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Abstract

Accurately quantifying the impact of radiation feedback in star formation is challenging. To address this complex
problem, we employ deep-learning techniques known as denoising diffusion probabilistic models (DDPMs) to
predict the interstellar radiation field (ISRF) strength based on three-band dust emission at 4.5, 24, and 250 μm. We
adopt magnetohydrodynamic simulations from the STARFORGE project that model star formation and giant
molecular cloud (GMC) evolution. We generate synthetic dust emission maps matching observed spectral energy
distributions in the Monoceros R2 (MonR2) GMC. We train DDPMs to estimate the ISRF using synthetic
three-band dust emission. The dispersion between the predictions and true values is within a factor of 0.1 for the
test set. We extended our assessment of the diffusion model to include new simulations with varying physical
parameters. While there is a consistent offset observed in these out-of-distribution simulations, the model
effectively constrains the relative intensity to within a factor of 2. Meanwhile, our analysis reveals a weak
correlation between the ISRF solely derived from dust temperature and the actual ISRF. We apply our trained
model to predict the ISRF in MonR2, revealing a correspondence between intense ISRF, bright sources, and high
dust emission, confirming the model’s ability to capture ISRF variations. Our model robustly predicts radiation
feedback distribution, even in complex, poorly constrained ISRF environments like those influenced by nearby star
clusters. However, precise ISRF predictions require an accurate training data set mirroring the target molecular
cloud’s unique physical conditions.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar dust (836); Interstellar radiation
field (852); Astrostatistics (1882); Astrostatistics techniques (1886); Molecular clouds (1072); Magnetohydrody-
namics (1964); Young stellar objects (1834)

1. Introduction

Stellar feedback plays a crucial role in the star formation
process, manifesting in two main forms: mechanical feedback
and radiative feedback (Fall et al. 2010; Girichidis et al. 2020).
Mechanical feedback involves the injection of momentum and
kinetic energy into the surrounding clouds through stellar
winds, including protostellar outflows and isotropic stellar
wind–driven bubbles (Arce et al. 2007; Churchwell et al. 2007;
Frank et al. 2014). Conversely, radiative feedback is associated
with the dissociation and ionization of cold molecular gas by
the intense radiation emitted by massive stars (Walch et al.
2012; Grudić & Hopkins 2019; Rosen & Krumholz 2020). This
radiation also exerts pressure on the surrounding gas and dust,
resulting in the formation of ionized bubbles known as H II
regions, which release a substantial amount of energy (Lopez
et al. 2014).

Recent studies have highlighted the significant impact of stellar
feedback on the star formation process. Simulations show that
mechanical feedback, such as outflows and stellar winds, reduces
protostellar masses and accretion rates and disperses surrounding
gas, leading to a decrease in both the global star formation

rate and efficiency (Matzner 2007; Federrath et al. 2014;
Federrath 2015; Offner & Chaban 2017; Guszejnov et al.
2022). However, the energy injection from outflows is typically
limited to smaller scales, ranging from subparsec to parsec scales
(Wang et al. 2010; Xu et al. 2022a). In contrast, the combined
effects of photoionization and radiation pressure from massive
stars and their H II regions result in the heating of the surrounding
gas and efficient dispersal of the nearby cloud (Dale et al.
2012, 2013). The radiation feedback from massive stars can have
a broad impact, spanning scales from a few to tens of parsecs
(Walch et al. 2012; Lopez et al. 2014; Rosen & Krumholz 2020;
Grudić et al. 2022; Guszejnov et al. 2022; Rosen 2022).
In order to gain a comprehensive understanding of how

stellar feedback influences the star formation process, including
star formation rate and efficiency, it is crucial to study feedback
mechanisms across molecular clouds with varying physical and
chemical conditions. However, accurately quantifying the
impact of radiation from massive stars continues to present a
challenge in observational studies. There are several current
“classical” approaches to estimating the radiation field from
observations. For example, the strength of the radiation field
originating from massive stars is commonly estimated using
dust emission (Bernard et al. 2010). However, the mean dust
temperature as derived from long-wavelength emission
gives an incomplete picture of local conditions. Pound &
Wolfire (2023) developed a framework using the ratio between
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far-infrared (FIR) fine-structure lines, such as [O I], [C I], and
[C II], to estimate the strength of the radiation field through
photodissociation region (PDR) models. However, PDR
models rely on simplified assumptions about the cloud
geometry and density distribution, leading to uncertainties
when applied to actual observational data. This approach also
does not provide an accurate estimate of the radiation field
within the cloud due to young embedded sources. Other PDR
codes, such as 3D-PDR (Bisbas et al. 2012), offer the
advantage of allowing for arbitrary density distributions and
the ability to specify radiating sources within the cloud,
addressing some of the uncertainties mentioned earlier.
However, degeneracy due to physical conditions imposes a
significant limitation in using line ratios to determine the
strength of the radiation field, since different number densities
and radiation field strengths can produce the same line ratio
(Pound & Wolfire 2023). Additionally, mapping FIR lines
across molecular clouds is time-consuming, especially in
quiescent regions, where [O I], [C I], and [C II] emission is
relatively faint.

By comparison, machine learning provides a promising
avenue for improving the estimation of physical variables given
relatively limited observational data. There has been a
proliferation in machine learning–based approaches to predict
physical quantities from observational data across various
fields, including solar physics (Asensio Ramos & Díaz
Baso 2019), the interstellar medium (ISM; Peek &
Burkhart 2019; Xu et al. 2020a, 2020b, 2022a, 2022b), and
the realm of galaxies and cosmology (Wu & Boada 2019;
Neutsch et al. 2022). Machine learning provides a powerful
tool to study mechanical stellar feedback, as it enables complex
morphological features, previously only detectable by visual
inspection, to be identified quickly and reliably. Recent studies
have developed and employed a deep-learning method called
Convolutional Approach to Structure Identification to system-
atically identify protostellar outflows and wind-driven bubbles
in nearby molecular clouds using molecular line data cubes
(Van Oort et al. 2019; Xu et al. 2020a, 2020b, 2022a).

