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The Role of Neural Network Activation Functions

Rahul Parhi

Abstract—A wide variety of activation functions have been pro-
posed for neural networks. The Rectified Linear Unit (ReLU) is
especially popular today. There are many practical reasons that
motivate the use of the ReLLU. This paper provides new theoretical
characterizations that support the use of the ReLLU, its variants such
as the leaky ReLLU, as well as other activation functions in the case of
univariate, single-hidden layer feedforward neural networks. Our
results also explain the importance of commonly used strategies in
the design and training of neural networks such as “weight decay”
and “path-norm” regularization, and provide a new justification
for the use of “skip connections” in network architectures. These
new insights are obtained through the lens of spline theory. In
particular, we show how neural network training problems are
related to infinite-dimensional optimizations posed over Banach
spaces of functions whose solutions are well-known to be fractional
and polynomial splines, where the particular Banach space (which
controls the order of the spline) depends on the choice of activation
function.

Index Terms—Neural networks, regularization, activation
functions, inverse problems.

1. INTRODUCTION

ARIANTS of the well-known universal approximation

theorem for neural networks state that any continuous
function can be approximated arbitrarily well by a single-hidden
layer neural network, under mild conditions on the activation
function [1]-[5]. While such results show that most nonlinear
activation functions suffice for universal approximation in the
ultra-wide limit, it is clear that the sequence of approximating
functions, as well as the nature of functions learned by fitting
networks to data, depends strongly on the choice of activation.
Recent work on the approximation theory of neural networks has
characterized how approximation rates depend on the choice
of activation function [6], [7]. However, these results do not
consider the practical problem of understanding the properties
of functions learned by neural networks fit to data. In this paper,
we consider this problem in the univariate, single-hidden layer
case.

As neural networks provide a rich space of functions, learning
with neural networks is inherently ill-posed. Thus, regulariza-
tion plays an important role in neural network training. One
of the most common regularizers is weight decay [8], which
corresponds to the regularizer being the Euclidean norm of
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the network weights. Regularization is popular since neural
networks trained with regularization often generalize well on
new, unseen data [9]-[11].

In this paper we show how regularization in the finite-
dimensional space of neural network parameters is actually
the same as regularization in the infinite-dimensional space of
functions. In particular, we show how training neural networks
with appropriate regularization results in functions that are solu-
tions to an infinite-dimensional variational problem posed over
functions, where the regularizer is then a seminorm defining a
Banach space that depends on the choice of activation function.
We consider univariate, single-hidden layer feedforward neural
networks mapping R — R of the form

K

x> ka plwrx — by) + c(x),
k=1

D

where p : R — R is a fixed activation function, K is the width
of the network, for k =1,..., K, v, wi € R, wg # 0 are the
weights and b, € R are the first layer biases, and c(-) is a
“generalized bias™! term in the last layer.

Our results rely on the key observation that in the univariate
case, single-hidden layer neural networks are essentially spline
functions. Indeed, a spline function admits a representation

K

T ka p(x = bg) + c(x).

k=1

The key difference between (1) and (2) is that the atoms of
the neural network are translates and dilates of the activation
function, while the atoms of the spline are only translates of
the “activation function”. To this end, we use tools from the
recently developed variational framework of L-splines [12],
to show that single-hidden layer neural networks trained with
appropriate regularization are solutions to certain variational
inverse problems. The dilations by input layer weights play a
key role in the design of the neural network regularizers.

@

A. Contributions

In this paper we introduce the notion of admissible activation
functions. Roughly speaking, these are activation functions that
allow for a rigorous connection between conventional neural
network training and variational problems over an associated
Banach space. Common activation functions such as the popular
Rectified Linear Unit (ReLU) and modifications such as the
leaky ReLU [13], are admissible and thus each is associated
with its particular Banach space.

We instantiate our main result and show that training single-
hidden layer neural networks with particular power activation

'We will later see that ¢(-) corresponds to a “simple” function, e.g., a low
degree polynomial, which depends on the activation function.
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functions, introduced in Example 11, which include the ReLU
and the leaky ReLU, and appropriate weight regularization
produce optimal fractional and polynomial splines fits to the
data. In other words, neural network training solves infinite-
dimensional optimizations over the Banach spaces of functions
of higher order bounded variation. Crucially, the regularizers are
variants of the well-known path-norm [14] and weight decay [8]
regularizers that are “matched” to the activation function. We
also show that admissible activation functions are necessarily
these power activation functions.

Furthermore, for activation functions such as the ReLU and
leaky ReL.U, the generalized bias term exactly corresponds to
the well-known notion of skip connections [15] and thus our
result also provides theoretical insight into the use of skip
connections in neural network architectures. Finally, another
interesting result of this paper is that it suffices to simply train
a (sufficiently wide) neural network to solve certain variational
inverse problems as opposed to more standard multiresolution
or grid-based approaches [16], [17].

