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Abstract 13 

Members of the genus Methylacidiphilum are thermoacidophile methanotrophs with optimal growth 14 

temperatures between 50oC and 60oC, and pH between 1.0 and 3.0. These microorganisms, as well as 15 

other extremophile bacteria, offer an attractive platform for environmental and industrial 16 

biotechnology because of their robust operating conditions and capacity to grow using low-cost 17 

substrates. In this study, we isolated Methylacidiphilum fumariolicum str. Pic from a crater lake 18 

located in the state of Chiapas, Mexico. We sequenced the genome and built a genome-scale 19 

metabolic model. The manually curated model contains 667 metabolites, 729 reactions, and 473 20 

genes. Predicted flux distributions using flux balance analysis identified changes in redox trade-offs 21 

under methanotrophic and autotrophic conditions (H2+CO2). This was also predicted under 22 

heterotrophic conditions (acetone, isopropanol, and propane). Model validation was performed by 23 

testing the capacity of the strains to grow using four substrates: CH4, acetone, isopropanol, and LP-24 

Gas. The results suggest that the metabolism of M. fumariolicum str. Pic is limited by the 25 

regeneration of redox equivalents such as NAD(P)H and reduced cytochromes. 26 

1. Introduction 27 

Extremophile bacteria such as Methylacidiphilum fumariolicum are an attractive platform for 28 

industrial and environmental biotechnology. Their broad growth capabilities offer an opportunity to 29 

reduce manufacturing costs through processes without sterilization or using low-cost substrates (Ye 30 

et al., 2023). Between 2007 and 2008, a new clade of methanotrophic bacteria in the Phylum 31 

Verrucomicrobia was isolated from geothermal or volcanic environments (Dunfield et al., 2007; Pol 32 

et al., 2007; Islam et al., 2008). These strains currently belong to the genus Methylacidiphilum and 33 

are aerobic thermoacidophilic methanotrophs with optimal growth temperatures between 50oC and 34 
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60oC and an optimal pH between 2.0 and 3.0 (Schmitz et al., 2021). To date, three species have been 35 

identified (Hou et al., 2008; Anvar et al., 2014; Kruse et al., 2019) and three unclassified strains have 36 

been isolated (Erikstad et al., 2019; Awala et al., 2021). In addition, five complete genomes and 14 37 

draft assemblies are available in the NCBI genome database (Hou et al., 2008; Anvar et al., 2014; 38 

Erikstad et al., 2019; Kruse et al., 2019; Awala et al., 2021). 39 

Because of the recent discovery of the Verrucomicrobia methanotrophic clade, there is limited 40 

knowledge about their broad metabolic capabilities and their further biotechnological applications. 41 

For example, the M. fumariolicum str. SolV has been proven to grow heterotrophically on C2 and C3 42 

compounds such as ethane, and propane (Picone et al., 2020), as well as autotrophically, using H2 as 43 

an electron source and CO2 as the only carbon source (Mohammadi et al., 2017). The pathway for the 44 

oxidation of propane, isopropanol, and acetone was also elucidated in a recently isolated 45 

Methylacidiphilum sp. IT6 (Awala et al., 2021). Moreover, it has been shown that the strain SolV can 46 

convert methanethiol (Schmitz et al., 2022) to H2S, and oxidize H2S to elemental sulfur (Schmitz et 47 

al., 2023). Their metabolic capabilities and resilience to harsh conditions make these bacteria 48 

excellent candidates for use in biofilters that treat H2S-contaminated gaseous streams or as biomining 49 

agents recovering Rare Earth Elements (REEs) from low-grade sources (Singer et al., 2023). 50 

Additionally, Verrucomicrobia methanotrophs can be a source of novel thermostable enzymes for the 51 

chemical and pharmaceutical industries (Gevaert et al., 2019; Schmitz et al., 2020). For example, 52 

heterologous expression of PmoD from Methylacidiphilum sp. IT6 enabled the construction of a 53 

whole-cell biocatalyst in the Type I methanotroph Methylomonas sp. DH1 used for the production of 54 

acetol from acetone (Chau et al., 2022). We expect that the range of biotechnological applications of 55 

Verrucomicrobia methanotrophs will further diversify as more strains are isolated from different 56 

environments. 57 

Genome-scale metabolic models (M-models) can be used as a knowledge base to concentrate the 58 

available biochemical, genomic, metabolic, and physiological information of a target microorganisms 59 

(Thiele and Palsson, 2010; Monk et al., 2017). The genome functions are translated into a set of 60 

metabolic reactions encoded in a mathematical representation as a set of linear equations and 61 

constraints (Orth et al., 2010). The relationship between genotype and phenotype can be investigated 62 

from the solutions of M-models using Flux Balance Analysis (FBA) (Feist et al., 2007). Moreover, 63 

M-models enable the integration of multi-omic datasets into a single comprehensive analysis 64 

workflow (Noor et al., 2019; Arnolds et al., 2021; Passi et al., 2022). In methanotrophs, M-models 65 

have been used to study the mechanisms of electron transfer to the periplasmic methane 66 

monooxygenase (PMMO) (Lieven et al., 2018), one-carbon metabolism (Nguyen et al., 2020a), 67 

metabolic adaptations to high salinity conditions (Bordel et al., 2020b), nitrate-dependent methane 68 

oxidation (Versantvoort et al., 2019), etc.  69 

In this study, we isolated and sequenced the genome of Methylacidiphilum fumariolicum str. Pic. 70 

Then, we collected experimental growth phenotypes using four substrates and used this information 71 

to validate our reconstructed M-model. The model, also referred to as iAS473, was manually curated 72 

to comply with the most recent community standards (Laibe and Le Novère, 2007; Waltemath et al., 73 

2011; Carey et al., 2020). This knowledgebase compiles with the latest bibliomic findings of the 74 

genus Methylacidiphilum, specifically the metabolism of M. fumariolicum. To our knowledge, this is 75 

the first manually curated genome-scale metabolic reconstruction for any methanotrophic 76 

Verrucomicrobia. 77 

 78 
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2. Results 79 

2.1 Isolation and Genome Characterization 80 

Taxonomic analysis of the raw sequencing data indicated that 96% of the sequences were classified 81 

as Methylacidiphilum (Figure S1). Based on this result, a two-step assembly process was used to 82 

improve the contiguity of the recovered genome (see Methods Section 4.9). The final genome 83 

assembly had a total length of 2.4Mb and an average GC composition of 41.31%, which are 84 

comparable to those of other genomes reported for this species (Table S2). It contains a full set of 85 

ribosomal and transfer RNA genes (3 and 47, respectively), and 469 of 471 BUSCO gene markers for 86 

Verrucomicrobia bacteria (Simão et al., 2015), including 2 fragmented and zero duplicated genes. 87 

Other assembly statistics are listed in Table S2.  88 

The Average Nucleotide Identity (gANI) values (Varghese et al., 2015) were calculated from 89 

orthologous gene clusters identified between this assembly and 11 genomes available for the 90 

Methylacidiphilum genus (see Methods Section 4.10). The genome assembly of our isolate had a 91 

gANI above 97% with all M. fumariolicum genomes, which exceeded the suggested cut-off of 96% 92 

for species affiliation (Hayashi Sant’Anna et al., 2019). Therefore, subsequent phylogenomic 93 

analyses were conducted using five available genome assemblies for M. fumariolicum. The 94 

phylogenetic tree, reconstructed from the 117 top-ranking phylogenetic markers (see Methods 95 

Section 4.10), indicates that the assembly reported in this study clusters together with strain SolV in 96 

the same branch (Figure 1A). Together, the gANI values and phylogenomic analysis indicate that the 97 

recovered genome represents a novel strain of the M. fumariolicum species, for which the name 98 

Methylacidiphilum fumariolicum strain Pic is proposed, where Pic stands for the name of the 99 

municipality in which the volcanic lake is located (Pichucalco). 100 

Additionally, taxonomic affiliation was predicted from the periplasmic methane monooxygenase 101 

subunit A (PmoA), which is often used as a molecular marker of methanotrophic microorganisms 102 