Recently, denoising diffusion probabilistic models (DDPMs)
have emerged as powerful and reliable tools for image
generation (Sohl-Dickstein et al. 2015; Ho et al. 2020) and
have shown great potential in addressing prediction tasks
within the field of astronomy. Smith et al. (2022) employed
DDPMs to generate synthetic images resembling observed
galaxies, achieving a high level of realism. In another study,
Wang et al. (2023) utilized DDPMs to enhance image quality
and suppress noise in interferometric observations. Further-
more, Xu et al. (2023) applied DDPMs to infer the number
density of molecular clouds, a parameter notoriously challen-
ging to measure based on readily obtainable column density
maps. The DDPMs exhibit superior accuracy in predicting
molecular cloud number density, underscoring their effective-
ness and reliability in the estimation task.

In this paper, we employ a deep-learning approach based on
DDPMs to estimate the radiation field strength induced by
massive stars within molecular clouds. Specifically, we utilize
multiple bands of dust emission to infer the radiation field
strength. In Section 2, we elucidate the diffusion model utilized
in our analysis and delineate the procedure employed to
generate the training set from magnetohydrodynamic (MHD)
simulations. Subsequently, in Section 3, we comprehensively
evaluate the performance of our diffusion model in predicting

the radiation field strength. Additionally, we apply our
diffusion model to actual observational data, as detailed in
Section 3. Finally, we consolidate our findings and draw
conclusions in Section 4.

2. Data and Method

2.1. MHD Simulations

We employ MHD simulations acquired from the STAR
FORmation in Gaseous Environments (STARFORGE) project
(Grudić et al. 2021). The project introduces a novel numerical
framework for conducting 3D radiation MHD simulations of
star formation, allowing for a comprehensive examination of
multiple processes. These processes encompass the formation,
accretion, evolution, and dynamics of individual stars within
massive giant molecular clouds (GMCs) while considering the
intricate effects of stellar feedback. The stellar feedback
mechanisms taken into account include jets, radiative heating
and momentum, stellar winds, and supernovae.
The simulations in the STARFORGE project utilize the

GIZMO code (Hopkins 2015), which incorporates the mesh-
free Lagrangian MHD method. Specifically, the star cluster
formation is simulated within a GMC characterized by an
initial mass of 2× 104 Me and a radius of 10 pc (Grudić et al.
2022; Guszejnov et al. 2022). The initial magnetic field
strength is set to 2 μG, and the cloud possesses an initial virial
parameter of 2. The simulations achieve a mass resolution of
10−3 Me and span an evolutionary time frame of approxi-
mately 9 Myr. The interstellar radiation field (ISRF) default
configuration is scaled to the background spectral energy
distribution (SED) of the solar neighborhood, with the Draine
(1978) value of G0= 1.7 in the far-UV band. Additionally, we
employ simulations where the ISRF is intensified by factors of
10 and 100, corresponding to G0= 17 and 170 (Guszejnov
et al. 2022). This alternative setup enables us to assess the
performance of the machine-learning model under stronger
radiation field conditions. Significantly, the simulations
account for stellar feedback by incorporating accretion- and
fusion-powered stellar radiation in five distinct frequency
bins. These bins include H-ionizing (λ< 912 Å), far-ultraviolet
(912 Å< λ< 1550 Å), near-ultraviolet (1550 Å< λ<
3600 Å), optical–to–near-infrared (3600 Å< λ< 3 μm), and
FIR (λ> 3 μm) ranges. It is important to highlight that our
work incorporates simulations spanning different evolutionary
stages ranging from 2 to 8 Myr. This wide temporal range
encompasses both early and late stages of star formation, as
well as the evolution of GMCs.
In addition to the full physics simulations, we incorporate a

specific simulation that emphasizes the impact of stellar winds
and radiation feedback while deactivating the presence of jets
(Guszejnov et al. 2022). This alternative simulation configura-
tion introduces slight variations in the physical setup and
enhances the diversity of cloud morphologies within the
simulations. By including this simulation in our analysis, we
expand the range of training data and further enrich the training
set for our machine-learning model. We provide a summary of
the adopted simulations in Table 1. For further comprehensive
information regarding the STARFORGE project, additional
details can be found in Grudić et al. (2021).
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2.2. MonR2 Observations

We adopt the Monoceros R2 (MonR2) GMC as an
observational test case. It is well observed at all bandpasses
of interest for this project. It is located 860 pc away, is
33,000Me, and hosts over 900 young stellar objects (YSOs)
with excess IR emission indicative of dusty circumstellar
material such as protoplanetary disks or protostellar envelopes
(Pokhrel et al. 2020). Thus, our fiducial STARFORGE
calculation provides a reasonable representation of the MonR2
region given its cloud mass, evolutionary stage, and level of
star formation activity.

We adopt Spitzer Extended Solar Neighborhood Archive
(Gutermuth et al., in preparation; Pokhrel et al. 2020) Spitzer
(Werner et al. 2004) mosaics at 4.5 μm from the Infrared Array
Camera (IRAC; Fazio et al. 2004) and 24 μm from the
Mid-Infrared Photometer for Spitzer (MIPS; Rieke et al. 2004).
For the 250 μm image, we use the Herschel (Pilbratt et al.
2010) Spectral and Photometric Imaging REceiver (SPIRE;
Griffin et al. 2010) image from Pokhrel et al. (2016) that
includes an absolute calibration correction to the Planck High
Frequency Instrument (Planck HFI Core Team et al. 2011) data
of the same region of sky.

The trained model as described in Section 2.3 operates on
physical scales of 1/8 parsec pixel–1, which translates to
30″ pixel–1 at MonR2ʼs distance. For our analysis, we resample
all three infrared images to a common pixel grid set by the
IRAC 4.5 μm image, the highest-resolution data of the
collection at 2 2 beamwidth and 0 87 pixel–1 size (MIPS
24 μm is 6 3 beamwidth and 1 8 pixel–1; SPIRE 250 μm is
18″ beamwidth and 6″ pixel–1). Since the beam resolutions of
all three images are less than our final pixel scale, we simply
box-average and down-sample the flux into the desired
30″ pixel–1 size grid. We then apply a mask to limit
consideration to those pixels with coverage in all three
bandpasses. The resulting coverage spans an area of
5.23 deg2. This treatment was applied using standard routines
for these tasks (e.g., hastrom, hrebin) from the IDL Astronomy
User’s Library (Landsman 1993).