B. Related work

The choice of activation function plays an important role in
the efficacy of neural networks. While the traditional sigmoid
activation function was used for many years, the ReLU activation
has become the preferred choice. Its initial motivation was
to promote sparsity (in the sense of decreasing the number
of active neurons) [18]. It has also been empirically observed
that the training of neural networks is much faster with ReLU
activations [19]. Furthermore, variants of the ReLU, such as the
leaky ReLU [13], have been proposed to avoid the problem of
vanishing gradients in neural network training.

More recently, several recent works have made connections
between splines and neural networks. In particular, the authors
of [20] show that the “connect-the-dots™ linear spline is a so-
lution to the problem of training a single-hidden layer ReLU
network with weight decay subject to data fitting constraints. An-
other related, but different work, is concerned with the “optimal
shaping” of activation functions in deep neural networks [21],
[22] in which the authors consider learnable activation functions
and show that linear spline activation functions satisfy a minimal
second-order total variation criterion. In our own work in [23],
we relate neural network training to a variational problem over
a Banach space in the multivariate case. We remark that in the
univariate case explored in this paper, a much broader class of
activation functions are admissible. This is discussed further in
Remark 17.

II. PRELIMINARIES

Let .(R) be the Schwartz space of smooth and rapidly
decaying test functions on R with continuous dual .’ (R), the
space of tempered distributions on R. We will be interested in the
space M(R) of finite Radon measures on R. The space M(R)
can be viewed as a subspace of ./ (R) with the norm

sup (u, ),

||U||M(R) =
peS (R),[lellLoer)y=1

which is exactly the fotal variation norm in the sense of mea-
sures. We are interested in M(R) since it is a “generaliza-
tion” of L'(R). Indeed, we have L!'(R) C M(R) and for any
f € L'(R) we have || f||(r) = ||f]lmcr) but the translated
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Dirac impulses §(- — zg), o € R, are not in L*(R) but are in
M(R) with [|6(- — o) || mcr) = 1.
We will now state the relevant background from the frame-
work of L-splines [12].
Definition 1 (Definition 1 of [12]): A linear operator L :
S (R) = '(R) is called spline-admissible if
1) it is translation-invariant, ie., L%, = %;, L, where
Too{fH (@) = f(x — x0) is the translation operator;
2) there exists a function rhor, : R — R such that Loy, = 9,
i.e., pr, is a Green’s function of L;
3) the null space N, = {q: Lqg = 0} has finite-dimension
Ny > 0.
Definition 2 (Definition 2 of [12]): A function s : R — R is
said to be a nonuniform L-spline if

K

L{s} = > v d(- —by),

k=1

where {v;} | is a sequence of weights and the locations of
Dirac impulses are at the spline knots {by, }<_,.

Remark 3: Notice that the spline representation in (2) with p
being a Green’s function of L is clearly a nonuniform L-spline,
so long as c(-) € N1. The finite-dimensionality is required in
Definition 2, so that ¢(+) can be represented by a finite number of
coefficients. We refer to the representation in (2) as the canonical
spline representation.

The fundamental result of [12] is the following representer
theorem regarding the structure of the solutions to variational
problems with generalized total variation regularization.

Proposition 4 (Based on Theorems I and 2 of [12]): Let L be
a spline-admissible operator in the sense of Definition 1. Then,
the extreme points of the solutions of

min Wn, [)=yn,n=1,....N (3)

L S.t.
sluin ILf[l amer)

are necessarily non-uniform L-splines of the form in (2)
with the K < N — Ny knots, where p is a Green’s func-
tion of L and c(-) e N, v:fr—= ((v1,f)....(vN, f)) €
RY is a weak*-continuous measurement operator, and
M (R) is the native space of L defined by M (R) :=
{fe S R):Lf e MR)}.

Remark 5: For appropriate choices of loss function,” the
result of Proposition 4 also holds for regularized problems:

N
min U(Yns (Vn, + A||L 4
P n; (Yn, Vns £)) + ALl ) “)

where £(-,-) is the loss function and A > 0 is an adjustable
regularization parameter.

Remark 6: In machine learning, the measurement model
is taken to be ideal sampling, ie., v, = (- — x,,) for some
Zn € R.Inother words, the machine learning problem considers
fitting the data { (., y») }2_; C R x R.In the rest of this paper,
we will only be interested in this setting. A sufficient condition
for weak*-continuity of §(- — z,,) is continuity of the Green’s
function of L. For a detailed proof in the case that L = D?, the
second derivative operator, see [21, Theorem 1].

2A strictly convex, coercive, lower semi-continuous loss function suffices.
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III. NEURAL NETWORK TRAINING AND REGULARIZATION

In this section we will state our main results.