(Knief, 2015; Hogendoorn et al., 2021). Our genome assembly contained three complete pmoCAB 103 

operons (Table S5). A maximum-likelihood phylogenetic tree was constructed using PmoA 104 

sequences spanning the three phyla known to have methanotrophs (Verrucomicrobia, 105 

Gammaproteobacteria, and Alphaproteobacteria). The tree indicates that all PmoA sequences from 106 

the assembly reported in this study clustered with other Verrucomicrobia methanotrophs (Figure 1B). 107 

However, most Verrucomicrobia methanotrophs encode more than one copy of the pmoCAB operon 108 

(Schmitz et al., 2021); therefore, phylogenetic analyses of PmoA are inadequate for determining 109 

species-level taxonomic affiliations (Figure S2). 110 

2.2 Physiological Characterization Under Methanotrophic and Heterotrophic Conditions  111 

A key physiological characteristic of M. fumariolicum str. Pic is its capability to achieve high growth 112 

rates at temperatures above 50oC. Here we used the oxygen consumption rate as a response variable 113 

linked to biomass growth using a respirometry chamber. We found that the optimal growth 114 

temperatures of strain Pic were between 50oC and 60oC (Figure 1D).  115 

We also assayed the optimal growth pH by measuring specific CH4 oxidation rates in experiments 116 

ranging from 1.0 to 3.0 at 50oC. As shown in Figure 1C, oxidation rates were higher between pH 1.5 117 

and 2.0, sharply decrease after pH 2.5, and become undetectable at pH 3.0. The pH range in which 118 

strain Pic oxidizes CH4 is narrow in comparison to other M. fumariolicum strains, which can grow at 119 

pH as high as 6.0 (Pol et al., 2007). Growth rates and yields (Table 1) were determined at 50oC pH 120 
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2.0. The CH4:O2 ratio was typical for Methylacidiphilum strains (1:1.6); however, the CH4:CO2 ratio 121 

of 1:0.93 was much higher than that expected for these methanotrophs (1:0.65) (Pol et al., 2007). 122 

Three pmoCAB operons (Table S4) were identified in the Pic genome. Interestingly, the strains SolV 123 

and IT6 also have three pmoCAB operons and they have been proven to oxidize C3 substrates (e.g. 124 

IT6 can grow on isopropanol, acetone, and acetol as carbon source) (Picone et al., 2020; Awala et al., 125 

2021) . The high sequence homology between the pmoA3 of strain IT6 and strain Pic (Table S4) 126 

provided computational evidence that strain Pic could potentially grow on C3 compounds using 127 

operon pmoCAB3 (Figure S2). Therefore, the capacity of strain Pic to oxidize C3 compounds was 128 

evaluated by independent incubations with 50 mM acetone, 50 mM isopropanol, and 10% LP-Gas 129 

(~90% propane and ~10% of a mix of propylene, butylene, isobutane, and n-butane). Figure 1E 130 

shows that the CO2 production rates of cultures with the three substrates were higher than the 131 

negative control, but lower than cultures incubated with 10% CH4. 132 

2.3 Genome-scale Metabolic Network Reconstruction  133 

2.3.1 Metabolic Network Properties 134 

The genome-scale metabolic reconstruction of M. fumariolicum str. Pic was generated using a semi-135 

automatic methodology (see Methods Section 4.12.1). The initial draft reconstruction contained 603 136 

genes, 1,604 reactions, and 1,555 metabolites. Out of all reactions, 492 (31.2%) had no gene 137 

association. The missing genes for these reactions were filled by manual queries (Camacho et al., 138 

2009) against protein sequences in the KEGG pathway map for M. infernorum (Hou et al., 2008) or 139 

MetaCyc database (Caspi et al., 2014). Using this method, gene associations for 79 reactions were 140 

identified, while the remaining 415 reactions were removed from the model, along with 390 141 

metabolites associated with those reactions. Furthermore, 37 stoichiometric duplicate reactions were 142 

removed, and 43 reactions that represented sub-reactions or reaction mechanisms were replaced by a 143 

lumped reaction. Of the remaining metabolites and reactions, 618 and 581 could not be annotated 144 

across databases and were removed from the model. Next, to allow the production of all biomass 145 

precursor metabolites, 101 reactions were manually gap-filled and an additional 43 were added to 146 

complete hydroxylamine oxidation metabolism, C3 substrates oxidation, autotrophic metabolism, and 147 

acid resistance mechanisms. Subsequently, reaction identifiers were translated into BiGG namespace 148 

(King et al., 2016), and 96 new reaction identifiers, associated with 79 genes, were created for non-149 

existent reactions in this database (Table S7).  150 

The final reconstruction comprised 667 metabolites, 729 reactions, and 473 genes (Figure 2A). Out 151 

of the total number of reactions 162 did not have a gene association. The reconstruction was named 152 

iAS473 following community standards. Standardized quality analysis with MEMOTE (Lieven et al., 153 

2020) indicated that the model is stoichiometrically consistent, and without erroneous generation of 154 

energy metabolites (Gevorgyan et al., 2008; Lieven et al., 2020). Moreover, an annotation 155 

consistency score of 92% indicated that the model is of high quality. A detailed description of 156 

MEMOTE results may be found in the GitHub repository (see Data Availability Statement). The 157 

Model is available in SBML Level 3 version 1, with the FBC package enabled (Hucka et al., 2003; 158 

Olivier and Bergmann, 2018).  159 

2.3.2 Manual Curation and Biomass Constraints 160 

2.3.2.1 Electron Transport Chain 161 
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The electron transport chain (ETC) and energy conservation mechanisms are active in bacteria using 162 

quinones. These molecules are lipophilic compounds of the cytoplasmic membrane. Bacteria contain 163 

up to three types of quinones: ubiquinones, menaquinones, and demethylmenaquinones 164 

(Meganathan, 2001). Verrucomicrobia methanotrophs are known for producing menaquinone 165 

through a recently identified pathway using futalosine as an intermediate (Hiratsuka et al., 2008). 166 

Interestingly, the genome sequence of our strain does not encode for any of the genes necessary to 167 

produce ubiquinol. As a result, all reactions in iAS473 have been manually curated to use 168 

menaquinones as electron transporters. 169 

All components of the ETC necessary for energy conservation (complex I-V) are encoded in the 170 

genome of strain Pic (Figure 2C), including the Alternative Complex III (ACIII) known to act as a 171 

cytochrome-menaquinol reductase in all Verrucomicrobia methanotrophs (Schmitz et al., 2021). 172 

Unfortunately, it is unclear whether ACIII contributes to the proton motive force (pmf) by 173 

translocating electrons across the membrane (Sousa et al., 2018; Sun et al., 2018). Because of the 174 

uncertainty in the stoichiometry of this complex, cytochrome-ubiquinol reductase activity was 175 

modeled by reaction CYO1_KT in which two protons are translocated across the membrane. The 176 

stoichiometry of the remaining components of the ETC was modeled by assuming a P/O ratio of 2.5 177 

(Bordel et al., 2019a). 178 

2.3.2.2 Carbon Metabolism 179 

The pathway for CH4 assimilation begins with its oxidation to methanol by the methane 180 

monooxygenase (MMO) enzyme. Our model contains the PMMO which is present in the cell wall. 181 

Although the mechanisms of electron transfer to this enzyme are still under debate, previous 182 

modeling studies have suggested that electrons for CH4 oxidation originate from the quinone pool 183 

