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Abstract

Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is
central to applications such as crossflow microemulsification, oil recovery, and waste
cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it
is of both fundamental and practical interest to determine the flow strength of the
surrounding fluid required for droplet depinning on rough substrates. Here, we develop a
lubrication-theory-based model for droplet depinning on a substrate with topographical
defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are
in a rectangular channel, a pressure gradient is imposed to drive flow, and the defects
are modeled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure
approach to capture contact-line motion, a nonlinear evolution equation is derived
describing the droplet thickness as a function of distance along the channel and time.
Numerical solutions of the evolution equation are used to investigate how the critical
pressure gradient for droplet depinning depends on the viscosity ratio, surface
wettability, and droplet volume. Simple analytical models are able to account for many
of the features observed in the numerical simulations. The influence of defect height is
also investigated, and it is found that when the maximum defect slope is larger than the
receding contact angle of the droplet, smaller residual droplets are left behind at the
defect after the original droplet depins and slides away. The model presented here yields
considerably more information than commonly used models based on simple force
balances, and provides a framework that can readily be extended to study more
complicated situations involving chemical heterogeneity and three-dimensional effects.
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1 Introduction

Pinning of liquid droplets on topographical or chemical defects on solid surfaces, and
depinning by flow of a surrounding immiscible fluid, are central to a diverse range of
applications. Crossflow microemulsification involves droplets of a dispersed phase released
into a channel through membranes. The droplets can pin on the membrane, and a continuous
phase flows through the channel to depin the dispersed-phase droplets and form an
emulsion.’'? In oil recovery and oil waste removal, water flow is used to depin oil droplets that

1.3 An important class of surface

are pinned inside rock crevices and contaminated soi
cleaning methods involves applying a fluid flow to depin and remove contaminants present in
the form of liquid droplets on solid surfaces.®

The importance of droplet depinning on solid surfaces by a surrounding fluid flow has
motivated prior experiments aimed at understanding the limiting case of depinning of a single
droplet. Some works examine the behavior of an oil droplet in a surrounding water flow,” °
and some investigate the behavior of a water droplet in a surrounding air flow.!*™* For each
case, the droplet depins and slides on the surface above a critical flow rate of the surrounding
fluid.

Some of the works discussed above use simple force-balance models to rationalize
experimental observations. In these models, a shear force acting on the droplet due to a
surrounding fluid flow drives depinning, and the surface-tension force acting along the droplet
contact line resists depinning. Below the critical flow rate of the of the surrounding fluid, the
forces are balanced and the droplet remains pinned, and above the critical flow rate, the shear
force exceeds the surface-tension force, causing droplet depinning.? 012

In these models, the shear force acting on the droplet, Fj, is typically estimated by assuming
a static droplet with a spherical-cap shape, a circular contact line, and a Stokes-like drag law.'*
It is found that Fy ~ (psvnR2)/Nmaz, where p, is the surrounding fluid viscosity, Aa. is the
maximum droplet height, v;, is the surrounding fluid velocity at the maximum droplet height,
and Ry is the radius of the circular contact line. The surface-tension force, Fy,, s, is estimated
by assuming a static droplet with a circular contact line. It is also assumed that the contact
angle in the entire advancing half of the droplet is equal to the advancing contact angle, 0,.,

and that the contact angle in the entire receding half of the droplet is equal to the receding

contact angle, 6,,. Under these assumptions, Fy,.r ~ 0D(cos8,y — cosb,.), where o is the
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interfacial tension and D is the diameter of the circular contact line. Some force-balance

models also calculate the surface-tension force by approximating the contact-line shape as an

15-17 17,18

ellipse or a parallel-sided drop.

Although force-balance models are useful for rationalizing experimental observations, they
have several important shortcomings. First, they cannot provide predictions of steady or
transient droplet shapes, which is information of fundamental interest. Second, advancing and
receding contact angles must be input into these models and are assumed to be constant.
However, in practice these angles may be spatially dependent due to natural or engineered
surface variations. Third, force-balance models do not explicitly incorporate the influence of
surface topography or wettability variations on droplet depinning. While these factors can be
implicitly accounted for through the advancing and receding contact angles, it may not always
be clear how parameters characterizing surface variations are related to these angles.
Explicitly accounting for surface variations is essential for developing mathematical models
that can be used to design surfaces with topography and wettability variations for a desired
application.  Additionally, force-balance models cannot provide information about the
mechanics of pinning to and depinning from surface features, which is also information of
fundamental interest. Nevertheless, it should be noted that force-balance models combined
with experimental data can yield good predictions of the surface-tension forces that adhere
the droplet to the substrate.!'®!®  Finally, these models cannot predict the critical flow
strength required for droplet depinning without knowledge of the maximum droplet height
and the values of the advancing and receding contact angles at the point of droplet depinning.
The objective of the present work is to develop a mathematical model that addresses these
limitations.

In some prior works, boundary integral methods have been applied to describe droplet
behavior on a solid surface in the presence of a surrounding fluid flow.?>2® In some of these
calculations,?* 2 the contact-line position is fixed and a steady-state droplet shape is obtained
for a given flow rate of the surrounding fluid. The flow rate beyond which a steady-state solution
cannot be obtained is taken to be the critical flow rate required for droplet depinning. Transient
droplet motion has been accounted for in other calculations by imposing a Navier slip condition
at the contact line, although contact angle hysteresis (the difference between advancing and

receding contact angles) was not included, meaning that the droplet moves for any non-zero



flow rate of the surrounding fluid.?* Contact angle hysteresis has been accounted for in diffuse-

24,25 and lattice-Boltzmann /finite-difference?® calculations, where a point

interface/finite-volume
on the contact line remains stationary if the apparent contact angle 6 lies within a specified
range (0, < 0 < 0,), and moves if 6 lies outside this range. As with the force-balance models,
values of the advancing and receding contact angles must be specified in advance. Notably,
none of the studies mentioned above explicitly account for surface roughness. Although surface
roughness can be accounted for implicitly via the use of advancing and receding contact angles,
accounting for it explicitly is valuable for designing surfaces and for gaining insight into the
mechanics of contact-line pinning/depinning, as noted earlier.

