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Realistically rough stochastic realizations of subglacial bed topography are crucial for
improving our understanding of basal processes and quantifying uncertainty in sea level
rise projections with respect to topographic uncertainty. This can be achieved with
sequential Gaussian simulation (SGS), which is used to generate multiple nonunique
realizations of geological phenomena that sample the uncertainty space. However, SGS
is very CPU intensive, with a computational complexity of O(NK’), where N is the number
of grid cells to simulate, and k is the number of neighboring points used for conditioning.
This complexity makes SGS prohibitively time-consuming to implement at ice sheet
scales or fine resolutions. To reduce the time cost, we implement and test a multiprocess

version of SGS using Python’s multiprocessing module. By parallelizing the calculation

of the weight parameters used in SGS, we achieve a speedup of 9.5 running on

16 processors for an N of 128,097. This speedup—as well as the speedup from using
multiple processors—increases with N. This speed improvement makes SGS viable for
large-scale topography mapping and ensemble ice sheet modeling. Additionally, we have
made our code repository and user tutorials publicly available (GitHub and Zenodo)

so that others can use our multiprocess implementation of SGS on different datasets.

sheet models used to make sea level rise projec-

tions.! The bed topography of the Greenland
and Antarctic ice sheets has been extensively surveyed
using airborne ice-penetrating radar.2 However, there
remain large gaps in measurements that must be inter-
polated. This interpolation is often performed using
kriging, spline, or mass conservation® approaches, which
all solve for the optimal bed elevation value at each spa-
tial coordinate. These methods are deterministic, mean-
ing they produce a single solution or interpolation. One
major drawback of the deterministic approach is that it

S ubglacial topography is a key parameter in ice
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cannot sample the parameter space, making it difficult
to determine how uncertainty in basal conditions is
propagated in ice sheet models. Furthermore, these
methods produce bed estimates that are smoother
than the observed topography, which may bias interpre-
tations of basal sliding processes.

The aforementioned issues can be resolved with geo-
statistical simulation, which is used to generate multiple
realizations of topography that retain the roughness
observed in radar measurements. Geostatistical simula-
tion has previously been used to quantify uncertainty in
hydrological and ice sheet models' and to investigate
basal motion.* The ability of geostatistical simulation to
create ensembles of equiprobable topographic realiza-
tions could be particularly advantageous for running
ensemble ice sheet models to quantify uncertainty.

One of the most widely used geostatistical simula-
tion methods is sequential Gaussian simulation (SGS),
which treats spatial phenomena as a Gaussian process
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governed by spatial covariances.®> These simulations
are conditional, meaning they exactly match existing
measurements. SGS is the stochastic version of the
kriging algorithm, which uses the weighted average
of nearby measurements to estimate the value at an
intermediate coordinate. These weights are determined
by a covariance function, which describes the variability
of measurements as a function of their separation dis-
tance. SGS is implemented by 1) initializing a random
order in which each grid cell will be simulated, 2) visiting
a grid cell and using kriging to compute the mean
and variance, 3) randomly sampling from the distribu-
tion described by the kriging mean and variance (this
becomes the simulated value at that grid cell), 4) updat-
ing the conditioning data with the newly simulated
value, and 5) repeating steps 2-4 until each grid cell
has been visited and simulated. Each grid cell is
visited and simulated sequentially to ensure that
each value accounts for previously simulated values.
See MacKie et al.® for detailed information on kriging
and SGS.

While SGS software packages have historically been
proprietary and are predominantly used in oil and gas
exploration,” recent developments in open source geo-
statistics software in Python (e.g. SciKit-GStat® and
GStatSim®) have improved the availability of these meth-
ods in cryosphere research. Despite these advances in
accessibility, SGS remains difficult to use for large-scale
ice sheet applications because its sequential nature
makes it extremely computationally expensive. Specifi-
cally, generating S topographic realizations for a grid
with IV grid cells while using a maximum of % neighbor-
ing points to calculate the kriging weights is an O
(SNK*)-type problem.? This increase in runtime as the
grid size increases makes SGS prohibitively computa-
tionally expensive for large-scale ice sheet problems,
making it difficult to realize the potential of geostatisti-
cal simulation.