(Bordel et al., 2019a). In our model, menaquinones were used as electron donors in the PMMOipp 184 

reaction (Figure 2C). Gene protein reaction rule (GPR) for this reaction was set to operons 185 

pmoCAB1 and pmoCAB2 because those have the highest sequence similarity to those expressed in 186 

the presence of CH4 from strain IT6 (Table S4).  187 

Subsequently, methanol is oxidized to formaldehyde by a methanol dehydrogenase (MDH). We 188 

found that our strain encodes the lanthanide-dependent MDH XoxF, together with the periplasmic 189 

substrate-binding protein XoxJ and the cytochrome C XoxG (Table S5), as well as the gene cluster 190 

pqqBCDE and pqqA required to produce the cofactor pyrroloquinoline used by periplasmic 191 

dehydrogenases, comprising a total of seven genes. Protein homology and experimental evidence for 192 

strain SolV showed that the cytochrome CGJ can donate electrons to a secondary cytochrome, 193 

suggesting electron transfer to a terminal oxidase (Versantvoort et al. 2019). We included those 194 

details in iAS473.  195 

Methanotrophic Verrucomicrobia have been shown to exclusively use CO2 as a carbon source via the 196 

Calvin-Benson-Basham (CBB) cycle (Khadem et al., 2011). Because of this, the pathways for 197 

formaldehyde oxidation become highly relevant to provide electron equivalents and most of the CO2 198 

used in the CBB cycle. Formaldehyde oxidation to formate proceeds via pathways involving 199 

methylene derivates of the cofactor tetrahydrofolate (THF), or the archaea-like cofactor 200 

tetrahydromethanopterin (THMP) (Chistoserdova et al., 2009). In methanotrophic Verrucomicrobia, 201 

formaldehyde could bind spontaneously or enzymatically to THF to form methylene-THF (Vorholt et 202 

al., 2000; Chistoserdova et al., 2009; He et al., 2020), and be converted to formyl-THF by the 203 

bifunctional dehydrogenase/cyclohydrolase FolD (Schmitz et al., 2021). Subsequently, formyl-THF 204 

could be converted to formate by a formate-THF-ligase accompanied by the production of ATP 205 
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(Marx et al., 2003). Alternatively, formaldehyde could be oxidized  directly to formate by the MDH-206 

XoxF (Pol et al., 2014). Finally, a cytosolic formate dehydrogenase could oxidize formate to CO2 207 

using NADH as an electron acceptor (Figure 2C).  Genomic evidence for our strain showed that all 208 

the enzymes necessary to operate the CBB cycle and regeneration of glyoxylate (e.g., 209 

phosphoglycolate phosphatase, glycolate oxidase) are present in strain Pic (Table S5).  210 

Additionally, we included all reactions necessary to enable C3 metabolism in our model. We found 211 

previous genomic and transcriptomic evidence of this functions in Methylacidiphilum sp. IT6 while 212 

growing on propane, isopropanol, and acetone (Awala et al., 2021). In this pathway (Figure 2C, 213 

Table S4), propane could be oxidized to isopropanol by a PMMO; however, transcriptome analyses 214 

could not resolve whether this reaction is catalyzed by PMMO3 or PMMO1 (Picone et al., 2020; 215 

Awala et al., 2021). Then, isopropanol could be converted to acetone by a glucose-methanol-choline 216 

(GMC) oxidoreductase, and acetone oxidized to acetol by PMMO3.  Operon pmoCAB3 contains the 217 

gene pmoD, which was recently shown to be necessary for the oxidation of acetone (Chau et al., 218 

2022). Finally, acetol could be converted to methylglyoxal by the same GMC oxidoreductase, and 219 

methylglyoxal assimilated into pyruvate via a three-step pathway. In the model, all reactions between 220 

propane oxidation and methylglyoxal production take place in the periplasm (Figure 2C) and use 221 

menaquinones as electron transporters (Takahashi et al., 2015). Those reactions are associated with 222 

10 genes total in our model. 223 

2.3.2.3 Autotrophic Metabolism 224 

To date, two Methylacidiphilum strains (SolV and RTK17.1) have been reported to grow 225 

autotrophically using H2 and CO2 under microaerobic conditions  (O2 saturation < 2%)  (Carere et al., 226 

2017; Mohammadi et al., 2017). Our genomic evidence shows that our strain contains three 227 

hydrogenase operons, as well as the gene cluster hypBFCDE/hypA, which encodes chaperone 228 

proteins necessary for the assembly of hydrogenases (Table S5).   229 

The three hydrogenases belong to Groups 1d, 1h and Group 3b (see Methods Section 4.9). Group 1d  230 

hydrogenases are uptake hydrogenases that use a b-type cytochrome to transfer electrons to the 231 

respiratory chain via the quinone pool (Mohammadi et al., 2017). Group 1h hydrogenases are high-232 

affinity membrane-bound uptake enzymes (Schmitz et al., 2020), for which the electron transfer 233 

pathway has not been elucidated yet. Finally, Group 3b hydrogenases are cytosolic enzymes which 234 

catalyze the reversible oxidation of H2 coupled to the reduction of NADH. We added reactions 235 

HYD4pp and NAD_H2 to the model, which represent periplasmic and cytosolic hydrogenases, 236 

respectively (Figure 2C). It is important to note that microorganisms growing on substrates with a 237 

higher redox potential than NAD(P)H produce  electron equivalents via energy-driven reverse 238 

electron flow (Aleem et al., 1963; Ingledew, 1982; Poughon et al., 2001; Sapra et al., 2003; Ferguson 239 

and Ingledew, 2008). Considering this, the reaction NADH16pp (complex I) was set to be reversible 240 

(Häger and Bothe, 1987) in simulations under autotrophic conditions. Onward, we will refer to this as 241 

the reverse electron flow hypothesis. 242 

2.3.2.4 Biomass Reaction 243 

The composition of the biomass reaction was imported from the model of the gram negative 244 

methanotroph Methylomicrobium buryatense 5G(B1) (de la Torre et al., 2015) into the first draft of 245 

our model. This reaction was updated for M. fumariolicum Pic by adding experimental measurements 246 

of amino acids (see Methods Section 4.12.1). Additionally, coefficients of the biomass precursors 247 

were rescaled so that the biomass had a molecular weight of 1g mmol-1 (Chan et al., 2017). The 248 

growth-associated ATP maintenance consumption (GAM) was calculated from experimental CH4:O2 249 
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ratios, and a coefficient of 10.86 mmol ATP gDW–1 h-1 was added to the biomass reaction. 250 

Supplementary Table S9 provides a detailed breakdown of biomass components. 251 

Before gap-filling, the production of 13 biomass precursors was blocked. After extensive manual 252 

curation we added and connected reactions to produce all these components. However, we could not 253 

identify the genomic evidence necessary to produce L-homocysteine and, in consequence, L-254 

methionine. Overall, we included the necessary orphan reactions for the two L-homocysteine 255 

production pathways described in bacteria (Belfaiza et al., 1998; Vermeij and Kertesz, 1999; Hwang 256 

et al., 2002) 257 

2.4 Model Validation and Applications of Flux Balance Analysis 258 

Our model was validated by comparing predicted growth rates and growth stoichiometries with 259 

bibliomic and our experimental data for four carbon sources (CH4, propane, isopropanol, and 260 

acetone). Under all conditions, NH4 was used as the nitrogen source. Overall, model predictions were 261 

within the same order of magnitude as that of the bibliomic data (Table 1). 262 

2.4.1 Calculation of Redox Trade-Offs in Methanotrophic Metabolism 263 

To validate the model, we performed a sensitivity analysis of the growth rate while varying Growth 264 

Associated Maintenance (GAM) and Non-GAM while using CH4 as only carbon source. The 265 

sensitivity was calculated as the slope of the curve of growth rate vs GAM/NGAM and has units of 266 

Δµ ΔGAM-1 or Δµ ΔNGAM-1. Figure S3A shows that the model is largely insensitive to changes in 267 

the GAM, showing constant growth predictions for GAM values below 32 mmol ATP gDW–1 h-1. 268 

