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Abstract

The level set estimation problem seeks to find
all points in a domain & where the value of
an unknown function f : X — R exceeds a
threshold «v. The estimation is based on noisy
function evaluations that may be acquired at
sequentially and adaptively chosen locations
in X. The threshold value « can either be
ezxplicit and provided a priori, or implicit and
defined relative to the optimal function value,
ie. a = (1 —¢)f(x,) for a given € > 0 where
f(x,) is the maximal function value and is
unknown. In this work we provide a new ap-
proach to the level set estimation problem
by relating it to recent adaptive experimen-
tal design methods for linear bandits in the
Reproducing Kernel Hilbert Space (RKHS)
setting. We assume that f can be approxi-
mated by a function in the RKHS up to an
unknown misspecification and provide novel
algorithms for both the implicit and explicit
cases in this setting with strong theoretical
guarantees. Moreover, in the linear (kernel)
setting, we show that our bounds are nearly
optimal, namely, our upper bounds match ex-
isting lower bounds for threshold linear ban-
dits. To our knowledge this work provides the
first instance-dependent, non-asymptotic up-
per bounds on sample complexity of level-set
estimation that match information theoretic
lower bounds.
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1 INTRODUCTION

The level-set of a function is a subset of its domain
where it exceeds a specific value. Level set estimation is
the problem of identifying a subset that approximates
the true level-set based on a finite set of potentially
noisy function evaluations. As an example, consider the
goal of detecting a region in a body of water, such as a
channel, that is at least 20m deep for ships to safely
pass. Given that we can obtain noisy estimates of depth
using a sonar device at the locations of our choosing,
where should we measure in order to acquire the most
accurate level-set estimation while using as few total
measurements as possible? Level-set estimation can
also be interpreted as a kind of classification rule. For
example, using as few total experiments as possible,
we may want to identify all compounds among a given
finite set under consideration that have some prop-
erty (e.g., binding affinity) that exceeds some target
threshold.

While level-set estimation is somewhat of a well-studied
problem, to date there is a lack of theoretical under-
standing of the limits and tradeoffs of estimation accu-
racy and number of measurements. Most algorithms
proceed by sequentially and greedily optimizing an
acquisition function that is constructed using all the
measurements observed up to the current time. These
heuristics are known to work very well in practice, but
their guarantees are ad hoc and, at best, worst-case
(minimax). In this work we are interested in under-
standing the instance-dependent sample complexity
of level-set estimation. That is, we would like for an
algorithm to output a satisfactory estimate of the level-
set as fast as any algorithm could for this particular
instance, not some worst-case instance.

In contrast to prior works that propose a sampling
heuristic—usually based on identifying an informative
point—and bound its sample complexity, we work back-
wards. Namely, we first consider an information theo-
retic lower bound for the level-set estimation problem
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that suggests an “optimal” sampling strategy. Because
this ideal sampling strategy is a function of the true
(unknown) function, it is a priori impossible to real-
ize. Instead, we propose a series of sampling strategies,
based on experimental designs, that mimic this optimal
sampling strategy given the information available at
the current time. By the end, these strategies provably
achieve the optimal sample complexity with minimal
overhead. Furthermore, we show that our sampling
strategy leads to an upper bound on the sample com-
plexity that is tighter than those in the existing lit-
erature. In what follows, we first formally state the
problem and our desired objectives. We then review the
related work in context before proceeding to our lower
bounds and algorithms. We finish with experiments
contrasting with existing work.

1.1 Problem Statement

We assume there exists an unknown function f : R% —
[—B, B] and a subset of allowable sampling locations
X C R? which span R%. Though the function f is
unknown, we may query its value for any x € X and
receive a noisy estimate f(x)+n where n is iid, E[n] = 0,
and E[n?] < 02. We define two objectives.

Explicit Level Set Estimation: Given a specified
threshold « € R, the goal is to identify G, := {x € X' :

f(z) > a}.

Implicit Level Set Estimation: Let x, €
argmaxzey f(x). Given e > 0, the goal is to iden-
tify Ge :={z € X : f(z) > (1 —€)f(xs)}

Consider an algorithm that at each time ¢ selects an
arm x; € X that is measurable with respect to a o-
algebra Fy_1 = o(x1,y1, - , Ti—1,Yt—1) and receives
a value y; = f(x) + n:. To be precise, we say that
an algorithm is PAC-§ for the explicit (respectively
implicit) level set problem if it stops at a time T5 which
is measurable with respect to the filtration (F;)¢>1 and
returns G,, (and in the implicit setting returns G.) with
probability at least 1 — 4. If f(x) is very close to the
threshold, it may take an enormous number of samples
to determine whether it is above or below the threshold,
so in practice we introduce a § > 0 tolerance that
ensures that any learner has a finite sample complexity
(see theorems) and allows for misclassification of points
very near to the threshold. But in the discussion that
follows, assume that f(z) is bounded away from the
threshold.

Our approach is based on modeling f in a Reproducing
Kernel Hilbert Space (RKHS) H. Let ¢ : R? s H be
the “feature map” associated with the RKHS. Since

'For ease of exposition, we assume f(x.) > 0. This is
easily removed by taking € < 0 if f(z.) < 0.

|f(z)| < B for all © € X, there exists a §, € H and a
scalar h > 0 such that maxgex | f(x)—(0x, ¢(x)) x| < h.
When h =0, f € H, and in general we allow h > 0 (typ-
ically small) in the interest of generality. Our sample
complexity bounds will depend on h and |||y which
we denote ||0,|. If h is small, then f is well approxi-
mated as a linear function of the feature maps ¢(z). We
refer to the case when h > 0 as being misspecified and
otherwise when h = 0 as being well-specified. This class
of functions is frequently used for level-set estimation
because it is often sufficiently rich to model real-world
functions but also contains enough structure to quan-
tify the uncertainty of generalizing a learned function
to unmeasured locations. One note of departure from
the existing literature is that we do not assume the
unknown function is precisely captured by a function
in an RKHS, only that it is well approximated by one
(i.e., the misspecified setting). In the discussion that
follows, we additionally assume |X| < oo for simplicity
since in practice given an arbitrary bounded domain
we can replace X with a finite cover.

2 RELATED WORKS

The level-set estimation problem naturally connects
to several related ideas in Bayesian optimization and
multi-armed bandits. In the former setting, methods
tend to sample greedily according to an acquisition
function that seeks to minimize the uncertainty of the
learner about the level set. The first work on level
set estimation that employed the use of Gaussian pro-
cesses and introduced the Straddle heuristic is due to

( ). These ideas were further devel-
oped in ( ) which proposed the LSE and
LSE-imp algorithms for explicit and implicit level set
respectively. They provide a theoretical guarantee on
the sample complexities of LSE and LSE-imp, and as
we will show below, our sample complexity is always
at least as good as their stated bounds.

( ) further connected Bayesian optimization
with level set estimation and considered the setting of
heteroscedastic noise. The work of
( ) focuses on the level-set problem in a continuous
domain, and provides an algorithm that maintains a
notion of uncertainty over regions, providing a poten-
tially improved computational complexity, along with
tighter sample complexity bounds compared to LSE
for certain kernels and smoothness assumptions. The
work of ( ) reposes level-set estima-
tion as a classification problem and introduces a novel
acquisition function. ( ) extends the
work of ( ) to improve model robust-
ness in quality control applications. ( );

( ) demonstrate frequentist guarantees
for Gaussian process algorithms. (

7 )
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, ) employ a sequential experimen-
tal design approaches for estimating failure probability
given a threshold form a density that is expensive to
evaluate. ( , ) proposes a kriging-
based approach for the same problem. This line of work
is also related to Gaussian Process Bandits, namely
the GPUCB algorithm and improved variants (

, ). ( ) introduces a Bayesian
Neural Network approach for active level set estimation
using Monte Carlo dropout techniques. Table 1 in the
appendix summarizes the results we are aware of in
the Gaussian process setting.

In the multi-armed and linear bandit setting, the ex-
plicit level set estimation problem is related to thresh-
old bandits where one seeks to find all arms above an
explicit threshold ( , ;
; ). The approach of
( ), would provide an asymptotically
optimal algorithm in the linear setting, however we are
not aware of any other works that provide an optimal
finite-time guarantee. The implicit level set problem in
the standard multi-armed bandit setting is equivalent
to the multiplicative all-€ problem introduced by
( ). Algorithm 2 recovers the sample com-
plexities of the instance-optimal (ST)? algorithm given
there. Finally, our experimental design techniques are
inspired by ( ); ( ), and
especially the recent work of ( )
that introduces the RIPS estimator which we use to
perform experimental design in an RKHS.

9 9 7

3 EXPLICIT LEVEL SET
ESTIMATION

In recent years, adaptive experimental design has arisen
as a popular paradigm for active learning in structured
settings, for example in linear bandits and RKHS (

~ - )

K ) K ) )
and we adapt these ideas for the level set problem.
To motivate this paradigm, in the following exam-
ple we focus on the well-specified linear case where
¢(x) = x, = 0,h = 0 where we recall h denotes
the misspecification and E denotes the error tolerance
as defined in Section 1.1. Imagine we have access to
a collection of n-measurements {(x;,y;)}"; and let
8 = arg mingcpa S (yi — 2] 0)? be the least squares
estimator. Standard results show that with probability
greater than 1—4, we have for all x € X’ simultaneously

21og(2[X]/3)

.
_ < -
e (0 =0 < el o o0 n ’

where the additional factor of |X| in the logarithm
arises from a union bound over X. In particular, if our

data is chosen so that for each arm © € X

2log(2]|X]/9)
Ty _ L Y
20— ol > 2l pry- W .

we see that for any « such that 76, > a,
x'0 = z'0, + a:T(é\— 0.) > z'0, — \:BTG* —a| > a.

The first inequality stems from equation (1) where we
have sampled such that the error wT(é— 0,) is less
that the margin to the threshold |z 6, — a|. Hence, if
x "0, > a then mT§> «. This same argument may be
repeated for « : &0, < . Therefore {x: 270 > a} =
{x:x'0. > a} =G,, ie. we have a high probability
guarantee that we return the correct set of arms above
the threshold. Letting A, = n,/n be the proportion of
times we sample & € X, we see see that equation (1)
is equivalent to

2

(Zmex )‘zme)_l
> .
"R 0]z —a)? @)

|

In particular, this implies that to achieve a good sample
complexity we can minimize the right side of this ex-
pression over all possible distributions A € Ay where
Ay ={AeR* ¥ X =1X >0Ve} In
deed as the following theorem shows, this gives a lower
bound on this problem.

Theorem 3.1. Assume n; ”fvd./\/'(O7 1) Vt. In the well-
specified linear setting when ¢(x) = = and f(x) =0, x,
for any § > 0, any PAC-0 algorithm with stopping time
Ts that returns the set G, with probability at least 1 — 0
must satisfy
E[T3)
log(1/2.46) —

2 min max —————
redx zeX (0] x — a)?

where A(X) :== Y cx A"

Remark. We prove this result for completeness in
the appendix using ideas from ( ). A
similar result has appeared previously in the Appendix
of ( ) which also shows its tightness.

As a concrete interpretation of the lower bound, con-
sider the case where x; = e;, the i*" standard basis
vector. Then the mean of arm i is 6] e; = [0.];, the
it™ entry of ,. This setting removes all structure by
making the mean of each point independent of the oth-
ers, and we may solve the optimization in Theorem 3.1
in closed form. Namely, the fraction of samples given
to arm 4, denoted A\ o ([6,]; — a)~2log(1/6) is pro-
protional to its inverse gap squared. This leads to a
lower bound of E[r5] > >0 | ([0.]; — ) "2 log(1/8) with
matches the known lower bounds from (

, ; , ) which are specific to
this setting.
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We now operationalize this lower bound to provide an
algorithm for level set estimation that has a nearly
matching upper bound. In the following sections, we
will explain our algorithm and the adaptations neces-
sary to handle the general setting of the RKHS.

