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FLOQUET STABILITY OF PERIODICALLY STATIONARY PULSES
IN A SHORT-PULSE FIBER LASER\ast 

VRUSHALY SHINGLOT\dagger AND JOHN ZWECK\dagger 

Abstract. The quantitative modeling and design of modern short-pulse fiber lasers cannot be
performed with averaged models because of large variations in the pulse parameters within each
round trip. Instead, lumped models obtained by concatenating models for the various components
of the laser are required. Since the optical pulses in lumped models are periodic, their linear stability
is investigated using the monodromy operator, which is the linearization of the roundtrip operator
about the pulse. A gradient-based optimization method is developed to discover periodic pulses. The
computation of the gradient of the objective function involves numerical computation of the action
of both the roundtrip operator and the adjoint of the monodromy operator. A novel Fourier split-
step method is introduced to compute solutions of the linearization of the nonlinear, nonlocal, stiff
equation that models optical propagation in the fiber amplifier. This method is derived by linearizing
the two solution operators in a split-step method for the nonlinear equation. The spectrum of the
monodromy operator consists of the essential spectrum, for which there is an analytical formula,
and the eigenvalues. There is a multiplicity two eigenvalue at \lambda = 1, which is due to phase and
translation invariance. The remaining eigenvalues are determined from a matrix discretization of
the monodromy operator. Simulation results verify the accuracy of the numerical methods; show
examples of periodically stationary pulses, their spectra, and their eigenfunctions; and discuss their
stability.

Key words. fiber lasers, Floquet stability analysis, monodromy operator, nonlinear optics,
split-step methods
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1. Introduction. Since the advent of the soliton laser [31], researchers have
invented several generations of short-pulse fiber lasers, including dispersion-managed
lasers [23, 42], similariton lasers [9, 13], and the Mamyshev oscillator [36, 40, 43]. The
pulses in these lasers typically have durations on the order of 100 fs, peak powers on
the order of 1MW, and energy in the range of 1--50 nJ. Applications of femtosecond
laser technology include frequency comb generation; highly accurate measurement of
time, frequency, and distance; optical waveform generation; and laser surgery [8, 11].

Traditionally, the modeling of short-pulse lasers has been based on averaged mod-
els, in which each of the physical effects that act on the light pulse is averaged over one
round trip of the laser loop to obtain a constant coefficient PDE, such as the cubic-
quintic complex Ginzburg--Landau equation or the Haus master equation (HME) (see
[24] for a review). This approach has been successfully applied to soliton lasers for
which the pulse maintains its shape as it propagates. However, as is highlighted by
Turitsyn, Bale, and Fedoruk [45], averaged models cannot be used for the quantitative
modeling and design of recent generations of short-pulse lasers due to large variations
in the pulse within each round trip.

Instead, the computational modeling of modern short-pulse lasers should be based
on lumped models obtained by concatenating models for the various components of
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962 V. SHINGLOT AND J. ZWECK

the laser. Typically, short-pulse lasers include an optical fiber amplifier, segments of
single-mode fiber, a saturable absorber, a dispersion compensating element, a spectral
filter, and an output coupler. With a lumped model, the pulse changes shape as it
propagates through the various components of the laser system, returning to the same
shape once per round trip. We call such pulses periodically stationary to distinguish
them from the stationary pulses in a soliton laser.

Building on work of Kaup [21] and Haus [14, 15], Menyuk and Wang [30] de-
veloped a computational approach to the modeling of stationary pulse solutions of
averaged models. With this method, stationary pulses are found using a root finding
method, and their linear stability is determined by computing the spectrum of the lin-
earization of the governing equation about the pulse. While there is an analytical for-
mula for the essential spectrum, the eigenvalues must be numerically computed either
by solving a (possibly nonlinear) eigenproblem involving a matrix discretization of the
differential operator [37, 48] or by using Evans function methods [6, 17, 18, 19, 20].

In this paper, we extend this approach to periodically stationary pulses in lumped
laser models. To keep the presentation concrete, we focus on a dispersion-managed
laser of Kim et al. [23]. However, the methodology can readily be adapted to other
lumped laser models. First, in section 2, we describe our lumped model of the Kim
laser. The single-mode fiber segments are modeled by the nonlinear Schr\"odinger
equation (NLSE), and the fiber amplifier is modeled by the HME, which is a general-
ization of the NLSE that includes a nonlocal saturable gain term. We also introduce
the roundtrip operator \scrR , which models propagation once around the laser loop, and
define a pulse, \psi , to be periodically stationary if \scrR \psi = ei\theta \psi for some constant phase
\theta . In section 3, we introduce the monodromy operator \scrM , which is the lineariza-
tion of \scrR about a pulse, \psi . We formulate the equations for the linearization of each
component of the model, focusing special attention on the linearization of the HME.
Because the nonlinear PDEs in the model involve the complex conjugate of \psi , we
choose to define \scrM to act on R2-valued functions, which should be thought of as the
real and imaginary parts of C-valued functions.

In section 4, we develop a computational method for discovering periodically
stationary pulses. This method, which involves using gradient-based optimization to
minimize the L2-error between \scrR \psi and ei\theta \psi , is an adaptation of a method of Ambrose
and Wilkening for computing periodic solutions of PDEs [2]. In particular, we provide
an analytical formula for the optimal phase \theta in terms of the optimal pulse \psi . The
computation of the gradient of the objective function involves numerical computation
of the action of both the roundtrip operator \scrR and the adjoint \scrM \ast of the monodromy
operator.

In section 5, we describe the Fourier split-step methods we use to solve the HME
and its linearization. For the HME, we use a method of Wang et al. [47] designed
to handle the frequency filtering term in the equation, which is nonlinear, nonlocal,
and stiff. In particular, we provide formulae for locally third-order-accurate solution
operators for the two steps in the method. Then we derive the split-step method for
the linearized equation by linearizing these two solution operators. To the best of
our knowledge, this approach is novel even in the special case of the linearized NLSE.
Finally, the solver for the linearization is then used to obtain one for its adjoint. The
derivation of these methods is not completely straightforward due to the nonlocal
nature of the saturable gain term in the HME.

In analogy with the Floquet theory of periodic solutions of ODEs [44], we expect
that the linear stability of a periodically stationary pulse will be determined by the
spectrum of the monodromy operator. The spectrum of \scrM is the union of the essential
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FLOQUET STABILITY OF PERIODIC LASER PULSES 963

spectrum and the eigenvalues. In [38], we derived a formula for the essential spectrum.
In section 6, we show that the monodromy operator has a multiplicity two eigenvalue
at \lambda = 1, which is due to the phase and time translation invariances of \scrR . These
eigenvalues are analogous to the well-known eigenvalues of stationary pulses at \lambda = 0
[21]. As in [7, 39], we determine the remaining eigenvalues from a matrix discretization
of \scrM . Finally, in section 7, we present simulation results that verify the accuracy of
the numerical methods; show examples of periodically stationary pulses, their spectra,
and their eigenfunctions; and discuss their stability.

Some of the results in this paper were announced in [38, 39]. However, the spectra
shown here are for a new modified version of the monodromy operator introduced in
section 6.

2. Mathematical model. In the left panel of Figure 1, we show a system di-
agram for the lumped model of the stretched pulse laser of Kim et al. [23]. A light
pulse circulates around the loop, passing through a saturable absorber (SA), a seg-
ment of single-mode fiber (SMF1), a fiber amplifier (FA), a second segment of single-
mode fiber (SMF2), a dispersion compensation element (DCF), and an output coupler
(OC). After several round trips, the light circulating in the loop forms into a pulse
that changes shape as it propagates through the different components, returning to
the same shape each time it returns to the same position in the loop. In the right
panel of Figure 1, we show the profile of such a periodically stationary pulse at the
output of each component. The goal of this paper is to study the spectral stability of
such periodically stationary pulses in lumped models of fiber lasers.

At each position in the loop, we model the complex electric field envelope of the
light as a function, \psi = \psi (x). Physically speaking, x is a fast-time variable defined
relative to a frame moving at the group velocity [30, 52]. Since the length of the
optical fiber in the loop is on the order of 1m and the loop contains a single pulse
with duration on the order of 100 fs, the pulse duration is about one ten-thousandth
of the roundtrip time. Consequently, it is reasonable to assume that the fast-time
variable x varies over the entire real line R rather than being periodic. Of course, in
numerical computations, we truncate R to a finite interval. The pulse is normalized so
that | \psi (x)| 2 is the instantaneous power. We assume that the function \psi is an element
of the Lebesgue space L2(R,C) of square integrable, complex-valued functions on R.
We model each component of the laser as a transfer function, \scrP :L2(R,C)\rightarrow L2(R,C),
so that

\psi out =\scrP \psi in,(2.1)

Fig. 1. Left: System diagram of the stretched pulse laser of Kim et al. [23]. Right: Instanta-
neous power of the periodically stationary pulse exiting each component of the laser.
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964 V. SHINGLOT AND J. ZWECK

where \psi in and \psi out are the pulses entering and exiting the component. The com-
ponents in the model come in two flavors: discrete and continuous. By a discrete
component, we mean one in which the action of the operator \scrP on the input pulse
\psi in is essentially obtained in one step, for example, by the application of an explicit
formula. In our model of the Kim laser, the discrete components are the saturable
absorber, dispersion compensation element, and output coupler. Short-pulse fiber
lasers sometimes also include a spectral filter that is modeled as a discrete compo-
nent. By a continuous component, we mean one in which the action of the operator
\scrP on the input pulse \psi in is modeled by solving a nonlinear wave equation with ini-
tial condition \psi in from the input to the output of the component. In fiber lasers,
the continuous components are those that involve the propagation of a light pulse
through a segment of nonlinear optical fiber. For our model of the Kim laser, these
are the fiber amplifier and the two segments of single-mode fiber. Note that we have
chosen to model the dispersion compensation element as a discrete component since
it is modeled by a constant-coefficient linear PDE which has an analytical solution in
the Fourier domain.