As a first step toward addressing the limitations mentioned above, here we focus on the
case of thin droplets and develop a lubrication-theory-based model for droplet depinning on a
substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and
surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow, and
the defects are modeled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure
approach to capture contact-line motion, a nonlinear evolution equation is derived describing
the droplet thickness as a function of distance along the channel and time. Numerical solutions
of the evolution equation are used to investigate how the critical pressure gradient for droplet
depinning depends on the viscosity ratio, surface wettability, droplet volume, and defect height.
Simple analytical models are able to account for many of the features observed in the numerical
simulations.

The paper is structured as follows. The model formulation is presented in §2, droplet
dynamics on smooth substrates are explored in §3, and droplet dynamics on rough substrates
and the pinning-depinning transition are investigated in §4. The influence of droplet and
surrounding fluid properties on droplet depinning is discussed in §5 and the influence of
substrate properties on droplet depinning is discussed in §6. Finally, residual droplet

formation is studied in §7, and conclusions are presented in §8.
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Figure 1: (a) Schematic of model geometry. (b) Enlarged view of a substrate defect.

2 Model formulation

Figure 1a shows the model geometry, where we consider a rectangular channel containing
a two-dimensional Newtonian droplet surrounded by another immiscible Newtonian fluid.
Here, W is the channel width, L is the channel length, h(z,t) is the droplet height, 6, is the
apparent advancing contact angle, and 6, is the apparent receding contact angle. The
horizontal direction is denoted by x, the vertical direction by y, and time by ¢. We consider a
thin droplet such that its height is much smaller than its diameter (maximum width), and we
assume it is confined in a long narrow channel such that W < L. This allows us to invoke the
lubrication approximation to simplify the governing equations. A negative horizontal pressure
gradient of magnitude AP is imposed in the channel to drive flow. Although a
two-dimensional droplet is actually a ridge, we refer to it as a droplet in the remainder of this
paper for simplicity.

Surface roughness is incorporated by adding bump-type defects on the substrate. Figure
1b shows an enlarged view of a defect, where hy is the maximum defect height and wy is
the maximum defect width. In practical applications, substrates can have defects of different
sizes and shapes present at random locations. Here, we focus on the limiting case where a
Gaussian bump-type defect is present at a distance x4 from each contact line. This reduces
the complexity of the problem while allowing us to obtain physical insight into the influence
of substrate topography on droplet dynamics. The substrate topography is described by the
function n(z) = hg{exp(—(x — z.1)?/(2w3))+exp(—(x — z2)?/(2w3))}, where z.; is the center
of the defect on the left and x. is the center of the defect on the right.



2.1 Governing equations

Several applications discussed in §1 such as crossflow microemulsification! and oil recovery*
involve long and narrow channels, which corresponds to € = W/L < 1 for our model. Consistent
with lubrication theory, the maximum droplet height h,,., is assumed to be much smaller than
its diameter D, with A, ~ W and D ~ L at most. In principle, lubrication theory requires
the topography slope to be small, but in practice lubrication theory can yield qualitatively
accurate predictions for two-phase problems even outside of this regime, as demonstrated by
comparison to numerical simulations of the full governing equations.?’

The vertical and horizontal distances are non-dimensionalized with W and L, respectively.
All stresses are scaled with a characteristic capillary pressure Wo /L?, where o is the interfacial
tension.?® The horizontal velocity is scaled with a capillary spreading speed u* = €o/3ud,
where 14 is the droplet viscosity, the vertical velocity is scaled with eu*, and time is scaled with
L/u*.

At leading order, the mass and momentum conservation equations in each phase are:

ul, + vy, =0, (2.1)

(1" / p)uy, = 3P, (2.2)
1A i/ .d _

Py + (p'/p®)Bo =0, (2.3)

where the superscript ¢ denotes the phase (i = d for droplet, and i = s for surrounding fluid), w is
the horizontal velocity, v is the vertical velocity, u is the viscosity, P is the pressure, and p is the
density. Three dimensionless parameters arise here: (i) the Bond number Bo = p?gL?/o, where
g is the magnitude of the gravitational acceleration, which represents a ratio of gravitational
forces to surface-tension forces, (ii) the viscosity ratio u, = p®/u¢, and (iii) the density ratio
pr = p°/p?. In this work, we assume Bo < 1 to isolate the influence of the imposed pressure
gradient on droplet dynamics.

Motivated by prior work on droplet motion on a solid substrate, we use a
precursor-film /disjoining-pressure approach to model contact-line motion.?® 32 As opposed to
approaches that impose a slip law on the substrate, here the contact-line position is extracted
from the droplet height profile (see §2.2) and is not an extra variable, which makes the

3

resulting equations less cumbersome to solve.®® This approach assumes the presence of a

precursor film of thickness b along the entire substrate (Figure 1). The total pressure within
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the droplet is P = P’ + II, where P’ is the hydrodynamic pressure and II is the disjoining

pressure. A two-term disjoining pressure is used:

a3 ()]

where A is the dimensionless Hamaker constant and A is the droplet thickness. The term with
exponent n represents contributions from repulsive intermolecular forces, and the term with
exponent m represents contributions from attractive intermolecular forces. We choose n = 3
and m = 2, as prior studies show that these values provide qualitatively accurate predictions of
contact-line motion at a reasonable computational cost.??3? It should be noted that our model
can be extended to incorporate chemical heterogeneity on the substrate by spatially varying
4.28,29,34

The two-term disjoining pressure determines an equilibrium contact angle of magnitude 0.,

which the droplet attains in the absence of an imposed pressure gradient:?®

6., - \/( 2(n —m)Ab (2.5)

n—1)(m-1)

Here, 0., is the scaled equilibrium contact angle and is related to the actual lab-frame
equilibrium contact angle by 6.q1ap = €0, All the angles discussed in the remainder of this
paper are scaled angles.

The interface between the droplet and the surrounding fluid is described as H(x,t) =

h(x,t) + n(x), and we impose the following conditions:

u’ = u’, (2.6)

v = v, (2.7)

P! —P* = —H,,, (2.8)
uZ = iy, (2.9)

hy + (/nHuddy) =0, (2.10)

where (2.6) and (2.7) are continuity of velocity, (2.8) is the normal stress balance, (2.9) is the
tangential stress balance, and (2.10) is the kinematic condition. No-slip and no-penetration

conditions are imposed at the substrate (y = n(x)) and the top boundary (y = 1):

ul(y =mn,t)

b u’(y = 1,t)
Ud(y = 777t) ,t

0, (2.11)
vi(y =1,t) = 0.

