
Nearly Optimal Algorithms for Level Set Estimation

Blake Mason Romain Camilleri Subhojyoti Mukherjee
Rice University University of Washington University of Wisconsin–Madison

Kevin Jamieson Robert Nowak Lalit Jain
University of Washington University of Wisconsin–Madison University of Washington

Abstract

The level set estimation problem seeks to find
all points in a domain X where the value of
an unknown function f : X ! R exceeds a
threshold ↵. The estimation is based on noisy
function evaluations that may be acquired at
sequentially and adaptively chosen locations
in X . The threshold value ↵ can either be
explicit and provided a priori, or implicit and
defined relative to the optimal function value,
i.e. ↵ = (1� ✏)f(x⇤) for a given ✏ > 0 where
f(x⇤) is the maximal function value and is
unknown. In this work we provide a new ap-
proach to the level set estimation problem
by relating it to recent adaptive experimen-
tal design methods for linear bandits in the
Reproducing Kernel Hilbert Space (RKHS)
setting. We assume that f can be approxi-
mated by a function in the RKHS up to an
unknown misspecification and provide novel
algorithms for both the implicit and explicit
cases in this setting with strong theoretical
guarantees. Moreover, in the linear (kernel)
setting, we show that our bounds are nearly
optimal, namely, our upper bounds match ex-
isting lower bounds for threshold linear ban-
dits. To our knowledge this work provides the
first instance-dependent, non-asymptotic up-
per bounds on sample complexity of level-set
estimation that match information theoretic
lower bounds.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 INTRODUCTION

The level-set of a function is a subset of its domain
where it exceeds a specific value. Level set estimation is
the problem of identifying a subset that approximates
the true level-set based on a finite set of potentially
noisy function evaluations. As an example, consider the
goal of detecting a region in a body of water, such as a
channel, that is at least 20m deep for ships to safely
pass. Given that we can obtain noisy estimates of depth
using a sonar device at the locations of our choosing,
where should we measure in order to acquire the most
accurate level-set estimation while using as few total
measurements as possible? Level-set estimation can
also be interpreted as a kind of classification rule. For
example, using as few total experiments as possible,
we may want to identify all compounds among a given
finite set under consideration that have some prop-
erty (e.g., binding affinity) that exceeds some target
threshold.

While level-set estimation is somewhat of a well-studied
problem, to date there is a lack of theoretical under-
standing of the limits and tradeoffs of estimation accu-
racy and number of measurements. Most algorithms
proceed by sequentially and greedily optimizing an
acquisition function that is constructed using all the
measurements observed up to the current time. These
heuristics are known to work very well in practice, but
their guarantees are ad hoc and, at best, worst-case
(minimax). In this work we are interested in under-
standing the instance-dependent sample complexity
of level-set estimation. That is, we would like for an
algorithm to output a satisfactory estimate of the level-
set as fast as any algorithm could for this particular
instance, not some worst-case instance.

In contrast to prior works that propose a sampling
heuristic–usually based on identifying an informative
point–and bound its sample complexity, we work back-
wards. Namely, we first consider an information theo-
retic lower bound for the level-set estimation problem

Nearly Optimal Algorithms for Level Set Estimation

that suggests an “optimal” sampling strategy. Because
this ideal sampling strategy is a function of the true
(unknown) function, it is a priori impossible to real-
ize. Instead, we propose a series of sampling strategies,
based on experimental designs, that mimic this optimal
sampling strategy given the information available at
the current time. By the end, these strategies provably
achieve the optimal sample complexity with minimal
overhead. Furthermore, we show that our sampling
strategy leads to an upper bound on the sample com-
plexity that is tighter than those in the existing lit-
erature. In what follows, we first formally state the
problem and our desired objectives. We then review the
related work in context before proceeding to our lower
bounds and algorithms. We finish with experiments
contrasting with existing work.

1.1 Problem Statement

We assume there exists an unknown function f : Rd
!

[�B,B] and a subset of allowable sampling locations
X ⇢ Rd which span Rd. Though the function f is
unknown, we may query its value for any x 2 X and
receive a noisy estimate f(x)+⌘ where ⌘ is iid, E[⌘] = 0,
and E[⌘2]  �2. We define two objectives.

Explicit Level Set Estimation: Given a specified
threshold ↵ 2 R, the goal is to identify G↵ := {x 2 X :
f(x) > ↵}.

Implicit Level Set Estimation: Let x⇤ 2

argmaxx2X f(x). Given ✏ > 0, the goal is to iden-
tify G✏ := {x 2 X : f(x) > (1� ✏)f(x⇤)}1.

Consider an algorithm that at each time t selects an
arm xt 2 X that is measurable with respect to a �-
algebra Ft�1 = �(x1, y1, · · · ,xt�1, yt�1) and receives
a value yt = f(xt) + ⌘t. To be precise, we say that
an algorithm is PAC-� for the explicit (respectively
implicit) level set problem if it stops at a time T� which
is measurable with respect to the filtration (Ft)t�1 and
returns G↵ (and in the implicit setting returns G✏) with
probability at least 1� �. If f(x) is very close to the
threshold, it may take an enormous number of samples
to determine whether it is above or below the threshold,
so in practice we introduce a e� � 0 tolerance that
ensures that any learner has a finite sample complexity
(see theorems) and allows for misclassification of points
very near to the threshold. But in the discussion that
follows, assume that f(x) is bounded away from the
threshold.

Our approach is based on modeling f in a Reproducing
Kernel Hilbert Space (RKHS) H. Let � : Rd

7! H be
the “feature map” associated with the RKHS. Since

1For ease of exposition, we assume f(x⇤) � 0. This is
easily removed by taking ✏ < 0 if f(x⇤) < 0.

|f(x)|  B for all x 2 X , there exists a ✓⇤ 2 H and a
scalar h � 0 such that maxx2X |f(x)�h✓⇤,�(x)iH|  h.
When h = 0, f 2 H, and in general we allow h � 0 (typ-
ically small) in the interest of generality. Our sample
complexity bounds will depend on h and k✓⇤kH which
we denote k✓⇤k. If h is small, then f is well approxi-
mated as a linear function of the feature maps �(x). We
refer to the case when h > 0 as being misspecified and
otherwise when h = 0 as being well-specified. This class
of functions is frequently used for level-set estimation
because it is often sufficiently rich to model real-world
functions but also contains enough structure to quan-
tify the uncertainty of generalizing a learned function
to unmeasured locations. One note of departure from
the existing literature is that we do not assume the
unknown function is precisely captured by a function
in an RKHS, only that it is well approximated by one
(i.e., the misspecified setting). In the discussion that
follows, we additionally assume |X | <1 for simplicity
since in practice given an arbitrary bounded domain
we can replace X with a finite cover.

2 RELATED WORKS

The level-set estimation problem naturally connects
to several related ideas in Bayesian optimization and
multi-armed bandits. In the former setting, methods
tend to sample greedily according to an acquisition
function that seeks to minimize the uncertainty of the
learner about the level set. The first work on level
set estimation that employed the use of Gaussian pro-
cesses and introduced the Straddle heuristic is due to
Bryan et al. (2005). These ideas were further devel-
oped in Gotovos (2013) which proposed the LSE and
LSE-imp algorithms for explicit and implicit level set
respectively. They provide a theoretical guarantee on
the sample complexities of LSE and LSE-imp, and as
we will show below, our sample complexity is always
at least as good as their stated bounds. Bogunovic
et al. (2016) further connected Bayesian optimization
with level set estimation and considered the setting of
heteroscedastic noise. The work of Shekhar and Javidi
(2019) focuses on the level-set problem in a continuous
domain, and provides an algorithm that maintains a
notion of uncertainty over regions, providing a poten-
tially improved computational complexity, along with
tighter sample complexity bounds compared to LSE
for certain kernels and smoothness assumptions. The
work of Zanette et al. (2018) reposes level-set estima-
tion as a classification problem and introduces a novel
acquisition function. Iwazaki et al. (2020) extends the
work of Zanette et al. (2018) to improve model robust-
ness in quality control applications. Bogunovic (2019);
Vakili et al. (2021) demonstrate frequentist guarantees
for Gaussian process algorithms. (Bect et al., 2012;

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Azzimonti et al., 2021) employ a sequential experimen-
tal design approaches for estimating failure probability
given a threshold form a density that is expensive to
evaluate. (Chevalier et al., 2014) proposes a kriging-
based approach for the same problem. This line of work
is also related to Gaussian Process Bandits, namely
the GPUCB algorithm and improved variants (Srini-
vas et al., 2009; Chowdhury and Gopalan, 2017; Valko
et al., 2013). Ha et al. (2020) introduces a Bayesian
Neural Network approach for active level set estimation
using Monte Carlo dropout techniques. Table 1 in the
appendix summarizes the results we are aware of in
the Gaussian process setting.

In the multi-armed and linear bandit setting, the ex-
plicit level set estimation problem is related to thresh-
old bandits where one seeks to find all arms above an
explicit threshold (Locatelli et al., 2016; Jamieson and
Jain, 2018; Degenne et al., 2020). The approach of
Degenne et al. (2020), would provide an asymptotically
optimal algorithm in the linear setting, however we are
not aware of any other works that provide an optimal
finite-time guarantee. The implicit level set problem in
the standard multi-armed bandit setting is equivalent
to the multiplicative all-✏ problem introduced by Mason
et al. (2020). Algorithm 2 recovers the sample com-
plexities of the instance-optimal (ST)2 algorithm given
there. Finally, our experimental design techniques are
inspired by Soare et al. (2014); Fiez et al. (2019), and
especially the recent work of Camilleri et al. (2021)
that introduces the RIPS estimator which we use to
perform experimental design in an RKHS.

3 EXPLICIT LEVEL SET
ESTIMATION

In recent years, adaptive experimental design has arisen
as a popular paradigm for active learning in structured
settings, for example in linear bandits and RKHS (Soare
et al., 2014; Fiez et al., 2019; Camilleri et al., 2021),
and we adapt these ideas for the level set problem.
To motivate this paradigm, in the following exam-
ple we focus on the well-specified linear case where
�(x) = x, e� = 0, h = 0 where we recall h denotes
the misspecification and e� denotes the error tolerance
as defined in Section 1.1. Imagine we have access to
a collection of n-measurements {(xi, yi)}ni=1 and let
b✓ = argmin✓2Rd

Pn
i=1(yi � x>

i ✓)
2 be the least squares

estimator. Standard results show that with probability
greater than 1��, we have for all x 2 X simultaneously

|x>(b✓ � ✓⇤)|  kxk(
Pn

i=1 xix>
i)

�1

r
2 log(2|X |/�)

n
,

where the additional factor of |X | in the logarithm
arises from a union bound over X . In particular, if our

data is chosen so that for each arm x 2 X

|x>✓⇤ � ↵| > kxk(
Pn

i=1 xix>
i)

�1

r
2 log(2|X |/�)

n
, (1)

we see that for any x such that x>✓⇤ > ↵,

x>b✓ = x>✓⇤ + x>(b✓ � ✓⇤) > x>✓⇤ � |x>✓⇤ � ↵| > ↵.

The first inequality stems from equation (1) where we
have sampled such that the error x>(b✓ � ✓⇤) is less
that the margin to the threshold |x>✓⇤ � ↵|. Hence, if
x>✓⇤ > ↵ then x>b✓ > ↵. This same argument may be
repeated for x : x>✓⇤ < ↵. Therefore {x : x>b✓ > ↵} =
{x : x>✓⇤ > ↵} = G↵, i.e. we have a high probability
guarantee that we return the correct set of arms above
the threshold. Letting �x = nx/n be the proportion of
times we sample x 2 X , we see see that equation (1)
is equivalent to

n � max
x2X

kxk2
(
P

x2X �xxx>)�1

(✓>
⇤
x� ↵)2

. (2)

In particular, this implies that to achieve a good sample
complexity we can minimize the right side of this ex-
pression over all possible distributions � 2 4X where
4X = {� 2 R|X | :

P
x2X

�x = 1,�x � 0 8x}. In-
deed as the following theorem shows, this gives a lower
bound on this problem.

Theorem 3.1. Assume ⌘t
iid
⇠ N (0, 1) 8t. In the well-

specified linear setting when �(x) = x and f(x) = ✓>
⇤
x,

for any � > 0, any PAC-� algorithm with stopping time
T� that returns the set G↵ with probability at least 1��
must satisfy

E[T�]

log(1/2.4�)
� 2 min

�24X
max
x2X

kxk2A(�)�1

(✓>
⇤
x� ↵)2

where A(�) :=
P

x2X
�xxx>.

Remark. We prove this result for completeness in
the appendix using ideas from Fiez et al. (2019). A
similar result has appeared previously in the Appendix
of Degenne et al. (2020) which also shows its tightness.

As a concrete interpretation of the lower bound, con-
sider the case where xi = ei, the ith standard basis
vector. Then the mean of arm i is ✓>

⇤
ei = [✓⇤]i, the

ith entry of ✓⇤. This setting removes all structure by
making the mean of each point independent of the oth-
ers, and we may solve the optimization in Theorem 3.1
in closed form. Namely, the fraction of samples given
to arm i, denoted �(i)

/ ([✓⇤]i � ↵)�2 log(1/�) is pro-
protional to its inverse gap squared. This leads to a
lower bound of E[⌧�] �

Pn
i=1([✓⇤]i�↵)�2 log(1/�) with

matches the known lower bounds from (Jamieson and
Jain, 2018; Locatelli et al., 2016) which are specific to
this setting.

Nearly Optimal Algorithms for Level Set Estimation

We now operationalize this lower bound to provide an
algorithm for level set estimation that has a nearly
matching upper bound. In the following sections, we
will explain our algorithm and the adaptations neces-
sary to handle the general setting of the RKHS.

3.1 Algorithm

Motivated by this lower bound, we now provide an
experimental design approach in the general case. In
this setting, we recall the feature map � : Rd

7! H and
h � 0 represents the possibly nonzero misspecification
level. Despite these changes, the same intuition from
the linear case in Theorem 3.1 applies. We have a
set of vectors �(x)1, . . . ,�(xn) 2 H and an unknown
parameter vector ✓⇤ 2 H such that f(x) ⇡ ✓>

⇤
�(x).

Ideally, we would sample according to a distribution �⇤

that achieves the minimum in the lower bound in The-
orem 3.1, however this is not possible since �⇤ depends
on the a priori unknown ✓⇤. Instead, we approximate
this distribution by solving a series of designs based
on the information we have thus far. Furthermore, we
allow for a tolerance �̃ � 0 reflecting the fact that
depending on the setting, practitioners may be satis-
fied with an approximate solution if it requires fewer
samples to learn.