With a lumped model, the propagation of a light pulse once around the laser loop
is modeled by the roundtrip operator \scrR : L2(R,C)\rightarrow L2(R,C), which is given by the
composition of the transfer functions of all the components. For our model of the
Kim laser, the roundtrip operator is given by

\scrR =\scrP OC \circ \scrP DCF \circ \scrP SMF2 \circ \scrP FA \circ \scrP SMF1 \circ \scrP SA.(2.2)

We say that \psi 0 \in L2(R,C) is a periodically stationary pulse if

\scrR (\psi 0) = ei\theta \psi 0(2.3)

for some constant phase \theta \in [0,2\pi ). For the Kim laser, \psi 0 is the pulse at the input
to the saturable absorber. For each component, we let \psi in denote the pulse obtained
by propagating the periodically stationary pulse \psi 0 from the input of the SA to the
input of that component. For the continuous fiber components, we let \psi denote the
pulse propagating through that fiber.

We now describe the model for the propagation of a light pulse, \psi = \psi (t, x),
through the fiber amplifier. Here t denotes position along the fiber with 0\leq t\leq LFA,
where LFA is the length of the fiber amplifier. We note that t is a local evolution
variable that is only defined within the fiber amplifier. Our model for propagation in
the fiber amplifier is based on the Haus master equation [14], which is a generalization
of the NLSE that includes gain that saturates at high energy and is of finite bandwidth.
Specifically, we model the transfer function \scrP FA of a fiber amplifier of length LFA as
\psi out =\scrP FA\psi in, where \psi out =\psi (LFA, \cdot ) is obtained by solving the initial value problem

\partial t\psi =

\biggl[ 
g(\psi )

2

\biggl( 
1 +

1

\Omega 2
g

\partial 2x

\biggr) 
 - i

2
\beta FA\partial 

2
x + i\gamma | \psi | 2

\biggr] 
\psi for 0\leq t\leq LFA,

\psi (0, \cdot ) = \psi in.

(2.4)

Here g(\psi ) is the saturable gain given by

g(\psi ) =
g0

1 +E(\psi )/Esat
,(2.5)

where g0 is the unsaturated gain, Esat is the saturation energy, and E(\psi ) is the pulse
energy, which is given by

E(\psi ) =

\int 
R
| \psi (\cdot , x)| 2dx.(2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FLOQUET STABILITY OF PERIODIC LASER PULSES 965

The saturable gain is modeled as a nonlocal function of the fast-time variable x since
the response time of the fiber amplifier is on the order of 1ms [32], which is much
longer than the pulse duration, which is on the order of 100 fs. We also observe that
the energy and saturable gain depend on the evolution variable t since \psi does. The
finite bandwidth of the amplifier is modeled using a Gaussian filter with bandwidth
\Omega g. In (2.4), \beta FA is the chromatic dispersion coefficient, and \gamma is the nonlinear Kerr
coefficient.

Similarly, we model the transfer function \scrP SMF of a segment of single-mode fiber
of length LSMF as \psi out = \scrP SMF\psi in, where \psi out = \psi (LSMF, \cdot ) is obtained by solving
the initial value problem for the NLSE given by

\partial t\psi = - i

2
\beta SMF\partial 

2
x\psi + i\gamma | \psi | 2\psi for 0\leq t\leq LSMF,

\psi (0, \cdot ) = \psi in.
(2.7)

We model the dispersion compensation element as \scrP DCF =\scrF  - 1 \circ \widehat \scrP DCF \circ \scrF , where \scrF 
is the Fourier transform and

\widehat \psi out(\omega ) = ( \widehat \scrP DCF \widehat \psi in)(\omega ) = exp
\bigl( 
i\omega 2\beta DCF/2

\bigr) \widehat \psi in(\omega )(2.8)

with \widehat \psi =\scrF (\psi ). We observe that (2.8) is the solution to the initial value problem for
the linear equation obtained by setting \gamma = 0, \beta SMF = \beta DCF, and LSMF = 1 in (2.7).

We model the saturable absorber using the fast saturable loss transfer function
[49] \scrP SA given by

\psi out =\scrP SA(\psi in) =

\biggl( 
1 - \ell 0

1 + | \psi in| 2/Psat

\biggr) 
\psi in,(2.9)

where \ell 0 is the unsaturated loss and Psat is the saturation power. With this model,
\psi out at x only depends on \psi in at the same value of x. Finally, we model the transfer
function \scrP OC of the output coupler as

\psi out =\scrP OC\psi in = \ell OC\psi in,(2.10)

where (\ell OC)
2 is the power loss at the output coupler.

3. Linearization of the roundtrip operator. In this section, we derive for-
mulae for the linearizations \scrU about a pulse of each of the operators \scrP defined in
section 2. By the chain rule, the linearization \scrM of the roundtrip operator \scrR about a
periodically stationary pulse \psi 0 is equal to the composition of the linearized transfer
functions \scrU of each component of the system, i.e.,

\scrM = \scrU OC \circ \scrU DCF \circ \scrU SMF2 \circ \scrU FA \circ \scrU SMF1 \circ \scrU SA.(3.1)

In analogy with the monodromy matrix in the Floquet theory of periodic solutions of
ODEs [44], we call \scrM the monodromy operator of the linearization of the roundtrip
operator \scrR about the periodically stationary pulse \psi 0. In [38], we provide conditions
on the smoothness and decay of the pulse which ensure that the monodromy operator
exists on an appropriate Lebesgue function space.

Because the linearization of the PDEs in the model involves the complex conjugate
of \psi , we reformulate the model as a system of equations for the column vector \bfitpsi =
[Re(\psi ), Im(\psi )]T \in R2. For example, the transfer function of the fiber amplifier is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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966 V. SHINGLOT AND J. ZWECK

reformulated as the operator \scrP FA : L2(R,R2) \rightarrow L2(R,R2) given by \bfitpsi out = \scrP FA\bfitpsi in,
where \bfitpsi out =\bfitpsi (LFA, \cdot ) is obtained by solving the initial value problem

\partial t\bfitpsi =

\biggl[ 
g(\bfitpsi )

2

\biggl( 
1 +

1

\Omega 2
g

\partial 2x

\biggr) 
 - \beta 

2
J\partial 2x + \gamma \| \bfitpsi \| 2 J

\biggr] 
\bfitpsi ,

\bfitpsi (0, \cdot ) =\bfitpsi in,

(3.2)

where J= [ 0  - 1
1 0 ] and \| \cdot \| is the standard Euclidean norm on R2.

The linearized transfer function \scrU FA :L2(R,R2)\rightarrow L2(R,R2) in the fiber amplifier
is given by \bfitu out = \scrU FA\bfitu in, where \bfitu out =\bfitu (LFA, \cdot ) is obtained by solving the linearized
initial value problem

\partial t\bfitu =\scrL FA(\bfitpsi )(u) = [g(\bfitpsi )\scrK +\scrL +\scrM 1(\bfitpsi ) +\scrM 2(\bfitpsi ) +\scrP (\bfitpsi )]\bfitu , for 0\leq t\leq LFA,

\bfitu (0, \cdot ) =\bfitu in,

(3.3)

where

\scrK =
1

2

\biggl( 
1 +

1

\Omega 2
g

\partial 2x

\biggr) 
, \scrL = - \beta 

2
J\partial 2x,

\scrM 1(\bfitpsi ) = \gamma \| \bfitpsi \| 2 J, \scrM 2(\bfitpsi ) = 2\gamma J\bfitpsi \bfitpsi T(3.4)

and

\scrP (\bfitpsi )\bfitu = - g2(\bfitpsi )

g0Esat

\biggl[ \biggl( 
1 +

1

\Omega 2
g

\partial 2x

\biggr) 
\bfitpsi 

\biggr] \int \infty 

 - \infty 
\bfitpsi T (x)\bfitu (x)dx(3.5)

is a nonlocal operator. The nonlocality of P, which arises because the gain saturation
depends on the total energy of the pulse, makes the analysis more challenging for
the fiber amplifier than for a segment of single-mode fiber. The linearized transfer
function \scrU SMF of a segment of single-mode fiber is obtained by setting g(\bfitpsi ) = 0 in
(3.3) and (3.5).

The linearized transfer function \scrU SA for the saturable absorber is given by

\bfitu out = \scrU SA(\bfitpsi in)\bfitu in =

\biggl( 
1 - \ell (\bfitpsi in) - 

2\ell 2(\bfitpsi in)

\ell 0Psat
\bfitpsi in\bfitpsi 

T
in

\biggr) 
\bfitu in,(3.6)

where

\ell (\bfitpsi in) =
\ell 0

1 + \| \bfitpsi in\| 
2
/Psat

.(3.7)

The remaining components, i.e., dispersion compensation fiber and output coupler,
already have linear transfer functions, and so \scrU DCF =\scrP DCF and \scrU OC =\scrP OC.

Because eigenvalues and eigenfunctions can be complex valued, we extend the
linearized system to act on complex-valued functions \bfitu \in L2(R,C2), where

L2(R,C2) = \{ \bfitu = \bfitv + i\bfitw : \bfitv ,\bfitw \in L2(R,R2)\} (3.8)

is the space of C2-valued functions on R with the standard Hermitian inner product.
Let \scrT be an operator that acts on R2-valued functions. We extend \scrT to act on C2-
valued functions by defining \scrT \bfitu = \scrT \bfitu 1 + i\scrT \bfitu 2, where \bfitu = \bfitu 1 + i\bfitu 2 with \bfitu 1,\bfitu 2 \in 
L2(R,R2). Note that the formulae above for the action of the differential operators
and transfer functions on C2-valued functions \bfitu are the same as for their action on
R2-valued functions since in both cases we only require \bfitpsi to be R2-valued. The only
difference is our interpretation of the function spaces on which they act.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FLOQUET STABILITY OF PERIODIC LASER PULSES 967

4. Computation of periodically stationary pulses. We formulate the prob-
lem of finding periodically stationary pulses as that of finding a zero of the Poincar\'e
map functional \scrE :L2(R,R2)\times [0,2\pi )\rightarrow R given by

\scrE (\bfitpsi 0, \theta ) =
1

2
\| \scrR (\bfitpsi 0) - R(\theta )\bfitpsi 0\| 

2
L2(R,R2) ,(4.1)

where R(\theta ) is the rotation matrix on R2 that corresponds to the operator of multi-
plication by ei\theta on C.1

Next, we describe the two-stage method we use to compute periodically stationary
pulse solutions \bfitpsi 0 of the laser system model in section 2. In the first (evolutionary)
stage, we propagate a Gaussian pulse over sufficiently many round trips of the laser
to obtain a good initial guess for the second (optimization) stage. In the optimization
stage, we use a gradient-based method to minimize the objective function given by
the ratio of the Poincar\'e map functional (4.1) and the pulse energy, (2.6),

\widetilde \scrE (\psi 0, \theta ) =
\scrE (\psi 0, \theta )

E(\psi 0)
.(4.2)

We note that if \psi 0 is a nonzero periodically stationary pulse, then there is a \theta so
that \widetilde \scrE has a global minimum value of zero at (\psi 0, \theta ). Therefore, to find nontrivial
periodically stationary pulses, it makes sense to use an optimization algorithm to
drive \widetilde \scrE to zero. In parameter continuation studies, the first stage can be omitted
if the optimal pulse computed with the previous set of system parameters is a good
enough initial guess for optimization with the current set of parameters.

