
thing is that it is a distribution and is of the right support size for the context it appears in.
Suppose P # 1, then by the chain rule of relative entropy we have, with a little algebra

nkHP szk)g*

= D((pk, 1 — )| (o, 1 = pr)) +(1 = Pr) D(Pai—py) k1[I P), (30)
::Xf’k =B

Pk
where Pn(l,ﬁk)’k,l and P are both distributions in Mj,_; and defined as

A A, D1 Do Dr—1
Pn(l—ﬁk),k—l = (1 _ﬁk’ 1 _ﬁka"'a 1 _ﬁk)a

D A P1 P2 Pk—1
P=( )
L—p’ 1—pp " 1—py
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The idea now is to control the probability of D( - kHP) being large by conditioning on the value

of py. This fixes A;, and 1 — p; and we can control By, by using our control on the probability of
D(P. j—1||P) (by building up inductively).
The random variables pi, po, ..., pr are not independent of each other.
-1
However, by the law of total probability, since p; can take values in {n, ey Y

P (D(PnkHP) > e)

—ZP( PokllP) = elnpy = 1) P (npy = 1)

_ Zp (D BokllP) > elnpr, = l> P (njy = 1) + P <D(Pn7kHP) > e|npy, = n) P (npy, = n)

i = L) P (npre =) + P (D(Po | P) > elnpy = ) P (np, = n)

€ ~
E > P (njy, = 1) + P (D(PmkHP) > e|npy, = n> P (nfy, = n) .

=T

(31)

In the third equality, since for [ € [n — 1] we have pj # 1, we have used Equation
We will plug in an upper bound for the k—1 sized problem into Equation [3I]to do our computations.

Definition 3. Let £ C [n] be the set containing all | € [n] such that A1 > e.

P (D(PuslP) > )
€e— Al
< > P<D Pooiga|P) > ")POszl%+§:1'PU@kZZV+T

len]\€& 1_% le€
e— A
Z ]P’(D k1| P) > - )P(npk—l)+IF’(Apk>e)+T
len)\& n
e— A
= > P<D o1 || P) > n l”)P(nﬁk=l)+P(D((ﬁk,1—ﬁk)H(pk,1—pk;)) >e€)+T
IE[\E n =5

::\Ir%k
(32)

In the first equality we have used the fact that KL divergence is always non-negative..
For S we can simply use our tight characterization of the distribution of types for £ = 2 and from
Example [I] observe that

P (D(PuslP) = €) = P(D((pr 1 = 50 | (prs 1 = 1) > ©)

could be as large as 2e7"¢ because all the terms in Equation [32| are non-negative.

28



—ne

Observation 8. S < 2e7"¢, and it could be as large as 2e using Example .

Observation 9. Define

A .
in — MIN P;.
Pmin zE[k}} Di

Then

max D(Pas|IP) < uax D(Q|IP) = log

empirical distributions Pnyk k Pmin

We can see this because D(Q||P) is convez in QQ over a compact convez set, My and hence must
attain its mazxima at an extreme point of My. This means that the mazxima must be attained at a
distribution which puts all its mass in one spot. Of all these k distributions, the one which puts all
its mass on pmin maximizes D(Q||P).

So far we have been agnostic to what the actual distribution P is. Since P (D( k|| P) > e)

invariant under permutations of the support set, we might as well compute this quantity with any
permutation of our choice. So assume that pmin = pr. This means we choose to condition on the
value taken by the outcome which has least probability.

Using Observation [9) we get that

P (D(PuilP) = €) =0,
if € > log pik. Hence we only need to consider the following for € < log /p%.

T =P (D(Pul|P) = elnp =n ) P (npy, = n)

This holds for all € because when € > log i, T=0.

