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Abstract

Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is

central to applications such as crossflow microemulsification, oil recovery, and waste

cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it

is of both fundamental and practical interest to determine the flow strength of the

surrounding fluid required for droplet depinning on rough substrates. Here, we develop a

lubrication-theory-based model for droplet depinning on a substrate with topographical

defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are

in a rectangular channel, a pressure gradient is imposed to drive flow, and the defects

are modeled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure

approach to capture contact-line motion, a nonlinear evolution equation is derived

describing the droplet thickness as a function of distance along the channel and time.

Numerical solutions of the evolution equation are used to investigate how the critical

pressure gradient for droplet depinning depends on the viscosity ratio, surface

wettability, and droplet volume. Simple analytical models are able to account for many

of the features observed in the numerical simulations. The influence of defect height is

also investigated, and it is found that when the maximum defect slope is larger than the

receding contact angle of the droplet, smaller residual droplets are left behind at the

defect after the original droplet depins and slides away. The model presented here yields

considerably more information than commonly used models based on simple force

balances, and provides a framework that can readily be extended to study more

complicated situations involving chemical heterogeneity and three-dimensional effects.

†Email address for correspondence: kumar030@umn.edu
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1 Introduction

Pinning of liquid droplets on topographical or chemical defects on solid surfaces, and

depinning by flow of a surrounding immiscible fluid, are central to a diverse range of

applications. Crossflow microemulsification involves droplets of a dispersed phase released

into a channel through membranes. The droplets can pin on the membrane, and a continuous

phase flows through the channel to depin the dispersed-phase droplets and form an

emulsion.1,2 In oil recovery and oil waste removal, water flow is used to depin oil droplets that

are pinned inside rock crevices and contaminated soil.3–5 An important class of surface

cleaning methods involves applying a fluid flow to depin and remove contaminants present in

the form of liquid droplets on solid surfaces.6

The importance of droplet depinning on solid surfaces by a surrounding fluid flow has

motivated prior experiments aimed at understanding the limiting case of depinning of a single

droplet. Some works examine the behavior of an oil droplet in a surrounding water flow,7–10

and some investigate the behavior of a water droplet in a surrounding air flow.11–13 For each

case, the droplet depins and slides on the surface above a critical flow rate of the surrounding

fluid.

Some of the works discussed above use simple force-balance models to rationalize

experimental observations. In these models, a shear force acting on the droplet due to a

surrounding fluid flow drives depinning, and the surface-tension force acting along the droplet

contact line resists depinning. Below the critical flow rate of the of the surrounding fluid, the

forces are balanced and the droplet remains pinned, and above the critical flow rate, the shear

force exceeds the surface-tension force, causing droplet depinning.9,10,12

In these models, the shear force acting on the droplet, Fs, is typically estimated by assuming

a static droplet with a spherical-cap shape, a circular contact line, and a Stokes-like drag law.14

It is found that Fs ∼ (µsvhR
2
0)/hmax, where µs is the surrounding fluid viscosity, hmax is the

maximum droplet height, vh is the surrounding fluid velocity at the maximum droplet height,

and R0 is the radius of the circular contact line. The surface-tension force, Fsurf , is estimated

by assuming a static droplet with a circular contact line. It is also assumed that the contact

angle in the entire advancing half of the droplet is equal to the advancing contact angle, θacl,

and that the contact angle in the entire receding half of the droplet is equal to the receding

contact angle, θrcl. Under these assumptions, Fsurf ∼ σD(cos θacl − cos θrcl), where σ is the
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interfacial tension and D is the diameter of the circular contact line.12 Some force-balance

models also calculate the surface-tension force by approximating the contact-line shape as an

ellipse15–17 or a parallel-sided drop.17,18

Although force-balance models are useful for rationalizing experimental observations, they

have several important shortcomings. First, they cannot provide predictions of steady or

transient droplet shapes, which is information of fundamental interest. Second, advancing and

receding contact angles must be input into these models and are assumed to be constant.

However, in practice these angles may be spatially dependent due to natural or engineered

surface variations. Third, force-balance models do not explicitly incorporate the influence of

surface topography or wettability variations on droplet depinning. While these factors can be

implicitly accounted for through the advancing and receding contact angles, it may not always

be clear how parameters characterizing surface variations are related to these angles.

Explicitly accounting for surface variations is essential for developing mathematical models

that can be used to design surfaces with topography and wettability variations for a desired

application. Additionally, force-balance models cannot provide information about the

mechanics of pinning to and depinning from surface features, which is also information of

fundamental interest. Nevertheless, it should be noted that force-balance models combined

with experimental data can yield good predictions of the surface-tension forces that adhere

the droplet to the substrate.16,19 Finally, these models cannot predict the critical flow

strength required for droplet depinning without knowledge of the maximum droplet height

and the values of the advancing and receding contact angles at the point of droplet depinning.

The objective of the present work is to develop a mathematical model that addresses these

limitations.

In some prior works, boundary integral methods have been applied to describe droplet

behavior on a solid surface in the presence of a surrounding fluid flow.20–23 In some of these

calculations,20–22 the contact-line position is fixed and a steady-state droplet shape is obtained

for a given flow rate of the surrounding fluid. The flow rate beyond which a steady-state solution

cannot be obtained is taken to be the critical flow rate required for droplet depinning. Transient

droplet motion has been accounted for in other calculations by imposing a Navier slip condition

at the contact line, although contact angle hysteresis (the difference between advancing and

receding contact angles) was not included, meaning that the droplet moves for any non-zero

3



flow rate of the surrounding fluid.23 Contact angle hysteresis has been accounted for in diffuse-

interface/finite-volume24,25 and lattice-Boltzmann/finite-difference26 calculations, where a point

on the contact line remains stationary if the apparent contact angle θ lies within a specified

range (θrcl < θ < θacl), and moves if θ lies outside this range. As with the force-balance models,

values of the advancing and receding contact angles must be specified in advance. Notably,

none of the studies mentioned above explicitly account for surface roughness. Although surface

roughness can be accounted for implicitly via the use of advancing and receding contact angles,

accounting for it explicitly is valuable for designing surfaces and for gaining insight into the

mechanics of contact-line pinning/depinning, as noted earlier.

As a first step toward addressing the limitations mentioned above, here we focus on the

case of thin droplets and develop a lubrication-theory-based model for droplet depinning on a

substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and

surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow, and

the defects are modeled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure

approach to capture contact-line motion, a nonlinear evolution equation is derived describing

the droplet thickness as a function of distance along the channel and time. Numerical solutions

of the evolution equation are used to investigate how the critical pressure gradient for droplet

depinning depends on the viscosity ratio, surface wettability, droplet volume, and defect height.

