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MaxiMin Active Learning in Overparameterized
Model Classes

Mina Karzand

Abstract—Generating labeled training datasets has become a
major bottleneck in Machine Learning (ML) pipelines. Active
ML aims to address this issue by designing learning algorithms
that automatically and adaptively select the most informative
examples for labeling so that human time is not wasted labeling
irrelevant, redundant, or trivial examples. This paper proposes a
new approach to active ML with nonparametric or overparame-
terized models such as kernel methods and neural networks. In
the context of binary classification, the new approach is shown to
possess a variety of desirable properties that allow active learn-
ing algorithms to automatically and efficiently identify decision
boundaries and data clusters.

Index Terms—Active learning, overparameterized learning,
neural networks, reproducing Kernel Hilbert spaces, pool-based
learning.

I. INTRODUCTION

HE FIELD of Machine Learning (ML) has advanced
Tconsiderably in recent years, but mostly in well-defined
domains using huge amounts of human-labeled training data.
Machines can recognize objects in images and translate text,
but they must be trained with more images and text than a
person can see in nearly a lifetime. The computational com-
plexity of training has been offset by recent technological
advances, but the cost of training data is measured in terms
of the human effort in labeling data. People are not getting
faster nor cheaper, so generating labeled training datasets has
become a major bottleneck in ML pipelines. Active ML aims
to address this issue by designing learning algorithms that
automatically and adaptively select the most informative exam-
ples for labeling so that human time is not wasted labeling
irrelevant, redundant, or trivial examples. This paper explores
active ML with nonparametric or overparameterized models
such as kernel methods and neural networks.

Deep neural networks (DNN5s) have revolutionized machine
learning applications, and theoreticians have struggled
to explain their surpising properties. DNNs are highly
overparameterized and often fit perfectly to data, yet
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remarkably the learned models generalize well to new data.
A mathematical understanding of this phenomenom is begin-
ning to emerge [1], [2], [3], [4], [5], [6], [7], [8]. This work
suggests that among all the networks that could be fit to the
training data, the learning algorithms used in fitting favor
networks with smaller weights, providing a sort of implicit
regularization. With this in mind, researchers have shown that
shallow (but wide) networks and classical kernel methods fit to
the data but regularized to have small weights (e.g., minimum
norm fit to data) can generalize well [2], [8], [9], [10].

Despite the recent success and new understanding of these
systems, it still is a fact that learning good neural network
models can require an enormous number of labeled data. The
cost of obtaining labels can be prohibitive in many applica-
tions. This has prompted researchers to investigate active ML
for kernel methods and neural networks [11], [12], [13], [14],
[15], [16]. None of this work, however, directly addresses over-
parameterized and interpolating regime, which is the focus
in this paper. Active ML algorithms have access to a large
but unlabeled dataset of examples and sequentially select the
most “informative” examples for labeling [17], [18] . This can
reduce the total number of labeled examples needed to learn
an accurate model.

Broadly speaking, active ML algorithms adaptively select
examples for labeling based on two general strategies [19].
The first is to select examples that rule-out as many (incom-
patible) classifiers as possible at each step. In effect, this
leads to algorithms that tend to label examples near decision
boundaries. The second strategy involves discovering cluster
structure in unlabeled data and labeling representative exam-
ples from each cluster. We show that our new MaxiMin active
learning approach automatically exploits both these strategies,
as depicted in Figure 1.

This paper builds on a new framework for active learning
in the overparameterized and interpolationg regime, focus-
ing on kernel methods and two-layer neural networks in the
binary classification setting. The approach, called MaxiMin
Active Learning, is based on mininum norm interpolat-
ing models. Roughly speaking, at each step of the learn-
ing process the maximin criterion requests a label for the
example that is most difficult to interpolate. A minimum
norm interpolating model is constructed for each possible
example and the one yielding the largest norm indicates
which example to label next. The rationale for the max-
imin criterion is that labeling the most challenging examples
first may eliminate the need to label many of the other
examples.
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Fig. 1. MaxiMin Active Learning strategically selects examples for labeling
(red points). (a) reduces to binary search in simple 1-d threshold problem
setting; (b) labeling is focused near decision boundary in multidimensional
setting; (c) automatically discovers clusters and labels representative examples
from each.

The maximin selection criterion is studied through experi-
ments and mathematical analysis. We prove that the criterion
has a number of desirable properties:

e It tends to label examples near the current (estimated)
decision boundary and close to oppositely labeled exam-
ples, allowing the active learning algorithm to focus on
learning decision boundaries.

e It reduces to optimal bisection in the one-dimensional
linear classifier setting.

e A data-based form of the criterion also provably dis-
covers clusters and also automatically generates labeled
coverings of the dataset.

Experimentally, we show that these properties generalize in
several ways. For example, we find that in multiple dimensions
the maximin criterion leads to a multidimensional bisection-
like process that automatically finds a portion of the decision
boundary and then locally explores to efficiently identify
the complete boundary. We also show that MaxiMin Active
Learning can learn hand-written digit classifiers with far fewer
labeled examples than traditional passive learning based on
labeling a randomly selected subset of examples.

II. A NEW ACTIVE LEARNING CRITERION

At each iteration of the active learning algorithm, looking at
the currently labeled set of samples, a new unlabeled point is
selected to be labeled. The criterion we are proposing to pick
the samples to be labeled is based on a ‘maximin’ operator. We
will describe the criterion in its most general form along with
the intuition behind this choice of criterion. In the remainder
of the paper, we will go through some theoretical results about
the properties of variations of this criterion in various setups
along with some additional descriptive numerical evaluations
and simulations.

