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Abstract— We study the problem of estimating an unknown
function from noisy data using shallow ReLU neural networks.
The estimators we study minimize the sum of squared data-fitting
errors plus a regularization term proportional to the squared
Euclidean norm of the network weights. This minimization
corresponds to the common approach of training a neural
network with weight decay. We quantify the performance (mean-
squared error) of these neural network estimators when the
data-generating function belongs to the second-order Radon-
domain bounded variation space. This space of functions was
recently proposed as the natural function space associated with
shallow ReLU neural networks. We derive a minimax lower
bound for the estimation problem for this function space and
show that the neural network estimators are minimax optimal up
to logarithmic factors. This minimax rate is immune to the curse
of dimensionality. We quantify an explicit gap between neural
networks and linear methods (which include kernel methods)
by deriving a linear minimax lower bound for the estimation
problem, showing that linear methods necessarily suffer the curse
of dimensionality in this function space. As a result, this paper
sheds light on the phenomenon that neural networks seem to
break the curse of dimensionality.

Index Terms— Neural networks, ridge functions, sparsity, func-
tion approximation, nonparametric function estimation.

I. INTRODUCTION

THE fundamental building blocks of neural networks are
ridge functions. A ridge function is a multivariate func-

tion mapping Rd → R of the form

x "→ ρ(wTx), x ∈ Rd,

where ρ : R → R is referred to as the profile of the ridge
function and w ∈ Rd \ {0} is referred to as the direction of
the ridge function.
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This paper studies the problem estimating functions from
noisy samples using shallow neural networks, which are
superpositions of ridge functions, of the form

f(x) =
K∑

k=1

vk ρ(wT
kx − bk), x ∈ Rd, (1)

where the ρ : R → R is the activation function, K is the width
of the neural network, and, for k = 1, . . . , K , vk ∈ R \ {0}
and wk ∈ Rd \ {0} are the weights of the neural network
and bk ∈ R are the biases of the neural network. Throughout
the paper, we will focus on the rectified linear unit (ReLU)
activation function, ρ(x) = max{0, x}, which is widely used
in practice [28].

We consider the problem of nonparametric function esti-
mation where the goal is to estimate an unknown function
f : Ω → R, where Ω ⊂ Rd is a bounded domain, from the
noisy samples

yn = f(xn) + εn, n = 1, . . . , N, (2)

where the noise {εn}N
n=1 are i.i.d. Gaussian random variables

and {xn}N
n=1 ⊂ Ω are the design points. We study the

performance of neural network estimators of the form in (1)
that minimize the objective of the sum of squared data-fitting
errors plus a regularization term proportional to the squared
Euclidean norm of the network weights. This minimization
corresponds to the common approach of gradient-based train-
ing of a neural network with weight decay [26]. That is,
training a neural network using gradient descent with weight
decay is simply gradient descent applied to this objective.

In order to quantify the performance of such estimators,
we consider cases in which f is an unknown function within a
known function space. To this end, we will consider functions
mapping Ω → R which belong to the Banach space of
functions of second-order bounded variation in the Radon
domain, denoted R BV2(Ω). Our recent work in [35], [37]
proposed this Banach space as the “natural” function space
associated with shallow ReLU networks. This space contains
several classical multivariate function spaces including certain
Sobolev spaces as well as certain spectral Barron spaces,
pioneered in the seminal work of Barron on approximation
and estimation using shallow sigmoidal networks [2].

It was first observed in [2] that neural network estimators
can be immune to the curse of dimensionality. This paper
sheds light on this phenomenon. R BV2(Ω) contains classical
multivariate function spaces including the L1- and L2-Sobolev
spaces of order d + 1, where d is the ambient dimension of
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the domain Ω ⊂ Rd. It is classically known that this sort
of Sobolev-regularity is sufficient to overcome the curse of
dimensionality. On the other hand, R BV2(Ω) also contains
functions that are much less regular. In particular, functions
with significant variation and irregularity, but only in a few
directions, also belong to R BV2(Ω). For example, any ridge
function with a profile that has just its first two weak deriv-
atives in L2(Ω) is included in R BV2(Ω). This shows that
R BV2(Ω) may be regarded as a mixed variation space [12],
since it contains functions that are more regular in some
directions and less in others. This makes R BV2(Ω) a com-
pelling framework for high-dimensional estimation. Moreover,
the neural network estimators we study are locally adaptive
to such mixed variation.