Simple analytical models are able to account for many of the features observed in the numerical

simulations.

The paper is structured as follows. The model formulation is presented in §2, droplet

dynamics on smooth substrates are explored in §3, and droplet dynamics on rough substrates

and the pinning-depinning transition are investigated in §4. The influence of droplet and

surrounding fluid properties on droplet depinning is discussed in §5 and the influence of

substrate properties on droplet depinning is discussed in §6. Finally, residual droplet

formation is studied in §7, and conclusions are presented in §8.
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Figure 1: (a) Schematic of model geometry. (b) Enlarged view of a substrate defect.

2 Model formulation

Figure 1a shows the model geometry, where we consider a rectangular channel containing

a two-dimensional Newtonian droplet surrounded by another immiscible Newtonian fluid.

Here, W is the channel width, L is the channel length, h(x, t) is the droplet height, θacl is the

apparent advancing contact angle, and θrcl is the apparent receding contact angle. The

horizontal direction is denoted by x, the vertical direction by y, and time by t. We consider a

thin droplet such that its height is much smaller than its diameter (maximum width), and we

assume it is confined in a long narrow channel such that W � L. This allows us to invoke the

lubrication approximation to simplify the governing equations. A negative horizontal pressure

gradient of magnitude ∆P is imposed in the channel to drive flow. Although a

two-dimensional droplet is actually a ridge, we refer to it as a droplet in the remainder of this

paper for simplicity.

Surface roughness is incorporated by adding bump-type defects on the substrate. Figure

1b shows an enlarged view of a defect, where hd is the maximum defect height and wd is

the maximum defect width. In practical applications, substrates can have defects of different

sizes and shapes present at random locations. Here, we focus on the limiting case where a

Gaussian bump-type defect is present at a distance xd from each contact line. This reduces

the complexity of the problem while allowing us to obtain physical insight into the influence

of substrate topography on droplet dynamics. The substrate topography is described by the

function η(x) = hd{exp(−(x− xc1)2/(2w2
d))+exp(−(x− xc2)2/(2w2

d))}, where xc1 is the center

of the defect on the left and xc2 is the center of the defect on the right.
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2.1 Governing equations

Several applications discussed in §1 such as crossflow microemulsification1 and oil recovery4

involve long and narrow channels, which corresponds to ε = W/L� 1 for our model. Consistent

with lubrication theory, the maximum droplet height hmax is assumed to be much smaller than

its diameter D, with hmax ∼ W and D ∼ L at most. In principle, lubrication theory requires

the topography slope to be small, but in practice lubrication theory can yield qualitatively

accurate predictions for two-phase problems even outside of this regime, as demonstrated by

comparison to numerical simulations of the full governing equations.27

The vertical and horizontal distances are non-dimensionalized with W and L, respectively.

All stresses are scaled with a characteristic capillary pressure Wσ/L2, where σ is the interfacial

tension.28 The horizontal velocity is scaled with a capillary spreading speed u∗ = ε3σ/3µd,

where µd is the droplet viscosity, the vertical velocity is scaled with εu∗, and time is scaled with

L/u∗.

At leading order, the mass and momentum conservation equations in each phase are:

uix + viy = 0, (2.1)

(µi/µd)uiyy = 3P i
x, (2.2)

P i
y + (ρi/ρd)Bo = 0, (2.3)

where the superscript i denotes the phase (i = d for droplet, and i = s for surrounding fluid), u is

the horizontal velocity, v is the vertical velocity, µ is the viscosity, P is the pressure, and ρ is the

density. Three dimensionless parameters arise here: (i) the Bond number Bo = ρdgL2/σ, where

g is the magnitude of the gravitational acceleration, which represents a ratio of gravitational

forces to surface-tension forces, (ii) the viscosity ratio µr = µs/µd, and (iii) the density ratio

ρr = ρs/ρd. In this work, we assume Bo � 1 to isolate the influence of the imposed pressure

gradient on droplet dynamics.

Motivated by prior work on droplet motion on a solid substrate, we use a

precursor-film/disjoining-pressure approach to model contact-line motion.28–32 As opposed to

approaches that impose a slip law on the substrate, here the contact-line position is extracted

from the droplet height profile (see §2.2) and is not an extra variable, which makes the

resulting equations less cumbersome to solve.33 This approach assumes the presence of a

precursor film of thickness b along the entire substrate (Figure 1). The total pressure within
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the droplet is P = P
′

+ Π, where P
′

is the hydrodynamic pressure and Π is the disjoining

pressure. A two-term disjoining pressure is used:

Π = A

[(
b

h

)n
−
(
b

h

)m]
, (2.4)

where A is the dimensionless Hamaker constant and h is the droplet thickness. The term with

exponent n represents contributions from repulsive intermolecular forces, and the term with

exponent m represents contributions from attractive intermolecular forces. We choose n = 3

and m = 2, as prior studies show that these values provide qualitatively accurate predictions of

contact-line motion at a reasonable computational cost.30–32 It should be noted that our model

can be extended to incorporate chemical heterogeneity on the substrate by spatially varying

A.28,29,34

The two-term disjoining pressure determines an equilibrium contact angle of magnitude θeq,

which the droplet attains in the absence of an imposed pressure gradient:28

θeq =

√
2(n−m)Ab

(n− 1)(m− 1)
. (2.5)

Here, θeq is the scaled equilibrium contact angle and is related to the actual lab-frame

equilibrium contact angle by θeq,lab = εθeq. All the angles discussed in the remainder of this

paper are scaled angles.

The interface between the droplet and the surrounding fluid is described as H(x, t) =

h(x, t) + η(x), and we impose the following conditions:

ud = us, (2.6)

vd = vs, (2.7)

P d − P s = −Hxx, (2.8)

udy = µru
s
y, (2.9)

ht +

(∫ H

η

ud dy

)
x

= 0, (2.10)

where (2.6) and (2.7) are continuity of velocity, (2.8) is the normal stress balance, (2.9) is the

tangential stress balance, and (2.10) is the kinematic condition. No-slip and no-penetration

conditions are imposed at the substrate (y = η(x)) and the top boundary (y = 1):

ud(y = η, t) = 0, us(y = 1, t) = 0, (2.11)

vd(y = η, t) = 0, vs(y = 1, t) = 0. (2.12)
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An imposed pressure gradient in the channel generates a mean flow rate in the x-direction,

and we represent its dimensionless form by Qp. Due to mass conservation, Qp does not vary

along the x-direction, and we calculate it by considering a portion of the channel that only

contains the precursor film, as it is a steady two-layer flow with a flat interface of height b,

Qp =
1

4
∆P

(
−b3 +

3b(b− 1)

1 + (µr − 1)b
+

(b− 1)3

µr

)
. (2.13)

Since the precursor-film thickness is much smaller than the channel width (b � 1), the flow

rate simplifies to Qp = ∆P/4µr, which is used in the flow-rate condition:∫ H

η

ud dy +

∫ 1

H

us dy = Qp. (2.14)

We find that the qualitative nature of our results does not change if we use (2.13) in the flow-

rate condition, and the quantitative difference is about 5-10%. We use the simplified flow rate

here to eliminate the dependence on b.