Our approach, MELK (Misspecified Explicit Level set
via Kernelization), for the generalized RKHS setting is
given in Algorithm 1. MELK proceeds in phases. To keep
track of the points it has identified so far, MELK main-
tains two sets: 1) bGt is the set of all points that up to
round t have been declared as being in G↵ by MELK, that
is f(x) > ↵. 2) bBt is the set of all points declared as be-
ing in Gc

↵. The remaining, uncertain points are active
and in the set At. Motivated by the lower bound from
the linear setting, it then computes the experimental
design: �t = argmin�24X maxx2At k�(x)k

2
A(�)(�)�1

with A(�)(�) :=
P

x2X
�x�(x)�(x)> + �I where

� is a necessary regularization in the kernelized
(infinite-dimensional) setting. Indeed, the num-
ber of samples taken in each round equals Nt ⇡

min� maxx2At

k�(x)k2

A(�)(�)�1

(2�t)2 from �t. This guaran-
tees that at the end of the round, At+1 ⇢ {x 2 X :
|✓>

⇤
x � ↵|  2�(t+1)

} and, we can interpret our de-
sign as an approximation to the lower bound on the
points that are remaining. MELK declares that x 2 G↵

if b✓T�(x) � 2�t & ↵ and adds x to the set bGt. Sim-
ilarly, MELK adds x to declares x 2 Gc

↵ and adds x

to bBt if b✓T�(x) + 2�t . ↵. Finally, MELK terminates
when either all arms have been added to the sets bGt

or bBt or when t & log2(1/e�) and it has achieved the
practitioner’s desired tolerance of e�.

MELK leverages a Robust Inverse Propensity Scoring

(RIPS) estimator introduced in Camilleri et al. (2021)
and reviewed in Appendix C. Previous works in linear
bandits have utilized rounding procedures for sampling
followed by ordinary least squares that are not appli-
cable in the infinite dimensional setting. Instead, the
RIPS estimator appeals to an inverse propensity score
estimator plus robust mean estimation. We state the
guarantee of the RIPS estimator below2.

Theorem 3.2 (Theorem 1, (Camilleri et al., 2021)).
Consider the model y = h�(x), ✓⇤iH + ⇣x + ⌘ for
misspecification |⇣x|  h where it is assumed that
|h�(x), ✓⇤iH + ⇣x|  B, E[⌘] = 0, and E[⌘2]  �2.
Fix any finite sets X ⇢ Rd and V ⇢ H, feature map
� : Rd

! H, number of samples ⌧ , regularization � > 0,
and distribution � 2 4X . If ⌧ � 2 log(|V|/�) then with
probability at least 1� �, RIPS returns b✓ satisfying

max
v2V

|hb✓,vi � h✓⇤,vi|
kvkA(�)(�)�1

2
p
�k✓⇤k+ 2h

+ 4

r
(B2+�2)

⌧ log
⇣

2|V|

�

⌘
.

Computational Considerations. We note briefly
that while we state the optimal design in terms of
the potentially infinite dimensional �(x) for clarity,
we never explicitly compute �(x) and instead resort
to the kernel trick (see Appendix G). Furthermore
the design can be computed using first order opti-
mization methods, such as Frank-Wolfe (Lattimore
and Szepesvári, 2020; Todd, 2016). The total com-
putational cost of each design is poly(|X |). Though
these designs can be expensive to compute, this is
done very rarely by the algorithm. In particular, for
T total samples drawn by MELK, the design is com-
puted O(log2(T)) times leading to an overall computa-
tional cost of O(poly(|X |) log2(T)) for computing the
design. By contrast, any algorithm that computes an
acquisition function at every sample suffers computa-
tional complexity ⌦(T) for the design. Furthermore,
for Gaussian process approaches, the added cost of
computing posterior means and variances leads to an
overall computational cost of either ⌦(poly(|X |)T) or
⌦(|X |poly(T)) depending on implementation for com-
puting acquisition functions. We focus on the complex-
ity of computing the design and acquisition functions as
this is frequently the core computational bottleneck of
algorithms for level set estimation and the complexity
of drawing samples is usually negligible by comparison.
Hence, when many samples are drawn, MELK can be
significantly more efficient than past approaches.

2We carefully detail RIPS from (Camilleri et al., 2021)
as it is important for understanding the behavior of the
algorithms we present, but the experimental designs we
propose are not consequences of that work.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Algorithm 1 MELK: Misspecified Explicit Level set
via Kernelization
Require: Arms X , �, � � 0, � > 0, � � 0, threshold

↵, tolerance e�
1: t 1, bG1 ! ;, bB1 ;, A1 X

2: while | bGt [
bBt| < |X | and t  dlog2(4/e�)e do

3: �t �/2t2

4: Let �t 2 4X minimize g(�;At; �) where

g(�;V; �) := max
x2V

k�(x)k2A(�)(�)�1

5: qt 16 ·22tg(�t;At; �)(B2+�2) log(2t2|X |
2/�)

6:
7: Set Nt dmax {qt, 2 log(|X |/�)}e and sam-

ple x1, · · · , xNt observing noisy function values
y1, · · · , yNt according to �t.

8: b✓t RIPS(At, {A(�)(�t)�1�(xi)yi}
Nt
i=1), Alg 3

in Appendix C
9: for x 2 At do

10: if b✓T�(x) < ↵� 2 · 2�t then
11: bBt+1 x
12: At+1 At\{x}

13: else if b✓T�(x) > ↵+ 2 · 2�t then
14: bGt+1

bGt [{x}
15: At+1 At\{x}

16: t t+ 1
return bR := X \ bBt

3.2 Optimal Sample Complexity for Explicit
Level Set Estimation

Next we state MELK’s complexity, deferring constants
and doubly logarithmic factors to the appendix for
readability.
Theorem 3.3. Fix � > 0, threshold ↵ > 0, toler-
ance e�, and regularization � � 0. Define �min(↵) :=
minx2X |�(x)T ✓⇤ � ↵|. Define also

�̄(↵) = min

⇢
� > 0 : 4(

p
�k✓⇤k+ h)⇥

⇣
2+

r
min
�24X

max
x2X :|�(x)>✓⇤�↵|�

k�(x)k2
A(�)(�)�1

⌘
�

�
.

With probability at least 1� �, MELK returns a set bR at
time T� such that

bR ◆ {x 2 X : f(x) � ↵+ �̄(↵)}

and bR ✓ {x 2 X : f(x) � ↵� e� � �̄(↵)}

and for any ↵, e� such that max(�min(↵), e�) � �̄(↵)

T�  (B2 + �2) min
�24X

max
x2X

k�(x)k2
A(�)(�)�1

max{(�(x)T ✓⇤ � ↵)2, �̃2}

⇥ log((�min(↵) _ e�)�1) log
�
|X |��1

�
.

We now contextualize the result of our theorem. In the
well specified setting with �(x) = x, h = 0, e� = 0, and
� = 0 MELK will terminate and return G↵ in a time

T�.(B2+�2) min
�24X

max
x2X

kxk2
A(�)�1

(xT ✓⇤�↵)2 log(�
�1
min) log

⇣
|X |

�

⌘

samples which nearly matches the rate suggested by the
linear lower bound in Theorem 3.1. The added factor
of log(|X |) stems from a union bound, while the depen-
dence on log(��1

min) is an additional overhead incurred
as MELK builds up an estimate of the optimal sample
allocation over rounds. We visualize this estimation
process in Figure 1 in the experiments.

In the more general misspecified setting when h >
0, we cannot expect to return G↵ exactly and �(↵)
characterizes the limit of how well one can estimate
f(x). Hence, x’s with gaps smaller than �̄(↵) cannot
reliably be detected by MELK. To better understand
this quantity, note that for any �0

2 R if we run MELK
with � = �0/T , Lemma 2 of Camilleri et al. (2021) can
be used to show that �̄(↵) . (

p
�k✓⇤k+ h)

p
�T where

�T := sup�24X log det(TA(0)(�)+�0I) is the maximum
information gain as defined by Srinivas et al. (2009);
Gotovos (2013); Bogunovic et al. (2016). Additionally,
it can be shown that �T  deff , where deff is the
effective dimension of �(x1), . . . ,�(xn) 2 H as defined
in Alaoui and Mahoney (2014); Derezinski et al. (2020).
In particular, to ensure that MELK correctly identifies
all points that are at least some gap � > h away
from the threshold, then we can choose � so that � >
(
p
�k✓⇤k + h)

p
�T . In practice we find that � = 1/T

works well. Finally, the user may additionally set a
tolerance e� > 0. In this case, we err on the side
of potentially returning extra arms that are not in
G↵ and show that the returned set bR contains all
x such that f(x) > ↵ + �(↵) and none such that
f(x) < ↵ � e� � �(↵). If however, a more selective
criteria is desired, the following remark characterizes
the output if bGt is returned instead.

Remark. If MELK instead returns bR = bGt then with
probability at least 1 � � bR ◆ {x 2 X : f(x) �
↵+�̃+�̄(↵)} and and bR ✓ {x 2 X : f(x) � ↵��̄(↵)}.

Contrast with Existing Approaches. The exper-
imental design based sampling approach is a departure
from past work on level set estimation. As opposed to
constructing an acquisition function and then bounding
the sample complexity of the resulting algorithm as
past works have done, we instead begin with an oracle
sampling scheme that arises from a lower bound and
attempt to design a practical sampling scheme that
matches it as more data is collected. In what follows,
we compare the guarantees of MELK to the prior art
such as Gotovos (2013); Shekhar and Javidi (2019); Bo-
gunovic et al. (2016). As a technical point, we note that

Nearly Optimal Algorithms for Level Set Estimation

these past results are specialized to the Gaussian pro-
cess setting where a prior on f is known. By contrast,
our work makes no assumption of a prior distribution.
Bogunovic (2019); Vakili et al. (2021) achieve similar
guarantees for the frequentist setting. Ignoring these
technicalities, our results are tighter than what were
previously known.

The past state of the art sample complexities all guar-
antee that algorithms terminate at the smallest time
T satisfying T & �T�min(↵)�2 up to log factors (cf.
Thm 1 of (Gotovos, 2013), Cor. 3.1 of (Bogunovic et al.,
2016), Thm 1 of (Shekhar and Javidi, 2019), etc.). If
we run MELK with � = �0/T then

min
�24X

max
x

k�(x)k2
A(�)(�)�1

(�(x)T ✓⇤ � ↵)2

 min
�24X

maxx k�(x)k2(A(�)+�I)�1

minx(�(x)T ✓⇤ � ↵)2
 3�T�min(↵)

�2

where the final inequality follows from Lemma 2 of
Camilleri et al. (2021) and the definition of �min(↵).

Remark. Combining the above analysis with the
result of Theorem 3.3 highlights that MELK likewise
terminates at or before a time T satisfying T &
�T�min(↵)�2, though it may stop long before this
as the above bound employing �T is only tight in the
pathological case when |�(x)T ✓⇤ � ↵| = �min(↵) 8x 2
X .

Remark. The lower bounds of Scarlett et al.
(2017); Cai and Scarlett (2021) show that a dependence
⌦(
p
�T) is necessary in the worst case for functions liv-

ing in an RKHS. Hence, MELK is instance optimal in
the linear regime by Theorem 3.1 and at least minimax
optimal in general.

4 IMPLICIT LEVEL SET
ESTIMATION

In the implicit level-set problem, for an ✏ � 0 we seek to
identify the set G✏ = {x : f(x) > (1� ✏)f(x⇤)}. Note
that unlike the explicit setting where the threshold ↵
was a given input to the algorithm, now the equivalent
notion of a threshold value ↵ is equal to (1� ✏)f(x⇤),
an unknown quantity since it relies on knowledge of
the unknown function f . A naive strategy would be
to attempt estimate (1 � ✏)f(x⇤) directly and then
apply explicit level-set estimation techniques using this
estimated threshold value. Indeed, this is precisely the
strategy of past works (Mason et al., 2020; Gotovos,
2013). Perhaps surprisingly however, it turns out that
estimating the threshold is unnecessary and potentially
wasteful. Towards developing lower bound to guide
an experimental design, we begin with a simple but
powerful observation.

Lemma 4.1. x 2 G✏ () 8x0
2 X : f(x) � (1 �

✏)f(x0). Conversely, x 2 Gc
✏ () 9x0 : f(x) <

(1� ✏)f(x0).

Proof.

x 2 G✏ () 6 9x
0 : (1� ✏)f(x0) > f(x)

() 8x0 : (1� ✏)f(x0)  f(x)

where the second equivalence holds by definition since
x⇤ maximizes (1 � ✏)f(x0) and we have that f(x) >
(1� ✏)f(x⇤) for any x 2 G✏. The statement for x 2 Gc

✏

holds via the negation

The following corollary specializes the previous lemma
to the well specified case.

Corollary 4.1.1. In the well specified setting where
h = 0,

x 2 G✏ () 8x0
2 X : ✓>

⇤
(�(x)� (1� ✏)�(x0)) � 0

and conversely,

x 2 Gc
✏ () 9x0 : ✓>

⇤
(�(x)� (1� ✏)�(x0)) < 0.

This lemma highlights that to determine if x 2 G✏, one
need only check if

✓>
⇤
(�(x)� (1� ✏)�(x0)) > 0 for all x0

2 X .

In particular, this does not require any estimate of the
threshold (1 � ✏)f(x⇤). Instead, it is only necessary
to maintain estimates of ordered pairs of points (x,x0)
without searching for x⇤ directly. Next, to guide our
algorithm design we look to an information-theoretic
lower bound.

Theorem 4.2. In the well-specified linear setting when
�(x) = x and f(x) = ✓>

⇤
x, for any � > 0, any algo-

rithm that returns the set G✏ with probability at least
1� � must satisfy

E[T�]
log(1/2.4�)�2 min

�24X
max

⇢
max
z2G✏

max
x02X

kx�(1�✏)x0
k
2
A(�)�1

(✓>
⇤ (x�(1�✏)x0))2 ,

max
x2Gc

✏

min
x02X

kx�(1�✏)x0
k
2
A(�)�1

(✓>
⇤ (x�(1�✏)x0))2

�

where T� denotes the random stopping time.

Notably, the directions �(x) � (1� ✏)�(x0) naturally
arise in the lower bound. This suggests an optimal
sampling distribution �⇤ that achieves the minimum of
the inequality in 4.2. As was the case in explicit level
set estimation, this sampling distribution also depends
on the unknown ✓⇤.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

4.1 Algorithm

Motivated by the lower bound, we propose Algo-
rithm 2 called MILK (Misspecified Implicit Level set
via Kernelization) which proceeds in phases where we
attempt to progressively match the optimal distribu-
tion from the lower bound as was done by MELK for the
explicit setting. The key difference, however is that
MILK instead computes a design to optimally estimate
✓>
⇤
(�(x)� (1� ✏)�(x0)) rather than ✓>

⇤
�(x) as in MELK.

Given active set A ⇢ X ⇥ X of pairs of arms define,

Y
✏(A) := {�(x)� (1� ✏)�(x0) : (x,x0) 2 A}.

