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Abstract

Members of the genus Methylacidiphilum are thermoacidophile methanotrophs with optimal growth
temperatures between 50°C and 60°C, and pH between 1.0 and 3.0. These microorganisms, as well as
other extremophile bacteria, offer an attractive platform for environmental and industrial
biotechnology because of their robust operating conditions and capacity to grow using low-cost
substrates. In this study, we isolated Methylacidiphilum fumariolicum str. Pic from a crater lake
located in the state of Chiapas, Mexico. We sequenced the genome and built a genome-scale
metabolic model. The manually curated model contains 667 metabolites, 729 reactions, and 473
genes. Predicted flux distributions using flux balance analysis identified changes in redox trade-offs
under methanotrophic and autotrophic conditions (H2+CO3). This was also predicted under
heterotrophic conditions (acetone, isopropanol, and propane). Model validation was performed by
testing the capacity of the strains to grow using four substrates: CH4, acetone, isopropanol, and LP-
Gas. The results suggest that the metabolism of M. fumariolicum str. Pic is limited by the
regeneration of redox equivalents such as NAD(P)H and reduced cytochromes.

1. Introduction

Extremophile bacteria such as Methylacidiphilum fumariolicum are an attractive platform for
industrial and environmental biotechnology. Their broad growth capabilities offer an opportunity to
reduce manufacturing costs through processes without sterilization or using low-cost substrates (Ye
et al., 2023). Between 2007 and 2008, a new clade of methanotrophic bacteria in the Phylum
Verrucomicrobia was isolated from geothermal or volcanic environments (Dunfield et al., 2007; Pol
et al., 2007; Islam et al., 2008). These strains currently belong to the genus Methylacidiphilum and
are aerobic thermoacidophilic methanotrophs with optimal growth temperatures between 50°C and
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60°C and an optimal pH between 2.0 and 3.0 (Schmitz et al., 2021). To date, three species have been
identified (Hou et al., 2008; Anvar et al., 2014; Kruse et al., 2019) and three unclassified strains have
been isolated (Erikstad et al., 2019; Awala et al., 2021). In addition, five complete genomes and 14
draft assemblies are available in the NCBI genome database (Hou et al., 2008; Anvar et al., 2014;
Erikstad et al., 2019; Kruse et al., 2019; Awala et al., 2021).

Because of the recent discovery of the Verrucomicrobia methanotrophic clade, there is limited
knowledge about their broad metabolic capabilities and their further biotechnological applications.
For example, the M. fumariolicum str. SolV has been proven to grow heterotrophically on C2 and C3
compounds such as ethane, and propane (Picone et al., 2020), as well as autotrophically, using H> as
an electron source and COz as the only carbon source (Mohammadi et al., 2017). The pathway for the
oxidation of propane, isopropanol, and acetone was also elucidated in a recently isolated
Methylacidiphilum sp. IT6 (Awala et al., 2021). Moreover, it has been shown that the strain SolV can
convert methanethiol (Schmitz et al., 2022) to H»S, and oxidize H>S to elemental sulfur (Schmitz et
al., 2023). Their metabolic capabilities and resilience to harsh conditions make these bacteria
excellent candidates for use in biofilters that treat H>S-contaminated gaseous streams or as biomining
agents recovering Rare Earth Elements (REEs) from low-grade sources (Singer et al., 2023).
Additionally, Verrucomicrobia methanotrophs can be a source of novel thermostable enzymes for the
chemical and pharmaceutical industries (Gevaert et al., 2019; Schmitz et al., 2020). For example,
heterologous expression of PmoD from Methylacidiphilum sp. IT6 enabled the construction of a
whole-cell biocatalyst in the Type I methanotroph Methylomonas sp. DH1 used for the production of
acetol from acetone (Chau et al., 2022). We expect that the range of biotechnological applications of
Verrucomicrobia methanotrophs will further diversify as more strains are isolated from different
environments.

Genome-scale metabolic models (M-models) can be used as a knowledge base to concentrate the
available biochemical, genomic, metabolic, and physiological information of a target microorganisms
(Thiele and Palsson, 2010; Monk et al., 2017). The genome functions are translated into a set of
metabolic reactions encoded in a mathematical representation as a set of linear equations and
constraints (Orth et al., 2010). The relationship between genotype and phenotype can be investigated
from the solutions of M-models using Flux Balance Analysis (FBA) (Feist et al., 2007). Moreover,
M-models enable the integration of multi-omic datasets into a single comprehensive analysis
workflow (Noor et al., 2019; Arnolds et al., 2021; Passi et al., 2022). In methanotrophs, M-models
have been used to study the mechanisms of electron transfer to the periplasmic methane
monooxygenase (PMMO) (Lieven et al., 2018), one-carbon metabolism (Nguyen et al., 2020a),
metabolic adaptations to high salinity conditions (Bordel et al., 2020b), nitrate-dependent methane
oxidation (Versantvoort et al., 2019), etc.

In this study, we isolated and sequenced the genome of Methylacidiphilum fumariolicum str. Pic.
Then, we collected experimental growth phenotypes using four substrates and used this information
to validate our reconstructed M-model. The model, also referred to as iAS473, was manually curated
to comply with the most recent community standards (Laibe and Le Novére, 2007; Waltemath et al.,
2011; Carey et al., 2020). This knowledgebase compiles with the latest bibliomic findings of the
genus Methylacidiphilum, specifically the metabolism of M. fumariolicum. To our knowledge, this is
the first manually curated genome-scale metabolic reconstruction for any methanotrophic
Verrucomicrobia.
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2. Results

2.1 Isolation and Genome Characterization

Taxonomic analysis of the raw sequencing data indicated that 96% of the sequences were classified
as Methylacidiphilum (Figure S1). Based on this result, a two-step assembly process was used to
improve the contiguity of the recovered genome (see Methods Section 4.9). The final genome
assembly had a total length of 2.4Mb and an average GC composition of 41.31%, which are
comparable to those of other genomes reported for this species (Table S2). It contains a full set of
ribosomal and transfer RNA genes (3 and 47, respectively), and 469 of 471 BUSCO gene markers for
Verrucomicrobia bacteria (Simao et al., 2015), including 2 fragmented and zero duplicated genes.
Other assembly statistics are listed in Table S2.

The Average Nucleotide Identity (gANI) values (Varghese et al., 2015) were calculated from
orthologous gene clusters identified between this assembly and 11 genomes available for the
Methylacidiphilum genus (see Methods Section 4.10). The genome assembly of our isolate had a
gANI above 97% with all M. fumariolicum genomes, which exceeded the suggested cut-off of 96%
for species affiliation (Hayashi Sant’ Anna et al., 2019). Therefore, subsequent phylogenomic
analyses were conducted using five available genome assemblies for M. fumariolicum. The
phylogenetic tree, reconstructed from the 117 top-ranking phylogenetic markers (see Methods
Section 4.10), indicates that the assembly reported in this study clusters together with strain SolV in
the same branch (Figure 1A). Together, the gANI values and phylogenomic analysis indicate that the
recovered genome represents a novel strain of the M. fumariolicum species, for which the name
Methylacidiphilum fumariolicum strain Pic is proposed, where Pic stands for the name of the
municipality in which the volcanic lake is located (Pichucalco).

