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Abstract

We study a regret minimization problem with the existence of multiple best/near-
optimal arms in the multi-armed bandit setting. We consider the case when the
number of arms/actions is comparable or much larger than the time horizon, and
make no assumptions about the structure of the bandit instance. Our goal is to
design algorithms that can automatically adapt to the unknown hardness of the
problem, i.e., the number of best arms. Our setting captures many modern applica-
tions of bandit algorithms where the action space is enormous and the information
about the underlying instance/structure is unavailable. We first propose an adaptive
algorithm that is agnostic to the hardness level and theoretically derive its regret
bound. We then prove a lower bound for our problem setting, which indicates: (1)
no algorithm can be minimax optimal simultaneously over all hardness levels; and
(2) our algorithm achieves a rate function that is Pareto optimal. With additional
knowledge of the expected reward of the best arm, we propose another adaptive
algorithm that is minimax optimal, up to polylog factors, over all hardness levels.
Experimental results confirm our theoretical guarantees and show advantages of
our algorithms over the previous state-of-the-art.

1 Introduction

Multi-armed bandit problems describe exploration-exploitation trade-offs in sequential decision
making. Most existing bandit algorithms tend to provide regret guarantees when the number of
available arms/actions is smaller than the time horizon. In modern applications of bandit algorithm,
however, the action space is usually comparable or even much larger than the allowed time horizon so
that many existing bandit algorithms cannot even complete their initial exploration phases. Consider a
problem of personalized recommendations, for example. For most users, the total number of movies,
or even the amount of sub-categories, far exceeds the number of times they visit a recommendation
site. Similarly, the enormous amount of user-generated content on YouTube and Twitter makes
it increasingly challenging to make optimal recommendations. The tension between a very large
action space and a limited time horizon poses a realistic problem in which deploying algorithms
that converge to an optimal solution over an asymptotically long time horizon do not give satisfying
results. There is a need to design algorithms that can exploit the highest possible reward within a
limited time horizon. Past work has partially addressed this challenge. The quantile regret proposed in
[12] to calculate regret with respect to an satisfactory action rather than the best one. The discounted
regret analyzed in [25, 24] is used to emphasize short time horizon performance. Other existing
works consider the extreme case when the number of actions is indeed infinite, and tackle such
problems with one of two main assumptions: (1) the discovery of a near-optimal/best arm follows
some probability measure with known parameters [6, 30, 4, 15]; (2) the existence of a smooth function
represents the mean-payoff over a continuous subset [1, 20, 19, 8, 23, 17]. However, in many
situations, neither assumption may be realistic. We make minimal assumptions in this paper. We
study the regret minimization problem over a time horizon T , which might be unknown, with respect
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to a bandit instance with n total arms, out of which m are best/near-optimal arms. We emphasize that
the allowed time horizon and the given bandit instance should be viewed as features of one problem
and together they indicate an intrinsic hardness level. We consider the case when the number of arms
n is comparable or larger than the time horizon T so that no standard algorithm provides satisfying
result. Our goal is to design algorithms that could adapt to the unknown m and achieve optimal regret.

1.1 Contributions and paper organization

We make the following contributions. In Section 2, we formally define the regret minimization
problem that represents the tension between a very large action space and a limited time horizon; and
capture the hardness level in terms of the number of best arms. We provide an adaptive algorithm
that is agnostic to the unknown number of best arms in Section 3, and theoretically derive its regret
bound. In Section 4, we prove a lower bound for our problem setting that indicates that there is no
algorithm that can be optimal simultaneously over all hardness levels. Our lower bound also shows
that our algorithm provided in Section 3 is Pareto optimal. With additional knowledge of the expected
reward of the best arm, in Section 5, we provide an algorithm that achieves the non-adaptive minimax
optimal regret, up to polylog factors, without the knowledge of the number of best arms. Experiments
conducted in Section 6 confirm our theoretical guarantees and show advantages of our algorithms
over previous state-of-the-art. We conclude our paper in Section 7. Most of the proofs are deferred to
the Appendix due to lack of space.