The active set in round 1 is initialized as A1 = X ⇥ X .
MILK keeps track of sets bGt ⇢ X and bBt ⇢ X of arms
it believes to be in G✏ and Gc

✏ and makes use of the
RIPS procedure to robustly estimate means. As the
algorithm proceeds, in each round t an optimal design
is computed over remaining difference vectors in Y

✏(At)
and the number of samples Nt is sufficient to ensure
that |(✓⇤ � b✓)>(�(x) � (1 � ✏)�(x0))|  2�t+1. Then
for every arm that has not been added to bGt or bBt,
MILK does the following:

if 9x0 : b✓>((�(x)� (1� ✏)�(x0)) < 2�t

then x is added to bBt. In our proof, we show this
condition occurs if and only if there exists a x0 such
that ✓>

⇤
(�(x) � (1 � ✏)�(x0)) < 0. If this occurs, all

pairs of the form (x,x0) or (x0,x), x0
2 X are removed

from At
3. Semantically, if MILK can ensure that x is

not in G✏, then x is never sampled again. Otherwise,
for any x0 if b✓>(�(x)� (1� ✏)�(x0) > 2�t, the single
pair (x,x0) is removed from At. An arm x is only ever
added to bGt if {(x,x0),x0

2 X}\At = ; which occurs
when

8x0 : 9t0 such that b✓>t0 ((�(x)� (1� ✏)�(x0)) > 2�t0 .

In our proof, we show that this occurs if and only if
✓>
⇤
(�(x) � (1 � ✏)�(x0)) > 0 for all x0

2 X which is
both necessary and sufficient by Lemma 4.1. Note that
even if x has been added to bGt implying that all pairs
(x,x0) have been removed from At, x may be present in
other pairs (x0,x) which can be necessary to determine
if x0

2 G✏. Finally, the algorithm terminates when
either every arm has been added to either bGt or bBt or
it has reached a round t & log2(1/e�) when the desired
tolerance e� is achieved.

4.2 Theoretical Guarantees

Next we state MILK’s complexity, again deferring con-
stants and doubly logarithmic factors to the appendix
for readability.

3We assume that pairs are ordered, i.e. (x,x0) 6= (x0,x)
for x 6= x0.

Algorithm 2 MILK: Misspecified Implicit Level set
via Kernelization
Require: Arms X , �, � > 0, ✏ > 0, � � 0, tolerance e�
1: t 1, bG1 ! ;, bB1 ;, A1 {(x,x0),x,x0

2 X}

2: while | bGt [
bBt| < |X | and t  dlog2(4/e�)e do

3: �t �/2t2

4: Let �t 2 4X minimize g(�;At; �) where

g(�,V; �) := max
(x,x0)2V

k�(x)� (1� ✏)�(x0)k2A(�)(�)�1

5: qt 16 ·22tg(�t;At; �)(B2+�2) log(2t2|X |
2/�)

6:
7: Set Nt dmax {qt, 2 log(|X |/�)}e and sam-

ple x1, · · · , xNt observing noisy function values
y1, · · · , yNt according to �t.

8: b✓t RIPS(Y✏(At), {A(�)(�t)�1�(xi)yi}
Nt
i=1)

9: for (x,x0) 2 At do
10: if b✓>t (�(x)� (1� ✏)�(x0)) < �2 · 2�t then
11: bBt+1 x
12: x-pairs {(x,x0) and (x0,x)|x0

2 X}

13: At+1 At \ x-pairs
14: else if b✓>t (�(x)� (1� ✏)�(x0)) > 2 · 2�t

15: At+1 At \ {(x,x0)}
16: if {(x,x0)|x0

2 X} \At = ; then
17: bGt+1

bGt [{x}

18: t t+ 1
return bR := X \ bBt

Theorem 4.3. Fix � > 0, ✏ > 0, tolerance e�, and reg-
ularization � > 0. Define �min(✏) = minx |✓>

⇤
(�(x)�

(1� ✏)�(x⇤))|. Define also

�̄(✏) = min
�>0

(
4(
p
�k✓⇤k+ h)

2+
r

min
�24X

⌫(�,�)

!
 �

)
,

⌫(�,�) := max
(x,x0)2X⇥X

|✓>⇤ (�(x)�(1�✏)�(x0))|�

k✓>
⇤
(�(x)� (1� ✏)�(x0))k2A(�)(�)�1 .

With probability 1� �, MILK returns a set bR at a time
T� such that

bR ◆ {x 2 X : f(x) � (1� ✏)f(x⇤) + �̄(✏)} and
bR ✓ {x 2 X : f(x) � (1� ✏)f(x⇤)� e� � �̄(✏)}

and for any ✏, e� such that max(�min(✏), e�) � �̄(✏)

T� (B
2+�2)HMILK(✓⇤)log2((�min(✏) _ e�)�1)log

⇣
|X |

�

⌘

for HMILK(✓⇤) = min
�24X

n
HMILK-G✏

� (✓⇤) _H
MILK-Gc

✏
� (✓⇤)

o
,

where

H�
MILK-G✏(✓⇤) :=

max
x2G✏

max
x02X

k�(x)� (1� ✏)�(x0)k2
A(�)(�)�1

max{((�(x)� (1� ✏)�(x0))>✓⇤)2, e�2}
,

Nearly Optimal Algorithms for Level Set Estimation

and H
MILK-Gc

✏
� (✓⇤) :=

max
x2Gc

✏

max
x0

k�(x)� (1� ✏)�(x0)k2
A(�)(�)�1

max{((�(x)� (1� ✏)�(x⇤))>✓⇤)2, e�2}
.

The statement of Theorem 4.3 for MILK is similar that
of 3.3 for MELK. In the well specified case when e� = 0,
MILK returns G✏ exactly at a time T� that satisfies

T� . (B2+�2)HMILK(✓⇤) log2(�min(✏)) log
�
|X |��1

�

In this case, however, HMILK(✓⇤) is a maximum of
two different complexity terms. HMILK-G✏

� represents
the complexity of identifying all x 2 G✏. Similarly,
H

MILK-Gc
✏

� represents the complexity of identifying all
x 2 Gc

✏. Similar to the explicit setting, in the misspec-
ified case when h > 0, �(✏) similarly represents the
limit of how well we can estimate f(x) for any x 2 X

and e� allows for an additional tolerance such that MILK
detects all x for which f(x) > (1 � ✏)f(x⇤) + �(✏)

and none worse than f(x) < (1� ✏)f(x⇤)� �(✏)� e�.
The following remark addresses the setting where MILK
returns bGt instead.

Remark: If the algorithm instead returns bR = bGt,
then with probability at least 1� �

bR ◆ {x 2 X : f(x) � (1� ✏)f(x⇤) + e� + �̄(✏)} and
bR ✓ {x 2 X : f(x) � (1� ✏)f(x⇤)� �̄(✏)}.

Comparison with the Lower Bound

The complexity term HMILK(✓⇤) naturally breaks into
two terms. HMILK-G✏(✓⇤) represents the complexity of
finding arms in G✏ and it matches a corresponding term
in the lower bound. HMILK-Gc

✏(✓⇤) represents the com-
plexity of removing arms in Gc

✏ but is slightly different
than the term in the lower bound. As a consequence
of Theorem 4.1 of Mason et al. (2020) however, one
can show the term given in the lower bound for x 2 Gc

✏

is not achievable except asymptotically as � ! 0 in
general. Instead, the problem of implicit level set es-
timation reduces to the problem of all ✏-good arm
identification in multi-armed bandits studied by Mason
et al. (2020) when �(x) = x, h = 0, and xi = ei. We
show in the appendix that MILK’s sample complexity
matches the optimal finite time rate up to logarithmic
factors as shown in Mason et al. (2020).

Contrast with Existing Results

As was shown in the explicit setting, we can show that
the sample complexity bound in Theorem 4.3 improves
on the current state of the art. Take � = �0/T for any
�0
2 R. Then we may bound HMILK�G✏(✓⇤) as

min
�24X

max
x,x0

(
k�(x)� (1� ✏)�(x0)k2

A(�)(�)�1

((�(x)� (1� ✏)�(x0))>✓⇤)2

)

(a)
 4 min

�24X
max
x,x0

(
(1� ✏)2k�(x)� �(x0)k2

A(�)(�)�1

((�(x)� (1� ✏)�(x0))>✓⇤)2

_

✏2k�(x)k2
A(�)(�)�1

((�(x)� (1� ✏)�(x0))>✓⇤)2

)

(b)
 4

(1 + ✏)2

�min(✏)2
min
�24X

max
x,x0

n
k�(x0)� �(x)k2A(�)(�)�1

_k�(x)k2(A(�)(�))�1

o


8(1 + ✏)2

�min(✏)2
min
�24X

max
x
k�(x)k2A(�)(�)�1

(c)


12(1 + ✏)2

�min(✏)2
�T

where (a) follows by the triangle inequality, (b) by
definition of �min(✏) and (c) follows by Lemma 2 of
Camilleri et al. (2021). A similar computation follows
for HMILK�Gc

✏(✓⇤) Hence, MILK is at most O(�T�
�2
min)

though it can be much tighter as inequality (b) is tight
only in the worst case when all gaps are equal. In
particular, the result of Theorem 4.3 is tighter than
Theorem 2 of Gotovos (2013).

5 EXPERIMENTS

In this section, we compare our algorithms to existing
baselines in the literature. Additional details of these
methods and our experiments are in the Appendix.

Warm-Up: Optimal Sampling. In Figure 1 we il-
lustrate the sampling behavior of MELK. We let X =
{(i

30 ,
j
30)}

30
i,j=1 and considered the squared exponential

kernel k(x,x0) = exp(�kx � x0
k
2/2`2) with parame-

ter ` = 0.1. We also chose ✓⇤ ⇠ N (0, I900) and show
a contour plot of f(x) = ✓>

⇤
�(x). The black curve

represents the boundary of the ↵ = 0 level set. We
plot the sample allocations as the algorithm progresses
(taking � = 0). The initial distribution is mostly uni-
form with several sampling modes. In later rounds, the
points nearest to the boundary of the level set, given
by the black curve are sampled, and eventually, only
the points with the smallest gaps (the most difficult
regions) receive samples. As the number of samples
in round t is proportional to 22t, we compute the sum
of the designs weighted by the 22t to show the overall
sampling design. Additionally, we plot the asymp-
totic allocation suggested by Theorem 3.1, namely
�⇤ = argmin� maxx2X k�(x)k2A(�)(�)�1/(✓

>

⇤
�(x)�↵)2.

In particular, the weighted sum of the designs taken
by MELK is nearly identical to �⇤.

Gaussian Process Level Set Estimation. For our
main empirical evaluation, we focused on the Gaussian
Process setting for the explicit level set problem. In
the explicit level-set case we compare to LSE (Gotovos,

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Figure 1: Allocations across rounds for a function f(x, y) with a threshold of ↵ = 0 shown in black.

(a) Implicit (b) GP, ` = 0.05 (c) Cosine

Figure 2: Performance of MELK and MILK versus Gaus-
sian process baseline.

2013) and TruVar (Bogunovic et al., 2016). We drew
a function f : [0, 1] ! R from the Gaussian process
N (0, k(x,x0)) where the kernel is a squared exponential
kernel with parameter ` = .05 and [0, 1] was uniformly
discretized into 200 points. We assumed that the noise
variance was �2 = 1 (high noise) and the threshold was
chosen so that 10% of the function values were above
it. In this setting, we implement a batched version
of MELK that draws a fixed batch size of samples each
round (namely 10) and then recomputes the design.
This reflects the practical constraint that experimenters
may wish to collect a fixed number of samples at a
time rather than a potentially growing amount. To
provide a fair comparison to the GP-based methods,
we computed a posterior distribution on f in each
round. For each point we replaced our theoretically
justified confidence intervals in the RKHS setting with
confidence intervals arising from the posterior, namely
µ̂t(x)± �1/2�̂t(x) where µ̂t, �̂t are the posterior mean
and standard deviations respectively. As in past works,
we take �1/2 = 3 as theoretically justified choices of
� (eg. Theorem 1 of (Srinivas et al., 2009)) tend to
be overly conservative. We also took � dropping like
1/i on the i-th round we computed the design. We
ran 25 repetitions drawing a new choice of f each run.
Figure 2b shows the average F1 score of the set of
points each algorithm declares to be in G↵ respectively
with bars denoting 1 standard error. Our algorithm
performs very similarly to TruVar - an algorithm whose
acquisition function samples in a way to reduce the
average variance, unlike our method which tries to
reduce the maximum variance.

Our second comparison is in Figure 2c: we took f(x) =
cos(8⇡x), ` = .1, � = .2 (low noise regime) and chose
the threshold so that 30% of points were above it. We

then considered 700 points uniformly in [0, 1]. In the
appendix, we vary the underlying parameters of `,�2

to demonstrate the performance of these algorithms in
different regimes.

Linear Implicit Case. We additionally compare
against LSE-imp in the linear setting where �(x) = x
on a benchmark example from the linear bandits lit-
erature designed to test the effectiveness of adap-
tive sampling algorithms (Soare et al., 2014). For
x1, · · · ,xn 2 Rd, we take x1 = x⇤ = ✓⇤ = e1 and
x2 = e2. The remaining x3, · · · ,xn are set so that
their first two coordinates are cos(⇡/4(1 + ⇠))e1 and
sin(⇡/4(1 + ⇠))e2 for ⇠ ⇠ Unif(�.2, .2). We set the
threshold ↵ = 0.5, n = 100, and d = 25. Though
it is far below ↵, sampling arm x2 provides the most
information about which arms exceed the threshold.
In this setting, we ran both algorithms with the ex-
act confidence intervals as specified by their respective
theoretical guarantees leading to large sample complex-
ities, and we include further details in the appendix.
Indeed, we see in 2a that MILK outperforms LSE-imp.

6 CONCLUSION

In this work, we provide the first instance optimal
algorithms for explicit and implicit level set estimation
and provide theoretical and empirical justification for
our algorithms. In Appendix A we further explore the
potential impacts and limitations of this work.

Nearly Optimal Algorithms for Level Set Estimation

References

Alaoui, A. E. and Mahoney, M. W. (2014). Fast ran-
domized kernel methods with statistical guarantees.
arXiv preprint arXiv:1411.0306.

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. (2017).
Near-optimal design of experiments via regret mini-
mization. In International Conference on Machine
Learning, pages 126–135. PMLR.

Azzimonti, D., Ginsbourger, D., Chevalier, C., Bect,
J., and Richet, Y. (2021). Adaptive design of experi-
ments for conservative estimation of excursion sets.
Technometrics, 63(1):13–26.

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and
Vazquez, E. (2012). Sequential design of computer
experiments for the estimation of a probability of
failure. Statistics and Computing, 22(3):773–793.

Bogunovic, I. (2019). Robust adaptive decision making:
Bayesian optimization and beyond. Technical report,
EPFL.

Bogunovic, I., Scarlett, J., Krause, A., and Cevher,
V. (2016). Truncated variance reduction: A uni-
fied approach to bayesian optimization and level-set
estimation. arXiv preprint arXiv:1610.07379.