However, the slope changed to 1.2x10-4 for values between 32 and 100 mmol ATP gDW–1 h-1. In 269 

contrast, changes in NGAM had a substantially larger effect on the predicted growth rates, decreasing 270 

from 0.036 to less than 0.001 h-1 (Figure S3B). Although the growth rate is constant below NGAM 271 

values of 4.2, from that value onward it decays with a slope of 4.5x10-3, becoming infeasible for all 272 

NGAM values above 12 mmol ATP gDW–1 h-1. The value of NGAM used for all subsequent 273 

simulations was 3.5, which was obtained from a previous model (Bordel et al., 2019b). 274 

Additionally, we evaluated the possible effects of formaldehyde oxidation by the XoxF-MDH 275 

(reaction FALDHpp). Since this enzyme uses cytochrome C as the electron acceptor, the direct 276 

oxidation of formaldehyde to formate by XoxF-MDH prevents the production of NAD(P)H and ATP 277 

in the THF-dependent pathway (Figure 2C). Therefore, simulations showed an increased flux through 278 

this reaction. We found that it reduces the growth rate by limiting the NAD(P)H available for the 279 

CBB cycle and anabolic reactions. (Figure S4A). Using O2 yields as constraint, we determined that 280 

the model showed the highest agreement with the bibliomic data when 20% of the total formaldehyde 281 

flux was oxidized in reaction FALDHpp (Table 1). Therefore, this ratio was used as a constraint in 282 

all the subsequent simulations using CH4. 283 

Finally, the predicted correlation between O2 uptake rates/CO2 production rates, and CH4 uptake rates 284 

was compared with the experimental growth data from strain Pic (Figure 3A, B). For both 285 

components, the slope of the model was in good agreement with the slope of the line of best-fit of the 286 

experimental data (Table 2). This indicates that the model can accurately reconstruct metabolic 287 

changes under varying environmental conditions. However, the differences between the intercept of 288 

the model and the fit were much higher (Table 2) because of a remarkable higher yield of CO2 in our 289 

strain. Those results suggest that the difference in the intercepts is caused by physiological 290 

differences in strain Pic that are not reflected at the genome level. 291 
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2.4.2 Calculation of Redox Trade-Offs in Autotrophic Metabolism 292 

We used the model to investigate whether stoichiometric constraints support growth under the 293 

reverse electron flow hypothesis. Under this hypothesis, when H2 is oxidized by the periplasmic 294 

hydrogenase (HYD4pp), NADH is produced by the reverse activity of complex I in the respiratory 295 

chain (NADH16pp) at the expense of pmf. Phase plane analysis revealed a trade-off between this 296 

phenomenon and growth rate (Figure 4A). Similar to the results for reaction FALDHpp, as a higher 297 

fraction of H2 is oxidized through HYD4pp, NADH regeneration becomes a rate-limiting step in the 298 

metabolism, thereby decreasing the maximum growth rate achievable (Figure 4C, D). Additionally, 299 

pmf consumption reduces the achievable ATP production rate, as shown by a reduction of 55% in the 300 

flux through ATP synthase reaction (Figure 4D). Model predictions indicate that growth under the 301 

reverse electron flow hypothesis is only feasible if the total H2 uptake rate is higher than 3.4 mmol H2 302 

gDW–1 h-1, and simulations indicated that reverse electron flow becomes necessary if approximately 303 

76% of the H2 flux is oxidized through HYD4pp (Figure 4B), showing good agreement with 304 

bibliomic data (Table 1, Figure 3C). 305 

2.4.3 Heterotrophic Metabolism is Limited by Redox Reactions 306 

Growth under heterotrophic metabolism was simulated for three different substrates: propane, 307 

isopropanol, and acetone. To make the simulations comparable between conditions, the substrate 308 

uptake rate was normalized to an equivalent carbon uptake rate of 3.5 C-mmol gDW–1 h-1, which is 309 

the carbon uptake rate measured from experiments with CH4. With this constraint, the predicted 310 

growth rates in C3 substrates were consistent with bibliomic data from strain IT6 (Table 1). 311 

Interestingly, the growth rate in isopropanol was remarkably higher (isopropanol=0.038 h-1; propane, 312 

acetone=0.033 h-1). This occurred because the conversion of isopropanol to acetone by GMC-313 

oxidoreductases produces two extra redox equivalents in the form of protons that can potentially be 314 

supplied to the ETC. On the other hand, when propane or acetone are used as substrates, electrons 315 

generated by GMC-oxidoreductases are consumed in the oxygenation reactions of the PMMO. The 316 

consequence is that flux of CYTCBB3pp1 (cytochrome oxidase) was 23.6% higher in isopropanol, 317 

thus enabling a higher growth rate. 318 

To further investigate those phenotypes, we sampled the solution space of each condition (total 4) to 319 

investigate the key differences between methanotrophic and heterotrophic metabolism. Using 320 

optGpSampler (Megchelenbrink et al., 2014), 10,000 flux distributions were simulated for CH4, 321 

propane, isopropanol, and acetone. Changes in predicted flux variation of reactions were identified 322 

by comparing the median fluxes using the Kolmogorov-Smirnov test static (KS-value) and the log2 323 

fold change (log2FC) using CH4 as the reference condition (see Methods Section 4.13). Overall, the 324 

highest differences found were a reduction in the flux through the CCB cycle against an increase in 325 

glycolytic reactions and the TCA cycle (Figure 5A, B, C). Because C3 compounds are assimilated at 326 

the level of pyruvate, to produce energy and precursor metabolites carbon flux needs to be divided 327 

between the TCA cycle, and glycolytic reactions. The higher carbon content enables an increase in 328 

amino acid and nucleotides production (Figure 5A, B, C), with the consequential increase in growth 329 

rates (Table 1). Another key difference was the reduction in flux through the THF-dependent 330 

pathway of formaldehyde oxidation. Carbon flux through this pathway provides methylene-THF, 331 

which is used in the biosynthesis of pyrimidine deoxyribonucleosides. To compensate for its 332 

deactivation, methylene-THF was produced from glycine and serine by the glycine-cleavage-333 

enzyme-complex (GLYCL) and the serine hydroxymethyltransferase (GHMT2r), respectively. 334 

Furthermore, Mass Flow Graphs (MFGs) (Beguerisse-Díaz et al., 2018) were constructed for each 335 

sample to rank reactions based on their centrality, which was calculated as the PageRank value 336 
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(Gleich, 2015). MFGs are weighted, directed graphs with reactions as nodes, edges that represent 337 

supplier-consumer relationships between reactions, and weights given by the mass flow between 338 

connected reactions. In all conditions, the highest-ranking reactions corresponded to those in the ETC 339 

(Figure 5D), highlighting the energetic constraints that redox balance has on the metabolism of these 340 

microorganisms. Notably, formate dehydrogenase (FDH) was a recurring reaction in all simulations 341 

(Figure 5D). During the growth using C3 compounds, formate is a product of fermentative 342 

metabolism. Activation of fermentative reactions suggests that catabolic pathways, such as the TCA 343 

cycle, cannot meet the energy requirements on their own. Overall, these findings suggest that growth 344 

under heterotrophic conditions is limited by the production rate of redox equivalents, a result 345 

consistent with findings under methanotrophic and autotrophic conditions. 346 

3. Discussion 347 

Extremophile bacteria have the potential to lower biomanufacturing costs by reducing the energy, 348 

labor, and capital resources needed for sterilization, agitation, heating, and cooling (Levett et al., 349 

2016; Ye et al., 2023). Moreover, extremophile bacteria are sources of novel and robust industrially 350 

relevant compounds (Tao et al., 2016) and proteins (Aulitto et al., 2017). Acidophile methanotrophs 351 

have been used for the co-degradation of organochlorine compounds (Choi et al., 2021), whereas 352 

halotolerant methanotrophs have been successfully used to produce ectoine (Cantera et al., 2017; Cho 353 

et al., 2022).  354 

M-models have been used to study the metabolism of methanotrophs using a systems biology 355 

approach (Fu et al., 2019; Nguyen et al., 2020a), and as tools in the rational design of metabolic 356 

engineering of methanotrophs (A. Henard et al., 2019; Nguyen et al., 2020b). Recently, an M-model 357 

was used to study the halotolerance mechanisms of Methylomicrobium alcaliphilum (Bordel et al., 358 