We have bounded both S and 7', and now turn to R; from Equation

B.2 Using k = 3 to understand the behaviour of Ry
Let k = 3. Using Equation [3| we have, using the definition of A; from Equation

e— AL
= > P( P 1HP)Z )P(nﬁkzl)

I
lEm\E n
e—Az
— Z P P, _12|P) > = | P (npy = 1) (34)
lem\E n
efAL
—(n—l1 -
< 3 2T =)
le[n]\&
_ Z 2e~ ne{enD( L1-D)l(pr1- pk))[[»(mak =10}
leln\é
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=0

=2¢""Ex B(np) [e”D((%71—§)|I(pk,1—pk))]

=F
< 267”6(2\/’5) = 267”6%\/71.

In the last inequality we need the expectation E which we upper bound in Lemma [5]in Section [B.4
and use above.
Hence using Equation [32] and our results for R (above), S (Observation[8) and T (Equation [33)),

we get

i (D(Pn,zHP) > e) < 26—”6(2\/5) + 3¢ = e [3 (1 + K, ez‘/ﬁﬂ . (36)

™

Here ¢y and K are as defined in Equations and and this result gives Theorem [3] for the
special case k = 3 (Note that the statement of Theorem [3/has an extra factor of ¢! for reasons that
will become clearer later).

B.3 The case for general k

In what follows, ¢, and K,, are defined as in Equations and Also, here we define the
following

c m #~ 2
A 28 7 , (37)
ct m=2
m
Hy & ] 1y (38)
=0
We will also later use the fact that
Hy, < LK, for m > 0. (39)
C2

We have shown in Equation 36| that

k—2
P (D(PuillP) =€) < e lszﬂi_1<ef )i]
=0

holds for £ = 3. So we will induct assuming it is true for £ — 1, and hope to show it for value k.
Using Equation we have, using the definition of A: from Equation

X .- A
Ry= ) P <D(Pn_,,k_1|yp) z n) P (npy, = 1)

len)]\&

v

I
n N _ E—AL
<Y P D(Pip1lP) = | P (npr. = 1)
1=0



=0 =0
[ k-3
—ne eV, / ! L
=e 3ZHZ 1([) ( n) 711 npk—l)
i =0 =0
k-3 i
. X
=e SZHi—l(e;/ﬁ)ZEXNB(n,pk) ( 1_> enD((%’li%)”(pk’lipk)) (41)
— T n
L =FE; J
[ k-3
B 6\/> ) ef
< ne . i
=¢ 3i:0HZ i 271') ( 2m )]
r k—2
_ evn .
< e " H;_ ‘.
= ’ i=1 1( 2m ) ]

In Inequality [40] we have used our inductive assumption

2271'

P(D(Pyp-P) 2 €) <™ [321{1 1 C”f)],

and we have upper bounded the expectation E; by <hi e;{f ) in Lemma |5/ in Section [B.4.

Hence using Equation [32]and our upper bounds for Ry, (above), S (Observation[8) and 7' (Equation
33]), we get (with Equation

[ k-2
P(D(PM,HP) > e> <eme 321{1 .

r k-2
— e 321{1 1 ]

%]

This proves our inductive step, and using upper bounds on K,, from Equation this completes
the proof of Equation [15|in Theorem [3| To get more interpretable versions of this bound, we do
the following.

m
Using the fact K, < ZTO (, / %) in conjunction with this result, we obtain

+ 3€—n€

<e " 301 Z K

P(D(P ||P)>e)<e_n€ e [ do ki en l+1
Y ca V 2me | 4 omi

271'e

Recalling that C = 361 -4/ and Cp = (Si), the rest of the piecewise bounds in Theorem |3| follow
straightforwardly after making the following observations-
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k—2 k
Hkg#m%+2mMmk§Z::>k<Mﬂf> g<w%r>.
i
The function <1 / C‘;") is maximized at 7 = %
i
The function <\/an> <1 for i > Cyn.

° <%>k_2 < e? for k> 3.