Bryan, B., Schneider, J., Nichol, R., Miller, C. J., Gen-
ovese, C. R., and Wasserman, L. (2005). Active
learning for identifying function threshold bound-
aries. In NIPS, pages 163–170. Citeseer.

Cai, X. and Scarlett, J. (2021). On lower bounds for
standard and robust gaussian process bandit opti-
mization. In International Conference on Machine
Learning, pages 1216–1226. PMLR.

Camilleri, R., Jamieson, K., and Katz-Samuels, J.
(2021). High-dimensional experimental design and
kernel bandits. In International Conference on Ma-
chine Learning, pages 1227–1237. PMLR.

Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E.,
Picheny, V., and Richet, Y. (2014). Fast parallel
kriging-based stepwise uncertainty reduction with
application to the identification of an excursion set.
Technometrics, 56(4):455–465.

Chowdhury, S. R. and Gopalan, A. (2017). On kernel-
ized multi-armed bandits. In International Confer-
ence on Machine Learning, pages 844–853. PMLR.

Degenne, R., Ménard, P., Shang, X., and Valko, M.
(2020). Gamification of pure exploration for linear
bandits. In International Conference on Machine
Learning, pages 2432–2442. PMLR.

Derezinski, M., Liang, F., and Mahoney, M. (2020).
Bayesian experimental design using regularized de-
terminantal point processes. In International Con-
ference on Artificial Intelligence and Statistics, pages
3197–3207. PMLR.

Fiez, T., Jain, L., Jamieson, K., and Ratliff, L. (2019).
Sequential experimental design for transductive lin-
ear bandits. arXiv preprint arXiv:1906.08399.

Gotovos, A. (2013). Active learning for level set esti-
mation. Master’s thesis, Eidgenössische Technische
Hochschule Zürich, Department of Computer Sci-
ence,.

Ha, H., Gupta, S., Rana, S., and Venkatesh, S. (2020).
High dimensional level set estimation with bayesian
neural network. arXiv preprint arXiv:2012.09973.

Iwazaki, S., Inatsu, Y., and Takeuchi, I. (2020).
Bayesian experimental design for finding reliable level
set under input uncertainty. IEEE Access, 8:203982–
203993.

Jamieson, K. G. and Jain, L. (2018). A bandit approach
to sequential experimental design with false discovery
control. Advances in Neural Information Processing
Systems, 31:3660–3670.

Jun, K.-S., Jain, L., Mason, B., and Nassif, H. (2020).
Improved confidence bounds for the linear logistic
model and applications to linear bandits. arXiv
preprint arXiv:2011.11222.

Katz-Samuels, J., Jain, L., Karnin, Z., and Jamieson,
K. (2020). An empirical process approach to the
union bound: Practical algorithms for combinatorial
and linear bandits. arXiv preprint arXiv:2006.11685.

Kaufmann, E., Cappé, O., and Garivier, A. (2016). On
the complexity of best-arm identification in multi-
armed bandit models. The Journal of Machine Learn-
ing Research, 17(1):1–42.

Lattimore, T. and Szepesvári, C. (2020). Bandit algo-
rithms. Cambridge University Press.

Locatelli, A., Gutzeit, M., and Carpentier, A. (2016).
An optimal algorithm for the thresholding bandit
problem. In International Conference on Machine
Learning, pages 1690–1698. PMLR.

Lugosi, G. and Mendelson, S. (2019). Mean estimation
and regression under heavy-tailed distributions: A
survey. Foundations of Computational Mathematics,
19(5):1145–1190.

Mason, B., Jain, L., Tripathy, A., and Nowak, R. (2020).
Finding all ✏-good arms in stochastic bandits. Ad-
vances in Neural Information Processing Systems,
33.

Scarlett, J., Bogunovic, I., and Cevher, V. (2017).
Lower bounds on regret for noisy gaussian process
bandit optimization. In Conference on Learning
Theory, pages 1723–1742. PMLR.

Shekhar, S. and Javidi, T. (2019). Multiscale gaussian
process level set estimation. In The 22nd Inter-
national Conference on Artificial Intelligence and
Statistics, pages 3283–3291. PMLR.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Soare, M., Lazaric, A., and Munos, R. (2014). Best-
arm identification in linear bandits. arXiv preprint
arXiv:1409.6110.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M.
(2009). Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995.

Todd, M. J. (2016). Minimum-volume ellipsoids: The-
ory and algorithms. SIAM.

Vakili, S., Bouziani, N., Jalali, S., Bernacchia, A., and
Shiu, D.-s. (2021). Optimal order simple regret for
gaussian process bandits. Advances in Neural Infor-
mation Processing Systems, 34.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. (2013). Finite-time analysis of kernelised
contextual bandits. arXiv preprint arXiv:1309.6869.

Zanette, A., Zhang, J., and Kochenderfer, M. J. (2018).
Robust super-level set estimation using gaussian pro-
cesses. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 276–291. Springer.

Nearly Optimal Algorithms for Level Set Estimation

Contents

1 INTRODUCTION 1

1.1 Problem Statement . 2

2 RELATED WORKS 2

3 EXPLICIT LEVEL SET ESTIMATION 3

3.1 Algorithm . 4

3.2 Optimal Sample Complexity for Explicit Level Set Estimation . 5

4 IMPLICIT LEVEL SET ESTIMATION 6

4.1 Algorithm . 7

4.2 Theoretical Guarantees . 7

5 EXPERIMENTS 8

6 CONCLUSION 9

Appendices 12

A Impacts and Limitations 13

B Summary of Gaussian Processes Approaches for Level Set Estimation 13

C Robust estimators for function means 14

D Proofs for Explicit Level Set Estimation 14

D.1 Lower Bound . 14

D.2 Upper Bound . 15

E Proofs for Implicit Level Set Estimation 20

E.1 Lower Bounds . 20

E.2 Comparison to the lower bound of (Mason et al., 2020) . 22

E.3 Upper Bound . 23

F Additional Experiment Details 29

F.1 Algorithms Implemented . 29

F.2 Additional Experiments . 31

G Reducing Experimental Design in an RKHS to a finite dimensional optimization 33

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

A Impacts and Limitations

Active learning uses a design objective to drive a sampling policy. In the simplest cases of active learning, such
as regret minimization in standard multiarmed bandits, the relatively simple and unstructured setting leads to
simple and easy to interpret sampling rules. For instance, the famed UCB algorithm simply forms confidence
widths and pulls the arm with the largest upper bound. The transparency of this sampling rule makes UCB and
algorithms like it inherently easy to diagnose and monitor in real time. For past algorithms in level set estimation,
the acquisition functions merit easy oversight. By contrast, our work introduces optimal design to the area of
level set estimation. As we show in our work, this can lead to improved sample complexity both theoretically
and empirically. However, as the sampling distributions are based on a more complicated objective, how the
algorithm chooses which data to collect is less immediately obvious or intuitive. This may make detecting issues
such as biased sampling harder to detect and guard against, and for any large scale use of these algorithms in the
wild, special care should be given to understand which points are being sampled the most and why. Furthermore,
a common issue for many active learning approaches, this work included, is the possibility of model mismatch for
any assumptions made in the theoretical analysis. While this work removes the need for an assumed prior over
the true function f , other assumptions are still needed for the analysis, such as the function f not varying in
time. If these assumptions are violated, the claims herein need not be true.

Any assumption made in this paper may reasonably be considered a limitation on the work depending on the
application domain, though we hope that analytical assumptions may be easily modified to alter the algorithms to
the practitioner’s needs. This is true, for instance in the case of all confidence widths we use. Another limitation of
this work is computational complexity. The RIPS procedure necessary to compute estimates of individual function
values relies on a robust estimator for each x 2 X . In this work, we leverage the Catoni estimator. While this is
efficient for individual x’s, as we observed in our experiments, if the set X is large, this can become cumbersome.
Additionally, how to best optimize the experimental design objectives is an active area of research and must be
done carefully. Finally, our algorithms both suffer potentially bad logarithmic terms in the per-round sample
complexity, and this can affect the real-world performance of MELK and MILK. The technique of (Katz-Samuels
et al., 2020) may be able to avoid this.

B Summary of Gaussian Processes Approaches for Level Set Estimation

In Table 2, we briefly summarize past algorithmic approaches to level set estimation. In general, past methods
center around the design of an acquisition function which at each time t tells the algorithm which point to go
sample. By contrast, the algorithms in this paper both use experimental design to to select batches of samples to
go gather at one time.

Algorithm Acquisition Function Theoretical guarantee
Straddle argmaxi ui(t)� ⌧ ^ ⌧ � `i(t) None, ui(t) and `i(t) are set as 1.96 · �t�1.
LSE argmaxi ui(t)� ⌧ ^ ⌧ � `i(t) ⌘-approximate solution in T . �t log(n/�)

⌘2

TruVar argminxi

P
xj

�2
t�1|xi

(xj) ⌘-approximate solution in T . �t log(n/�)
⌘2

RMILE argmax
xi

{E
X

(PGP |xi
(f(xj) > ⌧)

�PGP (f(xj) > ⌧)),�2(xi)}

can be shown to be similar to A-optimality, no complexity guarantee

MELK G-optimal design Matching upper and lower bounds in the linear case.

Table 1: Algorithms and theoretical guarantees for explicit LSE

Algorithm Acquisition function Theoretical guarantee
LSE-imp argmaxi �2(xi) ⌘-approximate solution in T . �t log(n/�)

⌘2

MILK XY optimal design over vectors �(x)� (1� ✏)�(x0) Upper bounds and matching lower for certain cases.

Table 2: Acquisition functions and theoretical guarantees for implicit level set estimation

Nearly Optimal Algorithms for Level Set Estimation

C Robust estimators for function means

In order for the algorithm to declare whether points x belong in G↵ (or G✏ in the sequel) or not, we require an
estimator of the function values f(x). As we have introduced structure by assuming that f is well approximated
by a function ✓⇤ in the RKHS H, we seek an estimator that leverages this structure to provide accurate estimates
of many arms given samples of only a few. As a warmup, in the linear case where �(·) is the identity map, one
could form the least squares or regularized least squares estimate of ✓⇤ denoted b✓ and estimate the mean of any
point x as b✓Tx. To sample to estimate ✓⇤, optimal design procedures first compute a design � 2 4X . Then for a
specified number of samples N , it is common to use an efficient rounding procedure such as (Allen-Zhu et al.,
2017) to compute an allocation of the N samples to the arms X such that xi gets roughly �i ·N samples (Fiez
et al., 2019; Jun et al., 2020). Efficient rounding procedures require that N = ⌦(d), and while this is a minor
assumption in the case of a linear RKHS where �(x) = x, in general �(x) may be infinite dimensional, and naive
rounding is not possible. Instead of performing rounding given design �, one may instead sample from � directly
and use inverse propensity scoring (IPS) which avoids bad dimensional factors but can have high variance.

In this work, we leverage the RIPS estimator from (Camilleri et al., 2021) which combines IPS with robust
mean estimation and regularization to control variance and is presented in Algorithm 3. RIPS requires a robust
mean estimator for its performance and theoretical guarantees. In Theorem 3.2, we state the guarantee of this
estimator.

Algorithm 3 RIPS: Robust IPS estimator

Require: Finite sets X ⇢ Rd and V ⇢ H, feature map � : Rd
! H, number of samples ⌧ , regularization � > 0,

robust mean estimator bµ : R⇤
! R

� := arg min
�24X

max
v2V

kvk(A(�)(�))�1

1: Randomly draw ex1, . . . , ex⌧ from X according to �⇤

2: Set W (v) = bµ({v>A(�)(�⇤)�1�(ext)eyt}⌧t=1)

return b✓ := argmin✓ maxv2V

|h✓,vi�W (v)
|

kvk
(A(�)(�))�1

We next state the complete theoretical guarantee of the RIPS estimator.

Theorem C.1 (Theorem 1, (Camilleri et al., 2021)). Consider the model y = h�(x), ✓⇤iH + ⇣x + ⌘ for mis-
specification |⇣x|  h where it is assumed that |y|  B, E[⌘] = 0, and E[⌘2]  �2. Fix any finite sets X ⇢ Rd

and V ⇢ H, feature map � : Rd
! H, number of samples ⌧ and regularization � > 0. If the RIPS procedure of

Algorithm 3 is run with �
|V|

-robust mean estimator bµ(·) and if ⌧ � c1 log(|V|/�) then with probability at least 1� �,
we have

max
v2V

|W (v)
� h✓⇤,vi|

kvk(A(�)(�))�1


p
�k✓⇤k+ h

+ c

q
(B2+�2)

⌧ log(2|V|/�)

Moreover, W (v) = bµ({v>A(�)(�)�1�(xt)yt}⌧t=1) can be replaced by hb✓,vi by multiplying the RHS by a factor of 2.

For RIPS, we leverage Catoni’s estimator (Lugosi and Mendelson, 2019) for which c1 = 2 and c = 4 suffice.

D Proofs for Explicit Level Set Estimation

D.1 Lower Bound

Proof of Theorem 3.1. Recall that we have assumed that h = 0 and �(x) = x. We begin with a result of (Fiez
et al., 2019) that will be useful here.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Lemma D.1 ((Fiez et al., 2019), Remark 2). The projection onto the closure of the set {✓ 2 Rd : ✓Tx < ↵}
under the k · kA(�) norm is given by

✓x := ✓ �
(✓Tx� ↵)A(�)�1x

kxk2A(�)�1

.

By (Kaufmann et al., 2016), we have that the any �-PAC algorithm for all-↵ requires

min
�

KL(1� �, �)

min✓02Alt(✓⇤) k✓
0 � ✓⇤kA(�)

where Alt(✓⇤) is the set of alternates such that G↵(✓⇤) 6= G↵(✓0) for any ✓0 2 Alt(✓⇤). The set of alternates may
be decomposed as

Alt(✓⇤) =

0

@
[

x2G↵(✓⇤)

{✓0 : x 62 G↵(✓
0)}

1

A [

0

@
[

x2G↵(✓⇤)c

{✓0 : x 2 G↵(✓
0)}

1

A

Note that x 2 G↵(✓⇤) () ✓T
⇤
x > ↵. Hence, the set of alternates for any x 2 G↵(✓⇤) such that x 2 Gc

↵(✓
0) for

any ✓0 2 Alt(✓⇤) is given by
Ax := {✓ 2 Rd : ✓Tx < ↵}.

Next note that x 2 Gc
↵(✓⇤) () ✓T

⇤
x < ↵. Hence, for any x 2 Gc

↵(✓⇤) the set of alternates such that x 2 G↵(✓0)
for any ✓0 2 Alt(✓⇤) is given by

Ax := {✓ 2 Rd : ✓Tx > ↵}.

Next, we discuss how to project onto Ax. As this set is open, to be precise, we should take a point in the interior
and consider the limit for a sequence approaching the boundary. For brevity, we simply project onto the closure
and consider the closures of the Ax sets. Using the decomposition of Alt(✓⇤) we have that

min
✓02Alt(✓⇤)

k✓0 � ✓⇤kA(�) = min
x

min
✓02Ax

k✓0 � ✓⇤kA(�) = min
S2{G↵,Gc

↵}

min
x2S

min
✓2Ax

k✓0 � ✓⇤kA(�).