In the following theorem, we adapt a method of Ambrose and Wilkening [2] for
computing the gradient of \scrE with respect to the pulse. With this method, the cost of
computing a directional derivative of \scrE is comparable to that of propagating a pulse
and its linearization for one round trip of the laser.

Theorem 4.1. The variational derivative of \scrE with respect to \bfitpsi 0 is given by

D\bfitpsi 0
\scrE (u0) =

\biggl\langle 
\delta \scrE 
\delta \bfitpsi 0

, u0

\biggr\rangle 
L2(R,R2)

,(4.3)

where

\delta \scrE 
\delta \bfitpsi 

(\bfitpsi 0) =\scrM \ast (v0) - R( - \theta )v0,(4.4)

where v0 := \scrR (\bfitpsi 0) - R(\theta )\bfitpsi 0 is a measure of how far \bfitpsi 0 is from being periodically
stationary and the adjoint of \scrM is given by

\scrM \ast =
\bigl( 
\scrU SA

\bigr) \ast \circ \bigl( \scrU SMF1
\bigr) \ast \circ \bigl( \scrU FA

\bigr) \ast \circ \bigl( \scrU SMF2
\bigr) \ast \circ \bigl( \scrU DCF

\bigr) \ast \circ \bigl( \scrU OC
\bigr) \ast 
,(4.5)

where, for each component, \scrU \ast is the adjoint of the corresponding operator \scrU .
In a fiber segment of length L, the adjoint of the linearized solution operator \scrU 

for the fiber is given by

vL = \scrU \ast v0(4.6)

1We note that for a given set of system parameters, there is no guarantee that a periodically
stationary pulse exists.
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968 V. SHINGLOT AND J. ZWECK

with vL = v(L, \cdot ). Here v= v(s, \cdot ) is obtained by solving the adjoint linearized initial
value problem given by

\partial sv(s, \cdot ) =\scrL \ast (\bfitpsi (L - s, \cdot ))v(s, \cdot ),
v(0, \cdot ) = v0,

(4.7)

where \scrL \ast (\bfitpsi ) is the adjoint of the linearized differential operator \scrL (\bfitpsi ), as in (3.3).

Remark. Note that here we have s = L - t so that solving the adjoint equation
from s= 0 to s=L propagates the initial pulse v0 backward in t from t=L to t= 0.
The formula for the operator \scrL \ast in a fiber segment is obtained from the formula for
\scrL in (3.3) by taking the transposes of all matrices. The operator \scrU SA is self-adjoint.

Proof. The variational derivative of \scrE with respect to \bfitpsi 0 is given by

D\bfitpsi 0
\scrE (u0) = lim

\epsilon \rightarrow 0

1

\epsilon 
(\scrE (\bfitpsi 0 + \epsilon u0, \theta ) - \scrE (\bfitpsi 0, \theta ))(4.8)

= \langle \scrR (\bfitpsi 0) - R(\theta )\bfitpsi 0,\scrM (u0) - R(\theta )u0\rangle L2(R,R2),(4.9)

where we have used the fact that \scrR (\psi 0 + \epsilon u0) \approx \scrR (\psi 0) + \epsilon \scrM (u0). Setting v0 :=
\scrR (\bfitpsi 0) - R(\theta )\bfitpsi 0, we find that

D\bfitpsi 0
\scrE (u0) = \langle \scrM \ast (v0) - R( - \theta )v0,u0\rangle L2(R,R2),(4.10)

which proves (4.3).
To derive (4.7), we invoke the defining formula for \scrU \ast :

\langle v0,uL\rangle = \langle v0,\scrU (u0)\rangle = \langle \scrU \ast (v0),u0\rangle = \langle vL,u0\rangle .(4.11)

Next, we set s=L - t and introduce a function v= v(s,x) to be chosen so that

h(s) = \langle v(s, \cdot ), u(L - s, \cdot )\rangle L2(R,R2)(4.12)

is constant. Then vL = v(L, \cdot ) will satisfy (4.11) as required. To derive an equation
for v, we differentiate h to obtain

h\prime (s) = \langle \partial sv(s, \cdot ), u(L - s, \cdot )\rangle L2(R,R2)  - \langle v(s, \cdot ), \partial tu(L - s, \cdot )\rangle L2(R,R2)

= \langle \partial sv(s, \cdot ), u(L - s, \cdot )\rangle L2(R,R2)  - \langle v(s, \cdot ), \scrL (\bfitpsi (L - s, \cdot ))u(L - s, \cdot )\rangle L2(R,R2)

= \langle \partial sv(s, \cdot ) - \scrL \ast (\bfitpsi (L - s, \cdot ))v(s, \cdot ), u(L - s, \cdot )\rangle L2(R,R2),

which is zero provided that v satisfies the initial value problem (4.7).

Next, we derive an analytical formula for the derivative of \scrE with respect to \theta .
For this result, it is easier to work over C than R2.

Proposition 4.2. Suppose that (\psi 0, \theta ) is a local minimum of

\scrE (\psi 0, \theta ) =
1

2
\| \scrR (\psi 0) - ei\theta \psi 0\| L2(R,C).(4.13)

Then \theta = \theta (\psi 0) is given in terms of \psi 0 by

(cos\theta , sin\theta ) =
1\sqrt{} 

G2(\psi 0) +H2(\psi 0)
(G(\psi 0),H(\psi 0)),(4.14)
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FLOQUET STABILITY OF PERIODIC LASER PULSES 969

where

F (\psi 0) =
1

2

\Bigl\{ 
\| \scrR (\psi 0)\| 2L2(R,C) + \| \psi 0\| 2L2(R,C)

\Bigr\} 
,

G(\psi 0) =Re\langle \scrR (\psi 0),\psi 0\rangle , H(\psi 0) = Im\langle \scrR (\psi 0),\psi 0\rangle .
(4.15)

Let

\scrF (\psi 0) := \scrE (\psi 0, \theta (\psi 0)) = F (\psi 0) - 
\sqrt{} 
G2(\psi 0) +H2(\psi 0).(4.16)

Then

\delta \scrF 
\delta \psi 

(\psi 0) =
\delta \scrE 
\delta \psi 

(\psi 0, \theta (\psi 0)),(4.17)

where \delta \scrE 
\delta \psi (\psi 0, \theta (\psi 0)) is given by (4.4). Furthermore, (\psi 0, \theta ) is a local minimum of \scrE 

iff \psi 0 is a local minimum of \scrF .

Proof. By (4.13),

\scrE (\psi 0, \theta ) =
1

2

\Bigl\{ 
\| \scrR (\psi 0)\| 2L2(R,C) + \| \psi 0\| 2L2(R,C)

\Bigr\} 
 - Re\langle e - i\theta \scrR (\psi 0),\psi 0\rangle L2(R,C)

= F (\psi 0) - (G(\psi 0) cos\theta +H(\psi 0) sin \theta ) .(4.18)

Therefore, \partial \scrE \partial \theta = 0 iff

(cos\theta , sin\theta ) =
\pm 1\sqrt{} 

G2(\psi 0) +H2(\psi 0)
(G(\psi 0),H(\psi 0)).(4.19)

To determine which of the signs in (4.19) corresponds to a local minimum of \scrE (\theta ), we
observe that when \theta satisfies (4.19), the second derivative of \scrE is given by

\partial 2\scrE 
\partial \theta 2

=G(\psi 0) cos\theta +H(\psi 0) sin \theta =\pm 
\sqrt{} 
G2(\psi 0) +H2(\psi 0).(4.20)

Substituting the value of \theta given by (4.19) with the + sign into (4.18), we obtain
(4.16). Finally, since

\delta \scrF 
\delta \psi 

(\psi 0) =
\delta \scrE 
\delta \psi 

(\psi 0, \theta (\psi 0)) +
\delta \scrE 
\delta \theta 

(\psi 0, \theta (\psi 0))
\delta \theta 

\delta \psi 
(\psi 0)(4.21)

and \delta \scrE 
\delta \theta (\psi 0, \theta (\psi 0)) = 0, we obtain (4.17).

