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Abstract

Droplets on inclined substrates can depin and slide freely above a critical substrate
inclination angle. Pinning can be caused by topographical defects on the substrate, and
understanding the influence of defect geometry on the pinning-depinning transition is
important for diverse applications such as fog harvesting, droplet-based microfluidic
devices, self-cleaning surfaces, and inkjet printing. Here, we develop a
lubrication-theory-based model to investigate the motion of droplets on inclined
substrates with a single three-dimensional Gaussian-shaped defect that can be in the
form of a bump or a dent. A precursor-film/disjoining-pressure approach is used to
capture contact-line motion, and a nonlinear evolution equation is derived which
describes droplet thickness as a function of the position along the substrate and time.
The evolution equation is solved numerically using an alternating direction implicit
finite-difference scheme to study how the defect geometry influences the critical
inclination angle and the shape of a pinned droplet. It is found that the critical
substrate inclination angle increases as the defect becomes taller/deeper or wider along
the direction lateral to the droplet-sliding direction. However, the critical inclination
angle decreases as the defect becomes wider along the sliding direction. Below the
critical inclination angle, the advancing contact line of the droplet at the droplet
centerline is pinned to the defect at the point having maximum negative slope. Simple
scaling relations that reflect the influence of defect geometry on the droplet retention
force arising from surface tension are able to account for many of the trends observed in

the numerical simulations.



1 Introduction

Controlling the motion of liquid droplets on topographically or chemically patterned
substrates which are inclined is relevant to a diverse range of applications. Water harvesting
from fog utilizes hydrophobic substrates which have hydrophilic topography (such as bumps)
to facilitate condensation. The condensed droplets remain pinned at these bumps and coalesce
to form larger droplets which eventually depin and slide down into a collection reservoir.!™®
Droplet-based microfluidic devices have become increasingly popular for high-throughput
reaction screenings, point-of-care diagnostics, and single-cell analysis, as they enable precise
handling of small volumes of liquids in the form of droplets, making it easy to control
chemical and biological reactions. In these devices, topographical patterns are designed on
inclined substrates to control droplet pinning, the direction in which the droplet slides after it
depins, and other droplet operations such as mixing, splitting, and coalescence.”* Inclined
substrates with topographical patterns may also be useful for controlling droplet deposition
patterns in inkjet printing by pinning droplets at specific locations.! 12

Most substrates have inherent chemical and topographical heterogeneities which lead to the
pinning of a droplet on the substrate at non-zero inclination angles. It is often observed that
the droplet depins and slides on the substrate with a steady shape and a constant velocity on
exceeding a critical inclination angle a.. This angle can be rationalized by forming a balance
between the gravitational force acting on the droplet (which drives depinning), and the retention

force due to surface tension acting along the contact line (which resists depinning):!¥18

kBosin o, = c08 0, — cos 4, (1.1)

where k is a coefficient that generally depends on the droplet shape, surface wettability, and
surface topography. It should be noted that sometimes k appears on the right-hand side of
(1.1) as a retention-force factor.'6"!® In (1.1), 6,4 is the receding contact angle and 6,4 is the
advancing contact angle. The Bond number Bo = pgl? /o provides a ratio of gravitational forces
to surface-tension forces, where p is the liquid density, ¢ is the gravitational acceleration, [ is
the characteristic length scale of the droplet, and o is the surface tension.

Motivated by the importance of surface roughness in the applications discussed above, prior
experimental works have studied droplet motion on substrates fabricated with topographical

microstructures. In general, it is found that the critical inclination angle required to depin a



droplet increases with the fraction of the area on the substrate occupied by the microstructures,
and the microstructures may also induce stick-slip motion of the droplet.'®* 2% Stick-slip motion
and other complex behavior have also been observed in prior computational works involving

21,22

droplets on inclined substrates with multiple topographical defects. Prior experimental

and theoretical works have shown that chemical patterning can also induce stick-slip motion of
droplets on inclined substrates.? 26

All the works mentioned above that investigate substrates with topography involve multiple
topographical defects. But it is also important to consider the case of a single defect on a
substrate to gain fundamental understanding of how the different geometric features of a defect
influence droplet motion. While some prior studies have examined how contact-line forces are

2729 relatively little work has explored how defect shape affects

influenced by single defects,
droplet behavior.3

Park and Kumar developed a two-dimensional lubrication-theory-based model to examine a
droplet moving on an inclined substrate with a single Gaussian-shaped topographical defect.*’
This modeling approach allows explicit incorporation of surface topography via the defect shape.
In addition, a precursor film and disjoining pressure are used to describe the moving contact
line, which allows droplet contact angles to be extracted from droplet profiles. This is in contrast
to other approaches that have been used in prior works, such as boundary integral methods?!
and diffuse-interface/finite-volume methods,* where a contact angle hysteresis range needs to
be specified to account for surface roughness.