1.2 Related work

Time sensitivity and large action space. As bandit models are getting much more complex, usually
with large or infinite action spaces, researchers have begun to pay attention to tradeoffs between regret
and time horizons when deploying such models. [13] study a linear bandit problem with ultra-high
dimension, and provide algorithms that, under various assumptions, can achieve good reward within
short time horizon. [24] also take time horizon into account and model time preference by analyzing a
discounted regret. [12] consider a quantile regret minimization problem where they define their regret
with respect to expected reward ranked at (1� ⇢)-th quantile. One could easily transfer their problem
to our setting; however, their regret guarantee is sub-optimal. [18, 4] also consider the problem with
m best/near-optimal arms with no other assumptions, but they focus on the pure exploration setting;
[4] additionally requires the knowledge of m. Another line of research considers the extreme case
when the number arms is infinite, but with some known regularities. [6] proposes an algorithm with
a minimax optimality guarantee under the situation where the reward of each arm follows strictly
Bernoulli distribution; [27] provides an anytime algorithm that works under the same assumption.
[30] relaxes the assumption on Bernoulli reward distribution, however, some other parameters are
assumed to be known in their setting.

Continuum-armed bandit. Many papers also study bandit problems with continuous action spaces,
where they embed each arm x into a bounded subset X ✓ Rd and assume there exists a smooth
function f governing the mean-payoff for each arm. This setting is firstly introduced by [1]. When the
smoothness parameters are known to the learner or under various assumptions, there exists algorithms
[20, 19, 8] with near-optimal regret guarantees. When the smoothness parameters are unknown,
however, [23] proves a lower bound indicating no strategy can be optimal simultaneously over all
smoothness classes; under extra information, they provide adaptive algorithms with near-optimal
regret guarantees. Although achieving optimal regret for all settings is impossible, [17] design
adaptive algorithms and prove that they are Pareto optimal. Our algorithms are mainly inspired by
the ones in [17, 23]. A closely related line of work [28, 16, 5, 26] aims at minimizing simple regret
in the continuum-armed bandit setting.

Adaptivity to unknown parameters. [9] argues the awareness of regularity is flawed and one should
design algorithms that can adapt to the unknown environment. In situations where the goal is pure
exploration or simple regret minimization, [18, 28, 16, 5, 26] achieve near-optimal guarantees with
unknown regularity because their objectives trade-off exploitation in favor of exploration. In the case
of cumulative regret minimization, however, [23] shows no strategy can be optimal simultaneously
over all smoothness classes. In special situations or under extra information, [9, 10, 23] provide
algorithms that adapt in different ways. [17] borrows the concept of Pareto optimality from economics
and provide algorithms with rate functions that are Pareto optimal. Adaptivity is studied in statistics
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as well: in some cases, only additional logarithmic factors are required [22, 7]; in others, however,
there exists an additional polynomial cost of adaptation [11].

2 Problem statement and notation

We consider the multi-armed bandit instance ⌫ = (⌫1, . . . , ⌫n) with n probability distributions with
means µi = EX⇠⌫i [X] 2 [0, 1]. Let µ? = maxi2[n]{µi} be the highest mean and S? = {i 2 [n] :
µi = µ?} denote the subset of best arms.1 The cardinality |S?| = m is unknown to the learner.
We could also generalize our setting to S0

? = {i 2 [n] : µi � µ? � ✏(T )} with unknown |S0

?| (i.e.,
situations where there is an unknown number of near-optimal arms). Setting ✏ to be dependent on
T is to avoid an additive term linear in T , e.g., ✏  1/

p
T ) ✏T 

p
T . All theoretical results and

algorithms presented in this paper are applicable to this generalized setting with minor modifications.
For ease of exposition, we focus on the case with multiple best arms throughout the paper. At each
time step t 2 [T ], the algorithm/learner selects an action At 2 [n] and receives an independent reward
Xt ⇠ ⌫At . We assume that Xt � µAt is (1/2)-sub-Gaussian conditioned on At.2 We measure the
success of an algorithm through the expected cumulative (pseudo) regret:

RT = T · µ? � E
"

TX

t=1

µAt

#
.

We use R(T, n,m) to denote the set of regret minimization problems with allowed time horizon T
and any bandit instance ⌫ with n total arms and m best arms.3 We emphasize that T is part of the
problem instance. We are particularly interested in the case when n is comparable or even larger
than T , which captures many modern applications where the available action space far exceeds the
allowed time horizon. Although learning algorithms may not be able to pull each arm once, one
should notice that the true/intrinsic hardness level of the problem could be viewed as n/m: selecting
a subset uniformly at random with cardinality ⇥(n/m) guarantees, with constant probability, the
access to at least one best arm; but of course it is impossible to do this without knowing m. We
quantify the intrinsic hardness level over a set of regret minimization problems R(T, n,m) as

 (R(T, n,m)) = inf{↵ � 0 : n/m  2T↵
},

where the constant 2 in front of T↵ is added to avoid otherwise the trivial case with all best arms when
the infimum is 0.  (R(T, n,m)) is used here as it captures the minimax optimal regret over the set
of regret minimization problem R(T, n,m), as explained later in our review of the MOSS algorithm
and the lower bound. As smaller  (R(T, n,m)) indicates easier problems, we then define the family
of regret minimization problems with hardness level at most ↵ as

HT (↵) = {[R(T, n,m) :  (R(T, n,m))  ↵},

with ↵ 2 [0, 1]. Although T is necessary to define a regret minimization problem, we actually encode
the hardness level into a single parameter ↵, which captures the tension between the complexity of
bandit instance at hand and the allowed time horizon T : problems with different time horizons but
the same ↵ are equally difficult in terms of the achievable minimax regret (the exponent of T ). We
thus mainly study problems with T large enough so that we could mainly focus on the polynomial
terms of T . We are interested in designing algorithms with minimax guarantees over HT (↵), but
without the knowledge of ↵.

MOSS and upper bound. In the classical setting, MOSS , designed by [2] and further generalized to
the sub-Gaussian case [21] and improved in terms of constant factors [14], achieves the minimax
optimal regret. In this paper, we will use MOSS as a subroutine with regret upper bound O(

p
nT )

when T � n. For any problem in HT (↵) with known ↵, one could run MOSS on a subset selected
uniformly at random with cardinality eO(T↵) and achieve regret eO(T (1+↵)/2).

1Throughout the paper, we denote by [K] the set {1, . . . ,K} for any positive integer K.
2We say a random variable X is �-sub-Gaussian if E[exp(�X)]  exp(�2�2/2) for all � 2 R.
3Our setting could be generalized to the case with infinite arms: one can consider embedding arms into an

arm space X and let p be the probability that an arm sampled uniformly at random is (near-) optimal. 1/p will
then serve a similar role as n/m does in the original definition.
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Lower bound. The lower bound ⌦(
p
nT ) in the classical setting does not work for our setting as its

proof heavily relies on the existence of single best arm [21]. However, for problems in HT (↵), we
do have a matching lower bound ⌦(T (1+↵)/2) as one could always apply the standard lower bound
on an bandit instance with n = bT↵

c and m = 1. For general value of m, a lower bound of the order
⌦(

p
T (n�m)/m) = ⌦(T (1+↵)/2) for the m-best arms case could be obtained following similar

analysis in Chapter 15 of [21].

Although log T may appear in our bounds, throughout the paper, we focus on problems with T � 2
as otherwise the bound is trivial.