Our past work [35], [37] derives a neural network repre-
senter theorem which proves that shallow ReLU networks are
solutions to data-fitting problems in R BV2(Rd), the space
of functions defined on Rd of second-order bounded variation
in the Radon domain. Remarkably, this variational problem
can be recast as a finite-dimensional neural network training
problem where the regularization corresponds to training a
shallow ReLU network with weight decay. This is the reason
we view these spaces as the natural function space of shallow
ReLU networks. This connection is reminiscent of the classical
reproducing kernel Hilbert space (RKHS) representer theorem
which says that kernel machines are solutions to data-fitting
variational problems over the associated RKHS, although
the neural network variational problem is posed over a
(non-Hilbertian) Banach space.

We summarize the contributions of this paper below.

1) We first discuss how to define R BV2(Ω), where Ω ⊂
Rd is a bounded domain, while preserving a representer
theorem for shallow ReLU networks. This implies that
data-fitting with functions in R BV2(Ω) can be recast
as a finite-dimensional neural network training problem
that may be solved using gradient-descent with weight
decay. This result sets the stage for discussing approxi-
mation and estimation error for functions in R BV2(Ω).

2) We relate R BV2(Ω) spaces to previously studied func-
tion spaces related to shallow neural networks. In par-
ticular, we show that R BV2(Ω) is exactly the same (in
the sense of equivalent Banach spaces) as the so-called
variation space associated to shallow ReLU networks
that has been studied by a number of authors [1], [27],
[31], [43]. This provides a novel analytic characteriza-
tion of this space. Using this characterization, we can
apply previously derived optimal approximation rates
for functions from the variation space [1], [44] to char-
acterize the optimal approximation rates for functions
in R BV2(Ω). The approximation rate (with respect to
the L∞(Ω)-norm) is K− d+3

2d , where K is the number
of neurons in the approximant. Remarkably, this rate is
immune to the curse of dimensionality, as it tends to
K−1/2 as d → ∞. We also show that R BV2(Ω) is
larger than the second-order spectral Barron space.

3) We show that a shallow ReLU network that mini-
mizes the sum of squared data-fitting errors plus a

regularization term proportional to the sum of squared
weights (i.e., training a shallow ReLU network with
weight decay to a global minimizer) is a minimax opti-
mal (up to logarithmic factors) estimator when the data
are generated according to (2), where f ∈ R BV2(Ω).
The minimax rate of the mean-squared error is, up to
logarithmic factors, N− d+3

2d+3 . Remarkably, this rate is
immune to the curse of dimensionality, as it tends to
N−1/2 as d → ∞.

4) Using the results of this paper, we show that there
is a fundamental gap between neural networks and
more classical linear methods (which include kernel
methods). In particular, we use ridgelet analysis to derive
a minimax lower bound for the estimation problem when
restricted to linear estimators. We find that the linear
minimax lower bound is N− 3

d+3 , which suffers the curse
of dimensionality as d → ∞. This result says that
linear methods are suboptimal for estimating functions
in R BV2(Ω). We also show this gap qualitatively via
numerical experiments.

A. Related Work

There is a large body of work regarding the problem
of statistical estimation with ridge functions, under many
different names, including projection pursuit regression [17],
ridgelet shrinkage [8], and, of course, estimation with neural
networks [2]. The last few years have led to a number of
related works that consider the problem of minimax estima-
tion with neural networks [18], [20], [24], [41], [47]. These
works fall into two categories: 1) they consider the problem
of estimating a function that is explicitly synthesized from
a dictionary of neurons; 2) they consider the problem of
estimating a function from a particular (classical) space of
functions (e.g., Hölder, Sobolev, Besov, etc.). Moreover, the
procedures for actually constructing the estimators in these
works usually involve greedy algorithms and do not corre-
spond to how neural networks are actually trained in practice.
The work of this paper is different from these past works in
that we consider the problem of estimating functions from
a new, not classical, function space, R BV2(Ω), and study
the performance of estimators that correspond to solutions
to problem of training shallow ReLU networks with weight
decay, a common regularization scheme used when training
neural networks in practice.