3.1 Algorithm

Motivated by this lower bound, we now provide an
experimental design approach in the general case. In
this setting, we recall the feature map ¢ : R — #H and
h > 0 represents the possibly nonzero misspecification
level. Despite these changes, the same intuition from
the linear case in Theorem 3.1 applies. We have a
set of vectors ¢(x)1,...,P(x,) € H and an unknown
parameter vector 6, € H such that f(z) ~ 0, ¢(x).
Ideally, we would sample according to a distribution A,
that achieves the minimum in the lower bound in The-
orem 3.1, however this is not possible since A, depends
on the a priori unknown 6,. Instead, we approximate
this distribution by solving a series of designs based
on the information we have thus far. Furthermore, we
allow for a tolerance 3 > 0 reflecting the fact that
depending on the setting, practitioners may be satis-
fied with an approximate solution if it requires fewer
samples to learn.

Our approach, MELK (Misspecified Explicit Level set
via Kernelization), for the generalized RKHS setting is
given in Algorithm 1. MELK proceeds in phases. To keep
track of the points it has identified so far, MELK main-
tains two sets: 1) G is the set of all points that up to
round ¢ have been declared as being in G, by MELK, that
is f(x) > a. 2) By is the set of all points declared as be-
ing in G¢. The remaining, uncertain points are active
and in the set A;. Motivated by the lower bound from
the linear setting, it then computes the experimental
design: \; = argminyea, MaXge4, qu(sc)||i‘(7)()\),1
with A (N) = S v Ao(@)p(x)" + v where
v is a necessary regularization in the kernelized
(infinite-dimensional) setting.  Indeed, the num-
ber of samples taken in each round equals N; =~

. lp(@) 12 (4 1y -1 .
miny maxgze 4, (217:)2“) from A;. This guaran-

tees that at the end of the round, A;y; C {x € X :
0] — o] < 27(+D} and, we can interpret our de-
sign as an approximation to the lower bound on the
pomts that are remaining. MELK declares that € G,
if 97 ¢(x) — 27! > a and adds x to the set Gy. Sim-
ilarly, MELK adds « to declares € G¢, and adds x
to By if §T¢( )+ 27t < . Finally, MELK terminates
when either all arms have been added to the sets Gt
or By or when t > log,(1/8) and it has achieved the
practitioner’s desired tolerance of B

MELK leverages a Robust Inverse Propensity Scoring

(RIPS) estimator introduced in ( )
and reviewed in Appendix C. Previous works in linear
bandits have utilized rounding procedures for sampling
followed by ordinary least squares that are not appli-
cable in the infinite dimensional setting. Instead, the
RIPS estimator appeals to an inverse propensity score
estimator plus robust mean estimation. We state the
guarantee of the RIPS estimator below?.

Theorem 3.2 (Theorem 1, ( , ).
Consider the model y = (p(x),0.)y + Cx + 1 for
misspecification (x| < h where it is assumed that
(6(), 8)n + Cal < B, Ely] = 0, and B[] < o2,
Fiz any finite sets X C R? and V C H, feature map
¢ : RY — H, number of samples T, regularization vy > 0,
and distribution A € Ayx. If 7 > 2log(|V|/d) then with
probability at least 1 — §, RIPS returns 0 satisfying
max K0 0) = (6, v)]

o <20k + 2k
veV o]l aen (-1

g (),

Computational Considerations. We note briefly
that while we state the optimal design in terms of
the potentially infinite dimensional ¢(x) for clarity,
we never explicitly compute ¢(x) and instead resort
to the kernel trick (see Appendix G). Furthermore
the design can be computed using first order opti-
mization methods, such as Frank-Wolfe (

, ). The total com-
putational cost of each design is poly(|X|). Though
these designs can be expensive to compute, this is
done very rarely by the algorithm. In particular, for
T total samples drawn by MELK, the design is com-
puted O(log, (7)) times leading to an overall computa-
tional cost of O(poly(]X])log, (7)) for computing the
design. By contrast, any algorithm that computes an
acquisition function at every sample suffers computa-
tional complexity Q(T) for the design. Furthermore,
for Gaussian process approaches, the added cost of
computing posterior means and variances leads to an
overall computational cost of either Q(poly(]X|)T") or
Q(|X|poly(T)) depending on implementation for com-
puting acquisition functions. We focus on the complex-
ity of computing the design and acquisition functions as
this is frequently the core computational bottleneck of
algorithms for level set estimation and the complexity
of drawing samples is usually negligible by comparison.
Hence, when many samples are drawn, MELK can be
significantly more efficient than past approaches.

2We carefully detail RIPS from (
as it is important for understanding the behavior of the
algorithms we present, but the experimental designs we
propose are not consequences of that work.
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Algorithm 1 MELK: Misspecified Explicit Level set
via Kernelization
Require: Arms X, ¢, 0 >0, 6 > 0, v > 0, threshold
@, tolerance 8

Lt1,G1 =0 B« 0 A <X N

2: while |Gy U By| < |X| and ¢ < [log,(4/8)] do

3: 5,5 «— 5/2t2

4: Let A\; € Ax minimize g(\; As;y) where

YR - 2
g(>‘v Va’Y) T glg]}f”qb(m)“A(’v)()\)*l

o

g+ 16-22"g(A; Ap;7) (B2 +0?) log (22| X|? /6)

2

7 Set Ny «+ [max{q:,2log(|X|/6)}] and sam-

ple z1,--- ,zN, observing noisy function values
Y1, -+ ,Yn, according to As.

8t 0r - RIPS(A, {AO (\) 'o(wi)yi} i ). Al 3
in Appendix C

9: for x € A; do

10: if 07¢(z) < a—2-27" then

11: By

12: AtJrl — At\{il?}

13: else if 67¢(x) > o+ 227" then
14: Gip1 + G U {z}

15: At+1 — .At\{:li}

16: t—t+1
return R := X \ B

3.2 Optimal Sample Complexity for Explicit
Level Set Estimation

Next we state MELK’s complexity, deferring constants
and doubly logarithmic factors to the appendix for
readability.

Theorem 3.3. Fix § > 0, threshold o > 0, toler-
ance B, and regularization v > 0. Define Apin(a) :=
mingex |¢(x)70, — a|. Define also

B(a) = min {5 > 0:4(\/7]|0«]] + h)x

6@ By 1) <5

<2+ min max
AEAx xeX:|p(x) T 0. —a|<pB

With probability at least 1 — §, MELK returns a set R at
time Ts such that

R2o2{zeX:f(x)>a+p(a)
and RC{weX: fx)>a—F-pBa)}

and for any o, B such that max(Amin (), B) > B(a)

(;5 xr 2 ~ -1
OO [C. oy
redx zeX max{(¢(x)T0. — a)?, 52}

x log((Amin(ar) V 5)71) log (|X]671) .

We now contextualize the result of our theorem. In the
well specified setting with ¢(x) = x, h =0, 8 =0, and
v = 0 MELK will terminate and return G, in a time

0g(Aniy) log ('X')

samples which nearly matches the rate suggested by the
linear lower bound in Theorem 3.1. The added factor
of log(|X|) stems from a union bound, while the depen-
dence on log(A_ 1) is an additional overhead incurred
as MELK builds up an estimate of the optimal sample
allocation over rounds. We visualize this estimation

process in Figure 1 in the experiments.

l2l? \y -1
Ts < (B*+¢?) min max —pa®— ]
6’\“( * ))\GAX zex @T0.—a)?

In the more general misspecified setting when h >
0, we cannot expect to return G, exactly and B(a)
characterizes the limit of how well one can estimate
f(x). Hence, x’s with gaps smaller than 3(a) cannot
reliably be detected by MELK. To better understand
this quantity, note that for any 7' € R if we run MELK
with v =+'/T, Lemma 2 of ( ) can
be used to show that 3(a) < (/7]|0«]| + k)vTr where
I :=supyep , logdet(T A (X)++'T) is the mazimum
information gain as defined by ( );

( ); ( ). Additionally,
it can be shown that I'r < d.yr, where deys is the
effective dimension of ¢(x1),...,d(x,) € H as defined
in (011 (2020).
In particular, to ensure that MELK correctly identifies
all points that are at least some gap A > h away
from the threshold, then we can choose v so that A >
(v710«] + h)v/Tr. In practice we find that v = 1/T
works well. Finally, the user may additionally set a
tolerance 5 > 0. In this case, we err on the side
of potentially returning extra arms that are not in
G, and show that the returned set R contains all
x such that f(x) > a + B(a) and none such that
fl®) < a— 5 — B(a). If however, a more selective
criteria is desired, the following remark characterizes
the output if G, is returned instead.

Remark. If MELK instead returns R = @t then with
probability at least 1 —0 R 2 {z € X : f(z) =
a+B+B(a)} and andR C {x € X : f(x) > a—B(a)}.

Contrast with Existing Approaches. The exper-
imental design based sampling approach is a departure
from past work on level set estimation. As opposed to
constructing an acquisition function and then bounding
the sample complexity of the resulting algorithm as
past works have done, we instead begin with an oracle
sampling scheme that arises from a lower bound and
attempt to design a practical sampling scheme that
matches it as more data is collected. In what follows,
we compare the guarantees of MELK to the prior art
such as (2013); (2019);

( ). As a technical point, we note that
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these past results are specialized to the Gaussian pro-
cess setting where a prior on f is known. By contrast,
our work makes no assumption of a prior distribution.

( ); ( ) achieve similar
guarantees for the frequentist setting. Ignoring these
technicalities, our results are tighter than what were
previously known.

The past state of the art sample complexities all guar-
antee that algorithms terminate at the smallest time
T satisfying T 2 T'rAmin(a) ™2 up to log factors (cf.
Thm 1 of ( , ), Cor. 3.1 of (

), Thm 1 of ( ,
we run MELK with v = +//T then

), etc.). If

16 -
(@(@)70. —a)?

min B ”(ﬁ(w)ni“())ﬂl)*l
~ xetx ming(op(x)Th, — a)?

min max
AeAx x

S 31—‘TAmin (a) -2

where the final inequality follows from Lemma 2 of
( ) and the definition of A, ().

Remark. Combining the above analysis with the
result of Theorem 3.3 highlights that MELK likewise
terminates at or before a time T satisfying T° =
I7Amin (o) ™2, though it may stop long before this
as the above bound employing I'r is only tight in the
pathological case when |¢(x)7 0, — a| = Apin(a) Ve €
X.

Remark. The lower bounds of

( ); ( ) show that a dependence
Q(y/T'r) is necessary in the worst case for functions liv-
ing in an RKHS. Hence, MELK is instance optimal in
the linear regime by Theorem 3.1 and at least minimax
optimal in general.

4 IMPLICIT LEVEL SET
ESTIMATION

In the implicit level-set problem, for an ¢ > 0 we seek to
identify the set Ge = {x : f(x) > (1 —€)f(z.)}. Note
that unlike the explicit setting where the threshold «
was a given input to the algorithm, now the equivalent
notion of a threshold value « is equal to (1 —€) f(x.),
an unknown quantity since it relies on knowledge of
the unknown function f. A naive strategy would be
to attempt estimate (1 — €)f(x,) directly and then
apply explicit level-set estimation techniques using this
estimated threshold value. Indeed, this is precisely the
strategy of past works ( , ; ,

). Perhaps surprisingly however, it turns out that
estimating the threshold is unnecessary and potentially
wasteful. Towards developing lower bound to guide
an experimental design, we begin with a simple but
powerful observation.

Lemma 4.1. z € Ge < Vo' e X : f(x) > (1 —

e)f(@’). Conversely, x € G¢ <— T’ : f(x) <
(1—e)f(x).
Proof.

x€G. < Az’ : (1—¢)f(z) > f(x)
= ' (1- (@) < f(@)

where the second equivalence holds by definition since
. maximizes (1 — €)f(x’) and we have that f(x) >
(1—¢)f(z.) for any @ € G.. The statement for x € G¢
holds via the negation O

The following corollary specializes the previous lemma
to the well specified case.

Corollary 4.1.1. In the well specified setting where
h =0,

xeG, — V' e X:0] (o(x)— (1 —e€)p(x')) >0
and conversely,

x G — ' 0] (op(x) — (1 -€)p(x') <O.

This lemma highlights that to determine if € G, one
need only check if

0] (p(x) — (1 —e)p(x’)) >0 for all ' € X.