Integrating (2.2) and (2.3) with respect to y and using conditions (2.6) - (2.14) gives the

droplet height evolution equation:

∂h

∂t
=

∂

∂x

[
(H − 1)3h3f(H,µr, η)

g(H,µr, η)

(
∂H3

∂x3
+
∂Π1

∂x

)
+ ∆P

h3(3 +H2(µr − 1)− 2H(1 + (µr − 2)η + η(µrη − 4))

4f(H,µr, η)

]
, (2.15)

where

f(H,µr, η) = 1 +H(µr − 1)− µrη, (2.16)

g(H,µr, η) = (H − η)4µ2
r − 2µr(H − 1)(H3 −H2(1 + 2η)

+ η(−2 + 3η − 2η2) +H(2− 2η + 3η2)) + (H − 1)4. (2.17)

We set the length of the computational domain to L, and require the interface between the

precursor film and the surrounding fluid to be flat at the left and right ends,

h(x = 0, t) = b, hx(x = 0, t) = 0, (2.18)

h(x = L, t) = b, hx(x = L, t) = 0. (2.19)
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We use a fourth-order polynomial which satisfies (2.18) and (2.19), and specify a dimensionless

droplet volume v0, to define the initial droplet shape. Evolution equation (2.15) is discretized

using a fully implicit centered fourth-order finite-difference scheme with 6000 − 8000 spatial

nodes, and the MATLAB built-in solver ode15s is used for time integration. All results were

checked to ensure that they are converged with respect to spatial and temporal discretization.

In the simulations presented here, we set L = 6 or L = 9 to obtain results that are

independent of the length of the computational domain. A value of b = 0.001 is used as it

allows us to recover Tanner’s spreading law for a two-dimensional droplet (§3) while allowing

for reasonable computation times. For all calculations with rough surfaces, the precursor film

thickness is much smaller than the defect amplitude (b/hd ∼ 10−2 - 10−1), indicating that the

bump accounts for surface roughness in a physically realistic manner. Smaller values of b lead

to slower droplet spreading and a more computationally stiff problem, but do not change the

qualitative behavior of the results presented here. For many of our results, we use

representative values of v0 = 0.2 and θeq = 10◦ (which corresponds to A = 105 using (2.5)),

although we also study the effect of changing these parameters. In this paper, the largest

value of θeq is 16◦, which corresponds to tan θeq ∼ 10−1 and small interfacial slopes, consistent

with the lubrication approximation.

2.2 Contact angles and contact lines

For a smooth substrate, we define apparent advancing (θacl) and receding (θrcl) contact

angles (Figure 1a) as the largest angles between the substrate and the tangents to the interface

between the droplet and the surrounding fluid, on the advancing and receding sides of the

droplet. Advancing and receding contact-line locations, xacl and xrcl, are defined as the points

where the tangents corresponding to the apparent contact angles and the substrate intersect.

In the absence of an external pressure gradient θacl = θrcl. If θacl > θeq, the droplet spreads

until θacl = θeq, and if θacl < θeq the droplet retracts until θacl = θeq.

For substrates with topographical defects, a mesoscopic contact angle θm is defined,30,35

tan(θm) =
hx

1 + (hx + ηx)hx
. (2.20)

The apparent contact angles θacl and θrcl are obtained by finding the points on the interface

between the droplet and the surrounding fluid where θm is the largest, on the advancing (θma in

figure 2a) and receding (θmr in figure 2b) sides of the droplet respectively, and then extrapolating

the tangents at these points to the substrate. The contact-line positions xacl and xrcl are defined

as the points where the tangents corresponding to the apparent contact angles and the substrate

intersect.
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Figure 2: (a) Contact-line region when the advancing contact line moves over a defect, where η

represents the substrate shape, H represents the interface shape, θacl is the apparent advancing

contact angle, and θma is the largest mesoscopic angle on the advancing half of the droplet

interface. (b) Contact-line region when the receding contact line moves over a defect, where θrcl
is the apparent receding contact angle, and θmr is the largest mesoscopic angle on the receding

half of the droplet interface.

3 Droplet dynamics on a smooth substrate

Before considering the influence of substrate topography on droplet dynamics, we discuss

the case of a smooth substrate, which corresponds to η(x) = 0. We first consider the case

of a droplet spreading on a substrate while surrounded by a stationary fluid (∆P = 0). For

perfectly wetting droplets (θeq = 0o), our results (figure 1 of supplementary material) are

consistent with Tanner’s spreading law for a two-dimensional droplet (xacl − xc ∼ t1/7, where

xc is the droplet center).36 This holds for all viscosity ratios we have investigated, with an

increase in the surrounding-fluid viscosity simply slowing the spreading. For partially wetting

droplets, viscosity has a similar effect, as seen in figure 3. The droplet spreads (xacl increases

and θrcl decreases) at earlier times, and eventually reaches the same steady shape for all µr since

the steady droplet shape is governed by θeq.
28 The steady θacl (≈ 11o) found from numerical

simulations is within about 1o of the specified θeq = 10o from (2.5).

To study the influence of a surrounding fluid flow, we first perform a simulation such that the

droplet reaches a steady shape in a stationary surrounding fluid to obtain an initial condition.

10



(a) (b)

Figure 3: Droplet dynamics on a smooth substrate in a stationary surrounding fluid. (a) xacl
vs. t for different µr. (b) θacl vs. t for different µr. The other parameters are L = 6, A = 105

(θeq = 10o), b = 0.001, and v0 = 0.2.

We then introduce a negative horizontal pressure gradient of magnitude ∆P within the channel.

