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Abstract—Construction of tight confidence sets and intervals

is central to statistical inference and decision making. This

paper develops new theory showing minimum average volume

confidence sets for categorical data. More precisely, consider an

empirical distribution bp generated from n iid realizations of a

random variable that takes one of k possible values according to

an unknown distribution p. This is analogous to a single draw

from a multinomial distribution. A confidence set is a subset

of the probability simplex that depends on bp and contains the

unknown p with a specified confidence. This paper shows how

one can construct minimum average volume confidence sets. The

optimality of the sets translates to improved sample complexity

for adaptive machine learning algorithms that rely on confidence

sets, regions and intervals.

I. INTRODUCTION

This paper shows an optimal confidence set construction for
the parameter of a multinomial distribution. The confidence
sets, a generalization of the famous Clopper-Pearson confidence
interval for the binomial [2], are optimal in the sense of
having minimal average volume in the probability simplex
for a prescribed confidence level.

Consider an empirical distribution bp generated from n i.i.d.
samples of a discrete random variable X that takes one of k
values according to an unknown distribution p. A confidence
set for p is a subset of the k-simplex that depends on bp,
and includes the unknown true distribution p with a specified
confidence. More precisely, C�(bp) ⇢ �k is a confidence set at
confidence level 1�� if

sup
p2�k

Pp (p 62 C�(bp))  � , (1)

where �k denotes the k-simplex, and Pp(·) is the probability
measure under the multinomial parameter p.

Construction of tight confidence sets for categorical dis-
tributions is a long standing problem dating back nearly a
hundred years [2]. The goal is to construct sets that are
as small as possible, but still satisfy (1). Broadly speaking,
approaches for constructing confidence sets can be classified
into: (i) approximate methods that fail to guarantee coverage
(i.e, (1) fails to hold for all p), and (ii) methods that succeed
in guaranteeing coverage, but have excessive volume – for
example, approaches based on Sanov or Hoeffding-Bernstein
type inequalities. Recent approaches based on combinations
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of methods [3] have shown improvement through numerical
experiment, but do not provide theoretical guarantees on the
volume of the confidence sets. To the best of our knowledge,
construction of confidence sets for the multinomial parameter
that have minimal volume and guarantee coverage is an open
problem.

One construction that has shown promise empirically is the
level-set approach of [4]. The level-set confidence regions (or
confidence sets1) are similar to ‘exact’ and Clopper-Pearson2

regions [2] as they involve inverting tail probabilities, but are
applicable beyond the binomial case, i.e., they are defined
for k > 2. Clopper-Pearson, exact, and level-set confidence
sets are closely related to statistical significance testing; the
confidence set defined by these approaches is synonymous
with the range of parameters over which the outcome is not

statistically significant at an exact p-value of 1 � �. For a
discussion of these relationships in the binomial case, see [6],
[5] and references therein.

This paper proves that the level-set confidence sets of [4],
which are extensions of Clopper-Pearson regions, are optimal in
that they have minimal average volume among any confidence
set construction. More precisely, when averaged across either
i) the possible empirical outcomes, or ii) a uniform prior
on the unknown parameter p, the level-set confidence sets
have minimal volume among any confidence set construction
that satisfies the coverage guarantee. The proof first involves
showing that arbitrary confidence sets can be expressed as the
inversion of a set mapping. The level-set confidence sets are
minimal in this setting by design, and the minimal average
volume property follows. As the authors of [4] observe through
numerical experiment, the level-set confidence sets have small
volume when compared with a variety of other approaches.
Indeed this observation is correct; the sets minimize average
volume among any construction of confidence sets.

Confidence intervals for functionals such as the mean, vari-
ance, and median can be derived from confidence sets for the
multinomial parameter by finding the range of values assumed
by the functional in the confidence set. When compared against
other confidence intervals based on e.g. Hoeffding’s inequality
or the empirical Bernstein bound [7], [8], [9], the method
can obtain tighter intervals as it accounts for the shape of the
distribution in the simplex. In an extended version of this paper
[1] we show that swapping our confidence intervals in place of

1The phrase confidence region and confidence set are used interchangeably
in literature, although region can imply a connected set. As the sets discussed
herein may not be connected, we prefer confidence sets.