A. Nonparametric Pool-Based Active Learning

At each time step, the algorithm has access to a pool of
labeled samples and a set of unlabaled samples. In other
words, we have a partially labeled training set. Let £ =
{(x1,%1), ..., (x1,yL)} be the set of labeled examples so far.
We assume x; € X where X is the input/feature space and
binary valued labels y; € {—1, +1}. Let / € X be the set of
unlabeled samples.

In the interpolating regime, the goal is to correctly label
all the points in U so that the training error is zero: Passive
learning generally requires labeling every point in /. Active
learning sequentially selects points in I/ for labeling with the
aim of learning a correct classifier without necessarily labeling
all of U. Our setting can be viewed as an instance of pool-
based active learning.

At each iteration, one unlabeled sample, u* € U is selected,
labeled and added to the pool of labeled samples. The selec-
tion process is designed to pick the samples which are most
informative upon being labeled. The proposed notion of score
is the measure of informativeness of each sample u € U at
each time: the score of each unlabaled sample is computed,
and the sample with the largest score is selected to be labeled.

u* = argmax, o Score(u). (D

If there are multiple maximizers, then one is selected uni-
formly at random. Note that for any unlabeled sample u € U,
the value of score(u) depends implicitly on the set of currently
labeled points, £. That is, information gained by labeling u
depends on the current knowledge of the learner. To define
our proposed notion of score, we define minimum norm
interpolating function and introduce some notations next.

B. Minimum Norm Interpolating Function

Let F be a class of functions mapping X to R, where X
is the input/feature space,. We assume the class F is rich
enough to interpolate the training data. For example, F could
be a nonparametric infinite dimensional Reproducing Kernel
Hilbert Space (RKHS) or an overparameterized neural network
representation.

Given the set of labeled samples, £, and a class of functions
F, let f € F be the interpolating function such that f(x;) = y;
for all (x;, y;) € L. Note that there may be many functions that
interpolate a discrete set of points such as £. Among these,
we choose f to be the minimum norm interpolator:

f(x) = argmin,cx |gllF
s.t.  g(x) = y;, forall (x;,y;) € L. 2)

Clearly, the definition of f depends on the set of currently
labeled samples £ and the function norm ||-|| 7, although we
omit these dependencies for ease of notation. The choice of F
and the norm ||-|| 7 is application dependent. In this paper, we
focus on (1) function classes represented by an overparame-
terized neural network representation with the £> norm of the
weight vectors and (2) reproducing kernel Hilbert spaces with
the corresponding Hilbert norm.

For unlabeled points u € U and ¢ € {—1, 41}, define fZ”(x)
is the minimum norm interpolating function based on current
set of labeled samples £ and the point u € U with label £:

fl) = argming r IlglF
s.t. g(x;) =y, forall (xj,y;) € £
gu) = ¢. (3)

We use this definition in the next subsection to define the
notion of score.
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C. Definition of Proposed Notion of score

Roughly speaking, we want our selection criterion to pri-
oritize labeling the most “informative” examples. Since the
ultimate goal is to correctly label every example in U, we
design score(u) to measure the how hard it is to interpolate
after adding u to the set of labeled points. The intuition is that
attacking the most challenging points in the input space first
may eliminate the need to label other ‘easier’ examples later.

Note that we need to compute score(u) without know-
ing the label of u. To do so, we come up with an estimate
of label of u, denoted by ¢(u) € {—1,+1} and compute
score(u) assuming that upon labeling, # will be labeled £(u).
We propose the following criterion for choosing £(u):

“4)

Operating in the interpolating regime, we estimate the label of
any unlabeled sample, u, to be the one that yields the minimum
norm interpolant (i.e., the “smoother” of the two interpolants
among the two possible functions f¥ (x) and f (x)).

Define

E(u) == argminge( 4yl @ F.

P = fly (0 5)

to be the interpolating function after adding the sample u with
the label £(u), defined in (4).
We propose two notions of score. For u € U, define

scorer(u) = |[f*(x) | ~ (6)
scorep(u) = f*(x) —f)||, (7

where || - || 7 is the norm associated the function space F. The
function f is the minimum norm interpolator of the labeled
examples in £ (defined in (2)), and f*(x) is defined (5) as the
minimum norm interpolator after adding u with the estimated
label £(u) to the set of labeled points. Also, define
lglo =/ 18| dPx (x), ®)
X
where Py is the distribution of x. In practice, Py is the empir-
ical distribution of /. We refer to the (6) as the function norm
score and (7) as the data-based norm score.!

The distinction between the two definitions of the score
function is as follows. Scoring unlabeled points according to
the definition score r priotorizes labeling the examples which
result in minimum norm interpolating functions with largest
norm. Since the norm of the function can be associated with
its smoothness, roughly speaking, this means that this crite-
rion picks the points which give the least smooth interpolating
functions. However, scorer is insensitive to the distribution
of data. The data-based scorep, in contrast, is sensitive to
the distribution of the data. Measuring the difference between

1Operationally, to compute the data-based norm of any function, the algo-
rithm uses the probability mass function of set of unlabeled points as a proxy
for the input probability density function over the feature space X. In par-
ticular, the algorithm approximates ||g||p by the average of the function over
the set of unlabeled points: | gllp & Wl\ Iy |g(u)\2. High density of set
of unlabeled points and some mild regularity conditions guarantee that this is
a good approximation. Throughout the paper, we use (8) to prove theoretical
statements and its approximation in the numerical simulations.

the new interpolation f* and the previous one makes this also
sensitive to the structure of the function class.

With these definitions in place, we state the MaxiMin Active
Learning criterion as follows. Given labeled data £, the next
example u* € U to label is selected according to

f* =arg min
refremy

u* = arg max score(u)
ucld

IfllF . Yueld

with either score r or scorep.