2020b). Although automatic reconstruction tools reduce the labor and time needed to develop M-359 

models, extensive manual curation is still required to improve the predictive capacity (Zuñiga et al., 360 

2020) as well as the consistency of the models with Findability, Accessibility, Interoperability, and 361 

Reusability (FAIR) principles (Wilkinson et al., 2016). In this study, we generated a high-quality, 362 

manually curated model of M. fumariolicum str. Pic. Although several M-models for proteobacterial 363 

methanotrophs have been published (Table 3), to our knowledge, model iAS473 is not only the first 364 

model available for methanotrophic Verrucomicrobia but also the first model available for any 365 

thermoacidophile methanotroph. 366 

Model iAS473 contains 473 out of 647 that were predicted to be related to metabolic reactions in the 367 

genome assembly of strain Pic and had a MEMOTE consistency score of 92% (see Supplementary 368 

Materials). In addition, model iAS473 can simulate all the known phenotypic capabilities of the 369 

Methylacidiphilum genus, specifically methanotrophic, autotrophic, and heterotrophic. Interestingly, 370 

under methanotrophic conditions, oxidation of formaldehyde by the XoxF-MDH prevents the 371 

production of NAD(P)H via the THF-dependent pathway. Theoretically, this should exert a negative 372 

effect on the metabolism, as the NAD(P)H pool needs to be divided between quinol regeneration, the 373 

CBB cycle, and anabolism (Keltjens et al., 2014). Indeed, the model predicts a monotonic decrease in 374 

the growth rate as a higher fraction of formaldehyde is oxidized by the XoxF-MDH. However, 375 

stoichiometric constraints on NAD(P)H regeneration could be alleviated by alternative electron 376 

transfer mechanisms not considered in this study, such as the reverse electron transfer of complexes I 377 

and III (Keltjens et al., 2014) or direct electron transfer from cytochrome C to the PMMO (Lieven et 378 

al., 2018). Although the formaldehyde oxidation activity of XoxF-MDH has only been detected in 379 

vitro (Pol et al., 2014), a similar functional redundancy has been observed between the THF and 380 
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THMP-dependent pathways (Marx et al., 2005). It is tempting to speculate that XoxF-MDH could 381 

play a similar role in alleviating formaldehyde toxicity under transient conditions. 382 

Model iAS473 predicts a similar phenomenon under autotrophic conditions. In vitro activity assays 383 

have shown that H2 oxidation in Methylacidiphilum species can mostly be attributed to O2 resistant 384 

periplasmic hydrogenases (HYD4pp) (Carere et al., 2017; Schmitz et al., 2020). However, the 385 

activity of these enzymes prevents NADH production by the O2 sensitive cytoplasmic hydrogenases. 386 

Although NADH could be produced by group 3b hydrogenases (Hedderich and Forzi, 2005), these 387 

enzymes are highly O2 sensitive; therefore, it is not clear if their activity alone is sufficient to supply 388 

all electron equivalents required for growth in Methylacidiphilum species. 389 

Simulations under autotrophic conditions showed that an increase in the fraction of H2 oxidized by 390 

HYD4pp decreases the growth rate because of the reduction in NADH production (Figure 4A). To 391 

compensate for this loss, complex I carries a reversible reaction to produce NADH; however, this 392 

activity decreases the available pmf used for ATP production, constraining the growth rate even 393 

further. Notwithstanding, simulations predicted that reverse electron flow is necessary if at least 76% 394 

of the H2 flux is oxidized through HYD4pp (Figure 4B), this result is consistent with activity assays 395 

between the membrane and soluble fractions of H2 oxidizing cells from strain SolV, in which 396 

approximately 62% of the H2 was oxidized by the membrane fraction (Carere et al., 2017; Schmitz et 397 

al., 2020). Since reverse electron flow is a highly endergonic process, the metabolism needs to 398 

overcome an energy threshold to make growth feasible (Poughon et al., 2001). Interestingly, model 399 

simulations situate that threshold at an H2 flux of 3.4 mmol gDW–1 h-1; however, results associated 400 

with thermodynamic conditions found in vivo are out of the scope of our M-model. However, iAS473 401 

will be a template for advances modeling methodologies such as metabolism and gene expression 402 

models (Tibocha-Bonilla et al., 2022). 403 

The changes in flux patterns between methanotrophic and heterotrophic conditions, as predicted by 404 

the model, were consistent with transcriptome analyses of strain IT6 grown in isopropanol. Model 405 

simulations indicated that under heterotrophic conditions, carbon assimilation bifurcates in pyruvate: 406 

a fraction of the carbon flux is diverted to the TCA cycle for the regeneration of the NAD(P)H pool, 407 

while the rest is diverted to glycolysis and the Pentose Phosphate Pathway to produce precursor 408 

metabolites. As expected, a significant proportion of the carbon flux was also diverted to formate and 409 

later to CO2 through the formate dehydrogenase reaction (FDH), suggesting that this reaction was 410 

also necessary to replenish the NAD(P)H pool key for methanotrophic metabolism. In a study by 411 

Awala et al. (2021) the authors determined that genes for phosphoenol pyruvate synthase, as well as 412 

the three components of the pyruvate dehydrogenase complex, were upregulated in isopropanol-413 

growing cells. Moreover, 11 out of the 32 upregulated genes belonged to enzymes of the TCA cycle.  414 

Overall, the model iAS473 enables a systematic process to compile available biochemical and 415 

genetic information, detect possible errors during the annotation process of the genome assembly, 416 

and identify knowledge gaps in the metabolism of Methylacidiphilum species. We expect that this 417 

model will be a useful tool for researchers to investigate the metabolism of this novel genus. 418 

4. Materials and Methods 419 

4.1 Sample Collection 420 

In March 2019, we took sediment and water samples of approximately 250 mL samples from the 421 

crater-lake in “El Chichonal”, an active volcano located in the state of Chiapas in Mexico (17o21’N, 422 

W93 o 41’W; 1100 masl.). After the most recent eruption started in March 1982 three small lakes 423 
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were created in the crater; by November 1982, one lake occupying an area of 14 ha remained 424 

(Armienta et al., 2008). Temperatures in the lake vary between 20oC and 95oC, and the pH varies 425 

between 2 and 4. The crater lake has been the source of extremophile bacteria (Ovando-Chacon et al., 426 

2020; Ortiz-Cortés et al., 2021; Ovando-Ovando et al., 2023), and recently proteobacterial 427 

methanotrophs were identified in the sediments (Rincón-Molina et al., 2019, 2020). Table S1 428 

contains the coordinates of the different sites. Sediment samples were collected in sterile plastic 429 

containers, and water samples were collected in sterile amber bottles. Immediately after collection, 430 

the samples were stored in ice and transported to our laboratory in Mexico City for further studies. 431 

4.2 Culture Conditions 432 

Cultures of sediments were incubated in gastight serum bottles of 125 ml, at a temperature of 50oC, 433 

agitation speed of 160rpm using Ammonium Mineral Salts (AMS) medium at pH 2 with, with 10% 434 

(v/v) of CH4 in the headspace unless otherwise specified. The medium composition is reported in 435 

Table S3. 436 

4.3 Enrichment and Isolation 437 

Approximately 1.3g of sediments from each site were mixed and diluted with 10 ml of AMS and 10 438 

mL of water sampled from the lake. This mixture was incubated in 125 ml of gastight serum bottles 439 

at a temperature of 40°C and an agitation speed of 200 rpm. The concentration of gases in the 440 

headspace of the bottle was adjusted to 20% (v/v) of CH4 and 1% (v/v) of CO2 by removing air with 441 

a syringe and adding the corresponding volume of each gas. This mixture was incubated until all CH4 442 

in the headspace was depleted. After this, the mixture was used as the inoculum of five 1:10 serial 443 

dilutions in 20 ml of AMS. The dilutions were incubated under the same conditions described before, 444 

with the only difference being that CO2 was not added to the headspace. For isolation, two ml of the 445 

lowest dilution with growth were taken to start three rounds of 10-11 extinction culturing dilutions. 446 