For x 2 G↵(✓⇤), using Lemma D.1 and recalling the definition of the set ✓x therein,

min
✓02Ax

k✓0 � ✓⇤kA(�) = min
✓02{✓2Rd:✓Tx↵}

k✓0 � ✓⇤kA(�) = k✓x � ✓⇤kA(�).

The statement for points in Gc
↵ follows identically. Hence,

min
✓02Alt(✓⇤)

k✓0 � ✓⇤kA(�) = min
x
k✓x � ✓⇤kA(�)

Note that
k✓x � ✓⇤kA(�) =

(✓T
⇤
(x0
� x)� ↵)2

2kxk2A(�)�1

by Theorem 2 of (Fiez et al., 2019). Hence, any �-PAC algorithm requires at least

2min
�

max
x

kxk2A(�)�1

(✓T
⇤
x� ↵)2

KL(1� �, �)

samples in expectation. Noting that the binary entropy KL(1� �, �) � log(1/2.4�) completes the proof.

D.2 Upper Bound

Next, we restate Theorem 3.3 that bounds the complexity of MELK.
Theorem D.2. Fix � > 0, threshold ↵ > 0, tolerance e�, and regularization � � 0. Define �min(↵) :=
min |�(x)T ✓⇤ � ↵|. Define also

�̄(↵) = min{� > 0 : 4(
p
�k✓⇤k+ h)(2 +

q
f(X , {�(x)|x 2 X , |�(x)T ✓⇤ � ↵|  �} ; �))  �}.

Nearly Optimal Algorithms for Level Set Estimation

With probability at least 1� �, MELK returns a set bR = (X \ bBt) at time T� such that

{x 2 X : f(x) � ↵+ �̄(↵)} ✓ bR ✓ {x 2 X : f(x) � ↵� e� � �̄(↵)}

and for any ↵, e� such that max(�min(↵), e�) � �̄(↵)

T�  256(B2 + �2) min
�24X

max
x2X

k�(x)k2(A(�)+�I)�1

max{(�(x)T ✓⇤ � ↵)2, �̃2}
log

4|X |

2
dlog2(4(�min(↵) _ e�)�1

e
2

�

!

+ 2 log(|X |/�)dlog2(4(�min(↵) _ e�)�1
e

Recall the definition of the set G↵ := {x 2 X : f(x) > ↵}.
Lemma D.3. For any V ⇢ X define f(X ,V; �) = min�24X maxv2V kvk2(Px2X �x�(x)�(x)>+�I)�1 .
In each round t, define the event

Et = {|xT (b✓t � ✓⇤)|  2�t + (
p
�k✓⇤k+ h)

p
f(X ,At; �) 8 x 2 At}

Holds P(
S

1

t=1 E
c
t)  �.

Proof. Using Theorem 3.2, for any x 2 At we have that with probability at least 1� �t/|X |
2

|xT (b✓t � ✓⇤)|  kxk(
P

x2X �xxxT+�I)�1

✓
p
�k✓⇤k+ h+ c

q
(B2+�2)

Nt
log(2t2|X |2/�)

◆



p
f(X ,At; �)

⇣
p
�k✓⇤k+ h+ 2�t/

p
f(X ,At; �)

⌘

 2�t + (
p
�k✓⇤k+ h)

p
f(X ,At; �)

Since |At|  |X |
2, Et holds for all x 2 At with probability 1� �t via a union bound. Taking a second union bound

over rounds, we have that

P

1[

t=1

E
c
t

!


1X

t=1

P(Ec
t) 

1X

t=1

�t =
1X

t=1

�

2t2
 �

Define

t̄ = max{t : (
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |xT ✓⇤ � ↵|  2�t+2} ; �))  2�t

}.

As we will see in Lemmas D.6 and D.7,

At ⇢
�
x 2 X : |xT ✓⇤ � ↵|  2�t+1

.

Thus for t  t̄, holds on
T

t Et that

8x 2 At , |x
T (b✓t � ✓⇤)|  2 · 2�t.

Lemma D.4. On
T

t Et, when t  t̄ holds bGt ⇢ G�
↵ := {x : �(x)T ✓⇤ > ↵}.

Remark: If h = 0, G�
↵ = G↵.

Proof.

x 2 bGt () 9t0  t : �(x)T b✓t0 � ↵+ 2 · 2�t0

() 9t0  t : �(x)T (b✓t0 � ✓⇤) + �(x)T ✓⇤ � ↵+ 2 · 2�t0

T
t Et

=) �(x)T ✓⇤ > ↵

() x 2 G�
↵.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Lemma D.5. On
T

t Et, when t  t̄ holds, bBt ⇢ (G�
↵)

c.

Proof.

x 2 bBt () 9t
0
 t : �(x)T b✓t  ↵� 2 · 2�t0

9t0  t : �(x)T (b✓t � ✓⇤) + �(x)T ✓⇤  ↵� 2 · 2�t0

T
t Et

=) �(x)T ✓⇤ < ↵

() x 2 (G�
↵)

c.

Lemma D.6. On the event
T

t Et, when t  t̄ holds,

At \G�
↵ ⇢

⇢
x 2 G�

↵

����|�(x)
T ✓⇤ � ↵|  2�t+2

�
=: SAbove

t

Proof. For any x 2 G�
↵ such that �(x)T ✓⇤ > ↵+ 2�t+1, if t � log(4(↵� �(x)T ✓⇤)�1) and t  t̄, then

�(x)T b✓t = �(x)T (b✓t � ✓⇤) + �(x)T ✓⇤ > �2�t+1 + ↵+ 2�t+1 = ↵ � ↵

which implies that x 2 bGt. Noting that At \
bGt�1 = ; completes the proof.

Lemma D.7. On the event
T

t Et, when t  t̄ holds,

At \ (G�
↵)

c
⇢

⇢
x 2 (G�

↵)
C

����|�(x)
T ✓⇤ � ↵|  2�t+2

�
=: SBelow

t

Proof. The proof follows identically as that of Lemma D.6

Remark: Lemmas D.6 and D.7 jointly imply that At ⇢
�
x|�(x)T ✓⇤ � ↵|  2�t+2

=: St for t  t̄. Furthermore,

f(X ,At, �)  f(X ,St, �).

Remark:
The algorithm stops on either of two conditions. On one hand if t � dlog2(4/e�)e =: t� , then it has achieved
precision e� as desired and it terminates. Otherwise, it terminates if bGt [

bBt = X . This occurs when e� is very
small. Define �min(↵) := min |�(x)T ✓⇤ � ↵|. Recall

t̄ = max{t : (
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |�(x)T ✓⇤ � ↵|  4 · 2�t} ; �))  2�t

}

= max{t : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |�(x)T ✓⇤ � ↵|  4 · 2�t} ; �))  4 · 2�t

}

= �2 + max{t : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |�(x)T ✓⇤ � ↵|  2�t} ; �))  2�t

}

= �3� log2(min{� > 0 : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |�(x)T ✓⇤ � ↵|  �} ; �))  �}).

This defines

�̄ = min{� > 0 : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {x 2 X : |�(x)T ✓⇤ � ↵|  �} ; �))  �}.

Let tmax denote the random variable of the last round before the algorithm terminates. The following Lemmas
give a guarantee on the set X \ bBt at termination.

Lemma D.8. On the event
T

1

t=1 Et, MELK returns a set (X \ bBtmax) such that {x : f(x) > ↵+ �̄(↵)} ⇢ (X \ bBtmax).

Nearly Optimal Algorithms for Level Set Estimation

Proof. Take any x such that f(x) > ↵+ �̄(↵) and recall that by assumption |f(x)� �(x)T ✓⇤|  h for all x 2 X .
We consider two cases. In the first case, assume that tmax  t̄. We claim that in this case 6 9t such that x 2 bBt.
We prove this by contradiction. Assume not. Then 9t such that

b✓Tt �(x) < ↵� 2�t+1
() �(x)T (b✓t � ✓⇤) + �(x)T ✓⇤ < ↵� 2�t+1

Et=) �2�t
� (
p
�k✓⇤k+ h)

p
f(X ,At; �) + �(x)T ✓⇤ < ↵� 2�t+1

=) �2�t
� (
p
�k✓⇤k+ h)

p
f(X ,St; �) + �(x)T ✓⇤ < ↵� 2�t+1

=) � (
p
�k✓⇤k+ h)

p
f(X ,St; �) + f(x)� h < ↵� 2�t

=) f(x) < ↵� 2�t + h+ (
p
�k✓⇤k+ h)

p
f(X ,St; �).

Recalling that we have assumed that f(x) > ↵+ �̄(↵). Hence, this implies that

�̄(↵) < �2�t + h+ (
p
�k✓⇤k+ h)

p
f(X ,St; �).

Note that �̄(↵) > 0. As we have assumed that, t  tmax  t̄, we have that 2�t
�
�p

�k✓⇤k+ h
�p

f(X ,St; �)
using the definition of t̄. Hence, we have that

h > �̄(↵) > 4h

which is a contradiction where the final inequality follows from the definition of �̄(↵) for � > 0. Hence, in this
case we have shown that {x : f(x) > ↵+ �̄(↵)} ⇢ (X \ bBtmax).

In the second case, assume that tmax > t̄ and take x such that f(x) > ↵+ �̄(↵). We claim that x 2 bGt̄ and hence
x 62 At for any t > t̄ and thus is never added to bBt. This occurs if

�(x)T b✓t̄ > ↵+ 2�t̄+1
() �(x)T (b✓t̄ � ✓⇤) + �(x)T ✓⇤ > ↵+ 2�t̄+1

Et̄
(= �2�t̄

� (
p
�k✓⇤k+ h)

p
f(X ,At̄; �) + �(x)T ✓⇤ � ↵+ 2�t̄+1

(= �2�t̄
� (
p
�k✓⇤k+ h)

p
f(X ,St̄; �) + �(x)T ✓⇤ � ↵+ 2�t̄+1

() �(x)T ✓⇤ � ↵+ 2�t̄+1 + 2�t̄ + (
p
�k✓⇤k+ h)

p
f(X ,St̄; �)

Recall that f(x) > ↵+ �̄(↵). Furthermore, we have by the definition of t̄ that

2�t̄
� (
p
�k✓⇤k+ h)

p
f(X ,St̄; �).

Hence, the above is implied by �̄(↵)� h � 4 · 2�t = 0.5�̄(↵) where the final equality holds by definition of �̄(↵).
Noting that �̄(↵) > 4h proves this claim. In summary, we have shown that for any x such that f(x) > ↵+ �̄(↵),
if tmax  t̄, then x is never added to bBt and hence is contained in the set X \ bBt at termination, and if otherwise
that tmax > t̄, then x is added to the set bGt before round t̄+ 1 and hence is removed from the active set and
never added to bBt. Applying this argument to any x such that f(x) > ↵+ �̄(↵) completes the proof.

Lemma D.9. On the event
T

1

t=1 Et, MELK returns a set (X \ bBtmax) such that (X \ bBtmax) ⇢ {x : f(x) >

↵� �̄(↵)� e�}.

Proof. Take any x such that f(x) < ↵� �̄(↵)� e�. We claim that there exists a t  tmax such that x is added to
bBt which implies that x 62 (X \ bBtmax). Suppose for contradiction that this is not the case. Then for all t  tmax,

b✓Tt �(x) > ↵� 2�t+1
() �(x)T (b✓t � ✓⇤) + �(x)T ✓⇤ > ↵� 2�t+1

Et=) 2�t + (
p
�k✓⇤k+ h)

p
f(X ,At; �) + �(x)T ✓⇤ > ↵� 2�t+1

=) 2�t + (
p
�k✓⇤k+ h)

p
f(X ,St; �) + �(x)T ✓⇤ > ↵� 2�t+1

=) (
p
�k✓⇤k+ h)

p
f(X ,St; �) + f(x) + h > ↵� 2�t+1

� 2�t

=) f(x) > ↵� 2�t+1
� 2�t

� h� (
p
�k✓⇤k+ h)

p
f(X ,St; �).

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Plugging in f(x) < ↵� �̄(↵)� e�, the above implies

�̄(↵) + e� < 2�t+1 + 2�t + h+ (
p
�k✓⇤k+ h)

p
f(X ,St; �) (3)

Next, recall that MELK terminates either on the condition that t = dlog2(4/e�)e or that bGt [
bBt = X . Using this,

we brake our analysis into cases.

Case 1: tmax = dlog2(4/e�)e  t̄.

In this case, MELK stops due to the e� tolerance in a round before t̄. For t  t̄, we have that 2�t
�

+
�p

�k✓⇤k+ h
�p

f(X ,St; �). Hence, the above implies that

�̄(↵) + e� < 2�t+2 + h.

As we have assumed this condition for all t  tmax, we may plug in tmax which implies

�̄(↵) + e� < e� + h.

As �̄(↵) > h, this is a contradiction. Hence there must exist a t such that x 2 bBt.

Case 2: tmax  t̄ < dlog2(4/e�)e.

In this case, MELK terminates before round t = dlog2(4/e�)e. Hence, it does so on the condition that bGt [
bBt = X .

Note that for f(x) < ↵� �̄(↵)� e�, we have that x 2 (G�
↵)

c since �̄(↵) > h and e� � 0. If we terminate before
round t̄, we have by Lemma D.5 that (G�

↵)
c
⇢ bBt which implies that x 2 bBtmax . This contradicts the assumption

that 6 9t : x 2 bBt.

Case 3: t̄ < tmax.

In this case, MELK terminates at a round after t̄. In this setting, we argue that x 2 bBt̄. Recall that for any t  t̄,
(3) simplifies to

�̄(↵) + e� < 2�t+2 + h

Plugging in t̄, and noting that 2�t̄+2 = 1
2 �̄(↵), the above implies

�̄(↵) + e� <
1

2
�̄(↵) + h.

Noting that �̄(↵) > 4h, shows that the above is a contradiction. Hence, there exists a t  t̄ such that x 2 bBt.

Therefore, in all cases we have shown that for any x such that f(x) < ↵� �̄(↵)� e�, x 2 bBt. Therefore, for the
returned set X \ bBtmax , we have that

(X \ bBtmax) ⇢ {x : f(x) > ↵� �̄(↵)� e�}.

Proof of Theorem 3.3. Throughout, assume the high probability event
T

T Et. By Lemmas D.8 and D.9
in conjunction with the high probability event

T
Et we have correctness. It remains to control the

sample complexity of MELK. Recall that we have assumed that max(�min(↵), e�) � �̄(↵). This implies
that min{dlog2(4/�min(↵)e, dlog2(4/e�)e}  t̄. Applying Lemmas D.6 and D.7, we have that tmax 

min{dlog2(4/�min(↵)e, dlog2(4/e�)e}  t̄ and that At ✓ St for all rounds t. Now we proceed by bounding
the total number of samples drawn.

