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Abstract— Knowledge distillation (KD), which distills knowl-
edge from complex networks (teacher) to lightweight (student)
networks, has been actively studied recently. Despite previous
studies have proposed several advanced KD losses or intricate
training strategies, the core concept of KD proves ineffective
if the student model is too weak to mimic the teacher’s
performance. In this study, we aim to narrow the performance
discrepancy between Transformer-based teacher and student
models by incorporating the inductive biases of several het-
erogeneous student models. To this end, we put forward a
novel cross-architecture knowledge distillation approach called
Adaptive Cross-architecture Mutual Knowledge Distillation
(ACMKD), which tries to mitigate the performance gap issue
using a multi-students mutual learning strategy. Specifically,
we utilize three mainstream models associated with various
inductive biases (CNN, INN, and Transformer) as the student
models. In addition, we propose an effective attention similarity
mechanism to facilitate the student models in mimicking specific
portions of the teacher model. Drawing inspiration from the
Cannikin Law, we devise a unique second-stage KD process that
dynamically enables the weakest student model to learn from
other stronger student models again. We validate our proposed
methods on ImageNet and CIFAR100 datasets, and the results
confirm that our ACMKD method significantly narrows the
performance gap compared to other KD methods.

I. INTRODUCTION

Over recent decades, deep neural networks (DNNs) have
shown remarkable success across various tasks [12], [30].
However, deploying such large models on resource-limited
embedded systems poses challenges. Knowledge distillation
(KD) addresses this by enhancing the performance of smaller
networks (i.e., student model) by emulating more complex
networks (i.e., teacher model) [9]. Yet, KD sometimes fails
to achieve reliable accuracy performance, especially when
the student model’s capacity is insufficient compared to the
teacher model [19], [4], [10]. To mitigate this performance
discrepancy (referred to as the performance gap in this
study), approaches like online KD [37], [38], where multiple
student models are trained simultaneously to achieve better
performance, has emerged. However, those works mainly
focus on the homologous-architecture KD process and fail
to consider scenarios when teacher and student models have
heterogeneous architectures.

While Transformer models achieve impressive perfor-
mance when trained with large-scale datasets, they struggle
with medium-scale or small-scale datasets due to lacking
certain inductive biases [5], [33], [29], [6]. To address this
problem, KD processes have been applied to Transformer
models [29], [32], [1], [14], [21]. For example, DeiT [29]
leveraged a powerful CNN teacher to enhance Transformer
performance. However, these efforts mainly focused on im-
proving the Transformer-based student model’s accuracy.

979-8-3503-9494-8/24/$31.00 ©2024 IEEE

None of them try to solve the performance gap problem and
answer the question: How to take advantage of inductive bias
to reduce the performance gap between Transformer-based
teacher and heterogeneous student models in KD process?

In this paper, we show an intriguing interaction between
three heterogeneous models: CNN, INN, and Transformer.
We refer to the KD framework between various models as
Adaptive Cross-architecture Mutual Knowledge Distillation
(ACMKD). The schematic overview of the proposed method
is shown in Fig.1. We first adopt one Transformer model
(Swin-T [16]) as the teacher and employ the mutual learning
strategy to train three heterogeneous student models (Swin-
T [16], ResNet50 [8], and RedNet [13]) so that the student
models which associated with various inductive biases can
learn from each other. Additionally, we present an attention
similarity mechanism that guides student models on how
to imitate the teacher’s performance. We further design a
dynamic second-stage distillation strategy that enables the
student model with the lowest accuracy performance can
learn from the other higher-performing student models once
again. Our contributions can be summarized as follows: 1)
We propose a novel method of distilling the Transformer-
based teacher model into heterogeneous students with differ-
ent inductive biases to alleviate the issue of performance gap
in the KD process; 2) We show how adding a second-stage
distillation strategy allows the student with the lowest accu-
racy performance to dynamically learn from other stronger
student models, leading to higher accuracy performance
of ensembled student models eventually; 3) Our proposed
ACMKD outperforms all previous Transformer-based KD
methods in addressing the performance gap problem on both
ImageNet and CIFAR100 datasets.