After the third round, two ml of the lowest dilution with growth were transferred to 23 ml of fresh 447 

AMS media and incubated for one week before DNA extraction. 448 

4.4 DNA Extraction and Sequencing 449 

DNA was extracted from 25mL of culture broth. The sample was centrifuged and washed twice in 450 

Phosphate Buffer (0.2M, pH 7.4). Then, the Qiagen DNeasy PowerSoil DNA Isolation Kit (QIAGEN 451 

Sciences, Germantown, MD, USA) was used following the manufacturer’s instructions. The samples 452 

were submitted to Novogene Corporation Inc (Sacramento, CA, USA) for library preparation and 453 

sequencing on an Illumina NovaSeq PE150 platform. 454 

4.5 Utilization of Respirometry to Determine Temperature Phenotypes 455 

Pre-grown cultures were incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were 456 

added daily until an optical density of 0.5 was reached. All respirometry experiments were performed 457 

in a custom-made glass chamber (Cabello et al., 2015) using a Clark-type polarographic dissolved 458 

oxygen (DO) probe (YSI Incorporated, USA). A data acquisition module (CompactDAQmx, NI, 459 

USA) was connected to a computer for data logging every second. Before each temperature tested 460 

(40, 45, 50, 60oC), 25ml of pre-grown bacterial cultures were incubated in gastight serum bottles for 461 

15min with 10% CH4 inside a water bath pre-adjusted to the desired temperature, with an additional 462 

15min incubation with air alone it the headspace. Maintenance O2 consumption was measured by 463 

adding 2.99mL of the acclimatized bacterial suspension to the glass chamber and recording DO 464 
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dynamics for 10min. Subsequently, 10µL of a 12M methanol solution were added to the chamber and 465 

the dynamics were recorded until DO exhaustion. 466 

4.6 Determination of Optimal pH 467 

Pre-grown cultures were incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were 468 

added daily until the culture reached an optical density of 0.5. In each pH tested (1.0, 1.5, 2.0, 2.5, 469 

and 3.0), 25ml of pre-grown bacterial cultures were incubated in gas-tight serum bottles with an 470 

initial CH4 concentration of 10% in the head space. The pH of each experiment was adjusted with a 471 

solution of H3PO4 50% (v/v). The concentrations of CH4, CO2, and O2 were measured every 2 hours 472 

by injecting 200uL of the headspace into a GOW-MAC gas chromatograph. All experiments were 473 

performed in triplicate. The dry biomass weight was measured at the end of the experiment. Data 474 

collected was used to fit a linear model and calculate the CH4 uptake rate and CO2 production rate 475 

using the python package statsmodels v0.14.0 (Seabold and Perktold, 2010). 476 

4.7 Evaluation of Substrate Uptake Rates and Growth Rates Calculations 477 

We tested growth phenotypes on acetone, isopropanol, and LP-Gas. Pre-grown cultures were 478 

incubated in 300ml of AMS in a 1L gas-tight bottle, and 120ml of CH4 were added daily until the 479 

culture reached an optical density of 0.5. We used 25ml of pre-grown bacterial cultures with initial 480 

concentrations of 50mM acetone, 50mM isopropanol and 10% (v/v) LP-Gas. Each substrate was 481 

tested in triplicates. The concentrations of O2 and CO2 were monitored for 8h using a GOW-MAC 482 

gas chromatograph, with an interval of 1 h 15 min between each sample. Data collected was used to 483 

fit a linear model and calculate the substrate uptake rate using the python package statsmodels 484 

v0.14.0 (Seabold and Perktold, 2010). Data collected was used to fit a linear model and calculate the 485 

CO2 production rate using the python package statsmodels v0.14.0 (Seabold and Perktold, 2010). 486 

4.8 Analytical Methods Used to Create Model Constraints 487 

CH4, CO2, and O2 were measured in a GOW-MAC gas chromatograph using a CTR1 column 488 

(Alltech, USA). Helium was used as carrier gas at a flow rate of 100 ml min-1. The column, detector, 489 

and injector temperatures were set to 40oC, 115oC, and 50oC respectively. The detector current was 490 

set to 125mA. Dry biomass weight was measured by vacuum filtering 25ml of bacterial culture in 491 

pre-weighted cellulose acetate filters (pore diameter 0.2µm, Sartorius). Filters were dried in an oven 492 

at 60oC for 24h and then transferred to a dehumidifying chamber until constant weight.  493 

To accurately constrain the biomass objective function of iAS47 we determined the amino acids 494 

profile using a Hitachi L-8900, an automated cation exchange chromatograph. This commercial 495 

amino acid analyzer automatically process biomass samples (Walker and Mills, 1995). Briefly, 4 mg 496 

of dry weight biomass samples were hydrolyzed in HCL according to a standard protocol for 497 

biological and physiological samples (Rutherfurd and Gilani, 2009). The calibration curve was done 498 

using the amino acid standard AAS 18-5ml of sigma. This data was used as input to adjust the 499 

biomass objective function of iAS473 (see Table S9). 500 

4.9 Genome Assembly and Annotation 501 

Illumina adapter sequences were removed from a total of 23,920,586 paired-end reads using 502 

trimommatic (Bolger et al., 2014). The quality of the adapter-free sequences was evaluated using 503 

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Primary genome assembly 504 

was carried out using the Spades-based (Prjibelski et al., 2020) assembler Unicycler v0.4.9 (Wick et 505 
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al., 2017) with standard parameters. Subsequently, raw reads were normalized to an average coverage 506 

of 75x using BBNorm from the BBTools software suit (https://jgi.doe.gov/data-and-tools/software-507 

tools/bbtools/). Normalized reads were mapped to the primary assembly and the mapped reads were 508 

re-assembled with Mira V5rc1 (Chevreux et al., 2004) to increase contiguity (Lui et al., 2021). 509 

Completeness of the assembly was evaluated using BUSCO V5.2.1 (Simão et al., 2015) against the 510 

subset of verrucomicrobial genes (2019-04-24). Ribosomal and tRNA presence was evaluated using 511 

Infernal cmscan v1.1.4 (Nawrocki and Eddy, 2013) against the Rfam database (Kalvari et al., 2021). 512 

The final assembly was scaffolded using SSPACE V2.0 (Boetzer et al., 2011), and Pilon (Walker et 513 

al., 2014) was used for gap filling of the scaffolds. Assembly statistics were calculated using QUAST 514 

v5.0.2 (Gurevich et al., 2013). Bowtie2 and samtools were used for alignment and sorting functions 515 

during all steps (Langmead and Salzberg, 2012; Danecek et al., 2021). The assembly was annotated 516 

using the online NCBI Prokaryotic Genome Annotation Pipeline v2021-07-01 (Tatusova et al., 517 

2016). Hydrogenases were classified using HydDB  (Søndergaard et al., 2016). 518 

4.10 Genome-Scale Phylogenetic Analysis 519 

Genome assemblies available in NCBI for the Methylacidiphilum were evaluated for completeness 520 

with CheckM v1.2.2 (Parks et al., 2015). GET_HOMOLOGUES (Contreras-Moreira and Vinuesa, 521 

2013) was used to identify orthologous gene clusters between the genome reported here and eleven 522 

genomes with a completeness higher than 90%. Gen clusters were used to calculate average 523 

nucleotide identity (gANI) values to define genus and species-level affiliation (Varghese et al., 2015; 524 