Park and Kumar®® found that the advancing contact line always pins at the point on the
defect that has the maximum negative slope. This maximizes 6,4 and, consequently, the
retention force in (1.1). Also, the critical inclination angle «, increases as the defect becomes
taller/deeper due to an increase in the retention force, and «a, decreases as the defect becomes
wider along the droplet sliding direction due to a decrease in the retention force.

However, most topographical defects, both natural and engineered, are three-dimensional
in nature. The width of a three-dimensional defect along the direction lateral to the droplet
sliding direction is expected to strongly influence the critical inclination angle at which the
droplet pinning-depinning transitions occur, as well as the contact-line pinning location. Thus,

whether the observations for two-dimensional situations®® hold for three-dimensional defects

remains a major outstanding question.



To address this issue, we develop a lubrication-theory-based model to study the motion of
droplets on inclined substrates with a single three-dimensional topographical defect. Similar
to the two-dimensional model discussed above,®® a Gaussian-shaped defect is chosen because
it allows us to vary key topographical parameters such as height and width while maintaining
a smooth transition from the defect to the flat portions of the substrate. This choice is also
motivated by several prior lubrication-theory-based models that have used Gaussian-shaped
defects to study the influence of substrate topography on droplet dynamics.?33% It should be
noted that fabricating a surface with Gaussian-shaped defects has been demonstrated
experimentally.®” We use a precursor-film/disjoining-pressure approach to model contact-line
motion and obtain a nonlinear evolution equation which describes the droplet thickness as a
function of position along the substrate and time. The evolution equation is solved
numerically.  The above methodology yields three-dimensional simulations within the
lubrication approximation that allow us to study the influence of defect geometry on droplet
dynamics.

The paper is structured as follows. The model formulation is discussed in §2, the influence
of defect geometry on droplet dynamics is studied in §3, the locations and shapes of pinned

contact lines are examined in §4, and concluding remarks are presented in §5.
2 Mathematical model

A schematic of the problem is shown in figure la, where we consider a three-dimensional
droplet of a Newtonian liquid moving on an inclined substrate and surrounded by air. Here,
ro is the initial droplet radius, hq, is the initial maximum droplet height, h(z,y,t) is the
droplet height, and « is the substrate inclination angle. The coordinates along the substrate
are denoted by x and y, and the coordinate normal to the substrate is denoted by z. We consider
droplets and defects that are symmetric about the line y = 3y, and neglect the dynamics of the
surrounding air.

A three-dimensional Gaussian-shaped defect is present at a distance x4 from the leading
edge of the droplet. The defect can be in the form of either a bump (Figure 1b), or a dent
(Figure 1c), where w, is the maximum defect width along the z-axis, w, is the maximum defect
width along the y-axis, and hy is the maximum height or depth of the defect. The defect shape
is described by the function n(x,y) = haexp(—[(z — z.)*/2w2 + (y — yc)*/2w;]), where (z.,y.)

is the center with hy; > 0 and hy < 0 corresponding to a bump and dent, respectively.
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Figure 1: (a) Problem schematic. The defect can be in the form of either a bump (shown)
or a dent. The bottom of the droplet is shaded grey. Note that the droplet is not drawn to
scale in the schematic. (b) Enlarged view of a bump, where hy is its maximum height, w, is its
maximum width along the z-axis, and w, is its maximum width along the y-axis. (c) Enlarged

view of a dent, where h, is its maximum depth.

2.1 Governing equations

We assume that € = hyq, /7o < 1, which allows us to invoke the lubrication approximation
and simplify the governing equations. We note that lubrication theory has long been used to
model droplet behavior, and can provide insight into various experimental observations.3%3°
The characteristic scales for non-dimensionalizing physical quantities are chosen based on
prior work.?%4% The vertical and horizontal distances are non-dimensionalized with A, and
ro, respectively. All stresses are non-dimensionalized with a characteristic capillary pressure
Pmaz0/ 7’8, where o is the surface tension. The horizontal velocities in the z- and y-directions

are non-dimensionalized with a characteristic capillary speed u* = €30 /3u, where p is the



droplet viscosity, the vertical velocity is non-dimensionalized with eu*, and time is
non-dimensionalized with rq/u*. All the variables presented in the paper are dimensionless
unless noted otherwise.