In particular, this does not require any estimate of the
threshold (1 — €)f(x*). Instead, it is only necessary
to maintain estimates of ordered pairs of points (x, x’)
without searching for x, directly. Next, to guide our
algorithm design we look to an information-theoretic
lower bound.

Theorem 4.2. In the well-specified linear setting when
¢(x) = x and f(x) = 0] x, for any § > 0, any algo-
rithm that returns the set G, with probability at least
1 — 6 must satisfy

12
E[Ts] -9 mi lle—(—e)z|y (y)-1
T T A min max § max max
log(1/2.458) = NEA 2eC.x'ex O] (x—(1—e)x’))2
le—(1—e)z' |12 -1
: »\)
max MIN —zv7——F 5
MAX T 0T e (1-0)2))?

where Ty denotes the random stopping time.

Notably, the directions ¢(x) — (1 — €)¢(x’) naturally
arise in the lower bound. This suggests an optimal
sampling distribution A* that achieves the minimum of
the inequality in 4.2. As was the case in explicit level
set estimation, this sampling distribution also depends
on the unknown ..
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4.1 Algorithm

Motivated by the lower bound, we propose Algo-
rithm 2 called MILK (Misspecified Implicit Level set
via Kernelization) which proceeds in phases where we
attempt to progressively match the optimal distribu-
tion from the lower bound as was done by MELK for the
explicit setting. The key difference, however is that
MILK instead computes a design to optimally estimate
0 (¢(z) — (1 —€)p(x’)) rather than 6 ¢(x) as in MELK.
Given active set A C X x X of pairs of arms define,

Y(A) = {¢(z) — (1 - e)p(a') : (w,z) € A}.

The active set in round 1 is initialized as A =X x X.
MILK keeps track of sets Gt C X and Bt C X of arms
it believes to be in G and G¢ and makes use of the
RIPS procedure to robustly estimate means. As the
algorithm proceeds, in each round ¢ an optimal design
is computed over remaining difference vectors in Y¢(A¢)
and the number of samples IV, is sufficient to ensure
that (0. — 0) T (é(x) — (1 — €)p(z'))| < 27t Then
for every arm that has not been added to ét or ]§t,
MILK does the following:

if 3’ 07 (((x) — (1 — e)p(a')) <27

then x is added to Et. In our proof, we show this
condition occurs if and only if there exists a =’ such
that 0, (¢p(x) — (1 — €)¢p(x’)) < 0. If this occurs, all
pairs of the form (&, x’) or (x’,x), ' € X are removed
from A;3. Semantically, if MILK can ensure that x is
not in G, then x is never sampled again. Otherwise,
for any @' if 61 (¢(x) — (1 — €)¢(x') > 27, the single
pair (x, ) is removed from A;. An arm x is only ever
added to Gy if {(z,z'), 2’ € X} N A; = () which occurs
when

va' : 3t such that 6, ((d(x) — (1 — e)p(z')) > 277

In our proof, we show that this occurs if and only if
0] (p(x) — (1 — e)p(x’)) > 0 for all &’ € X which is
both necessary and sufficient by Lemma 4.1. Note that
even if & has been added to G; implying that all pairs
(2, ") have been removed from A;,  may be present in
other pairs (2’, ) which can be necessary to determine
if ' € G.. Finally, the algorithm terminates when
either every arm has been added to either Gt or Bt or
it has reached a round t > log,(1/8) when the desired

tolerance f is achieved.

4.2 Theoretical Guarantees

Next we state MILK’s complexity, again deferring con-
stants and doubly logarithmic factors to the appendix
for readability.

3We assume that pairs are ordered, i.e. (z,2') # (z/, x)
for © # x'.

Algorithm 2 MILK: Misspecified Implicit Level set
via Kernelization

Require: Arms X, ¢, >0, € >0,y > 0, tolerance 5
1t+1,G; —0,B « 0, A « {(z,2),z, ' € X}
2: while |G, U By| < |X| and t < [log,(4/5)] do
3: 5t — 5/2t2
4: Let A\; € Ax minimize g(\; As;y) where

9\ Viy) 1= max flo(@) - (1~ D) %1 (31

o

g+ 16-22"g(A; Ap;v) (B2 +02) log (2| X|?/6)

2

7 Set N; < [max{q:,2log(|X]/d)}]| and sam-

ple z1,---,znN, observing noisy function values
Y1, ,Yn, according to As.
8 0, RIPS(V(A), {AD (\) 7 pl: )i} )
9: for (z,x’') € A; do
10: if 0] (¢(z) — (1 — e)p(x')) < —2- 27" then
11: By
12: x-pairs < {(z,2') and (', x)|z’ € X}
13: Apy1 Ay \ x-pairs
14: else if 0] (¢p(x) — (1 — e)p(x)) > 22
15: Aipq +— A\ {(z,2')}
16: if {(z,z')|’ € X} N A; =0 then
17: Gipr — G U {x}

18: t+—t+1
return R := X \ B;

Theorem 4.3. Fiz § >0, € > 0, tolerance 3, and reg-
ularization v > 0. Define Apin(€) = ming |0, (é(x) —
(1 —€)p(x*))|. Define also

o) = mm{ (V6] + 1) (2+, [ min uwn) < ﬁ},

v0B) =, max 9] (6(a) — (1= ()R-

0] (¢(@)—(1—e)d(x")|<B

With probability 1 — 6, MILK returns a set R at a time
Ts such that

RO{zeX: f(z)>
RC{zxeX:f(z)>

(1= e)f (@) + B(e)} and
(1= e)f (@) — B - Ble)}

> Be)

+0%) (0, )Mo, (Amin(e) v B) " log (15

and for any e, B such that max(Amin(e),B)

Ts <(B?

MILK _ : MILK-G . MILK-G¢
for HMM(G,) = in {HA (0.)V H, (9*)},
where

H—)\MILK»Ge (9*) =

()
max max
2eC. 2'€X max{((¢(x) —

(1= (@) Py ays
(1 - (@) Th.)2 2)

3
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MILK-G?¢

and H, (0,) ==
6(@) — (1= 9d(@)|% 3y

max max

2€Gt = max{((¢(x) — (1 — )d(z.))T6,)2, B2}

The statement of Theorem 4.3 for MILK is similar that
of 3.3 for MELK. In the well specified case when 3 = 0,
MILK returns G, exactly at a time Ts that satisfies

T5 < (B*+0%) H"™(0.) 1ogy(Amin(€)) log (| X¥]07")

In this case, however, H™¥(4,) is a maximum of
two different complexity terms. HﬁILK‘G‘ represents
the complexity of identifying all € G.. Similarly,
HKILK_GE represents the complexity of identifying all
x € G¢. Similar to the explicit setting, in the misspec-
ified case when h > 0, B(e) similarly represents the
limit of how well we can estimate f(x) for any @ € X
and 5 allows for an additional tolerance such that MILK

detects all x for which f(z) > (1 — €)f(x.) + B(e)

and none worse than f(x) < (1 —¢)f(z.) — S(e) — B.
The following remark addresses the setting where MILK
returns G; instead.

Remark: If the algorithm instead returns R = ét,
then with probability at least 1 — ¢

RO{xecX:f(x)>(1-ef(x.)+ B+ Be)} and
RC{zeX: f(z)=(1-of(z.) - Be).

Comparison with the Lower Bound

The complexity term H™(6,) naturally breaks into
two terms. H"-C<(0,) represents the complexity of
finding arms in G and it matches a corresponding term
in the lower bound. H"™¥-G<(4,) represents the com-
plexity of removing arms in G¢ but is slightly different
than the term in the lower bound. As a consequence
of Theorem 4.1 of ( ) however, one
can show the term given in the lower bound for € G¢
is not achievable except asymptotically as § — 0 in
general. Instead, the problem of implicit level set es-
timation reduces to the problem of all e-good arm
identification in multi-armed bandits studied by

( ) when ¢(x) =, h =0, and x; = ¢;. We
show in the appendix that MILK’s sample complexity
matches the optimal finite time rate up to logarithmic
factors as shown in ( ).

Contrast with Existing Results

As was shown in the explicit setting, we can show that
the sample complexity bound in Theorem 4.3 improves
on the current state of the art. Take v =~+'/T for any
7" € R. Then we may bound H"¥=C<(4,) as

I {w(w)<1e>¢<m'>||?4<w>(x)_1 }

zedx wa' | (o) — (1 —e)p(a'))T6.)?

@, { (1 - 2lé(@) — d(@)|2 5,
= S (@) — 1= e(@)T0.)?
S @ }
(6(@) — (1 - Oo(a))T6.)?

® (1+e?
< 4y min max {[[6(@) = 6(@)[% 00

min(€)2 NNy z,x’
VI6(@) a0 }

8(1 4+ 5)2 )
S A ()F 2in max () [ 3y
Q120+

r
o Amin(e)2 r

where (a) follows by the triangle inequality, (b) by
definition of A, (€) and (¢) follows by Lemma 2 of

). A similar computation follows
for H"=G<(9,) Hence, MILK is at most O(T'rA_2)

min
though it can be much tighter as inequality (b) is tight
only in the worst case when all gaps are equal. In
particular, the result of Theorem 4.3 is tighter than

Theorem 2 of ( ).

5 EXPERIMENTS

In this section, we compare our algorithms to existing
baselines in the literature. Additional details of these
methods and our experiments are in the Appendix.

Warm-Up: Optimal Sampling. In Figure 1 we il-
lustrate the sampling behavior of MELK. We let X =
{(35:45)}3%_, and considered the squared exponential
kernel k(z,x') = exp(—|lx — ’||?/2¢?) with parame-
ter £ = 0.1. We also chose 6, ~ N (0, Iggo) and show
a contour plot of f(x) = 6] ¢(x). The black curve
represents the boundary of the a = 0 level set. We
plot the sample allocations as the algorithm progresses
(taking v = 0). The initial distribution is mostly uni-
form with several sampling modes. In later rounds, the
points nearest to the boundary of the level set, given
by the black curve are sampled, and eventually, only
the points with the smallest gaps (the most difficult
regions) receive samples. As the number of samples
in round ¢ is proportional to 2%, we compute the sum
of the designs weighted by the 2% to show the overall
sampling design. Additionally, we plot the asymp-
totic allocation suggested by Theorem 3.1, namely
A, = argminy maxeex [6(2)[30 1/ (0] 6(@) — )2
In particular, the weighted sum of the designs taken
by MELK is nearly identical to \..

Gaussian Process Level Set Estimation. For our
main empirical evaluation, we focused on the Gaussian
Process setting for the explicit level set problem. In
the explicit level-set case we compare to LSE ( ,
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Figure 1: Allocations across rounds for a function f(x,y) with a threshold of o = 0 shown in black.
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Figure 2: Performance of MELK and MILK versus Gaus-
sian process baseline.

2013) and TruVar (Bogunovic et al., 2016). We drew
a function f : [0,1] — R from the Gauss1an process
N(0, k(x, ') where the kernel is a squared exponential
kernel with parameter ¢ = .05 and [0, 1] was uniformly
discretized into 200 points. We assumed that the noise
variance was 02 = 1 (high noise) and the threshold was
chosen so that 10% of the function values were above
it. In this setting, we implement a batched version
of MELK that draws a fixed batch size of samples each
round (namely 10) and then recomputes the design.
This reflects the practical constraint that experimenters
may wish to collect a fixed number of samples at a
time rather than a potentially growing amount. To
provide a fair comparison to the GP-based methods,
we computed a posterior distribution on f in each
round. For each point we replaced our theoretically
justified confidence intervals in the RKHS setting with
confidence intervals arising from the posterior, namely
fie(x) = B/26,(x) where fi;, 5, are the posterior mean
and standard deviations respectively. As in past works,
we take $/2 = 3 as theoretically justified choices of
B (eg. Theorem 1 of (Srinivas et al., 2009)) tend to
be overly conservative. We also took v dropping like
1/i on the i-th round we computed the design. We
ran 25 repetitions drawing a new choice of f each run.
Figure 2b shows the average F'1 score of the set of
points each algorithm declares to be in G, respectively
with bars denoting 1 standard error. Our algorithm
performs very similarly to TruVar - an algorithm whose
acquisition function samples in a way to reduce the
average variance, unlike our method which tries to
reduce the maximum variance.