Additionally, taxonomic affiliation was predicted from the periplasmic methane monooxygenase
subunit A (PmoA), which is often used as a molecular marker of methanotrophic microorganisms
(Knief, 2015; Hogendoorn et al., 2021). Our genome assembly contained three complete pmoCAB
operons (Table S5). A maximum-likelihood phylogenetic tree was constructed using PmoA
sequences spanning the three phyla known to have methanotrophs (Verrucomicrobia,
Gammaproteobacteria, and Alphaproteobacteria). The tree indicates that all PmoA sequences from
the assembly reported in this study clustered with other Verrucomicrobia methanotrophs (Figure 1B).
However, most Verrucomicrobia methanotrophs encode more than one copy of the pmoCAB operon
(Schmitz et al., 2021); therefore, phylogenetic analyses of PmoA are inadequate for determining
species-level taxonomic affiliations (Figure S2).

2.2 Physiological Characterization Under Methanotrophic and Heterotrophic Conditions

A key physiological characteristic of M. fumariolicum str. Pic is its capability to achieve high growth
rates at temperatures above 50°C. Here we used the oxygen consumption rate as a response variable
linked to biomass growth using a respirometry chamber. We found that the optimal growth
temperatures of strain Pic were between 50°C and 60°C (Figure 1D).

We also assayed the optimal growth pH by measuring specific CH4 oxidation rates in experiments
ranging from 1.0 to 3.0 at 50°C. As shown in Figure 1C, oxidation rates were higher between pH 1.5
and 2.0, sharply decrease after pH 2.5, and become undetectable at pH 3.0. The pH range in which
strain Pic oxidizes CH4 is narrow in comparison to other M. fumariolicum strains, which can grow at
pH as high as 6.0 (Pol et al., 2007). Growth rates and yields (Table 1) were determined at 50°C pH
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2.0. The CH4:0; ratio was typical for Methylacidiphilum strains (1:1.6); however, the CH4:CO» ratio
of 1:0.93 was much higher than that expected for these methanotrophs (1:0.65) (Pol et al., 2007).

Three pmoCAB operons (Table S4) were identified in the Pic genome. Interestingly, the strains SolV
and IT6 also have three pmoCAB operons and they have been proven to oxidize C3 substrates (e.g.
IT6 can grow on isopropanol, acetone, and acetol as carbon source) (Picone et al., 2020; Awala et al.,
2021). The high sequence homology between the pmoA3 of strain IT6 and strain Pic (Table S4)
provided computational evidence that strain Pic could potentially grow on C3 compounds using
operon pmoCAB3 (Figure S2). Therefore, the capacity of strain Pic to oxidize C3 compounds was
evaluated by independent incubations with 50 mM acetone, 50 mM isopropanol, and 10% LP-Gas
(~90% propane and ~10% of a mix of propylene, butylene, isobutane, and n-butane). Figure 1E
shows that the CO; production rates of cultures with the three substrates were higher than the
negative control, but lower than cultures incubated with 10% CHa.

2.3 Genome-scale Metabolic Network Reconstruction

2.3.1 Metabolic Network Properties

The genome-scale metabolic reconstruction of M. fumariolicum str. Pic was generated using a semi-
automatic methodology (see Methods Section 4.12.1). The initial draft reconstruction contained 603
genes, 1,604 reactions, and 1,555 metabolites. Out of all reactions, 492 (31.2%) had no gene
association. The missing genes for these reactions were filled by manual queries (Camacho et al.,
2009) against protein sequences in the KEGG pathway map for M. infernorum (Hou et al., 2008) or
MetaCyc database (Caspi et al., 2014). Using this method, gene associations for 79 reactions were
identified, while the remaining 415 reactions were removed from the model, along with 390
metabolites associated with those reactions. Furthermore, 37 stoichiometric duplicate reactions were
removed, and 43 reactions that represented sub-reactions or reaction mechanisms were replaced by a
lumped reaction. Of the remaining metabolites and reactions, 618 and 581 could not be annotated
across databases and were removed from the model. Next, to allow the production of all biomass
precursor metabolites, 101 reactions were manually gap-filled and an additional 43 were added to
complete hydroxylamine oxidation metabolism, C3 substrates oxidation, autotrophic metabolism, and
acid resistance mechanisms. Subsequently, reaction identifiers were translated into BiGG namespace
(King et al., 2016), and 96 new reaction identifiers, associated with 79 genes, were created for non-
existent reactions in this database (Table S7).

The final reconstruction comprised 667 metabolites, 729 reactions, and 473 genes (Figure 2A). Out
of the total number of reactions 162 did not have a gene association. The reconstruction was named
iAS473 following community standards. Standardized quality analysis with MEMOTE (Lieven et al.,
2020) indicated that the model is stoichiometrically consistent, and without erroneous generation of
energy metabolites (Gevorgyan et al., 2008; Lieven et al., 2020). Moreover, an annotation
consistency score of 92% indicated that the model is of high quality. A detailed description of
MEMOTE results may be found in the GitHub repository (see Data Availability Statement). The
Model is available in SBML Level 3 version 1, with the FBC package enabled (Hucka et al., 2003;
Olivier and Bergmann, 2018).

2.3.2 Manual Curation and Biomass Constraints

2.3.2.1 Electron Transport Chain
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The electron transport chain (ETC) and energy conservation mechanisms are active in bacteria using
quinones. These molecules are lipophilic compounds of the cytoplasmic membrane. Bacteria contain
up to three types of quinones: ubiquinones, menaquinones, and demethylmenaquinones
(Meganathan, 2001). Verrucomicrobia methanotrophs are known for producing menaquinone
through a recently identified pathway using futalosine as an intermediate (Hiratsuka et al., 2008).
Interestingly, the genome sequence of our strain does not encode for any of the genes necessary to
produce ubiquinol. As a result, all reactions in {AS473 have been manually curated to use
menaquinones as electron transporters.

All components of the ETC necessary for energy conservation (complex I-V) are encoded in the
genome of strain Pic (Figure 2C), including the Alternative Complex III (ACIII) known to act as a
cytochrome-menaquinol reductase in all Verrucomicrobia methanotrophs (Schmitz et al., 2021).
Unfortunately, it is unclear whether ACIII contributes to the proton motive force (pmf) by
translocating electrons across the membrane (Sousa et al., 2018; Sun et al., 2018). Because of the
uncertainty in the stoichiometry of this complex, cytochrome-ubiquinol reductase activity was
modeled by reaction CYO1 KT in which two protons are translocated across the membrane. The
stoichiometry of the remaining components of the ETC was modeled by assuming a P/O ratio of 2.5
(Bordel et al., 2019a).

2.3.2.2 Carbon Metabolism

The pathway for CH4 assimilation begins with its oxidation to methanol by the methane
monooxygenase (MMO) enzyme. Our model contains the PMMO which is present in the cell wall.
Although the mechanisms of electron transfer to this enzyme are still under debate, previous
modeling studies have suggested that electrons for CH4 oxidation originate from the quinone pool
(Bordel et al., 2019a). In our model, menaquinones were used as electron donors in the PMMOipp
reaction (Figure 2C). Gene protein reaction rule (GPR) for this reaction was set to operons
pmoCAB1 and pmoCAB?2 because those have the highest sequence similarity to those expressed in
the presence of CHy4 from strain IT6 (Table S4).