5. Fourier split-step method. In this section, we describe the Fourier split-
step schemes we use to solve for the nonlinear propagation of the pulse \bfitpsi and its
linearization u in the fiber segments. These methods are based on the well-known
symmetric split-step scheme for the NLSE, which is globally second-order accurate
[50]. Wang et al. [47] show that, in addition to being nonlinear, the frequency filtering
term g(\bfitpsi )\bfitpsi xx in the fiber amplifier equation (2.4) is stiff. Therefore, we make use
of a numerical method they designed to handle this stiff term. With this method,
we propagate the pulse for one time step with the aid of a frequency domain solu-
tion operator for the stiff frequency filtering and chromatic dispersion terms and of
a fast-time domain solution operator for the Kerr nonlinearity term. We then derive
a split-step method for the linearized equation (3.3) by linearizing these two solution
operators. This approach yields explicit locally third-order-accurate analytical for-
mulae that do not involve the numerical computation of integrals over time. To the
best of our knowledge, this approach is novel even in the special case of the linearized
NLSE.
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970 V. SHINGLOT AND J. ZWECK

5.1. Operator splitting. The level of rigor in discussions of the symmetric
split-step Fourier method for nonlinear wave equations varies widely [1, 3, 25, 33, 41,
50, 52]. At one end of the spectrum is the rigorous convergence result of Lubich [26].
At the other end are discussions that do not even explicitly address the sense in which
the solution of \partial tf = \scrC (t)f is f(t) = exp(

\int t
0
\scrC (s)ds)f(0). Here we are thinking of \scrC (t)

as being the differential operator on the right-hand side of the equation. Indeed,
equality is not guaranteed to hold unless \scrC (t1)\scrC (t2) = \scrC (t2)\scrC (t1) for all t1, t2, which
is not even true in the case of the NLSE. To provide an accessible explanation as to
why the symmetric split-step Fourier methods for the fiber amplifier equation (2.4)
and its linearization (3.3) are locally third-order accurate, we begin with a discussion
of operator splitting in this context.

Proposition 5.1. The solution to \partial tf = \scrC (t)f is of the form

f(t+ h) = exp

\Biggl( \int t+h

t

\scrC (s)ds

\Biggr) 
f(t) + \scrO (h3).(5.1)

Proof. For simplicity, we assume t= 0. Substituting

f(h) = f0 + hf1 + h2f2 +\scrO (h3),(5.2)

\scrC (h) = \scrC 0 + h\scrC 1 + h2\scrC 2 +\scrO (h3)(5.3)

into the differential equation and equating coefficients of h, we find that

f(h) = f0 + h\scrC 0f0 +
1

2
h2
\bigl( 
\scrC 2
0 f0 + \scrC 1f0

\bigr) 
+\scrO (h3)(5.4)

=

\biggl[ 
exp (\scrC 0h) +

1

2
h2\scrC 1

\biggr] 
f0 +\scrO (h3)(5.5)

= exp

\Biggl( \int h

0

\scrC (s)ds

\Biggr) 
f0 +\scrO (h3).(5.6)

The nonlinear and linearized equations in the fiber amplifier are both of the form

\partial tf = (\scrA (t) + \scrB (t))f ,(5.7)

where, for the nonlinear equation (with f =\bfitpsi ),

\scrA (t) =\scrL + g(\bfitpsi (t))\scrK and \scrB (t) =\scrM 1(\bfitpsi (t))(5.8)

and, for the linear equation (with f = u),

\scrA (t) =\scrL + g(\bfitpsi (t))\scrK +\scrP (\bfitpsi (t)) and \scrB (t) =\scrM 1(\bfitpsi (t)) +\scrM 2(\bfitpsi (t)).(5.9)

Let

\scrA 1(h) :=

\int t+h/2

t

\scrA (s)ds= \widetilde \scrA 1h/2 \scrA 2(h) :=

\int t+h

t+h/2

\scrA (s)ds= \widetilde \scrA 2h/2(5.10)

\scrB 0(h) :=

\int t+h

t

\scrB (s)ds= \widetilde \scrB h,(5.11)

where the final equalities follow from the mean value theorem for integrals. In the
special case of the NLSE, \scrA (t) =\scrA is t-independent, and so the symmetric split-step
scheme

\bfitpsi (t+ h) = exp (\scrA h+\scrB 0(h))\bfitpsi (t) +\scrO (h3)

= exp (\scrA h/2) exp (\scrB 0(h)) exp (\scrA h/2)\bfitpsi (t) +\scrO (h3)(5.12)
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FLOQUET STABILITY OF PERIODIC LASER PULSES 971

holds by two applications of the Baker--Campbell--Haussdorff formula

exp (\scrX h) exp (\scrY h) = exp

\biggl( 
(\scrX +\scrY )h+

1

2
[\scrX ,\scrY ]h2

\biggr) 
+\scrO (h3),(5.13)

where [\scrX ,\scrY ] =\scrX \scrY  - \scrY \scrX . We note, however, that for general operators \widetilde \scrA 1 and \widetilde \scrA 2,

exp
\Bigl( 
[ \widetilde \scrA 2 + \widetilde \scrB + \widetilde \scrA 1]h

\Bigr) 
\not = exp

\Bigl( \widetilde \scrA 2h
\Bigr) 
exp

\Bigl( \widetilde \scrB h\Bigr) exp\Bigl( \widetilde \scrA 1h
\Bigr) 
+\scrO (h3).(5.14)

Nevertheless, we will now show that equality holds in (5.14) for the operators in (5.10).
Keeping only terms of order <h3, we find that in general,

exp (\scrA 2) exp (\scrB 0) exp (\scrA 1) = exp

\biggl( 
\scrA 1 +\scrA 2 +\scrB 0 +

1

2
[\scrB 0,\scrA 1  - \scrA 2] + [\scrA 2,\scrA 1]

\biggr) 
.

(5.15)

Therefore, it suffices to show that for the operators in (5.10), \scrA 1  - \scrA 2 = \scrO (h2) and
[\scrA 2,\scrA 1] =\scrO (h3). Using Taylor series, these results follow from the formulae

\scrA 1(h) =
h

2

\biggl[ 
\scrA (t) +

h

4
\scrA \prime (t)

\biggr] 
+\scrO (h3),(5.16)

\scrA 2(h) =
h

2

\biggl[ 
\scrA 
\biggl( 
t+

h

2

\biggr) 
+
h

4
\scrA \prime 
\biggl( 
t+

h

2

\biggr) \biggr] 
+\scrO (h3),(5.17)

\scrA 2(h) - \scrA 1(h) =
h

2

\biggl[ 
h

2
\scrA \prime (t) +

h2

8
\scrA \prime \prime (t)

\biggr] 
+\scrO (h3).(5.18)

To summarize, the symmetric split-step scheme for (5.7) is given by

f(t+ h) = exp (\scrA 2(h)) exp (\scrB 0(h)) exp (\scrA 1(h)) f(t) +\scrO (h3).(5.19)

For greater computational efficiency, we use Richardson extrapolation to combine
solutions with step sizes of h, h/2, and h/4 to obtain the globally fourth-order-accurate
scheme,

fk =
1

21

\Bigl[ 
32f

h/4
k  - 12f

h/2
k + fhk

\Bigr] 
,(5.20)

where fhk is the solution at time step k obtained using (5.19) with a step size of h.

5.2. Solution operators for the nonlinear equations. Next, we state two
propositions that give analytical formulae for the two solution operators for the non-
linear equation (3.2) in the fiber amplifier. Setting g = 0 gives the corresponding
results for the single-mode fiber segments.

Proposition 5.2. The solution operator for the Kerr nonlinearity term,

\partial t\bfitpsi = \gamma \| \bfitpsi \| 2J\bfitpsi ,(5.21)

in the nonlinear equation (3.2) for the fiber amplifier is given by

\bfitpsi (t+ h,x) = exp

\Biggl( 
\gamma 

\int t+h

t

\| \bfitpsi (s,x)\| 2 Jds

\Biggr) 
\bfitpsi (t, x) =R(\gamma \| \bfitpsi (t, x)\| 2h)\bfitpsi (t, x),(5.22)

where

R(b) =

\biggl[ 
cos b  - sin b
sin b cos b

\biggr] 
.(5.23)
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972 V. SHINGLOT AND J. ZWECK

Proof. Applying (5.21), we see that \| \bfitpsi (s,x)\| 2 is constant in s. The result now
follows from the fact that

exp (aI+ bJ) = eaR(b).(5.24)

Proposition 5.3. The solution operator for the term

\partial t\bfitpsi = (\scrL + g(\bfitpsi (t, \cdot ))\scrK ) \bfitpsi (5.25)

in the nonlinear equation (3.2) for the fiber amplifier is given by

\bfitpsi (t+ h/2, x) = exp

\Biggl( \int t+h/2

t

\scrL + g(\bfitpsi (s, \cdot ))\scrK ds

\Biggr) 
\bfitpsi (t, x)

=\scrF  - 1
\Bigl( 
eG(t,t+h/2)a(\omega )R(b(\omega )h/2) \widehat \bfitpsi (t,\omega )\Bigr) ,(5.26)

where \scrF is the Fourier transform,

a(\omega ) =
1

2

\biggl( 
1 - \omega 2

\Omega 2
g

\biggr) 
and b(\omega ) =

1

2
\beta \omega 2,(5.27)

and

G(t, t+ h/2) =

\int t+h/2

t

g(\bfitpsi (s))ds.(5.28)

Finally, to compute \bfitpsi (t+h/2, \cdot ) only in terms of \bfitpsi (t, \cdot ), we employ the approximation

G(t, t+ h/2) =
h

2

\biggl( 
g(t) +

h

4
g2(t)

\biggr) 
+\scrO (h3),(5.29)

where g(t) = g(\bfitpsi (t, \cdot )) is given by (2.5) and

g2(t) := g\prime (t) =
 - 2g2(t)

g0Esat
Re

\int \infty 

 - \infty 
[\widehat \bfitpsi (t,\omega )]\ast (b(\omega )J+ g(t)a(\omega )I) \widehat \bfitpsi (t,\omega )d\omega ,(5.30)

where v\ast denotes the conjugate transpose of a column vector v\ast .

Proof. Equation (5.26) follows from the fact that

\scrL + g(\bfitpsi (s))\scrK =\scrF  - 1 \circ (b(\omega )hJ + G(t, t+ h)a(\omega ) I) \circ \scrF (5.31)

and then applying (5.24). The derivation of (5.29) is the same as that of (5.16).
Finally, (5.30) follows from (2.5), the formula

E\prime (t) = 2Re

\int \infty 

 - \infty 
[\widehat \bfitpsi (t,\omega )]\ast \partial t \widehat \bfitpsi (t,\omega )d\omega (5.32)

for the derivative of the pulse energy, and (5.25).