Our second comparison is in Figure 2¢: we took f(z) =
cos(8rx), £ = .1, 0 = .2 (low noise regime) and chose
the threshold so that 30% of points were above it. We

then considered 700 points uniformly in [0, 1]. In the
appendix, we vary the underlying parameters of ¢, o2
to demonstrate the performance of these algorithms in
different regimes.

Linear Implicit Case. We additionally compare
against LSE-imp in the linear setting where ¢(x) = x
on a benchmark example from the linear bandits lit-
erature designed to test the effectiveness of adap-
tive sampling algorithms (Soare et al., 2014). For
1, , L, € RY we take 1 = ¢, = 9* = ¢; and
Ty = ey. The remaining xj, - ,x, are set so that
their first two coordinates are cos(m/4(1 + £))e; and
sin(m/4(1 4 &))eq for £ ~ Unif(—.2,.2). We set the
threshold o = 0.5, n = 100, and d = 25. Though
it is far below «, sampling arm x5 provides the most
information about which arms exceed the threshold.
In this setting, we ran both algorithms with the ex-
act confidence intervals as specified by their respective
theoretical guarantees leading to large sample complex-
ities, and we include further details in the appendix.
Indeed, we see in 2a that MILK outperforms LSE-imp.

6 CONCLUSION

In this work, we provide the first instance optimal
algorithms for explicit and implicit level set estimation
and provide theoretical and empirical justification for
our algorithms. In Appendix A we further explore the
potential impacts and limitations of this work.
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A Impacts and Limitations

Active learning uses a design objective to drive a sampling policy. In the simplest cases of active learning, such
as regret minimization in standard multiarmed bandits, the relatively simple and unstructured setting leads to
simple and easy to interpret sampling rules. For instance, the famed UCB algorithm simply forms confidence
widths and pulls the arm with the largest upper bound. The transparency of this sampling rule makes UCB and
algorithms like it inherently easy to diagnose and monitor in real time. For past algorithms in level set estimation,
the acquisition functions merit easy oversight. By contrast, our work introduces optimal design to the area of
level set estimation. As we show in our work, this can lead to improved sample complexity both theoretically
and empirically. However, as the sampling distributions are based on a more complicated objective, how the
algorithm chooses which data to collect is less immediately obvious or intuitive. This may make detecting issues
such as biased sampling harder to detect and guard against, and for any large scale use of these algorithms in the
wild, special care should be given to understand which points are being sampled the most and why. Furthermore,
a common issue for many active learning approaches, this work included, is the possibility of model mismatch for
any assumptions made in the theoretical analysis. While this work removes the need for an assumed prior over
the true function f, other assumptions are still needed for the analysis, such as the function f not varying in
time. If these assumptions are violated, the claims herein need not be true.

Any assumption made in this paper may reasonably be considered a limitation on the work depending on the
application domain, though we hope that analytical assumptions may be easily modified to alter the algorithms to
the practitioner’s needs. This is true, for instance in the case of all confidence widths we use. Another limitation of
this work is computational complexity. The RIPS procedure necessary to compute estimates of individual function
values relies on a robust estimator for each © € X. In this work, we leverage the Catoni estimator. While this is
efficient for individual x’s, as we observed in our experiments, if the set X is large, this can become cumbersome.
Additionally, how to best optimize the experimental design objectives is an active area of research and must be
done carefully. Finally, our algorithms both suffer potentially bad logarithmic terms in the per-round sample
complexity, and this can affect the real-world performance of MELK and MILK. The technique of (
) ) may be able to avoid this.

B Summary of Gaussian Processes Approaches for Level Set Estimation

In Table 2, we briefly summarize past algorithmic approaches to level set estimation. In general, past methods
center around the design of an acquisition function which at each time ¢ tells the algorithm which point to go
sample. By contrast, the algorithms in this paper both use experimental design to to select batches of samples to
go gather at one time.

| Algorithm | Acquisition Function | Theoretical guarantee
Straddle argmax; u;(t) — 7 AT — £;(t) None, u;(t) and ¢;(t) are set as 1.96 - o;_;.
LSE argmax; u;(t) — 7 AT — {;(t) n-approximate solution in 7" < 2iee(n/d)
TruVar arg min,, sz U?—lm (x;) n-approximate solution in 7' < %ﬁf‘/‘”
RMILE arg max{E Z(]P’G plz;(f(z;) > 7) can be shown to be similar to A-optimality, no complexity guarantee
~Pap(f(z;) > 7)), 0%(2:)}
MELK G-optimal design Matching upper and lower bounds in the linear case.

Table 1: Algorithms and theoretical guarantees for explicit LSE

| Algorithm | Acquisition function | Theoretical guarantee
LSE-imp arg max; o2 (z;) n-approximate solution in T < [t1og(n/%)
MILK XY optimal design over vectors ¢(z) — (1 — €)¢(2’) Upper bounds and matching lower for certain cases.

Table 2: Acquisition functions and theoretical guarantees for implicit level set estimation
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C Robust estimators for function means

In order for the algorithm to declare whether points @ belong in G,, (or G in the sequel) or not, we require an
estimator of the function values f(x). As we have introduced structure by assuming that f is well approximated
by a function 6, in the RKHS H, we seek an estimator that leverages this structure to provide accurate estimates
of many arms given samples of only a few. As a warmup, in the linear case where ¢(-) is the identity map, one
could form the least squares or regularized least squares estimate of 6, denoted 9 and estimate the mean of any
point x as 07z. To sample to estimate 6, optimal design procedures first compute a design A € Ay. Then for a
specified number of samples N, it is common to use an efficient rounding procedure such as (

) to compute an allocation of the N samples to the arms X such that x; gets roughly \; - N samples (

, ; , ). Efficient rounding procedures require that N = Q(d), and while this is a minor
assumption in the case of a linear RKHS where ¢(x) = x, in general ¢(x) may be infinite dimensional, and naive
rounding is not possible. Instead of performing rounding given design A, one may instead sample from A directly
and use inverse propensity scoring (IPS) which avoids bad dimensional factors but can have high variance.

)

In this work, we leverage the RIPS estimator from ( , ) which combines IPS with robust
mean estimation and regularization to control variance and is presented in Algorithm 3. RIPS requires a robust
mean estimator for its performance and theoretical guarantees. In Theorem 3.2, we state the guarantee of this
estimator.

Algorithm 3 RIPS: Robust IPS estimator

Require: Finite sets X C R? and V C H, feature map ¢ : R* — H, number of samples 7, regularization v > 0,
robust mean estimator i : R* — R

A= e i 1 o)
1: Randomly draw z1,...,Z, from X according to \*
2: Set W) = i({v T AV (N) "1 o(T0)9e } 1)

~ . /] — (v)
return 0 := arg ming max,cy Wiwl
(A(W)(A))71

We next state the complete theoretical guarantee of the RIPS estimator.

Theorem C.1 (Theorem 1, ( , )). Consider the model y = (p(x),0*)y + Cz +n for mis-
specification |(z| < h where it is assumed that |y| < B, E[n] = 0, and E[n?] < o%. Fiz any finite sets X C R?
and V C H, feature map ¢ : R* — H, number of samples T and regularization v > 0. If the RIPS procedure of
Algorithm 3 is run with ﬁ-mbust mean estimator [i(-) and if T > ¢1log(|V|/d) then with probability at least 1 — 4,
we have

@) _ (g
maxu <A + R
veY ||/U||(A(’Y)()\))71

+ oy ZE 10g(2]v)/0)
Moreover, W) = i({v T A (N)~1p(x:)y: }7_,) can be replaced by <§,v> by multiplying the RHS by a factor of 2.
For RIPS, we leverage Catoni’s estimator ( , ) for which ¢; = 2 and ¢ = 4 suffice.
D Proofs for Explicit Level Set Estimation

D.1 Lower Bound

Proof of Theorem 3.1. Recall that we have assumed that i = 0 and ¢(x) = . We begin with a result of (
, ) that will be useful here.
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Lemma D.1 (( , ), Remark 2). The projection onto the closure of the set {§ € R? : Tz < o}
under the || - || acx) norm is given by
T, A -1
6, =g (6* = 024) Nt
||5'3||A(>\)—1
By ( , ), we have that the any 6-PAC algorithm for all-« requires
, KL(1-4,9)
min

X mingeao,) 107 — Oullacn

where Alt(0,) is the set of alternates such that G, (0.) # G, (0') for any 6’ € Alt(0,). The set of alternates may
be decomposed as

Alt(6,) = U #:z¢c.0)})]u U {0:zecGa0)}

r€Go(04) r€Ga(04)°

Note that ¢ € G, (6.) <= 60Tz > a. Hence, the set of alternates for any & € G, (0.) such that = € G¢(¢') for
any 6’ € Alt(6,) is given by

Ay :={0 eR?: 0Tz < a}.
Next note that € G¢(0.) <= 6Tz < . Hence, for any & € G<,(0.) the set of alternates such that € G,(6")
for any 6’ € Alt(0,) is given by

Ay ={0eR?: 0Tz > a}.
Next, we discuss how to project onto A,. As this set is open, to be precise, we should take a point in the interior

and consider the limit for a sequence approaching the boundary. For brevity, we simply project onto the closure
and consider the closures of the A, sets. Using the decomposition of Alt(6,) we have that

. / _ . . /_ — . . . /_
g min, 07— 0ullacy = min min [}0" =0 flacy = (_wmin  min min 167 = 6. a0y-

For x € G4(0.), using Lemma D.1 and recalling the definition of the set 6, therein,

in || — 6, = i 6" — 0, = |0z — 0. .
91,21/{12 | oy 9/6{96{15{2%@} | lapy =l oy

The statement for points in G¢, follows identically. Hence,

min ”9/79*HA(A) :leinnem*@*HA()\)

0’ €AIL(0.)
Note that 07 (& ) 2
0, (¥ —x) — «
[0z — Oullacn) = —
i T P
by Theorem 2 of ( , ). Hence, any 6-PAC algorithm requires at least
. ||w||,24(,\)71
samples in expectation. Noting that the binary entropy KL(1 — §,4) > log(1/2.4) completes the proof. O

D.2 Upper Bound

Next, we restate Theorem 3.3 that bounds the complexity of MELK.

Theorem D.2. Fiz § > 0, threshold o > 0, tolerance 3, and regularization v > 0. Define Apin(@) =
min |¢(x)T 0, — a|. Define also

Bla) = min{B > 0: 4(y7[[0.] + h)(2 + \/f(% {o(@)|z € X, [p(x)T0. — af < B}37)) < B}
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With probability at least 1 — 8, MELK returns a set R = (X \ By) at time Ts such that
{zed:f@)>a+p@} CRC{zeX: f(@)>a—F-H)}

and for any a, B such that max(Amin (@), B) > B(a)

1@ Eacyinn o <4|X|2ﬂog2<4<Amm<a> v 5)‘112>

To < 265" 07 O el (0(@) 8, — ). 7] 9
+2108(1¥1/8) Noga (4(Auin(e) V F) '

Recall the definition of the set G, := {x € X : f(x) > a}.
Lemma D.3. For any V C X define f(X,V;7) = minyea, MaXyey HUH?ZIGX Ae () () T4y T)—1"
In each round t, define the event

& = {|&T (0 — 0.)] <271 + (VA0 + ) V(X Asy) ¥V € A}

Holds P(U;2, &) < 6.

Proof. Using Theorem 3.2, for any = € A; we have that with probability at least 1 — §;/|X|?

7@~ 001 < s, s ony+ (VIO 4 /B oot )
< VA (VA0 + b+ 27 VT &)

<27 4 (0. + h) VX A7)

Since |A;| < |X|2, & holds for all € A; with probability 1 — §; via a union bound. Taking a second union bound

over rounds, we have that
P(Ust) <3oren <3 a-3 o <o
t=1 t=1

Define

£ = max{t : (V.12 + B)(2 +/F(X (@ € X 070, — a] <2742} ;7)) < 27},
As we will see in Lemmas D.6 and D.7,
A, c{zeXx:|z"0, —a| <271},
Thus for ¢ < ¢, holds on ), & that
Vo e A, 270, —0,)) <2-27"
Lemma D.4. On (), &, when t <t holds Gy cG?:={z : ¢(x)70, > a}.
Remark: If h =0, G% = G,.