II. RELATED WORK

Despite the success of KD, current studies found that a
large teacher is often detrimental to the KD process due to the
capacity inconsistency problem [19], [4], [10], [7] between
the teacher and the student. To address this issue, researchers
have proposed to employ an intermediate-sized network [7],
or a TA network [19] to enhance the distillation performance.
More recently, some studies have considered the KD from
another perspective, such as the KD process with multiple
teachers [24], [34], [27], [15], [21] or ensemble-based KD
[37], [2], [18], [26], [36]. For instance, You et al. fused
multiple teachers equally to accomplish the KD process
[34]. Liu et al. proposed to transfer the knowledge of the
intermediate layer from various teacher models to guide
a group of layers in the student network [15]. Zhang et
al. claimed that by using cross-entropy loss between each
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Fig. 1: Schematic overview of the proposed ACMKD method.

pair of student models, the peer students could learn from
each other [37]. Son et al. presented a densely guided
KD process to bridge the performance between teacher and
student network [26]. However, all those works use identical
or similar architecture in the KD process. In this study, our
proposed method differs from existing methods as we use
heterogeneous student models to narrow the performance gap
from the Transformer-based teacher model.

III. METHODOLOGY
A. Preliminaries

In the KD process, given a teacher model 7" and a student
model S, the softened output 57 produced by the teacher
model is considered as high-level knowledge. The loss Lxp
when training a student model can be defined as follows:

Lxp=7"Lr(i®,7"), 1)

where 7 is the temperature parameter to control the softened
output and L, is the Kullback-Leibler (KL) divergence loss
[9] and we set 7 = 1 in this study. Each network’s output
is 47 = softmaz(y”/r) and §° = softmax(y°/7). Here y”
and yT refer to the teacher and student logits, respectively.
As a result, the final KD loss function £ is written with the
balancing parameter A\ as follows:

L=(1-XNLce+ kD, 2)

where Lo is the cross-entropy loss between the student’s
logits and the label y.

B. Cross-architecture Multi-students KD

In this study, we adopt three mainstreams of models asso-
ciated with heterogeneous architectures as student networks,
including CNN (S¢), INN (S7), and Transformer (St). Also,
we select the Transformer-based model (77) as the teacher

network in this study. The learning objective is expressed as a
weighted combination of three Kullback-Leibler divergence
losses (Lxp) and a cross-entropy loss (Lo g). According
to Eq. (2), the KD logit loss function L;,4+ is derived as
follows:
Liogit = MoLcE + )\157}?,:?80 + >\2£}T<TDHSI + )\3CIT<TDH'ST,
3)
where Ao, A1, A9, and A3 are the weights balancing the
importance of four loss terms. In this study, we set )\ =
A1 = A2 = A3 = 1 according to the previous study [21].
Inspired by [25], we let Fs,. be the intermediate feature
outputs from the ¢-th layer of the CNN student model.
Similarly, Fs, and Fg, represent the intermediate feature
outputs from the ¢-th layer of the INN and Transformer,
respectively. Attention maps regarding Fs, can be derived
as the A;(Fs,, ), where A4;(-) is the attention model. As a
result, attention mechanisms can be expressed as follows:
ffsq = Ai(Fsg,) ® Fse,
Fso, = Ai(Fs. ) ® Fs,. ,
where AS(-) and A$(-) are channel and spatial attention
models, respectively. Since we have one teacher (F,) and
three student models (Fs,, Fs,, Fs,) in this study, the
proposed attention similarity loss £, is expressed as follows:

“

pi =1 = (A7 i(Fry.i), Asg,i(Fsc,i), Aspi(Fsy i),
Asr,i(Fsy.i))
Arpi(Frpi)  Asci(Fsgi)
ATy, (Frp,i)ll2 [ Asc.i(Fsc,i)ll2
ASIJ(FSIJ) . AST»'L(FST«'L)
[As;i(Fspi)llz [|Asr,i(Fspi)ll2”
where p; is the cosine distance between attention maps from
the i-th layer of teacher and student models. (-,-) represent

=1- (&)
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the cosine similarity; ||-||2 denotes L2-norm, and T, S¢, Sy,
and St denote the teacher and student models, respectively.
Consequently, the attention-based distillation loss function
L4+ which averages the cosine distance for channel and
spatial attention maps between teacher (77) and student
models (S¢, Sy, St) is derived as follows:

N
)

Late = ; o, ©)
where N is the number of layers utilized for the distillation.
Similar to [25], we distilled the attention maps for every
Transformer layer from the teacher model with the exception
of the last MLP Head layer.