P( PuillP) > ¢

k—2 k—2 i
3c 3 d 3
<o PN g f) < one |31 [ do en)
co 2me \ 4 211

=0 1=1
r k—2 Con
oo [ VB0 (o) <l () | asksvimies
[ k=2 Con
e Py o I
B I n(é) C
e By J o () — 2)e 2 | <|Crkeze e 20 +2 <k <nCo +2
-30 / d n(5p) Son —ne
e ne ?21 27?@ nCpe 2 +k—2—nC <|Cq (TZCQG 2e + k) e E>nCo+2

This completes the proof of Theorem

B.4 Computing the expectation of the exponential of the KL Divergence in the
binary alphabet

Note: Because we use 0log0 = 0, we also use 0 = 1.

In this section, we prove the following upper bound on E; (defined in Equation 41]) which has
been used in Sections [B.2 and [B.3!

Lemma 5.

Xiné_é _ e\/n
@:E%W%)(1_n>emwlnm4m>§m;_

Proof. Below, we use the following Stirling Approximation that is valid for all integers n on each

of the 3 factorials involved in (7)

V2™ tie ™™ < nl < en"tze ™, (42)

32



X i X {_X _
Ei = EXNB(n,pk) ( 1— n) nD(( )1 )”(pkv Pk))

7
_Z< )pk 1 —pg)" len(%lg";’kjLilgn(l Pk))< 1—l>
n

AN N Ci) L SV A
_lo<l)pk(1 o nipj, n" =1 — pg)n! T

en"Tze " In—1)nt l '
= Z +1 1 n—i+1 ( ”) 1=
—o Verltze l2n(n — 1) Ee—(n—l) n n
_ Z 1 i 1
wnf !

5. (D).
27rl0\/>\/7n

For all non-negative integers i # 2, we can now use Lemmas [9]and [10] from Appendix [C]and certain
definite integrals from Section to upper bound this sum.

E._e\f <\/7l>l eV 1(1—x)%d B ‘e\/ﬁ<he\/ﬁ

[/ — 21 Jo Vo — 22 rea or = or

For i = 2, we observe that Fy < F1 < ¢ e‘f = ho e\f This completes the proof of Lemma O

C Auxiliary lemmas

Lemma 6. For any distribution P € My, and any subset F' C My, given n iid samples from P

with pnk = (p1,P2,-..,Dx) denoting the empirical distribution, we have
inf D(P'||P)
~ _pFer
P (Pmk = F) < 2(k —1)e = (43)

Proof. First, it is clear that
P (Pn,k € F) <P <D(13n,k|yp) > inf D(P’HP)) .
'€

Hence we only need to focus on upper bounds for P (D(Pnk |P) > e) for some fixed € = inf D(P’||P).

The structure of this proof is the same as that of Theorem [3, We decompose D(P, k||P) as in Equa-
tion use the law of total probability and then use induction. The only difference is that now
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we use a different inductive hypothesis and bound the terms differently. Our inductive hypothesis
is that for all P € My_1 (k > 3) and all positive integers n we have

ne

P (D(Pop1llP) = €) < 2k — 2)e 72,

The base case for k = 3 is immediate from Lemma |8, Using Equation [30| we then have
P (D(PulP) > €) =P (D(PusllP) > elnpy = n) P (npy = )

+P (D((ﬁkn 1— )Py 1 = i) + (1 = ) D(Par_ppy k1|l P) = €lnpp # n) P (npy, # n)
< P(D((Pr>1 — pr)||(Pr> 1 — D)) > qre|lnpr, = n) P (npr, = n)

+ P (D((Prs L = Pr) | (s 1 — i) 2> qrelnpr # n) P (npy # n)

+B (1= P D(Parpoa-1P) 2 (1 = a)elnpi # n) B (ny. # 1)

< P(D((pr 1= 5i) (s 1= 1)) = @) + P (1= ) D(Paip 1 I1P) = (1= au)e)
n(1—pg)(1—ai)e
< 2e MR 4 2(k — 2)e  (-pr)k-2

n

<2(k—1)e F1.