Hayashi Sant’Anna et al., 2019). Our assembly had a gANI value above 96% for every M. 525 

fumariolicum genome. Therefore, only five genomes for M. fumariolicum were used for subsequent 526 

analyses. Orthologous gene clusters were classified into core and pan-genes. The core gene clusters 527 

were used as input to GET_PHYLOMARKERS (Vinuesa et al., 2018) to estimate a phylogenetic 528 

tree. The run_get_phylomarkers_pipeline shell script was used on core protein sequences with default 529 

parameters to identify proteins with optimal characteristics for phylogenetic analysis. This script 530 

outputs concatenated alignments of the optimal phylogenetic markers, which were used as input to 531 

IQ-TREE v2.2.0.3 (Minh et al., 2020) for tree estimation under the maximum likelihood criteria 532 

using UFBoot2 (Hoang et al., 2018) with  25000 bootstrap replicates. Unrooted trees were estimated 533 

using automatic model selection with ModelFinder (Kalyaanamoorthy et al., 2017) and rooted 534 

artificially at the midpoint and they are shown in Figure 1A. 535 

4.11 Phylogenetic Tree Reconstruction of PmoA 536 

For PmoA, reference sequence WP_009059718.1 was used as a query for three BlastP (Camacho et 537 

al., 2009) searches against NCBI non-redundant database (Sayers et al., 2022) using taxonomic filters 538 

set to Verrucomicrobia, Alphaproteobacteria, and Gammaproteobacteria. The top 100 hits to each 539 

search were aligned using COBALT (Papadopoulos and Agarwala, 2007) with standard parameters. 540 

Partial sequences were removed from the alignments before using them as input to IQ-TREE v2.2.0.3 541 

(Minh et al., 2020) for tree estimation under the maximum likelihood criteria using UFBoot2 (Hoang 542 

et al., 2018) with  25000 bootstrap replicates. Unrooted trees were estimated using automatic model 543 

selection with ModelFinder (Kalyaanamoorthy et al., 2017) and rooted artificially at midpoint. A 544 

similar methodology was used to estimate the phylogenetic tree presented in Figure S2, with the 545 

difference that the BlastP searches were limited to sequences of other Verrucomicrobia bacteria. 546 

Sequences from the Methylacidimicrobium genus were used as outgroup. 547 

4.12 Metabolic Reconstruction 548 

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
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4.12.1 Draft Reconstruction 549 

The metabolic reconstruction was generated using our semi-automatic methodology (Tec-Campos et 550 

al., 2023). Initially, a draft-reconstruction was generated by using GenBank files 551 

(GCF_019429645.1) as input to PathoLogic in Pathwaytools v25.0 (Karp et al., 2019) and MetaCyc 552 

v25.0 (Caspi et al., 2014). Additionally, we used the model of gram negative methanotroph 553 

Methylomicrobium buryatense 5G(B1) as a reference (de la Torre et al., 2015). Pathologic was run 554 

with standard parameters and disabling taxonomic pruning. Subsequently, the draft was exported to 555 

an xml file and imported into Cobrapy (Ebrahim et al., 2013) for manual curation. 556 

4.12.2 Manual Gap-filling 557 

Production of each of the precursor metabolites was tested individually. For those metabolites which 558 

could not be produced, reactions were gap filled manually based on supporting information available 559 

in Metacyc and KEGG databases. To assign gene associations to reactions without one, protein 560 

sequences reported in the M. infernorum pathway map (Hou et al., 2008) from KEGG (Kanehisa and 561 

Goto, 2000; Kanehisa et al., 2023) were used as queries in a BLASTp (Camacho et al., 2009) search 562 

to the genome assembly reported in this study. For reactions not found in KEGG, protein sequences 563 

available in MetaCyc (Caspi et al., 2014) were used as the query. Reactions that still lacked gene 564 

associations after this step were removed from the model. Reactions needed to produce all biomass 565 

precursors were manually gap-filled following the same methodology. 566 

4.12.3 Model Standardization 567 

Annotation cross-references were taken from MetaCyc database and transformed as necessary to be 568 

compliant with the identifiers.org compact identifiers. Where possible, missing annotations were 569 

complemented using annotations from iML1515 (Monk et al., 2017). Missing information after this 570 

step was manually added to the model. To ensure that the reconstruction meets community standards 571 

with the minimum information required in the annotation of models (MIRIAM)-compliant cross 572 

references (Laibe and Le Novère, 2007), metabolites and reactions that could not be annotated at 573 

least in one database other than MetaCyc were removed from the model. Finally, metabolite and 574 

reaction identifiers were translated into BiGG namespace (King et al., 2016). Metabolite formulas 575 

were taken from MetaCyc database. Where possible, missing formulas were complemented using 576 

information from iML1515. Missing metabolite formulas after this step were added manually. If 577 

metabolite protonation and charges were available in the databases, these were set to a reference pH 578 

of 7.3 for the cytosol compartment, and pH of 2.0 for the periplasm and extracellular compartments. 579 

Else, mol files were downloaded from CHEBI (Degtyarenko et al., 2008) or KEGG (Kanehisa and 580 

Goto, 2000), and protonation states were predicted using ChemAxon (https://www.chemaxon.com) 581 

online Protonation Calculator. Stoichiometry of transport and periplasmic reactions were modified 582 

according to the protonation state of each metabolite. Ultimately, the MEMOTE Suite (Lieven et al., 583 

2020) was used for quality analysis of the curated metabolic reconstruction. MEMOTE evaluates the 584 

annotation consistency across databases and standards and outputs an annotation score ranging from 585 

0% to 100%. 586 

4.12.4 Stoichiometric Balanced Cycles for Accurate Redox Estimation 587 

To reduce the possibility of stoichiometrically balanced cycles, we assigned reactions reversibility 588 

constraints based on the following methods. First, the equilibrator-API (Noor et al., 2013; Beber et 589 

al., 2022) was used to calculate the standard Gibbs potentials of reactions. Gibbs potentials were used 590 

to assign directionality constraints if the absolute value of the reaction potential was greater than 1 kJ 591 

mol-1 and if the standard deviation was less than 3% of the absolute value. After this, stoichiometric 592 

https://www.chemaxon.com/
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balanced cycles, and erroneous energy generating cycles for 11 energy metabolites were detected and 593 

removed using a custom implementation of Algorithm 1 presented in (Gevorgyan et al., 2008). 594 

Reversibility constraints for reactions were modified based on information available in the databases. 595 

4.12.5 Biomass Objective Function 596 

The composition of the biomass reaction was reconstructed from previous published models for 597 

gram- negative methanotrophs (de la Torre et al., 2015; Akberdin et al., 2018; Lieven et al., 2018). 598 

The lipid composition was modified based on measurements from Methylacidiphilum species (Op 599 

den Camp et al., 2009), whereas the amino acid composition was modified from measurements from 600 

M. fumariolicum Pic. Furthermore, the reaction was normalized to a biomass molecular weight of 601 

1mmol g-1 (Lachance et al., 2019). The growth associated maintenance was calculated from 602 

experimental CH4:O2 ratios assuming a P/O ratio of 2.5. The constraints for non-growth associated 603 

maintenance were imported from the model of Methylocysti hirsuta CSC1 (Bordel et al., 2019b). 604 

4.13 Model Simulations 605 

All simulations were performed in COBRApy (Ebrahim et al., 2013) using Flux Balance Analysis 606 

(Orth et al., 2010), with Optlang (Jensen et al., 2017) as an interface to CPLEX 20.1 (Cplex, 2009). 607 

CPLEX was used with automatic method selection and numerical tolerance set to 1x10-9. The python 608 

package statsmodels v0.14.0 (Seabold and Perktold, 2010) was used to calculate correlation 609 

parameters between O2 uptake rates/CO2 production rates and CH4 uptake rates.  610 

Flux sampling was performed using the uniform sampler optGpSampler (Megchelenbrink et al., 611 