2.3. Synthetic Dust Observations

To calculate the dust temperature and generate synthetic dust
emission at multiple wavelengths, we employ the 3D radiative
transfer code RADMC-3D (Dullemond et al. 2012). STAR-
FORGE uses a subgrid model for protostellar evolution (Offner
et al. 2009) and stores the luminosity, radius, and effective

temperature of each source. Due to computational constraints,
it is not feasible to assign a unique stellar spectrum to each
individual star. Instead, we categorize the stars into four groups
based on their effective temperature: <2000, 2000–5000,
5000–10,000, and >10,000 K. For each category, we calculate
the mean effective temperature by considering the mean
luminosity and surface area of the stars within that category.
The calculation of the mean effective temperature is solely
based on the stars that are located within the domain where the
radiative transfer is conducted. An example of star categoriza-
tion in one simulation snapshot is presented in Appendix A.
We explore two different approaches for modeling the stellar

spectrum, specifically the SED, in our study: the blackbody
SED and the YSO SED. The blackbody SED assumes a
blackbody spectrum based on the mean effective temperature
of the stars. However, circumstellar disks play a significant role
in shaping the SEDs of young sources (Whitney et al. 2003;
Robitaille et al. 2007; Offner et al. 2012). In the STARFORGE
simulations, the formation of circumstellar disks is suppressed
due to strong magnetic braking. The YSO SED accounts for the
emission reprocessing (e.g., extinction, absorption and remis-
sion, scattering) caused by these (missing) disks. We adopt the
stellar spectra with disks from Robitaille (2017). For each
category of stars, we retrieve the SED from the table in
Robitaille (2017) by selecting the one that closely matches the
effective temperature and stellar radius of the star. The table
also includes different inclination angles for young stars with
disks. In our approach, we adopt the spectrum with an
inclination angle that is closest to 45°.
In the radiative transfer calculation, we employ two different

dust models depending on the gas number density. For gas
number densities exceeding 105 cm−3, we utilize the dust model
proposed by Koepferl et al. (2017) for dense gas. This model
consists of three dust compositions: 80.63% big grains (>200Å),
13.51% very small grains (20–200Å), and 5.86% ultrasmall
grains (<20Å) in the form of polycyclic aromatic hydrocarbon
(PAH) molecules. On the other hand, for gas number densities
below 105 cm−3, we adopt the dust model developed by Hensley
& Draine (2023) specifically designed for diffuse gas. This model
incorporates two dust components: astrodust (90.69%) and PAH
(9.31%). In Appendix B, we investigate various cutoffs on gas
number densities when selecting dust models and explore different
dust models. This exercise illustrates that the choice of dust model
is crucial to reproduce the observed SEDs; our hybrid model
reproduces the relative fluxes in the three bands significantly
better than the canonical Draine & Lee (1984) model or either of
the two models alone.
Dust heating in molecular clouds is influenced by multiple

mechanisms, with radiation from stars and the ISRF playing
dominant roles. It is important to mention that the simulation
data used in this study do not include the saved dust
temperature during the simulation runs. The gas temperature
is not a good proxy for the dust temperature, as they differ by
an order of magnitude in shocks and lower-density regions,
where the dust and gas are not well coupled. Consequently,
using the gas temperature in place of the dust temperature in the
radiative transfer would result in a substantial difference in the
calculated dust emission, spanning several orders of magnitude.
To address this, we utilize the RADMC-3D package to calculate
the dust temperature in postprocessing.
Given that GIZMO utilizes a Lagrangian meshless finite

mass method rather than a Cartesian grid, we employ the yt

Table 1
Summary of STARFORGE Simulationsa

ts (Myr) ISRF (G0) Jets Nsample

Training and 3.5–7.5 1.7 Yes 6750
testing 4–5.5 1.7 No 3000

Testing 5 17 Yes 81
5 170 Yes 81

1.7–4.3b 1.7 Yes 127

Notes.
a Evolutionary time, ISRF, whether protostellar jets are included, and the
number of image samples.
b These simulations are initially subjected to turbulent driving for two crossing
times, equivalent to 17.5 Myr. Furthermore, they incorporate the updated
heating and cooling treatments.
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toolkit (Turk et al. 2011) to sample the simulation data and
transform it into a uniform Cartesian grid. We use these
processed data as the input for RADMC-3D in our analysis. We
assume a gas-to-dust ratio of 100 and incorporate the Henyey–
Greenstein anisotropic scattering model in the radiative transfer
calculation.

Due to computational constraints, we generate the synthetic
dust images for each 10× 10× 10 pc3 box with an image
resolution of 80× 80 pixels. We verify that the radiative
transfer results remain robust regardless of the resolution. In
Appendix B, we present the radiative transfer simulations with
a resolution of 256× 256, and we show that the resulting SEDs
are consistent with those obtained at lower resolutions.

To account for stars located near the box boundaries, we
apply an additional postprocessing step. After generating the
initial synthetic dust images with dimensions of 80× 80 pixels,
we crop a 1 pc boundary on all four sides of the image. This
results in a final image size of 64× 64 pixels, representing an
8× 8 pc2 sky area.

Figure 1 illustrates the synthetic dust emission at 4.5, 24, and
250 μm, considering the two different treatments for the stellar
spectrum, a blackbody SED and a YSO SED, at various
evolutionary stages. The figure also presents the projected
radiation field averaged by the radiation energy along the line
of sight. The synthetic dust emission SEDs are sensitive to the
choice of stellar spectrum. The SEDs generated with blackbody
SEDs as the radiating sources exhibit two distinct peaks,
representing the contributions of stellar radiation in the optical–
to–near-infrared range and dust emission of the cloud material
in the mid-IR–to–FIR range. In contrast, the SEDs generated
with the radiating sources modeled as YSOs display an infrared

excess from 1 to 10 μm. This difference arises because the
YSO SEDs exhibit higher levels of infrared emission due to
emission reprocessing by the dust in circumstellar disks. We
note that neither set of synthetic images exhibit outflow
features, which often appear in these bands (Looney et al.
2007; Tobin et al. 2008; Takami et al. 2010). Some of the
excess observed emission likely arises from shock-excited H2
and CO lines (Cyganowski et al. 2008), which are not included
in our radiative transfer modeling step.