To address this computational issue, previous stud-
ies? have used a constant simulation path approach,
where the grid cells are simulated in the same order for
each realization to save computational time. However,
this approach can lead to the underestimation of
uncertainty. Alternatively, Nunes and Almeida'® pre-
sented a parallelization strategy for SGS where the
kriging weights are calculated in parallel. However,
their implementation was tested on only four cores, is
only compatible with the Windows operating system,
and does not account for nonstationarity or variability
in spatial statistics. As such, this approach is not well
suited for the simulation of nonstationary subglacial
topography, and the scalability has not been fully
tested.
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In this article, we implemented a Python multi-
process version of SGS following the multiprocessing
approach of Nunes and Almeida,’® which is designed
to accommodate nonstationarity in subglacial topogra-
phy. We tested the performance on up to 16 cores. To
enhance the accessibility of this method, we have
made our code repository readily available on GitHub®
and Zenodo. In this repository, we provide a script and
user tutorial for generating simulations of subglacial
topography. This script accepts the conditioning data,
resolution, coordinate bounds, and number of realiza-
tions as inputs and then outputs topographic realiza-
tions. Here, we describe the parallelization process in
more detail, quantify the improvement in model perfor-
mance, and discuss the features of ourtool.

SGS Implementation
We implemented a modified version of SGS using
methods available in GStatSim v1.0.5,6 which was spe-
cifically designed for simulating subglacial topography.
The topographic roughness is quantified using a covari-
ance function, also known as the variogram, which
measures the covariance between pairs of data points
as a function of their separation distance. Rather than
fitting one variogram to the entire region, the data are
broken into different spatial clusters based on the den-
sity of measurements (see MacKie et al.® for details).
This allows the topographic roughness to vary within a
realization, which is important for capturing complex
subglacial conditions or nonstationarity in the vario-
gram statistics. Then, a variogram model is fit to the
experimental variogram for the data in each cluster.
The variograms are modeled using the exponential var-
iogram function in the Scikit-GStat software package.®
We use the exponential variogram type,® which is the
most appropriate model for subglacial topography.®
The most computationally expensive step in this
algorithm is the nearest neighbor octant search, which
finds the k& neighboring points to the grid cell being
simulated such that they are evenly divided among the
eight octants of the coordinate plane (see MacKie
et al.® for details). This process is designed to reduce
bias in irregularly sampled data and the subsequent
calculation of the kriging weights. While SGS can be
used with any type of kriging (ordinary, universal, cok-
riging, etc.), we use simple kriging in this study. Let
uy,us, ..., u be the location of neighbors, ug be the loca-
tion of the current grid cell, and C,,,, be the covariance

*https://github.com/GatorGlaciology/SGS-topography-
Earallelizati on
https://doi.org/10.5281/zen0do.7627029
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between u,, and u,. The kriging weights are deter-
mined by solving the following system for :

Cip Ciz Cig| | M Co,a
Cay Cop Coz || A2| = |Coe (1
Cs1 Csz Ciz] [ s Cos

assuming k£ = 3. In this study, we use a k of 50. The
matrix on the left describes the covariance between
the conditioning data, and the term on the right is the
covariance between the conditioning data and wg.
Note that the covariance calculation depends only on
the relative locations of the k& neighbors, not their val-
ues. Let Z be the variable that is being estimated. The
kriging mean, Z* is determined by computing the
weighted sum of the elevation values

k
Z* (up) = Z A Z(uy) (2)
a=1
and the kriging variance 6% (uy) is defined as
k
a5 (ug) = C(0) — Z A:Con (3
a=1

where C(0) is the variance of data in the current vario-
gram cluster. After these calculations, the simulated
bed elevation value is determined by sampling from a
normal distribution, defined by the kriging mean Z*(wg)
and variance o%(ug). This simulated value is then
added to the conditioning data. The process repeats

until all grid cells are simulated.

Multiprocessing Strategy

We improve the performance of the previously described
SGS methodology by parallelizing key aspects of the
workflow following the approach of Nunes and Almeida,™®
described in Figure 1. First, we parallelize the process
of fitting variograms to the data in each spatial cluster.
This is easy to do because the variogram of each clus-
ter can be calculated independently. Parallelizing SGS
itself is more challenging because previously simulated
points are added to the conditioning data, making
each iteration dependent on the previous iterations.
This is demonstrated in (2) when some Z(u,) are eleva-
tion values simulated during a previous iteration. As
such, the traditional SGS approach fails the paralleliza-
tion requirement of independence of processes.

The parallelization approach from Nunes and
Almeida'® solves this problem by isolating the steps of
the algorithm where the kriging weights Z are com-
puted. Recall that the nearest neighbor and kriging
weight calculations depend only on the variogram
parameters and the locations of conditioning data; the
values of the conditioning data themselves are not
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FIGURE 1. Flowchart of the parallelized sequential Gaussian
simulation (SGS) algorithm.