Figure 4a shows the variation of xacl with t for different ∆P . The slope of xacl vs. t at any

point represents the horizontal velocity of the advancing contact line, and it is seen that this

velocity reaches a steady value, which we denote as the terminal sliding velocity, vt. Figure 4b

shows the steady droplet shapes for different ∆P values. The droplet is shorter and wider for

∆P > 0 compared to ∆P = 0, and the deformation increases with ∆P . For a constant ∆P ,

additional calculations we have performed indicate that the droplet takes longer to attain a

steady shape as µr increases. The steady shape is relatively independent of µr for µr . 1, but

the amount of deformation noticeably increases for sufficiently large µr values.

The results from the numerical simulations can be rationalized by using a flat-interface

approximation, where we assume a steady pressure-driven two-layer flow with a flat interface

such that the bottom layer consists of the droplet liquid and the top layer consists of the

surrounding fluid. The physical variables are non-dimensionalized using the characteristic scales

discussed in §2.1, and the dimensionless horizontal liquid velocity at the interface is calculated

to be:

vH =
3∆P (1−H)H

2(1 +H(µr − 1))
, (3.1)

11



0 500 1000 1500 2000
3

4

5

6

7

8

9

10

(a)

0

0.02

0.04

0.06

0.08

𝑦

𝑥

(b)

0 0.02 0.04 0.06 0.08

0

0.5

1

1.5

2

2.5

3

10-3

(c)

Figure 4: Droplet dynamics on smooth substrates. (a) xacl vs. t for different ∆P , with µr = 0.01

and v0 = 0.2. (b) Steady droplet shapes for different ∆P on a smooth substrate. The droplet

profiles have been shifted such that their receding contact lines coincide. (c) vt vs. ∆P , with

µr = 0.01 and v0 = 0.2. The other parameters are µr = 0.01, v0 = 0.2, L = 9, A = 105

(θeq = 10o), and b = 0.001.

where H is the dimensionless height of the flat interface.

For a given ∆P and µr, we perform a numerical simulation for a droplet to calculate vt and

the steady shape it attains, from which we extract the maximum droplet height (hmax). We set

H = hmax, calculate vH using (3.1), and compare it with vt.

Figure 4c shows that vt ∼ ∆P , which is consistent with the flat-interface approximation

((3.1)). Calculating vH from (3.1) reveals that the flat-interface approximation overpredicts vt

by a factor of about 3.6, likely because the flat-interface approximation does not account for

the influence of viscous dissipation and surface-tension forces near the droplet contact line.
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Figure 5: (a) vt vs. µr, with ∆P = 0.04, A = 105 (θeq = 10o), and v0 = 0.2. (b) log(vt) vs.

log(v0), with µr = 0.01, A = 105 (θeq = 10o), and ∆P = 0.04. (c) vt vs. θeq, with µr = 0.01,

∆P = 0.04, and v0 = 0.2. The other parameters are L = 9 and b = 0.001.

Figure 5a shows the variation of vt with µr, where the open blue circles are results from

numerical simulations for the droplet, and the dashed red line is from the flat-interface

approximation (vH). The flat-interface approximation overpredicts vt by nearly an order of

magnitude. But it reproduces the qualitative trend observed from droplet simulations, where

vt is not strongly dependent on µr for µr < 1, and decreases with µr for µr > 1. This trend

can be rationalized by considering (3.1). From (3.1), vH ≈ (3H∆P/2) for µr � 1, and

vH ≈ (3∆P (1−H)/2µr) for µr � 1. Note that for both µr � 1 and µr � 1, the flat-interface

approximation predicts that vH , and thus vt, ∼ ∆P .

To explore the effects of droplet volume, figure 5b shows log(vt) vs. log(v0), with v0 being

the droplet volume, for µr = 0.01, where the open blue circles are from numerical simulations
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for the droplet, and the dashed black line is a linear fit which indicates that vt ∼ v0.40 . Droplet

simulations for µr = 100 also yield vt ∼ v0.40 . Using the flat-interface approximation ((3.1)),

vH ≈ (3H∆P/2) for µr � 1, and vH ≈ (3∆P (1 − H)/2µr) for µr � 1. This suggests that

vt ∼ hmax for the droplet, for both µr � 1 and µr � 1. From the simulations for both the

cases, it is found that hmax ∼ v0.50 for a droplet after it attains a steady shape, and thus we

obtain vt ∼ v0.50 , which is close to the scaling relation obtained from droplet simulations (Note

that the simulations also show that the steady value of D = xacl − xrcl ∼ v0.50 , consistent with

mass conservation.).

Figure 5c shows vt vs. θeq, where the open blue circles are results from numerical simulations

for the droplet, and the dashed red line is from the flat-interface approximation (vH). The

flat-interface approximation overpredicts vt, but it reproduces the qualitative trend observed

from droplet simulations. This is because hmax, and consequently H, increase with θeq, and vH

increases monotonically with H as can be seen by analyzing (3.1). Although it misses important

details, the flat-interface approximation is also useful for understanding droplet dynamics on

rough substrates, as will be shown later.

4 Droplet dynamics on a rough substrate

In this section, we study the influence of substrate topography. To obtain an initial condition

for a given set of parameters, we perform a numerical simulation such that the droplet reaches

a steady shape on a smooth substrate in a stationary surrounding fluid, then add a Gaussian

bump-type defect (discussed in §2) at each contact line with xd = 0 (Figure 1a) to pin the

droplet. We then introduce a negative horizontal pressure gradient of magnitude ∆P in the

channel. For the calculations presented in this section we fix hd = 0.02hmax and wd = 2hd to

isolate the effects of ∆P . The influence of defect geometry on droplet dynamics is discussed in

§6.2.

4.1 Pinning-depinning transition

Figures 6a and 6b show the variation of θacl and xacl with t for ∆P = 0.05 and ∆P = 0.07.

For ∆P = 0.05, xacl does not vary with t, and θacl increases with t to eventually reach a steady

value. This behavior is indicative of droplet pinning. For ∆P = 0.07, θacl increases with t and

xacl remains constant until t = 266. Then, for t > 266, θacl decreases with t and eventually
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Figure 6: Droplet dynamics on a rough substrate. (a) θacl vs. t. (b) xacl vs. t. The kinks in xacl
at t = 266 indicate that the contact line rapidly depins from the defect at that time and shifts

to the right. The smaller kink to the left of the larger kink arises while numerically resolving

xacl from droplet profiles. The other parameters are L = 9, µr = 0.01, A = 105 (θeq = 10o),

b = 0.001, v0 = 0.2, hd = 0.02hmax, and wd = 2hd.

reaches a steady value, and xacl increases with t. This behavior is indicative of droplet depinning.

Overall, these results suggest that there is a critical ∆P above which droplet depinning occurs.