2.4. Constructing the Training Set

In this study, we utilize three specific bands of dust emission,
namely, 4.5, 24, and 250 μm, as input for training the machine-
learning model to predict the radiation field at the pixel level.
These bands cover both near-infrared and FIR dust emission and,
importantly, encompass information that is well modeled by our
training set. Figure 2 presents a gallery of SEDs for all of the
synthetic data, with darker colors indicating a higher number of
stacked SEDs. Observations from the MonR2 GMC are included
in the figure for reference, showcasing the Spitzer (3.6, 4.5, 5.8,
8.0, and 24 μm) and Herschel (250, 350, and 500 μm) bands. The
synthetic SEDs demonstrate a broad range of coverage for the
observed data points. Nonetheless, there is an evident discrepancy
in the synthetic SEDs, particularly in the 8 μm emission, where it
is noticeably underestimated. This discrepancy is caused by strong
PAH emission, indicating that the adopted dust model does not
replicate the observed PAH emission adequately. Part of the
discrepancy is likely due to the absence of nonthermal excitation
mechanisms, such as shocks, which are not included in
postprocessing. It is important to note that the presence of

Figure 1. Synthetic dust observations, including images and SEDs, for simulations at various evolutionary stages and with different feedback configurations. The first
column illustrates the SEDs of the synthetic observations. The second and third columns showcase the three-color synthetic dust images at 4.5 (blue), 24 (green), and
250 (red) μm wavelengths, utilizing different radiative transfer configurations. The fourth column presents the projected radiation field strength obtained from the
simulations, measured in erg cm−3.
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H2 lines at 2.22, 2.41, 2.63, and 3.00 μm may cause contamina-
tion in the 3.6 μm bandpass. Additionally, the strong aromatic
infrared bands at 3.30, 6.20, 7.70, 8.60, 11.30, and 12.70 μm can
potentially contaminate the 3.6, 5.8, and 8 μm bands (Foschino
et al. 2019). As our project aims to infer the ISRF using a limited
amount of data, it is crucial to ensure that the synthetic data
closely resemble the real data. To mitigate this issue and achieve
better performance, we have excluded bandpasses that include
H2 lines and strong PAH feature emission (3.6, 5.8, and 8.0 μm)
in this study.

To enhance the model’s capability to handle real observa-
tional data, which may include the presence of foreground and
background stars, we randomly introduce bright false sources
that simulate such stars in the 4.5 μm images. These sources
exhibit a 2D Gaussian intensity distribution, where the peak
intensity is randomly selected as a fraction between 0.1 and 1
of the 99.5th percentile of the 4.5 μm images. For each
synthetic dust map, we utilize the projected radiation field
averaged along the line of sight, weighted by radiation energy,
as the target for the machine-learning training. In summary, the
input consists of three-band dust emission maps (3× 64× 64),
while the target or model output is the corresponding projected
radiation field (64× 64).

We generate a total of 9750 synthetic dust maps encom-
passing various evolutionary stages, feedback configurations,
and treatments for the stellar spectrum. To evaluate the
performance of the machine-learning model, the data are
randomly split into an 80% training set and a 20% test set.

To comprehensively assess the performance of the machine-
learning model across different environments, we generate an
additional 162 synthetic dust observations. These synthetic
observations are generated from simulations with ISRF
strengths of G0= 17 and 170. Importantly, these new synthetic
dust observations are entirely distinct from the training data,
allowing us to evaluate the model’s performance on previously
unseen data.

2.5. Denoising Diffusion Probabilistic Models

Diffusion models, also known as DDPMs, are state-of-the-
art generative methods used in deep learning and computer
vision research (Sohl-Dickstein et al. 2015; Ho et al. 2020;
Rombach et al. 2022). These models leverage probability
theory and stochastic processes to effectively model and
reconstruct data, with a focus on modeling the conditional
distribution of clean data given noisy observations. By
estimating the underlying distribution of the data, DDPMs
capture its statistical properties, patterns, variations, and
complexities.
The primary objective of DDPMs is to denoise and

reconstruct the original signal from noisy or corrupted data.
By modeling the distribution of clean data and incorporating
diffusion processes, DDPMs excel at recovering true under-
lying structure while suppressing noise. The diffusion process
is a key component, governing the evolution of the data
distribution over time.
The DDPM starts with a simple initial distribution and

gradually transforms it into the target distribution, which
represents the conditional distribution of clean data. This
transformation occurs through a sequence of steps involving
diffusion and denoising operations. Controlled noise is
introduced during diffusion to guide the data along a diffusion
path, followed by a denoising step that estimates the clean data
from the noisy observations. Typically, deep neural network
architectures like CNNs are employed in the denoising step,
training them to map noisy observations to clean data. Figure 3
illustrates an example of the reverse process applied to our test
data, demonstrating the gradual conversion of Gaussian noise
into our desired target over 1000 time steps.
In our work, we adopt the same diffusion model described in

Xu et al. (2023), where a detailed mathematical explanation of
DDPM formulation is provided. To train our diffusion
model for the task of reconstructing the radiation fields based

Figure 2. Collection of all of the synthetic dust SEDs, where the intensity of the color is proportional to the number of stacked SEDs. Blue dots represent observations
in the Spitzer (3.5, 4.5, 5.8, 8.0, and 24 μm) and Herschel (250, 350, and 500 μm) bands within MonR2.
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on three-band dust emission maps, we follow the training
strategy outlined in Xu et al. (2023).

3. Results

3.1. Assessing the Performance of the Diffusion Model

In this section, we assess the performance of the diffusion
model in predicting the radiation field strength based on the
three-band dust emission. We begin by evaluating the diffusion
model’s performance on the test set. Figure 4 illustrates the
predicted radiation field alongside the three-band dust emission
and the ground-truth radiation field. By visual comparison, the
diffusion model accurately predicts the radiation field at the
pixel level.

To further evaluate the performance, we present a 2D
histogram depicting the correlation between the diffusion
model’s predictions and the ground-truth values of the radiation
fields in Figure 5. The histogram demonstrates a strong
alignment between the diffusion model’s predictions and the
ground-truth radiation field values. The deviation between the
true and predicted value is within a factor of 0.1. To provide a
more interpretable representation of the radiation energy, we
convert the radiation field energy into ISRF luminosity in the
solar neighborhood. This conversion is achieved by adopting
the mean intensity integrated over frequency from Mathis et al.
(1983), where 4πJ= 0.0217 erg cm−2 s−1.