B. Roadmap

In Section II we introduce notation used in the remainder
of the paper. In Section III we introduce relevant results
from our previous work [35], [37]. In Section IV we discuss
how to define R BV2(Ω) where Ω ⊂ Rd is a bounded
domain and derive a new representer theorem for shallow
ReLU networks by considering variational problems over
R BV2(Ω). In Section V we relate R BV2(Ω) to previ-
ously studied function spaces associated to shallow networks.
In Section VI we derive optimal approximation rates for
functions in R BV2(Ω), where the approximants are shallow
ReLU networks. In Section VII we show that shallow ReLU
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network estimators are minimax optimal (up to logarithmic
factors) for estimating functions in R BV2(Ω). In Section VIII
we show that there is a fundamental gap between neural
networks and linear methods (including kernel methods).

II. PRELIMINARIES AND NOTATION

Let Lp(Ω) denote the usual Lebesgue space, where Ω is a
domain (either bounded or unbounded). This space is a Banach
space when equipped with the norm

∥f∥Lp(Ω) :=
(∫

Ω
|f(x)|p dx

)1/p

, 1 ≤ p < ∞,

∥f∥L∞(Ω) := ess sup
x∈Ω

|f(x)|, p = ∞.

When we do not specify the underlying measure, it will
correspond to the Haar measure of Ω (e.g., Lebesgue measure
when Ω = Rd or the surface measure when Ω = Sd−1, the
surface of the Euclidean sphere in Rd). When we do specify
a particular measure, say µ, we will write Lp(Ω; µ).

We will also work with the Banach space of finite Radon
measures on Ω, denoted M(Ω). The norm ∥·∥M(Ω) is exactly
the total variation norm (in the sense of measures). We can
view this space as a subspace of distributions (generalized
functions) on Ω. The space M(Ω) may be regarded as a
“generalization” of L1(Ω) in the sense that if f ∈ L1(Ω),
∥f∥L1(Ω) = ∥f∥M(Ω), but M(Ω) is a strictly larger space that
also contains the shifted Dirac impulses δ(· − x0), x0 ∈ Ω,
such that ∥δ(· − x0)∥M(Ω) = 1. We also remark that the
M-norm is the continuous-domain analogue of the ℓ1-norm.
We refer the reader to [15, Chapter 7] for more details about
this space.

We will also use the notation aN ! bN to mean there exists
a constant C (independent of N ) such that aN ≤ C bN , aN "
bN to mean bN ! aN , and aN ≍ bN to mean aN ! bN

and aN " bN . We will also subscript !, ", and ≍ with any
parameters that the implicit constant depends on.

III. SHALLOW NEURAL NETWORKS, SPLINES,
AND VARIATIONAL METHODS

In this section we will discuss relevant results from our prior
work in [35] and [37], making connections between shallow
neural networks, splines, and variational methods. Our work
in [35] proved a representer theorem for single-hidden layer
ReLU networks with scalar outputs by considering variational
problems over the space of functions of second-order bounded
variation in the Radon domain. The Radon transform of a
function f : Rd → R is given by

R{f}(γ, t) :=
∫

{x:γTx=t}
f(x) ds(x), (γ, t) ∈ Sd−1 × R,

where s denotes the (d − 1)-dimensional Lebesgue measure
on the hyperplane {x : γTx = t}. The Radon domain is
parameterized by a direction γ ∈ Sd−1 and an offset t ∈ R.
When working with the Radon transform of functions defined
on Rd, the following ramp filter arises in the Radon inversion
formula

Λd−1 = (−∂2
t )

d−1
2 ,

where ∂t denotes the partial derivative with respect to the
offset variable, t, of the Radon domain and fractional powers
are defined in terms of Riesz potentials. The space of functions
of second-order bounded variation in the Radon domain is then
given by