[ = parallel
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needed. As such, we can encapsulate the calculations
for the kriging weights (1) in a function executed in par-
allel and prepare the parameters required for (2) and
(3), which are faster to compute. To achieve this, we
first define a random simulation order in which each
grid cell is visited. Then, for each grid cell in the simula-
tion path, the nearest neighbors are found, and the krig-
ing weights are computed in parallel. These %k nearest
neighbors include the original conditioning data and any
coordinates that will be simulated prior to ug The grid
cell indices and weights of the neighbors are stored for
later calculation of the kriging mean and variance. For
each additional stochastic realization, a new random
simulation pathis generated, and the process repeats.

Speed Comparison
All simulations were tested on a 2021 Apple Mac Studio
M1 Ultra with 20 cores. The Python multiprocessing
module is used to distribute independent Python pro-
cesses and data across a specified number of cores. We
use bed elevation measurements for a 150 x 150-km?”
region in northwest Greenland from the Center for the
Remote Sensing of Ice Sheets."" For visualization pur-
poses, we also generate simulations for Pine Island
Glacier (PIG) in West Antarctica using data from
Frémand et al.2

We compared the performance of our parallelized
algorithm with 16 processors to a single processor by
running simulations with varying job sizes and record-
ing the execution time. The number of simulation
points decays approximately geometrically with resolu-
tion, so, to evenly sample job sizes, we varied the reso-
lution geometrically from 200 m to 1200 m. Speedup
for this comparison is defined as the serial algorithm's
execution time divided by the parallel algorithm’'s
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execution time. Job size is defined by the number of
simulated elevation values. Note that job size is a func-
tion of resolution size. During multiprocess runs, we
recorded both the total execution time (including both
serial and parallel components) and the time spent on
calculations executed in parallel for later analysis.

Performance Analysis

We ran additional simulations specifically to perform
scalability testing. Scalability is an algorithm’s ability to
increase in speedup with the number of processors. To
perform this test, we ran two trials with the Greenland
dataset at resolutions of 300 m and 1000 m and
sequentially increased the number of processors from
one to 16. For these trials, speedup (S) is defined as

(1)

S®) =70 (4
where T(1) is the execution time of our parallel algo-
rithm with one processor, and T(p) is the execution
time of the parallel algorithm with p processors.

To interpret our results, the ideal speedup line (dis-
played in Figure 2) was used as a baseline for assessing
scalability. However, ideal speedup is often unattain-
able in practice.” Ideal speedup is defined under the
assumption that the execution time for a parallel algo-
rithm with p processors should follow

T(1
Tigea(p) = -2 )
p
and, therefore, attain and a speedup of
()
ide: = =P 6
Sidea () Tigear (p) P ©

This metric does not account for the extra time
required for parallel algorithms to perform process

SGS speedup

161 —e— 1000 m L
- 300m -
1 === ideal -

2 4 6 8 10 12 14 16
Number of processors

FIGURE 2. Speedup, defined by (4), with respect to the num-
ber of processors.
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synchronization, known as parallel overhead. Taking
the time for parallel overhead T, into consideration,
the execution time for algorithms that are strictly par-
allel can be defined by

T(p) =

We also used Amdahl's law to analyze the perfor-
mance of our multiprocess implementation. Amdahl's
law states that the performance of a parallel algorithm
is limited by the percentage of time spent running a
parallel process.”® As such, the maximum theoretical
speedup St of a parallel algorithm with p processors is

1
Sr(p, ) = —— 8
(»,f) = ()

T(1)+T,,. @

where f is the proportion of time spent performing
serial calculations.

Additionally, we compared the empirical speedup
to the idealized speedup line. According to Amdahl's
law, the difference between the ideal speedup and the
maximum empirical speedup D is given by

_pf—=f
D_f+1_;i. (9)

Notice that, as the number of processors p increases,
D is expected to increase. This is because, as p
increases, the maximum theoretical speedup described
by Amdahl's law becomes increasingly limited by the pro-
portion of time performing serial calculations [f in (8)].

Visualization of Topographic
Realizations

We visualized multiple realizations produced by our
parallelized SGS algorithm using the Pyvista library in
Python." The conditioning data were plotted to display
the spatial distribution of the ice-penetrating radar
measurements from the northwest Greenland and PIG
data sets. From these data, we generated two SGS real-
izations for both locations. The Greenland simulation
has a resolution of 400 m, and the PIG simulation has a
resolution of 500 m. For comparison, we plotted the
topography of BedMachine® for both locations at the
same resolution size. BedMachine was derived using
deterministic interpolation methods, including mass
conservation and spline interpolation.