0,
0,



An imposed pressure gradient in the channel generates a mean flow rate in the z-direction,
and we represent its dimensionless form by (),. Due to mass conservation, ), does not vary
along the z-direction, and we calculate it by considering a portion of the channel that only
contains the precursor film, as it is a steady two-layer flow with a flat interface of height b,

1 s 31 (b 1)
QP_ZAP(b+1+(M_1)b+ . ) (2.13)

Since the precursor-film thickness is much smaller than the channel width (b < 1), the flow

rate simplifies to ), = AP/4u,, which is used in the flow-rate condition:

H 1
/ u® dy +/ wdy = Q. (2.14)
1

H

We find that the qualitative nature of our results does not change if we use (2.13) in the flow-
rate condition, and the quantitative difference is about 5-10%. We use the simplified flow rate
here to eliminate the dependence on b.

Integrating (2.2) and (2.3) with respect to y and using conditions (2.6) - (2.14) gives the

droplet height evolution equation:

Oh 0 [(H — VW f(H ) (9H 0N,
ot Ox g(H, pr,m) ox® = Ox
h?(3 + H?(py — 1) — 2H(1 + (1 — 2)n + (e — 4))
+ AP (215
Af(H, pr;m) (215)
where
SH, p,m) = 1+ H(py — 1) = py, (2.16)

9(H, pyon) = (H —n)*pl —2p,(H — 1)(H* — H*(1+2n)
+n(=2+3n—2n*) + H(2 —2n+3n)) + (H — 1)*. (2.17)

We set the length of the computational domain to L, and require the interface between the

precursor film and the surrounding fluid to be flat at the left and right ends,

. he(z=0,t) =0, (2.18)
. hg(z=L,t)=0. (2.19)



We use a fourth-order polynomial which satisfies (2.18) and (2.19), and specify a dimensionless
droplet volume vy, to define the initial droplet shape. Evolution equation (2.15) is discretized
using a fully implicit centered fourth-order finite-difference scheme with 6000 — 8000 spatial
nodes, and the MATLAB built-in solver odel5s is used for time integration. All results were
checked to ensure that they are converged with respect to spatial and temporal discretization.

In the simulations presented here, we set L = 6 or L = 9 to obtain results that are
independent of the length of the computational domain. A value of b = 0.001 is used as it
allows us to recover Tanner’s spreading law for a two-dimensional droplet (§3) while allowing
for reasonable computation times. For all calculations with rough surfaces, the precursor film
thickness is much smaller than the defect amplitude (b/hg ~ 1072 - 107!), indicating that the
bump accounts for surface roughness in a physically realistic manner. Smaller values of b lead
to slower droplet spreading and a more computationally stiff problem, but do not change the
qualitative behavior of the results presented here. For many of our results, we use
representative values of vy = 0.2 and 6., = 10° (which corresponds to A = 10° using (2.5)),
although we also study the effect of changing these parameters. In this paper, the largest
value of 6, is 16°, which corresponds to tanf,, ~ 107! and small interfacial slopes, consistent

with the lubrication approximation.

2.2 Contact angles and contact lines

For a smooth substrate, we define apparent advancing (6,y) and receding (6,.) contact
angles (Figure 1a) as the largest angles between the substrate and the tangents to the interface
between the droplet and the surrounding fluid, on the advancing and receding sides of the
droplet. Advancing and receding contact-line locations, z,, and z,., are defined as the points
where the tangents corresponding to the apparent contact angles and the substrate intersect.
In the absence of an external pressure gradient 0, = 0,¢. If 0,0 > 0.4, the droplet spreads
until Og = beq, and if 0,4 < 0., the droplet retracts until 0, = 0.

For substrates with topographical defects, a mesoscopic contact angle 6, is defined,?% 3>

hy
T 1+ (he + na)ha
The apparent contact angles 6,, and 6, are obtained by finding the points on the interface

tan(6,,) (2.20)

between the droplet and the surrounding fluid where 6, is the largest, on the advancing (6,,, in
figure 2a) and receding (6,,, in figure 2b) sides of the droplet respectively, and then extrapolating
the tangents at these points to the substrate. The contact-line positions x,. and .. are defined
as the points where the tangents corresponding to the apparent contact angles and the substrate

intersect.
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Figure 2: (a) Contact-line region when the advancing contact line moves over a defect, where 7
represents the substrate shape, H represents the interface shape, 6, is the apparent advancing
contact angle, and 6,,, is the largest mesoscopic angle on the advancing half of the droplet
interface. (b) Contact-line region when the receding contact line moves over a defect, where 6,
is the apparent receding contact angle, and 6,,, is the largest mesoscopic angle on the receding
half of the droplet interface.

3 Droplet dynamics on a smooth substrate

Before considering the influence of substrate topography on droplet dynamics, we discuss
the case of a smooth substrate, which corresponds to n(z) = 0. We first consider the case
of a droplet spreading on a substrate while surrounded by a stationary fluid (AP = 0). For
perfectly wetting droplets (6., = 0°), our results (figure 1 of supplementary material) are
consistent with Tanner’s spreading law for a two-dimensional droplet (x4q — xe ~ t1/7 where
7. is the droplet center).?® This holds for all viscosity ratios we have investigated, with an
increase in the surrounding-fluid viscosity simply slowing the spreading. For partially wetting
droplets, viscosity has a similar effect, as seen in figure 3. The droplet spreads (x,. increases
and 6, decreases) at earlier times, and eventually reaches the same steady shape for all p,. since
the steady droplet shape is governed by 0.,.%® The steady 6, (=~ 11°) found from numerical
simulations is within about 1° of the specified 6., = 10° from (2.5).

To study the influence of a surrounding fluid flow, we first perform a simulation such that the

droplet reaches a steady shape in a stationary surrounding fluid to obtain an initial condition.
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Figure 3: Droplet dynamics on a smooth substrate in a stationary surrounding fluid. (a) zuq
vs. t for different p,. (b) O,y vs. t for different . The other parameters are L = 6, A = 10°
(0eg = 10°), b= 0.001, and vy = 0.2.