We further investigate the comparison between the tradi-
tional approach, which estimates the ISRF from dust temper-
ature, and the actual ISRF in the test set. Bernard et al. (2010)
proposed an analytical formula to estimate the ISRF based on
dust temperature in GMCs following a power law

( )=
b

-

+T
ISRF

17.5 K
, 1T Dust

Dust
4⎛⎝ ⎞⎠

where the dust emissivity index β is assumed to be 2, which is a
good fit to our adopted dust model at long wavelengths. This
equation follows from the balance of dust absorption and
emission in the diffuse ISM, assuming an ambient ISRF with

an SED like the ISRF in the solar neighborhood. Therefore, it
should describe the low-extinction parts of the cloud fairly well
but not the inner parts that are subject to extinction and
irradiation by protostars.
Figure 6 depicts the correlation between the true ISRF and

the dust temperature calculated using RADMC-3D. We observe a
weak or even unclear linear trend between these two quantities.
Since the plot is in log scale, the pattern appears similar to the
ISRFT−Dust versus ISRFTrue plot but with different magnitudes
in their values. For reference, the one-to-one line of ISRFT−Dust
and ISRFTrue is also shown in Figure 6. The inferred ISRF from
the dust temperature exhibits a notable offset from the true
ISRF, mainly due to the extinction of radiation from stars
within the cloud by dust along the line of sight. This offset
diminishes at low ISRF values, where line-of-sight extinction is
minimal. Overall, this highlights a significant level of
uncertainty, with scatter and offset of over a factor of 10, in
the traditional approach for estimating the ISRF from dust
emission as compared to our machine-learning approach.

3.2. Testing on Out-of-distribution Data

Although the test set was not included in the training
process, the synthetic dust observations in both the test set and
the training set originate from the same sequence of MHD
simulations. As a result, the diffusion model is potentially
capable of learning all of the intricacies within the synthetic
dust emission and achieving unfairly accurate predictions,
which could be significantly less accurate when applied to
more diverse data. To address the possible issue of overfitting,
we evaluate the performance of the diffusion model on unseen
data. This includes synthetic images created using different
dust models and entirely novel MHD simulations featuring
diverse physical parameters. Since simulations can never
perfectly model observations, even when great care is taken
to match the physical conditions and include relevant physical
effects, our training data are, by definition, out of distribution
compared to the observational data. The tests presented here

Figure 3. Demonstration of the diffusion process (reverse) on a sample in the test set. In the upper row, the first panel represents the input (condition) for the diffusion
model, while in the lower row, the first panel represents the corresponding target (ground truth). The initial status is denoted as T1000, which corresponds to the random
Gaussian noise. The final states of the reverse Markov chain, representing the final predictions by the diffusion model, are indicated as T0. The intermediate steps of
the reverse Markov chain, ranging from T = 0 to 1000, are depicted in the remaining panels.
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thus provide a more realistic assessment of the prediction
accuracy of the model applied to observations.

3.2.1. Different Dust Models

First, we evaluate the diffusion model’s performance using
synthetic dust images generated with alternative dust models,
distinct from those used in the training set. It is important to
note that the simulation data employed for this evaluation are
identical to those used for generating the standard training and
testing data sets. Therefore, the primary difference between the
test data in this assessment and the standard training data lies in
the selection of dust models. We consider two extreme
scenarios, namely, the pure K17 model (Koepferl et al. 2017)
and the pure HD23 model (Hensley & Draine 2023).

Figure 7 illustrates the correlation between the predictions of
the diffusion model and the actual ground-truth values of the
radiation fields in this evaluation. The histogram shows a
strong alignment between the diffusion model’s predictions and
the actual radiation field values. The deviation between the true

and predicted values is within a factor of 0.2, slightly larger
than that observed in the fiducial test set described in
Section 3.1. This suggests that the diffusion model can make
robust predictions even when applied to the same sequence of
MHD simulations with different dust model setups. Hence, the
choice of a different dust model does not significantly impact
the performance of the diffusion model during training and
prediction.

3.2.2. Higher ISRF

Next, we assess the diffusion model’s performance on new
simulations characterized by significantly higher ISRF values.
These simulations involve boosting the ISRF by factors of 10
and 100, resulting in ISRF intensities of G0= 17 and 170,
respectively. Figure 8 illustrates the radiation field predicted by
the diffusion model on these simulations. Despite the large
difference in the ISRF, the diffusion model still produces
predictions similar to the ground truth. However, there are
some discrepancies; for instance, in the third and fourth rows of

Figure 4. Predicted radiation field generated by the diffusion model (third and sixth columns), along with the corresponding three-band dust emission at 4.5 (blue), 24
(green), and 250 (red) μm (first and fourth columns) and the ground-truth radiation field (second and fifth columns).
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the left-most three columns, the presence of dotted strong
radiation regions in the actual radiation field is not accurately
recovered by the diffusion model. These spots are not traced by
any band of the dust emission, which explains why the
diffusion model may fail to recover them.

Figure 9 presents a 2D histogram depicting the correlation
between the diffusion model’s predictions and the ground-truth
values of the radiation fields for simulations with ISRF

intensities of G0= 17 and 170. The diffusion model continues
to do well, albeit returning predictions with a systematic offset.
For instance, the offset between the diffusion model’s
predictions and the ground-truth values for the 10 times higher
ISRF is approximately 0.25 dex, corresponding to an under-
estimation factor of 1.8. Similarly, the offset for the 100 times
higher ISRF is about 0.43 dex, equivalent to an under-
estimation factor of 2.7. Nevertheless, the relative ISRF
intensity is well constrained, as the predictions and ground-
truth values still exhibit a logarithmic-linear correlation with a
dispersion of 0.5. Consequently, we conclude that the diffusion
model is capable of providing a reasonably accurate estimation
of the radiation field even when the true field is orders of
magnitude different than that of the training set. However, if a
more precise estimation of the radiation field in extremely high
ISRF regions is desired, it is advisable to retrain the diffusion
model using an appropriate synthetic data set.

3.2.3. Higher Density and Updated Heating/Cooling

Lastly, we evaluate the diffusion model’s performance using
a novel set of MHD simulations featuring different initial
conditions. These simulations involve driving turbulence for
two crossing times as described in Lane et al. (2022), resulting
in elevated gas density within the molecular cloud and well-
developed turbulence throughout. In addition, these new
simulations incorporate an updated radiative cooling and
heating scheme utilizing the cooling module shared with the
FIRE-3 simulations (Hopkins et al. 2023). In contrast, the
fiducial simulations used for training relied on a simpler fitting
function based on tabulated CLOUDY results (Ferland et al.
1998) accounting for local density, temperature, and metalli-
city. The updated MHD simulation applied in this assessment
offers a more detailed representation of the heating and cooling
processes, encompassing all major molecular, atomic, nebular,
and continuum interactions, to better capture the thermal state

Figure 5. A 2D histogram illustrating the correlation between the predictions of the diffusion model and the ground-truth values of the radiation fields.