Subsequently, methanol is oxidized to formaldehyde by a methanol dehydrogenase (MDH). We
found that our strain encodes the lanthanide-dependent MDH XoxF, together with the periplasmic
substrate-binding protein XoxJ and the cytochrome C XoxG (Table S5), as well as the gene cluster
pqqBCDE and pqqA required to produce the cofactor pyrroloquinoline used by periplasmic
dehydrogenases, comprising a total of seven genes. Protein homology and experimental evidence for
strain SolV showed that the cytochrome CGJ can donate electrons to a secondary cytochrome,
suggesting electron transfer to a terminal oxidase (Versantvoort et al. 2019). We included those
details in iAS473.

Methanotrophic Verrucomicrobia have been shown to exclusively use COz as a carbon source via the
Calvin-Benson-Basham (CBB) cycle (Khadem et al., 2011). Because of this, the pathways for
formaldehyde oxidation become highly relevant to provide electron equivalents and most of the CO»
used in the CBB cycle. Formaldehyde oxidation to formate proceeds via pathways involving
methylene derivates of the cofactor tetrahydrofolate (THF), or the archaea-like cofactor
tetrahydromethanopterin (THMP) (Chistoserdova et al., 2009). In methanotrophic Verrucomicrobia,
formaldehyde could bind spontaneously or enzymatically to THF to form methylene-THF (Vorholt et
al., 2000; Chistoserdova et al., 2009; He et al., 2020), and be converted to formyl-THF by the
bifunctional dehydrogenase/cyclohydrolase FolD (Schmitz et al., 2021). Subsequently, formyl-THF
could be converted to formate by a formate-THF-ligase accompanied by the production of ATP
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(Marx et al., 2003). Alternatively, formaldehyde could be oxidized directly to formate by the MDH-
XoxF (Pol et al., 2014). Finally, a cytosolic formate dehydrogenase could oxidize formate to CO-
using NADH as an electron acceptor (Figure 2C). Genomic evidence for our strain showed that all
the enzymes necessary to operate the CBB cycle and regeneration of glyoxylate (e.g.,
phosphoglycolate phosphatase, glycolate oxidase) are present in strain Pic (Table S5).

Additionally, we included all reactions necessary to enable C3 metabolism in our model. We found
previous genomic and transcriptomic evidence of this functions in Methylacidiphilum sp. IT6 while
growing on propane, isopropanol, and acetone (Awala et al., 2021). In this pathway (Figure 2C,
Table S4), propane could be oxidized to isopropanol by a PMMO; however, transcriptome analyses
could not resolve whether this reaction is catalyzed by PMMO3 or PMMOI1 (Picone et al., 2020;
Awala et al., 2021). Then, isopropanol could be converted to acetone by a glucose-methanol-choline
(GMC) oxidoreductase, and acetone oxidized to acetol by PMMO3. Operon pmoCAB3 contains the
gene pmoD, which was recently shown to be necessary for the oxidation of acetone (Chau et al.,
2022). Finally, acetol could be converted to methylglyoxal by the same GMC oxidoreductase, and
methylglyoxal assimilated into pyruvate via a three-step pathway. In the model, all reactions between
propane oxidation and methylglyoxal production take place in the periplasm (Figure 2C) and use
menaquinones as electron transporters (Takahashi et al., 2015). Those reactions are associated with
10 genes total in our model.

2.3.2.3 Autotrophic Metabolism

To date, two Methylacidiphilum strains (SolV and RTK17.1) have been reported to grow
autotrophically using H> and CO» under microaerobic conditions (O saturation <2%) (Carere et al.,
2017; Mohammadi et al., 2017). Our genomic evidence shows that our strain contains three
hydrogenase operons, as well as the gene cluster hypBFCDE/hypA, which encodes chaperone
proteins necessary for the assembly of hydrogenases (Table S5).

The three hydrogenases belong to Groups 1d, 1h and Group 3b (see Methods Section 4.9). Group 1d
hydrogenases are uptake hydrogenases that use a b-type cytochrome to transfer electrons to the
respiratory chain via the quinone pool (Mohammadi et al., 2017). Group 1h hydrogenases are high-
affinity membrane-bound uptake enzymes (Schmitz et al., 2020), for which the electron transfer
pathway has not been elucidated yet. Finally, Group 3b hydrogenases are cytosolic enzymes which
catalyze the reversible oxidation of H> coupled to the reduction of NADH. We added reactions
HYD4pp and NAD H2 to the model, which represent periplasmic and cytosolic hydrogenases,
respectively (Figure 2C). It is important to note that microorganisms growing on substrates with a
higher redox potential than NAD(P)H produce electron equivalents via energy-driven reverse
electron flow (Aleem et al., 1963; Ingledew, 1982; Poughon et al., 2001; Sapra et al., 2003; Ferguson
and Ingledew, 2008). Considering this, the reaction NADH16pp (complex I) was set to be reversible
(Héger and Bothe, 1987) in simulations under autotrophic conditions. Onward, we will refer to this as
the reverse electron flow hypothesis.

2.3.2.4 Biomass Reaction

The composition of the biomass reaction was imported from the model of the gram negative
methanotroph Methylomicrobium buryatense SG(B1) (de la Torre et al., 2015) into the first draft of
our model. This reaction was updated for M. fumariolicum Pic by adding experimental measurements
of amino acids (see Methods Section 4.12.1). Additionally, coefficients of the biomass precursors
were rescaled so that the biomass had a molecular weight of 1g mmol™! (Chan et al., 2017). The
growth-associated ATP maintenance consumption (GAM) was calculated from experimental CH4:0>

6
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ratios, and a coefficient of 10.86 mmol ATP gDW~! h'! was added to the biomass reaction.
Supplementary Table S9 provides a detailed breakdown of biomass components.

Before gap-filling, the production of 13 biomass precursors was blocked. After extensive manual
curation we added and connected reactions to produce all these components. However, we could not
identify the genomic evidence necessary to produce L-homocysteine and, in consequence, L-
methionine. Overall, we included the necessary orphan reactions for the two L-homocysteine
production pathways described in bacteria (Belfaiza et al., 1998; Vermeij and Kertesz, 1999; Hwang
et al., 2002)

2.4 Model Validation and Applications of Flux Balance Analysis

Our model was validated by comparing predicted growth rates and growth stoichiometries with
bibliomic and our experimental data for four carbon sources (CH4, propane, isopropanol, and
acetone). Under all conditions, NH4 was used as the nitrogen source. Overall, model predictions were
within the same order of magnitude as that of the bibliomic data (Table 1).

2.4.1 Calculation of Redox Trade-Offs in Methanotrophic Metabolism

To validate the model, we performed a sensitivity analysis of the growth rate while varying Growth
Associated Maintenance (GAM) and Non-GAM while using CH4 as only carbon source. The
sensitivity was calculated as the slope of the curve of growth rate vs GAM/NGAM and has units of
Au AGAM™! or Aup ANGAM™!. Figure S3A shows that the model is largely insensitive to changes in
the GAM, showing constant growth predictions for GAM values below 32 mmol ATP gDW ! h'!,
However, the slope changed to 1.2x10™* for values between 32 and 100 mmol ATP gDW ' h'!. In
contrast, changes in NGAM had a substantially larger effect on the predicted growth rates, decreasing
from 0.036 to less than 0.001 h'! (Figure S3B). Although the growth rate is constant below NGAM
values of 4.2, from that value onward it decays with a slope of 4.5x1073, becoming infeasible for all
NGAM values above 12 mmol ATP gDW ! h'!. The value of NGAM used for all subsequent
simulations was 3.5, which was obtained from a previous model (Bordel et al., 2019b).