Figure 7a shows the variation of the steady θacl value with ∆P , and it is seen that θacl

increases with ∆P for ∆P < 0.063. For ∆P < 0.063, it is found that xacl remains equal to its

initial value, similar to what is seen for ∆P = 0.05 (blue line in figure 6b). As ∆P increases

from zero, the droplet remains pinned but becomes increasingly deformed, as shown in figure

7b.

At ∆P = 0.063, a significant decrease in θacl is observed, indicating droplet depinning, and

for ∆P > 0.063, there is a slight increase in θacl with ∆P . Furthermore, for ∆P > 0.063, the

behavior of xacl as a function of t is qualitatively similar to that for ∆P = 0.07 (red line in

figure 6b), where xacl remains equal to the initial value for a period of time and then gradually

increases with t. Thus, after the droplet depins it slides on the substrate with a steady shape,

as shown in figure 7c (see supplementary material for videos of droplet pinning and depinning).
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Figure 7: (a) Steady value of θacl vs. ∆P . (b) Steady droplet profiles for different ∆P . (c)

Droplet profiles at different t for ∆P = 0.07. The solid black lines show substrate topography

and the other lines show droplet profiles. All other parameters are the same as in figure 6.

4.2 Droplet pinning mechanism

As discussed in §1, the pinning-depinning transition has been rationalized in prior work

using simple force-balance models.10,12 We apply those ideas here to see how well they describe

our results. In those models, the drag force acting on the droplet due to the surrounding

fluid flow drives depinning, and the surface-tension force acting along the droplet contact line

resists depinning. The total drag force acting on the droplet is predominantly composed of

skin drag and the pressure drag is negligible. Also, the total drag force is nearly equal to

the shear force due to the droplet being thin (figure 2 of supplementary material). We note

that pressure drag is expected to become significant for droplets not well described by the

lubrication approximation. The balance between the shear force and the surface-tension force
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Figure 8: (a) Terms in the force-balance model for pinned droplets at different ∆P values. The

open red circles are results from numerical simulations and the straight blue line has a slope

of unity. (b) Enlarged view of the pinned advancing contact line for ∆P = 0.03, where the

blue line shows the droplet and the red line shows the defect. (c) Enlarged view of the pinned

receding contact line for ∆P = 0.03, where the blue line shows the droplet and the red line

shows the defect. The other parameters are L = 9, µr = 0.01, A = 105 (θeq = 10o), b = 0.001,

v0 = 0.2, hd = 0.02hmax, and wd = 2hd.

can be represented in a dimensionless form as (D2/hmax)(cos θrcl− cos θacl) ∼
∫
s
n ·T · t ds (see

appendix). Here, D = xacl − xrcl is the droplet width, hmax is the maximum droplet height, n

is the unit normal vector at the interface between the droplet and the surrounding fluid that

points into the surrounding fluid, T is the droplet stress tensor, t is the unit tangent vector at

the interface, and s is the interface arclength coordinate such that s = 0 at the receding contact

line and s = 1 at the advancing contact line.

We extract the values of D, hmax, θacl, θrcl, n, T, and t from the steady droplet shapes in

numerical simulations to calculate the terms in the force balance. Figure 8a shows these terms

for different ∆P < ∆Pcrit, with the open red circles presenting the simulation results. As can
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Figure 9: Droplet pressure vs. x for a pinned droplet (∆P = 0.05). The dashed blue line shows

the contribution from the capillary pressure and the solid red line shows the total pressure

(capillary and disjoining). All the other parameters are the same as in figure 8.

be seen, there is indeed a linear relationship, consistent with the force-balance model. It should

be noted that inertial forces may become important for larger droplets or larger ∆P values,37

but they are neglected in this work.

Next, we discuss the pinning locations of the two contact lines. It can be seen from figures

8b and 8c that the following geometric relations hold at the pinned advancing and receding

contact lines:

θacl = θma + γa, (4.1)

θrcl = θmr − γr, (4.2)

where γa is the magnitude of the slope at the point on the defect on the right that coincides with

xacl, and γr is the magnitude of the slope at the point on the defect on the left that coincides

with xrcl. Our calculations show that for all the cases of a pinned droplet, θma ≈ θmr ≈ θeq, so

the values of θrcl and θacl depend primarily on γr and γa, respectively.

For all the cases where the droplet is pinned, it is found that xrcl and xacl coincide with the

points on the defects where there is a maximum negative slope, whose magnitude we denote as

γmax. Using (4.1) and (4.2), it can be seen that as a consequence of these pinning locations,
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θrcl ≈ θeq − γmax is minimized, and θacl ≈ θeq + γmax is maximized, which maximizes the

surface-tension term in the force-balance model (D2/hmax)(cos θrcl − cos θacl). These findings

are consistent with predictions from a lubrication-theory-based model for a droplet sliding down

an inclined substrate with a single Gaussian-shaped bump, where the advancing contact line

pins at the point on the bump that has the maximum negative slope, as it maximizes the

surface-tension force.35 The present work shows that similar behavior occurs even in more

complicated situations, where the geometry and driving force for flow are different, and the

dynamics of both phases are accounted for.

The pinning-depinning transition can also be understood through an analysis of the pressure

gradients in the droplet.30,32 Figure 9 shows the variation of the pressure in a pinned droplet

with x for two ∆P values. The total pressure includes contributions from the capillary pressure

and the disjoining presssure, and figure 9 shows the former quantity as well. For each case, the

capillary pressure has a negative gradient and drives flow from the droplet interior toward the

advancing contact line (located at x = 5.56), which promotes depinning. But the disjoining

pressure increases closer to the contact line, and causes the total pressure gradient within

the droplet to become positive, which drives flow from the advancing contact line toward the

droplet interior. Near the receding contact line, the total pressure gradient within the droplet

is negative (figure 3 of supplementary material), which drives flow from the receding contact

line toward the droplet interior. The flows near the two contact lines oppose each other and

result in a pinned droplet.

As ∆P increases, the pinned droplet becomes increasingly deformed (see figure 7b), which

increases the droplet thickness near the advancing contact line and decreases the disjoining

pressure there. As a result, the total pressure gradient near the advancing contact line

decreases as shown in figure 9. At ∆Pcrit, the total pressure gradient near the advancing

contact line becomes negative, and the total pressure gradient near the receding contact line

remains negative. This results in a net negative pressure gradient within the droplet, which

causes the two contact lines to depin simultaneously, and the droplet slides to the right.
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Figure 10: log tdepinning vs. logD/(∆Phmax), where the open blue circles show calculations from

numerical simulations, and the dashed black line shows a slope of 1. The other parameters are

L = 9, µr = 0.01, A = 105 (θeq = 10o), b = 0.001, v0 = 0.2, hd = 0.02hmax, and wd = 2hd.