ITI. MAXIMIN ACTIVE LEARNING WITH
NEURAL NETWORKS

A. Overparameterized Neural Networks and Interpolation

Neural networks are often highly overparameterized and
exactly fit to training data, yet remarkably the learned models
generalize well to new data. A mathematical understanding of
this phenomenom is beginning to emerge [1], [2], [3], [4], [5],
[6], [7], [8]. This work suggests that among all the networks
that could be fit to the training data, the learning algorithms
used in training favor networks with smaller weights, pro-
viding a sort of implicit regularization. With this in mind,
researchers have shown that even shallow networks and clas-
sical kernel methods fit to the data but regularized to have
small weights (e.g., minimum norm fit to data) can generalize
well [2], [8], [9], [10]. The functional mappings generated by
wide, two-layer neural networks with Rectified Linear Unit
(ReLU) activation functions were studied in [20]. It is shown
that exactly fitting such networks to training data subject to
minimizing the ¢>-norm of the network weights results in a
linear spline interpolation. This result was extended to a broad
class of interpolating splines by appropriate choices of acti-
vation functions [21]. Our analysis of the MaxiMin active
learning with neural networks will leverage these connections.

B. Neural Network Regularization

It has been long understood that the size of neural network
weights, rather than simply the number of weights/neurons,
characterizes the complexity of neural networks [22]. Here
we focus on two-layer neural networks with ReLU activation
functions in the hidden layer. If x € R? is input to the network,
then the output is computed by the function

N
Fobe@) = vyo(ulx+by) +c. )

n=1

where o(-) = max{0, -} is the ReLU activation, w :=
{vi, un}ff: | are the “weights” of the network, and b = {b,}
and c are constant “bias” terms. The “norm” of f,, p . is defined
as |[fwp.cll == llwl2, the £2-norm of the vector of network
weights. We use the term norm in quotes because techni-
cally the weight norm does not correspond to a true norm
on the function fy, p . since, for example, constant functions
Jw.b.c = c have ||w||2 = 0. From now on we will drop the sub-
scripts and just write f for ease of notation. Let {(x;, yi)}?i | be
a set of training data. The minimum “norm” neural network
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interpolation of these data is the solution to the optimization

min |w]|2 subject to f(x;)) =y;, i=1,..., M.
w

A solution exists if the number of neurons N is sufficiently
large (see [23, Th. 5.1]).

In Section V we explore the behavior of MaxiMin active
learning through numerical experiments using both the func-
tion “norm” score and the data-based norm score. In all our
experiments and theory, we assume the binary classification
setting where y; = =+1. Broadly speaking, we observe the
following behaviors.

e With the function “norm” score the MaxiMin active
learning algorithm tends to sample aggressively in the
vicinity of the boundary, prefering to gather new labels
between the closest oppositely labeled examples.

e The data-based norm score is sensitive to the distribu-
tion of the data. It strikes a balance between exploiting
regions between oppositely labeled examples (as in the
function-based case) and exploring regions further away
from labeled examples. Thus we see evidence that the
data-based norm can effectively seek out the decision
boundary and explore data clusters.

These behaviors are supported by a formal analysis of
MaxiMin active learning in one dimension, discussed next.

C. MaxiMin Active Learning in One-Dimension

Our analysis of MaxiMin active learning with neural
networks will focus on the behavior in one-dimension.
We show that MaxiMin active learning with a two-layer
ReLU netwok recovers optimal bisection learning strate-
gies. The following characterization of minimum ‘“norm”
neural network interpolation in one-dimension follows
from [20], [21] (see [21, Th. 4.4 and Proposition 6.1]).

Theorem 1: Let f : R — R be a two-layer neural network
with ReLU activation functions and N hidden nodes as in (9).
Let {(x,',yi)}?i] be a set of training data. If N > M, then a
solution to the optimization

min ||w|2 subject to f(x;)) =y;, i=1,....M
w

is a minimal knot linear spline interpolation of the points
{(ai, y .

In our analysis, we exploit the equivalence between mini-
mum “norm” neural networks and linear splines. Specifically,
a solution to the optimization is an interpolating function that
is linear between each pair of neighboring points. This ensures
that given a pair of neighboring labeled points x; and x» and
any unlabeled point x| < u < xp, adding u to the set of labeled
points can only potentially change the interpolating function
between x; and x;. To eliminate uncertainty in the bound-
ary conditions of the interpolation, we assume that the neural
network is initialized by labeling the leftmost and rightmost
points in the dataset and forced to have a constant extension
to the left and right of these points (this can be accomplished
by adding two artificial points to the left and right with the
same labels as the true endpoints).

The main message of our analysis is that MaxiMin active
learning with two-layer ReL.U networks recovers optimal

bisection (binary search) in one-dimension. This is summa-
rized by the next corollary which follows in a straightforward
fashion from Theorems 2 and 3.
Corollary 1: Consider N points uniformly distributed in the
interval [0, 1] labeled according to a k-piecewise constant
function f so that y; = f(x;) € {—1,+1},i = 1,...,N,
and length of the pieces are ®(1/K). Then after labeling
O(klog N) examples, the MaxiMin active learning with a two-
layer ReLU network correctly labels all N examples (i.e., the
training error is zero).
The corollary follows from the fact that the MaxiMin criteria
(both function norm and data-based norm) selects the next
example to label at the midpoint between neighboring and
oppositely labeled examples (i.e., at a bisection point). This is
characterized in the next two theorems. First we consider the
function “norm” criterion. The proof of the following theorem
appears in Appendix A.1.
Theorem 2: Let L be a set of labeled examples and let u
be an unlabeled example. Let fi be the minimum “norm”
interpolator of LU (u, 4+1) and let f be the minimum “norm”
interpolator of £ U (u, —1). Define the score of an unlabeled
example u as scorex(u) = minf|[f{[l, [[f*[}, where |[f|| =
lwl2, the neural network weight norm. Then, the selection
criterion based on score r has the following properties
1) Let x; and xp be two oppositely labeled neighboring
points in £, i.e., no other points between x; and x, have
been labeled and y; # y,. Then for all x; < u < xp,
score £ (X422) > score r(u).