⌧ 
tmaxX

t=1

Nt

Nearly Optimal Algorithms for Level Set Estimation



min{t�dlog2(4/�min(↵))e,t�dlog2(4/e�)e}X

t=1

Nt

=

dlog2(4(�min(↵)_e�)�1
eX

t=1

max
�
c1 log(|X |/�), c222tf(At; �)(B

2 + �2) log(2t2|X |
2/�)

 c1 log(|X |/�)dlog2(4(�min(↵) _ e�)�1
e+ c2(B2 + �2)

dlog2(4(�min(↵)_e�)�1
eX

t=1

22tf(At; �) · log(2t
2
|X |

2/�)

= c1 log(|X |/�)dlog2(4(�min(↵) _ e�)�1
e+

c2(B2 + �2)

dlog2(4(�min(↵)_e�)�1
eX

t=1

22t min
�24X

max
x2At

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1 · log(2t2|X |
2/�)

 c1 log(|X |/�)dlog2(4(�min(↵) _ e�)�1
e+

c2(B2 + �2) log

4|X |

2
dlog2(4(�min(↵) _ e�)�1

e
2

�

!

·

dlog2(4(�min(↵)_e�)�1
eX

t=1

22t min
�24X

max
x2At

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1

At⇢St

 c1 log(|X |/�)dlog2(4(�min(↵) _ e�)�1
e+

c2(B2 + �2) log

4|X |

2
dlog2(4(�min(↵) _ e�)�1

e
2

�

!

·

dlog2(4(�min(↵)_e�)�1
eX

t=1

22t min
�24X

max
x2St

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1 .

It remains to control the final summation. To do so, note that

1

dlog2(4(�min(↵) _ e�)�1e

dlog2(4(�min(↵)_e�)�1
eX

t=1

22t min
�24X

max
x2St

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1

 max
tdlog2(4(�min(↵)_e�)�1e

min
�24X

22t min
�24X

max
x2St

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1

 min
�24X

max
tdlog2(4(�min(↵)_e�)�1e

22t min
�24X

max
x2St

kxk2
(
P

x2X �t(x)�(x)�(x)T+�I)�1

 16 min
�24X

max
x

k�(x)k2(Px2X �t(x)�(x)�(x)T+�I)�1

max{(�(x)T ✓⇤ � ↵)2, e�2}

Plugging this along with c = 4 and c1 = 2 for Theorem C.1 from RIPS with the Catoni estimator in completes
the proof.

E Proofs for Implicit Level Set Estimation

E.1 Lower Bounds

Proof of Theorem 4.2. Recall that in this setting, h = 0 and �(x) = x. By (Kaufmann et al., 2016), we have
that the any �-PAC algorithm for all-✏ requires

min
�

KL(1� �, �)

min✓02Alt(✓⇤) k✓
0 � ✓⇤kA(�)

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

where Alt(✓⇤) is the set of alternates such that G✏(✓⇤) 6= G✏(✓0) for any ✓0 2 Alt(✓⇤). The set of alternates may
be decomposed as

Alt(✓⇤) =

0

@
[

x2G✏(✓⇤)

{✓0 : x 62 G✏(✓
0)}

1

A [

0

@
[

x2G✏(✓⇤)c

{✓0 : x 2 G✏(✓
0)}

1

A

By Lemma 4.1, x 2 G✏ () 8x0 : ✓T
⇤
(x� (1� ✏)x0) > 0. Hence, the set of alternates for any x 2 G✏(✓⇤) such

that x 2 Gc
✏(✓

0) for any ✓0 2 Alt(✓⇤) is given by

Ax :=
[

x02X

{✓ 2 Rd : ✓T (x� (1� ✏)x0) < 0}.

Furthermore, by Lemma 4.1 x 2 Gc
✏ () 9x0 : ✓T

⇤
(x � (1 � ✏)x0) < 0. Hence, for any x 2 Gc

✏(✓⇤) the set of
alternates such that x 2 G✏(✓0) for any ✓0 2 Alt(✓⇤) is given by

Ax :=
\

x02X

{✓ 2 Rd : ✓T (x� (1� ✏)x0) > 0}.

Next, we discuss how to project onto Ax. As this set is open, to be precise, we should take a point in the interior
and consider the limit for a sequence approaching the boundary. For brevity, we simply project onto the closure
and consider the closures of the Ax sets. Using the decomposition of Alt(✓⇤) we have that

min
✓02Alt(✓⇤)

k✓0 � ✓⇤kA(�) = min
x

min
✓02Ax

k✓0 � ✓⇤kA(�) = min
S2{G✏,Gc

✏}

min
x2S

min
✓2Ax

k✓0 � ✓⇤kA(�).

Reminiscent of Lemma D.1, we define

✓✏x,x0(�) := ✓⇤ � [✓T
⇤
(x� (1� ✏)x0)]

A(�)�1(x� (1� ✏)x0))

kx� (1� ✏)x0k
2
A(�)�1

.

For x 2 G✏(✓⇤), using Lemma D.1,

min
✓02Ax

k✓0 � ✓⇤kA(�) = min
✓02

S
x02X {✓2Rd:✓T (x�(1�✏)x0)<0}

k✓0 � ✓⇤kA(�) = min
x0
k✓✏x,x0(�)� ✓⇤kA(�)

where the latter equality follows since projecting onto a union of hyperplanes is achieved by the projection onto
the closest constituent.

For x 2 Gc
✏(✓⇤) note that Ax is an intersection of half spaces {✓ 2 Rd : ✓T (x � (1 � ✏)x) > 0} for x0

2 X . As
it is not in general possible to give a closed form expression for projection onto an intersection of convex sets.
However, we may at a (possibly very loose) minimum note that the projection onto the union of the hyperplanes
is at least as far as the projection onto the furthest hyperplane. Therefore, for any x 2 G✏(✓⇤)c,

min
✓02Ax

k✓0 � ✓⇤kA(�) = min
✓02

T
x02X {✓2Rd:✓T (x�(1�✏)x0)>0}

k✓0 � ✓⇤kA(�)  max
x0
k✓✏x,x0(�)� ✓⇤kA(�)

Hence we have that

min
✓02Alt(✓⇤)

k✓0 � ✓⇤kA(�)  min

⇢
min
x2G✏

min
x0
k✓✏x,x0(�)� ✓⇤kA(�), min

x2Gc
✏

max
x0
k✓✏x,x0(�)� ✓⇤kA(�)

�
.

Note that
k✓✏x,x0(�)� ✓⇤kA(�) = 2

(✓T
⇤
(x� (1� ✏)x0))2

kx� (1� ✏)x0k
2
A(�)�1

by Theorem 2 of (Fiez et al., 2019). Hence, any �-PAC algorithm requires

2min
�

max

(
max
x2G✏

max
x0

kx� (1� ✏)x0
k
2
A(�)�1

(✓T
⇤
(x� (1� ✏)x0))2

, max
x2Gc

✏

min
x0

kx� (1� ✏)x0
k
2
A(�)�1

(✓T
⇤
(x� (1� ✏)x0))2

)
KL(1� �, �)

samples in expectation. Noting that KL(1� �, �) � log(1/2.4�) completes the proof.

Nearly Optimal Algorithms for Level Set Estimation

E.2 Comparison to the lower bound of (Mason et al., 2020)

Here, we compare the sample complexity given in Theorem 4.3 to the result of Mason et al., (Mason et al., 2020)
studying the problem of finding all ✏-good arms in multi-armed bandits. Our setting captures this problem in the
special case that �(x) = x, xi = ei 2 R|X |, h = 0, and e� = 0. Additionally, take � ! 0. For consistency with the
notation of (Mason et al., 2020), let µi = f(xi) and |X | = n. In this setting, the problem of implicit level set
estimation reduces to identifying the set {i : µi > (1� ✏)µ1} where we assume without loss of generality that the
means are sorted in descending order such that µ1 � µ2 � · · · � µn.
Lemma E.1. The term HMILK(✓⇤) = cH(ST)2 for a constant c where H(ST)2 is the complexity parameter of the
(ST)2 algorithm from (Mason et al., 2020).

In particular, (Mason et al., 2020) show in Theorem 4.1 that a complexity of H(ST)2 is optimal up to logarithmic
factors for any fixed � via a moderate confidence bound. This exceeds the lower bound given in Theorem 4.2
specialized to this case. In particular, this highlights that the lower bound given in Theorem 4.2 is not achievable
except possibly as � ! 0. Instead, we show that MILK achieves the optimal non-asymptotic sample complexity for
finding all ✏-good arms.

Proof of Lemma E.1. First, we recall some notation from (Mason et al., 2020) necessary for this lemma. Let
↵̃✏ = mini2G✏ µi � (1 � ✏)µ1 and let �̃✏ = mini2Gc

✏
(1 � ✏)µ1 � µi. For brevity, we let k = argmini2G✏ µi and

k + 1 = argmaxi2Gc
✏
µi where we take n > k. If this condition does not hold the same argument as below suffices

ignoring all terms in Gc
✏. Hence we have that µk

1�✏ = µ1 +
↵̃✏
1�✏ and µk+1

1�✏ = µ1 �
�̃✏

1�✏ . Furthermore, (Mason et al.,
2020) restrict to the case of ✏ 2 [1/2, 1).

We begin by lower bounding the complexity parameter HMILK(✓⇤). We analyze the two terms given in Theorem 4.3,
HMILK1 and HMILK2 separately. HMILK1 reduces to

max
ei2G✏

max
ej

kej � eik2A(�)�1

(µi � (1� ✏)µj)2
= max

ei2G✏

max
ej

1/�i + 1/�j

(µi � (1� ✏)µj)2

� max

(
max
ei2G✏

1/�i

(µi � (1� ✏)µ1)2
,max

ej

1/�j

(µk

1�✏ � µj)2

)

= max

(
max
ei2G✏

1/�i

(µ1 � µi � ✏)2
,max

ej

1/�j

(µ1 +
↵̃✏
1�✏ � µj)2

)

where the final step follows by the definition of ↵̃✏. The penultimate step follows by first maximizing over i 2 G✏

which introduces a factor of µk. Then we may multiply the denominator by (1� ✏)2/(1� ✏)2 and upper bound
(1� ✏)2  0.25 < 1 since ✏ � 1/2 to achieve the result.

HMILK2 reduces to

max
ei2Gc

✏

max
ej

kej � eik2A(�)�1

((1� ✏)µ1 � µi)2
= max

ei2Gc
✏

max
ej

1/�i + 1/�j

((1� ✏)µ1 � µi)2

� max

⇢
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
, max
ei2Gc

✏

max
ej

1/�j

((1� ✏)µ1 � µi)2

�

� max

⇢
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
,max

ej

1/�j

((1� ✏)µ1 � µk+1)2

�

� max

(
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
,max

ej

1/�j

(µ1 �
µk+1

1�✏)
2

)

= max

8
><

>:
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
,max

ej

1/�j⇣⇣
µ1 �

�̃✏

1�✏

⌘
� µ1

⌘2

9
>=

>;

= max

8
><

>:
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
,max

ej

1/�j⇣⇣
µ1 +

�̃✏

1�✏

⌘
� µ1

⌘2

9
>=

>;

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

� max

8
><

>:
max
ei2Gc

✏

1/�i

((1� ✏)µ1 � µi)2
,max

ej

1/�j⇣⇣
µ1 +

�̃✏

1�✏

⌘
� µj

⌘2

9
>=

>;

where the final step follows since µ1+
�̃✏

1�✏ > µi8i and µj  µ1. The third inequality follows by the same approach
as taken for HMILK1 of multiplying the denominator by (1� ✏)2/(1� ✏)2.

Hence, we have that

H(✓⇤) � min
�

max
i

max

8
<

:

1
�i

((1� ✏)µ1 � µi)2
,

1
�i

(µ1 +
↵̃✏
1�✏ � µi)2

,
1
�i

(µ1 +
�̃✏

1�✏ � µi)2

9
=

; .

Solving for � gives

H(✓⇤) �
nX

i=1

max

8
<

:
1

((1� ✏)µ1 � µi)2
,

1

(µ1 +
↵̃✏
1�✏ � µi)2

,
1

(µ1 +
�̃✏

1�✏ � µi)2

9
=

; = c1 ·H(ST)2

for a constant c1. To upper bound HMILK(✓⇤), we may choose a specific �. Choosing

�i :=
max{((1� ✏)µ1 � µi)�2, (µ1 +

↵̃✏
1�✏ � µi)�2, (µ1 +

�̃✏

1�✏ � µi)�2
}

P
j max{((1� ✏)µ1 � µj)�2, (µ1 +

↵̃✏
1�✏ � µj)�2, (µ1 +

�̃✏

1�✏ � µj)�2}

,

a similar computation shows that HMILK(✓⇤)  c2H(ST)2 for a constant c2.

E.3 Upper Bound

First we restate Theorem 4.3 bounding the sample complexity of MILK.
Theorem E.2. Fix � > 0, threshold ↵ > 0, tolerance e�, and regularization � > 0. Define the quantities
�Above

min (✏) = minx2G✏ minx0 ✓>
⇤
(�(x)�(1�✏)�(x0)) and �Below

min (✏) = minx2Gc
✏
maxx0:(�(x)�(1�✏)�(x0))>✓⇤<0(�(x)�

(1� ✏)�(x0))>✓⇤, and �min = min
�
�Above

min (✏),�Below
min (✏)

. Define also

�̄(✏) = min{� > 0 : 4(
p
�k✓⇤k+ h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |y>✓⇤|  �} ; �))  �}.

With probability 1� �, MILK returns a set bR = (X \ bBt) at a time T� such that

{x 2 X : f(x) � (1� ✏)f(x⇤) + �̄(✏)} ✓ bR ✓ {x 2 X : f(x) � (1� ✏)f(x⇤)� e� � �̄(✏)}

and for any ↵, e� such that max(�min(✏), e�) � �̄(✏)

T� 256(B
2 + �2)HMILK(✓⇤) log

4|X |

2
dlog2(4(�min(✏) _ e�)�1)e2

�

!
+ 2 log

✓
|X |

�

◆
dlog2(4(�min(✏) _ e�)�1)e

for a sufficiently large constant c where HMILK(✓⇤) = min�24X max {HMILK1
� (✓⇤), HMILK2

� (✓⇤)} and

HMILK1
� (✓⇤) := max

x2G✏

max
x02X

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x0))>✓⇤)2, e�2}

HMILK2
� (✓⇤) := max

x2Gc
✏

max
x0

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x⇤))>✓⇤)2, e�2}
.

Now we show a high probability concentration result that we will use for the remainder of this section.

Nearly Optimal Algorithms for Level Set Estimation

Lemma E.3. For any V ⇢ Y
✏(X ⇥ X) define f(X ,V; �) = min�24X maxv2V kvk2(Px2X �x�(x)�(x)>+�I)�1 .

In each round t, define the event

Et = {|yT (b✓t � ✓⇤)|  2�t + (
p
�k✓⇤k+ h)

p
f(X ,Y✏(Y✏(At)); �) 8 y 2 Y

✏(At)}

Holds P(
S

1

t=1 E
c
t)  �.