Additionally, we evaluated the possible effects of formaldehyde oxidation by the XoxF-MDH
(reaction FALDHpp). Since this enzyme uses cytochrome C as the electron acceptor, the direct
oxidation of formaldehyde to formate by XoxF-MDH prevents the production of NAD(P)H and ATP
in the THF-dependent pathway (Figure 2C). Therefore, simulations showed an increased flux through
this reaction. We found that it reduces the growth rate by limiting the NAD(P)H available for the
CBB cycle and anabolic reactions. (Figure S4A). Using O, yields as constraint, we determined that
the model showed the highest agreement with the bibliomic data when 20% of the total formaldehyde
flux was oxidized in reaction FALDHpp (Table 1). Therefore, this ratio was used as a constraint in
all the subsequent simulations using CHa.

Finally, the predicted correlation between O» uptake rates/CO- production rates, and CH4 uptake rates
was compared with the experimental growth data from strain Pic (Figure 3A, B). For both
components, the slope of the model was in good agreement with the slope of the line of best-fit of the
experimental data (Table 2). This indicates that the model can accurately reconstruct metabolic
changes under varying environmental conditions. However, the differences between the intercept of
the model and the fit were much higher (Table 2) because of a remarkable higher yield of CO2 in our
strain. Those results suggest that the difference in the intercepts is caused by physiological
differences in strain Pic that are not reflected at the genome level.
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2.4.2 Calculation of Redox Trade-Offs in Autotrophic Metabolism

We used the model to investigate whether stoichiometric constraints support growth under the
reverse electron flow hypothesis. Under this hypothesis, when H» is oxidized by the periplasmic
hydrogenase (HYD4pp), NADH is produced by the reverse activity of complex I in the respiratory
chain (NADH16pp) at the expense of pmf. Phase plane analysis revealed a trade-off between this
phenomenon and growth rate (Figure 4A). Similar to the results for reaction FALDHpp, as a higher
fraction of Hy is oxidized through HYD4pp, NADH regeneration becomes a rate-limiting step in the
metabolism, thereby decreasing the maximum growth rate achievable (Figure 4C, D). Additionally,
pmf consumption reduces the achievable ATP production rate, as shown by a reduction of 55% in the
flux through ATP synthase reaction (Figure 4D). Model predictions indicate that growth under the
reverse electron flow hypothesis is only feasible if the total H» uptake rate is higher than 3.4 mmol H»
gDW ! h'!, and simulations indicated that reverse electron flow becomes necessary if approximately
76% of the H» flux is oxidized through HY D4pp (Figure 4B), showing good agreement with
bibliomic data (Table 1, Figure 3C).

2.4.3 Heterotrophic Metabolism is Limited by Redox Reactions

Growth under heterotrophic metabolism was simulated for three different substrates: propane,
isopropanol, and acetone. To make the simulations comparable between conditions, the substrate
uptake rate was normalized to an equivalent carbon uptake rate of 3.5 C-mmol gDW ! h'!, which is
the carbon uptake rate measured from experiments with CH4. With this constraint, the predicted
growth rates in C3 substrates were consistent with bibliomic data from strain IT6 (Table 1).
Interestingly, the growth rate in isopropanol was remarkably higher (isopropanol=0.038 h™!; propane,
acetone=0.033 h!). This occurred because the conversion of isopropanol to acetone by GMC-
oxidoreductases produces two extra redox equivalents in the form of protons that can potentially be
supplied to the ETC. On the other hand, when propane or acetone are used as substrates, electrons
generated by GMC-oxidoreductases are consumed in the oxygenation reactions of the PMMO. The
consequence is that flux of CYTCBB3pp1 (cytochrome oxidase) was 23.6% higher in isopropanol,
thus enabling a higher growth rate.

To further investigate those phenotypes, we sampled the solution space of each condition (total 4) to
investigate the key differences between methanotrophic and heterotrophic metabolism. Using
optGpSampler (Megchelenbrink et al., 2014), 10,000 flux distributions were simulated for CHa,
propane, isopropanol, and acetone. Changes in predicted flux variation of reactions were identified
by comparing the median fluxes using the Kolmogorov-Smirnov test static (KS-value) and the log2
fold change (1og2FC) using CHj4 as the reference condition (see Methods Section 4.13). Overall, the
highest differences found were a reduction in the flux through the CCB cycle against an increase in
glycolytic reactions and the TCA cycle (Figure 5A, B, C). Because C3 compounds are assimilated at
the level of pyruvate, to produce energy and precursor metabolites carbon flux needs to be divided
between the TCA cycle, and glycolytic reactions. The higher carbon content enables an increase in
amino acid and nucleotides production (Figure 5A, B, C), with the consequential increase in growth
rates (Table 1). Another key difference was the reduction in flux through the THF-dependent
pathway of formaldehyde oxidation. Carbon flux through this pathway provides methylene-THF,
which is used in the biosynthesis of pyrimidine deoxyribonucleosides. To compensate for its
deactivation, methylene-THF was produced from glycine and serine by the glycine-cleavage-
enzyme-complex (GLYCL) and the serine hydroxymethyltransferase (GHMT2r), respectively.

Furthermore, Mass Flow Graphs (MFGs) (Beguerisse-Diaz et al., 2018) were constructed for each
sample to rank reactions based on their centrality, which was calculated as the PageRank value
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(Gleich, 2015). MFGs are weighted, directed graphs with reactions as nodes, edges that represent
supplier-consumer relationships between reactions, and weights given by the mass flow between
connected reactions. In all conditions, the highest-ranking reactions corresponded to those in the ETC
(Figure 5D), highlighting the energetic constraints that redox balance has on the metabolism of these
microorganisms. Notably, formate dehydrogenase (FDH) was a recurring reaction in all simulations
(Figure 5D). During the growth using C3 compounds, formate is a product of fermentative
metabolism. Activation of fermentative reactions suggests that catabolic pathways, such as the TCA
cycle, cannot meet the energy requirements on their own. Overall, these findings suggest that growth
under heterotrophic conditions is limited by the production rate of redox equivalents, a result
consistent with findings under methanotrophic and autotrophic conditions.

3. Discussion

Extremophile bacteria have the potential to lower biomanufacturing costs by reducing the energy,
labor, and capital resources needed for sterilization, agitation, heating, and cooling (Levett et al.,
2016; Ye et al., 2023). Moreover, extremophile bacteria are sources of novel and robust industrially
relevant compounds (Tao et al., 2016) and proteins (Aulitto et al., 2017). Acidophile methanotrophs
have been used for the co-degradation of organochlorine compounds (Choi et al., 2021), whereas
halotolerant methanotrophs have been successfully used to produce ectoine (Cantera et al., 2017; Cho
et al., 2022).