3 An adaptive algorithm

Algorithm 1 takes time horizon T and a user-specified � 2 [1/2, 1] as input, and it is mainly inspired
by [17]. Algorithm 1 operates in iterations with geometrically-increasing length �Ti = 2p+i with
p = dlog2 T

�
e. At each iteration i, it restarts MOSS on a set Si consisting of Ki = 2p+2�i real arms

selected uniformly at random plus a set of “virtual” mixture-arms (one from each of the 1  j < i
previous iterations, none if i = 1). The mixture-arms are constructed as follows. After each iteration
i, let bpi denote the vector of empirical sampling frequencies of the arms in that iteration (i.e., the k-th
element of bpi is the number of times arm k, including all previously constructed mixture-arms, was
sampled in iteration i divided by the total number of samples �Ti). The mixture-arm for iteration
i is the bpi-mixture of the arms, denoted by e⌫i. When MOSS samples from e⌫i it first draws it ⇠ bpi,
then draws a sample from the corresponding arm ⌫it (or e⌫it ). The mixture-arms provide a convenient
summary of the information gained in the previous iterations, which is key to our theoretical analysis.
Although our algorithm is working on fewer regular arms in later iterations, information summarized
in mixture-arms is good enough to provide guarantees. We name our algorithm MOSS++ as it restarts
MOSS at each iteration with past information summarized in mixture-arms. We provide an anytime
version of Algorithm 1 in Appendix A.2 via the standard doubling trick.

Algorithm 1: MOSS++

Input: Time horizon T and user-specified parameter � 2 [1/2, 1].
1: Set: p = dlog2 T

�
e, Ki = 2p+2�i and �Ti = min{2p+i, T}.

2: for i = 1, . . . , p do

3: Run MOSS on a subset of arms Si for �Ti rounds. Si contains Ki real arms selected uniformly
at random and the set of virtual mixture-arms from previous iterations, i.e., {e⌫j}j<i.

4: Construct a virtual mixture-arm e⌫i based on empirical sampling frequencies of MOSS above.
5: end for

3.1 Analysis and discussion

We use µS = max⌫2S{EX⇠⌫ [X]} to denote the highest expected reward over a set of distribution-
s/arms S. For any algorithm that only works on S, we can decompose the regret into approximation
error and learning error:

RT = T · (µ? � µS)| {z }
approximation error due to the selection of S

+ T · µS � E
"

TX

t=1

µAt

#

| {z }
learning error due to the sampling rule {At}

T
t=1

. (1)

This type of regret decomposition was previously used in [20, 3, 17] to deal with the continuum-armed
bandit problem. We consider here a probabilistic version, with randomness in the selection of S, for
the classical setting.

The main idea behind providing guarantees for MOSS++ is to decompose its regret at each iteration,
using Eq. (1), and then bound the expected approximation error and learning error separately. The
expected learning error at each iteration could always be controlled as eO(T �) thanks to regret
guarantees for MOSS and specifically chosen parameters p, Ki, �Ti. Let i? be the largest integer such
that Ki � 2T↵ log

p
T still holds. The expected approximation error in iteration i  i? could be
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upper bounded by
p
T following an analysis on hypergeometric distribution. As a result, the expected

regret in iteration i  i? is eO(T �). Since the mixture-arm e⌫i? is included in all following iterations,
we could further bound the expected approximation error in iteration i > i? by eO(T 1+↵��) after a
careful analysis on �Ti/�Ti? . This intuition is formally stated and proved in Theorem 1.
Theorem 1. Run MOSS++with time horizon T and an user-specified parameter � 2 [1/2, 1] leads to
the following regret upper bound:

sup
!2HT (↵)

RT  C (log2 T )
5/2

· Tmin{max{�,1+↵��},1},

where C is a universal constant.
Remark 1. We primarily focus on the polynomial terms in T when deriving the bound, but put no
effort in optimizing the polylog term. The 5/2 exponent of log2 T might be tightened as well.