4.3 Droplet depinning time

The time it takes the droplet to depin when ∆P > ∆Pcrit is of both fundamental and

practical interest. The droplet depinning time, tdepinning, is calculated as the time at which the

receding contact line position, xrcl, crosses the defect on the right. A scaling relation can be

obtained for tdepinning by dividing the droplet width, D, with the droplet velocity (3.1) obtained

from the flat-interface approximation (§3). For µr � 1, this yields tdepinning ∼ D/∆Phmax.

Figure 10 shows log tdepinning vs. logD/(∆Phmax), where the open blue circles are

calculations from numerical simulations and the dashed black line has a slope of 1. The

intercept for the dashed black line is chosen such that it overlaps with the simulation result at

logD/(∆Phmax) = 4.1814. Fitting a straight line to the numerical calculations yields a slope

of 1.423. Thus, the scaling law derived above predicts a faster depinning time

(∼ D/(∆Phmax)) than what is observed from numerical simulations (∼ (D/(∆Phmax))
1.423).

This is expected based on the results in §3, as the flat-interface approximation does not

account for viscous dissipation and surface-tension forces near the contact lines, which slow

down droplet motion.
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Figure 11: (a) ∆Pcrit vs. µr (b) Shear force vs. µr for ∆P = 0.03. (c) ∂us/∂y at the maximum

height of pinned droplet vs. µr for ∆P = 0.03. The other parameters are L = 9, µr = 0.01,

A = 105 (θeq = 10o), b = 0.001, v0 = 0.2, hd = 0.02hmax, and wd = 2hd.

5 Influence of droplet and surrounding fluid properties on the critical pressure
gradient

5.1 Influence of viscosity ratio

Figure 11a shows ∆Pcrit vs. µr. For µr < 1, ∆Pcrit decreases slightly with µr, and this

result is qualitatively consistent with the experimental observations of Fan et al.,12 where as

the viscosity of the glycerol-water droplet increases (by increasing the glycerol concentration),

a larger critical flow rate of the surrounding air is required to depin it on a treated glass surface.

For µr > 1, ∆Pcrit decreases with µr to reach a minimum value at µr ≈ 10, and then increases

with µr. These results can be rationalized by examining the shear force acting on the droplet.

21



0.05 0.1 0.15 0.2 0.25 0.3
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a)

-3 -2.5 -2 -1.5

-3.2

-3

-2.8

-2.6

-2.4

-2.2

(b)

Figure 12: (a) ∆Pcrit vs. v0 for µr = 0.001 and µr = 0.9 (b) log ∆Pcrit vs. log v0 for µr = 0.001,

where the open blue circles show calculations from droplet simulations, and the dashed black

line shows a linear fit with a slope of −0.5. The other parameters are L = 9, A = 105 (θeq = 10o),

b = 0.001, hd = 0.02hmax, and wd = 2hd.

Our calculations show that the surface-tension force does not vary significantly with µr (≈ 6%),

so we do not consider it here.

Figure 11b shows shear force vs. µr for a fixed ∆P < ∆Pcrit. Using lubrication theory, the

shear force
∫
s
n · T · t ds simplifies to

∫
s
µr∂us/∂y ds, where ∂us/∂y is the horizontal velocity

gradient with respect to y in the surrounding fluid at the interface. For a constant ∆P , as µr

increases, the surrounding fluid becomes more viscous and exerts a larger shear force on the

droplet. But for µr � 1, the surrounding fluid becomes so viscous that the net flow rate along

the x-direction decreases. Consequently, ∂us/∂y decreases with µr as exemplified in figure 11c,

where ∂us/∂y at the maximum height of the pinned droplet is shown. As a result, the shear

force decreases with µr for µr � 1, and the droplet experiences a maximum shear force, and

consequently a minimum ∆Pcrit for µr ≈ 10. This observation is potentially important for

applications such as crossflow microemulsification and oil recovery, where the viscosity of the

surrounding fluid could be tuned to minimize ∆Pcrit.

5.2 Influence of droplet volume

Figure 12a shows ∆Pcrit vs. v0 for two different values of µr < 1 (droplet more viscous

than the surrounding fluid). It is seen that ∆Pcrit decreases with v0 for each case, and a larger
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∆Pcrit is required for a smaller µr. This result is qualitatively consistent with the experimental

findings of Fan et al., where a lower critical flow rate of surrounding air is required to depin

a larger glycerol-water droplet on a treated glass surface, and a larger flow rate is required to

depin a more viscous droplet of the same volume.12 For µr > 1, ∆Pcrit decreases with v0 as

well (figure 4 of supplementary material).

These results can be understood in terms of the force-balance model discussed in §4.2. An

analytical expression is obtained for the shear force acting on the droplet using the flat-interface

approximation (see §3), where the shear stress acting on a flat interface of height H is multiplied

by the length of the horizontal domain L:

F flat
s = 3∆PL

(
H − 1 +H2(µr − 1)

2(1 +H(µr − 1))

)
. (5.1)

Using (5.1) to calculate the shear force by setting H = hmax obtained from the steady

droplet profiles, and assuming L ∼ D, the dimensionless force balance at the point of depinning

can be expressed as 3∆Pcrit (hmax − 1) /2 ∼ (D/hmax(cos θrcl − cos θacl) for µr � 1, and

3∆Pcrithmax/2 ∼ (D/hmax)(cos θrcl − cos θacl) for µr � 1. As discussed in §3, both D and

hmax ∼ v0.50 . Thus, ∆Pcrit ∼ v−0.50 for both µr � 1 and µr � 1. Figure 12b shows log ∆Pcrit

vs. log v0 for µr = 0.001, where the open blue circles are results from numerical simulations

and the dashed black line shows a slope of −0.5. The close agreement indicates that the

flat-interface approximation accurately captures the influence of v0 on ∆Pcrit. Results from

numerical simulations for µr = 100 follow the scaling relation as well (figure 4 of supplementary

material).

6 Influence of substrate properties on droplet depinning

6.1 Influence of substrate wettability

Figure 13a shows ∆Pcrit vs. θeq for µr = 0.01, and it is seen that ∆Pcrit increases with θeq.

This result is qualitatively consistent with the experimental findings of Madani and Amirfazli,9

where a lower surrounding water flow rate is required to depin an oil droplet (µr < 1) on a

more wettable substrate.