The runtimes for different simulation sizes using one
versus 12 processors are shown in Figure 3(a). The
resulting speedup is shown in Figure 3(b). The smallest
speedup of 3.2 occurs at a 1,200-m resolution, which

Computing in Science & Engineering
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FIGURE 3. (a) Total execution time of the parallel and serial
SGS simulations. (b) Speedup defined by (4). The x-axis uses a
log scale and 12 processors were used to obtain these data.

produces the fewest simulation points, at 5022. This
job took approximately 24 s on one processorand 7.6 s
on 12 processors. The greatest speedup of 8.2 occurred
at a 200-m resolution, yielding the largest number
of simulation points at 306,811. This simulation took
1 hour 3 min on one processor and 7 min 43 s on 12 pro-
cessors. For the 12 processors, we find that, as the job
size increased from 5022 to 306,811 simulated points,
the proportion of time performing serial calculations
monotonically decreased from 24.9% to 5.2%.

Figure 2 displays the results from our scalability
testing with speedup defined by (4). The 300-m runs
simulated 128,097 missing points, and the 1000-m
runs simulated 7899 missing points. The speedup for
the 300-m-resolution runs is greater than that for the
1000-m runs. The 300-m-resolution simulation has a
speedup of 9.5 when using 16 processors. Figure 4 pro-
vides a visualization for the topographic realizations
generated by our multiprocess SGS algorithm, along
with the BedMachine elevation model.?

We provide our parallelized SGS algorithm as
an open source tool for users to run accelerated
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simulations on their own data sets. Our Python script
and user tutorial are hosted on GitHub and Zenodo.
The Python script provides a command line inter-
face for users to enter a comma-separated value file
(in polar stereographic coordinates) and specify the
bounding coordinates, grid resolution, and number of
simulations to run. For each realization, we return a
color map visualization of the modeled topography and
the associated simulation data. The user tutorial is a
Jupyter notebook that also enables the user to provide
their own data; however, its intent is to provide a more
detailed understanding of our multiprocess implemen-
tation. The notebook also provides an interactive visu-
alization of the simulated data using PyVista.'*

Our results show that multiprocessing performance
increases with job size. This phenomenon can be
explained by Amdahl's law because job size has a
direct effect on the proportion of time performing
serial calculations [f in (8)]. With the number of pro-
cessors held constant, we found that, as the job size
increases, f decreases monotonically. Note that in (8),
St and f are inversely proportional; therefore, a decreas-
ing f as job size increases results in an increase in
speedup.

Our multiprocess algorithm significantly reduces
the time cost barrier to generating multiple high-
resolution simulations. These results point toward a
feasible path for simulating entire ice sheets. While
Figure 2 shows that there are diminishing returns when
increasing the number of processors, this effect can be
explained by the increasing difference between the
theoretical maximum speedup and the ideal speedup
as the number of processors increases [see (9)]. Fur-
thermore, this effect is lessened for larger simulations,
as demonstrated by Figure 3. This suggests that, for
ice-sheet-scale simulations, which would involve simu-
lating tens of millions of grid cells, a larger number of
processors may be effective. The speed of this method
could be further improved by performing the parallel
component of this algorithm on a GPU. Future work
is needed to test our algorithm’s scalability using high-
performance computing clusters and GPU acceleration.

Our code repository with our multiprocessing Python
script and user tutorials are publicly available on GitHub
and Zenodo. This open source software will make it easy
to incorporate geostatistical simulation into various ice
sheet investigations. For example, this tool could be
used to generate ensemble realizations of subglacial
hydrological models.” These can be used to quantify
uncertainty in the locations of subglacial flow paths.
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tions for (a) northwest Greenland and (b) Pine Island Glacier with arrows indicating the direction of ice flow.
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Additionally, simulated topography can be used in ice
sheet models to investigate basal sliding processes® or
quantify uncertainty in ice sheet models with respect
to uncertainty in bed topography.' The case studies by
Law et al.* and Wemecke et al." used a small number of
SGS topographic realizations with relatively small spa-
tial domains. Our SGS speed improvements, coupled
with advances in ice-sheet-modeling methods, could
help facilitate the implementation of large ensembles
of ice sheet models at regional orice sheet scales.

The geostatistical simulation of realistically rough bed
topography is imperative for accurately characterizing
basal processes and quantifying uncertainty in ice
sheet models. However, the inherently sequential nature
of SGS makes this algorithm difficult to use at large
scales or for large ensembles. Our multiprocessing
implementation significantly reduces the time cost
associated with generating simulations. Furthermore,
by making this tool open source with well-documented
user tutorials, we have reduced the barrier to spinning
up SGS models for use with ice sheet workflows. This
will enable SGS to be integrated with a variety of ice
sheet analyses, including uncertainty quantification in
ice sheet models.

This work was supported in part by the National Sci-
ence Foundation Geosciences Open Science Eco-
system Award 2324092.
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