Remark. In practice, it is enough to implement a split-step solver for the scalar
field \psi \in C rather than the vector field \bfitpsi \in R2 as was done in [47]. The reason
for providing the solution operators, (5.22) and (5.26), in the vector case is that in
the next subsection, we will use them to derive solution operators for the linearized
equation.
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FLOQUET STABILITY OF PERIODIC LASER PULSES 973

5.3. The linearized solution operators. Next, we state two propositions that
give analytical formulae for the two solution operators for the linearized equation (3.3)
in the fiber amplifier. Setting g= 0 gives the corresponding results for the single-mode
fiber segments.

Proposition 5.4. The solution operator for the linearization

\partial tu= [\scrM 1(\bfitpsi ) +\scrM 2(\bfitpsi )]u(5.33)

of the Kerr nonlinearity term in the linearized equation (3.3) for the fiber amplifier is

u(t+ h,x) = exp

\Biggl( \int t+h

t

[\scrM 1(\bfitpsi (s)) +\scrM 2(\bfitpsi (s))] ds

\Biggr) 
u(t, x)

=R(\gamma \| \bfitpsi (t, x)\| 2h)
\bigl( 
I+ 2\gamma hJ\bfitpsi (t)\bfitpsi (t)T

\bigr) 
u(t, x).(5.34)

Proof. Suppose that u solves (5.33). Then \bfitpsi \epsilon = \bfitpsi + \epsilon u solves (5.21), and so by
Proposition 5.2,

\bfitpsi \epsilon (t+ h) = F (\epsilon )\bfitpsi \epsilon (t), where F (\epsilon ) =R(\theta (\epsilon )) with \theta (\epsilon ) = \gamma \| \bfitpsi \epsilon \| 2h.(5.35)

Keeping only those terms that are linear in \epsilon gives u(t+ h) = F (0)u(t) + F \prime (0)\bfitpsi (t).
The result now follows as F \prime (\epsilon ) = F (\epsilon )J\theta \prime (\epsilon ) and \theta \prime (\epsilon ) = 2\gamma h\bfitpsi (t)Tu(t)+2\epsilon \| u(t)\| 2.

Proposition 5.5. The solution operator for the term

\partial tu= [\scrL + g(\bfitpsi )\scrK +\scrP (\bfitpsi )]u(5.36)

in the linearized equation (3.3) is given in the Fourier domain by

\widehat u(t+ h/2, \omega ) = ea(\omega )G(t,t+h/2)R(b(\omega )h/2)

\biggl[ 
a(\omega )\widehat \bfitpsi (t,\omega ) \partial G

\partial u
+ \widehat u(t,\omega )\biggr] ,(5.37)

where the directional derivative of nonlocal gain is given by

\partial G

\partial u
=
h

2

\biggl( 
\partial g

\partial u
+
h

4

\partial g2
\partial u

\biggr) 
+ \scrO (h3)(5.38)

with

\partial g

\partial u
=

 - 2g2(\bfitpsi )

g0Esat
\langle \bfitpsi ,u\rangle (5.39)

and

\partial g2
\partial u

=
 - 2g(\bfitpsi )

g0Esat

\biggl[ 
2g2(\bfitpsi ) \langle \scrK \bfitpsi ,u\rangle + (3g(\bfitpsi ) \langle \scrK \bfitpsi ,\bfitpsi \rangle + 2\langle \bfitpsi ,\scrL \bfitpsi \rangle )\partial g

\partial u

\biggr] 
.(5.40)

Remark. The inner products in (5.39) and (5.40) are the L2-inner products \langle \cdot , \cdot \rangle =
\langle \cdot , \cdot \rangle L2(R,C2). These can be computed in the frequency domain using the formulae

\langle \scrK \bfitpsi ,u\rangle =
\int \infty 

 - \infty 
a(\omega ) \widehat \bfitpsi \ast 

(\omega ) \widehat u(\omega )d\omega ,(5.41)

\langle \scrK \bfitpsi ,\bfitpsi \rangle =
\int \infty 

 - \infty 
a(\omega )\| \widehat \bfitpsi (\omega )\| 2 d\omega ,(5.42)

\langle \bfitpsi ,\scrL \bfitpsi \rangle =
\int \infty 

 - \infty 
b(\omega ) \widehat \bfitpsi \ast 

(\omega )J \widehat \bfitpsi (\omega )d\omega .(5.43)
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974 V. SHINGLOT AND J. ZWECK

Proof. The proof is similar to that of Proposition 5.4. Let G(\bfitpsi , h) = G(t, t+ h)
as in (5.28). This time, we set F (\epsilon )(\omega ) = ea(\omega )G(\epsilon ,h)R(b(\omega )h/2), where G(\epsilon , h) =
G(\bfitpsi + \epsilon u, h). Then F \prime (\epsilon ) = a(\omega )\partial \epsilon G(\epsilon , h)F (\epsilon ). Therefore, (5.37) follows by defining
\partial G
\partial u = \partial \epsilon G(0, h), in accordance with the definition of the directional derivative.

Next, (5.38) follows from (5.29), where

dg

du
:=

\partial 

\partial \epsilon 

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

g(\bfitpsi + \epsilon u) =
 - g2(\bfitpsi )
g0Esat

\partial E

\partial u
=

 - 2g2(\bfitpsi )

g0Esat
\langle \bfitpsi ,u\rangle ,(5.44)

and dg2
du is calculated as follows. First, as functions of x, we have that

g2(\bfitpsi ) = F1(\bfitpsi )F2(\bfitpsi ),(5.45)

where

F1(\bfitpsi ) =
 - 2g2(\bfitpsi )

g0Esat
and F2(\bfitpsi ) = \langle \bfitpsi , (\scrL + g(\bfitpsi )\scrK )\bfitpsi \rangle .(5.46)

Now

\partial F1

\partial u
=

 - 4g(\bfitpsi )

g0Esat

\partial g

\partial u
(5.47)

and

\partial F2

\partial u
= \langle u, (\scrL + g(\bfitpsi )\scrK )\bfitpsi \rangle + \langle \bfitpsi ,\scrK \bfitpsi \rangle \partial g

\partial u
+ \langle \bfitpsi , (\scrL + g(\bfitpsi )\scrK )u\rangle (5.48)

= 2g(\bfitpsi )\langle \scrK \bfitpsi ,u\rangle + \langle \bfitpsi ,\scrK \bfitpsi \rangle \partial g
\partial u

(5.49)

since \scrK \ast = \scrK and \scrL \ast =  - \scrL . Equation (5.40) now follows by applying the product
rule to (5.45).

5.4. Solution operators for the adjoint linearized equations. In this sub-
section, we describe the split-step method we used to solve the adjoint linearized
equation in the fiber amplifier, which is not completely straightforward due to the
nonlocal saturable gain g.

Since the adjoint linearized equation in a fiber segment is solved backward in
time, we introduce the backward time variable s=L - t, where L is the length of the
segment. By (4.7), in the fiber amplifier, the adjoint equation is given by

\partial sv=
\bigl( 
\scrL T + g(\bfitpsi (t))\scrK T + [\scrM 1(\bfitpsi (t))]

T + [\scrM 2(\bfitpsi (t))]
T + [\scrP (\bfitpsi (t))]T

\bigr) 
v,(5.50)

where \scrL and \scrM 1 are antisymmetric, \scrK is symmetric, and \scrM T
2 =  - 2\gamma \bfitpsi \bfitpsi TJ. Next,

we recall from (3.5) that \scrP (u) =  - 2g2

g0E\mathrm{s}\mathrm{a}\mathrm{t}
\scrK \bfitpsi \langle \bfitpsi ,u\rangle . A calculation based on the defining

formula for the adjoint (4.11) shows that

\scrP T (v) =  - 2g2

g0Esat
\bfitpsi \langle \scrK \bfitpsi ,v\rangle .(5.51)

Proposition 5.6. The solution operator for the adjoint equation (5.50) in a fiber
amplifier of length L is given up to terms of order \scrO (h3) by

v(s) = \scrU \ast (s, s - h)v(s - h)

= [exp (\scrA (t+ h/2, t))]\ast [exp (\scrB (t+ h, t))]\ast [exp (\scrA (t+ h, t+ h/2))]\ast ,(5.52)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
24

 to
 1

50
.2

21
.1

70
.2

12
 b

y 
Jo

hn
 Z

w
ec

k 
(z

w
ec

k@
ut

da
lla

s.e
du

). 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



FLOQUET STABILITY OF PERIODIC LASER PULSES 975

where t=L - s, and the split solution operators are given by

[exp (\scrB (t+ h, t))]\ast = (I - 2\gamma \bfitpsi (t)\bfitpsi (t)TJ)R( - \gamma \| \bfitpsi (t)\| 2h),(5.53)

which is most readily computed in the fast-time domain, and

[exp (\scrA (t+ h/2, t))]\ast v=\nabla G(h/2) \langle \scrK \bfitpsi (t),w\rangle +w,(5.54)

w= exp [ - \scrL h/2 +G(\bfitpsi (t), h/2)\scrK ] v,

which is most readily computed in the frequency domain. Here

\nabla G(\bfitpsi , h/2) = h

2

\biggl[ 
\alpha 1\bfitpsi +

h

4
(\alpha 2\scrK \bfitpsi + \alpha 3\bfitpsi )

\biggr] 
,(5.55)

where

\alpha 1 =
 - 2g2

g0Esat
, \alpha 2 = 2g\alpha 1, \alpha 3 =

 - 2g

g0Esat
(3g\langle \scrK \bfitpsi ,\bfitpsi \rangle + 2\langle \bfitpsi ,\scrL \bfitpsi \rangle )\alpha 1(5.56)

are all evaluated at time t.

Proof. We recall from (5.19) that the solution operator for the linearized equation
from time t to t+ h is of the form

u(t+ h) = \scrU (t+ h, t)u(t)

= exp (\scrA (t+ h, t+ h/2)) exp (\scrB (t+ h, t)) exp (\scrA (t+ h/2, t)) u(t),(5.57)

where the operators \scrA and \scrB are given in Propositions 5.4 and 5.5, respectively. Since
the forward time interval [t, t+h] corresponds to the backward time interval [s - h, s],
the solution operator for the adjoint equation is given by

v(s) = \scrU \ast (s, s - h)v(s - h) = [\scrU (t+ h, t)]\ast v(s - h),(5.58)

from which we obtain (5.52). To establish (5.54), we first observe that the gradient
\nabla G is defined so that \partial G

\partial u = \langle \nabla G,u\rangle . Then, as in (5.37),

u(t+ h) = exp (A(t+ h/2, t)) u(t) = exp (\scrL h/2 +G(\bfitpsi , h/2)\scrK ) (u(t) +\scrK \bfitpsi \langle \nabla G,u\rangle ).