Proof.
reG = W<t ¢@) by >a+2-27"
= 3 <t : ¢@) Oy —0.)+ox)T0, >a+2-27"

2 6(@)70. > o

— xcG?.



Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Lemma D.5. On (), &, when t <t holds, By C (G?)°.

Proof.

reB, AW <t: ¢x)fh<a—2-27"
W<t d@)T O —0,)+dx) 0, <a—2-27"
Q.8 o(x)10, <
— zc(G%)".

O
Lemma D.6. On the event (), &, when t <t holds,
ANGY C {x € G¢lp(x)T0, —al < 2—t+2} =: §tbove
Proof. For any x € G% such that ¢(x)70, > a + 2711 if t > log(4(a — ¢(x)T0.)"1) and t < £, then
o(@) 0, = (@) (0, — 0.) + p(x)"0. > 27 pa 27 —a>a
which implies that x € @t. Noting that A; N @t,l = () completes the proof. O
Lemma D.7. On the event (), &, when t <t holds,
AN (G2 C {m € (G)C||p(x)T0, — a| < 2t+2} = §pelow
Proof. The proof follows identically as that of Lemma D.6 O

Remark: Lemmas D.6 and D.7 jointly imply that A; C {w|¢5(m)T9* —al < 2*”2} =: &, for t < t. Furthermore,
f(X>At7’7) S f(X7Sta’Y)

Remark:
The algorithm stops on either of two conditions. On one hand if ¢ > Hog2 (4/B)] = : tg, then it has achieved

precision ﬁ as desired and it terminates. Otherwise, it terminates if Gt U Bt X. This occurs when B is very
small. Define A, (@) := min |¢(z)T0, — a|. Recall

t=max{t : (v7]l0«[l2 + h)(2+ \/f(/"(,{ﬂ'3 EX:|p(x)T0. —al <4-271};9)) <277}

= max{t : 4(/F10ull2 + W)@+ \/F(X, (@ € X : [6(@) T, —a] <4-2-1}17)) <4-27

= 2+ max{t : (70l + B2 + /(X {z € X : |p()Th. — o] <271};7)) <27

= 3~ logy (min{B > 0: 4(/7]|0ul2 + W)@+ \/F(X, {z € X : |p(@)T0. — o] < B}:7)) < B)).

This defines

B =min{f > 0:4(\/7||0]]2 + 2)(2 + \/f(X, {xeX:|p(x)T0, —al <B};v) < B}

Let t,ax denote the random VariAable of the last round before the algorithm terminates. The following Lemmas
give a guarantee on the set X'\ B; at termination.

Lemma D.8. On the event (\,=, &, MELK returns a set (X\By,.) such that {x : f(z) > a+B(a)} C (X\By,..).
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Proof. Take any x such that f(x) > a + B(a) and recall that by assumption |f(z) — ¢(x)T60.| < h for all x € X.
We consider two cases. In the first case, assume that ¢, < t. We claim that in this case At such that x € B;.
We prove this by contradiction. Assume not. Then 3t such that

0f p(x) < a— 27" = o) (0 — 0.) + p(x) 70, < a — 27"
Lt 97— (A0 + h) VX A + o) 70, < o — 270
= 27" — (V18] + ) VX, Si57) + pla) 70, < o — 271
= — (VA0 + R) VI Si7) + f(m) —h < a—27"

= (@) <a—27" +h+ (A0 +h) VX, S 7).

Recalling that we have assumed that f(x) > o + B(a). Hence, this implies that
Bla) < =275+ h (VAll6.] + h)  F(X, 8557).

Note that 3(a) > 0. As we have assumed that, ¢ < tmax < £, we have that 27 > (\A]|6. + k) \/f(X, S5 7)
using the definition of . Hence, we have that

h > B(a) > 4h
which is a contradiction where the final inequality follows from the definition of 3(a) for v > 0. Hence, in this
case we have shown that {x : f(z) > a+ B(a)} C (X \ By,...)-
In the second case, assume that tyay > £ and take @ such that f(x) > a+ S(a). We claim that « € G and hence

x & A; for any t > t and thus is never added to B,. This occurs if

$(@) 0 > a+ 27 = @) (0; — 0.) + ()70, > a+ 27!
Ex

E& 27 = (All6.] + 1) VX, A5 ) + d(®) "0, > a+ 27
= =270 — (A0 + B) VF(X,S57) + b(x) 70 > a + 27T
= ¢@) 70, > a+ 27 278 L (A6 + 1) VX, S5 )

Recall that f(x) > a + B(a). Furthermore, we have by the definition of # that

T2 (VA8 + ) V(X S5

Hence, the above is implied by f(a) — h > 4 -2~ = 0.53(a) where the final equality holds by definition of 3(c).
Noting that S(«) > 4h proves this claim. In summary, we have shown that for “any @ such that f () > a+ B(a),
if tnax < 1, then x is never added to Bt and hence is contained in the set X"\ Bt at termination, and if otherwise
that tmax > t, then x is added to the set Gt before round ¢ + 1 and hence is removed from the active set and
never added to B;. Applying this argument to any z such that f (x) > a + B(a) completes the proof. O
Lemma D.9. On the event (2, &, MELK returns a set (X '\ Etmax) such that (X '\ gtmax) CH{x: f(x) >

o — B(a) — B}

Proof. Take any x such that f(x) < a — B(a) — E We claim that there exists a t < t,,,x such that x is added to
B; which implies that ¢ (X \ B; Suppose for contradiction that this is not the case. Then for all ¢t < t,ay,

max )
07 p(x) > o — 27 = ¢(x)T(6; — 6,) + d(x)70, > o — 27+

£ 27 4 (ANl + 1) VT A7) + ()70, > a — 27t
= 27+ (VA0 + h) VF (X, Si57) + 6(x) 0. > a — 27

= (VO] + h) VX, Si57) + fm) +h > a— 271+ — 27
— flx)>a—2""1 =27t h— (A]l0.] + h) V(X Si9).
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Plugging in f(z) < a — B(a) — 8, the above implies
Bla)+B <2 427" + ht (ANl + h) VF (X, Si:7) (3)

Next, recall that MELK terminates either on the condition that ¢ = [log,(4/3)] or that Gy U B; = X. Using this,
we brake our analysis into cases.
Case 1: tyay = [logy(4/8)] <.
In this case, MELK stops due to the B tolerance in a round before . For t < ¢, we have that 27! >
+ (VAl0]l + B) \/f(X,Si;7). Hence, the above implies that

Bla)+ B <272 4 h.
As we have assumed this condition for all ¢ < t;,.x, we may plug in tyax which implies

B(a)+B < B+ h.

As (a) > h, this is a contradiction. Hence there must exist a ¢ such that x € B,.

Case 2: tmayx < T < [logy(4/5)].

In this case, MELK terminates before round t = [log,(4//3)]. Hence, it does so on the condition that G, U B, = X.
Note that for f(x) < a — f(a) — 3, we have that & € (G2)° since () > h and § > 0. If we terminate before
round £, we have by Lemma D.5 that (G%)¢ C B, which implies that « € B,
that At :x € Et.

. This contradicts the assumption

max

Case 3: t < tmax-

In this case, MELK terminates at a round after ¢. In this setting, we argue that x € Eg. Recall that for any ¢ < t,
(3) simplifies to

Bla)+ 5 <272+ h

Plugging in #, and noting that 2772 = 1 3(a), the above implies

Bla) + B < 5 B(a) + h.

DN | =

Noting that B(«) > 4h, shows that the above is a contradiction. Hence, there exists a t < t such that x € B,.

Therefore, in all cases we have shown that for any @ such that f(z) < a — 3(a) — 3, @ € B;. Therefore, for the

returned set X"\ B, we have that

(X\ By,.,) C{z: f(z) > a - Bla) - B}.
0

Proof of Theorem 3.3. Throughout, assume the high probability event ();&. By Lemmas D.8 and D.9
in conjunction with the high probability event (& we have correctness. It remains to control the
sample complexity of MELK. Recall that we have assumed that max(Apin(c),3) > B(a). This implies

that min{[logy(4/Amin()], [logy(4/8)]} < ¢ Applying Lemmas D.6 and D.7, we have that fmax <

min{[log,(4/Amin(a)], [logy(4/68)]} < t and that A, C S, for all rounds t. Now we proceed by bounding
the total number of samples drawn.

tmax

T < ZNt
t=1
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min{t>[logy (4/ Amin(a))],t>[log, (4/5)1}

< Ny
-1

Mog (4(Amin (@)VB) ]

= Z max {1 log(\X|/5)76222tf(¢4t;’y)(32+02)log(2t2|X\2/5)}
t=1
~ Mloga (4(Amin ()V5) ']
< c1log(|X|/8) NNogy (4(Amin(a) V B) ™1 + (B® + 0?) 2% [(As;) - log (262X /)
t=1

= ¢ 1og(|X|/0)[10gy (4(Amin (@) V B) 1]+
[ogs (4(Amin (@)VA) ™1

2 2 2 2t . 2 2 2
B P o -log(262|X
(B +07) 2 in max 2l @yoce)oce )t 08 IX/0)

< ¢1 log(|X|/8) [ogy (4(Amin (@) V B) 1+

A(B? + 0?)log <4X|2ﬂogz(4(A§nn(a) v 6)‘112>

1085 (4(Aumin (@) VE) 1]
22t : 2 B
2 22 2 s, oo

A C

2% 1 108(1¢1/6) logy(4(Amin(0) v B) 11+

A(B? + %) log <4X|2flog2<4<A;in<a> v m—lP)

[logs (4(Amin (a)\/ﬁ) - 1]
22 min max ||z||?

p xehyzeS, | (Tacx M@ b(@)p(@)T+71)

It remains to control the final summation. To do so, note that

1 Mog, (4(Amin () VB) 1]

— 22" min max ||| —1
[l0g, (4(Ain(@) v 5) 1] 2 8 2 ernoterr o)
< max min 2% min max |||

T i< logy (A Amm(@)VE) - 1] AEAY | A€Ax €S, | (Sacx M(@)(@)(@)T+1T) "

< min max 22" min max ||z||? _
€A 1<[logy ((Amin(a)VB) 1] A€AX ZES: | ”(Emex A(@)9(@)¢(@)T+71)

()7 )b ()b ( -
< 16 min max (Egex Me(@)o(@)dl )Tj’ﬂ) i
NeAx = max{(¢(x)70, — a)?, 32}

Plugging this along with ¢ = 4 and ¢; = 2 for Theorem C.1 from RIPS with the Catoni estimator in completes
the proof. O

E Proofs for Implicit Level Set Estimation

E.1 Lower Bounds

Proof of Theorem 4.2. Recall that in this setting, h = 0 and ¢(x) = . By ( , ), we have
that the any §-PAC algorithm for all-e requires
i KL(1-4,9)
min —, -
A minNg’ c Alt(6..) |9 — Q*HA(A)
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where Alt(6,) is the set of alternates such that G(0.) # G.(0') for any 6’ € Alt(6.). The set of alternates may
be decomposed as

Alt(6,) = U {0:z¢G0)}|u U {#:zec(0)}

zE€G(04) zE€G(0.)°

By Lemma 4.1, ¢ € G, <= Vz': 07 (x — (1 — €)z’) > 0. Hence, the set of alternates for any x € G(f,) such
that @ € G¢(0') for any 0’ € Alt(6,) is given by

Ay = U {0 eR?: 0T (x — (1 — €)x’) < 0}.
x'eX
Furthermore, by Lemma 4.1 x € G¢ += 3z’ : 01 (z — (1 — €)x’) < 0. Hence, for any z € G¢(0,) the set of
alternates such that © € G(¢') for any 6’ € Alt(6..) is given by
Ay = ﬂ {0 eR?: 0T (x — (1 — €)x’) > 0}.
x'eX

Next, we discuss how to project onto A,. As this set is open, to be precise, we should take a point in the interior
and consider the limit for a sequence approaching the boundary. For brevity, we simply project onto the closure
and consider the closures of the A, sets. Using the decomposition of Alt(6,) we have that

. / _ . . /_ — . . . /_
ity 10 Oellaon =g i 107 = Ol = gty B3 1= Oellacy-

Reminiscent of Lemma D.1, we define

ANz~ (1 - ga'))

o X =0 = (@ = (L= 9= G,
A)-1

For € G¢(0.), using Lemma D.1,

min ||9/ — Q*HA(A) =

i 0 — 0. = min ||0, . (A) — 0.
0'€Ag 0’EUw/EX{GGRdr:%ITH(mf(lfe)m/)<O} || HA()\) Hil/l’l” z ( ) HA(A)

where the latter equality follows since projecting onto a union of hyperplanes is achieved by the projection onto
the closest constituent.