2014) with standard parameters and 10,000 replicates. The model was sampled independently in 4 612 

conditions: CH4, propane, isopropanol, and acetone. Differential fluxes in each condition were 613 

identified by comparing the median values using the Kolmogorov-Smirnov test static and the log2 614 

fold change, with CH4 as the reference condition. The cut-offs used were 0.2 and 0.5 for the KS-615 

value and the log2 FC, respectively. For each of the 10,000 replicates a Mass Flow Graph (MFG) 616 

was constructed using a custom implementation of the methods presented in (Beguerisse-Díaz et al., 617 

2018). MFGs were used to rank reactions according to PageRank Centrality (Gleich, 2015). 618 

PageRank Centrality values were calculated using the python package NetworkX (Hagberg et al., 619 

2008). Code used to run simulations and data analysis is available as Jupyter-notebooks (Rule et al., 620 

2019) in the GitHub repository https://github.com/cristalzucsd/Methylacidiphilum_fumariolicum (see 621 

Data Availability Statement).   622 
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Table 1. Comparison of growth characteristics between Methylacidiphilum strains and model iAS473 1083 

simulations. a Substrate uptake rate in units of mmol gDW–1 h-1. b Oxygen and CO2 yields in reference 1084 

to the substrate in units of mol mol-1. c Biomass yields in reference to the carbon source in units C-1085 

mol mol-1, yields were calculated assuming a biomass formula weight of 24.6 C-mol gDW-1. d 1086 

Simulations constraining flux of reaction FALDHpp to be 20% of the total formaldehyde oxidation 1087 

rate. e Simulations constraining flux of reaction HYD4pp to be 76% of the total H2 oxidation rate. 1088 

n.d., not determined. 1089 

Strain Substrate Condition qSa µ (h-1) YO2
b YCO2

 b YX
 c Reference 

Pic CH4 Experimental 3.5 0.015 1.62 0.93 0.12 This Work 

SolV CH4 Experimental n.d. 0.070 1.6 0.65 0.35 (Pol et al., 2007) 

Kam1 CH4 Experimental n.d. 0.018 n.d. n.d. 0.18 (Dunfield et al., 2007) 

V4 CH4 Experimental n.d. 0.038 n.d. n.d. 0.39 (Islam et al., 2008) 

IT6 CH4 Experimental n.d. 0.047 n.d. n.d. n.d. (Awala et al., 2021) 

Pic CH4 Simulation 3.5 0.037 1.5 0.57 0.43 This Work 

Pic  CH4 Simulation d 3.5 0.029 1.6 0.66 0.34 This Work 

SolV H2+CO2 Experimental 13.2 0.047 0.32 0.19 0.19 (Mohammadi et al., 2017) 

Pic  H2+CO2 Simulation e 13.2 0.034 0.37 0.11 0.11 This Work 

IT6 Isopropanol Experimental n.d. 0.042 n.d. n.d. n.d. (Awala et al., 2021) 

IT6 Acetone Experimental n.d. 0.039 n.d. n.d. n.d. (Awala et al., 2021) 

Pic Propane Simulation 1.16 0.033 3.63 1.84 1.16 This Work 

Pic Isopropanol Simulation 1.16 0.038 2.92 1.64 1.35 This Work 

Pic Acetone Simulation 1.16 0.033 2.63 1.84 1.16 This Work 

Table 2. Comparison between growth phenotypic data from strain Pic and model simulations. a 1090 

Ordinary least-squares parameters for experimental data of O2 uptake rates/CO2 production rates vs 1091 

CH4 uptake rates. b Linear correlation between O2 uptake rates/CO2 production rates vs CH4 uptake 1092 

rates predicted by the model. 1093 

 Oxygen Carbon Dioxide 

 Line of Best-Fita iAS473b Line of Best-Fita iAS473b 

Slope 1.16 1.46 0.52 0.54 

Intercept 1.45 0.47 1.50 0.40 

Log-Likelihood -59.78 -62.10 -43.58 -68.53 

R-squared 0.622 0.292 0.416 0.549 

Table 3. List of published M-models for methanotrophic bacteria 1094 

Name Microorganism Class Reference 

iMb5G(B1) Methylomicrobium buryatense Gammaproteobacteria (de la Torre et al., 2015) 

iMcBath Methylococcus capsulatus Bath Gammaproteobacteria (Lieven et al., 2018) 

iIA332 Methylomicrobium alcaliphilum 20ZR Gammaproteobacteria (Akberdin et al., 2018) 

iMC535 Methylococcus capsulatus Bath Gammaproteobacteria (Gupta et al., 2019) 

No name 

Methylocysti hirsuta CSC1 Alphaproteobacteria 

(Bordel et al., 2019a) Methylocystis sp. SC2 Alphaproteobacteria 

Methylocystis sp. SB2 Alphaproteobacteria 

Methylocystis parvus OBBP Alphaproteobacteria (Bordel et al., 2019b) 

Methylocella silvestris Alphaproteobacteria (Bordel et al., 2020a) 

iMsOB3b Methylosinus trichosporium OB3b Alphaproteobacteria (Naizabekov and Lee, 2020) 
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 1096 

Figure 1. (A) Maximum likelihood phylogenetic tree reconstructed from the top 117 phylogenetic 1097 

markers identified for Methylacidiphilum species. Bootstrap values were estimated using 25,000 1098 

replicates. The tree is rooted at midpoint. (B) Maximum likelihood phylogenetic tree for periplasmic 1099 

methane monooxygenase subunit A. The sequence of strain Pic clusters with sequences of other 1100 

Verrucomicrobia methanotrophs. (C) The highest specific CH4 oxidation rate from strain Pic was 1101 

determined between pH 1.5 and 2.0. (D) The highest O2 respiration rate from strain Pic was 1102 

determined between 50oC and 60oC. (E) CO2 production rates from strain Pic growing in four 1103 

different substrates. Results show that strain Pic oxidizes C3 substrates isopropanol and acetone. 1104 

Figure 2. (A) Voronoi tree map showing the distribution of reactions, metabolites, and genes. (B) Bar 1105 

plot showing the number of reactions grouped by pathway. (C) Metabolic map of the different 1106 

metabolic modules represented in the model.  1107 

Figure 3. (A) Scatter plot of specific O2 uptake rates (left), CO2 production rates (right) as a function 1108 

of specific CH4 consumption rates and its comparison to model predictions. (B) Growth rates with 1109 

four different substrates as a function of carbon uptake rate. (C) Comparison of the predicted O2 and 1110 

CO2 yields to bibliomic data under autotrophic conditions. Yields are referenced to 1 mol of H2.  1111 

Figure 4. (A) Contour plot showing the monotonic decrease in growth rate as the fraction of H2 1112 

oxidized by the periplasmic hydrogenases increases (HYD4pp). (B) Contour plot showing the 1113 

directionality of complex I (NADH16pp) as the fraction of H2 oxidized by HYD4pp increases. 1114 

NADH16pp changes its directionality when HYD4pp oxidizes 76% of the total H2 flux. (C), (D) 1115 

Metabolic flux distributions of reactions in the electron transport chain when the fraction of H2 1116 

oxidized by HYD4pp is 0 (C) or 1 (D). Activity of HYD4pp constraints the maximum growth rate 1117 

because the proton motive force needs to be diverted from ATP production to NADH regeneration. 1118 

Figure 5. (A), (B), (C) The graphs on the left are volcano plots showing the median flux differences 1119 

between simulations using CH4 and (A) propane, (B) isopropanol, and (C) acetone. The plot was 1120 

generated with the log2 fold change (log2 FC) values from the median of 10,000 simulations and the 1121 

value of the Kolmogorov-Smirnov test (KS-value). The cut-offs to identify reactions with significant 1122 

differences were 0.5 for the log2 FC and 0.2 for the KS-value.  The graphs on the right show the total 1123 

flux change for reactions with significant differences grouped by pathways. (D) Box plot of the 1124 

PageRank scores of the 17 most central reactions for 10,000 simulations in each substrate. The 1125 

PageRank score is a measure of the centrality or importance of a reaction, and it is higher for 1126 

reactions with a higher connectivity or reactions with a higher mass flux. 1127 