At leading order, the mass and momentum balance equations are:

Uy + vy +w, =0, (2.1)
1
guzz —ps+G, =0, (2.2)
1
§UZZ —py =0, (2.3)
p:+ Gy =0, (2.4)

where u is the velocity in the z-direction, v is the velocity in the y-direction, w is the velocity
in the z-direction, and p is the pressure. Here, G, = Bosina/e is the component of the
gravitational force parallel to the substrate, G, = Bo cos « is the component of the gravitational
force normal to the substrate, and Bo = pgrg /o is the Bond number, which represents the ratio
of gravitational forces to surface-tension forces with p representing the droplet density and g
denoting the magnitude of the gravitational acceleration. It should be noted that eRe < 1 is
assumed, where Re = pu*hyq. /10 is the Reynolds number.

Motivated by prior work, we model contact-line motion using a precursor-film/disjoining-
pressure approach.?*3%4942 With this approach, the contact-line position and contact angles
are extracted from the droplet height profiles (see §2.2) and are not additional variables. This is
in contrast to calculations that impose a slip law on the substrate, which are more complicated
to implement because the contact-line position must be determined as part of the solution.*?
A precursor film of thickness b is assumed to be present along the entire substrate, and a two-
term disjoining pressure term II is added to the hydrodynamic pressure p’ to describe the total

pressure within the droplet as p = p’ + I, where:

a0

Here, A is the dimensionless Hamaker constant and h is the droplet thickness. The first term
on the right of (2.5) accounts for repulsive intermolecular forces and the second term accounts
for attractive intermolecular forces. We choose n = 3 and m = 2, as previous works show that

these values give qualitatively accurate predictions of contact-line motion at a reasonable
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computational cost. This approach can readily be extended to model a chemically

patterned substrate by spatially varying the Hamaker constant.*! 42
On a horizontal substrate, the droplet will attain an equilibrium contact angle 6,, which is
related to A:*!
(1 —cosbey)(n—1)(m —1)
be?(n —m) '

Here, 0., is a scaled angle, which is related to the lab-frame angle 0.4, through 0.q 0, = €0¢q-

A= (2.6)

All the angles reported in this paper are scaled angles. We specify a 0., value for our calculations
and then use (2.6) to calculate A, which is used in (2.5).
The height of the droplet-air interface relative to z = 0 is H(z,y,t) = h(z,y,t) + n(z,y),

where the following conditions hold:

b= —H,, — Hyy; (27)
u, =0, (2.8)
v, =0, (2.9)
OH O0H
—w— U — 2.1
hy = w up— U o (2.10)

Here, (2.7) is the normal stress balance, (2.8) is the z-component of the tangential stress balance,
(2.9) is the y-component of the tangential stress balance, and (2.10) is the kinematic condition.

At the substrate (z = n(z,y)), we impose the no-slip and no-penetration conditions:

Integrating (2.2), (2.3), and (2.4) with respect to z and using conditions (2.7) - (2.12) yields
the droplet height evolution equation:
on* G

g—? = V- (WVVH) = V- (V) = Gy — 2V - ((H +2)VH). (2.13)

We solve (2.13) numerically in the domain 0 < z < L, and 0 < y < L,, and impose the

following conditions:

h(0,y,t) =b,  h.(0,y,t) =0, (2.14)
h(La,y,t) =b,  ha(La,y,t) =0, (2.15)
h(x,0,t) =b,  hy(x,0,t) =0, (2.16)
h(z, Ly, t) =0,  hy(x,L,,t) =0, (2.17)



which set the precursor film thickness to b on the computational boundary and require it to be

flat. For an initial droplet volume vy, we create an initial condition symmetric about y = g

in a manner similar to prior work.%’ This is done by first defining r = \/(z — z0)2 + (v — w0)?,
where (g, yo) is the droplet center. The initial droplet radius is set to rg, and for all the points
in the computational domain that satisfy r < rg, the droplet thickness h(z,y,0) is given by
a fourth-order polynomial P(r) which satisfies the symmetry condition about (zq,yo) and the

conditions:

P(To) = b, PT<T0> = O, (218)

0
/ P(r)dr = vy + 7brg, (2.19)
0

where 7br? is the volume of the precursor film in a disk of radius ry which is present below the
droplet. For all the points in the computational domain that satisfy r > r¢, the interface height
is defined as h(z,y,0) = b.

An alternating direction implicit (ADI) finite-difference scheme is used to solve (2.13), where
second-order centered differences are used for spatial discretization along x and y, and an
adaptive time stepping scheme is used for marching the solution forward in time.***> For the
simulations presented in this paper, L, x L, ranges from 7 x 2 to 10 x 4 to obtain results that
are independent of the dimensions of the computational domain. We use 250 x 250 to 300 x 300
points per unit area for the spatial discretization. Since our ADI code has a suitable structure
for running in parallel, we employ the OpenMP library?® for parallelization using 24 to 36 CPU
cores. As the droplet shape is symmetric about y = yo, the computational domain is halved
along the y direction and symmetry conditions are imposed at y = yg to decrease computational

times.