The theoretical guarantee is closely related to the user-specified parameter �: when � > ↵, we suffer
a multiplicative cost of adaptation eO(T |(2��↵�1)/2|), with � = (1 + ↵)/2 hitting the sweet spot,
comparing to non-adaptive minimax regret; when �  ↵, there is essentially no guarantees. One may
hope to improve this result. However, our analysis in Section 4 indicates: (1) achieving minimax
optimal regret for all settings simultaneously is impossible; and (2) the rate function achieved by
MOSS++ is already Pareto optimal.

4 Lower bound and Pareto optimality

4.1 Lower bound

In this section, we show that designing algorithms with the non-adaptive minimax optimal guarantee
over all values of ↵ is impossible. We first state the result in the following general theorem.
Theorem 2. For any 0  ↵0 < ↵  1, assume T↵

 B and bT↵
c � 1 � max{T↵/4, 2}. If an

algorithm is such that sup!2HT (↵0) RT  B, then the regret of this algorithm is lower bounded on
HT (↵):

sup
!2HT (↵)

RT � 2�10T 1+↵B�1. (2)

To give an interpretation of Theorem 2, we consider any algorithm/policy ⇡ together with regret
minimization problems HT (↵0) and HT (↵) satisfying corresponding requirements. On one hand, if
algorithm ⇡ achieves a regret that is order-wise larger than eO(T (1+↵0)/2) over HT (↵0), it is already
not minimax optimal for HT (↵0). Now suppose ⇡ achieves a near-optimal regret, i.e., eO(T (1+↵0)/2),
over HT (↵0); then, according to Eq. (2), ⇡ must incur a regret of order at least e⌦(T 1/2+↵�↵0/2)
on one problem in HT (↵0). This, on the other hand, makes algorithm ⇡ strictly sub-optimal over
HT (↵).

4.2 Pareto optimality

We capture the performance of any algorithm by its dependence on polynomial terms of T in the
asymptotic sense. Note that the hardness level of a problem is encoded in ↵.
Definition 1. Let ✓ : [0, 1] ! [0, 1] denote a non-decreasing function. An algorithm achieves the
rate function ✓ if

8✏ > 0, 8↵ 2 [0, 1], lim sup
T!1

sup!2HT (↵) RT

T ✓(↵)+✏
< +1.

Recall that a function ✓0 is strictly smaller than another function ✓ in pointwise order if ✓0(↵)  ✓(↵)
for all ↵ and ✓0(↵0) < ✓(↵0) for at least one value of ↵0. As there may not always exist a pointwise
ordering over rate functions, following [17], we consider the notion of Pareto optimality over rate
functions achieved by some algorithms.
Definition 2. A rate function ✓ is Pareto optimal if it is achieved by an algorithm, and there is no
other algorithm achieving a strictly smaller rate function ✓0 in pointwise order. An algorithm is
Pareto optimal if it achieves a Pareto optimal rate function.
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Combining the results in Theorem 1 and Theorem 2 with above definitions, we could further obtain
the following result in Theorem 3.
Theorem 3. The rate function achieved by MOSS++with any � 2 [1/2, 1], i.e.,

✓� : ↵ 7! min{max{�, 1 + ↵� �}, 1}, (3)

is Pareto optimal.

��� ��� ��� ��� ��� ���
ͅ

���

���

���

���

���

���

͌ ͆
�ͅ
�
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3DUHWR�RSWLPDO�UDWH��͆� ����
3DUHWR�RSWLPDO�UDWH��͆� ����
3DUHWR�RSWLPDO�UDWH��͆� ����

Figure 1: Pareto optimal rates

Fig. 1 provides an illustration of the rate func-
tions achieved by MOSS++with different � as
input, as well as the non-adaptive minimax op-
timal rate.
Remark 2. One should notice that the naive
algorithm running MOSS on a subset selected
uniformly at random with cardinality eO(T �0

) is
not Pareto optimal, since running MOSS++with
� = (1 + �0)/2 leads to a strictly smaller rate
function. The algorithm provided in [12], if
transferred to our setting and allowing time hori-
zon dependent quantile, is not Pareto optimal
as well since it corresponds to the rate function
✓(↵) = max{2.89↵, 0.674}.