C. Second-stage Distillation strategy

Inspired by the Cannikin Law, we further propose another
distillation framework (Second-Stage Distillation) where the
better two students will try to help the weakest one once
again in terms of accuracy performance. For ease of under-
standing, after n epochs, we assume Sy and S¢ achieve
higher accuracy, and they were selected as the two stronger
student models. In contrast, the S;, which has the lowest
accuracy performance, is assigned as the student model.
Note that our proposed second-stage distillation method is
conducted as follows after the traditional distillation process
in the same epochs. During the training, only the parameters
of the weakest student get updated while the two strong
students remain frozen. As a result, the final loss of second-
stage distillation L4y is derived as follows:

Losq = LICTST 4 7751 @)

where the right arrow at the subscript indicates the KD
direction. Eq. (7) can then be expressed in the same format
as Eq. (2) as follows:

Lossa = MLom + AL + N6 L5571, (8)

In this way, the weakest student model Sy,oyes:t 1S selected
based on the prediction score, and complementary knowledge
from the other stronger student networks can be dynamically
transferred to this student model. Again, we set Ay = A5 =
A¢ = 1 according to the previous study [21].

In summary, we use the original KD loss L4 and
augment it to include the proposed attention similarity loss
Ly as well as the second-stage distillation loss Lggq, to
train the student network and the final loss for the student
models is defined as follow:

L= L"logit + alaw + ﬁ‘cssda 9

where o and 3 are the tunable hyperparameters to balance
the loss terms for the student networks.

IV. EXPERIMENTS
A. Dataset and Implementation

We evaluate the proposed method on two datasets: CI-
FAR100 [11], and ImageNet [23]. We train all the experi-
ments on four Nvidia GeForce GTX 1080 Ti GPUs using
PyTorch. To guarantee a reproducible behavior, all training

Type | Method \ Model | T(%) | S (%) | Gap (%)
Logit [9] 76.59 -0.70
FitNet [22] 76.45 -0.84
AT [35] ResNet101 76.64 -0.65
CNN RKD [20] — 77.29 76.71 -0.58
CRD [28] ResNet50 76.86 -0.43
ReviewKD [3] 76.97 -0.32
AFD [31] 76.82 -0.47
MINILM [32] 79.02 -2.18
Trans. DeiT [29] Swin-T—ViT-B 81.20 79.21 -1.99
CAKD [14] 78.82 -2.38
X-arc CAKD [14] Swin-T—ResNet50 81.20 79.87 -1.33
. Ours ACMKD 81.20 80.47 -0.73

TABLE I: Performance gap comparison between our pro-
posed method and state-of-the-art methods on ImageNet
[23]. X-arc. denotes Cross-Architecture and — denotes the
KD direction. T represents the teacher model, and S rep-
resents the student model. Gap denotes the top-1 accuracy
performance gap between the teacher and student model.

procedures are initialized with a fixed random seed. For the
CIFAR100 dataset, the batch size is 64, and the total number
of epochs is 200. The learning rate is initialized as 0.1 and
multiplied by 0.1 at epoch 100, and epoch 150 [14]. For
ImageNet, the batch size is 32, and the total number of
epochs is 300. We use AdamW [17] as the optimizer with
a learning rate equal to 0.001 and weight decay equal to
0.05. The token alignment is adopted according to [21]. The
final student accuracy result was obtained by averaging three
student models similar to [37].

B. Performance Comparison

Table I presents the KD results on the ImageNet dataset. It
can be seen that the student model (80.47%) in the proposed
ACMKD method has higher accuracy performance than any
of the other student models in CNN-CNN KD methods
(76.45%-76.97%). In order to make a fair comparison, we
use the same teacher model (Swin-T) for Transformer-
Transformer models. The student model from the proposed
ACMKD approach gains a higher performance (0.56%-
1.65%) compared with the Transformer-based group. This
indicates that existing Transformer-based KD methods fail to
take full advantage of the various teacher models, regardless
of the fact that they can be adapted to the cross-architecture
scenario. In terms of cross-architecture models, the results
from the proposed method also surpass all the other cross-
architecture KD results by 0.60%. This indicates that the
cross-architecture KD proposed in the ACMKD method can
obtain higher promotion than the transformer homologous-
architecture KD. However, the performance gap (0.73 %)
in the proposed ACMKD is still higher than the ones from
most of the CNN-based KD methods (0.32%-0.84%). This
indicates that the conventional homologous-architecture KD
can reduce the performance gap more effectively due to
the similar inductive bias [21]. However, it is still worth
noting that our proposed ACMKD method has the lowest
performance gap compared to any other Transformer-based
or cross-architecture KD methods.