2) Let x; < x2 and x3 < x4 be two pairs of oppositely
labeled neighboring points (i.e., y; # y2 and y3 # ya)
such that x; — x; > x4 — x3. Then,

score;(#) < score;(#).

3) Let x5 and x¢ be two identically labeled neighboring
points in L, i.e., y5 = y¢. Then for all x5 < u < x¢, the
function score r(u) is constant.

4) For any pair of neighboring oppositely labeled points
x1 and xp, any pair of neighboring identically labeled
points x5 and xg, any x; < u < xo and any x5 < v < X,
we have

score r(v) < score r(u).

Now we turn to the data-based norm. Here we observe the
effect of the data distribution on the bisection properties. The
properties mirror those in Theorem 2 except in the case of
the second property. The data-based norm criterion tends to
sample in the largest (most data-massive) interval between
oppositely labeled points, whereas the function-based norm
criterion favors points in the smallest interval.

Theorem 3: Let the distribution P(X) be uniform over an
interval. Let £ be a set of labeled examples and let u# be
an unlabeled example. Let f{ be the minimum “norm” inter-
polator of £ U (u,+1) and let f* be the minimum “norm”
interpolator of £ U (u, —1) and let f* = AGoe(pu pu) lgll
consistent with notations in (3) and (5). Then scorep(u) =
f IF“(x) — f(x)|? dPx(x), where f is the minimum “norm”
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interpolator based on the labeled data £. Then, the selection
criterion based on scorep has the following properties.

1) Let x; and x» be two oppositely labeled neighboring
points in L, i.e., y; # y». Then for all x; < u < x
scorep(¥322) > scorep(u).

2) Let x; < x and x3 < x4 be two pairs of oppositely
labeled neighboring labeled points (i.e., y; # y2 and
y3 # y4) such that xp — x; > x4 — x3. If the unlabeled
points are uniformly distributed in each interval and the
number of points is in (x1, x7) is less than the number

in (x4, x3), then
X1 +x2 X3+ x4
> scorep .
2 2

3) Let x5 and x¢ be two identically labeled neighboring
points in L, i.e., y5 = yg. Then for all x5 < v < xg, we
have scorep(v) = 0.

4) For any pair of neighboring oppositely labeled points
x1 and xp, any pair of neighboring identically labeled
points x5 and xg, any x| < u < xp and any x5 < v < X,
we have

scorep (

scorep(v) < scorep(u).

The proof appears in Appendix A.2.

IV. INTERPOLATING ACTIVE LEARNERS IN AN RKHS

In this section, we will focus on minimum norm inter-
polating functions in a Reproducing Kernel Hilbert Space
(RKHS). We present theoretical properties for general RKHS
settings, detailed analytical results in the one-dimensional set-
ting, and numerical studies in multiple dimensions. Broadly
speaking, we establish the following properties: the proposed
score functions

e tend to select examples near the decision boundary of f,
the current interpolator;

e the score is largest for unlabeled examples near the deci-
sion boundary and close to oppositely labeled examples, in
effect searching for the boundary in the most likely region of
the input space;

e in one dimension the interpolating active learner coincides
with an optimal binary search procedure;

e using data-based function norms, rather than the RKHS
norm, the interpolating active learner executes a tradeoff
between sampling near the current decision boundary and sam-
pling in regions far away from currently labeled examples, thus
exploiting cluster structure in the data.

A. Kernel Methods

A Hilbert space H is associated with an inner product:
(f, 8)y for f, g € H. This induces a norm defined by ||f|ly =
V. fl. A symmetric bivariate function K : X x X — R is
positive semidefinite if for all n > 1, and points {x;};_;, the
matrix K with element K;; = K(x;, x;) is positive semidefi-
nite (PSD). These functions are called PSD kernel functions.
A PSD kernel constructs a Hilbert space, H of functions on
f X — R For any x € X and any f € H, the function

K(-,x) € H and {f, K(-, x))34 = f(x). Throughout this section,
we assume K(x,x) = 1.

For the set of labeled samples £ = {(x1, y1), ..., (o2, yr)}
with y; € {—1, +1}, let the function f(x) be decomposed as

L
f@) =) aikix, x)
i=1

with o = K_ly, (10)
where K = [K;;];; is the L by L matrix such that K;; =
k(xi,xj) and y = [y1,... ,yL]T. Using reproducible kernels
implies that f(x) € H for the a RKHS #H. Then, f(x)
defined above is the minimum Hilbert norm interpolating func-
tion defined in (2). Using the property (K(x;, ), K(xj,-)) =
K(x;, xj), we have

IF)l3, =" Ka =y K 'y.

For u € U and ¢ € {—1, 41}, the minimum norm interpo-
lating unction f}(x), defined in (3) (based on currently labeled
samples £ and sample u with label £) is derived similarly:

L
£ = @k(xi, x) + Fry1k(u, x)

i=1

with @ =K, ', (11)
where
k(xy, u)
~ K a . ~
Ku:|:a£ bui|s a = : s ye=|:ii|,
k(xr, u)
and b = K(u, u). (12)

Throughout this paper, we use kernel such that K(x,x) = 1
for all x € X.

B. Properties of General Kernels for Active Learning

We first show that using kernel based function spaces for
interpolation, £(u) defined in (4) coincides with the sign of
value of current interpolator at u.