2Note that ‘exact’ and Clopper-Pearson are often used synonymously [5].
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the those used in standard best-arm identification algorithms
[10], [11] in multi-armed bandits can lead to faster termination.

Direct computation of the minimum volume confidence sets
involves enumerating empirical outcomes and computing partial
sums. In the small sample regime (e.g., n = 50, k = 5)
computation of the minimal volume sets is straightforward.
As computation scales as O(nk), this becomes prohibitive for
modest k. To aid in computation, we show an outer bound
based on the Kullback Leibeler divergence that can be used
to accelerate computation. We also note that the large sample
regime, where computation is prohibitive, is well-served by
traditional confidence sets based on asymptotic statistics.

II. PRELIMINARIES

Let X = X1, . . . , Xn 2 Xn be a i.i.d. sample of a
categorical random variable where Xi takes one of k possible
values from a set of categories X . The empirical distribution
of X is the relative proportion of occurrences of each
element of X in X . More precisely, let X =: {x1, . . . , xk}
and define ni =

Pn
j=1 1{Xj=xi} for i = 1, . . . k. Then

bp(X) = [n1/n, . . . , nk/n] 2 �k,n, where �k,n is the discrete
simplex from n samples over k categories:

�k,n =

(
bp 2 {0, 1/n, . . . , 1}k :

X

i

bpi = 1

)
.

To simplify notation in what follows, we write Pp(bp) as short-
hand for Pp ({X 2 Xn : bp(X) = bp}) where Pp(·) denotes the
probability measure under p 2 �k and �k is the k-dimensional
probability simplex:

�k =

(
p 2 [0, 1]k :

X

i

pi = 1

)
.

We refer to the powerset of �k as P(�k), and likewise,
P(�k,n) as the power set of �k,n. We also write Pp(S)
for S ⇢ �k,n as shorthand for Pp ({X 2 Xn : bp(X) 2 S}).
Pp(bp) is fully characterized by the multinomial distribution
with parameter p 2 �k:

Pp(bp) =
n!

(nbp1)! . . . (nbpk)!
p
nbp1
1 · · · pnbpk

k .

The parameter p specifies the unknown distribution over X .
The focus of this paper is construction of confidence sets for

p from a sample X1, . . . , Xn. Since bp is a sufficient statistic
for X1, . . . , Xn, we focus on construction of confidence sets
that are functions of bp with no loss of generality.

Definition 1. Confidence set. Let C�(bp) : �k,n ! P(�k) be a

set valued function that maps an observed empirical distribution

bp to a subset of the k-simplex. C�(bp) is a confidence set at

confidence level 1� � if (1) holds.

Observation 1. Equivalent Characterization via Covering

Collections. Let S(p) : �k ! P(�k,n) be given as:

S(p) = {bp 2 �k,n : p 2 C�(bp)} . (2)

Then

p 2 C�(bp) , bp 2 S(p) (3)

and

C�(bp) = {p 2 �k : bp 2 S(p)} . (4)

We refer to S(p) as a covering collection [4], and observe that
any confidence set construction can be equivalently expressed
in terms of its covering collection according to (4). Note that
for any valid confidence set, Pp(S(p)) � 1� � holds for all
p, since Pp (p 2 C�(bp)) = Pp (S(p)) by (3).

Next we define the minimal volume confidence set construc-
tions, which are termed the level-set region in [4]. The sets
are defined in terms of their covering collection. We note that
construction is different from the definition in [4] to facilitate
the main theorem of this paper. We discuss this difference in
Section IV.