Definition 7: A linear operator L :.'(R) — '(R) is
called neural network-admissible if

1) it is spline-admissible in the sense of Definition 1 with a

continuous® Green’s function;

2) there exists g : R — R such that LD, = g(w) D, L,

where ©,,{f}(z) := f(wx) is the dilation operator.

Definition 8: An activation function p : R — R is called ad-
missible if it is the continuous Green’s function of some neural
network-admissible operator.

We see that single-hidden layer neural networks with admis-
sible activation functions are in fact splines. Indeed, let p be an
admissible activation function for the neural network-admissible
operator L. Then, consider the neural network

K
fo(x) = vk plwge — bg) + c(x), (5)
k=1

where 6 = (v1,...,vK,w1,...,Wk,b1,...,bK,c) contains
the neural network parameters and c(-) € N7,. Also, let © be
the space of all neural network parameters 6. We see that

K

L{fo} =Y ve(LDu,){p(- — bi/wp)}

ko
=

Vg 9(wk) (D, L){p(- — br/wi)}
vk g(wy) 6 (w () — br)

o2 50 by ) ©6)

I
M= T T

>
Il
—

where in the last line we used the fact that the Dirac impulse is
homogeneous of degree —1. From Definition 2, we see from (6)
that fo is an L-spline with spline knots at {by, /wy } < . Thus,
we see that although the neural network representation is not the
canonical spline representation, neural networks, with admissi-
ble activation functions, are in fact splines. By Proposition 4,
this says that they are solutions to variational problems of the
form in (3). We can now state our main result.

Theorem 9: Let L be a neural network-admissible in the sense
of Definition 7, and let p be a continuous Green’s function of L.
Then, the solutions to

with K > N — Ny are solutions to the variational problem in
(3) under the ideal sampling setting.

Proof: Consider a neural network as in (5) and assume it is
in reduced form, i.e., the weight bias pairs (wy, by,) are unique.
The theorem follows by taking the [|-[| ((r) of (6). [ |

Remark 10: Just as in Remark 5, Theorem 9 also holds for
regularized problems similar to (4).

K
'y |g(wr)] _ _
lg.lgl(g ! |'Uk| wk| s.t. fe(xn)_yna ’I’L—].7...7N

3See Remark 6.
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Example 11: Consider the activation function defined by

ax’l x<0,

pa,,ﬁ’,'y(x) = {B::U'y—l7 T Z 0’ (7)

where o, 8 € R with o # [ and v > 1. We refer to this as an
(«, B,7)-power activation function, and refer to v as the order
of the activation function. This family of activation functions
are admissible with corresponding operator being D7, the ~yth-
order derivative operator, since, up to a constant factor, p, 3,
is a Green’s function of DY. When ~ is not an integer, D7 is
understood as the Fourier multiplier w — (iw)?. In this case,
g(w) = w". Hence, the corresponding regularizer is

gl
2 el 50 = Dl ®)
k=1 k=1

k|

which can be viewed as a generalized ¢'-path-norm regular-
izer [14] that is “matched” to the activation function. This
path-norm is also an upper bound on the Rademacher complex-
ity of neural neural networks [23]; thus networks with small
path-norms have better generalization bounds.

Theorem 12: An admissible activation function necessarily
takes the form in (7).

Proof: From Item 2 in Definition 7, we see that an admissible
activation function p : R — R must satisfy

plwz) = g(w)p(sgn(w)z) ©
for some g : R — R. Put P(z) := In p(e®). For any h € R,

P(z + h) = Inp(e**") = In p(e"e?)

= In{g(e")p(e”)} = Ing(e") + P(a),

where in the second line we used the fact that e > 0 for all
h € R. Next, fix h € R\ {0} and consider the finite difference

x — xr n eh
Ap{P}z) = P( “'hf)L P( ):1 g}(L )

Since the finite difference is independent of x, we see that P is
piecewise linear. Consider an interval I C R in which P(x) =
ax + b for all x € I for some a,b € R. Then, for all x € I we
have

p(z) = eP(ne) — galnztb _ gboa

Finally, by Definition 7, p must be spline-admissible and must
satisfy (9). It follows that p must take the form in (7). [ |

Remark 13: When + is not an integer, the functions learned
by networks with p,, g - activation functions trained on data and
regularized according to (8) are optimal ~yth-order fractional
splines [24] fit to the data. When + is an integer, the learned
functions are optimal vth-order polynomial splines.