Proposition 1: For u € X and £ € {—, 4}, define f(x) and
/¢ (x) according to (2) and (3) in Section II. Then, £(u) defined
in (4) satisfies

[+ iffw) =0
E(“)—{—l if f(u) < 0.
Proof: Let ¥, = [vi.....yn. €17, a, = [K(x,u),

o K&, )T and b = K(u, u) = 1. Let K be the kernel
matrix for the elements in £ and K, be the kernel matrix
for the elements in £ U {u}, as defined in (12). Then, for
Le{-1,+1}

2 rmle @
e ly =5 K, ¥ =

x y—2¢ y" (K-a, aZ)_]a + (l—a,f K*Iau>

y! (K—a, az)_l
—1

_ 2
T ore1 (1 — EyT K lau) (©
Yy K y+ - =
1—alK 'a,

L -ty

1—alK'a,

®

IFeol3,
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where Schur’s complement formula gives (a) and Woodbury
Identity with some algebra gives (b). We are using the property
that K(x,x) = 1 and the diagonal elements of matrix K,, are
equal to one. (c) uses (10) for the minimum norm interpolating
function based on L, i.e., f(x). Hence, |[f{(x)|ly > /x|l
if and only if f(u) < O which gives the statement of
proposition. u

C. Radial Basis Kernels

From here on, we will focus on minimum norm interpolat-
ing functions with radial basis kernels. The kernel functions
we use have the following form: For x, x' € RY, h > 0 and
p>1,let

1
knp (x, x’) = exp(—z Hx — x/||p),

where [x[l, == (X4, )7 is the £, norm and |lx — ¥/, is
the Minkowski distance satisfying the triangle inequality. For
p = 1, 2 this category of kernels construct Reproducing Kernel
Hilbert Spaces. When the parameters % and p are specified, we
denote the kernel function & ,(x, y) by k(x, y).

13)

D. Laplace Kernel in One Dimension

To develop some intuition, we consider active learning in
one-dimension. The sort of target function we have in mind
is a multiple threshold classifier. Optimal active learning in
this setting coincides with binary search. We now show that
the proposed selection criterion based on scorey with Hilbert
norm associated with the Laplace kernels result in an optimal
active learning in one dimension (proof in Appendix B.1).

Proposition 2 (Maximin Criteria in One Dimension With
Laplace Kernel): Define K(x,x') = exp(—|x — X'|/h) to be
the Laplace kernel in one dimension and the minimum norm
interpolator function defined in Section IV-A. Let the selec-
tion criterion be based on scoreq (1) function defined in (6)
with the Laplace kernel Hilbert norm. Then the following
statements hold for any value of & > 0:

1) Let x; and xp be two neighboring labeled points in L.

Then scorey (X522) > scorey (u) for all x; < u < x,.

2) Let x; < x2 and x3 < x4 be two pairs of neighboring

labeled points such that x» — x1 > x4 — x3, then

« if y; # y> and y3 = ys. Then scorey (3132) >
scorey (B7%).

o if yy = y2 and y3 #
scorey (B5%).

o if y1 # y2 and y3 #
scorey (B7%).

o if yy = y2 and y3 =
scorey (B5%).

The key conclusion drawn from these properties is that the
midpoints between the closest oppositely labeled neighboring
examples have the highest score. If there are no oppositely
labeled neighbors, then the score is largest at the midpoint of
the largest gap between consecutive samples. Thus, the score
results in a binary search for the thresholds definining the
classifier. Using the proposition above, it is easy to show the
following result, proved in the Appendix B.3.

A

ys. Then scoreq (X132)

y4. Then scoreq (152)

IA

\

v4. Then scorey (X1322)

Corollary 2: Consider N points uniformly distributed in the
interval [0, 1] labeled according to a k-piecewise constant
function g(x) so that y; = g(x;) € {—1, +1} and length of the
pieces are roughly on the order of ®(1/K). Then by running
the proposed active learning algorithm with Laplace Kernel
and any bandwidth, after O(klog N) queries the sign of the
resulting interpolant f correctly labels all N examples (i.e.,
the training error is zero).

This statement is true for N > 5/h. The proof is provided
in Appendix B.3.

E. General Radial-Basis Kernels in One Dimension

In the next proposition, we look at the special case of
radial basis kernels, defined in Equation(13) applied to one
dimensional functions with only three initial points. We show
how maximizing scorey; with the appropriate Hilbert norm
is equivalent to picking the zero-crossing point of our current
interpolator.

Proposition 3 (One Dimensional Functions With Radial
Basis Kernels): Assume that for any pair of samples x, x’ € £
we have |x — x| > A. Assume Ah~YP > D for a constant
value of D. Let x; < xp < x3 € R, yy = y» = +1 and
y3 = —1. For u such that x; + A /2 < u < x3 — A /2, we have
scorey (u) < scorey (u*) where u* is the point satisfying
fw*) =0.

The proof is rather tedious and appears in Appendix C.I.
But the idea is based on showing that with small enough band-
width, |[f{|l is increasing in u in the interval [x; + A /2, x3 —
A /2] and ||f*|| is decreasing in u in the same interval. This
shows that max, minge(—1 41y Ify'll occurs at u* such that
|[ff|| = I[fZ*H. We showed that this is equivalent to the
condition f(u*) = 0.

FE. Properties of Data Based-Norm Criterion

Intuitively, scorep measures the expected change in the
squared norm over all unlabeled examples if u € U is selected
as the next point. This norm is sensitive to the particular distri-
bution of the data, which is important if the data are clustered.
This behavior will be demonstrated in the multidimensional
setting discussed next.