Definition 2. Minimal volume confidence set. Let S?(p) :
�k ! P(�k,n) be any set valued function that satisfies

S?(p) = arg min
{S2P(�k,n):Pp(S)�1��}

|S| (5)

for all p. Then the minimal volume confidence set is given as

C?
� (bp) := {p 2 �k : bp 2 S?(p)} . (6)

S?(p) is a set valued function, mapping p to a subset of
empirical distributions with minimal number of elements among
subsets whose probability under p equals or exceeds 1 � �.
C?
� (bp) is the subset of the simplex for which the set valued

function S?(p) includes the observation bp.
Note that S?(p) is in general not unique, and many subsets

of �k,n can have minimal cardinality and sufficient probability.
As we develop in what follows, any subset of �k,n that satisfies
(5) must have minimal average volume, and thus, equal average
volume. We discuss this in section IV. Before proceeding, we
note that the construction creates confidence sets with sufficient
coverage, by definition.

Observation 2. C?
� (bp) is a confidence set at level 1� � since

Pp (p 2 C?
� (bp)) = Pp (S?(p)) � 1� �.

III. RESULTS

The main result of the paper shows that the confidence set
C

?
� (bp) of Definition 2 have on average minimal volume among

all confidence sets at level 1� �.

Theorem 1. Let C?
� (bp) be a confidence set given by Definition 2

and define µ(·) as the Lebesgue measure on the simplex �k.

Then

X

bp2�k,n

µ(C?
� (bp)) 

X

bp2�k,n

µ(C�(bp))

for any confidence set C�(bp).

Proof. Note that for any confidence set

X

bp2�k,n

µ(C�(bp)) =
Z

�k

|S(p)|dp (7)
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since
X

bp2�k,n

µ(C�(bp)) =
X

bp2�k,n

Z

C�(bp)
dp

=
X

bp2�k,n

Z

�k

{p2C�(bp)}dp

=

Z

�k

X

bp2�k,n

{p2C�(bp)}dp

=

Z

�k

|{bp : p 2 C�(bp)}| dp

=

Z

�k

|S(p)|dp

where last equality follows from (4). By definition, |S(p)| �
|S?(p)| for all p. This implies

Z

�k

|S(p)|dp �
Z

�k

|S?(p)|dp. (8)

Given that any confidence set construction can be defined in
terms of its covering collection according to Observation 1,
together with (7), this implies the result.

Theorem 1 shows that, averaged over empirical distributions,
the confidence sets defined in (2) have minimal volume. The
main idea of the proof is to count the sum of the Lebesgue
measure of the confidence sets in two different ways. The LHS
in (7) obtains the sum by adding up the areas of the confidence
sets corresponding to each point in �k,n. The RHS in (7)
obtains the same sum by integrating, over all p 2 �k, the
count of elements in �k,n that include p in their confidence set
(i.e, integrating the size of the covering collection (2) over p).
Fig. 1 can be used to visualize the steps of the proof. We next
show that if the multinomial parameter is chosen with uniform
probability over the simplex, then the optimal properties of the
set still apply.

Proposition 1. Let p be drawn uniformly at random from �k

and denote Ep expectation with respect to the multinomial

parameter p. For C?
� (bp) given by Def. (2) we have that

Ep [µ(C?
� (bp))]  Ep [µ(C�(bp))] ,

where C�(bp) is any confidence set at level 1� �.

Proof. Suppose Pp(bp) = 1/|�k,n|. Then

Ep[µ(C?
� (bp))] =

1

|�k,n|
X

bp2�k,n

µ(C?
� (bp))

 1

|�k,n|
X

bp2�k,n

µ(C�(bp))

= Ep [µ(C�(bp))] ,

where the inequality is due to Theorem 1. Now we describe why
Pp(bp) = 1/|�k,n|. A multinomial parameter drawn uniformly
at random in �k induces a uniform distribution over the set of
empirical distributions. This is because the resulting distribution
on bp is the Dirichlet-Multinomial distribution, or a compound
Dirichlet distribution [12] with a uniform Dirichlet.