We then introduce a negative horizontal pressure gradient of magnitude AP within the channel.
Figure 4a shows the variation of z,, with t for different AP. The slope of z,y vs. t at any
point represents the horizontal velocity of the advancing contact line, and it is seen that this
velocity reaches a steady value, which we denote as the terminal sliding velocity, v;. Figure 4b
shows the steady droplet shapes for different AP values. The droplet is shorter and wider for
AP > 0 compared to AP = 0, and the deformation increases with AP. For a constant AP,
additional calculations we have performed indicate that the droplet takes longer to attain a
steady shape as p, increases. The steady shape is relatively independent of pu, for p, < 1, but
the amount of deformation noticeably increases for sufficiently large pu, values.

The results from the numerical simulations can be rationalized by using a flat-interface
approximation, where we assume a steady pressure-driven two-layer flow with a flat interface
such that the bottom layer consists of the droplet liquid and the top layer consists of the
surrounding fluid. The physical variables are non-dimensionalized using the characteristic scales
discussed in §2.1, and the dimensionless horizontal liquid velocity at the interface is calculated

to be:

 3AP(-H)H
UM Hipy — 1)) (3:1)
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Figure 4: Droplet dynamics on smooth substrates. (a) x,q vs. t for different AP, with p, = 0.01
and vy = 0.2. (b) Steady droplet shapes for different AP on a smooth substrate. The droplet
profiles have been shifted such that their receding contact lines coincide. (c) v; vs. AP, with
fr = 0.01 and vy = 0.2. The other parameters are pu, = 0.01, vg = 0.2, L = 9, A = 10°
(0eq = 10°), and b = 0.001.

where H is the dimensionless height of the flat interface.

For a given AP and pu,., we perform a numerical simulation for a droplet to calculate v, and
the steady shape it attains, from which we extract the maximum droplet height (Aq.). We set
H = hypae, calculate vy using (3.1), and compare it with v;.

Figure 4c shows that v; ~ AP, which is consistent with the flat-interface approximation
((3.1)). Calculating vy from (3.1) reveals that the flat-interface approximation overpredicts v
by a factor of about 3.6, likely because the flat-interface approximation does not account for

the influence of viscous dissipation and surface-tension forces near the droplet contact line.
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Figure 5: (a) v; vs. p,, with AP = 0.04, A = 10° (6., = 10°), and vy = 0.2. (b) log(v;) vs.
log(vg), with p, = 0.01, A = 10° (6., = 10°), and AP = 0.04. (c) v, vs. b, with pu, = 0.01,
AP = 0.04, and vy = 0.2. The other parameters are L =9 and b = 0.001.

Figure 5a shows the variation of v; with u,, where the open blue circles are results from
numerical simulations for the droplet, and the dashed red line is from the flat-interface
approximation (vg). The flat-interface approximation overpredicts v; by nearly an order of
magnitude. But it reproduces the qualitative trend observed from droplet simulations, where
vy is not strongly dependent on pu,. for u, < 1, and decreases with p, for pu, > 1. This trend
can be rationalized by considering (3.1). From (3.1), vg ~ (3HAP/2) for u, < 1, and
vy ~ (BAP(1 — H)/2u,) for p,. > 1. Note that for both p, < 1 and p, > 1, the flat-interface
approximation predicts that vy, and thus vy, ~ AP.

To explore the effects of droplet volume, figure 5b shows log(v;) vs. log(vg), with vy being

the droplet volume, for u, = 0.01, where the open blue circles are from numerical simulations
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for the droplet, and the dashed black line is a linear fit which indicates that v; ~ vJ*. Droplet
simulations for 1, = 100 also yield v; ~ v{*. Using the flat-interface approximation ((3.1)),
vg = (BHAP/2) for u, < 1, and vy ~ (3AP(1 — H)/2u,) for p, > 1. This suggests that
Vg ~ hpee for the droplet, for both pu, < 1 and p,. > 1. From the simulations for both the
cases, it is found that hy,,., ~ vJ®° for a droplet after it attains a steady shape, and thus we
obtain v; ~ v, which is close to the scaling relation obtained from droplet simulations (Note

that the simulations also show that the steady value of D = x4y — Tpq ~ v0°

, consistent with
mass conservation.).

Figure 5c shows v; vs. 84, where the open blue circles are results from numerical simulations
for the droplet, and the dashed red line is from the flat-interface approximation (vg). The
flat-interface approximation overpredicts v;, but it reproduces the qualitative trend observed
from droplet simulations. This is because Az, and consequently H, increase with 0,,, and vy
increases monotonically with H as can be seen by analyzing (3.1). Although it misses important

details, the flat-interface approximation is also useful for understanding droplet dynamics on

rough substrates, as will be shown later.
4 Droplet dynamics on a rough substrate

In this section, we study the influence of substrate topography. To obtain an initial condition
for a given set of parameters, we perform a numerical simulation such that the droplet reaches
a steady shape on a smooth substrate in a stationary surrounding fluid, then add a Gaussian
bump-type defect (discussed in §2) at each contact line with x4 = 0 (Figure la) to pin the
droplet. We then introduce a negative horizontal pressure gradient of magnitude AP in the
channel. For the calculations presented in this section we fix hgy = 0.02h,,4, and wy = 2hg4 to
isolate the effects of AP. The influence of defect geometry on droplet dynamics is discussed in
§6.2.

4.1 Pinning-depinning transition

Figures 6a and 6b show the variation of 6, and z,y with ¢ for AP = 0.05 and AP = 0.07.
For AP = 0.05, x,4 does not vary with ¢, and 0, increases with ¢ to eventually reach a steady
value. This behavior is indicative of droplet pinning. For AP = 0.07, 6, increases with ¢ and

Zae remains constant until ¢ = 266. Then, for ¢t > 266, 0, decreases with ¢ and eventually
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Figure 6: Droplet dynamics on a rough substrate. (a) €y vs. t. (b) g vs. t. The kinks in z44
at t = 266 indicate that the contact line rapidly depins from the defect at that time and shifts
to the right. The smaller kink to the left of the larger kink arises while numerically resolving
Taq from droplet profiles. The other parameters are L = 9, p, = 0.01, A = 10° (0 = 10°),
b =0.001, vg = 0.2, hg = 0.02h4z, and wyg = 2hy.

reaches a steady value, and x,., increases with ¢. This behavior is indicative of droplet depinning.
Overall, these results suggest that there is a critical AP above which droplet depinning occurs.