These results can be understood by examining the surface-tension term in the force-balance

model, (D2/hmax)(cos θrcl− cos θacl) (see §4.2), which increases with θeq as shown in figure 13b.

The shear force acting on the droplet is not considered as it does not vary significantly with
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Figure 13: (a) ∆Pcrit vs. θeq. (b) (D2/hmax)(cos θrcl − cos θacl) vs. θeq for ∆P = 0.03. The

other parameters are L = 9, µr = 0.01, v0 = 0.2, b = 0.001, hd = 0.02hmax, and wd = 2hd.

θeq (≈ 7%). This can be understood from the flat-interface approximation. According to (5.1),

the shear force depends on hmax, which does not vary significantly with θeq (≈ 8%).

As θeq increases, θrcl ≈ θeq − γmax increases, which tends to decrease the surface-tension

force. Additionally, θacl ≈ θeq + γmax increases, which tends to increase the surface-tension

force. Overall, a net increase is observed in the surface-tension force (figure 13b), and a larger

∆Pcrit is required for droplet depinning on a less wettable substrate.

6.2 Influence of defect geometry

The defect shape is governed by its maximum height hd and maximum width wd (see §2).

It can be seen from figure 1b that the maximum slope along the defect γmax increases with

hd (constant wd), and decreases with wd (constant hd). As will be discussed below, ∆Pcrit

depends only on γmax, and increasing hd has the same qualitative effect on droplet dynamics

as decreasing wd. Here, we vary hd while keeping wd constant.

Figure 14a shows ∆Pcrit vs. the ratio of hd to the initial maximum droplet height, and it

is seen that ∆Pcrit increases with hd. This result can be understood by examining the surface-

tension force acting along the contact line. As discussed in §6.1, the shear force acting on the

droplet for a fixed ∆P depends on hmax, which does not vary significantly with hd (≈ 4%), and

µr, which does not vary with hd. As a consequence, the shear force does not vary significantly

with hd (≈ 6%).
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Figure 14: (a) ∆Pcrit vs. hd. (b) (D2/hmax)(cos θrcl − cos θacl) vs. θacl for ∆P = 0.015. The

other parameters are L = 9, µr = 0.01, b = 0.001, A = 105 (θeq = 10o), v0 = 0.2, and

wd = 0.008.

As discussed in §4.2, θacl ≈ θeq + γmax and θrcl ≈ θeq − γmax. It can be seen that for a fixed

θeq, as hd, and consequently γmax, increases, θacl increases and θrcl decreases. As a result, the

surface-tension term in the force-balance model (D2/hmax)(cos θrcl− cos θacl) increases with hd,

as shown in figure 14b. Thus, a larger ∆Pcrit is required for droplet depinning if taller defects

are present on the substrate. Similarly, a larger ∆Pcrit is required for narrower defects (figure

5 of supplementary material).

We also find that when the ratio of the defect height to the initial maximum droplet height

is greater than 0.025 (see dashed line in figure 14a), smaller residual droplets are formed behind

and in front of the defect on the right, after the original droplet depins. (The value of 0.025 is

specific to the parameters used in the calculations.) We discuss this phenomenon in the next

section.

7 Residual droplet formation

7.1 Geometric mechanism

Figure 15 shows droplet profiles as time progresses after the droplet depins, and it is seen

that a residual droplet is formed behind the defect on the right as the droplet slides over it. This

happens when θrcl < γmax as the receding contact line approaches the defect. The disjoining
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Figure 15: Droplet profiles at (a) t = 500 (b) t = 520 and (c) t = 540. Enlarged view of the

contact line at (d) t = 500 (e) t = 520 and (f) t = 540. The solid black lines show substrate

topography and the blue lines show droplet profiles. The parameters are L = 9, A = 105

(θeq = 10o), v0 = 0.2, b = 0.001, ∆P = 0.1, hd = 0.02hmax, and wd = 2hd.

pressure above the defect increases due to droplet thinning, which drives flow away from this

region and a smaller residual droplet is pinched-off behind the defect. But if θrcl > γmax, the

droplet slides over the defect without leaving behind a residual droplet. It should be noted

that θrcl is obtained as an output from our calculations (see §2.2) and generally depends on the

viscosity ratio, droplet volume, substrate wettability, and defect geometry. These findings are

consistent with a prior lubrication-theory-based model for a droplet sliding down an inclined

substrate with a single Gaussian-shaped bump, where a residual droplet is formed behind the

bump, if θrcl < γmax as the receding contact line approaches the bump.35

It is also found that an additional residual droplet forms in front of the defect at later times

if θrcl < γmax. Figure 16 shows droplet profiles as time progresses after the formation of the

residual droplet behind the defect. As seen in figure 15, the receding contact line remains in

the vicinity of the defect during the pinch-off of the residual droplet behind the defect, while
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Figure 16: Droplet profiles at (a) t = 560 (b) t = 580 (c) t = 600 and (d) t = 620. Enlarged

view of the contact line at (e) t = 560(f) t = 580 (g) t = 600 and (h) t = 620. The solid black

lines show substrate topography and the blue lines show droplet profiles. The parameters are

the same as in figure 15.

the advancing contact line slides to the right. As a result, the droplet elongates and attains a

slender concave upward shape on its receding side to the right of the defect as shown in figures

16a and 16e. Consequently, the disjoining pressure in this region increases, which drives flow

away from the thinnest point of the interface, and a smaller residual droplet is pinched-off in

front of the defect (figures 16b-16d and 16f-16h). These findings are also consistent with the

prior work discussed above on droplets sliding down an inclined substrate,35 indicating that

the condition for residual droplet formation (θrcl < γmax) holds more generally. Indeed, one

would expect this criterion to hold for a broad range of geometries and flows as long as the

topography amplitude is much smaller than the length scales characterizing the overall flow.

We note that increasing the droplet volume increases the value of θrcl when the receding contact

line encounters the defect, eventually leading to θrcl > γmax and suppression of residual droplet

formation.

The formation of residual droplets has important implications for practical applications.

Our results indicate that the presence of topographical defects on the substrate may make it

difficult to recover the entire volume of the droplet in applications such as surface cleaning
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Figure 17: (a) Residual droplet volume vs. ∆P . (b) Droplet profiles at t = 300 for different

∆P values. The solid black line shows substrate topography and the other lines show droplet

profiles. The parameters are L = 9, A = 105 (θeq = 10o), v0 = 0.2, b = 0.001, ∆P = 0.1,

hd = 0.02hmax, and wd = 2hd.

and oil recovery. But for applications such as microemulsification, our results suggest that the

size of the dispersed phase droplets could be controlled by designing defects to break-up larger

droplets into smaller ones.