Equation (5.54) now follows from the identity \langle \scrT (f\langle g,u\rangle ),v\rangle = \langle u, \langle f ,\scrT \ast v\rangle g\rangle .

6. Spectrum of the monodromy operator. In analogy with the Floquet
theory of periodic solutions of nonlinear ODEs [44], we expect that the stability of a
periodically stationary pulse solution, \bfitpsi , of a lumped laser model can be determined
by the spectrum \sigma (\scrM ) of the monodromy operator. The spectrum of \scrM is the union
of the essential spectrum \sigma ess(\scrM ) and the eigenvalues [53]. In [38, 39], we derived a
formula for \sigma ess(\scrM ). As in [7, 39], we approximate \sigma (\scrM ) by the set of eigenvalues
of a matrix approximation, M, of the operator \scrM : L2(R,R2) \rightarrow L2(R,R2). To
do so, we first truncate the domain R to a finite interval, which we then discretize
using N equally spaced points, xj . Then any function \bfitpsi = (\psi 1,\psi 2)

T \in L2(R,R2)
is approximated by a vector [\psi 1(x0),\psi 2(x0), \cdot \cdot \cdot ,\psi 1(xN - 1),\psi 2(xN - 1]

T \in R2N . As a
consequence, the operator \scrM can be approximated by a linear transformation M :
R2N \rightarrow R2N . To compute the matrix M of M in the standard basis, we recall that
for each k \in \{ 1, \cdot \cdot \cdot ,2N\} , the kth column of M is given by the action of M on the kth
standard basis vector ek \in R2N . That is, using (3.1), the kth column of M is obtained
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976 V. SHINGLOT AND J. ZWECK

by numerically solving the linearized equations given in section 3 for one round trip
of the laser with an initial condition given by ek.

In the remainder of this section, we present some theoretical results about the
spectrum of \scrM . The linear stability of a stationary pulse solution of the NLSE
is determined by the spectrum of the linearized differential operator \scrL . It is well
known that \scrL has an eigenvalue with algebraic multiplicity four at \lambda = 0, which
is due to the phase and fast-time translation invariances of the NLSE [21]. In this
section, we will show that a minor modification of the monodromy operator has a
multiplicity two eigenvalue at \lambda = 1. As in the case of the NLSE, these eigenvalues
are due to the phase and time translation invariances of the lumped laser model. In
analogy with a result of Haus and Mecozzi [16] for stationary pulses, we expect that
perturbations which couple into the corresponding eigenfunctions will result in shifts
in the phase and position of the pulse [16]. A result of Lunardi for periodic solutions
of nonlinear parabolic equations [27] suggests that, except for such phase and time
shifts, a periodically stationary pulse solution of the lumped model will behave stably
if sup\{ | \lambda | : \lambda \in \sigma (\scrM ), \lambda \not = 1\} < 1. However, we leave the precise formulation and
proof of such a result to a future paper.

We recall that a pulse, \bfitpsi , is periodically stationary if \scrR (\psi ) =R(\theta )\psi for some \theta 
and that the optimization method in section 4 computes the pair (\bfitpsi , \theta ). Since Floquet
theory only applies to solutions that are actually periodic, we absorb the constant
rotation R(\theta ) into \scrR by defining a modified roundtrip operator by \widetilde \scrR :=R( - \theta ) \circ \scrR so

that \widetilde \scrR \bfitpsi =\bfitpsi . We also have a modified monodromy operator, \widetilde \scrM :=R( - \theta ) \circ \scrM .

Proposition 6.1. Let \bfitpsi be a periodically stationary pulse with \scrR \bfitpsi = R(\theta )\bfitpsi ,
and suppose that \bfitpsi ,\bfitpsi x \in L2(R,R2). Let

uph = J\bfitpsi (6.1)

be the \pi /2-rotation of \bfitpsi , and let

utr =\bfitpsi x(6.2)

be the x-derivative of \bfitpsi . Let \widetilde \scrM =R( - \theta ) \circ \scrM be the modified monodromy operator.
Then

\widetilde \scrM uph = uph and \widetilde \scrM utr = utr.(6.3)

Consequently, \lambda = 1 is an eigenvalue of \widetilde \scrM with multiplicity (at least) two.

Remark. We call uph the phase invariance eigenfunction and utr the translation
invariance eigenfunction. We note that the \scrM itself does not generically have any
eigenvalues on the unit circle.

Remark. The NLSE has the soliton solution

\psi (t, x) =A sech\{ A [x - x0 +\Omega t]\} exp

\biggl\{ 
i

\biggl[ 
\Phi +

1

2

\bigl( 
A2  - \Omega 2

\bigr) 
t - \Omega x

\biggr] \biggr\} 
.(6.4)

Just as in Proposition 6.1, the phase and fast-time invariances of the NLSE give rise to
two eigenvalues at zero with eigenfunctions given by \psi \Phi and \psi x0

, respectively. (Here
\psi p denotes the partial derivative of \psi with respect to a parameter, p.) In addition, if \scrL 
denotes the linearized operator, then \scrL \psi A =A\psi \Phi and \scrL \psi \Omega =A\psi x0 , which gives rise to
two Jordan blocks, one associated with \{ \psi \Phi ,\psi A\} and the second with \{ \psi x0 ,\psi \Omega \} [21].
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FLOQUET STABILITY OF PERIODIC LASER PULSES 977

Consequently, \lambda = 0 is an eigenvalue with algebraic multiplicity four. From another
perspective, for the NLSE, \scrL is a real Hamiltonian operator, which implies that if \lambda 
is an eigenvalue, then so are  - \lambda and \pm \lambda [22]. However, in our situation, although
the monodromy operator \scrM is real, it is not Hamiltonian, and the Jordan blocks
involving the amplitude and frequency eigenfunctions do not exist. Consequently, the
eigenvalue at \lambda = 1 only has algebraic multiplicity two. Furthermore, we recall that
when one linearizes an autonomous ODE about a time-periodic solution, the resulting
monodromy operator always has an eigenvalue \lambda = 1 due to the time invariance of the
nonlinear equation [44]. In the context of the Kuznetsov--Ma breather solution of the
NLSE, this corresponds to an additional pair of eigenvalues at \lambda = 1 [7]. However,
this phenomenon does not occur in our context, as the lumped model we are studying
is not autonomous.

Proof. First, let \bfitpsi \epsilon be the perturbation of \bfitpsi given by the phase rotation \bfitpsi \epsilon =
R(\epsilon )\bfitpsi 0, and let u := lim\epsilon \rightarrow 0

\bfitpsi \epsilon  - \bfitpsi 
\epsilon . Then u =R\prime (0)\bfitpsi = J\bfitpsi 0 is a \pi /2-rotation of \bfitpsi .

On the other hand, by the phase-shift invariance of each of the nonlinear operators
\scrP , we have that

\widetilde \scrM (u) = lim
\epsilon \rightarrow 0

\widetilde \scrR (\bfitpsi \epsilon ) - \widetilde \scrR (\bfitpsi )

\epsilon 
= lim
\epsilon \rightarrow 0

\bfitpsi \epsilon  - \bfitpsi 
\epsilon 

= u.(6.5)

If instead we let \psi \epsilon be the time translation of \bfitpsi given by \bfitpsi \epsilon (x) = \bfitpsi (x + \epsilon ), then
u = \bfitpsi x is the x-derivative of \bfitpsi , and because of the fast-time translation invariance
of all the operators \scrP , we again obtain (6.5).

Since \widetilde \scrM :L2(R,R2)\rightarrow L2(R,R2) is a real operator, the elements of the spectrum
either are real or come in complex conjugate pairs. In [38], we proved that under
reasonable assumptions on the system parameters and on the smoothness and decay
of the pulse, the essential spectrum is given by

\sigma ess(\widetilde \scrM ) = \{ \lambda \pm (\omega )\in C | \omega \in R\} \cup \{ 0\} ,(6.6)

where

\lambda \pm (\omega ) = \ell OC(1 - \ell 0) exp

\Biggl\{ 
1

2

\biggl( 
1 - \omega 2

\Omega 2
g

\biggr) \int L\mathrm{F}\mathrm{A}

0

g(\psi (t))dt

\Biggr\} 
exp

\biggl\{ 
\pm i
\biggl( 
\beta RT
2
\omega 2  - \theta 

\biggr) \biggr\} 
.

(6.7)

Here \beta RT = \beta SMF1LSMF1+\beta FALFA+\beta SMF2LSMF2+\beta DCF is the roundtrip dispersion.
Geometrically, \sigma ess(\scrM ) is a pair of counterrotating spirals which have a Gaussian
decay in the radial direction. In [38, 39], we discuss conditions which guarantee that
the essential spectrum is stable.

7. Simulation results. For the simulation results we present here, we choose
the parameters in the model to be similar to those in the experimental stretched pulse
laser of Kim et al. [23]. The saturable absorber is modeled by (2.9) with \ell 0 = 0.2 and
Psat = 50 W. The saturable absorber is followed by a segment of single-mode fiber,
SMF1, modeled by (2.7) with \gamma = 2\times 10 - 3 (Wm) - 1, \beta SMF1 = 10 kfs2/m, (1 kfs2 =
10 - 27 s2), and LSMF1 = 0.32 m; a fiber amplifier, modeled by (2.4) with g0 = 6m - 1,
Esat = 200 pJ, \Omega g = 50 THz, \gamma = 4.4\times 10 - 3 (Wm) - 1, \beta FA = 25 kfs2/m, and LFA = 0.22
m; and a second segment of single-mode fiber, SMF2, with the same parameters as
SMF1 but with LSMF2 = 0.11 m. The dispersion \beta DCF of the dispersion compensation
element is chosen so that the roundtrip dispersion is \beta RT = - 1 kfs2. Finally, the 50\%
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978 V. SHINGLOT AND J. ZWECK

output coupler is modeled by (2.10) with \ell OC =
\surd 
0.5. Unless otherwise stated, we

used a time window  - LX/2\leq x\leq LX/2 of size LX = 10 ps discretized with N = 512
points.