Figure 7a shows the variation of the steady 6, value with AP, and it is seen that 0,y
increases with AP for AP < 0.063. For AP < 0.063, it is found that z,,; remains equal to its
initial value, similar to what is seen for AP = 0.05 (blue line in figure 6b). As AP increases
from zero, the droplet remains pinned but becomes increasingly deformed, as shown in figure
7b.

At AP = 0.063, a significant decrease in 6, is observed, indicating droplet depinning, and
for AP > 0.063, there is a slight increase in 6,4 with AP. Furthermore, for AP > 0.063, the
behavior of x,, as a function of ¢ is qualitatively similar to that for AP = 0.07 (red line in
figure 6b), where z,, remains equal to the initial value for a period of time and then gradually
increases with t. Thus, after the droplet depins it slides on the substrate with a steady shape,

as shown in figure 7c (see supplementary material for videos of droplet pinning and depinning).
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Figure 7: (a) Steady value of 6,4 vs. AP. (b) Steady droplet profiles for different AP. (c)
Droplet profiles at different ¢ for AP = 0.07. The solid black lines show substrate topography
and the other lines show droplet profiles. All other parameters are the same as in figure 6.

4.2 Droplet pinning mechanism

As discussed in §1, the pinning-depinning transition has been rationalized in prior work
using simple force-balance models.!% 12 We apply those ideas here to see how well they describe
our results. In those models, the drag force acting on the droplet due to the surrounding
fluid flow drives depinning, and the surface-tension force acting along the droplet contact line
resists depinning. The total drag force acting on the droplet is predominantly composed of
skin drag and the pressure drag is negligible. Also, the total drag force is nearly equal to
the shear force due to the droplet being thin (figure 2 of supplementary material). We note
that pressure drag is expected to become significant for droplets not well described by the

lubrication approximation. The balance between the shear force and the surface-tension force
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Figure 8: (a) Terms in the force-balance model for pinned droplets at different AP values. The
open red circles are results from numerical simulations and the straight blue line has a slope
of unity. (b) Enlarged view of the pinned advancing contact line for AP = 0.03, where the
blue line shows the droplet and the red line shows the defect. (¢) Enlarged view of the pinned
receding contact line for AP = 0.03, where the blue line shows the droplet and the red line
shows the defect. The other parameters are L =9, pu, = 0.01, A = 10° (6., = 10°), b = 0.001,
vg = 0.2, hg = 0.02h,4., and wyg = 2hg.

can be represented in a dimensionless form as (D?/Ryaq) (€08 0,0 — €08 040) ~ [T -t ds (see
appendix). Here, D = x,4 — X, is the droplet width, ., is the maximum droplet height, n
is the unit normal vector at the interface between the droplet and the surrounding fluid that
points into the surrounding fluid, T is the droplet stress tensor, t is the unit tangent vector at
the interface, and s is the interface arclength coordinate such that s = 0 at the receding contact
line and s = 1 at the advancing contact line.

We extract the values of D, hjae, Oact; 07, n, T, and t from the steady droplet shapes in
numerical simulations to calculate the terms in the force balance. Figure 8a shows these terms

for different AP < AP,,.;, with the open red circles presenting the simulation results. As can
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Figure 9: Droplet pressure vs. x for a pinned droplet (AP = 0.05). The dashed blue line shows
the contribution from the capillary pressure and the solid red line shows the total pressure

(capillary and disjoining). All the other parameters are the same as in figure 8.

be seen, there is indeed a linear relationship, consistent with the force-balance model. It should
be noted that inertial forces may become important for larger droplets or larger AP values,?”
but they are neglected in this work.

Next, we discuss the pinning locations of the two contact lines. It can be seen from figures
8b and 8c that the following geometric relations hold at the pinned advancing and receding

contact lines:

Hacl - ema + Yas (41)
ercl = emr - Try (42>

where 7, is the magnitude of the slope at the point on the defect on the right that coincides with
Zael, and 7, is the magnitude of the slope at the point on the defect on the left that coincides
with z,4. Our calculations show that for all the cases of a pinned droplet, 0,,,, = 0, = 0y, sO
the values of 6, and 6,., depend primarily on v, and ~,, respectively.

For all the cases where the droplet is pinned, it is found that z,., and z,, coincide with the
points on the defects where there is a maximum negative slope, whose magnitude we denote as

Ymaz- Using (4.1) and (4.2), it can be seen that as a consequence of these pinning locations,
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Orct = Ocq — Vmax is minimized, and 0,4 ~ 0Oy + Ymas 1S maximized, which maximizes the
surface-tension term in the force-balance model (D?/hyaz)(c0s 0re — cosyq). These findings
are consistent with predictions from a lubrication-theory-based model for a droplet sliding down
an inclined substrate with a single Gaussian-shaped bump, where the advancing contact line
pins at the point on the bump that has the maximum negative slope, as it maximizes the

35 The present work shows that similar behavior occurs even in more

surface-tension force.
complicated situations, where the geometry and driving force for flow are different, and the
dynamics of both phases are accounted for.

The pinning-depinning transition can also be understood through an analysis of the pressure
gradients in the droplet.?”:3? Figure 9 shows the variation of the pressure in a pinned droplet
with x for two AP values. The total pressure includes contributions from the capillary pressure
and the disjoining presssure, and figure 9 shows the former quantity as well. For each case, the
capillary pressure has a negative gradient and drives flow from the droplet interior toward the
advancing contact line (located at = = 5.56), which promotes depinning. But the disjoining
pressure increases closer to the contact line, and causes the total pressure gradient within
the droplet to become positive, which drives flow from the advancing contact line toward the
droplet interior. Near the receding contact line, the total pressure gradient within the droplet
is negative (figure 3 of supplementary material), which drives flow from the receding contact
line toward the droplet interior. The flows near the two contact lines oppose each other and
result in a pinned droplet.