7.2 Influence of pressure gradient on residual droplet volume

We now consider the influence of ∆P on the volume of the residual droplets formed at the

defect. The volume of a residual droplet is calculated as
∫ xr
xl
h dx, where xl and xr are the left

and right end points of the residual droplet. These values are calculated such that h > b ∀
xl < x < xr in the region where the residual droplet is present. Figure 17a shows residual

droplet volume vs. ∆P , where the open blue circles are for droplets formed behind the defect,

and the open red triangles are for droplets formed in front of the defect. It can be seen that

the volume of the droplet formed behind the defect decreases with ∆P . This result can be

rationalized by examining the droplet profiles when the receding contact line approaches the

defect. Figure 17b shows these droplet profiles for different ∆P values. For each case, the

receding contact line slows down as it approaches the defect. As ∆P increases, the depinned

advancing contact line slides faster, leading to a more elongated droplet shape (figure 17b).
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This results in a larger portion of the droplet being trapped behind the defect just before the

residual droplet is pinched-off. Thus, a larger residual droplet is formed behind the defect for

a larger ∆P value.

Figure 17a also shows that the volume of the residual droplet in front of the defect decreases

with ∆P . This can be rationalized by noting that because the receding contact line slides faster

after depinning from the defect for larger ∆P values, there is a shorter time for droplet pinch-off

and a smaller residual droplet is formed in front of the defect.

8 Conclusions

We have developed a lubrication-theory-based model to study droplet depinning on rough

substrates due to the flow of a surrounding fluid caused by an imposed pressure gradient. In

contrast to commonly used force-balance models,9,10,12 our model allows for the calculation of

steady and transient droplet shapes. In addition, we explicitly account for surface roughness by

considering the presence of topographical defects, an important feature not considered in prior

computational studies.20–25 Another significant difference from prior work is that our model

requires specification of only an equilibrium contact angle via a disjoining-pressure function,

with advancing and receding contact angle values being outputs of (rather than inputs to) our

calculations that are determined by surface topography. Simple analytical models are able to

account for many of the features observed in the numerical simulations. A key advantage of the

lubrication-theory-based model we have developed is that it can readily be extended to study

more complicated situations involving chemical heterogeneity (via a spatially varying disjoining

pressure28,29) and three-dimensional effects.

Below a critical value of the pressure gradient, ∆Pcrit, the advancing and the receding contact

lines of the droplet remain pinned at the defects. Above ∆Pcrit, the shear force acting on the

droplet due to the flow of the surrounding fluid exceeds the surface-tension force acting along

the contact line, leading to droplet depinning. The pinning-depinning transition can also be

understood in terms of a balance between capillary-pressure gradients and disjoining-pressure

gradients. Our simulations reveal that the receding and advancing contact lines always pin

at the points on the defects that have the maximum negative slope because this maximizes

the surface-tension force acting on the droplet. This is a potentially important finding for

applications such as inkjet printing and spray coating, where substrate topography could be

designed to pin droplets at specific locations to obtain desired patterns.

29



As the viscosity of the surrounding fluid increases, ∆Pcrit reaches a minimum before

increasing due to a reduction in the shear force acting on the droplet. The presence of this

minimum could be exploited to make processes such as oil recovery and crossflow

microemulsification more efficient. Consistent with experimental observations,12 our model

predicts that larger droplet volumes require a lower ∆Pcrit, again due to the way the shear

force behaves. Less wettable substrates increase the values of ∆Pcrit due to the change in

surface-tension forces, which are influenced both by the equilibrium contact angle and the

maximum slope of the substrate topography, γmax. This behavior is also consistent with

experimental observations.9 Finally, it is also found that residual droplets may be formed

behind and in front of the defect after the droplet depins if γmax > θrcl, which has implications

for the efficiency of applications such as oil recovery, surface cleaning, and microemulsification.

Although we have considered Gaussian-shaped defects, we expect that our findings will

generalize to other defect shapes for situations consistent with the lubrication approximation.

Our results also serve as motivation for numerical simulations that relax the lubrication

approximation, which are needed to address situations such as (i) defects with vertical sides

(e.g., cylindrical and rectangular posts38) or (ii) droplet-fluid interfaces that become vertical

due to sufficiently large contact angles or forces that produce “lift-off” of the droplet from the

substrate.9 We expect that some of our findings will generalize to three-dimensional defects as

well, as long as the lateral length scale of the defects is sufficiently large compared to the

other length scales characterizing the flow geometry. Three-dimensional effects can be

addressed within the lubrication approximation, and our work motivates and can be used to

help validate such calculations.
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Appendix

In this section, we derive the expression for the force balance used in §4.2. We assume that

the droplet has a dimensional width L′z along the z-direction (not shown in figure 1a). The

dimensional shear force can be estimated as Fs
′ ∼ Lz

′ ∫
s
n ·T′ ·t ds′, where the primes represent

dimensional quantities.

The dimensional surface-tension force is estimated by assuming a circular contact line of

dimensional diameter D′, such that the contact angle in the entire advancing half is θacl, and

the contact angle in the entire receding half is θrcl:
12

F ′cl = D′
∫ π/2

0

σ cos θacl cosα dα +D′
∫ π

π/2

σ cos θrcl cosα dα , (A.1)

F ′cl = D′σ(cos θrcl − cos θacl), (A.2)

where α ∈ [0, π] (due to symmetry) denotes the angular position along the contact line such

that α ∈ [0, π/2] spans the advancing half of the droplet, and α ∈ [π/2, π] spans the receding

half of the droplet. The dimensional force balance is represented as:

(D′σ)(cos θrcl − cos θacl) ∼ L′z

∫
s

n ·T′ · t ds′, (A.3)

We non-dimensionalize the stresses using a capillary pressure σW ′/L2, and assume W ′ ∼
h′max and L′ ∼ D′, where primes have been used on W and L for notational consistency. This

yields:

(D2/hmax)(L
′2/W ′L′z)(cos θrcl − cos θacl) ∼

∫
s

n ·T · t ds, (A.4)

where D = D′/L′ is the dimensionless droplet diameter, hmax = h′max/W
′ is the dimensionless

maximum droplet height, and T is the dimensionless droplet stress tensor. Assuming that

L′2/(W ′L′z) ∼ 1, which implies that L′z ∼ L′/ε, where ε = W ′/L′, yields the dimensionless force

balance:

(D2/hmax)(cos θrcl − cos θacl) ∼
∫
s

n ·T · t ds. (A.5)
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