M-models have been used to study the metabolism of methanotrophs using a systems biology
approach (Fu et al., 2019; Nguyen et al., 2020a), and as tools in the rational design of metabolic
engineering of methanotrophs (A. Henard et al., 2019; Nguyen et al., 2020b). Recently, an M-model
was used to study the halotolerance mechanisms of Methylomicrobium alcaliphilum (Bordel et al.,
2020b). Although automatic reconstruction tools reduce the labor and time needed to develop M-
models, extensive manual curation is still required to improve the predictive capacity (Zufiga et al.,
2020) as well as the consistency of the models with Findability, Accessibility, Interoperability, and
Reusability (FAIR) principles (Wilkinson et al., 2016). In this study, we generated a high-quality,
manually curated model of M. fumariolicum str. Pic. Although several M-models for proteobacterial
methanotrophs have been published (Table 3), to our knowledge, model iAS473 is not only the first
model available for methanotrophic Verrucomicrobia but also the first model available for any
thermoacidophile methanotroph.

Model iAS473 contains 473 out of 647 that were predicted to be related to metabolic reactions in the
genome assembly of strain Pic and had a MEMOTE consistency score of 92% (see Supplementary
Materials). In addition, model /AS473 can simulate all the known phenotypic capabilities of the
Methylacidiphilum genus, specifically methanotrophic, autotrophic, and heterotrophic. Interestingly,
under methanotrophic conditions, oxidation of formaldehyde by the XoxF-MDH prevents the
production of NAD(P)H via the THF-dependent pathway. Theoretically, this should exert a negative
effect on the metabolism, as the NAD(P)H pool needs to be divided between quinol regeneration, the
CBB cycle, and anabolism (Keltjens et al., 2014). Indeed, the model predicts a monotonic decrease in
the growth rate as a higher fraction of formaldehyde is oxidized by the XoxF-MDH. However,
stoichiometric constraints on NAD(P)H regeneration could be alleviated by alternative electron
transfer mechanisms not considered in this study, such as the reverse electron transfer of complexes I
and III (Keltjens et al., 2014) or direct electron transfer from cytochrome C to the PMMO (Lieven et
al., 2018). Although the formaldehyde oxidation activity of XoxF-MDH has only been detected in
vitro (Pol et al., 2014), a similar functional redundancy has been observed between the THF and
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THMP-dependent pathways (Marx et al., 2005). It is tempting to speculate that XoxF-MDH could
play a similar role in alleviating formaldehyde toxicity under transient conditions.

Model iAS473 predicts a similar phenomenon under autotrophic conditions. /n vitro activity assays
have shown that H; oxidation in Methylacidiphilum species can mostly be attributed to O» resistant
periplasmic hydrogenases (HYD4pp) (Carere et al., 2017; Schmitz et al., 2020). However, the
activity of these enzymes prevents NADH production by the O» sensitive cytoplasmic hydrogenases.
Although NADH could be produced by group 3b hydrogenases (Hedderich and Forzi, 2005), these
enzymes are highly Oz sensitive; therefore, it is not clear if their activity alone is sufficient to supply
all electron equivalents required for growth in Methylacidiphilum species.

Simulations under autotrophic conditions showed that an increase in the fraction of H> oxidized by
HYD4pp decreases the growth rate because of the reduction in NADH production (Figure 4A). To
compensate for this loss, complex I carries a reversible reaction to produce NADH; however, this
activity decreases the available pmfused for ATP production, constraining the growth rate even
further. Notwithstanding, simulations predicted that reverse electron flow is necessary if at least 76%
of the H> flux is oxidized through HYD4pp (Figure 4B), this result is consistent with activity assays
between the membrane and soluble fractions of H» oxidizing cells from strain SolV, in which
approximately 62% of the H> was oxidized by the membrane fraction (Carere et al., 2017; Schmitz et
al., 2020). Since reverse electron flow is a highly endergonic process, the metabolism needs to
overcome an energy threshold to make growth feasible (Poughon et al., 2001). Interestingly, model
simulations situate that threshold at an H, flux of 3.4 mmol gDW ! h'!; however, results associated
with thermodynamic conditions found in vivo are out of the scope of our M-model. However, iAS473
will be a template for advances modeling methodologies such as metabolism and gene expression
models (Tibocha-Bonilla et al., 2022).

The changes in flux patterns between methanotrophic and heterotrophic conditions, as predicted by
the model, were consistent with transcriptome analyses of strain IT6 grown in isopropanol. Model
simulations indicated that under heterotrophic conditions, carbon assimilation bifurcates in pyruvate:
a fraction of the carbon flux is diverted to the TCA cycle for the regeneration of the NAD(P)H pool,
while the rest is diverted to glycolysis and the Pentose Phosphate Pathway to produce precursor
metabolites. As expected, a significant proportion of the carbon flux was also diverted to formate and
later to CO; through the formate dehydrogenase reaction (FDH), suggesting that this reaction was
also necessary to replenish the NAD(P)H pool key for methanotrophic metabolism. In a study by
Awala et al. (2021) the authors determined that genes for phosphoenol pyruvate synthase, as well as
the three components of the pyruvate dehydrogenase complex, were upregulated in isopropanol-
growing cells. Moreover, 11 out of the 32 upregulated genes belonged to enzymes of the TCA cycle.

Overall, the model iAS473 enables a systematic process to compile available biochemical and
genetic information, detect possible errors during the annotation process of the genome assembly,
and identify knowledge gaps in the metabolism of Methylacidiphilum species. We expect that this
model will be a useful tool for researchers to investigate the metabolism of this novel genus.

4. Materials and Methods

4.1 Sample Collection

In March 2019, we took sediment and water samples of approximately 250 mL samples from the
crater-lake in “El Chichonal”, an active volcano located in the state of Chiapas in Mexico (17°21°N,
WO93°41°W; 1100 masl.). After the most recent eruption started in March 1982 three small lakes
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were created in the crater; by November 1982, one lake occupying an area of 14 ha remained
(Armienta et al., 2008). Temperatures in the lake vary between 20°C and 95°C, and the pH varies
between 2 and 4. The crater lake has been the source of extremophile bacteria (Ovando-Chacon et al.,
2020; Ortiz-Cortés et al., 2021; Ovando-Ovando et al., 2023), and recently proteobacterial
methanotrophs were identified in the sediments (Rincon-Molina et al., 2019, 2020). Table S1
contains the coordinates of the different sites. Sediment samples were collected in sterile plastic
containers, and water samples were collected in sterile amber bottles. Immediately after collection,
the samples were stored in ice and transported to our laboratory in Mexico City for further studies.

4.2 Culture Conditions

Cultures of sediments were incubated in gastight serum bottles of 125 ml, at a temperature of 50°C,
agitation speed of 160rpm using Ammonium Mineral Salts (AMS) medium at pH 2 with, with 10%
(v/v) of CH4 in the headspace unless otherwise specified. The medium composition is reported in
Table S3.

4.3 Enrichment and Isolation

Approximately 1.3g of sediments from each site were mixed and diluted with 10 ml of AMS and 10
mL of water sampled from the lake. This mixture was incubated in 125 ml of gastight serum bottles
at a temperature of 40°C and an agitation speed of 200 rpm. The concentration of gases in the
headspace of the bottle was adjusted to 20% (v/v) of CH4 and 1% (v/v) of CO; by removing air with
a syringe and adding the corresponding volume of each gas. This mixture was incubated until all CH4
in the headspace was depleted. After this, the mixture was used as the inoculum of five 1:10 serial
dilutions in 20 ml of AMS. The dilutions were incubated under the same conditions described before,
with the only difference being that CO2 was not added to the headspace. For isolation, two ml of the
lowest dilution with growth were taken to start three rounds of 10" extinction culturing dilutions.
After the third round, two ml of the lowest dilution with growth were transferred to 23 ml of fresh
AMS media and incubated for one week before DNA extraction.