In this section, we present two theoretical results on the
properties of data-based norm selection criterion. To do so,
we will prove the properties of the selected examples based
on the data-based norm in the context of the clustered data. In
particular, if the support of the generative distribution Py (x)
is composed of several disjoint clusters, the data-based norm
criterion prioritizes labeling samples from bigger clusters first.
Subsequently, it selects a sample from each cluster to be
labeled. If the clustering in the dataset is aligned with their
labels (most of the samples in the same cluster are in the
same class), labeling one sample in each cluster ensures rapid
decay in the probability of error of the classifier as a function
of number of labeled samples. This behavior is consistent with
numerical simulations presented in Section V.

The next theorem will show that if the clusters are well-
separated (the distance between the clusters are sufficiently
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Fig. 2. Uniform distribution of samples in unit interval, multiple thresholds between %1 labels, and active learning using Laplace Kernel, Bandwidth= 0.1.

Probability of error of the interpolated function shown on right.

large), then the first example to be selected to for labeling is
in the biggest cluster.

Theorem 4 (First Point in Clustered Data): Fix p > 1 and
h > 0. Let the distribution P(X) be uniform over M disjoint
sets By, ..., By such that B; is an £, ball with radius r; and
center c;, i.e.,

Bi=Baplric) = |xe R x—cill, <n}.  (14)

Without loss of generality, assume 7| > rp > --- > rg. Define
D = min;4; |lc;—cjl|p—2r; as an upper bound for the minimum
distance between the clusters.

Assume £ = & and let the interpolating functions f be
defined in (10) with kp, (defined in (13)). The selection
criterion is based on the scorep function defined in (7). If

D> g[lnM - ln(l - (r2/r1)d>] and
then the first point to be labeled is in the biggest ball, Bj.

The proof is presented in Appendix C.1.

The next theorem shows that if the distance between the
clusters are sufficiently large and the radius of the clusters are
not too large, then the active learning algorithm based on the
notion of score with data-based norm labels one sample from
each cluster before zooming in inside the clusters.

Theorem 5 (Cluster Exploration): Let S be the support
of Py. Assume S = U?ilBi where B;’s are {,-balls with
radii r and centers ¢;. Define D = min;xjllc; — ¢jll, —
2r; to be the minimum distance between the clusters. Let
L = {x1,x2,...,x.} be L < M labeled points such that
X1 € B1,xp € By,...,x € By. Let the selection criterion
be based on the scorep function defined in (7). If r < h/3
and D > 12h1n(2M), then the next point to be labeled is in a
new ball (U?i 1+1Bi) containing no labeled points.

As a corollary of the above theorem, one can see that if the
ratio of the distance between the clusters to the radius of clus-
ters is sufficiently large (D/r > 36In(2M)), then one can use
a kernel with proper bandwidth which picks one sample from
each cluster initially. The proof is presented in Appendix C.2.

r1 < h/2,

V. NUMERICAL SIMULATIONS OF KERNEL BASED

In this Section, we present the outcome of numerical simu-
lations of the proposed selection criteria on synthetic and real
data. In this section, scorey is used to denoted the score
function defined in (6) with the Hilbert norm associated with

(a) (b) ()

Fig. 3. Data selection of Laplace kernel active learner. (a) Magnitude of
output map kernel machine trained to interpolate four data points as indicated
(dark blue is 0 indicating the learned decision boundary). (b) Max-Min RKHS
norm selection of next point to label. Brightest yellow is location of highest
score and selected example. (c) Max-Min selection of next point to label
using data-based norm. Both select the point on the decision boundary, but
the RKHS norm favors points that are closest to oppositely labeled examples.

the Laplace Kernel. Similarly, scorep is the score function
defined in (7) with the data-based norm.

A. Bisection in One Dimension

The bisection process is illustrated experimentally in the
Figure 2 below. scorey; uses the RKHS norm. For compari-
son, we also show the behavior of the algorithm using scorep
and the data-based norm. Data selection using either score
drives the error to zero faster than random sampling (as shown
on the left). We clearly see the bisection behavior of scorey,,
locating one decision boundary/threshold and then another, as
the proof corollary above suggests. Also, we see that the data-
based norm does more exploration away from the decision
boundaries. As a result, the data-based norm has a faster and
more graceful error decay, as shown on the right of the figure.
Similar behavior is observed in the multidimensional setting
shown in Figure 5.

B. Multidimensional Setting With Smooth Boundary

The properties and behavior found in the one dimensional
setting carry over to higher dimensions. In particular, the max-
min norm criterion tends to select unlabeled examples near the
decision boundary and close to oppositely labeled examples,
This is illustrated in Figure 3 below. The inputs points (training
examples) are uniformly distributed in the square [—1, 1] x
[—1, 1]. We trained an Laplace kernel machine to perfectly
interpolate four training points with locations and binary labels
as depicted in Figure 3(a). The color depicts the magnitude of
the learned interpolating function: dark blue is O indicating the
“decision boundary” and bright yellow is approximately 3.5.
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(a) (b) (c)

Fig. 4. Data selection of Laplace kernel active learner. (a) Unlabeled exam-
ples are only available in magenta shaded regions. (b) Max-Min selection
map using RKHS norm (6). (¢) Max-Min selection map using data-based
norm defined in Equation (7).
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Fig. 5. Uniform distribution of samples, smooth boundary, Laplace Kernel,

Bandwidth = 0.1. On left, sampling behavior of scorez; and scorep at
progressive stages (left to right). On right, error probabilities as a function of
number of labeled examples.

Figure 3(b) denotes the score for selecting a point at each
location based on RKHS norm criterion. Figure 3(c) denotes
the score for selecting a point at each location based on data-
based norm criterion discussed above. Both criteria select the
point on the decision boundary, but the RKHS norm favors
points that are closest to oppositely labeled examples whereas
the data-based norm favors points on the boundary further
from labeled examples.