Example 14: When (a, 5,7) = (0,1,2), we have pg 12 =
max{0, -} which is exactly the ReLU. The generalized bias term
takes the form of a skip connection, i.e., ¢(x) = ux + s, where
u, s € R are trainable parameters. Additionally, the regularizer
in (8) is exactly the ¢!-path-norm regularizer proposed in [14].
This same result holds for modifications of the ReLU such as the
leaky ReLLU [13], whichis a (v, 1, 2)-power activation function.
When trained on data, these networks learn functions that are
optimal with respect to the Banach space of functions of second-
order bounded variation which are optimal linear splines fit to
the data.
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Remark 15: The leaky ReLU was proposed in order to avoid
the dying ReLU problem in the training neural networks, where
weights get stuck at 0 due to the fact that the ReLU is O for
all inputs less than 0. Since our result says that the underlying
function spaces for the ReLU and leaky ReLU are the same,
perhaps the leaky ReLU should be used over the ReLU.

Example 16: The truncated power functions given by
P01,y < max{0,-}771/(y — 1), where v is a positive integer,
are admissible. The generalized bias term takes the form of a
polynomial of degree less than ~, with trainable coefficients,
which can be viewed as a generalized skip connection.

Remark 17: In our related work in [23] we consider a similar
problem to this paper, but in the multivariate case and relate
training multivariate single-hidden layer networks to a varia-
tional problem over a Banach space. Our result there is more
restrictive in that the only admissible activation functions are
power activation functions where «y is a postive even integer,
and also does not make any connections to splines.

Remarkably, as noticed in [23], is that the regularizer as in (8)
is related to the well-known weight-decay regularizer [8].

Proposition 18 (Special case of Proposition 2.13 of [23]):
Consider training neural networks as in (5) with an admissible
activation function of order . Then, the following optimization
problems are equivalent:

K

lﬁigkzlivkuwm* St fo(@n) =y n=1,...,N

K
min > o + e St folen) =y n =1, N
k=1
Remark 19: These optimizations are also equivalent in the
case of regularized problems similar to (4).
Remark20: Wheny = 2, the second optimization in Proposi-
tion 18 is exactly the well-known weight decay regularizer. Thus,
ReLU networks and leaky ReLLU networks are intrinsically tied

to the well-known weight decay regularizer.

IV. EMPIRICAL VALIDATION

In this section we verify empirically that the claims made in
Section III hold. We use Proposition 18 and consider regularized
neural network training problems of the form

N K
. A -
min Zl|yn ~ folwn)* + 5;|vk|2 + w2772 (10)
n= =

To promote interpolation of the data we take A = 1075, We
specifically consider the ReLU activation which is a power
activation function with («, 3,7) = (0, 1, 2) and the cubic trun-
cated power activation which is a power activation function
with (o, 8,7v) = (0,1, 4). PyTorch was used to implement the
networks and AdaGrad [25] to train the networks.

In Fig. 1, we trained a width K = 200 ReLU network ac-
cording to (10) (v = 2) and a width K = 200 cubic truncated
power function network according to (10) (y = 4). The choice
of K = 200 was chosen so that the networks are sufficiently
wide according to Theorem 9. We compare the learned functions
to the standard linear and cubic splines.* We also illustrate
the importance of regularization by also training the networks

4The standard splines were computed using SciPy.
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(a) Standard linear spline
[D* =223

(d) Standard cubic spline

|D* =58

Hllmamy Ilaacey

N e

(b) Neural network
with regularization
2
||D fBHM(R) =223

(e) Neural network
with regularization

HD4 fﬂHM(R) =58

(¢) Neural network
without regularization
2 _
HD f9HM(1R) =25.7

(f) Neural network
without regularization

HD4 f9||M(R) =100

Fig. 1. In(a) (resp. (c)) we have the standard linear (resp. cubic) spline of the
data. In (b) (resp. (e)) we have a ReLU (resp. cubic truncated power function)
network with K" = 200 neurons trained with regularization according to (10).
In (c) (resp. (f)) we illustrate the importance of regularization. All figures plot
the function (spline or neural network) vs. the input. The dots are the data.

without regularization and show that they do not learn the opti-
mal spline interpolations of the data. Indeed, we see in Fig. 1(c)
that there are extra “bumps” between the first and second data
point and between the second and third data point, and we see
in Fig. I1(f) that there is an extra “bump” between the first and
second data point. While the function learned in Fig. 1(b) is not
the connect-the-dots linear spline, we see that it has the same
second-order total variation and is hence a minimizer to the
variational problem.

V. CONCLUSION & FUTURE WORK

Using tools from the variational framework of L-splines, we
have shown that the choice of activation implicitly defines a
neural network regularizer that corresponds to a seminorm that
defines a Banach space. We showed that the resulting neural net-
work regularizers are related to the well-known path-norm and
weight decay regularizers. Finally, we verified our results with
empirical validation by showing that trained neural networks
are optimal splines fit to data. Understanding the functional
characteristics of deep neural networks trained on data is an
open question.
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