4.4 DNA Extraction and Sequencing

DNA was extracted from 25mL of culture broth. The sample was centrifuged and washed twice in
Phosphate Buffer (0.2M, pH 7.4). Then, the Qiagen DNeasy PowerSoil DNA Isolation Kit (QIAGEN
Sciences, Germantown, MD, USA) was used following the manufacturer’s instructions. The samples
were submitted to Novogene Corporation Inc (Sacramento, CA, USA) for library preparation and
sequencing on an [llumina NovaSeq PE150 platform.

4.5 Utilization of Respirometry to Determine Temperature Phenotypes

Pre-grown cultures were incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were
added daily until an optical density of 0.5 was reached. All respirometry experiments were performed
in a custom-made glass chamber (Cabello et al., 2015) using a Clark-type polarographic dissolved
oxygen (DO) probe (YSI Incorporated, USA). A data acquisition module (CompactDAQmx, NI,
USA) was connected to a computer for data logging every second. Before each temperature tested
(40, 45, 50, 60°C), 25ml of pre-grown bacterial cultures were incubated in gastight serum bottles for
15min with 10% CHg inside a water bath pre-adjusted to the desired temperature, with an additional
15min incubation with air alone it the headspace. Maintenance O> consumption was measured by
adding 2.99mL of the acclimatized bacterial suspension to the glass chamber and recording DO
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dynamics for 10min. Subsequently, 10uL of a 12M methanol solution were added to the chamber and
the dynamics were recorded until DO exhaustion.

4.6 Determination of Optimal pH

Pre-grown cultures were incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were
added daily until the culture reached an optical density of 0.5. In each pH tested (1.0, 1.5, 2.0, 2.5,
and 3.0), 25ml of pre-grown bacterial cultures were incubated in gas-tight serum bottles with an
initial CH4 concentration of 10% in the head space. The pH of each experiment was adjusted with a
solution of H3PO4 50% (v/v). The concentrations of CH4, CO, and O, were measured every 2 hours
by injecting 200uL of the headspace into a GOW-MAC gas chromatograph. All experiments were
performed in triplicate. The dry biomass weight was measured at the end of the experiment. Data
collected was used to fit a linear model and calculate the CH4 uptake rate and CO> production rate
using the python package statsmodels v0.14.0 (Seabold and Perktold, 2010).

4.7 Evaluation of Substrate Uptake Rates and Growth Rates Calculations

We tested growth phenotypes on acetone, isopropanol, and LP-Gas. Pre-grown cultures were
incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were added daily until the
culture reached an optical density of 0.5. We used 25ml of pre-grown bacterial cultures with initial
concentrations of 50mM acetone, 5S0mM isopropanol and 10% (v/v) LP-Gas. Each substrate was
tested in triplicates. The concentrations of Oz and CO2 were monitored for 8h using a GOW-MAC
gas chromatograph, with an interval of 1 h 15 min between each sample. Data collected was used to
fit a linear model and calculate the substrate uptake rate using the python package statsmodels
v0.14.0 (Seabold and Perktold, 2010). Data collected was used to fit a linear model and calculate the
CO; production rate using the python package statsmodels v0.14.0 (Seabold and Perktold, 2010).

4.8 Analytical Methods Used to Create Model Constraints

CHa, CO2, and Oz were measured in a GOW-MAC gas chromatograph using a CTR1 column
(Alltech, USA). Helium was used as carrier gas at a flow rate of 100 ml min™'. The column, detector,
and injector temperatures were set to 40°C, 115°C, and 50°C respectively. The detector current was
set to 125mA. Dry biomass weight was measured by vacuum filtering 25ml of bacterial culture in
pre-weighted cellulose acetate filters (pore diameter 0.2um, Sartorius). Filters were dried in an oven
at 60°C for 24h and then transferred to a dehumidifying chamber until constant weight.

To accurately constrain the biomass objective function of i/AS47 we determined the amino acids
profile using a Hitachi L-8900, an automated cation exchange chromatograph. This commercial
amino acid analyzer automatically process biomass samples (Walker and Mills, 1995). Briefly, 4 mg
of dry weight biomass samples were hydrolyzed in HCL according to a standard protocol for
biological and physiological samples (Rutherfurd and Gilani, 2009). The calibration curve was done
using the amino acid standard AAS 18-5ml of sigma. This data was used as input to adjust the
biomass objective function of iAS473 (see Table S9).

4.9 Genome Assembly and Annotation

[Mlumina adapter sequences were removed from a total of 23,920,586 paired-end reads using
trimommatic (Bolger et al., 2014). The quality of the adapter-free sequences was evaluated using
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Primary genome assembly
was carried out using the Spades-based (Prjibelski et al., 2020) assembler Unicycler v0.4.9 (Wick et
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al., 2017) with standard parameters. Subsequently, raw reads were normalized to an average coverage
of 75x using BBNorm from the BBTools software suit (https://jgi.doe.gov/data-and-tools/software-
tools/bbtools/). Normalized reads were mapped to the primary assembly and the mapped reads were
re-assembled with Mira V5rcl (Chevreux et al., 2004) to increase contiguity (Lui et al., 2021).
Completeness of the assembly was evaluated using BUSCO V5.2.1 (Simao et al., 2015) against the
subset of verrucomicrobial genes (2019-04-24). Ribosomal and tRNA presence was evaluated using
Infernal cmscan v1.1.4 (Nawrocki and Eddy, 2013) against the Rfam database (Kalvari et al., 2021).
The final assembly was scaffolded using SSPACE V2.0 (Boetzer et al., 2011), and Pilon (Walker et
al., 2014) was used for gap filling of the scaffolds. Assembly statistics were calculated using QUAST
v5.0.2 (Gurevich et al., 2013). Bowtie2 and samtools were used for alignment and sorting functions
during all steps (Langmead and Salzberg, 2012; Danecek et al., 2021). The assembly was annotated
using the online NCBI Prokaryotic Genome Annotation Pipeline v2021-07-01 (Tatusova et al.,
2016). Hydrogenases were classified using HydDB (Sendergaard et al., 2016).

4.10 Genome-Scale Phylogenetic Analysis

Genome assemblies available in NCBI for the Methylacidiphilum were evaluated for completeness
with CheckM v1.2.2 (Parks et al., 2015). GET_HOMOLOGUES (Contreras-Moreira and Vinuesa,
2013) was used to identify orthologous gene clusters between the genome reported here and eleven
genomes with a completeness higher than 90%. Gen clusters were used to calculate average
nucleotide identity (gANI) values to define genus and species-level affiliation (Varghese et al., 2015;
Hayashi Sant’Anna et al., 2019). Our assembly had a gANI value above 96% for every M.
fumariolicum genome. Therefore, only five genomes for M. fumariolicum were used for subsequent
analyses. Orthologous gene clusters were classified into core and pan-genes. The core gene clusters
were used as input to GET PHYLOMARKERS (Vinuesa et al., 2018) to estimate a phylogenetic
tree. The run_get phylomarkers pipeline shell script was used on core protein sequences with default
parameters to identify proteins with optimal characteristics for phylogenetic analysis. This script
outputs concatenated alignments of the optimal phylogenetic markers, which were used as input to
IQ-TREE v2.2.0.3 (Minh et al., 2020) for tree estimation under the maximum likelihood criteria
using UFBoot2 (Hoang et al., 2018) with 25000 bootstrap replicates. Unrooted trees were estimated
using automatic model selection with ModelFinder (Kalyaanamoorthy et al., 2017) and rooted
artificially at the midpoint and they are shown in Figure 1A.