5 Learning with extra information

Although previous Section 4 gives negative results on designing algorithms that could optimally adapt
to all settings, one could actually design such an algorithm with extra information. In this section,
we provide an algorithm that takes the expected reward of the best arm µ? (or an estimated one with
error up to 1/

p
T ) as extra information, and achieves near minimax optimal regret over all settings

simultaneously. Our algorithm is mainly inspired by [23].

5.1 Algorithm

We name our Algorithm 3 Parallel as it maintains dlog T e instances of subroutine, i.e., Algorithm 2,
in parallel. Each subroutine SRi is initialized with time horizon T and hardness level ↵i = i/dlog T e.
We use Ti,t to denote the number of samples allocated to SRi up to time t, and represent its empirical
regret at time t as bRi,t = Ti,t · µ? �

PTi,t

t=1 Xi,t with Xi,t ⇠ ⌫Ai,t being the t-th empirical reward
obtained by SRi and Ai,t being the index of the t-th arm pulled by SRi.

Algorithm 2: MOSS Subroutine (SR)
Input: Time horizon T and hardness level ↵.

1: Select a subset of arms S↵ uniformly at random with |S↵| = d2T↵ log
p
T e and run MOSS on

S↵.

Parallel operates in iterations of length d
p
T e. At the beginning of each iteration, i.e., at time

t = i · d
p
T e for i 2 {0} [ [d

p
T e � 1], Parallel first selects the subroutine with the lowest

(breaking ties arbitrarily) empirical regret so far, i.e., k = argmini2[dlog Te]
bRi,t; it then resumes the

learning process of SRk, from where it halted, for another d
p
T e more pulls. All the information is

updated at the end of that iteration. An anytime version of Algorithm 3 is provided in Appendix C.3.

5.2 Analysis

As Parallel discretizes the hardness parameter over a grid with interval 1/dlog T e, we first show
that running the best subroutine alone leads to regret eO(T (1+↵)/2).
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Algorithm 3: Parallel

Input: Time horizon T and the optimal reward µ?.
1: set: p = dlog T e, � = d

p
T e and t = 0.

2: for i = 1, . . . , p do

3: Set ↵i = i/p, initialize SRi with ↵i, T ; set Ti,t = 0, and bRi,t = 0.
4: end for

5: for i = 1, . . . ,�� 1 do

6: Select k = argmini2[p]
bRi,t and run SRk for � rounds.

7: Update Tk,t = Tk,t +�, bRk,t = Tk,t · µ? �
PTk,t

t=1 Xk,t, t = t+�.
8: end for

Lemma 1. Suppose ↵ is the true hardness parameter and ↵i�1/dlog T e < ↵  ↵i, run Algorithm 2
with time horizon T and ↵i leads to the following regret bound:

sup
!2HT (↵)

RT  C log T · T (1+↵)/2,

where C is a universal constant.

Since Parallel always allocates new samples to the subroutine with the lowest empirical regret
so far, we know that the regret of every subroutine should be roughly of the same order at time
T . In particular, all subroutines should achieve regret eO(T (1+↵)/2), as the best subroutine does.
Parallel then achieves the non-adaptive minimax optimal regret, up to polylog factors, without
knowing the true hardness level ↵.
Theorem 4. For any ↵ 2 [0, 1] unknown to the learner, run Parallelwith time horizon T and
optimal expected reward µ? leads to the following regret upper bound:

sup
!2HT (↵)

RT  C (log T )2 T (1+↵)/2,

where C is a universal constant.

6 Experiments

We conduct three experiments to compare our algorithms with baselines. In Section 6.1, we compare
the performance of each algorithm on problems with varying hardness levels. We examine how
the regret curve of each algorithm increases on synthetic and real-world datasets in Section 6.2 and
Section 6.3, respectively.