As AP increases, the pinned droplet becomes increasingly deformed (see figure 7b), which
increases the droplet thickness near the advancing contact line and decreases the disjoining
pressure there. As a result, the total pressure gradient near the advancing contact line
decreases as shown in figure 9. At AP, the total pressure gradient near the advancing
contact line becomes negative, and the total pressure gradient near the receding contact line
remains negative. This results in a net negative pressure gradient within the droplet, which

causes the two contact lines to depin simultaneously, and the droplet slides to the right.
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Figure 10: 10g tgepinning V. 10g D/(APhy,q,), where the open blue circles show calculations from

numerical simulations, and the dashed black line shows a slope of 1. The other parameters are
L=9, u =001, A=10° (6, = 10°), b = 0.001, vy = 0.2, hg = 0.02h4., and wy = 2hy.

4.3 Droplet depinning time

The time it takes the droplet to depin when AP > AP,,.; is of both fundamental and
practical interest. The droplet depinning time, tgepinning, is calculated as the time at which the
receding contact line position, x,, crosses the defect on the right. A scaling relation can be
obtained for t4epinning by dividing the droplet width, D, with the droplet velocity (3.1) obtained
from the flat-interface approximation (§3). For p, < 1, this yields tuepinning ~ D/APRyqy.

Figure 10 shows 1ogtiepinning VS. log D/(APhy,.,), where the open blue circles are
calculations from numerical simulations and the dashed black line has a slope of 1. The
intercept for the dashed black line is chosen such that it overlaps with the simulation result at
log D/(APhpa,) = 4.1814. Fitting a straight line to the numerical calculations yields a slope
of 1.423. Thus, the scaling law derived above predicts a faster depinning time
(~ D/(APh,,4,)) than what is observed from numerical simulations (~ (D/(APhyq,))"*%3).
This is expected based on the results in §3, as the flat-interface approximation does not
account for viscous dissipation and surface-tension forces near the contact lines, which slow

down droplet motion.
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Figure 11: (a) AP,..;; vs. p, (b) Shear force vs. u, for AP = 0.03. (c¢) du,s/0y at the maximum
height of pinned droplet vs. p, for AP = 0.03. The other parameters are L = 9, pu, = 0.01,
A =10° (0, = 10°), b = 0.001, vy = 0.2, hg = 0.02h0z, and wy = 2hy.

5 Influence of droplet and surrounding fluid properties on the critical pressure
gradient

5.1 Influence of viscosity ratio

Figure 11a shows AP,..; vs. w.. For u, < 1, AP,.; decreases slightly with u,, and this

1.,'2 where as

result is qualitatively consistent with the experimental observations of Fan et a
the viscosity of the glycerol-water droplet increases (by increasing the glycerol concentration),
a larger critical flow rate of the surrounding air is required to depin it on a treated glass surface.
For p,. > 1, AP,,.; decreases with u, to reach a minimum value at p, ~ 10, and then increases

with p,.. These results can be rationalized by examining the shear force acting on the droplet.
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Figure 12: (a) AP..; vs. v for p, = 0.001 and u, = 0.9 (b) log AP,.;; vs. log v for p, = 0.001,
where the open blue circles show calculations from droplet simulations, and the dashed black

line shows a linear fit with a slope of —0.5. The other parameters are L = 9, A = 10° (6., = 10°),
b= 0.001, hy = 0.02%,0s, and wy = 2.

Our calculations show that the surface-tension force does not vary significantly with p,. (=~ 6%),
so we do not consider it here.

Figure 11b shows shear force vs. pu, for a fixed AP < AP,,;;. Using lubrication theory, the
shear force [ n-T - tds simplifies to [ p,0us/0yds, where Ju,/0y is the horizontal velocity
gradient with respect to y in the surrounding fluid at the interface. For a constant AP, as p,
increases, the surrounding fluid becomes more viscous and exerts a larger shear force on the
droplet. But for p, > 1, the surrounding fluid becomes so viscous that the net flow rate along
the a-direction decreases. Consequently, du, /0y decreases with p, as exemplified in figure 11c,
where Jug/0dy at the maximum height of the pinned droplet is shown. As a result, the shear
force decreases with p, for p, > 1, and the droplet experiences a maximum shear force, and
consequently a minimum AP,,.;; for u, ~ 10. This observation is potentially important for
applications such as crossflow microemulsification and oil recovery, where the viscosity of the

surrounding fluid could be tuned to minimize AP, ;.

5.2 Influence of droplet volume

Figure 12a shows AP,..; vs. vy for two different values of p, < 1 (droplet more viscous

than the surrounding fluid). It is seen that AP..; decreases with vy for each case, and a larger
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AP,.; is required for a smaller y,.. This result is qualitatively consistent with the experimental
findings of Fan et al., where a lower critical flow rate of surrounding air is required to depin
a larger glycerol-water droplet on a treated glass surface, and a larger flow rate is required to
depin a more viscous droplet of the same volume.'?> For u, > 1, AP, decreases with v, as
well (figure 4 of supplementary material).

These results can be understood in terms of the force-balance model discussed in §4.2. An
analytical expression is obtained for the shear force acting on the droplet using the flat-interface
approximation (see §3), where the shear stress acting on a flat interface of height H is multiplied

by the length of the horizontal domain L:

(5.1)

200+ Hip, — 1)

Using (5.1) to calculate the shear force by setting H = hy,4, Obtained from the steady
droplet profiles, and assuming L ~ D, the dimensionless force balance at the point of depinning
can be expressed as 3AP..i (hmaz — 1) /2 ~ (D/hmaz(cosb,q — cosb,q) for p, < 1, and
BAP.ithmaz/2 ~ (D/hmaz)(c08 0 — cosB4q) for p,. > 1. As discussed in §3, both D and
Pmaz ~ v3°. Thus, AP,y ~ vy%® for both p, < 1 and p, > 1. Figure 12b shows log AP,
vs. logvg for p, = 0.001, where the open blue circles are results from numerical simulations
and the dashed black line shows a slope of —0.5. The close agreement indicates that the
flat-interface approximation accurately captures the influence of vy on AP,.;. Results from
numerical simulations for u,, = 100 follow the scaling relation as well (figure 4 of supplementary

material).

6 Influence of substrate properties on droplet depinning

6.1 Influence of substrate wettability

Figure 13a shows AP,.;; vs. 8, for p, = 0.01, and it is seen that AP, increases with 6,,.
This result is qualitatively consistent with the experimental findings of Madani and Amirfazli,’
where a lower surrounding water flow rate is required to depin an oil droplet (p,. < 1) on a
more wettable substrate.