2.2 Contact angles and contact lines

It is convenient to define contact angles and contact-line positions by considering the cross
section of the droplet profile in the plane at y = yo (Figure 1a). For a perfectly flat substrate,
we define apparent advancing (6,) and receding (6,.) contact angles (Figure 2a) as the largest
angles between the substrate and the tangents to the droplet-air interface, on the advancing
and receding sides of the droplet. We define the advancing and receding contact-line locations,

Zee and x,., as the points where the tangents corresponding to 6, and 6,., and the substrate,



Figure 2: (a) Sideview of the z-z plane at y = y, for a substrate without any defects. Note
that the droplet is not drawn to scale in the schematic. (b) Enlarged side view of the z-z
plane at y = 1y showing the contact-line region when the advancing contact line moves over a
bump, where n is the defect height, H is the interface height, 0, is the apparent advancing
contact angle, 6, is the mesoscopic angle, and v is the slope of the bump at the point where
it coincides with the contact line. (c) Enlarged sideview of the contact-line region when the

advancing contact line moves over a dent.

intersect. For a substrate with zero inclination and a symmetric droplet shape, 6,4 = 6,4 = 0.
If 0 > 0.,, the droplet will spread until § = 6,,, and if 6 < 6.,, the droplet will retract until
0 = 0.,. Although contact angles and contact-line positions can certainly be defined at other
values of y, using the values at y = yq is convenient for characterizing droplet behavior given
the symmetry of the problem.

To ensure that the droplet attains the specified 6,4, separate simulations are performed on
a horizontal substrate where the initial condition is marched ahead in time until the droplet
reaches a steady shape. The value of A is tuned such that the 6, calculated from the resulting

steady shape is approximately equal to 6., (within 1°).
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Figure 3: Top view of the x-y plane showing a circular droplet shape and z,y for ¢ = 15 on a
perfectly flat substrate. The parameters are vy = 1.66, b = 0.005, A = 6932.4 (0., = 45°, ¢ =
0.13), Bo =2, hqy = 0, and o = 30°. The initial condition is centered at (1.2, 1) with rq = 0.75.

For a substrate with a topographical defect, we define a mesoscopic contact angle 6,,%

(Figures 2b and 2c):

h
tand,, = i . 2.20
o 1+ (hx + nx)hx ( )

The angles 6, and 6, are calculated by identifying the points on the advancing and receding
sides of the interface where 6,, has the largest magnitude, and extrapolating the tangents at
these points to the substrate. The advancing and receding contact-line positions x,., and .y

are defined as the points where these tangents intersect the substrate.

2.3 Model validation

The model is validated by performing simulations with a perfectly flat inclined substrate

and comparing our results with prior work. Podgorski et al.*’

performed experiments to study
droplet motion on an inclined substrate. They found that below a critical value of the substrate

inclination angle o (which depends on the droplet volume), the droplet attains a steady shape

10



with a circular footprint and slides with a terminal speed that increases with the substrate

48,49 -

inclination angle. Lubrication-theory-based models, including one developed by Espin and

Kumar,*°

are able to qualitatively reproduce this behavior.

We perform simulations for a three-dimensional droplet sliding down a perfectly flat inclined
substrate using the parameter values in the calculations of Espin and Kumar®® (listed in the
caption of figure 3) for a case where the droplet has a circular footprint. Figure 3 shows the
top view of the steady shape attained by the droplet and the arrow indicates the position
of the advancing contact line x,,. The dimensionless terminal droplet speed v; is calculated
by obtaining the slope of z,4 vs. t. Using a dimensional terminal speed of v = u*v;, the
corresponding capillary number is calculated as Ca = uv/o = ¢3v;/3. The calculations show
that Ca increases linearly with Bosina (Bo = 2 is fixed and « is varied), indicating that
the terminal speed increases with substrate inclination. This is qualitatively consistent with
the experiments by Podgorski et al.,*” where a linear increase is also observed. As noted in
Espin and Kumar,* obtaining quantitative agreement would likely require using a much smaller
precursor-film thickness, which is computationally prohibitive.

A precursor film thickness of b = 0.005 is used in the above calculations, as it provides a
qualitatively accurate description of contact-line motion at a reasonable computational cost.
Smaller 6., values lead to slower terminal sliding speeds due to more viscous dissipation,”” > but
do not change the qualitative nature of the results. For the rest of the paper, we fix the values
of b, A (6.,), vo, and ry to those specified in figure 3 as we want to isolate the influence of defect
geometry on droplet dynamics. For calculations where a defect is present, the defect is placed
at a distance x4 = 1.2-1.5 from the leading edge of the initial droplet shape, which provides
a sufficient distance for the droplet to attain a steady circular shape before it encounters the
defect.