4.11 Phylogenetic Tree Reconstruction of PmoA

For PmoA, reference sequence WP_009059718.1 was used as a query for three BlastP (Camacho et
al., 2009) searches against NCBI non-redundant database (Sayers et al., 2022) using taxonomic filters
set to Verrucomicrobia, Alphaproteobacteria, and Gammaproteobacteria. The top 100 hits to each
search were aligned using COBALT (Papadopoulos and Agarwala, 2007) with standard parameters.
Partial sequences were removed from the alignments before using them as input to IQ-TREE v2.2.0.3
(Minh et al., 2020) for tree estimation under the maximum likelihood criteria using UFBoot2 (Hoang
et al., 2018) with 25000 bootstrap replicates. Unrooted trees were estimated using automatic model
selection with ModelFinder (Kalyaanamoorthy et al., 2017) and rooted artificially at midpoint. A
similar methodology was used to estimate the phylogenetic tree presented in Figure S2, with the
difference that the BlastP searches were limited to sequences of other Verrucomicrobia bacteria.
Sequences from the Methylacidimicrobium genus were used as outgroup.

4.12 Metabolic Reconstruction
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4.12.1 Draft Reconstruction

The metabolic reconstruction was generated using our semi-automatic methodology (Tec-Campos et
al., 2023). Initially, a draft-reconstruction was generated by using GenBank files
(GCF_019429645.1) as input to PathoLogic in Pathwaytools v25.0 (Karp et al., 2019) and MetaCyc
v25.0 (Caspi et al., 2014). Additionally, we used the model of gram negative methanotroph
Methylomicrobium buryatense SG(B1) as a reference (de la Torre et al., 2015). Pathologic was run
with standard parameters and disabling taxonomic pruning. Subsequently, the draft was exported to
an xml file and imported into Cobrapy (Ebrahim et al., 2013) for manual curation.

4.12.2 Manual Gap-filling

Production of each of the precursor metabolites was tested individually. For those metabolites which
could not be produced, reactions were gap filled manually based on supporting information available
in Metacyc and KEGG databases. To assign gene associations to reactions without one, protein
sequences reported in the M. infernorum pathway map (Hou et al., 2008) from KEGG (Kanehisa and
Goto, 2000; Kanehisa et al., 2023) were used as queries in a BLASTp (Camacho et al., 2009) search
to the genome assembly reported in this study. For reactions not found in KEGG, protein sequences
available in MetaCyc (Caspi et al., 2014) were used as the query. Reactions that still lacked gene
associations after this step were removed from the model. Reactions needed to produce all biomass
precursors were manually gap-filled following the same methodology.

4.12.3 Model Standardization

Annotation cross-references were taken from MetaCyc database and transformed as necessary to be
compliant with the identifiers.org compact identifiers. Where possible, missing annotations were
complemented using annotations from iIML1515 (Monk et al., 2017). Missing information after this
step was manually added to the model. To ensure that the reconstruction meets community standards
with the minimum information required in the annotation of models (MIRIAM)-compliant cross
references (Laibe and Le Novere, 2007), metabolites and reactions that could not be annotated at
least in one database other than MetaCyc were removed from the model. Finally, metabolite and
reaction identifiers were translated into BiGG namespace (King et al., 2016). Metabolite formulas
were taken from MetaCyc database. Where possible, missing formulas were complemented using
information from IML1515. Missing metabolite formulas after this step were added manually. If
metabolite protonation and charges were available in the databases, these were set to a reference pH
of 7.3 for the cytosol compartment, and pH of 2.0 for the periplasm and extracellular compartments.
Else, mol files were downloaded from CHEBI (Degtyarenko et al., 2008) or KEGG (Kanehisa and
Goto, 2000), and protonation states were predicted using ChemAxon (https://www.chemaxon.com)
online Protonation Calculator. Stoichiometry of transport and periplasmic reactions were modified
according to the protonation state of each metabolite. Ultimately, the MEMOTE Suite (Lieven et al.,
2020) was used for quality analysis of the curated metabolic reconstruction. MEMOTE evaluates the
annotation consistency across databases and standards and outputs an annotation score ranging from
0% to 100%.

4.12.4 Stoichiometric Balanced Cycles for Accurate Redox Estimation

To reduce the possibility of stoichiometrically balanced cycles, we assigned reactions reversibility
constraints based on the following methods. First, the equilibrator-API (Noor et al., 2013; Beber et
al., 2022) was used to calculate the standard Gibbs potentials of reactions. Gibbs potentials were used
to assign directionality constraints if the absolute value of the reaction potential was greater than 1 kJ
mol™! and if the standard deviation was less than 3% of the absolute value. After this, stoichiometric
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balanced cycles, and erroneous energy generating cycles for 11 energy metabolites were detected and
removed using a custom implementation of Algorithm 1 presented in (Gevorgyan et al., 2008).
Reversibility constraints for reactions were modified based on information available in the databases.

4.12.5 Biomass Objective Function

The composition of the biomass reaction was reconstructed from previous published models for
gram- negative methanotrophs (de la Torre et al., 2015; Akberdin et al., 2018; Lieven et al., 2018).
The lipid composition was modified based on measurements from Methylacidiphilum species (Op
den Camp et al., 2009), whereas the amino acid composition was modified from measurements from
M. fumariolicum Pic. Furthermore, the reaction was normalized to a biomass molecular weight of
Immol g (Lachance et al., 2019). The growth associated maintenance was calculated from
experimental CH4:O» ratios assuming a P/O ratio of 2.5. The constraints for non-growth associated
maintenance were imported from the model of Methylocysti hirsuta CSC1 (Bordel et al., 2019b).

4.13 Model Simulations

All simulations were performed in COBRApy (Ebrahim et al., 2013) using Flux Balance Analysis
(Orth et al., 2010), with Optlang (Jensen et al., 2017) as an interface to CPLEX 20.1 (Cplex, 2009).
CPLEX was used with automatic method selection and numerical tolerance set to 1x10™. The python
package statsmodels v0.14.0 (Seabold and Perktold, 2010) was used to calculate correlation
parameters between O uptake rates/CO; production rates and CHg4 uptake rates.