These results can be understood by examining the surface-tension term in the force-balance
model, (D?/hy4:)(c08 0,0 — cos O4) (see §4.2), which increases with 6., as shown in figure 13b.

The shear force acting on the droplet is not considered as it does not vary significantly with
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other parameters are L =9, u, = 0.01, vg = 0.2, b = 0.001, hy = 0.02h,4, and wy = 2hy.

Oy (= 7%). This can be understood from the flat-interface approximation. According to (5.1),
the shear force depends on h,q,, which does not vary significantly with 6., (= 8%).

As 0.4 increases, 0, ~ 0o — Ymas increases, which tends to decrease the surface-tension
force. Additionally, 0,4 ~ 0cq + Ymae increases, which tends to increase the surface-tension
force. Overall, a net increase is observed in the surface-tension force (figure 13b), and a larger

AP,,; is required for droplet depinning on a less wettable substrate.

6.2 Influence of defect geometry

The defect shape is governed by its maximum height h,; and maximum width wy (see §2).
It can be seen from figure 1b that the maximum slope along the defect 7., increases with
hg (constant wy), and decreases with wy (constant hy). As will be discussed below, AP,.;
depends only on 7,4, and increasing hy has the same qualitative effect on droplet dynamics
as decreasing wy. Here, we vary hy while keeping wy constant.

Figure 14a shows AP,.;; vs. the ratio of hy to the initial maximum droplet height, and it
is seen that AP,.; increases with hy. This result can be understood by examining the surface-
tension force acting along the contact line. As discussed in §6.1, the shear force acting on the
droplet for a fixed AP depends on Ay, which does not vary significantly with hy (= 4%), and
1, which does not vary with hy. As a consequence, the shear force does not vary significantly
with hy (=~ 6%).
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other parameters are L = 9, u, = 0.01, b = 0.001, A = 10° (6, = 10°), vo = 0.2, and
wg = 0.008.

As discussed in §4.2, 0y = Ocy + Yimaz a0d 00 & Oy — Yimaz- 1t can be seen that for a fixed
Oeq, as hg, and consequently 7i,q., increases, 0, increases and 6, decreases. As a result, the
surface-tension term in the force-balance model (D?/h,,42)(cOS 0, — €08 04¢) increases with hy,
as shown in figure 14b. Thus, a larger AP,,;; is required for droplet depinning if taller defects
are present on the substrate. Similarly, a larger AP,.; is required for narrower defects (figure
5 of supplementary material).

We also find that when the ratio of the defect height to the initial maximum droplet height
is greater than 0.025 (see dashed line in figure 14a), smaller residual droplets are formed behind
and in front of the defect on the right, after the original droplet depins. (The value of 0.025 is
specific to the parameters used in the calculations.) We discuss this phenomenon in the next

section.

7 Residual droplet formation

7.1 Geometric mechanism

Figure 15 shows droplet profiles as time progresses after the droplet depins, and it is seen
that a residual droplet is formed behind the defect on the right as the droplet slides over it. This

happens when 6, < Yma: as the receding contact line approaches the defect. The disjoining

25



0.16 0.16
0.14 0.14 0.15

0.12 0.12

0.1 0.1
0.1 Residual

>, 008 = 0-08 N droplet
0.06 0.06

0.04 0.04 0.05

0.02 0.02

-0.02

3.5 4 4.5

X107

20

Residual
15 0.02 droplet

Figure 15: Droplet profiles at (a) ¢ = 500 (b) ¢ = 520 and (c) t = 540. Enlarged view of the
contact line at (d) ¢ = 500 (e) ¢ = 520 and (f) ¢ = 540. The solid black lines show substrate

topography and the blue lines show droplet profiles. The parameters are L = 9, A = 10°
(0eqg = 10°), v = 0.2, b= 0.001, AP = 0.1, hg = 0.02h45, and wy = 2hy.

pressure above the defect increases due to droplet thinning, which drives flow away from this
region and a smaller residual droplet is pinched-off behind the defect. But if 6,4 > ¥4z, the
droplet slides over the defect without leaving behind a residual droplet. It should be noted
that 6, is obtained as an output from our calculations (see §2.2) and generally depends on the
viscosity ratio, droplet volume, substrate wettability, and defect geometry. These findings are
consistent with a prior lubrication-theory-based model for a droplet sliding down an inclined
substrate with a single Gaussian-shaped bump, where a residual droplet is formed behind the
bump, if 0,4 < Ymaez as the receding contact line approaches the bump.3?

It is also found that an additional residual droplet forms in front of the defect at later times
if 0,.c; < Ymae- Figure 16 shows droplet profiles as time progresses after the formation of the
residual droplet behind the defect. As seen in figure 15, the receding contact line remains in

the vicinity of the defect during the pinch-off of the residual droplet behind the defect, while
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view of the contact line at (e) ¢t = 560(f) ¢t = 580 (g) ¢t = 600 and (h) ¢ = 620. The solid black
lines show substrate topography and the blue lines show droplet profiles. The parameters are
the same as in figure 15.

the advancing contact line slides to the right. As a result, the droplet elongates and attains a
slender concave upward shape on its receding side to the right of the defect as shown in figures
16a and 16e. Consequently, the disjoining pressure in this region increases, which drives flow
away from the thinnest point of the interface, and a smaller residual droplet is pinched-off in
front of the defect (figures 16b-16d and 16f-16h). These findings are also consistent with the
prior work discussed above on droplets sliding down an inclined substrate,®® indicating that
the condition for residual droplet formation (0,4 < Ymaz) holds more generally. Indeed, one
would expect this criterion to hold for a broad range of geometries and flows as long as the
topography amplitude is much smaller than the length scales characterizing the overall flow.
We note that increasing the droplet volume increases the value of 6, when the receding contact
line encounters the defect, eventually leading to 6,4 > Ve and suppression of residual droplet
formation.

The formation of residual droplets has important implications for practical applications.
Our results indicate that the presence of topographical defects on the substrate may make it

difficult to recover the entire volume of the droplet in applications such as surface cleaning
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and oil recovery. But for applications such as microemulsification, our results suggest that the
size of the dispersed phase droplets could be controlled by designing defects to break-up larger

droplets into smaller ones.