Figure 6. A 2D histogram illustrating the correlation between the true ISRF
and the dust temperature in the synthetic test data. The black dashed line
represents the relationship predicted by Equation (1) (Bernard et al. 2010),
where the dust emissivity index β is assumed to be 2, and the incident SED is
that of the unattenuated local ISRF.
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of the cold ISM (Hopkins et al. 2023). This fresh batch of
simulations allows us to assess the diffusion model’s
performance under extreme out-of-distribution conditions.

Figure 10 displays the radiation field predictions generated
by the diffusion model for these updated simulations. Despite
significant differences in initial conditions and heating/cooling
approaches, the diffusion model still generates predictions that
closely resemble the ground truth, albeit with some discernible
variations. Notably, the global background ISRF values
predicted by the diffusion model are notably elevated compared
to the ground truth.

To more precisely assess this divergence, we present a 2D
histogram in Figure 11, illustrating the correlation between the
diffusion model’s predictions and the actual radiation field
values for these fresh simulations. The diffusion model still
performs reasonably well but exhibits a systematic offset and
some variability in its predictions. It is worth noting that in
these new simulations, the diffusion model appears to
consistently overestimate the ISRF by approximately a factor
of 3. Moreover, the dispersion in the predictions is approxi-
mately a factor of 2.

It is possible that the updated heating and cooling methods
and/or the increased density within the clumps and cores in the
new simulations systematically lead to a decrease in the ISRF
values. This is evident from the fact that the highest ground-
truth ISRF value in the new simulations is considerably smaller
than that in the fiducial simulations, as observed in Figures 5
and 7.

Consequently, it is crucial to stress that accurate ISRF
predictions in a real molecular cloud require an appropriate
training data set reflecting the specific physical conditions of
that cloud. One should exercise caution when interpreting
machine-learning model predictions, especially regarding their
absolute values. However, the diffusion model is capable of

correctly capturing relative intensity variations across various
out-of-distribution data sets. This capability provides a
promising avenue for assessing the relative ISRF strengths
within observed molecular clouds.

3.3. Testing on MonR2

In this section, we employ our diffusion model to analyze the
actual dust observations in MonR2. The input for the diffusion
model consists of three-band dust observations: 4.5, 24, and
250 μm. To ensure consistency in physical scales, we convolve
the MonR2 dust observation to a similar physical resolution as
our training data. Due to the larger size of the MonR2 dust map
in terms of pixel count on both dimensions and the fixed image
size requirement of the diffusion model (64× 64), we employ a
strategy that involves cropping the large map into smaller
postage stamps with dimensions of 64× 64 and a step size of
2 pixels. After the prediction phase, these postage stamps are
combined by averaging the predictions for each pixel, resulting
in the reconstruction of the original large map. Figure 12
presents the diffusion model’s prediction of the radiation field.
The regions of strong radiation fields predominantly align with
areas of intense dust emission, which aligns with our intuitive
understanding that dust is most heated in regions with relatively
strong radiation fields. Notably, there is some blue dotted
emission that is primarily highlighted in the 4.5 μm band.
These bright dots likely represent foreground and/or back-
ground stars that are not associated with MonR2. The diffusion
model’s radiation field prediction appears to successfully
exclude these contaminants.
Our findings demonstrate that the average projected line-of-

sight ISRF in MonR2 is notably higher than the fiducial value
of 1 G0. This can be attributed to several factors. First, MonR2
is an active star-forming region where the radiation field is

Figure 7. Similar to Figure 5 but applied to synthetic dust images generated using different dust models. The black dotted line represents the one-to-one line, which
represents perfect prediction. The blue dotted line represents the 10-to-one line, indicating underestimation by a factor of 10. The brown dotted line represents the one-
to-10 line, indicating overestimation by a factor of 10.
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Figure 8. Predicted radiation field generated by the diffusion model, along with the corresponding three-band dust emission and ground-truth radiation field. The first
three columns correspond to new simulations with an ISRF of G0 = 17, while the last three columns represent simulations with an ISRF of G0 = 170.

Figure 9. Similar to Figure 5 but specifically for simulations with an ISRF of G0 = 17 (left panel) and 170 (right panel). The black dotted line represents the one-to-
one line, which represents perfect prediction. The blue dotted line represents the 10-to-one line, indicating underestimation by a factor of 10.
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dominated by forming stars, leading to a significant increase in
the level of ISRF. Additionally, our predicted ISRF is averaged
along the line of sight into the molecular cloud without being
extincted by dust, providing a more accurate estimation of the
actual impact of radiation feedback across the cloud. This
information is crucial for further analyses of molecular clouds,
including investigating the influence of radiation feedback on
the core mass function or variation of turbulent properties.

We next perform statistical analyses to investigate the
correlation between the predicted ISRF and dust emission.
Figure 13 presents 2D histograms illustrating this correlation at
4.5, 24, and 250 μm in MonR2. The dust emission at 4.5 μm
does not exhibit a clear overall trend with the predicted ISRF.
The presence of numerous blue dots, likely foreground and/or
background stars unrelated to MonR2, creates a branch in the
middle of the 2D histogram where the dust emission increases
while the ISRF remains relatively constant. Similarly, no
distinct trend is observed between the dust emission at 24 μm
and the predicted ISRF. However, a positive correlation is
evident between the dust emission at 250 μm and the predicted

ISRF. For comparison, we investigate the correlation between
the predicted ISRF and dust emission in the synthetic test data,
as detailed in Appendix C. We observe a similar positive trend
between the dust emission at 250 μm and the predicted ISRF in
the test data.
Typically, longer-wavelength emission, such as observed by

Herschel at 160, 250, 350, and 500 μm, is commonly used to
estimate the dust column density and temperature. The dust
temperature, in turn, can be used to estimate the radiation field,
as shown in Equation 1. However, as discussed in Section 3.1
and shown in Figure 6, there is only a limited correlation
between the ISRF and the dust temperature in the synthetic test
data. Our study extends beyond these longer wavelengths to
include the analysis of shorter-wavelength emission. By
considering this broader wavelength range, we obtain a more
accurate estimation of the stellar radiative feedback and dust
emission.
Finally, we investigate the relationship between the predicted

ISRF, the column density, and the dust temperature utilizing
the column density and dust temperature maps derived by

Figure 10. Predicted radiation field produced by the diffusion model alongside the associated three-band dust emission and the actual radiation field for new
simulations. These simulations incorporate updated heating and cooling treatments and experience two crossing times of turbulent driving, leading to well-developed
turbulence and increased gas density before self-gravity is turned on.