Proof. Using Theorem 3.2, for any y 2 Y
✏(At) we have that with probability at least 1� �t/|X |

2

|yT (b✓t � ✓⇤)|  kyk(
P

x2X �x�(x)�(x)T+�I)�1

✓
p
�k✓⇤k+ h+ c

q
(B2+�2)

Nt
log(2t2|X |2/�)

◆



p
f(X ,Y✏(At); �)

⇣
p
�k✓⇤k+ h+ 2�t/

p
f(X ,Y✏(At); �)

⌘

 2�t + (
p
�k✓⇤k+ h)

p
f(X ,Y✏(At); �)

Since |Y
✏(At)|  |X |

2, Et holds for all y 2 Y
✏(At) with probability 1� �t via a union bound. Taking a second

union bound over rounds, we have that

P

1[

t=1

E
c
t

!


1X

t=1

P(Ec
t) 

1X

t=1

�t =
1X

t=1

�

2t2
 �

Define

t̄ = max{t : (
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  2�t+2} ; �))  2�t

}.

As we will see in Lemmas E.6 and E.7,

Y
✏(At) ⇢

�
y 2 Y

✏(X ⇥ X) : |yT ✓⇤|  2�t+1

.

Thus for t  t̄, holds on
T

t Et that

8y 2 Y
✏(At) , |y

T (b✓t � ✓⇤)|  2 · 2�t.

Lemma E.4. On
T

t Et, when t  t̄ holds bGt ⇢ G�
✏ := {x : (�(x)� (1� ✏)�(x0))T ✓⇤ > 0 8 x0

2 X}.

Proof.

x 2 bGt () 8x0
9tx0  t̄ : (�(x)� (1� ✏)�(x0))T b✓tx0 � 2 · 2�tx0

() 8x0
9tx0  t̄ : (�(x)� (1� ✏)�(x0))T (b✓tx0 � ✓⇤) + (�(x)� (1� ✏)�(x0))T ✓⇤ � 2 · 2�tx0

T
t Et

=) 8x0 : (�(x)� (1� ✏)�(x0))T ✓⇤ > 0

() x 2 G�
✏ .

Lemma E.5. On
T

t Et, when t  t̄ holds bBt ⇢ (G�
✏)

c.

Proof.

x 2 bBt () 9x0, tx0  t̄ : (�(x)� (1� ✏)�(x0))T b✓t  �2 · 2�tx0

() 9x0, tx0  t̄ : (�(x)� (1� ✏)�(x0))T (b✓t � ✓⇤) + (�(x)� (1� ✏)�(x0))T ✓⇤  �2 · 2
�tx0

T
t Et

=) 9x0 : (�(x)� (1� ✏)�(x0))T ✓⇤ > ✏

() x 2 (G�
✏)

c.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

Lemma E.6. On the event
T

t Et for t  t̄,

{(x,x0) : (x,x0),x 2 G�
✏ } ⇢

⇢
(x,x0)

����|(�(x)� (1� ✏)�(x0))T ✓⇤|  2�t+2

�
=: SAbove

t

Proof. On
T

t Et for t  t̄, for any y 2 At

|yT b✓t| � |yT ✓⇤|� |yT (b✓t � ✓⇤)|
Et

� |yT ✓⇤|� 2 · 2�t.

For y such that |yT ✓⇤| � 2 · 2�t+1, the above implies that

|yT b✓t| � 2 · 2�t.

By the elimination condition, this implies that y is removed from At. Hence

At+1 ⇢
�
y 2 Y(X) : |yT ✓⇤ � ✏|  2 · 2�t+1

.

Specializing this argument to {(x,x0) : (x,x0),x 2 G�
✏ } ⇢ At completes the proof.

Lemma E.7. On the event
T

t Et for t  t̄,

{(x,x0) : (x,x0),x 2 (G�
✏)

c
} ⇢

⇢
(x,x0)

����|(�(x)� (1� ✏)�(x0))T ✓⇤ � ✏|  2�t+2

and {(�(x)� (1� ✏)�(x⇤))
T ✓⇤} � �2

�t+2

=: SBelow

t

Proof. The guarantee that |(�(x) � (1 � ✏)�(x0))T ✓⇤ � ✏|  2�t+2 for any (x,x0) 2 At follows by the same
argument as Lemma E.6. For the additional statement, that (�(x)� (1� ✏)�(x⇤))T ✓⇤ � �2�t+2, note that if

(�(x)� (1� ✏)�(x⇤))
T b✓t  �2�t+1

then the pair (x,x⇤) is eliminated from At. If

(�(x)� (1� ✏)�(x⇤))
T b✓t  �2�t+2,

then using this and the event
T

t Et

(�(x)� (1� ✏)�(x⇤))
T b✓t = (�(x)� (1� ✏)�(x⇤))

T (b✓t � ✓⇤) + (1� ✏)�(x⇤))
T ✓⇤  �2

�t+1.

Hence, the only pairs (x,x⇤) that remain in At where x⇤ 2 (G�
✏)

c are such that (�(x) � (1 � ✏)�(x⇤))T ✓⇤} �
�2�t+2. We conclude by noting that the above argument for x⇤ could be repeated for any x0 such that
(�(x)� (1� ✏)�(x0))T ✓⇤ < 0.

Remark: Lemmas E.6 and E.7 jointly imply that At ⇢ S
Above
t [S

Below
t =: St for t  t̄. Furthermore,

f(X ,Y✏(At), �)  f(X ,Y✏(St), �).

Remark:
The algorithm stops on either of two conditions. On one hand if t � dlog2(4/e�)e =: t� , then it has achieved
precision e� as desired and it terminates. Otherwise, it terminates if bGt [

bBt = X . This occurs when e�
is very small. Define the quantities �Above

min (✏) = minx2G✏ minx0 ✓>
⇤
(�(x) � (1 � ✏)�(x0)) and �Below

min (✏) =
minx2Gc

✏
maxx0:(�(x)�(1�✏)�(x0))>✓⇤<0(�(x)� (1� ✏)�(x0))>✓⇤, and �min(✏) = min

�
�Above

min (✏),�Below
min (✏)

. Recall

t̄ = max{t : (
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  4 · 2�t} ; �))  2�t

}

= max{t : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  4 · 2�t} ; �))  4 · 2�t

}

= �2 + max{t : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  2�t} ; �))  2�t

}

= �3 + log2(min{� > 0 : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  �} ; �))  �}).

Nearly Optimal Algorithms for Level Set Estimation

This defines

�̄(✏) = min{� > 0 : 4(
p
�k✓⇤k2 + h)(2 +

q
f(X , {y 2 Y✏(X ⇥ X) : |yT ✓⇤|  �} ; �))  �}.

Let tmax denote the random variable of the last round before the algorithm terminates. The following Lemmas
give a guarantee on the set X \ bBt at termination.
Lemma E.8. On the event

T
1

t=1 Et, MILK returns a set (X \ bBtmax) such that {x : f(x) > (1� ✏)f(x⇤) + �̄(✏)} ⇢

(X \ bBtmax).

Proof. Take any x such that f(x) > (1� ✏)f(x⇤) + �̄(↵) and recall that by assumption |f(x)� �(x)T ✓⇤|  h for
all x 2 X . We consider two cases. In the first case, assume that tmax  t̄. We claim that in this case 6 9t such
that x 2 bBt. We prove this by contradiction. Assume not. Then 9t and a x0 such that

b✓Tt (�(x)� (1� ✏)�(x0)) < �2�t+1

() (�(x)� (1� ✏)�(x0))T (b✓t � ✓⇤) + (�(x)� (1� ✏)�(x0))T ✓⇤ < �2�t+1

Et,tmaxt̄
=) �2�t+1 + (�(x)� (1� ✏)�(x0))✓⇤ < �2�t+1

() (�(x)� (1� ✏)�(x0))✓⇤ < 0

=) f(x)� (1� ✏)f(x0) < h+ (1� ✏)h

Recall that we have assumed that f(x) > (1� ✏)f(x⇤) + �̄(↵) and �̄(✏) > 4h by definition. Hence, this implies
that

(1� ✏)f(x⇤)� (1� ✏)f(x0) < h+ (1� ✏)h� �̄(↵) < 0

which is a contradiction since f(x⇤) � f(x0) by definition. Hence, we have shown in the case that tmax  t̄,
{x : f(x) > (1� ✏)f(x⇤) + �̄(✏)} ⇢ (X \ bBtmax).

In the second case, assume that tmax > t̄ and take x such that f(x) > (1� ✏)f(x⇤) + �̄(↵). We claim that x 2 bGt̄

and hence (x,x0) 62 At for any t > t̄ and thus x is never added to bBt. This occurs if for every �(x0)

(�(x)� (1� ✏)�(x0))T b✓t̄ > 2�t̄+1

() (�(x)� (1� ✏)�(x0))T (b✓t̄ � ✓⇤) + (�(x)� (1� ✏)�(x0))T ✓⇤ > 2�t̄+1

Et̄
(= �2�t̄+1 + (�(x)� (1� ✏)�(x0))T ✓⇤ � 2�t̄+1

() (�(x)� (1� ✏)�(x0))T ✓⇤ � 2�t̄+2

() (�(x)� (1� ✏)�(x0))T ✓⇤ � 0.5�̄(✏)

(= f(x)� (1� ✏)f(x0) � 0.5�̄(✏) + h+ (1� ✏)h

where the penultimate step follows by definition of �̄(✏). Recall that f(x) > (1 � ✏)f(x⇤) + �̄(↵). Hence, the
above is implied by

(1� ✏)f(x⇤) + �̄(↵)� (1� ✏)f(x0) � 0.5�̄(✏) + h+ (1� ✏)h

(= �̄(✏) � 0.5�̄(✏) + h+ (1� ✏)h

where the final step follows by noting that f(x⇤) � f(x0) for any x0. The final statement is true since �̄(✏) and
thus implies the claim. Therefore, we have shown that x 2 bGt̄ and is therefore not added to bBt in a later round.
These two cases together complete the proof.

Lemma E.9. On the event
T

1

t=1 Et, MILK returns a set (X \ bBtmax) such that (X \ bBtmax) ⇢ {x : f(x) >

(1� ✏)f(x⇤)� �̄(✏)� e�}.

Proof. Take any x such that f(x) < (1� ✏)f(x⇤)� �̄(✏)� e�. We claim that there exists a t  tmax such that x
is added to bBt which implies that x 62 (X \ bBtmax). Suppose for contradiction that this is not the case. Then for
all t  tmax,

b✓Tt (�(x)� (1� ✏)�(x⇤)) > �2
�t+1

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

() (�(x)� (1� ✏)�(x⇤))
T (b✓t � ✓⇤) + (�(x)� (1� ✏)�(x⇤))

T ✓⇤ > �2�t+1

Et=) 2�t + (
p
�k✓⇤k+ h)

p
f(X ,At; �) + (�(x)� (1� ✏)�(x⇤))

T ✓⇤ > �2�t+1

=) (
p
�k✓⇤k+ h)

p
f(X ,At; �) + f(x)� (1� ✏)f(x⇤) + h+ (1� ✏)h > �2�t+1

� 2�t

=) f(x)� (1� ✏)f(x⇤) > �2
�t+1

� 2�t
� h� (1� ✏)h� (

p
�k✓⇤k+ h)

p
f(X ,St; �).

Plugging in f(x) < (1� ✏)f(x⇤)� �̄(✏)� e�, the above implies

�̄(✏) + e� < 2�t+1 + 2�t + h+ (1� ✏)h+ (
p
�k✓⇤k+ h)

p
f(X ,St; �) (4)

Next, recall that MILK terminates either on the condition that t = dlog2(4/e�)e or that bGt [
bBt = X . Using this,

we brake our analysis into cases.

Case 1: tmax = dlog2(4/e�)e  t̄.

In this case, MILK stops due to the e� tolerance in a round before t̄. For t  t̄, we have that 2�t
�

+
�p

�k✓⇤k+ h
�p

f(X ,St; �). Hence, the above implies that

�̄(↵) + e� < 2�t+2 + h+ (1� ✏)h.

As we have assumed this condition for all t  tmax, we may plug in tmax which implies

�̄(↵) + e� < e� + h+ (1� ✏)h.

As �̄(↵) > 4h, this is a contradiction. Hence there must exist a t such that x 2 bBt.

Case 2: tmax  t̄ < dlog2(4/e�)e.

In this case, MILK terminates before round t = dlog2(4/e�)e. Hence, it does so on the condition that bGt [
bBt = X .

Note that for f(x) < ↵� �̄(↵)� e�, we have that x 2 (G�
↵)

c since �̄(↵) > h and e� � 0. If we terminate before
round t̄, we have by Lemma E.5 that (G�

↵)
c
⇢ bBt which implies that x 2 bBtmax . This contradicts the assumption

that 6 9t : x 2 bBt.

Case 3: t̄ < tmax.

In this case, MILK terminates at a round after t̄. In this setting, we argue that x 2 bBt̄. Recall that for any t  t̄,
(4) simplifies to

�̄(↵) + e� < 2�t+2 + h+ (1� ✏)h.

Plugging in t̄, and noting that 2�t̄+2 = 1
2 �̄(↵), the above implies

�̄(↵) + e� <
1

2
�̄(↵) + h+ (1� ✏)h.

Noting that �̄(↵) > 4h, shows that the above is a contradiction. Hence, there exists a t  t̄ such that x 2 bBt.

Therefore, in all cases we have shown that for any x such that f(x) < ↵� �̄(↵)� e�, x 2 bBt. Therefore, for the
returned set X \ bBtmax , we have that

(X \ bBtmax) ⇢ {x : f(x) > ↵� �̄(↵)� e�}.

Proof of Theorem 4.3. Throughout, assume the high probability event
T

T Et. By Lemmas E.8 and E.9
in conjunction with the high probability event

T
Et we have correctness. It remains to control the

sample complexity of MILK. Recall that we have assumed that max(�min(✏), e�) � �̄(✏). This implies
that min{dlog2(4/�min(✏))e, dlog2(4/e�)e}  t̄. Applying Lemmas E.6 and E.7, we have that tmax 

Nearly Optimal Algorithms for Level Set Estimation

min{dlog2(4/�min(✏))e, dlog2(4/e�)e}  t̄ and that At ✓ St for all rounds t. Now we proceed by bounding
the total number of samples drawn.