Experiments by Podgorski et al.*

also showed that the droplet undergoes wetting
transitions as « increases. The droplet has a nearly circular footprint for lower « values,
attains a teardrop-like shape as « increases, and undergoes “pearling” at even larger « values,
where the receding end of the droplet stretches into a liquid neck and smaller droplets
break-off from the neck due to a Rayleigh-Plateau-like instability. These wetting transitions
have been qualitatively reproduced by prior lubrication-theory-based models.*®4%49  Our
calculations are able to reproduce these transitions as well. For all further calculations, we use
Bo < 4 (with the other parameter values specified in figure 3), as this leads to a nearly
circular droplet shape for most « values, which allows us to isolate the influence of the defect

geometry on droplet dynamics.
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Figure 4: (a) zg4q vs. t for a = 30°. (b) x4 vs. t for @ = 50°. The kinks at ¢ ~ 11 arise
while numerically resolving x,. from droplet profiles. The parameters are vy = 1.66, b = 0.005,
A =69324 (0., = 45°,¢ = 0.13), Bo = 2, w, = 0.075, hy = 0.025, and w, = 0.05625. The
initial condition is centered at (1.2,1) with rq = 0.75.

3 Influence of defect geometry on droplet dynamics

3.1 Influence of maximum lateral width

Figure 4a shows x, vs. t for a bump-type defect with a maximum lateral width of w, =
0.075 and o = 30°. Initially, x,4 decreases with ¢ as the droplet attains the specified 6.,.
Following this, x,y increases with ¢ until it reaches x,4 = 2.79, after which it remains constant,
indicating that the droplet slides until it reaches the defect and remains pinned there. Figure
4b shows x4 vs. t for w, = 0.075 and o = 50°. Here, x,4 increases with ¢ following the
initial decrease, indicating that the droplet does not pin at the defect and slides freely. Similar
behavior is also seen for a dent-type defect. These observations indicate that there is a critical
inclination angle a,. above which droplet depinning occurs.

To determine a, for a given defect shape, « is increased in fixed intervals until the droplet
depins and slides freely (z,q vs. ¢ similar to figure 4b). Since these calculations are
computationally expensive, it is not feasible to vary a in very small intervals, so « is increased
in intervals of 5°-12°. As discussed in §2.3, the value of 0., is fixed for all the calculations to

isolate the influence of defect geometry. Increasing 6., increases the retention force,® which
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Figure 5: Parameter maps of Bosina vs. w, for a (a) bump (hy = 0.02) and (b) dent (hy; =
—0.02). Red circles indicate depinned droplets and blue crosses indicate pinned droplets. The
dashed straight lines are placed such that they almost entirely separate the pinned and depinned
states, consistent with Bosina ~ w, from (3.2). The parameters are vy = 1.66, b = 0.005,
A =6932.4 (0., = 45°, € = 0.13), Bo = 2, and w, = 0.05625. The initial condition is centered
at (1.2,1) with ro = 0.75.

increases a., but changing 6., does not change the qualitative nature of the influence of defect
geometry on ..

Figures 5a and 5b show parameter maps of Bosin o vs. w, for a bump and a dent, where a
is increased in intervals of 5° while fixing Bo = 2 for each w, value. The blue crosses show the
cases where the droplet remains pinned at the defect and the red circles show the cases where
the droplet depins and slides freely. It can be seen that as w, increases, the transition from
droplet pinning to depinning occurs at a larger «, value.

A scaling relation for a, can be derived to rationalize the results from numerical simulations.
Gravitational forces acting on the droplet drive depinning, whereas the forces arising near the
advancing contact line due to disjoining-pressure gradients resist depinning.®®3¢ This resisting
force is estimated by multiplying the disjoining pressure near the contact line, II,, with an
approximate projected area of the defect perpendicular to the z-axis. The dimensional force

balance is given by:
pog sin o, ~ wy hyTly, (3.1)
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where primes represent dimensional values.
Non-dimensionalizing w;, with ro, hy with h.,, and II}; with Pmazo /72 yields the
dimensionless force balance:

Bosin o,
—0 sma ~ wyhdHcl. (32)
€

For (1.1), values of the receding (6,.) and the advancing (6,,) contact angles are required to
estimate the retention force, and consequently a,. In contrast, (3.2) does not require the contact
angle values and explicitly incorporates the influence of the lateral width w, and height hg of
the defect on a,.. According to (3.2), Bosin a, varies linearly with w,, which is consistent with
the numerical simulations, as straight lines can be used to almost entirely separate the cases of
pinned and depinned droplets for both bumps and dents in the parameter maps of figure 5.
The three-dimensional model presented here explicitly accounts for the influence of the
lateral defect width w, on the critical inclination angle c, through (3.2), which is a significant
advance over prior work, which focused on two-dimensional situations.*® Here, increasing w,

increases the retention force, which increases a.