As noted in Sec. II, the minimal volume confidence con-
struction is under-specified. In general there are many covering
collections S?(p), each of which results in equal and minimal
volume confidence sets.

A simple way to fully specify the confidence sets is to order
the empirical distributions based on their probability under p
(with ties broken randomly), and construct S?(p) by including
the most probable empirical distributions until a mass of 1� �

is obtained. This results in covering collections that satisfy
(2) and also have an additional guarantee on their coverage
probability. We capture this in the following corollary.

Proposition 2. For any p, let bp1, bp2 . . . be an ordering of the

elements of �k,n such that Pp(bp1) � Pp(bp2) � . . . , and let

` be the smallest integer that satisfies

X̀

i=1

Pp(bpi) � 1� �. (9)

Define S??(p) = {bp1, . . . , bp`} and C??
� (bp) :=

{p 2 �k : bp 2 S??(p)}. Then

Pp(p 2 C??
� (bp)) � Pp(p 2 C?

� (bp)) � 1� �

holds for all p.

Proof. Since Pp(p 2 C??
� (bp)) = Pp(S??(p)) by the relation-

ship in (3), and since Pp(S??(p)) � Pp(S?(p)) by the ordering
above, the proof follows immediately.

Proposition 2 shows that a particular choice for construction
of the covering collection S??(p) also satisfies a secondary
optimality property – among all confidence sets that have mini-
mal (and equal) average volume, C??

� (bp) has maximal coverage
probability for all p. Several confidence set constructions can
have equal average minimal volume. This occurs because the
average is taken over the set of possible empirical distributions.
Provided the minimal cardinality requirement is employed
in the construction, the average volume is constant, but the
coverage probability may vary.

Proposition 2 also highlights the difference between the
definition of the minimal volume confidence sets defined
here, and the level-set construction in [4]. In the level-set
construction, equiprobable outcomes are either all included
or excluded in the covering collections, which precludes the
construction from having minimal average volume in this case.

IV. DISCUSSION AND EXTENSIONS

A. Relationship to Significance Testing

The confidence sets in this paper and in [4] are closely
related to p-values in statistical significance testing. Often, the
phrase p-value is used to describe an approximate p-value based
on a normal approximation. A more precise interpretation of a
p-value can be related to the construction of C�(bp).

Definition 3. p-value. The p-value of an outcome bp (under

the hypothesis p) is:

p(bp;p) =
X

bq2�k,n:Pp(bq)Pp(bp)

Pp (bq) .
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A p-value has the following interpretation in statistical signifi-
cance testing: p is the probability that the observed outcome

or something less probable occurred under the hypothesis p. A
small p-value corresponds to a strange outcome under the null,
and thus corresponds to rejection of the null hypothesis. The
level-set confidence sets described in this paper and in [4] can
be stated in terms of covering collection based on p-values:
C�(bp) = {p : p(bp;p) > �}.

We note that the level-set confidence sets and their ex-
pressions herein are closely related to ‘exact’ confidence sets
defined in [13] for the specific case when k = 2. The confidence
set defined by an exact test is the range of parameters over

which the outcome is not statistically significant at a p-value of

1� �. Extending this to the multinomial setting is the essence
of the level-set confidence sets.

B. Relationship to Sanov Confidence Sets

Sanov’s theorem (Theorem 11.4.1 in [14]) allows us to bound
the probability of observing a set of empirical distributions
using its Kullback Leibler distance to the data-generating
distribution. Since the statement of the theorem involves an
infimum over Kullback Leibler distances, we can use it to
obtain the following inequality:

Pp(KL(bp,p) > z)  (n+ 1)ke�nz

which implies

Pp

✓
KL(bp,p)  log((n+ 1)k/�)

n

◆
� 1� �

where

KL(p,p0) :=
kX

i=1

pi log

✓
pi

p0i

◆

is the Kullback Leibler divergence. One can view the previous
inequality as a concentration result for the Kullback Leibler
divergence between the observed empirical distribution and
the true distribution. The work done in [15] has sharpened
these types of results in several parameter ranges. For example,
when k  e