11

The Astrophysical Journal, 958:97 (19pp), 2023 November 20 Xu et al.



Pokhrel et al. (2016). Figure 14 showcases the column density
and dust temperature maps of MonR2. The correlation between
the predicted ISRF and the column density, as well as the dust
temperature, appears to be limited. While certain regions of
strong ISRF coincide with areas of high column density and
dust temperature, this relationship is not consistent. Some
regions with high column density and/or dust temperature do
not exhibit a strong ISRF. Figure 15 displays 2D histograms
illustrating the correlation in MonR2. Notably, we do not
observe a clear trend between the ISRF and dust temperature,

in contrast to typical modeling assumptions (e.g., Bernard et al.
2010). Although a positive correlation can be discerned when
the dust temperature exceeds 20 K (log T= 1.3), it is
accompanied by significant scatter.
It is important to highlight that the black line, representing

the ISRF inferred from the graybody dust temperature, is
significantly offset from the DDPM-predicted ISRF values.
This discrepancy may suggest that radiation from embedded
stars is highly attenuated, resulting in much cooler dust
temperatures. Another possibility is that the dust consists of

Figure 11. Similar to Figure 5 but applied to synthetic dust images generated from new simulations with updated heating and cooling treatments, as well as two
crossing times of turbulent driving. The black dotted line signifies the one-to-one line, indicating perfect predictions. The blue dotted line signifies the 10-to-one line,
suggesting underestimation by a factor of 10. The brown dotted line represents the one-to-10 line, indicating overestimation by a factor of 10.

Figure 12. Three-band dust emission at 4.5 (blue), 24 (green), and 250 (red) μm in MonR2 (left panel) alongside the radiation field predicted by the diffusion model
(right panel). The contour lines overlaid on the dust emission maps represent the intensity of the radiation field predicted by the diffusion model.
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multiple temperature components, with the colder components
dominating the emission in the Herschel band used to derive
this temperature map. Similarly, no distinct pattern emerges
between the predicted ISRF and the column density. These
findings suggest that the dust emission at 250 μm is influenced
by factors beyond just column density and dust temperature,
including the presence of radiation.

4. Conclusions

We produced synthetic dust observations of MHD simula-
tions from the STARFORGE project that incorporate various
physical processes to simulate star formation and GMC
evolution. Using these synthetic observations, we trained
deep-learning diffusion models to estimate the radiation field
strength based on three-band dust emission at 4.5, 24, and
250 μm. We evaluated the performance of the diffusion model
on both synthetic test samples and real observational data. The
key findings of our study are summarized as follows.

1. We performed radiative transfer simulations with various
treatments for the spectra of stellar sources, resulting in
the generation of 9750 synthetic dust emission maps. We
find that the agreement with the observed dust emission is
very sensitive to the assumed dust model and show that
the Hensley & Draine (2023) model for diffuse gas
combined with the Koepferl et al. (2017) model for
densities above 105 cm−3 provides a good representation
of the MonR2 dust emission.

2. We utilized deep-learning diffusion models to estimate
the strength of the radiation field and assessed its
performance on the test set. The diffusion model
successfully reconstructed the radiation field strength at
the pixel level, generally recovering the true value
within 10%.

3. We found that the relationship between ISRF and dust
temperature exhibits a high degree of scatter, such that a
simple graybody model for dust emission does not
accurately predict the radiation field.

Figure 13. The 2D histograms illustrating the correlation between the predicted ISRF and the dust emission intensity (4.5 μm on the left, 24 μm in the middle, and
250 μm on the right) in MonR2.

Figure 14. Column density (left) and dust temperature (right) maps derived by Pokhrel et al. (2016). The contour lines represent the intensity of the radiation field
predicted by the diffusion model.
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4. We evaluated the performance of the diffusion model
using synthetic dust images created with different dust
models than those employed in the training set. The
results indicate that the diffusion model can accurately
predict the ISRF, with errors within a 20% range. This
suggests that the diffusion model is not overly sensitive to
our choice of dust model and can provide reliable
predictions even when applied to MHD simulations with
varying dust model configurations.

5. We assessed the performance of the diffusion model on
new MHD simulations featuring an ISRF that is 10 and
100 times higher than that of the fiducial simulations. The
diffusion model was still able to predict the ISRF
reasonably accurately, although there was a systematic
underestimation factor of 1.8 and 2.7 for the 10 and 100
times higher ISRF, respectively.

6. We assessed the performance of the diffusion model
using new MHD simulations featuring updated heating/
cooling and initial turbulent driving. The model
performed satisfactorily but consistently overestimated
the ISRF by a factor of 3, with a dispersion of
approximately a factor of 2. This overestimation is likely
due to the updated heating/cooling treatments, which
systematically cause lower ISRF values in the simulations
relative to simulations in the fiducial training set.

7. The evaluation of the out-of-distribution data set under-
scores the resilience of the diffusion model in predicting
the relative ISRF levels within a single molecular cloud.
While there are systematic offsets in the absolute ISRF
values, the relative intensity of the ISRF is accurately
estimated with a dispersion of up to a factor of 2.

8. We employed the diffusion model to predict the radiation
field in MonR2 using observed dust emission. The
diffusion model successfully captures the locations of
intense radiation field regions, which corresponded to
areas with high dust emission. We find a positive

correlation between the predicted ISRF and the dust
emission at 250 μm with a large degree of scatter.