3.2 Influence of maximum defect height

Figure 6 shows a parameter map of Bosina vs. the maximum defect height hy, where « is
increased in intervals of 12° while fixing Bo = 2 for each hy value. For a flat substrate (hq = 0),
the droplet slides for any non-zero inclination angle (« & 1°, yellow triangle in figure 6), which
is expected as surface roughness is not accounted for in any way. For a non-flat substrate, the
blue crosses show the cases where the droplet remains pinned at the defect and the red circles
show the cases where the droplet depins and slides freely. It can be seen that the transition
from droplet pinning to depinning occurs at a larger «.., as a bump becomes taller (hy increases
for hy > 0), and as a dent becomes deeper (hy decreases for hy < 0).

The findings discussed above can also be rationalized using (3.2). Here, Bosina varies
linearly with hy. This is consistent with the numerical simulations, as straight lines can be used
to completely separate the cases of pinned and depinned droplets for the bump (dotted line)
and the dent (dashed line) in figure 6. Thus, as the defect becomes taller/deeper, the retention
force acting on the droplet increases, which causes depinning at a higher «..

30 making the defect taller/deeper increases a.. We have

For two-dimensional geometries,
shown here that this conclusion also holds in three dimensions. However, for two-dimensional
defects this conclusion was rationalized by showing that increasing hy increases 6,,, which

30 In contrast, the

increases the retention force in (1.1), causing depinning at a larger «.
scaling relationship (3.2) developed here explicitly accounts for the defect geometry and does

not require contact-angle values.
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Figure 6: Parameter map of Bosina vs. hy. The dashed and dotted straight lines are used to
separate pinned and depinned droplets for a dent and bump, respectively, following (3.2). The
parameters are vy = 1.66, b = 0.005, A = 6932.4 (6., = 45°, ¢ = 0.13), Bo = 2, w, = 0.075, and
w, = 0.05625. The initial condition is centered at (1.2,1) with ro = 0.75.

3.3 Influence of maximum width along droplet sliding direction

Figures 7a and 7b show parameter maps of Bosina vs. the maximum defect width along
the droplet sliding direction, w,, for a bump and a dent. Here, « is increased in intervals of
5° while fixing Bo = 2 for each w, value. The blue crosses show the cases where the droplet
remains pinned at the defect and the red circles show the cases where the droplet depins and
slides freely. The dashed lines serve as visual guides to separate pinned and depinned droplets.
It can be seen that for both a bump and a dent, the transition from droplet pinning to depinning
occurs at a lower « for a larger w,. In (3.2), the disjoining pressure near the advancing contact
line is multiplied with the approximate projected area of the defect perpendicular to the z-axis
to obtain the retention force. This projected area does not depend on w,, making it difficult
to obtain a simple scaling law relating a. to w,.

Nevertheless, the trends observed in figures 7a and 7b can be understood by using (1.1)
to calculate the influence of w, on the retention force, where the values of #,, and 6,, are

now required. It can be seen from figures 2b and 2c that at the axis of symmetry y = g, the

15



T 0.9 T
* Pinned * Pinned
1.4} O Depinned T ost © Depinned |
N0 o o o [ N o o o [
121 s 07F
~ \\
s 1t \3 o o [ 5 06} \\\\o o o [
= > £ .
n N n L ,‘
Eg 08t \3\\ [} [} C‘B 0.5 \\\\o [} o
0.6 T ~_0 04r \\‘\\o )
T 03} Rl
0-4 - x x x x x
0.2
02 1 1 1 1 1 1 1 1 1 1 1
0.04 0.05 0.06 0.07 0.08 0.04 005 006 0.07 0.08 0.09
Wy Wy
(a) (b)

Figure 7: Parameter maps of Bosina vs. w, for a (a) bump (hy = 0.02) and (b) dent (hq =
—0.02). The dashed lines serve as visual guides to separate pinned and depinned droplets. The
parameters are vy = 1.66, b = 0.005, A = 6932.4 (6., = 45°,¢ = 0.13), Bo = 2, and w, = 0.075.
The initial condition is centered at (1.2,1) with ro = 0.75.

following geometric relation holds at the pinned advancing contact line for both a bump and a

dent:

eacl = Qm + v, (33)

where v is the slope along the defect at the point where the advancing contact line pins.