We first introduce the nomenclature of the algorithms. We use MOSS to denote the standard
MOSS algorithm; and MOSS Oracle to denote Algorithm 2 with known ↵. Quantile represents
the algorithm (QRM2) proposed by [12] to minimize the regret with respect to the (1� ⇢)-th quantile
of means among arms, without the knowledge of ⇢. One could easily transfer Quantile to our
settings with top-⇢ fraction of arms treated as best arms. As suggested in [12], we reuse the statistics
obtained in previous iterations of Quantile to improve its sample efficiency. We use MOSS++ to
represent the vanilla version of Algorithm 1; and use empMOSS++ to represent an empirical version
such that: (1) empMOSS++ reuse statistics obtained in previous round, as did in Quantile ; and (2)
instead of selecting Ki real arms uniformly at random at the i-th iteration, empMOSS++ selects Ki

arms with the highest empirical mean for i > 1. We choose � = 0.5 for MOSS++ and empMOSS++ in
all experiments.4 All results are averaged over 100 experiments. Shaded area represents 0.5 standard
deviation for each algorithm.

6.1 Adaptivity to hardness level

We compare our algorithms with baselines on regret minimization problems with different hardness
levels. For this experiment, we generate best arms with expected reward 0.9 and sub-optimal arms

4Increasing � generally leads to worse performance on problems with small ↵ but better performance on
problems with large ↵.
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Figure 2: (a) Comparison with varying hardness levels (b) Regret curve comparison with ↵ = 0.25.

with expected reward evenly distributed among {0.1, 0.2, 0.3, 0.4, 0.5}. All arms follow Bernoulli
distribution. We set the time horizon to T = 50000 and consider the total number of arms n = 20000.
We vary ↵ from 0.1 to 0.8 (with interval 0.1) to control the number of best arms m = dn/2T↵

e and
thus the hardness level. In Fig. 2(a), the regret of any algorithm gets larger as ↵ increases, which is
expected. MOSS does not provide satisfying performance due to the large action space and the relatively
small time horizon. Although implemented in an anytime fashion, Quantile could be roughly viewed
as an algorithm that runs MOSS on a subset selected uniformly at random with cardinality T 0.347.
Quantile displays good performance when ↵ = 0.1, but suffers regret much worse than MOSS++ and
empMOSS++when ↵ gets larger. Note that the regret curve of Quantile gets flattened at 20000 is
expected: it simply learns the best sub-optimal arm and suffers a regret 50000⇥(0.9�0.5). Although
Parallel enjoys near minimax optimal regret, the regret it suffers from is the summation of 11
subroutines, which hurts its empirical performance. empMOSS++ achieves performance comparable to
MOSS Oraclewhen ↵ is small, and achieve the best empirical performance when ↵ � 0.3. When
↵ � 0.7, MOSS Oracle needs to explore most/all of the arms to statistically guarantee the finding of
at least one best arm, which hurts its empirical performance.

6.2 Regret curve comparison

We compare how the regret curve of each algorithm increases in Fig. 2(b). We consider the same regret
minimization configurations as described in Section 6.1 with ↵ = 0.25. empMOSS++ , MOSS++ and
Parallel all outperform Quantilewith empMOSS++ achieving the performance closest to MOSS

Oracle . MOSS Oracle , Parallel and empMOSS++ have flattened their regret curve indicating they
could confidently recommend the best arm. The regret curves of MOSS++ and Quantile do not flat
as the random-sampling component in each of their iterations encourage them to explore new arms.
Comparing to MOSS++ , Quantile keeps increasing its regret at a much faster rate and with a much
larger variance, which empirically confirms the sub-optimality of their regret guarantees.