3
p
n/8⇡, [15] shows that

Pp(KL(bp,p) > z)  2(k � 1)e�nz/(k�1)

which implies

Pp

✓
KL(bp,p)  (k � 1)

log(2(k � 1)/�)

n

◆
� 1� �. (10)

Thus using Sanov’s theorem gives us a choice for a confidence
set of level 1� �. Another approach used by [3] to obtain a
confidence set is to obtain bounds on the marginal probabilities
{pi : i 2 {1, 2, . . . , k}}. This can be done as np̂i corresponds
to n i.i.d. realizations of a Bernoulli random variable having
mean as pi. By allocating �/k error probability in bounding
each of the marginal parameters, we get using the Bernoulli-KL
inequality [16] that for each i 2 {1, 2, . . . , k}

Ppi(KL([p̂i, 1� p̂i], [pi, 1� pi]) > z)  2e�nz (11)

which implies

Pp

 
\

i

KL([p̂i, 1� p̂i], [pi, 1� pi]) 
log(2k/�)

n

!
� 1� �.

Both (10) and (11) give us valid confidence sets for the
multinomial parameter. We plot these sets along with the
proposed set in Figure 2 in Sec. IV-D.

C. Computation

Computation of C?
� (bp) requires enumerating all empirical

outcomes and computing partial sums. In our experiments,
enumerating and ordering the empirical distributions for k = 5
and n = 50 and checking membership in C?

� (bp) completes in
around two seconds on a laptop. Regardless, as computation
scales as n

k, computation of membership in C?
� (bp) becomes

prohibitive for a modest number of categories. We note that
the large sample regime, which is not the focus of the work
here, is served well by traditional confidence regions based on
asymptotic statistics.

There are a number of ways in which computation of
the proposed confidence sets can be accelerated. First, in
the numerical experiments, we use the approximate p-values
returned by Pearson’s �

2 test to obtain a course estimate of
the confidence sets, and refine it using exhaustive computation
only when needed.

To further aid in computation, we show an outer bound
based on the Kullback Leibler divergence that can be used to
accelerate computation of the sets. The bound provides a way
to confirm if a particular p is outside C?

� (bp).

Theorem 2. Outer bound. The following inequality holds:

p(bp;p)  (n+ 1)2k exp (�n KL(bp,p))

Proof. From [14] (Theorem 11.1.4), we can bound the proba-
bility of any empirical distribution bq under p:

1

(n+ 1)k
exp (�nKL(bq,p))  Pp(bq)  exp (�nKL(bq,p)) .

(12)

Thus, for any Pp(bq)  Pp(bp),
1

(n+ 1)k
exp (�nKL(bq,p))  exp (�nKL(bp,p))

which implies the following. Let S ⇢ �k,n be a set of empirical
distributions that satisfies Pp(bq)  Pp(bp) for all bq 2 S . Then,

min
bq2S

KL(bq,p) � KL(bp,p)� k

n
log(n+ 1). (13)

Next, we require Sanov’s Theorem, [14] (Theorem 11.4.1),
which states the following. Let S ⇢ �k,n be a set of empirical
distributions. Then

Pp(S)  (n+ 1)k exp

✓
�nmin

bq2S
KL(bq,p)

◆
. (14)

Choosing S = {bq 2 �k,n : Pp(bq)  Pp(bp)} and combining
(13) and (14), we conclude

p(bp;p) =
X

bq2�k,n:Pp(bq)Pp(bp)

Pq (bq)  (n+ 1)2ke(�nKL(bp,p))
.
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Fig. 1. All confidence sets {C??
0.7(bp) : bp 2 �3,5} are shaded over

a picture of the three dimensional simplex. The figure depicts the 3-
simplex with black crosses indicating the empirical proportions that could
be observed in 5 trials (their total number is