Our calculations show that for all the cases of a pinned droplet, 0,, ~ 0., and 0, does not
vary significantly (=~ 4%) with w,. Additionally, the advancing contact line always pins at the
point on the defect that has the maximum negative slope 7,,4, in the plane at y = yo. As
a consequence of this pinning location, 0, =~ 0eq + Vimae 15 maximized, which maximizes the
retention force in (1.1). A more detailed discussion about the location of the pinned contact line
is presented in §4. It can be seen from figures 1b and 1c that 7,,,, decreases as w, increases.
As a result, 0, decreases as w, increases, which decreases the retention force in (1.1), and
consequently the droplet depins at a lower «..

For two-dimensional defects,®® it has been found that making the defect wider along the
droplet sliding direction decreases 6,4, which decreases the retention force (from (1.1)) and
causes depinning at a lower a.. The results presented here demonstrate that this conclusion

also holds in three dimensions.
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Figure 8: Top views of pinned droplets for a (a) bump (hy = 0.02) and (b) dent (hq = —0.02).
The region where the droplet thickness is greater than the precursor-film thickness (h > b) is
marked in blue. The contact lines are marked by the solid black curves. The parameters are
vo = 1.66, b = 0.005, A = 6932.4 (0., = 45°, ¢ = 0.13), Bo = 2, w, = 0.15, w, = 0.05625, and
a = 10°. The initial condition is centered at (1.2,1) with ro = 0.75.

We have tried to calculate the value of the retention-force factor (k appearing on the right-
hand side in (1.1)) by extracting the values of Bosin a, 0,q, and 0,4 from all the calculations
presented in §3, and fitting a straight line to Bosin a,. vs. cos 0,4 — cos 0, (see supplementary
information). The numerical simulations do not agree well with the linear fit. This likely
happens because k is assumed to be a constant in (1.1), but the value of k is expected to

depend on the defect dimensions, which are different for all the numerical simulations.
4 Location and shape of pinned contact line

Besides the critical inclination angle, another feature of fundamental interest is the location
and shape of the pinned contact line. Figures 8a and 8b show top views of pinned droplets for
a bump and a dent, where the contact lines are marked by the solid black curves. For a bump,
it is seen that the contact line at the droplet front is located on the downhill side of the bump.

For a dent, it is seen that the contact line at the droplet front is located on the downhill side
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Figure 9: Cross-section view in the x-z plane of a droplet pinned at a bump for (a) y = 1.08

(axis of symmetry) (b) y = 0.95 (¢) y = 0.9 (d) y = 0.85 (e) y = 0.8 and (f) y = 0.75. The
red lines show the droplet profile and the blue lines show the defect shape. The parameters
are vg = 1.66, b = 0.005, A = 6932.4 (0., = 45°,¢ = 0.13), Bo = 2, w, = 0.075, hy = 0.02,
w, = 0.05625, and o = 10°. The initial condition is centered at (1.2,1) with ry = 0.75.

of the dent. These features can be understood by examining how the pinning location varies in
the y-direction.

Figure 9 shows the cross sections of droplet profiles in the x-z plane for different y values for
the pinned droplet in figure 8a. At the axis of symmetry (y = yo), the advancing contact line
pins at the point of maximum negative slope 7,4, on the defect (Figure 9a). As discussed in
§3.3, 0, and consequently the retention force in (1.1), are maximized at this pinning location.
But the contact-line location does not coincide with the maximum negative slope for y # vy,
and is shifted to the left as y moves further from y, (Figures 9b-9f).

Figure 10 shows the droplet cross sections for different y values for the pinned droplet in
figure 8b. Similar to the bump, the advancing contact line at y = yy pins at the point on the

dent that has the maximum negative slope Y. (Figure 10a). Since 7,4, lies on the downhill
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Figure 10: Cross-section view in the z-z plane of a droplet pinned at a dent for (a) y = 1.08
(axis of symmetry) (b) y = 0.95 (¢) y = 0.9 (d) y = 0.85 (e) y = 0.8 and (f) y = 0.75. The
red lines show the droplet profile and the blue lines show the defect shape. The parameters
are vy = 1.66, b = 0.005, A = 69324 (6, = 45°,¢ = 0.13), Bo = 2, w, = 0.075, hg = —0.02,
w, = 0.05625, and o = 10°. The initial condition is centered at (1.2,1) with ry = 0.75.

side of the dent, the contact line covers a smaller portion of the dent compared to the bump,
where the maximum negative slope lies on the downhill side of the bump. As with the bump,
the pinning location does not coincide with the maximum negative slope for y # yo, and is
shifted to the left as y moves further from yo (Figures 10b-10a).