⌧ 
tmaxX

t=1

Nt



min{dlog2(4/�min(✏))e,dlog2(4/e�)e}X

t=1

Nt

=

dlog2(4(�min(✏)_e�)�1)eX

t=1

Nt

=

dlog2(4(�min(✏)_e�)�1)eX

t=1

max
�
c1 log(|X |/�), c222tf(Y✏(At); �)(B

2 + �2) log(2t2|X |
2/�)

 c1 log(|X |/�)dlog2(4(�min(✏) _ e�)�1)e+ c2(B2 + �2)

dlog2(4(�min(✏)_e�)�1)eX

t=1

22tf(Y✏(At); �) · log(2t
2
|X |

2/�)

= c1 log(|X |/�)dlog2(4(�min(✏) _ e�)�1)e+

c2(B2 + �2)

dlog2(4(�min(✏)_e�)�1)eX

t=1

22t min
�24X

max
y2Y✏(At)

kyk2(A(�)+�I)�1 · log(2t2|X |
2/�)

 c1 log(|X |/�)dlog2(4(�min(✏) _ e�)�1)e+

c2(B2 + �2) log

4|X |

2
dlog2(4(�min(✏) _ e�)�1)e2

�

!

·

dlog2(4(�min(✏)_e�)�1)eX

t=1

22t min
�24X

max
y2Y✏(At)

kyk2(A(�)+�I)�1

 c1 log(|X |/�)dlog2(4(�min(✏) _ e�)�1)e+

c2(B2 + �2) log

4|X |

2
dlog2(4(�min(✏) _ e�)�1)e2

�

!

·

dlog2(4(�min(✏)_e�)�1)eX

t=1

22t min
�24X

max
y2Y✏(St)

kyk2(A(�)+�I)�1

= c1 log(|X |/�)dlog2(4(�min(✏) _ e�)�1)e+

c2(B2 + �2) log

4|X |

2
dlog2(4(�min(✏) _ e�)�1)e2

�

!

·

dlog2(4(�min(✏)_e�)�1)eX

t=1

min
�24X

max

⇢
22t max

y2Y✏(SAbove
t)

kyk2(A(�)+�I)�1 , 22t max
y2Y✏(SBelow

t)
kyk2(A(�)+�I)�1

�
.

where the final equality follows by partitioning St = S
Above
t [S

Below
t .

Focusing on this final summation, note that

1

dlog2(4(�min(✏) _ e�)�1)e

dlog2(4(�min(✏)_e�)�1)eX

t=1

22t min
�24X

max

⇢
max

y2S
Above
t

kyk2(A(�)+�I)�1 , max
y2S

Below
t

kyk2(A(�)+�I)�1

�

 max
tdlog2(4(�min(✏)_e�)�1)e

min
�24X

22t max

⇢
max

y2S
Above
t

kyk2(A(�)+�I)�1 , max
y2S

Below
t

kyk2(A(�)+�I)�1

�

 min
�24X

max
tdlog2(4(�min(✏)_e�)�1)e

max

⇢
max

y2S
Above
t

22tkyk2(A(�)+�I)�1 , max
y2S

Below
t

22tkyk2(A(�)+�I)�1

�

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

= min
�24X

max
tdlog2(4(�min(✏)_e�)�1)e

max

⇢
max

(x,x0)2S
Above
t

22tk�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1 ,

max
(x,x0)2S

Below
t

22tk�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

�

Lemmas E.6, E.7,e�
 16 min

�24X
max

tdlog2(4(�min(✏)_e�)�1)e
max

(
max

(x,x0)2S
Above
t

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x0))T ✓⇤)2, e�2}
,

max
(x,x0)2S

Below
t

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x⇤))T ✓⇤ � ✏)2, e�2}

)

 16 min
�24X

max

(
max
x2G✏

max
x0

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x0))T ✓⇤)2, e�2}
,

max
x2Gc

✏

max
x0

k�(x)� (1� ✏)�(x0)k2(A(�)+�I)�1

max{((�(x)� (1� ✏)�(x⇤))T ✓⇤ � ✏)2, e�2}

)

Plugging this in with c = 4 and c1 = 2 from Theorem C.1 for RIPS with the Catoni estimator completes the
proof.

F Additional Experiment Details

In this section we discuss additional experimental details not covered in the main paper. We first give an overview
of the algorithms implemented in the following section. All code was written in python and run on a 64 core
cluster machine. We have included implementations of all methods and a demo file showing how to call and run
the various algorithms.

F.1 Algorithms Implemented

In this section we briefly discuss the algorithms implemented and the hyper-parameters used in the algorithms.
The algorithms implemented are s follows:

Gaussian Process Experiments For all the algorithms in this section we assumed a GP Prior N(0, k(x, x0))
where k(x, x0) was the RBF kernel given by k(x, x0) = exp(�kx� x0

k
2/2`2).

At every time step we builds the confidence interval

Qt(x) :=
h
µt�1(x)± �1/2

t �t�1(x)
i

where µt�1, and �t�1 is the posterior mean and variance function over the observed points. For an observation
yt at time t we define µt�1, and �t�1 as follows:

µt(x) := kt(x)
T
�
Kt + �2I

��1
yt

kt (x,x
0) := k (x,x0)� kt(x)

T
�
Kt + �2I

��1
kt(x)

�2
t (x) := kt(x,x)

where, kt(x) = [k (x1,x) , . . . , k (xt,x)]
T and Kt is the kernel matrix over the observed points.

1. LSE: We implemented the LSE algorithm by (Gotovos, 2013). This algorithm maintains an active set of
unclassified points defined as Ut and the super-level set Ht and sub-level set Lt.
At every round LSE selects the most ambiguous point, where the ambiguity is defined as

at(x) = min {max (Qt(x))� ↵,↵�min (Qt(x))}

that is, the points LSE is most unsure to classify into Ht or Lt. Note that in contrast to this approach
MELK follows the optimal allocation over the active set to select the next sample.

Nearly Optimal Algorithms for Level Set Estimation

2. TruVar: We also implemented a modified version of TruVar(Bogunovic et al., 2016) with zero cost and
homoscedastic noise. TruVar samples in such a fashion to ensure the maximum decrease of the posterior
variance. As above, we maintain a Gaussian Process Posterior and we sample the arm

argmax
x2X

X

x̄2At

�2
t (x̄)�

X

x̄2At

�2
t�1|x(x̄)

where �2
t�1|x(x̄) is the posterior variance of x̄ if we sample x.

3. MELK: As described in the text, we compute the means and variances of the arms using a Gaussian
posterior (identical to above) and eliminate arms when their lower/upper bound is below/above the specified
threshold ⌧ . We implemented a batched sampling algorithm where we compute the design

min
�2X

max
z2At

kzk2(A(�)+�I)�2

ever 10 samples and then sample from it. At the i-th calculation, � = 1/(10 ⇤ i). We also use the Frank-Wolfe
method to compute the optimal allocation over the active set before every round as described in Section G.
We set the step-size of Frank-Wolfe method as 1 and cap the maximum number of iteration to converge for
Frank-Wolfe to 500.

Linear Bandits Examples

Additionally, we also consider comparing algorithms exactly as written using theoretically justified confidence
widths in all cases. This presents a challenge as MELK and MILK are designed for the frequentist regime and LSE
and TruVar are Bayesian in nature. To level the playing field, we consider all algorithms in the frequentist regime.
For this experiment, we focused primarily on comparing MELK to LSE and MILK to LSE-imp LSE can naturally
be adapted to the frequentist setting with the tight RKHS confidence bounds from (Chowdhury and Gopalan,
2017). These bounds scale with the maximum information gain �T . To make the comparison fair, we consider
all algorithms in the linear regime where �T = O(d log(T)). By contrast, for the squared exponential kernel,
�T = O

�
log(T)d

�
, and this leads to overly pessimistic confidence widths preventing a meaningful comparison of

the algorithms. Indeed, even for moderate d such as d = 4, LSE had confidence widths that were more that an
order of magnitude wider for the squared exponential kernel. Hence, we focus on the case of the linear kernel for
our experimental comparison where the differences are not so stark. Below, we describe all algorithms in this
regime.

LSE follows the same acquisition function described in the previous section. We provide additional details about
MELK, MILK, and LSE-imp in this setting.

1. MELK: We implement the MELK algorithm as defined in Algorithm 1. Recall that |f(x)|  B, and for the
experiments we set B = 1. We set the confidence parameter � = 0.1, the regularization parameter � = 1e� 7.
Note that we use the original confidence width of (B2 + �2) log(2t2|X |

2/�) as stated in our algorithm, where
�2 is the noise parameter specific to the environment. We also use the Frank-Wolfe method to compute the
optimal allocation over the active set before every round. We set the step-size of Frank-Wolfe method as 0.5
and cap the maximum number of iteration to converge for Frank-Wolfe to 2000.

2. LSE-imp: We implement the LSE-Implicit algorithm as stated in (Gotovos, 2013). LSE-Implicit proceeds
quite similarly to LSE by constructing the confidence region Ct(x) (as defined above) and classifying points
to the sub-level set Lt or super-level set Ht. We set the confidence width as in LSE for calculating the
confidence region. Note that LSE-Implicit works in the implicit level set estimation setting and so constructs
an estimate of the function maximum to classify points into Ht or Lt. It builds an optimistic and pessimistic
estimate of the function maximum as

fopt
t := max

x2Ut

max (Ct(x)) , fpes
t = max

x2Ut

min (Ct(x))

respectively. A point x is classified into Ht if min (Ct(x)) � (1� ✏)fopt
t or classified into Lt if max (Ct(x)) 

(1� ✏)fpes
t . Finally, LSE-Implicit selects the next point with the largest confidence region width, defined as

follows:
wt(x) = max (Ct(x))�min (Ct(x))

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

such that this leads to more exploration. Again, note that in contrast MILK in Algorithm 2 uses the optimal
allocation proportion over the active set to sample the next point.

3. MILK: We implement the MILK algorithm as stated in Algorithm 2. Note that MILK proceeds as similarly
to MELK but with the allocation calculated over the difference of vectors Y

✏(A) over the active set and a
different elimination condition depending on ✏. For MILK we set a similar hyper-parameters like MELK. We
set the confidence parameter � = 0.1, the regularization parameter � = 1e� 7, and the confidence width of
(B2 + �2) log(2t2|X |

2/�). We use the Frank-Wolfe method to compute the optimal allocation over the active
set of points and set the step-size of Frank-Wolfe method as 0.5 and cap the maximum number of iteration
to converge for Frank-Wolfe to 2000. Note that we set ✏ depending on specific environment setting.

F.2 Additional Experiments

All experiments were done with 25 repetitions. We consider the f1-scores on three environments considered
below.

Figure 3: f drawn randomly from a squared exponential kernel N(0, k(x,x0)). � denotes the standard deviation
of the noise and ` denotes the bandwidth of the kernel (i.e., k(x,y) = exp(�kx� yk/2`2)).

Nearly Optimal Algorithms for Level Set Estimation

Figure 4: f(x) = cos(8⇡x). � denotes the standard deviation of the noise and ` denotes the bandwidth of the
kernel (i.e., k(x,y) = exp(�kx� yk/2`2)).

Figure 5: f(x, y) = cos(2⇡x) sin(2⇡y). � denotes the standard deviation of the noise and ` denotes the bandwidth
of the kernel (i.e., k(x,y) = exp(�kx� yk/2`2)).

Linear Examples with true confidence widths

Finally we compare the performance of the methods using exact confidence widths.

Blake Mason, Romain Camilleri, Subhojyoti Mukherjee

(a) Linear, explicit (b) Linear, Implicit

Figure 6: Comparison of algorithms using theoretically justified confidence widths on a linear bandit setting.

For the Linear kernel experiments in Figures 6a and 6b, we run all algorithms with exact confidence intervals
as specified by theoretical guarantees and use the theoretical upper bound on information gain �T shown in
(Srinivas et al., 2009) for the confidence widths from (Valko et al., 2013) needed for LSE. We compare the methods
on a benchmark example from the linear bandits literature. For x1, · · · ,xn 2 Rd, we take x1 = x⇤ = ✓⇤ = e1
and x2 = e2. The remaining x3, · · · ,xn are set so that their first two coordinates are cos(⇡/4(1 + ⇠))e1 and
sin(⇡/4(1 + ⇠))e2 for ⇠ ⇠ Unif(�.2, .2). We set the threshold ↵ = 0.5, n = 100, and d = 25. Figure 6a shows that
MELK outperforms LSE when both algorithms are run with their exact confidence widths.

In the implicit setting, this example is especially informative and highlights the importance of designing to choose
which arms to sample. Though it is far below ↵, sampling arm x2 provides the most information about which
arms exceed the implicit threshold. Indeed, we see in 6b that both MILK greatly outperforms LSE-imp respectively.

G Reducing Experimental Design in an RKHS to a finite dimensional
optimization

In this section we describe the use of the kernel trick and Frank-Wolfe to compute the design

f(�) = min
�24X

max
x2C
k�(x)kA�(�)�1

where C ⇢ X .

Since this is a convex optimization problem on the finite dimensional simplex 4X we employ the Frank-Wolfe
algorithm. Note that �t is at most t-sparse. The primary challenge is in the computation of the gradient of f .

Algorithm 4 Frank-Wolfe to minimize f

Require: Arms X , iterations T
1: �0 = e1 (first standard basis vector)
2: for x 2 At do
3: xt argmaxx2X k�(x)k2A�(�)�1

4: gt = r�t�1k�(xt)k2A�(�)�1

5: jt = argmax1j|X | e
>

i gt
6: ⌘t =

1
t+2

7: �t = (1� ⌘t)�t�1 + ⌘t
return �T

To do so we leverage a small modification of Lemma 1 of (Camilleri et al., 2021).
Lemma G.1. Assume that � is s-sparse and (without loss of generality) with it’s support corresponding to

Nearly Optimal Algorithms for Level Set Estimation

x1, · · · , xs 2 X . Then,

�(x)>A�(�)�1�(y) =
k(x,y)

�
�

1

�
k�(x)

>(K� + �Is)
�1k�(y)

where k�(·) 2 Rs with [k�(x)]i =
p
�ik(xi,x) for i  s and K� 2 Rs⇥s with [K�]i,j =

p
�i�jk(xi,xj).

Now, identifying X with an indexing of its entries, i.e. X = {x1, · · · ,x|X |
} a computation shows that

e>i [gt] = �(�(xt)A
�(�t)

�1�(xi))2

which can be computed by the above lemma. Note that computationally, the most difficult step is the inversion
of a t⇥ t matrix at iteration t. For a small number of iterations (<2000), this is not prohibitive.

	INTRODUCTION
	Problem Statement

	RELATED WORKS
	EXPLICIT LEVEL SET ESTIMATION
	Algorithm
	Optimal Sample Complexity for Explicit Level Set Estimation

	IMPLICIT LEVEL SET ESTIMATION
	Algorithm
	Theoretical Guarantees

	EXPERIMENTS
	CONCLUSION
	Appendices
	Impacts and Limitations
	Summary of Gaussian Processes Approaches for Level Set Estimation
	Robust estimators for function means
	Proofs for Explicit Level Set Estimation
	Lower Bound
	Upper Bound

	Proofs for Implicit Level Set Estimation
	Lower Bounds
	Comparison to the lower bound of mason2020finding
	Upper Bound

	Additional Experiment Details
	Algorithms Implemented
	Additional Experiments

	Reducing Experimental Design in an RKHS to a finite dimensional optimization