Flux sampling was performed using the uniform sampler optGpSampler (Megchelenbrink et al.,
2014) with standard parameters and 10,000 replicates. The model was sampled independently in 4
conditions: CH4, propane, isopropanol, and acetone. Differential fluxes in each condition were
identified by comparing the median values using the Kolmogorov-Smirnov test static and the log2
fold change, with CHj4 as the reference condition. The cut-offs used were 0.2 and 0.5 for the KS-
value and the log2 FC, respectively. For each of the 10,000 replicates a Mass Flow Graph (MFG)
was constructed using a custom implementation of the methods presented in (Beguerisse-Diaz et al.,
2018). MFGs were used to rank reactions according to PageRank Centrality (Gleich, 2015).
PageRank Centrality values were calculated using the python package NetworkX (Hagberg et al.,
2008). Code used to run simulations and data analysis is available as Jupyter-notebooks (Rule et al.,
2019) in the GitHub repository https://github.com/cristalzucsd/Methylacidiphilum_fumariolicum (see
Data Availability Statement).
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1083  Table 1. Comparison of growth characteristics between Methylacidiphilum strains and model iAS473
1084  simulations. ? Substrate uptake rate in units of mmol gDW~! h'!. ® Oxygen and CO yields in reference
1085  to the substrate in units of mol mol™!. ° Biomass yields in reference to the carbon source in units C-
1086  mol mol’!, yields were calculated assuming a biomass formula weight of 24.6 C-mol gDW-!. 4

1087  Simulations constraining flux of reaction FALDHpp to be 20% of the total formaldehyde oxidation
1088  rate. © Simulations constraining flux of reaction HYD4pp to be 76% of the total H> oxidation rate.
1089  n.d., not determined.

Strain  Substrate Condition qS*  p(Y) Yo Yco?  Yx°© Reference
Pic CH,4 Experimental 3.5 0.015 1.62 0.93 0.12 This Work
SolV CH4 Experimental n.d.  0.070 1.6 0.65 0.35 (Pol et al., 2007)
Kaml CH4 Experimental n.d.  0.018 n.d. n.d. 0.18 (Dunfield et al., 2007)
V4 CH4 Experimental n.d.  0.038 n.d. n.d. 0.39 (Islam et al., 2008)
IT6 CH,4 Experimental n.d.  0.047 n.d. n.d. n.d. (Awala et al., 2021)
Pic CH4 Simulation 35 0.037 1.5 0.57 0.43 This Work
Pic CH4 Simulation ¢ 3.5 0.029 1.6 0.66 0.34 This Work
SolV Hz+CO2 Experimental 13.2  0.047 0.32 0.19 0.19  (Mohammadi et al., 2017)
Pic H>+CO» Simulation © 132 0.034 0.37 0.11 0.11 This Work
IT6 Isopropanol  Experimental n.d.  0.042 n.d. n.d. n.d. (Awala et al., 2021)
IT6 Acetone Experimental n.d.  0.039 n.d. n.d. n.d. (Awala et al., 2021)
Pic Propane Simulation 1.16  0.033 3.63 1.84 1.16 This Work
Pic Isopropanol ~ Simulation 1.16  0.038 2.92 1.64 1.35 This Work
Pic Acetone Simulation 1.16  0.033 2.63 1.84 1.16 This Work

1090  Table 2. Comparison between growth phenotypic data from strain Pic and model simulations. ?
1091  Ordinary least-squares parameters for experimental data of O uptake rates/CO; production rates vs
1092  CHasuptake rates. ° Linear correlation between Ox uptake rates/CO; production rates vs CHa uptake
1093  rates predicted by the model.

Oxygen Carbon Dioxide
Line of Best-Fit*  iAS473"  Line of Best-Fit®  iAS473P
Slope 1.16 1.46 0.52 0.54
Intercept 1.45 0.47 1.50 0.40
Log-Likelihood -59.78 -62.10 -43.58 -68.53
R-squared 0.622 0.292 0.416 0.549

1094  Table 3. List of published M-models for methanotrophic bacteria

Name Microorganism Class Reference
iMb5G(B1) Methylomicrobium buryatense Gammaproteobacteria  (de la Torre et al., 2015)
iMcBath Methylococcus capsulatus Bath Gammaproteobacteria  (Lieven et al., 2018)
iTA332 Methylomicrobium alcaliphilum 20ZR ~ Gammaproteobacteria  (Akberdin et al., 2018)
iIMC535 Methylococcus capsulatus Bath Gammaproteobacteria  (Gupta et al., 2019)
Methylocysti hirsuta CSC1 Alphaproteobacteria
Methylocystis sp. SC2 Alphaproteobacteria (Bordel et al., 2019a)
Noname  Methylocystis sp. SB2 Alphaproteobacteria
Methylocystis parvus OBBP Alphaproteobacteria (Bordel et al., 2019b)
Methylocella silvestris Alphaproteobacteria (Bordel et al., 2020a)
iMsOB3b  Methylosinus trichosporium OB3b Alphaproteobacteria (Naizabekov and Lee, 2020)
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Figure 1. (A) Maximum likelihood phylogenetic tree reconstructed from the top 117 phylogenetic
markers identified for Methylacidiphilum species. Bootstrap values were estimated using 25,000
replicates. The tree is rooted at midpoint. (B) Maximum likelihood phylogenetic tree for periplasmic
methane monooxygenase subunit A. The sequence of strain Pic clusters with sequences of other
Verrucomicrobia methanotrophs. (C) The highest specific CH4 oxidation rate from strain Pic was
determined between pH 1.5 and 2.0. (D) The highest O» respiration rate from strain Pic was
determined between 50°C and 60°C. (E) CO: production rates from strain Pic growing in four
different substrates. Results show that strain Pic oxidizes C3 substrates isopropanol and acetone.

Figure 2. (A) Voronoi tree map showing the distribution of reactions, metabolites, and genes. (B) Bar
plot showing the number of reactions grouped by pathway. (C) Metabolic map of the different
metabolic modules represented in the model.

Figure 3. (A) Scatter plot of specific O uptake rates (left), CO; production rates (right) as a function
of specific CH4 consumption rates and its comparison to model predictions. (B) Growth rates with
four different substrates as a function of carbon uptake rate. (C) Comparison of the predicted O; and
COyyields to bibliomic data under autotrophic conditions. Yields are referenced to 1 mol of Ho.

Figure 4. (A) Contour plot showing the monotonic decrease in growth rate as the fraction of Ha
oxidized by the periplasmic hydrogenases increases (HYD4pp). (B) Contour plot showing the
directionality of complex I (NADH16pp) as the fraction of H> oxidized by HYD4pp increases.
NADH16pp changes its directionality when HYD4pp oxidizes 76% of the total H» flux. (C), (D)
Metabolic flux distributions of reactions in the electron transport chain when the fraction of Ha
oxidized by HYD4pp is 0 (C) or 1 (D). Activity of HYD4pp constraints the maximum growth rate
because the proton motive force needs to be diverted from ATP production to NADH regeneration.

Figure 5. (A), (B), (C) The graphs on the left are volcano plots showing the median flux differences
between simulations using CH4 and (A) propane, (B) isopropanol, and (C) acetone. The plot was
generated with the log, fold change (log> FC) values from the median of 10,000 simulations and the
value of the Kolmogorov-Smirnov test (KS-value). The cut-offs to identify reactions with significant
differences were 0.5 for the log> FC and 0.2 for the KS-value. The graphs on the right show the total
flux change for reactions with significant differences grouped by pathways. (D) Box plot of the
PageRank scores of the 17 most central reactions for 10,000 simulations in each substrate. The
PageRank score is a measure of the centrality or importance of a reaction, and it is higher for
reactions with a higher connectivity or reactions with a higher mass flux.
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