Above we have used Lemma g the inductive hypothesis, and eventually set g = ﬁ This
completes the proof of Lemma [6)] O
Lemma 7. Let Pn,k = (p1,D2,- -, Pk) be the empirical distribution. Denote
X, — (i —pi)* 1 —Di
pi n
Then, for any i # j,
E[x2) = (1—pi)(1+ 2(2 —3)pi(1 - Pz‘)),
nopq
2(pi +p;j) — 1+ 2(n — 3)pip;

E[X;X;] = =—— 3 ==

Proof. First, let us set up some notation. Here, p; is distributed as w. Let B(n,p;) = >_1v, Z}

where Zli’s are i.i.d. Bernoulli(p;) random variables. Similarly, p; is distributed as w. Let
B(n,pi) = >_1-1 Zi where Zj,’s are i.i.d. Bernoulli(p;) random variables. The correlation between

Zli’s and Z},’s is the obvious one inherited from the fact that they are part of a multinomial
distribution. In particular, this is their joint distribution-

(1 =pi —=pj)0im  (21,22) = (0,0)

o DiOim (21, 22) = (1,0)
P ((ZZZ> ern) = (Zlv 22)) = )
Pj0im (21,22) = (0,1)
0 otherwise

where d;,,, is the Kronecker delta.
We first note, using a rearrangement of terms and the fact about binomial distributions that
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E[(p; — pi)?] = @, that the two statements in Lemma lﬂ are equivalent to the following two
statements-

n

4
E [(nﬁz‘ - npi)ﬂ =E (Z (2] - pz)) = npi(1 — p;) + 3n(n — 2)p; (1 — p;)? (44)

=1
and

E | (np — npi)? (np; —np;)’] = E (Z(Z;‘— ) (;1 Zz;—pj)>

=1
=npip;j [(n—1) = (n = 2)(pi +p;) + (3n —6)pip;] . (45)

We will prove both these statements by induction on n.
First we prove Equation The base case for n =1 is the following

E [(Zf —pi)ﬂ =pi(L—p)* + (1 —pi)pi = pi(1 — pi)(1 — 3pi(1 — p;)).

We now make the inductive hypothesis that

n—1 4
(Z (7 - pz)) = (n—1)pi(1 —pi) +3(n — 1)(n = 3)p; (1 — ps)”.

=1

Our inductive step then follows as

]
E (jll ))4 +4E

(n—1)p; (1—p;)+3(n—1)(n—3)p? (1—p;)? 0

n 2
+ 6E (Z (7] —pi)> (Zi —p;)° | +4E
=1

-~

6(n—1)p? (1—p;)?
+ E [(Z pl)ﬂ

—_—
pi(1—pi)(1-3p;(1—p;))
= npi(1 — p;) + 3n(n — 2)p?(1 — p;)>.
There are five terms of interest above in the expansion. In the 1% term, we use our inductive
hypothesis. In the 27¢, 37 and 4" terms we use the fact that Z} is uncorrelated with all the other
Zli’s to split the expectation of the product into a product of expectations, each of which is simply
a binomial random variable mean or variance computation. In the 5 term we use our base case.

This completes the proof of Equation
We now begin proving Equation The base case for n = 1 follows as

. 9/ 2
E [(Zi — pi) (Z{ - pj) ] = pi(1—pi)?p5+p; (1—p;)*pi+(1—pi—p;)piv5 = pip; [(pi + p;) — 3pips)
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where we have used the joint distribution of Zi and Zf as specified above. We assume our inductive

hypothesis that

n—1

n—1 2 2
E (Z (2 - p%)) <Z (Z), - pj)) = (n—=1)pip; [(n — 2) = (n = 3)(p: + pj) + (3n — 9)pip;] -
=1 m=1