Table II presents the KD results on the CIFAR100 dataset.
It can be seen that our method presents the best perfor-
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Type | Method \ Model | T(%) | S (%) | Gap (%)
Logit [9] 88.98 -1.59
FitNet [22] 88.45 231
AT [35] ResNet101 89.04 -1.72
CNN RKD [20] — 90.76 | 89.16 -1.60
CRD [28] ResNet50 89.39 -1.37
ReviewKD [3] 89.91 -0.85
AFD [31] 89.44 -1.32
MINILM [32] Swin-T—ViT-B 90.22 -2.37
Trans. DeiT [29] Swin-T—ViT-B 92.59 | 90.67 -1.92
CAKD [14] Swin-T—ViT-B 90.96 -1.63
X-arc CAKD [14] Swin-T—ResNet50 92.59 88.06 -2.53
. Ours ACMKD 92.59 | 91.19 -1.40

TABLE II: Performance gap comparison between our pro-
posed method and state-of-the-art methods on CIFARI100
[11]. X-arc. denotes cross-architecture and — denotes the
KD direction. T represents the teacher model, and S rep-
resents the student model. Gap denotes the top-1 accuracy
performance gap between the teacher and student model.

mance of the student model. Similar to the settings of the
ImageNet dataset, we compare the proposed ACMKD with
two homogeneous-architecture methods as well as one cross-
architecture method. The student models from our ACMKD
framework outperform all student models in all three KD
groups. This result confirms the proposed ACMKD method
can encourage the student models associated with heteroge-
neous architectures to learn both local spatial features from
CNN/INN and complementary global features reported in the
previous study [14]. As a result, the student models retain the
highest accuracy performance among all methods.Similarly,
the performance gap in CNN-based KD methods has the
lowest accuracy difference (0.85%) compared with the one
in the proposed ACMKD method. This reduction indicated
that the CNN-based network still has competitive accu-
racy performance compared to Transformer-based models in
medium-scale datasets [29], [32].

C. Ablation Study

To evaluate the effect of each component in the proposed
loss function, further experiments on the ImageNet dataset
[12] are investigated. Specially, we compare the ACMKD
with two student’s baselines: 1) a student’s baseline model,
which learns directly from the pre-trained teacher model
without the second-stage distillation process (W/O SSD); 2)
a student baseline model which contains the second-stage
distillation process while lacking the proposed attention-
based similarity mechanism (W/O ASM). As shown in Table
III, the student model from the proposed ACMKD model
outperforms the student’s baseline model by 0.19%-0.36%,
providing that the attention-based similarity mechanism and
the second-stage distillation are able to reduce the perfor-
mance gap and thus improve the accuracy performance of
the student models. In addition, the second-stage distilla-
tion loss Lgsq contributes about 0.17% more to accuracy
improvement as compared to attention similarity loss Ly,
which sheds light on the importance of helping the lowest
student models when various student networks exist in KD
process. In order to evaluate the effect of the proposed
second-stage distillation, further attention map visualization

‘W SSD W/O SSD

Input Teacher

Fig. 2: Comparison results of attention map visualizations
with and without proposed second-stage distillation (SSD).
W represents with, and W/O denotes without.

Type | ASM | SSD | Param (M) | Top-1 Accuracy (%)
Teacher 28 81.20
v 25 80.28
Student v 22 80.11
v v 28 80.47
Baseline (ResNet50) 19 76.41
Baseline (RedNet50) 11 78.56
Baseline (Swin-T) 20 79.02

TABLE II: Performance comparison of each loss term
on ImageNet [23]. ASM represents the proposed attention-
based similarity mechanism and SSD represents the proposed
second-stage distillation. A check mark v represents a loss
term of the specified type presented.

experiments are conducted. As shown in Fig.2, the attention
map results from student baselines (W SSD) have a more
similar attention map to the teacher model. In contrast, the
student baseline without SSD has a larger different attention
map compared to the teacher model. This validates that
complementary knowledge from other stronger students can
effectively guide the weakest student on where to mimic the
teacher’s performance, ultimately facilitating a more effective
learning process.

V. CONCLUSION

In this study, we present an adaptive cross-architecture
mutual knowledge distillation (ACMKD) framework. It aims
to narrow the performance gap between teacher and student
models by leveraging various inductive biases within mutual
KD learning. We employ a Transformer-based model as the
teacher, which inherently lacks certain inductive bias. We
also propose an attention similarity mechanism and a second-
stage distillation to further close this performance gap. We
conduct evaluations of the ACMKD method on ImageNet
and CIFARI100 datasets, demonstrating that diverse models
offer unique data perspectives to student models, ultimately
enhancing their accuracy in the mutual KD learning process.
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