Next we present a modified scenario in which the exam-
ples are not uniformly distributed over the input space, but
instead concentrated only in certain regions indicated by the
magenta highlights in Figure 4(a). In this setting, the example
selection criteria differ more significantly for the two norms.
The weight norm selection criterion remains unchanged, but
is applied only to regions where there are examples. Areas
with out examples to select are indicated by dark blue in
Figure 4(b)-(c). The data-based norm is sensitive to the non-
uniform input distribution, and it scores examples near the
lower portion of the decision boundary highest.

The distinction between the max-min selection criterion
using the RKHS vs. data-based norm is also apparent in the
experiment in which a curved decision boundary in two dimen-
sions is actively learned using a Laplace kernel machine, as
depicted in Figure 5 below. scorey is the max-min RKHS
norm criterion at progressive stages of the learning process
(from left to right). The data-based norm is used in scorep
defined in Equation (7). Both dramatically outperform a pas-
sive (random sampling) scheme and both demonstrate how
active learning automatically focuses sampling near the deci-
sion boundary between the oppositely labeled data (yellow
vs. blue). However, the data-based norm does more exploration
away from the decision boundary. As a result, the data-based
norm requires slightly more labels to perfectly predict all
unlabeled examples, but has a more graceful error decay, as
shown on the right of the figure.

J
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log probability of error
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scorep
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or

10 20 30 40 50 60 70 80
number of labeled samples

Fig. 6. Uniform distribution of samples, smooth boundary, Laplace Kernel,
Bandwidth = 0.1. On left, sampling behavior of score; and scorep at
progressive stages (left to right). On right, error probabilities as a function of
number of labeled examples.

Fig. 7. Points in blue and yellow clusters are labeled +1 and —1, respectively.
The left figure uses scoreq; to be the score function defined in (6) with
the Hilbert norm associated with the Laplace Kernel. Similarly, scorep is
the score function defined in (7) with the data-based norm. The first 13
samples selected by scoreq; and scorep are depicted as black dots. scorep
has labeled one sample from each cluster, but scorey; has not labeled any
samples from 5 clusters. Note that scoreq; has spent some of the sample
budget to discriminate between nearby clusters with opposite labels.

C. Multidimensional Setting With Clustered Data

To capture the properties of the proposed selection criteria
in clustered data, we implemented the algorithm on synthetic
clustered data in Figures 6 and 7. We demonstrate how the
data-based norm also tends to automatically select represen-
tive examples from clusters when such structure exists in the
unlabeled dataset. Figure 6 compares the behavior of selec-
tion based on scoreyln with the RKHS norm and scorep
with data-based norm, when data are clusters and each cluster
is homogeneously labeled. We see that the data-based norm
quickly identifies the clusters and labels a representative from
each, leading to faster error decay as shown on the right.

In the setup in Figure 7, the samples are generated based
on a uniform distribution on 13 clusters. Points in blue and
yellow clusters are labeled +1 and —1, respectively. We run
the two variations of proposed active learning algorithms and
compare their sampling strategy in this setup. The left figure
uses scorey to be the score function defined in (6) with the
Hilbert norm associated with the Laplace Kernel. Similarly,
ScCorep is the score function defined in (7) with the data-based
norm.

The selection criterion based on Scorey; prioritizes sam-
pling on the decision boundary of the current classifier where
the currently oppositely labeled samples are close to each
other. This behavior of the algorithm based on scorey in one
dimension is proved in Sections IV-D and IV-E. Alternatively,
scorep prioritizes labeling at least one sample from each
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Fig. 8.  Probability of error for learning a classification task on MNIST
data set. The performance of three selection criteria for labeling the samples:
random selection, active selection based on scoreqy, and active selection
based on scorep. The first curve depicts the probability of error on the training
set and the second curve is the probability of error on the test set.

cluster. Hence, after labeling 13 samples, the active learning
algorithm based on scorep has one sample in each cluster, but
the active learning algorithm based on scorep has not labeled
any samples in 5 clusters.

D. MNIST Experiments

Here we illustrate the performance of the proposed active
learning method on the MNIST dataset. We ran algorithms
based on our proposed selection criteria for a binary classifi-
cation task on MNIST dataset. The binary classification task
used in this experiment assigns a label —1 to any digit in set
{0,1,2,3,4} and label +1 to {5,6,7,8,9}. The goal of the
classifier is detecting whether an image belongs to the set of
numbers greater or equal to 5 or not. We used Laplace kernel
as defined in (13) with p = 2 and & = 10 on the vectorized
version of a dataset of 1000 images. In Figures 8, scorey is
the score function defined in (6) with the Hilbert norm asso-
ciated with the Laplace Kernel. Similarly, scorey, is the score
function defined in (7) with the data-based norm.

To asses the quality of performance of each of the selection
criteria, we compare the probability of error of the interpolator
at each iteration. In particular, we plot the probability of error
of the interpolator as a function of number of labeled samples,
using the scoreq; and scorep functions on the training set and
test set separately. For comparison, we also plot the probability
of error when the selection criterion for picking samples to be
labeled is random.

Figure 8 (a) shows the decay of probability of error in the
training set. When the number of labeled samples is equal
to the number of samples in the training set, it means that all
the samples in training set are labeled and used in constructing
the interpolator. Hence, the probability of error on the training
set for any selection criterion is zero when number of labeled
samples is equal to the number of samples in the training set.
Figure 8 (b) shows the probability of error on the test set as a
function of the number of labeled samples in the training set
selected by each selection criterion.

1) Clustering in MNIST: The binary classification task used
in the MNIST experiment assigns a label —1 to any digit in
set {0, 1,2, 3,4} and label +1 to {5, 6, 7, 8, 9}. We expect that
the images are clustered where each cluster would correspond
to the images of a digit. We expect that the advantageous
behavior of using data-based norm criterion in clustered data
is one of the reasons for faster decay of probability of error
of the scorep in Figure 8.