7.2 Influence of pressure gradient on residual droplet volume

We now consider the influence of AP on the volume of the residual droplets formed at the
defect. The volume of a residual droplet is calculated as f;f hdz, where z; and x, are the left
and right end points of the residual droplet. These values are calculated such that h > b V
r; < x < z, in the region where the residual droplet is present. Figure 17a shows residual
droplet volume vs. AP, where the open blue circles are for droplets formed behind the defect,
and the open red triangles are for droplets formed in front of the defect. It can be seen that
the volume of the droplet formed behind the defect decreases with AP. This result can be
rationalized by examining the droplet profiles when the receding contact line approaches the
defect. Figure 17b shows these droplet profiles for different AP values. For each case, the
receding contact line slows down as it approaches the defect. As AP increases, the depinned

advancing contact line slides faster, leading to a more elongated droplet shape (figure 17b).
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This results in a larger portion of the droplet being trapped behind the defect just before the
residual droplet is pinched-off. Thus, a larger residual droplet is formed behind the defect for
a larger AP value.

Figure 17a also shows that the volume of the residual droplet in front of the defect decreases
with AP. This can be rationalized by noting that because the receding contact line slides faster
after depinning from the defect for larger A P values, there is a shorter time for droplet pinch-off

and a smaller residual droplet is formed in front of the defect.
8 Conclusions

We have developed a lubrication-theory-based model to study droplet depinning on rough
substrates due to the flow of a surrounding fluid caused by an imposed pressure gradient. In

910,12 our model allows for the calculation of

contrast to commonly used force-balance models,
steady and transient droplet shapes. In addition, we explicitly account for surface roughness by
considering the presence of topographical defects, an important feature not considered in prior
computational studies.?®2> Another significant difference from prior work is that our model
requires specification of only an equilibrium contact angle via a disjoining-pressure function,
with advancing and receding contact angle values being outputs of (rather than inputs to) our
calculations that are determined by surface topography. Simple analytical models are able to
account for many of the features observed in the numerical simulations. A key advantage of the
lubrication-theory-based model we have developed is that it can readily be extended to study
more complicated situations involving chemical heterogeneity (via a spatially varying disjoining

28,29) and three-dimensional effects.

pressure

Below a critical value of the pressure gradient, AP.,,;;, the advancing and the receding contact
lines of the droplet remain pinned at the defects. Above AP,,;, the shear force acting on the
droplet due to the flow of the surrounding fluid exceeds the surface-tension force acting along
the contact line, leading to droplet depinning. The pinning-depinning transition can also be
understood in terms of a balance between capillary-pressure gradients and disjoining-pressure
gradients. Our simulations reveal that the receding and advancing contact lines always pin
at the points on the defects that have the maximum negative slope because this maximizes
the surface-tension force acting on the droplet. This is a potentially important finding for

applications such as inkjet printing and spray coating, where substrate topography could be

designed to pin droplets at specific locations to obtain desired patterns.
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As the viscosity of the surrounding fluid increases, AP, reaches a minimum before
increasing due to a reduction in the shear force acting on the droplet. The presence of this
minimum could be exploited to make processes such as oil recovery and crossflow

2 our model

microemulsification more efficient. Consistent with experimental observations,’
predicts that larger droplet volumes require a lower AP,.;;, again due to the way the shear
force behaves. Less wettable substrates increase the values of AP,..;; due to the change in
surface-tension forces, which are influenced both by the equilibrium contact angle and the
maximum slope of the substrate topography, 7,... This behavior is also consistent with

9 Finally, it is also found that residual droplets may be formed

experimental observations.
behind and in front of the defect after the droplet depins if 7,4 > 6,¢, which has implications
for the efficiency of applications such as oil recovery, surface cleaning, and microemulsification.

Although we have considered Gaussian-shaped defects, we expect that our findings will
generalize to other defect shapes for situations consistent with the lubrication approximation.
Our results also serve as motivation for numerical simulations that relax the lubrication
approximation, which are needed to address situations such as (i) defects with vertical sides
(e.g., cylindrical and rectangular posts®®) or (ii) droplet-fluid interfaces that become vertical
due to sufficiently large contact angles or forces that produce “lift-oft” of the droplet from the
substrate.” We expect that some of our findings will generalize to three-dimensional defects as
well, as long as the lateral length scale of the defects is sufficiently large compared to the
other length scales characterizing the flow geometry. Three-dimensional effects can be

addressed within the lubrication approximation, and our work motivates and can be used to

help validate such calculations.
Acknowledgments

This material is based upon work supported by the National Science Foundation under

Grant No. CBET-1935968. We thank C. Larsson for helpful discussions.
Declaration of interests

The authors report no conflicts of interest.

30



Appendix

In this section, we derive the expression for the force balance used in §4.2. We assume that
the droplet has a dimensional width L/ along the z-direction (not shown in figure 1a). The
dimensional shear force can be estimated as F,’ ~ L’ fs n-T -t ds’, where the primes represent
dimensional quantities.

The dimensional surface-tension force is estimated by assuming a circular contact line of
dimensional diameter D’, such that the contact angle in the entire advancing half is 6., and

the contact angle in the entire receding half is 6,.:'?

s

w/2
y = D’/ 0 cos 0, cos a da —i—D'/ 0 ¢cos 0, cos ada | (A1)
0 /2
"= D'o(cosO,q — cos0,4), (A.2)

where a € [0, 7] (due to symmetry) denotes the angular position along the contact line such
that a € [0, 7/2] spans the advancing half of the droplet, and « € [r/2, 7| spans the receding
half of the droplet. The dimensional force balance is represented as:

(D'0)(cos 0 — €08 0gey) ~ L, /n T -t ds, (A.3)

S

We non-dimensionalize the stresses using a capillary pressure oWW’/L?, and assume W' ~
R e a0nd L' ~ D' where primes have been used on W and L for notational consistency. This

yields:

(D2 /) (L W' L) (€08 Oyt — 008 B) ~ / n-T-tds, (A4)
where D = D’/L’ is the dimensionless droplet diameter, hyqe. = hl,,./W’ is the dimensionless
maximum droplet height, and T is the dimensionless droplet stress tensor. Assuming that
L?/(W'L.) ~ 1, which implies that L’ ~ L' /e, where ¢ = W'/L', yields the dimensionless force
balance:

(D?/hynag ) (COS Opeg — €08 Oger) ~ /n -T -tds. (A.5)

S
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