For € G¢(0.) note that A, is an intersection of half spaces {# € R?: 07 (z — (1 — €)x) > 0} for 2’ € X. As
it is not in general possible to give a closed form expression for projection onto an intersection of convex sets.
However, we may at a (possibly very loose) minimum note that the projection onto the union of the hyperplanes
is at least as far as the projection onto the furthest hyperplane. Therefore, for any & € G(6.)¢,

in ||6" — 6. = i ' — 0. < 0 2 (N) — 0O
Py | acy 0’eﬂm/ex{GeRdI:%lTn(mf(lfe)zc’)>0} I lao < mm@XH 22 (A) A

Hence we have that

pin, 19 = 6 Lacy < min { i i 65,00 (3) = 6 Lacy iy 1 5,00 (8) ~ . Lacy }-

0/ EALL(0,)
Note that (o7 ( )2
r—(1—¢x
165 2 (A) = Oullagy) = 27
N e = (1= 022 )
by Theorem 2 of ( , ). Hence, any 6-PAC algorithm requires

_ le — (1 - Oa'|I3 - e (1 - 0|
Qminmax{fﬁ%%fnfx 0T — (1= ow))? w28 W 0T — (1 —ow))e [ HI 700

samples in expectation. Noting that K L(1 — §,d) > log(1/2.45) completes the proof. O
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E.2 Comparison to the lower bound of ( , )

Here, we compare the sample complexity given in Theorem 4.3 to the result of Mason et al., ( ,
studying the problem of finding all e-good arms in multi-armed bandits. Our setting captures this problem in the
special case that ¢(x) =, ¢; =¢; € RI¥l, h =0, and 3 = 0. Additionally, take 4 — 0. For consistency with the
notation of ( , ), let p; = f(x;) and |X| = n. In this setting, the problem of implicit level set
estimation reduces to identifying the set {i : y; > (1 — €)u1 } where we assume without loss of generality that the
means are sorted in descending order such that p; > ps > -+ > .

Lemma E.1. The term H"¥(0,) = cH(sr)> for a constant ¢ where H gy is the complexity parameter of the
(ST)? algorithm from ( , .

In particular, ( , ) show in Theorem 4.1 that a complexity of Hgr)2 is optimal up to logarithmic
factors for any fixed § via a moderate confidence bound. This exceeds the lower bound given in Theorem 4.2
specialized to this case. In particular, this highlights that the lower bound given in Theorem 4.2 is not achievable
except possibly as 6 — 0. Instead, we show that MILK achieves the optimal non-asymptotic sample complexity for
finding all e-good arms.

Proof of Lemma E.1. First, we recall some notation from ( , ) necessary for this lemma. Let
& = minjeg, i — (1 — €)py and let B = min;ege (1 — €)1 — p;. For brevity, we let k& = argmin;eq, p1; and
k +1 = argmax;ege 1; where we take n > k. If this condition does not hold the same argument as below suffices

Meg1 Be
and 5§+ = p; — 57=. Furthermore, ( ,

Qe
1—e

ignoring all terms in G¢. Hence we have that {% = u; +
) restrict to the case of € € [1/2,1).

We begin by lower bounding the complexity parameter HM!¥ (6, ). We analyze the two terms given in Theorem 4.3,
"KL and HMIUK2 separately. HY'K! reduces to

||€j*6i|‘?4(/\)—1 1/>\z+1//\]

max max = ImaxX max
ei€Ge e (i — (L—€)py)®  eicGe e (i — (1 —€)p;)?

1/ 1/) }

> max { max , max —

ei€Ge (i — (L=€)p1)? ey (27 — py)?

1/ 1/\; }

= max { max 5, Tax < 5
ei€Ce (1 —pi — €)% e (1 + = )
where the final step follows by the definition of &.. The penultimate step follows by first maximizing over i € G,
which introduces a factor of jz. Then we may multiply the denominator by (1 — €)?/(1 — ¢)? and upper bound
(1 —¢€)? <0.25 < 1 since € > 1/2 to achieve the result.

H"™X2 reduces to
”ej _eiH‘%&()\)*l 1/)\i+1/)\j
maX. max 2 = maX. max - B)
cieGe e (L—€ur —ps)?  eieGe e (1= €)1 — )
N { 1/ ny }
max max , InmaXx max
- ei€Ge ((L—€)ur — pg)? eicGe e ((1—€)pa — pi)?

{ 1/\ 1/ }
> max { max 5, max 5
eicGe (L—€)ur — ps)? " ei (1= €)pr — pr+1)
1/ 1/
> max { max , max -
{@EG? (L =Opr —pi)?" es (1 — H=2)?
iny 1/\;
TN T (o — w2 T - 2
e e ’ ((Ml - 15_:) - Hl)
1/ 1/
= max maéc @© )/)\1 )Q,max ~//\j 2
e €Ge — € — M €j
e (e ) o)
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1/ 1/,
) )
Be

1
where the final step follows since pu1 + 7= > p;Vi and p; < pq. The third inequality follows by the same approach
as taken for H™™! of multiplying the denominator by (1 —¢)?/(1 — ¢€)?.

> max { max , max
- eicGe ((1— €)1 — pi)® e ((“1 +

Hence, we have that

1

1 1
H(6.) > min max max Lh , n )
A A ((1 - e)lul - ,u’i)2 (,u’l + 10156 - #1)2 (Hl —+ 1_: — /1,2)2

Solving for \ gives

1 1 1
) & ’ 3 =a- H ST)?
L—e)p — pi)? (1 + T i)? (1 + 16; — pi)? o

H(,) > Zmax {q

for a constant c;. To upper bound HM(0,), we may choose a specific A. Choosing

max{((1 — €)p1 — ps) 72, (1 + 2= — pa) 72, (un + £25 — )72}

3 max{((1 — ) — 1)~ (1 + 2 — )2, (o + = — 113)-2}

)\ii

a similar computation shows that H"™(6,) < caHgr) for a constant c;. O

E.3 Upper Bound

First we restate Theorem 4.3 bounding the sample complexity of MILK.

Theorem E.2. Fiz 6 > 0, threshold o« > 0, tolerance E, and regularization v > 0. Define the quantities
Afbeve(€) = mingeg, ming: 0, (¢(x) — (1—€)p(a’)) and AJEY(€) = mingege maxy . (p(w)—(1-e)6(2') 7o, <0 (A(X) —
(1—€e)¢(x)"0,, and Apin = min { ALV (e), ABelow(e)}. Define also

min min

B(e) = min{B > 0: 4(\/10.] + 7)(2 + \/f(X, {y € V(X x X):|yT0. < B};v) < B}
With probability 1 — 8, MILK returns a set R = (X \ By) at a time Ty such that

{geX:f@)>1-ef(@)+B}CRC{meX: f(x) > (1-o)f(@.)— 5 — Ble)}
and for any o, B such that max(Amin(€), 8) > B(e)

4XF%&WAm@V®1W>+m%<M

Ts <256(B? + o%)H"™*(9,) log ( 5 5) Mogs (4(Amin(€) V 5)™H)]

for a sufficiently large constant ¢ where H*™¥(6,) = minyea , max {HH1(9,), HI2(9,)} and

d(x) — (1 —e)p(x)|? 1
Hﬁ\”““(@*):: MAX max H ( ) ( ) ( )H(A(A)—‘r'y])

=eCe @' €X max{((¢(@) — (1 - e)g(@')) T6.)2, 52}

o(x) — (1 —e)p(z)|? .
H/I\HLKZ(Q*) — max max || ( ) ( ) ( )H(A()\)Jr'yf)

=€t @ max{((¢(@) - (1 - €)(@.))T0.)%, 52}

Now we show a high probability concentration result that we will use for the remainder of this section.
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Lemma E.3. For any V C V(X x X) define f(X,V;v) = minyea , Maxyep ||'v||%Z
In each round t, define the event

& ={ly" (B — 0.) < 27" + (VA0 + h) VI (X, Y (V(A));7) ¥ y € V (A}

sex Aad(@)o(z) THyI) 7L

Holds P(U;2, &) < 6.

Proof. Using Theorem 3.2, for any y € Y*(A;) we have that with probability at least 1 — &;/|X|?

T o~ BZ+O_2
Y™ O = 0= WYll(s,_ ras@s@riar) (ﬁe*u tht C\/(Ni) 10g(2t2X|2/6)>

< VIX AN (VA +h+27 /IR V(A7)
<27+ (VAN + B) VX VA A)

Since |V<(A;)| < |X|?, & holds for all y € Y(A;) with probability 1 — §; via a union bound. Taking a second
union bound over rounds, we have that

P( 55) <Y RE) Y=Y oy <
t=1 t=1

= t=1 t=1
0
Define
t =max{t: (y7]0.[]2 + h)(2+ \/f(X, {y € V(X x X) 1 [yT0.| <2742} ;7)) <277}
As we will see in Lemmas E.6 and E.7,
V(A) C{y e V(X x X): [0, <277
Thus for ¢ < ¢, holds on ), & that
Yy € V(A , ly" (0, —0.)] < 227"
Lemma E.4. On (), &, when t < holds G, C G¢ := {x : (¢p(x) — (1 —)p(x'))T0, >0V 2’ € X}.
Proof.
xeG — Vo' 3ty <t : (¢(z) — (1-e)p(x))Tb,, >2-274
= Vo' Iy <10 (B(x) — (1= )p(@)(Br, —0.) + (p(x) — (1 — (') 0. > 227"
D2 vl (d(@) — (1 - )é(@)70. > 0
— zcG?.
O

Lemma E.5. On (), &, when t <t holds B, C (G%)e.

Proof.
reB, « 3ty <T: (p(x)—(1—e)p(x) T < —2-27%
= 32ty <2 (G(a) — (1 - (@) (0 — 0.) + (d(x) — (1 - )p(a)" 0, < —2- 27"

D 3 (d(@) — (1— ()76, > e
— zc (G%".
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Lemma E.6. On the event (), & fort <t,

{(z,2') : (z, '),z € G®} C {(m,cc’)

(d(2) — (1 = )g(")T0.] < 2t+2} =: Sfiove
Proof. On N, & for t <t, for any y € A,

~ ~ Et

"0 > [y 0. — ly" (0 — 0.)] > |y 0. —2-27".
For y such that |y?6,| > 2-27t+1 the above implies that
ly 0, >2-27".
By the elimination condition, this implies that y is removed from A;. Hence
.At+1 C {y S J}(X) : |yT9* — 6| <2- 27t+1} .