�5+3�1
3�1

�
= 21). The number

of confidence sets that cover a parameter in �3 vary based on where the
parameter lies within the simplex. As an example, the uniform parameter
pu = [1/3, 1/3, 1/3] is shown by a blue dot in the center of the simplex.
pu is covered by the confidence sets of three empirical distributions:
S??(pu) = {[1/5, 2/5, 2/5], [2/5, 1/5, 2/5], [2/5, 2/5, 1/5]}. The confidence sets
associated with these three empirical distributions are indicated in blue. The
main idea in the proof of Thm. 1 is to count the sum of Lebesgue measure of
the confidence sets in two ways. The LHS in (7) obtains the sum by adding
up the shaded areas corresponding to each point in �3,5. The RHS in (7)
obtains the same sum by integrating, over all p 2 �3, the count of elements
in �3,5 that include p in their confidence set (i.e, integrating the size of the
covering collection over p).

Note that the above bound has an additional factor of two
in the second term, beyond what arises from directly inverting
Sanov’s Theorem [14]. This arises from the fact that bp is not
necessarily the minimal empirical distribution in KL divergence,
i.e, it is not necessary true that bp equals

arg min
{bq2�k,n:Pp(bq)Pp(bp)}

KL(bq,p). (15)

Further discussion of computation of exact p-values can be
found in [17], [18].

D. Numerical Experiments

We begin with a visualization of the proposed confidence
sets C??

� (bp) for a small scale experiment with n = 5 samples
of a k = 3 categorical random variable. Figure 1 shows the
confidence sets at level 1� � = 0.3 for all possible empirical
distributions in the discrete simplex �3,5 overlaid on top of
each other. We also show the uniform parameter [1/3, 1/3, 1/3] 2
�3 and indicate the sets that include it at the chosen confidence
level, i.e., its covering collection. In this example, from the
figure, we can see that |S??([1/3, 1/3, 1/3])| = 3.

Next, in Fig. 2, we show an illustration of the proposed
set contrasted with the Sanov and polytope confidence sets of
(10) and (11) for different problem parameters. The illustration
highlights the significant difference in volume of the proposed
set when compared against the Sanov and polytope sets.

Fig. 2. Proposed confidence set (Proposition 2) shown in blue with the Sanov
confidence set (10) in orange and the polytope confidence set (11) in green.
The black cross is the observed empirical distribution bp = [6/15, 6/15, 3/15]
of 15 realizations of a categorical random variable. All confidence sets are
shown at 30% confidence level.

V. SUMMARY

Construction of tight confidence sets is a challenging problem
with a long history. The problem has seen increased interest,
as confidence bounds are central to the analysis and operation
of many learning algorithms, especially sequential methods
such as active learning, bandit problems, and more generally,
reinforcement learning.

This paper shows an optimal construction for confidence sets
for the parameter of a multinomial distribution. The sets, termed
minimal volume confidence sets are optimal in the sense of
having minimal volume in the probability simplex, on average,
for a prescribed coverage (i.e., confidence). More precisely,
when averaged across the possible empirical outcomes or
a uniform prior on the unknown parameter p, the sets
have minimal volume among any confidence set construction
that satisfies the coverage guarantee. The minimal volume

confidence sets (or level-set sets, [4]) are a generalization of the
famous Clopper-Pearson confidence interval for the binomial
[2]. Clopper-Pearson, exact, and minimum volume confidence
sets are closely related to statistical significance testing.

While computation of the sets is straightforward for modest
n and k through direct enumeration of the sample space, it
can become prohibitive for problems with a large number
of categories and samples. To aid in computation, we relate
the sets to p-values, and derive a bound based on Kullback
Leibler divergence that can be used to accelerate computation,
which complements the work in [18]. In this paper we focused
our attention on the multinomial parameter due to its wide
applicability and importance across reinforcement and adaptive
machine learning. We note that the techniques can be extended
to more general measure spaces equipped with a conditional
probability measure, which we leave for future work.
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