6.3 Real-world dataset

We also compare all algorithms in a realistic setting of recommending funny captions to website
visitors. We use a real-world dataset from the New Yorker Magazine Cartoon Caption Contest5. The
dataset of 1-3 star caption ratings/rewards for Contest 652 consists of n = 10025 captions6. We use
the ratings to compute Bernoulli reward distributions for each caption as follows. The mean of each
caption/arm i is calculated as the percentage pi of its ratings that were funny or somewhat funny (i.e.,
2 or 3 stars). We normalize each pi with the best one and then threshold each: if pi � 0.8, then put
pi = 1; otherwise leave pi unaltered. This produces a set of m = 54 best arms with rewards 1 and all

5https://www.newyorker.com/cartoons/contest.
6Available online at https://nextml.github.io/caption-contest-data.
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other 9971 arms with rewards among [0, 0.8]. We set T = 105 and this results in a hardness level
around ↵ ⇡ 0.43.
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Figure 3: Regret comparison with real-world
dataset

Using these Bernoulli reward models, we
compare the performance of each algorithm,
as shown in Fig. 3. MOSS , MOSS Oracle ,
Parallel and empMOSS++ have flattened their
regret curve indicating they could confidently
recommend the funny captions (i.e., best arms).
Although MOSS could eventually identify a best
arm in this problem, its cumulative regret
is more than 7x of the regret achieved by
empMOSS++ due to its initial exploration phase.
The performance of Quantile is even worse,
and its cumulative regret is more than 9x of the
regret achieved by empMOSS++ . One surprising
phenomenon is that empMOSS++ outperforms
MOSS Oracle in this realistic setting. Our hy-
pothesis is that MOSS Oracle is a little bit con-
servative and selects an initial set with cardinal-
ity too large. This experiment demonstrates the

effectiveness of empMOSS++ and MOSS++ in modern applications of bandit algorithm with large action
space and limited time horizon.

7 Conclusion

We study a regret minimization problem with large action space but limited time horizon, which
captures many modern applications of bandit algorithms. Depending on the number of best/near-
optimal arms, we encode the hardness level, in terms of minimax regret achievable, of the given
regret minimization problem into a single parameter ↵, and we design algorithms that could adapt
to this unknown hardness level. Our first algorithm MOSS++ takes a user-specified parameter � as
input and provides guarantees as long as ↵ < �; our lower bound further indicates the rate function
achieved by MOSS++ is Pareto optimal. Although no algorithm can achieve near minimax optimal
regret over all ↵ simultaneously, as demonstrated by our lower bound, we overcome this limitation
with an (often) easily-obtained extra information and propose Parallel that is near-optimal for all
settings. Inspired by MOSS++ , We also propose empMOSS++with excellent empirical performance.
Experiments on both synthetic and real-world datasets demonstrate the efficiency of our algorithms
over the previous state-of-the-art.

Broader Impact

This paper provides efficient algorithms that work well in modern applications of bandit algorithms
with large action space but limited time horizon. We make minimal assumption about the setting, and
our algorithms can automatically adapt to unknown hardness levels. Worst-case regret guarantees
are provided for our algorithms; we also show MOSS++ is Pareto optimal and Parallel is minimax
optimal, up to polylog factors. empMOSS++ is provided as a practical version of MOSS++with excellent
empirical performance. Our algorithms are particularly useful in areas such as e-commence and
movie/content recommendation, where the action space is enormous but possibly contains multiple
best/satisfactory actions. If deployed, our algorithms could automatically adapt to the hardness level
of the recommendation task and benefit both service-providers and customers through efficiently
delivering satisfactory content. One possible negative outcome is that items recommended to a specific
user/customer might only come from a subset of the action space. However, this is unavoidable when
the number of items/actions exceeds the allowed time horizon. In fact, one should notice that all
items/actions will be selected with essentially the same probability, thanks to the incorporation of
random selection processes in our algorithms. Our algorithms will not leverage/create biases due to
the same reason. Overall, we believe this paper’s contribution will have a net positive impact.
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