Although the model performs well overall, we stress that the
test simulations, which represent out-of-distribution data,
produce significantly less precise model predictions. This
suggests that the uncertainties associated with the predicted
ISRF represent upper limits on the accuracy of the ISRF
predicted from observational data, as, by definition, our
training set is out of distribution compared to actual
observations. Therefore, it is important to adopt an appropriate
training data set that reflects the particular physical conditions
of the targeted molecular cloud as accurately as possible to
ensure the most precise ISRF prediction.
In future work, we plan to extend the application of the

diffusion model to additional archived dust observations of
nearby molecular clouds, as well as to nearby galaxies. This
approach will allow us to study the impact of radiation fields on
molecular clouds and star formation in a broader context.
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MonR2. The black dashed line in the left panel represents the predicted relation between the ISRF and dust temperature given in Equation (1).

14

The Astrophysical Journal, 958:97 (19pp), 2023 November 20 Xu et al.



Appendix A
Star Categorization in Radiative Transfer

In this section, we provide an example of categorizing stars
based on their effective temperature in radiative transfer. Due
to computational limitations, it is not feasible to perform
radiative transfer for each individual star in the simulation.
Instead, we employ a binning approach to group stars into
four categories based on their effective temperature.
Figure 16 illustrates the projected stellar radiation density
and corresponding SEDs for a snapshot of simulations at
4.5 Myr without jets, as depicted in the third row of Figure 1.
The stellar field is represented by bloblike structures
deposited onto the grid with an FWHM of 3 pixels. The
SEDs for each star category are displayed, including the
blackbody SED and the YSO SED with disks from Robitaille
(2017). Notably, the input YSO SEDs exhibit a significant
excess of infrared emission due to radiative emission by an
assumed circumstellar disk.

Appendix B
Exploration of Different Dust Models

In this section, we examine different cutoffs on gas number
densities for selecting dust models and explore the impact of
different dust models on the synthetic observations. Our primary
dust model is a hybrid approach combining the K17 (Koepferl
et al. 2017) model for n> 105 cm−3 and the HD23 (Hensley &
Draine 2023) model for n< 105 cm−3. We vary the cutoff
density, ρcut, from 1 to 107 cm−3, as well as consider a pure K17
model (i.e., ρcut= 0) and a pure HD23 model (i.e., ρcut=∞ ).
Additionally, we examine the performance of a traditional dust
model, DL84 (Draine & Lee 1984), on the synthetic observations.
Figures 17 and 18 depict the synthetic images in three bands

(4.5, 24, and 250 μm) and the corresponding SEDs obtained
using different cutoffs on gas number densities and different
dust models. The overall appearance of the synthetic images in
the three bands remains similar; however, the relative intensity
of the bands varies with different density cutoffs. The adoption

Figure 16. Projected stellar radiation density and corresponding SEDs of different categories for a snapshot of simulations at 4.5 Myr without jets (third row of
Figure 1).
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Figure 17. Synthetic images at three different wavelengths (4.5, 24, and 250 μm) generated by employing different cutoffs (ρcut) on gas number densities when
selecting dust models and different dust models in the radiative transfer for different simulation snapshots.

Figure 18. The SEDs obtained by employing different cutoffs on gas number densities when selecting dust models and different dust models in the radiative transfer
for different simulation snapshots. The blue dots represent the observed SEDs in MonR2, which have been rescaled by specific factors, as indicated in the lower right
corner.
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of the K17 model results in a more yellowish color, while the
HD23 model yields a more reddish color. This discrepancy
indicates that the synthetic dust emission using the K17 model
emits fewer long-wavelength photons compared to the HD23
model. This distinction is further evident in the SEDs, where
the synthetic dust emission utilizing the K17 model exhibits
weaker emission at long wavelengths but stronger emission at
short wavelengths in comparison to the HD23 model. When
comparing these synthetic results with the observed SEDs in
MonR2, it becomes apparent that the HD23 model and the
combination of the K17 and HD23 models better reproduce the
observed emission characteristics.

The SEDs obtained using the HD23 and DL84 models
exhibit similarities, but there is a notable difference. The DL84
model fails to reproduce the PAH feature around 10 μm.

To quantitatively evaluate the discrepancies between synthetic
and observed SEDs, we provide the χ2 values in Figure 19. We
utilize two strategies for computing these χ2 values. One approach
directly calculates the χ2 value between the synthetic and
observed SEDs. The other method involves introducing a free

parameter to scale the synthetic SEDs in intensity, thereby
obtaining the best fit for the observed SED shape, before
computing the χ2. We present both for reference, since they
suggest slightly different preferred dust models.
It is apparent that MonR2 is not in its early evolutionary

stages, as is evident from the notably higher χ2 values for the
2.5 Myr snapshots compared to other stages. Moreover, the χ2

trends across different ρcut values exhibit variations depending
on the evolutionary stage and simulation. When averaging the
χ2 values across simulations, excluding the early evolution at
2.5 Myr, we find that ρcut= 106 cm−3 provides the best fit for
the raw χ2, while ρcut= 104 cm−3 yields the best results for the
scaled χ2. We acknowledge that the choice of ρcut may appear
somewhat arbitrary, since it relies on SED comparisons, which
highlight the absence of a single synthetic SED that perfectly
matches the observed SEDs in MonR2. By considering
both methods for calculating the χ2 values, we opt for
ρcut= 105 cm−3. This choice can also be regarded as empirical,
representing the observed distinction between diffuse and
dense gas.

Figure 19. The χ2 values calculated between the synthetic and observed SEDs across various gas number density cutoffs during dust model selection and different
evolutionary stages in various simulations. The upper panel displays the raw χ2 values calculated between the synthetic and observed SEDs. In the lower panel, we
compute the χ2 values while incorporating a free scaling parameter during the calculation.
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Appendix C
Correlation between the ISRF and Dust Emission in

Synthetic Test Data

We analyze the relationship between the ISRF and dust
emission intensity in Figure 20. Similar to Figure 13, no
distinct correlation occurs between the dust emission at 4.5 μm
and the ISRF. A weak positive correlation is apparent between

the dust emission at 24 μm and the ISRF. A clear positive
correlation occurs between the dust emission at 250 μm and the
ISRF. This indicates that our analysis provides independent and
complementary information to the typical analysis of the
Herschel wave bands (160, 250, 350, and 500 μm) used for
deriving the dust temperature. Consequently, our approach
presents a new metric to quantify the physical environment
within molecular clouds.

Figure 20. The 2D histograms illustrating the correlation between the ISRF and the dust emission intensity (4.5 μm on the left, 24 μm in the middle, and 250 μm on
the right) in the synthetic test data.
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