Specializing this argument to {(z,z’) : (z, '),z € G¢} C A, completes the proof. O
Lemma E.7. On the event (), & fort <t,

{(,2) : (,2),xz € (G)} C {(w,w') |(p(x) — (1= e)p(a) "0, — e[ <27+

and {(¢(x) — (1 — €)p(x,))T0,} > _2—t+2} _. §pelow

Proof. The guarantee that |(¢(z) — (1 — €)p(x))T0, — €| < 2712 for any (z,x’) € A; follows by the same
argument as Lemma E.6. For the additional statement, that (¢(x) — (1 — €)¢(x.))T 0. > —272 note that if

(p(x) — (1 — e)¢(ac*))T§t < —gtH1

then the pair (x,x,) is eliminated from A;. If

~

(d(@) = (1 - e)p(@.)) 0 < —27"72,

then using this and the event [, &

(B(x) — (1 — )p(x.)) 0 = (d(x) — (1 — )d(@.))" (01 — 0.) + (1 — e)p(.)) 0. < —27"F1,

Hence, the only pairs (z,z,) that remain in A; where z. € (G?)¢ are such that (¢(z) — (1 — €)p(z.))T 0.} >
—27t2. We conclude by noting that the above argument for x. could be repeated for any «’ such that

(d(x) — (1= e)¢(a")) "0, < 0. O

Remark: Lemmas E.6 and E.7 jointly imply that A, C SAPOve U SPelew =: &, for ¢ < #. Furthermore,
F(X, (A7) < (X, Y(S),7)-

Remark:
The algorithm stops on either of two conditions. On one hand if ¢ > ﬂog2 (4/ 6)] =: tg, then it has achieved

precision B as desired and it terminates. Otherwise, it terminates if Gt U Bt = X. This occurs when 5
is very small. Define the quantities A2PVe(e) = mingee, ming GI(QZ)( ) — (1 — e)p(x')) and ABSlov(e) =

mln

Milgece MAXy, (b(z)—(1—)b(z') T 0. <0(A(@) — (1 —€)d(2')) 70y, and Apin(€) = min { ALV (€), ABIoW (€) }. Recall

min min

F=max{t : (V102 + 1)@+ \/F(X, {y € V(X x X) 1 [yT0.] < 4-2-1)57) <27)
= max{t : 4T[0l + M@+ /FX, {y € V(X x X): [yT0.] <4-2-1)19)) <4-27)
— 2 max{t : 4(A110. l2 + )@ + A, {y € V(X x X) £ [yT0.] <27} 57)) <271)

= 3+ logy(min{B > 0 4( /0. l2 + )2 + 1/ F(X {y € V(X x X) : [y70.] < B} 7)) < ).
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This defines

B(e) = min{B > 0: 4(yF6. ]2 + h)(2 +/F (X, {y € V(X x X) : [yT0.| < B} ;7)) < B}

Let ¢max denote the random variable of the last round before the algorithm terminates. The following Lemmas
give a guarantee on the set X'\ B; at termination.

Lemma E.8. On the event (\,—, &, MILK returns a set (X\ By,..) such that {x : f(z) > (1—e)f(zs) + Ble)} C
(X\ Biyo)-

Proof. Take any x such that f(z) > (1 —€)f(z.) + 3(a) and recall that by assumption |f(x) — ¢(x)T0.| < h for
all z € X. We consider two cases. In the first case, assume that tyax < t. We claim that in this case At such
that € B;. We prove this by contradiction. Assume not. Then 3t and a «’ such that

B ($(@) — (1 — )d(a')) < —27"+!
= (d(a) — (1- (@) (B — 0.) + (d(x) — (1 - (@) 70, < —27"+!
=9 4 (g(@) — (1 - d(a))h. < —27H
= (d(e) — (1 - )d(@))f. <0
fl@)— (1 —e)f(@)<h+(1—eh

)
Recall that we have assumed that f(x) > (1 — €)f(x«) + 5(a) and (5(e) > 4h by definition. Hence, this implies
that

Etytm

(1= f (@) — (1 - ) f(a') < h+ (1 —)h - Bla) <0
which is a contradiction since f(x.) > f(«’) by definition. Hence, we have shown in the case that ty., < £,
{z: f(x)> (1 —e)f(m) + B(e)} C (X \ By,.)-

In the second case, assume that ., > £ and take @ such that f(z) > (1 —¢)f(z,) + B(a). We claim that = € Gz
and hence (x,z') € A; for any t > ¢ and thus x is never added to B;. This occurs if for every ¢(z’)

(6(x) = (1= o (') Th; > 27+
= (¢(@) - (1—)p(@))" (07 - 0.) + (¢(@) — (1 - ()"0, > 27
£ 2L (g(a) — (1- ) '
= (¢(x) — (1-€)o(z')"0
= (6(z) — (1= )p(2))"0. >
— flz)—(1—ef(z) > 0.5ﬂ(6) +h+(1—-¢h
where the penultimate step follows by definition of 5(¢). Recall that f(z) > (1 — €)f(x.) + B(«). Hence, the
above is implied by
(1 =€) f(xs) + Bla) = (1 =€) f(2') > 0.58(e) + h+ (1 —€)h
< B(e) > 0.58(e) +h+ (1 —e€)h
where the final step follows by noting that f(x.) > f(x) for any x’. The final statement is true since 3(¢) and

thus implies the claim. Therefore, we have shown that & € Gf and is therefore not added to Et in a later round.
These two cases together complete the proof. O

Lemma E.9. On the event oy &, MILK returns a set (X\ Etmx) such that (X \ By,..) C {z : f(z) >
(1 —e)f(@.) — B(e) — B}

Proof. Take any x such that flx) < (1— e)f(:n*) — B(€) — B. We claim that there exists a ¢ < tpay such that
is added to B, which implies that @ ¢ (X \ B,
all t < tyax,

é;r(¢(m) — (1= e)¢(x,)) > -2t

Suppose for contradiction that this is not the case. Then for

m'lx)'
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= (Bl) = (1 - )p(@)T (B — 0.) + (Blw) — (1 — )p(w.))T0, > 2+

=5 27 (A0 + B) VX A ) + () = (1= €)g(w.))T0, > —27"F

= (V0N + ) V(X A y) + fx) = (1= ) f () + b+ (1= eh > 2771 — 27

= fl@) (1= of(xs) > =277 27" —h — (1 = Oh — (VAll0u]| + h) VF (X, S57).
Plugging in f(z) < (1 — €)f(z.) — B(e) — B, the above implies

Ble)+ B <27 427" f h+ (1 — Oh+ (VA0 + h) VF (X, St:7) (4)

Next, recall that MILK terminates either on the condition that ¢ = [logy(4/3)] or that Gy U B, = X. Using this,
we brake our analysis into cases.

Case 1: tmay = [log,(4/8)] < L.

In this case, MILK stops due to the B tolerance in a round before t. For t < t, we have that 27! >

+ (\ﬁHH*H + h) \/m Hence, the above implies that
Bla)+ B <2724 h+ (1—e)h.
As we have assumed this condition for all ¢ < t;,.«, we may plug in ty.x which implies
Bla)+ B <B+h+(1—ch.
As (a) > 4h, this is a contradiction. Hence there must exist a ¢ such that x € B,.
Case 2: tyayx < T < [logy(4/5)].

In this case, MILK terminates before round t = [log,(4//3)]. Hence, it does so on the condition that G, U B, = X.
Note that for f(x) < a — f(a) — 3, we have that & € (G2)° since () > h and § > 0. If we terminate before
round f, we have by Lemma E.5 that (G¢)¢ C B; which implies that € B,
that At :x € Et.

This contradicts the assumption

max *

Case 3: t < tmax-

In this case, MILK terminates at a round after ¢. In this setting, we argue that x € E{. Recall that for any ¢ < t,
(4) simplifies to

Bla)+ B <2724 h+ (1—e)h.

Plugging in f, and noting that 2-%+2 = 38(a), the above implies

B(a) +h+ (1 —e)h.

N |

Bla) + B <

Noting that 3(a) > 4h, shows that the above is a contradiction. Hence, there exists a t < £ such that = € B;.

Therefore, in all cases we have shown that for any « such that f(z) < a — B(a) — B, T € Et. Therefore, for the
returned set X'\ By .., we have that

(X\ Biyo) C {m: f(@) > a = B(a) - B}
O

Proof of Theorem 4.3. Throughout, assume the high probability event (), &. By Lemmas E.8 and E.9
in conjunction with the high probability event [(&; we have correctness. It remains to control the
sample complexity of MILK. Recall that we have assumed that max(Amin(e),3) > B(e). This implies

that min{[log,(4/Amin(€))], [logs(4/8)]} < ¢. Applying Lemmas E.6 and E.7, we have that tpn.x <
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min{ [logy (4/Amin (€)1, [ogy(4/8)]} < £ and that A, C S, for all rounds t. Now we proceed by bounding
the total number of samples drawn.

min{[log, (4/Amin(€))].[log, (4/B)1}
Ny

IN

t=1
[log, (4(A[nin(€)\/g)71)-|
= Ny
t=1
Mog, (4(Amin(e)VB)™1)]
- max {c1 log(|X|/8), 2% f(V*(Ay);7)(B + 02) log (22| X|?/6) }

o~
Il
-

Mog (4(Amin ()VE) ™)1
< e 1og(|X|/8)[1ogs (4(Amin(€) V B) )] + A(B* + 0°) 2% f(V(Ar)i7) - log (26| X | /5)

o~
Il
_

= c11og(|X|/8)[1oga(4(Amin(e) V B) ™)1+
[10g2(4(Amin(€)vB)7l)-‘

2 2 2 2t : 2 2 2
(B? +0°) Z 2 min  max s 10BREIX/0)

< e log(|X]/6) [logy (4(Amin( ) D1+
2 4|X| 10g2 mln( )\/B) )—I )
)

Mog, (4(Amin()VB) ™)

M

22t min max ||y||(A()\ V)t

pt AEAx yeYe(A
< ¢110g(|X[/8) 105 (4(Amin(e) V B) 1) ]+
B o) 10 [AXE 1og2 ;mmvm )1)

[logy (4(Amin (5)\/5)

t=1 2% )\IéllATL ye@ax ||yH(A(>\)+’YI) !
= ¢110g(|X|/5) [logy (4(Amin(e) V B) )]+
2 1og <4|X| log2 (Ampin (e )\/5) 12 >
0
[ogs (4(Amin(e)VA) ™11
. Z )\Iélinx max {22 yeyg(lgfi(m“) ||y||?A(>\)+'yI)*1 2% yeyf?‘??emw) ||y|?,4(>\)+71)1} '

t=1

where the final equality follows by partitioning S; = SAPove U SPelow,

Focusing on this final summation, note that

! 2% min max
[log2( ( mln( )\/B) ﬂ =1 AeA X

< max min 2% max{ max |y||? ~1, max |y|? - }
< N AN+ AN)+~I)~1
t<[1ogs (4(Amin(€)VB)~1)] AEA X yeSAbove (AN ) yeSBelow (AN +)

2 2
yefgggfm ||y||(A(,\)+71)flvyefgtg§W |y||(A(/\)+'yI)1}

Mog, (4(Amin()VB) 1)1 {

< min max max max 22t\\y||2A \)nT)—1, IMax 22t||y\|2A ) T 1}
NELX 1< 1o (4 Amin(0)VE) 1] {yes;*bove (AN spelow A+
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= min max max max 2% |p(x) — (1 —€)p ,
i ] 26(e) — (1= 90 s

max 22t|\¢($) —(1—e)p(x )” AN AT~ }

(@) eSPeiow
- [p(z) = (1 = )o@ 40n) 1419~
(@,2)es2 max{(((z) — (1 — €)(a))TH,)? ,52}’
s lp(z) — (1 = )P(@)IFan) 101y }
(@.2)esP max{((¢(x) — (1 — €)p(x))T 0y — €)2, 52}
{ [¢(z) — (1 - €)¢(CBI)”%A()\)+WI)*1

Lemmas E.6, E‘7,E
< 16 min max max
ACAX 1< Tlogy (4(Amin(€)VB)—1)]

<16 min max
AEA X

max

z€G. H;c%“X max{((¢(m) — (1 _ 6)@5(:13’))T9*)2 B’Q}v
max max lé(@) — (1 — )= )HQA(A +~I)—1 }
zeGe @ max{((¢(x) — (1 — €)Pp(x)) 70, — €)? ’ﬁz}

Plugging this in with ¢ = 4 and ¢; = 2 from Theorem C.1 for RIPS with the Catoni estimator completes the
proof. U

F Additional Experiment Details

In this section we discuss additional experimental details not covered in the main paper. We first give an overview
of the algorithms implemented in the following section. All code was written in python and run on a 64 core
cluster machine. We have included implementations of all methods and a demo file showing how to call and run
the various algorithms.