Fig. 9. The histogram of the handwritten digits associated with the labeled
samples after labeling 100 samples. The first histogram is for the selection cri-
terion scoreq, and the second histogram is for the selection criterion scorep.
Notably, scoreq; has not labeled any of the images of the digit 0.

To verify this intuition, we look at the samples that were
chosen by each criterion and the digit corresponding to that
sample. Note that this digit is the number represented in the
image and not the label of the sample since the label of each
sample is +1 or —1 depending whether the number is greater
than 4 or not. After labeling 100 samples, we look at histogram
of the digits associated with the labeled samples with each
criterion scorey and scorep. If samples of each cluster are
chosen to be labeled uniformly among clusters, we would see
about 10 labeled samples in each cluster. Figure 9 shows the
histogram described above for two variations of the selection
criteria based on scorey; or scorep. We observe that selecting
samples based on scorep is much more uniform among the
clusters. On the contrary, selecting samples based on scorey
gives much less uniform samples among clusters. In the partic-
ular example given in Figure 9, we see that even after selecting
100 samples to be labeled, no sample in the cluster of images
of number O has been labeled in this instance of execution of
the selection algorithm based on notion of scorey,.

To quantify the uniformity of selecting samples in differ-
ent clusters, we ran this experiment 20 times and estimated
the standard deviation of number of labeled samples in each
cluster after labeling 100 samples. Note that since we have
10 clusters, the mean of the number of labeled samples in
each cluster is 10. The standard deviation using Scorey; is
4.1 whereas standard deviation using scorey is 2.7. This
shows that selection criterion based on scorep samples more
uniformly among the clusters.

VI. INTERPOLATING NEURAL NETWORK
ACTIVE LEARNERS

Here we briefly examine the extension of the max-min
criterion and its variants to neural network learners. Neural
network complexity or capacity can be controlled by limiting
magnitude of the network weights [24], [25], [26]. A num-
ber of weight norms and related measures have been recently
proposed in the literature [27], [28], [29], [30], [31]. For exam-
ple, ReLU networks with a single hidden layer and minimum
£ norm weights coincide with linear spline interpolation [32].
With this in mind, we provide empirical evidence showing that
defining the max-min criterion with the norm of the network
weights yields a neural network active learning algorithm with
properties analagous to those obtained in the RKHS setting.

Consider a single hidden layer network with ReL.U activa-
tion units trained using MSE loss. In Figure 10 we show the
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(b) (c)

Fig. 10. Data selection of neural network active learner. (a) Magnitude
of output map of single hidden layer ReLU network trained to interpolate
four data points as indicated (dark blue is O indicating the learned decision
boundary). (b) Max-Min selection of next point to label using network weight
norm. (c) Max-Min selection of next point to label using data-based norm.
Both select the point on the decision boundary that is closest to oppositely

labeled examples.
(b) (©

Fig. 11. Data selection of neural network active learner. (a) Unlabeled exam-
ples are only available in magenta shaded regions. (b) Max-Min selection map
using network weight norm. (c) Max-Min selection map using data-based
norm.

results of an experiment implemented in PyTorch in the same
settings considered above for kernel machines in Figures 3
and 4. We trained an overparameterized network with 100
hidden layer units to perfectly interpolate four training points
with locations and binary labels as depicted in Figure 10(a).
The color depicts the magnitude of the learned interpolating
function: dark blue is O indicating the “decision boundary”
and bright yellow is approximately 3.5. Figure 10(b) denotes
the scorey; with the weight norm (i.e., the £, norm of the
resulting network weights when a new sample is selected at
that location). The brightest yellow indicates the highest score
and the location of the next selection. Figure 10(c) denotes the
scorep with the data-based norm defined in Equation (7). In
both cases, the max occurs at roughly the same location, which
is near the current decision boundary and closest to oppositely
labeled points. The data-based norm also places higher scores
on points further away from the labeled examples. Thus, the
data selection behavior of the neural network is analagous to
that of the kernel-based active learner (compare with Figure 3).

Next we present a modified scenario in which the examples
are not uniformly distributed over the input space, but instead
concentrated only in certain regions indicated by the magenta
highlights in Figure 11(a). In this setting, the example selection
criteria differ more significantly for the two norms. The weight
norm selection criterion remains unchanged, but is applied
only to regions where there are examples. Areas without exam-
ples to select are indicated by dark blue in Figure 11(b)-(c).
The data-based norm is sensitive to the non-uniform input dis-
tribution, and it scores examples near the lower portion of the
decision boundary highest. Again, this is quite similar to the
behavior of the kernel active learner (compare with Figure 4).

VII. CONCLUSION AND FUTURE WORK

The question of designing active learning algorithms in
the regime of nonparametric and overparameterized models
become more essential as we look at larger models which
require bigger training sets. To reduce the human cost of label-
ing allyl samples, we can use a pool-based active learning
algorithm to avoid labeling non-informative examples.

Our algorithm does not exploit any assumption about the
underlying classifier in selecting the samples to label. Yet, for
a wide range of classifiers, it performs well with provable
guarantees. It is designed for the extreme case of the nonpara-
metric setting in which no assumption about the smoothness of
the boundary between different classes is made by the learner.

There are many interesting questions remaining: the behav-
ior of our proposed criterion applied to other classifiers such
as kernel SVM instead of minimum norm interpolators, gener-
alization of the criterion to multi-class settings and regression
algorithms. The computational complexity of our criterion
can also be a serious bottleneck in applications with bigger
data-sets and should be addressed in future. Additional numer-
ical simulations, especially with more complex architecture of
Neural Networks can also be insightful.
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