Our inductive step then follows as

E < (zi —pi)>2 (Tnzﬂ (2, —pj>>2

n

n—1 2 /p—1 2
2| (S -+ ) (S -n+ o)
=1 m=1
I n—1 A 2 n—1 . 2 n—1 A 2 n—1 ‘ A
= ( (2 —m)) (Z (2, —p») +E (z (zz —p») : (z (2, —p») (Z»)
=1 m=1 =1 m=1
(n—1)pip; [(n—2)— (n—3) (pi-+p;)+(3n—9)pip] 0
[ n—1 . 2 ' ) n—1 ‘ 2 n—1 ' '
+E <Z (z/ —Pz‘)> (Z5, —pj)"| +E (Z (%, —m)) 2 ( (i —m)) (Z, - ps)
=1 m=1 =1
(n—1)p; (1—pi)p; (1—p;) 0
— n—1 . n—1 ) ) ' n—1 ' ' ' )
+E |4 (Z (2, _Pj)> (Z (21 _pi)) (Zn — i) (Z5 —pj) | +E |2 (Z (Zi —Pz‘)) (2, — i) (Z), — pj)
L m=1 =1 =1
4(n—1)(—pip;)(—pip;) 0
[ TL—l . 2 . 2 Tl—l . . . 2
+E (Z (Zin, —Pj)> (Z: —p)"| +E |2 (Z (2, —pj)) (23, —pj) (2, — i) ]
m=1 m=1

(n=1)p;(1=p;)pi(1—ps)
. . 2
+E [(Zi -p)* (2 -p)) ]

Pip;[(pi+pi)—3pip;]

=npipj [(n — 1) = (n = 2)(p; + pj) + (3n — 6)pip;] -

0

In the nine terms of the expansion above, we have repeatedly used the fact Z! and 73 are indepen-
dent of the other Zli’s and Z},’s to reduce expectations of products to products of expectations. The
first term follows from the inductive hypothesis and the last term follows from the base case. The
rest of the terms require only the knowledge of the mean and covariance matrix of a multinomial

random variable, which are well known.

This completes the proof of Equation 45| and hence of Lemma

Lemma 8. Let k =2 and P € My be any probability distribution. Then for all n,e

P (D(ngHP) > e) < 97,

3

6
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Proof. Let
PH,Q = (ﬁla 1 _]51)7 P = (pb 1- pl)'
My is a line segment and {P, 5 : D(P,2|/P) > ¢} € My is a union of two line segments (which are,
in particular, convex). In fact,
{Prz: D(Pop||P) > €} = {Pop: D(Pu2l|P) > €,p1 > pi} U{Pos: D(PoallP) > €,p1 < pi},

=M, :=M>

and so

(Ml U Mg)

<P (M) + P (Ms)
< e~ e NE — 9o TE,

P (D(pn,Q”P) > e) P
i

To bound P (M;) and P (Ms) we use the fact that M; and My are convex, Qin]\f4 D(Q|P) =
€M
Qin]\f/[ D(Q||P) = ¢, and inequality (2.16) in |Csi84, Theorem 1]. O
€M,
Lemma 9. Let f(z) be a convex function on (0,1). Let Iy < la < n be some integers. Then we

must have
lo la
Sr(5)as [ s
n/n b

=l

Proof. The proof of this follows from using convexity and Jensen’s Inequality to observe that

; b3 3
F = f()} wonedo) < [ S
n =3 -3
and then simply adding this inequality for all [ from I; to ls. O

3

Lemma 10. % is convez for x € (0,1) for any non-negative integer m except m = 2.

Proof. Let

m

sy = U2
and

g(z) = log f(x).
Then

1 — (g// +g/2>f.
Since f > 0 for all x € (0,1), f is convex iff (¢ + ¢’?) > 0 for all z € (0, 1).

_m—1 1 _m—1
/ 2 " 2
g -, _ & _|_ -
g (1—2) 2z g (1—2)?2 222
So,
g//+g/2:i (mz_l)(mz_l_l)+ ( 2_1)%
42 (1—x)2 x(1—x)
For m # 0,2, observe that all the terms in ¢” + ¢"> are positive. For m = 0, one can verify that
though all the terms aren’t positive, the resulting function is always positive. O

37



C.1 Some useful definite integrals

1.

1 m
1—2x)2
0o VvV — a2

= /2 2(cos )™ db
0

1x3x5...xm—1 :
_ { 2xdx6x..xm T IS even

2X4X6X...xm—1 :
et S 2 misodd

jus

' (m)mdaj —92 [ (cos )™ 1dg
/ J

-1 0

= Cm+1

38
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