We now characterize contact-line shapes for the pinned droplets discussed above. Figures
11a and 11b show these shapes in the advancing half of the droplet for a bump and a dent,
and the dashed red lines show the location of the maximum negative slope along the defects.
For both cases, it can be seen that the contact line coincides with the maximum negative slope
only at the axis of symmetry. Figures 11c and 11d show the shapes of the pinned contact lines
(solid blue lines) and the steady circular profiles attained by the droplet before encountering

the defects (dashed red lines) for a bump and dent. For both cases, it can be seen that the

19



2.65

—— Pinned contact line
- - Position of maximum negative slope

——Pinned contact line
265 - - Position of maximum negative slope

27

R
8275

Axis of symmetry Axis of symmetry

28

2.85

0.8 09 1 1.1 1.2 1.3 1.4 0.8 0.9 1 1.1 1.2 1.3 14
Yy Y
(a) (b)
T 26
265\
——Pinned contact line . N
| _ _ Tnitial contact line 265\, ——Pinned contact line
27 \ B ’ . - - Initial contact line
_ 27
3 3
S275 S
275
28
2.8
2.85
0.8 0.9 1 1.1 1.2 1.3 1.4 0.8 0.9 1 1.1 1.2 1.3 14
Yy Y
() (d)

Figure 11: (a) x,q vs. y for a droplet pinned at a bump (hg; = 0.02). The two kinks at y = 1.04
and y = 1.14 arise while numerically resolving z,, from the droplet profiles at the top of the
bump. (b) x4 vs. y for a droplet pinned at a dent (hy = —0.02). The dashed red lines in
above figures show the position of the maximum negative slope Y. along the defect. (¢) zqq
vs. y for a droplet pinned at a bump (hg = 0.02). (d) 24y vs. y for a droplet pinned at a
dent (hg = —0.02). The dashed red lines show the shape of the droplet contact line before it
encounters the defect (the initial contact-line position has been translated so that it overlaps
the pinned contact-line position). The other parameters are the same as in figure 8.

shape of the pinned contact line is more blunt than the circular profile as a consequence of
liquid “piling up” at the droplet front.

Our results show that for the three-dimensional defects considered here, pinning occurs at
the point of maximum negative slope only at the axis of symmetry. This behavior is more
complicated than what might be inferred from results for two-dimensional systems, which
indicate that pinning simply occurs at the point of maximum negative slope.?’ In addition,
our three-dimensional calculations illustrate how contact-line shape is influenced by a defect.
Although we have considered symmetric bumps and dents, we anticipate that for other
geometries pinning will also occur at the point of maximum negative slope at the leading edge

of the droplet and the contact-line shape will be more blunt.
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5 Conclusions

We have developed a lubrication-theory-based model to study the pinning-depinning
transition of circular droplets on an inclined substrate with a three-dimensional topographical
defect. A single topographical defect is considered to isolate the influence of defect geometry
on droplet dynamics. Park and Kumar®® developed a lubrication-theory-based model to
examine a droplet sliding on an inclined substrate with a single two-dimensional defect.
Whether their observations hold in three dimensions remains a major open question, and this
issue is addressed in our work.

The droplet remains pinned at the defect below a critical substrate inclination angle «..
Above a., the gravitational forces acting on the droplet exceed the retention forces due to surface
tension, and the droplet depins and slides freely. For a two-dimensional defect, increasing the
height /depth of the defect increases a.. due to an increase in the retention force, and increasing
the width of the defect decreases a. due to a decrease in the retention force.?® Here, we have
shown that these conclusions hold in three dimensions. We have also shown that increasing
the lateral width of the defect increases o, due to an increase in the retention force. This work
significantly advances physical understanding by explicitly accounting for the influence of defect
geometry on the retention force, and consequently «., through (3.2).

For the case of a droplet pinned at a two-dimensional defect, it was observed that the
advancing contact line pins at the point of maximum negative slope, as this maximizes the
retention force.>® We have shown that this observation only holds at the axis of symmetry
in three dimensions. Our three-dimensional calculations also demonstrate that the contact
line has an approximately circular shape which is more blunt due to liquid piling up near the
defect. A key advantage of the lubrication-theory-based model used here is that it can readily be
extended to investigate more complex scenarios where the substrate may have multiple defects
of different shapes or chemical heterogeneity. Droplet pinning can be influenced by substrate
stiffness as well,>®> and situations involving deformable substrates can also be studied using
lubrication-theory-based models.?*>* In addition, our lubrication-theory-based model serves as
motivation for numerical simulations that relax the lubrication approximation, and can be used

to help validate such simulations.
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