F.1 Algorithms Implemented

In this section we briefly discuss the algorithms implemented and the hyper-parameters used in the algorithms.
The algorithms implemented are s follows:

Gaussian Process Experiments For all the algorithms in this section we assumed a GP Prior N(0, k(z,z'))
where k(x,z’) was the RBF kernel given by k(z,2') = exp(—||z — 2'||?/2¢2).

At every time step we builds the confidence interval

Q@) = pr(@) 5 o0 ()]

where p;—1, and oy_ is the posterior mean and variance function over the observed points. For an observation
y, at time ¢ we define p;_1, and o,—; as follows:

-1
pe(x) = ke(z)" (K¢ +0%I) "y,
ki (@, @) =k (@,@) — ky(@)" (K, +02T) " ky()
o2 (x) = ky(x, x)
where, ky(z) = [k (@1, ), ...,k (z¢,x)]" and K, is the kernel matrix over the observed points.
1. LSE: We implemented the LSE algorithm by ( , ). This algorithm maintains an active set of

unclassified points defined as U; and the super-level set H; and sub-level set L;.

At every round LSE selects the most ambiguous point, where the ambiguity is defined as

at(x) = min {max (Q:(x)) — @, « — min (Q(x)) }

that is, the points LSE is most unsure to classify into H; or L;. Note that in contrast to this approach
MELK follows the optimal allocation over the active set to select the next sample.
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2. TruVar: We also implemented a modified version of TruVar( , ) with zero cost and
homoscedastic noise. TruVar samples in such a fashion to ensure the maximum decrease of the posterior
variance. As above, we maintain a Gaussian Process Posterior and we sample the arm

arg max Z o2(z) — Z ‘7?—1|x(5")
TEX zeA, zEA,;

where o2

i—1].(Z) is the posterior variance of Z if we sample .

3. MELK: As described in the text, we compute the means and variances of the arms using a Gaussian
posterior (identical to above) and eliminate arms when their lower /upper bound is below/above the specified
threshold 7. We implemented a batched sampling algorithm where we compute the design

. 2
Ifgﬁ IZ%% ||Z||(A(,\)+71)—2
ever 10 samples and then sample from it. At the i-th calculation, v = 1/(10%4). We also use the Frank-Wolfe
method to compute the optimal allocation over the active set before every round as described in Section G.

We set the step-size of Frank-Wolfe method as 1 and cap the maximum number of iteration to converge for
Frank-Wolfe to 500.

Linear Bandits Examples

Additionally, we also consider comparing algorithms exactly as written using theoretically justified confidence
widths in all cases. This presents a challenge as MELK and MILK are designed for the frequentist regime and LSE
and TruVar are Bayesian in nature. To level the playing field, we consider all algorithms in the frequentist regime.
For this experiment, we focused primarily on comparing MELK to LSE and MILK to LSE-imp LSE can naturally
be adapted to the frequentist setting with the tight RKHS confidence bounds from ( ,

). These bounds scale with the maximum information gain I'r. To make the comparison fair, we consider
all algorithms in the linear regime where I'r = O(dlog(T")). By contrast, for the squared exponential kernel,
r'r=0 (log(T )d), and this leads to overly pessimistic confidence widths preventing a meaningful comparison of
the algorithms. Indeed, even for moderate d such as d = 4, LSE had confidence widths that were more that an
order of magnitude wider for the squared exponential kernel. Hence, we focus on the case of the linear kernel for
our experimental comparison where the differences are not so stark. Below, we describe all algorithms in this
regime.

LSE follows the same acquisition function described in the previous section. We provide additional details about
MELK, MILK, and LSE-imp in this setting.

1. MELK: We implement the MELK algorithm as defined in Algorithm 1. Recall that |f(x)| < B, and for the
experiments we set B = 1. We set the confidence parameter § = 0.1, the regularization parameter v = le — 7.
Note that we use the original confidence width of (B? + 02)log(2t?|X|?/§) as stated in our algorithm, where
o2 is the noise parameter specific to the environment. We also use the Frank-Wolfe method to compute the
optimal allocation over the active set before every round. We set the step-size of Frank-Wolfe method as 0.5
and cap the maximum number of iteration to converge for Frank-Wolfe to 2000.

2. LSE-imp: We implement the LSE-Implicit algorithm as stated in ( , ). LSE-Implicit proceeds
quite similarly to LSE by constructing the confidence region C;(x) (as defined above) and classifying points
to the sub-level set L; or super-level set H;. We set the confidence width as in LSE for calculating the
confidence region. Note that LSE-Implicit works in the implicit level set estimation setting and so constructs
an estimate of the function maximum to classify points into H; or L;. It builds an optimistic and pessimistic
estimate of the function maximum as

opt . pes :
J7 = maxmax (Cy(@), [P = maxmin (Cy(a))

respectively. A point @ is classified into H; if min (Cy(z)) > (1 —€) f*" or classified into L, if max (Cy(x)) <

(1 —€)fP°°. Finally, LSE-Implicit selects the next point with the largest confidence region width, defined as
follows:
wi(x) = max (C¢(x)) — min (Cy(x))
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such that this leads to more exploration. Again, note that in contrast MILK in Algorithm 2 uses the optimal
allocation proportion over the active set to sample the next point.

3. MILK: We implement the MILK algorithm as stated in Algorithm 2. Note that MILK proceeds as similarly
to MELK but with the allocation calculated over the difference of vectors Y¢(A) over the active set and a
different elimination condition depending on €. For MILK we set a similar hyper-parameters like MELK. We
set the confidence parameter § = 0.1, the regularization parameter v = le — 7, and the confidence width of
(B? + %) log(2t%|X|?/5). We use the Frank-Wolfe method to compute the optimal allocation over the active
set of points and set the step-size of Frank-Wolfe method as 0.5 and cap the maximum number of iteration
to converge for Frank-Wolfe to 2000. Note that we set € depending on specific environment setting.

F.2 Additional Experiments

All experiments were done with 25 repetitions. We consider the fl-scores on three environments considered

below.

£=0.05,0=0.01 £=0.05,0=0.5 £=0.05,0=1.0
1.0 1 1
g — | LSE g — LSE g
$0.5 — MELK 3 — MELK g — MELK
b — TRUVAR b — TRUVAR b — TRUVAR
0
0 500 1000 0 0 500 1000 0 500 1000
samples samples samples
6 £{=0.1,0=0.01 £=0.1,0=0.5 £=0.1,0=1.0
g ==INISSE o s WSS E IS —— (LSS
o o o
205 —— MELK 3 0.5 —— MELK 0.5 —— MELK
cu —— | TIRUN/AR bu —  TRUNAR b — TIRUNMAR
0.0 0.0
0 500 1000 0 500 1000 0 500 1000
samples samples samples
£=0.5,0=0.01 £=0.5,0=0.5 £=0.5,0=1.0
1.00 1.0 R—
g — LSE g —| LSE g
2075 —— MELK - —— MELK 305
= —— TRUVAR =7 —— TRUVAR b
0.0
0 500 1000 0 500 1000 0 500 1000
samples samples samples

Figure 3: f drawn randomly from a squared exponential kernel N (0, k(x,2’)). o denotes the standard deviation
of the noise and ¢ denotes the bandwidth of the kernel (i.e., k(x,y) = exp(—||z — y||/2¢?)).
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£=0.05,0=0.01

£=0.05,0=0.5

1.0
o — [LSE o
3 - 805
205 MELK 2 MELK
bu — TRUVAR b — TRUVAR
0.0
0 200 0 200 200
samples samples samples
£=0.1,0=0.01 £=0.1,0=0.5 £=0.1,0=1.0
o 0-75 f — LgE o g — LSE
o o 0.5 (o]
2 0.50 —— MELK ] MELK 502 e
2025 —— TRUVAR b —— TRUVAR & RUVAR
0.0 0.0
0 200 0 200 200
samples samples samples
£1=0.2,0=0.01 {=0.2,0=0.5 1=02,0=1.0
004 / — LSE o E— o
3 —— MELK 802 ‘// MELK go1
03 —— TRUVAR & 7 —— TRUVAR o TRUVAR
0.0 0.0
0 200 0 200 0 200
samples samples samples

Figure 4: f(z) = cos(8mx). o denotes the standard deviation of the noise and ¢ denotes the bandwidth of the

kernel (i.e., k(x,y) = exp(—||z — yl||/2¢?)).

£=0.1,0=0.01 £{=0.1,0=0.5 £1=0.1,0=1.0
o — (SIS o — [L&IE o — [LSIE
g05 S0.1 $0.02
o R LK o — o
¢ P 9
= TRUVAR b TRUVAR b
0.0 0.0 0.00
200 0 200 200
samples samples samples
£{=0.2,0=0.01 £=0.2,0=0.5 £1=02,0=1.0
0.2
o 005 —_— o — LsE
(o] o o
$ —— MELK g K 3
b — TRUVAR = TRUVAR b =
0 0.0 0.0
0 200 0 200 0 200
samples samples samples
1 £=0.3,0=0.01 £=0.3,0=0.5 £=0.3,0=1.0
o o 0.5
o o
$ % LK
= = TRUVAR
0 0.0
0 200 0 200 200
samples samples

samples

Figure 5: f(x,y) = cos(2mz) sin(27y). o denotes the standard deviation of the noise and ¢ denotes the bandwidth
of the kernel (i.e., k(x,y) = exp(—||z — yl|/2¢?)).

Linear Examples with true confidence widths

Finally we compare the performance of the methods using exact confidence widths.
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Figure 6: Comparison of algorithms using theoretically justified confidence widths on a linear bandit setting.

For the Linear kernel experiments in Figures 6a and 6b, we run all algorithms with exact confidence intervals
as specified by theoretical guarantees and use the theoretical upper bound on information gain vy shown in

( ) ) for the confidence widths from ( ) ) needed for LSE. We compare the methods
on a benchmark example from the linear bandits literature. For @1, -- , %, € R?, we take 1 = &, = 0, = ¢;
and ¢y = ep. The remaining xs,--- ,x, are set so that their first two coordinates are cos(w/4(1 + &))e; and

sin(m/4(1 + £))ez for £ ~ Unif(—.2,.2). We set the threshold oo = 0.5, n = 100, and d = 25. Figure 6a shows that
MELK outperforms LSE when both algorithms are run with their exact confidence widths.

In the implicit setting, this example is especially informative and highlights the importance of designing to choose
which arms to sample. Though it is far below «, sampling arm x5 provides the most information about which
arms exceed the implicit threshold. Indeed, we see in 6b that both MILK greatly outperforms LSE-imp respectively.

G Reducing Experimental Design in an RKHS to a finite dimensional
optimization

In this section we describe the use of the kernel trick and Frank-Wolfe to compute the design

fQ) = /\IéliAnX max ()]l av(x)-1

where C' C X.

Since this is a convex optimization problem on the finite dimensional simplex Ay we employ the Frank-Wolfe
algorithm. Note that \; is at most t-sparse. The primary challenge is in the computation of the gradient of f.

Algorithm 4 Frank-Wolfe to minimize f

Require: Arms X, iterations T’
1: A\g = ey (first standard basis vector)
2: for x € A; do
3: Ty ¢ arg maXgcy ||(;§(ac)H1247()\),1

£ 9= Vo lé@)lZ
5: gt = arg maxi<;<|x| e;'—gt
6: N = H%
7 At = (L =n)Ae—1 +m
return \r
To do so we leverage a small modification of Lemma 1 of ( , ).

Lemma G.1. Assume that A is s-sparse and (without loss of generality) with it’s support corresponding to
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1, ,xs € X. Then,

o(x) AN o(y) =

’“‘: v _ %zmwﬂ(m L) ()

where k,\() c RS with [k)\(m)]z = \/)le(w“w) fOT‘i <sand Ky € RSXS with [K)\}i,j _ mk(m“w])
Now, identifying X with an indexing of its entries, i.e. X = {a!,---,z!/*} a computation shows that
el [g:] = —(o(x) A7 (N) "L (ah))?

which can be computed by the above lemma. Note that computationally, the most difficult step is the inversion
of a ¢t X t matrix at iteration ¢t. For a small number of iterations (<2000), this is not prohibitive.
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