The algorithms were implemented in MATLAB. We used the quasi-Newton BFGS
algorithm [51] as implemented in the function fminunc to find the optimal pulse. In
particular, the optimization algorithm is provided with the gradient of the objective
function, computed using the adjoint state method described in Theorem 4.1. The
computational time to perform the optimization and compute the monodromy matrix
M and its spectrum on a 3.5-GHz Macbook Pro is about 3 minutes. The computation
of M was done in parallel using 12 processors.

We begin by discussing the accuracy of the numerical solvers for the roundtrip
operator\scrR and the linearization\scrM of\scrR . For these results, we use two error measures:
the absolute error

\scrE abs(\bfitpsi approx,\bfitpsi exact) =

\biggl[ \int 
\| \bfitpsi approx(x) - \bfitpsi exact(x)\| 2R2 dx

\biggr] 1/2
(7.1)

and the relative error

\scrE rel(\bfitpsi approx,\bfitpsi exact) =
\scrE abs(\bfitpsi approx,\bfitpsi exact)

E(\bfitpsi exact)
1/2

,(7.2)

where the pulse energy E(\bfitpsi exact) is given by (2.6).
For this study, we used an initial pulse, \bfitpsi 0, obtained by propagating a Gaussian

pulse for 10 round trips of the system. The Gaussian was given by

g(x) =
\sqrt{} 
P0 exp

\bigl( 
 - (x/\sigma )2

\bigr) 
,(7.3)

where \sigma = FWHM/2
\surd 
log 2. By choosing a peak power of P0 = 400 W and a full

width at half maximum of FWHM=300 fs, we obtained a reasonable approximation,
\bfitpsi 0, to a periodically stationary pulse.

To assess the accuracy of the numerical solver for the roundtrip operator \scrR , we
first computed an exact solution by propagating the initial pulse \bfitpsi 0 for one round trip
of the system with a step size of \Delta t= 10 - 4. We then computed approximate solutions
using step sizes of \Delta t = 10 - 2, 5\times 10 - 3, 2\times 10 - 3, 10 - 3, 5\times 10 - 4, and 2\times 10 - 4 and
computed the error between the approximate and exact solutions. In the left panel of
Figure 2, we plot the absolute error in units of J1/2 as a function of \Delta t. The portion of
the curve with \Delta t\geq 10 - 3 has a slope of 4.02 as expected for the globally fourth-order
method we used. The floor below an error level of 10 - 16 is due to round-off error,
primarily of the Fourier transform. The relative error is approximately 105 times
larger than the absolute error. So, for example, \scrE rel = 2.9\times 10 - 8 when \Delta t= 10 - 2.

In the center panel of Figure 2, we show the corresponding results for the linearized
operator \scrM . For each choice of time step, we linearized \scrR about the pulse obtained by
propagating \bfitpsi 0 with a step size of \Delta t, and we chose the initial pulse for the linearized
operator to be the phase invariance eigenfunction, u0 = i\bfitpsi 0. In this case, the plot
also has a slope of 4.02, where \Delta t\geq 10 - 3 and \scrE rel = 2.9\times 10 - 8 when \Delta t= 10 - 2. For
the translation invariance eigenfunction, u0 = \Delta x\bfitpsi 0, for \Delta t \geq 10 - 3, the slope (not
shown) is the same as for the phase invariance eigenfunction, but the absolute errors
are about twice as large.

In the right panel of Figure 2, we show the corresponding results for the adjoint
of linearized operator \scrM \ast . For these results, we chose the initial pulse to be v0 =
\scrR (\bfitpsi 0) - ei\theta \bfitpsi 0, where \bfitpsi 0 is computed with \Delta t= 10 - 4 and \theta is the angle between \bfitpsi 0
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Fig. 2. Absolute error between an exact solution (as computed with \Delta t = 10 - 4) and approx-
imate solutions with step size \Delta t for propagation over one round trip of the laser. Left: Result
for the roundtrip operator \scrR . Center: Result for the linearization \scrM of \scrR . Right: Result for the
adjoint linearization \scrM \ast .

and \scrR (\bfitpsi 0). We note that max | \bfitpsi 0| = 16.2 and max | v0| = 1.2. Once again, the plot
has a slope of 4.02, where \Delta t\geq 10 - 3 and \scrE rel = 8.7\times 10 - 8 when \Delta t= 10 - 2.

Even though the linearized roundtrip solver has the correct order of accuracy, it
is nevertheless possible that the solution is not correct. To verify that the linearized
roundtrip operator has been correctly derived and implemented, we must verify that

\scrM (u0) = lim
\epsilon \rightarrow 0

\scrR (\bfitpsi 0 + \epsilon u0) - \scrR (\bfitpsi 0)

\epsilon 
=: D\bfitpsi 0

\scrR (u0).(7.4)

If we let f(\epsilon ) := \scrR (\bfitpsi 0 + \epsilon u0)(x) : R \rightarrow R2, then the directional derivative is given
by D\bfitpsi 0

\scrR (u0)(x) = f \prime (0). Due to round-off errors, standard finite difference approx-
imations of f \prime (0) are not accurate when \epsilon is small. A commonly employed method
is to use a complex step derivative approximation [28], which requires that f is real
valued. However, this is not actually the case for the numerically computed f because
of small imaginary round-off errors in the computation of the discrete Fourier trans-
forms. Instead, we use a spectral differentiation method of Fornberg [10]. With this
method, Cauchy's integral formula is applied to show that if f : C \rightarrow C is complex
analytic in a disc of radius R about a point, z0 \in C, then for any r \in [0,R],

f \prime (z0) =
1

2\pi r

\int 2\pi 

0

F (t)e - it dt,(7.5)

where F (t) = f(z0 + reit). Then f \prime (z0) =
c1
r , where c1 is the first Fourier coefficient

in the Fourier series of F . Using a discrete Fourier transform approximation with M
points, we find that

f \prime (z0) \approx 1

rM

M - 1\sum 
m=0

Fmw
 - m,(7.6)

where w= ei2\pi /M and Fm = F (wm).
To verify (7.4), we first extended f to a vector-valued complex analytic function

f :C\rightarrow C2 [29]. To minimize the truncation error in the discretization of the Fourier
series, we need M to be sufficiently large. For the results presented here, it was
sufficient to choose M = 4. Furthermore, to avoid round-off error in the computation
of the Fm, we do not want r to be too small [5]. In the left panel of Figure 3, for the
phase invariance eigenfunction u0 = i\bfitpsi 0, we plot the absolute error between \scrM (u0)
and the spectral derivative approximation of f \prime (0) as a function of r. The minimum
error is 2.4 \times 10 - 17 at r = 2 - 10. Similar results were obtained for the translation
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980 V. SHINGLOT AND J. ZWECK

invariance eigenfunction u0 =\Delta x\bfitpsi 0. These results were obtained using a time step of
\Delta t= 10 - 2. Decreasing the time step to \Delta t= 10 - 3, we obtained a similar plot, except
that the minimum error increased to 7.8\times 10 - 17, likely due to the larger accumulation
of round-off errors in the numerical solution of the system model.

As a second test of the adjoint solver, we examine the accuracy of the computation
of the directional derivative D\bfitpsi 0

\scrE (u0) = \langle \delta \scrE \delta \bfitpsi 0
, u0\rangle , where the variational derivative

\delta \scrE 
\delta \bfitpsi 0

is given in terms of the adjoint of \scrM by (4.4). For simplicity, for this verification,
we approximate the directional derivative using a finite difference. So that round-off
errors do not dominate, we need to ensure that the directional derivative is nonzero.
To ensure that the variational derivative is not too close to zero, we choose \bfitpsi 0 to be a
Gaussian with FWHM=50 fs and P0 = 200 W, which is not a periodically stationary
pulse. In addition, we choose u0 so that the L2-inner product is not zero. In the
right panel of Figure 3, we show the relative error between the directional derivative
computed using a finite difference with increment \epsilon and the computation based on
the adjoint of \scrM . For \epsilon > 10 - 5, the slope of the error plot is 0.997, as expected for
a standard finite difference, which provides strong evidence for the accuracy of the
implementation of the gradient of \scrE .

In Figure 4 (left panel), we show the instantaneous power of the optimal pulse
after the output coupler (also see Figure 1, right, for a plot showing the evolution of
this pulse through the laser). The initial pulse for the optimization was obtained by
evolving the Gaussian (7.3) for 10 round trips, at which point the value of the objective
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Fig. 3. Left: Absolute error between the numerical solution of the linearized operator \scrM (u0)
and the spectral approximation of the directional derivative D\bfitpsi 0

\scrR (u0) for the theoretical phase-shift
eigenfunction u0 = J\bfitpsi 0. Right: Relative error between the directional derivative of \scrE computed in
terms of the adjoint of \scrM via (4.3) and (4.4) and using a finite difference with increment \epsilon .
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Fig. 4. Left: Optimal pulse for the periodically stationary pulse obtained using the parameters
given at the beginning of section 7. Right: Spectrum of the monodromy operator for the optimal pulse
shown in the left panel. The eigenvalues of the discretized operator are shown with blue circles, and
the essential spectrum obtained using (6.7) is shown with the solid red line.
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FLOQUET STABILITY OF PERIODIC LASER PULSES 981

function in (4.2) was \widetilde \scrE = 8\times 10 - 3, which the optimization method then reduced to\widetilde \scrE = 5 \times 10 - 27 in 36 iterations. In Figure 4 (right panel), we show the numerically

computed spectrum of the modified monodromy operator \widetilde \scrM with blue circles. A
portion of this spectrum agrees with the essential spectrum obtained using (6.7),
which is shown with the solid red line. In addition, counting multiplicities, there are
12 eigenvalues that are not part of the essential spectrum. We label them \lambda 1, \cdot \cdot \cdot , \lambda 12
in order of decreasing magnitude. First, there is a multiplicity two eigenvalue at
\lambda = 1, which agrees with the theoretical predictions in Proposition 6.1. The error
in the phase invariance eigenvalue is 10 - 13, while that in the translation invariance
eigenvalue is 4\times 10 - 11. In Figure 5, we plot the amplitude A(x) := \| u(x)\| R2 of the
corresponding phase invariance eigenfunction (left panel) and translation invariance
eigenfunction (right panel). The numerically computed eigenfunctions are shown with
blue dots, and the (normalized) theoretical eigenfunctions in Proposition 6.1 are shown
with black solid lines. The excellent agreement with both the essential spectrum and
the theoretically predicted eigenvalues and eigenfunctions at \lambda = 1 provides strong
validation of the numerical method.

There are two additional eigenvalues on the real axis at \lambda 5 = 0.8987 and \lambda 12 =
0.7773. The amplitude of the eigenfunction corresponding to \lambda 5, which is shown with
the red-dashed line in the right panel of Figure 5, is very similar to the translation
invariance eigenfunction. Similarly, the eigenfunction corresponding to \lambda 12, which
is shown with the red-dashed line in the left panel of Figure 5, is very similar to
the phase invariance eigenfunction. Finally, there are four eigenvalues near the edge
of the upper arm of the essential spectrum. The corresponding eigenfunctions are
shown in Figure 6. We observe that the number of oscillations in the amplitude of
these eigenfunctions increases as the distance from the eigenvalue to the edge of the
essential spectrum decreases.

To investigate the extent of the region in parameter space where stable pulses ex-
ist, we performed three parameter continuation studies. In [39], we reported on how
the parameters in the saturable absorber affect the essential spectrum. Here we focus
on the parameters in the fiber amplifier. Starting from the system parameters given
above, we first increased the unsaturated gain from g0 = 6 to g0 = 7 in increments
of 0.1. During this parameter continuation, the peak power of the pulse increased

4 5 6
0

0.1

0.2

0.3
Theory

Phase

Phase-like

4 5 6
0

0.1

0.2

Theory

Translation

Trans-like

Fig. 5. Left: Phase invariance eigenfunctions: theoretical (black solid line) and numerical (blue
dots) eigenfunctions with \lambda = 1 and numerical eigenfunction corresponding to \lambda = 0.7773 (red dashed
line). Right: Translation invariance eigenfunctions: theoretical (black solid line) and numerical
(blue dots) eigenfunctions with \lambda = 1 and numerical eigenfunction corresponding to \lambda = 0.8987 (red
dashed line).
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Fig. 6. Left: Eigenfunctions corresponding to the eigenvalues \lambda 10 = 0.6040 + 0.6393i and \lambda 7 =
0.7711+ 0.4587i. Right: Eigenfunctions corresponding to the eigenvalues \lambda 8 = 0.4961+ 0.7397i and
\lambda 4 = 0.5335 + 0.7379i, which are the closest and the next to closest to the edge of the upper arm of
the essential spectrum.

linearly from 382 to 493 W, and the root mean square (RMS) pulse width increased
linearly from 95 to 108 fs. In the left panel of Figure 7, we show the essential spec-
trum at the final value g0 = 7. In general, the edge of the upper arm of the essential
spectrum is located at \lambda +(0), where \lambda +(\omega ) is given in (6.7). In particular, | \lambda +(0)| is
determined by the balance of saturable gain and loss in the system, and arg(\lambda +(0)) = \theta 
is the optimized phase angle in (4.1). Just as for the standard soliton, as the peak
power of the pulse increases (due to the increase in g0), the angle \theta increases, rotat-
ing the upper arm of the essential spectrum counterclockwise. In addition, the four
complex eigenvalues in the first quadrant rotate in the same direction, approximately
maintaining their distance from the unit circle. Significantly, at g0 = 7, there is a fifth
eigenvalue located just above \lambda +(0). This eigenvalue bifurcates out of the edge of the
essential spectrum when g0 = 6.5. Finally, the phase-like eigenvalue moves slightly in,
and the translation-like eigenvalue does not move.

Next, returning to the original set of parameters, we increased the saturation
energy from Esat = 200 to Esat = 260 pJ in increments of 5 pJ. The peak power of
the pulse increased linearly from 382 to 461 W, and the RMS pulse width increased
linearly from 95 to 104 fs. In the right panel of Figure 7, we show the essential
spectrum at Esat = 260 pJ. Qualitatively, the same changes occur in the spectrum as
when we increased g0, except that the amount of rotation is not quite as large since
the final peak power is lower.

Finally, we increased the fiber amplifier bandwidth from \Omega g = 50 to \Omega g = 145 THz
in increments of 0.5 THz and then jumped to \Omega g = 500 THz. During this parameter
continuation, the peak power decreased from 382 to 379 W at \Omega g = 70 THz and then
increased to 382 W at \Omega g = 500 THz. The RMS pulse width increased from 95 to
110 fs. In the left panel of Figure 8, we show the essential spectrum at \Omega g = 500
THz. Although the peak power does not change much, the wider filter still results in
a more nonlinear system, which results in \theta increasing from 56\circ to 67\circ . In addition,
the essential spectrum spirals much more slowly into the origin (we only show the
first few rotations in the red curves). We also see that the translation-like eigenvalue
on the real axis has moved out to \lambda = 0.999, while the phase-like eigenvalue moves
inward slightly, crossing the expanding essential spectrum curve. Meanwhile, the four
discrete eigenvalues in the first quadrant move outward toward the unit circle, slowing
down significantly once \Omega g > 140 THz. In the right panel, we see that once \Omega g = 65
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Fig. 7. Spectra of the monodromy operator for g0 = 7 (left) and E\mathrm{s}\mathrm{a}\mathrm{t} = 260 pJ (right).
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Fig. 8. Spectra of the monodromy operator for \Omega g = 500 THz (left) and \Omega g = 65 THz (right).

THz, a fifth eigenvalue has bifurcated out of the essential spectrum. In the left panel
of Figure 9, we see this eigenvalue emerging from the essential spectrum at \Omega g = 60
THz, slightly behind the edge.

For stationary pulses, it is well known [4, 6] that there can be significant errors
when the spectrum of the linearized operator \scrL is approximated by the set of eigen-
values of a matrix approximation, L. Specifically, if an eigenfunction decays very
slowly, there can be a large error in the corresponding eigenvalue due to windowing
effects. This phenomenon only occurs for eigenvalues that are sufficiently close to the
essential spectrum. In addition, the portion of the spectrum of L that corresponds
to the essential spectrum may not agree with an analytical formula for \sigma ess(\scrL ). For
the eigenvalues of \scrL , the issue can be resolved by using computational Evans function
methods [6, 17] or by the iterative solution of an appropriately formulated nonlinear
eigenproblem [37, 48]. However, for periodically stationary pulses, even those ob-
tained as solutions of constant coefficient nonlinear wave equations, there is currently
no numerical method for addressing this problem. Although it is no guarantee of
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Fig. 9. Left: Detail of the spectrum near the upper arm of the essential spectrum for \Omega g =
60 THz. Right: Eigenfunction corresponding to the eigenvalue that bifurcates out of the essential
spectrum on the left computed using L= 10 ps, N = 512 (blue dashed line) and L= 20 ps, N = 1024
(red solid line).

accuracy, the best one can do is to double the time window L and the number of
points N and look for changes in the location of the eigenvalues near the essential
spectrum and in the decay rates of the corresponding eigenfunctions. Indeed, we veri-
fied that the location of the eigenvalue bifurcating out of the essential spectrum in the
left panel of Figure 9 does not change, and, as we see in the right panel, neither does
the decay rate of the corresponding eigenfunction. In the left panel, we do, however,
see some discrepancy between the analytic formula for the essential spectrum and
its discrete approximation. Similar differences occur near the edge of the essential
spectrum for all the simulations we performed. However, they are only evident on the
larger scale in the left panel of Figure 8.

8. Conclusions. In this paper, we described and validated accurate and effi-
cient computational methods to discover periodically stationary pulses in a lumped
model of a fiber laser and to assess their stability using the spectrum of a monodromy
operator. In particular, we demonstrated excellent agreement between the numeri-
cally computed spectrum on the one hand and theoretical formulae for the essential
spectrum and a multiplicity two eigenvalue on the other. Our simulations suggest
that there is a large region in the parameter space of the fiber amplifier in which the
Kim laser operates stably. An advantage of the spectral approach to stability over
the traditional evolution approach used in the engineering community is that changes
in the spectrum can be used to predict the onset of an instability. However, an unre-
solved theoretical problem is to establish a result relating spectral stability to linear
stability in this context.

To be useful for quantitative modeling of experimental lasers, the methods de-
scribed here need to be extended to more realistic models of saturable absorbers
(semiconductor saturable absorber mirrors) [30] and to erbium-doped fiber ampli-
fiers modeled by multilevel rate equations [12]. In particular, we plan to apply our
approach to the Mamyshev oscillator [36, 40, 43], which has extremely large pulse
variations in which one-half of the pulse is destroyed each round trip before being
regenerated. As is well appreciated by practitioners in the field, a major challenge
of optimizing for stationary and periodically stationary pulses is the need for very
good initial guesses. Further research on parameter continuation methods for pulse
solutions of nonlinear wave equations and lumped models is required to address this
challenge [46]. In addition, since the majority of computational time is devoted to
computing the monodromy matrix, it may prove advantageous to employ a matrix-
free iterative method to compute only the handful of eigenvalues that are not already
identified by the theory.
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FLOQUET STABILITY OF PERIODIC LASER PULSES 985

A major challenge in the modeling of fiber lasers is to quantify the effects that
quantum mechanical and technical noise sources have on the performance of the sys-
tem [34, 35]. Traditionally, this has been accomplished using theory for idealized
models and highly computationally intensive Monte Carlo simulations for more real-
istic ones. Building on classical results of soliton perturbation theory, Menyuk and
Wang have shown how to efficiently quantify the system performance of stationary
pulses in an averaged laser model by integration of the noise probability density func-
tion against numerically computed eigenfunctions [30]. An important next step is to
extend this approach to periodic stationary pulses.
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