R BV2(Rd) = {f ∈ L∞,1(Rd) : R TV2(f) < ∞}, (3)

where L∞,1(Rd) is the Banach space1 of functions mapping
Rd → R of at most linear growth and

R TV2(f) = cd

∥∥∂2
t Λd−1 R f

∥∥
M(Sd−1×R)

(4)

denotes the second-order total variation of a function in the
offset variable of the (filtered) Radon domain, where c−1

d =
2(2π)d−1 is a dimension-dependant constant that arises when
working with the Radon transform. Note that all the operators
that appear in (4) must be understood in the distributional
sense. We refer the reader to [35, Section 3] for more details.

The R TV2-seminorm was first proposed in [33] and stud-
ied in extensive detail in [35] and [37]. When equipped with
the norm

∥f∥R BV2(Rd) := R TV2(f) + |f(0)| +
d∑

k=1

|f(ek) − f(0)|,

where {ek}d
k=1 denotes the canonical basis of Rd, R BV2(Rd)

is a Banach space [37, Lemma 2.4]. In particular, it is a Banach
space with a sparsity-promoting norm as R TV2(·) is defined
via an M-norm. The terms |f(0)|+

∑d
k=1|f(ek)−f(0)| that

appear in the above display impose a norm on the null space
of R TV2(·), which corresponds to affine functions on Rd,
and is an upper bound on the Lipschitz constant of the affine
portion of f .

Intuitively, the R TV2-seminorm measures sparsity of sec-
ond derivatives in the Radon domain. The Radon transform
naturally arises when working with ridge functions. In partic-
ular, the second derivative of the (filtered) Radon transform
of a ReLU ridge function is essentially a Dirac impulse
located at the weight and bias of the ReLU ridge function [35,
Lemma 17]. This arises due to the fact that in the univariate
case, the second derivative of the ReLU is a Dirac impulse.
Thus, the seminorm in (4) favors ReLU ridge functions and
so functions in R BV2(Rd) with small R TV2-seminorm will
typically take the form of a sparse superposition of ReLU ridge
functions. We now state the main result of [35].

Proposition 1 (Special Case of [35, Theorem 1]): Let
ℓ(·, ·) : R × R → R be a strictly convex, coercive, and
lower-semicontinuous in its second argument loss function
and let λ > 0 be an adjustable regularization parameter. Then,
for any data {(xn, yn)}N

n=1 ⊂ Rd ×R, there exists a solution
to the variational problem

min
f∈R BV2(Rd)

N∑

n=1

ℓ(yn, f(xn)) + λ R TV2(f) (5)

1It is a Banach space when equipped with the norm ∥f∥∞,1 :=
ess supx∈Rd |f(x)|(1 + ∥x∥2)−1.
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that takes the form of a shallow ReLU network plus an affine
function. In particular, it takes the form

s(x) =
K∑

k=1

vk ρ(wT
kx − bk) + cTx + c0, x ∈ Rd, (6)

where K ≤ N − (d + 1), ρ is the ReLU, wk ∈ Sd−1, vk ∈
R \ {0}, bk ∈ R, c ∈ Rd, and c0 ∈ R.

We remark that the affine function that appears in (6) is
known as a skip connection in neural network parlance [19].
In other words, (6) is a shallow ReLU network with a skip
connection.

A. Shallow Neural Networks and Splines

When d = 1, the space R BV2(Rd) is the classical
second-order bounded variation space

BV2(R) := {f : R → R : TV2(f) < ∞},

where
TV2(f) :=

∥∥D2 f
∥∥
M(R)

is the second-order total variation of a function
f : R → R, where D is the (distributional) derivative
operator [35, Section 5.1]. In this case, the result of
Proposition 1 recovers the classical representer theorem
for locally adaptive linear splines, which dates back to
the 1970s [14], [29], [48]. Moreover, we also have that
R TV2(f) = TV2(f) [35, Section 5.1].

B. Connections to Neural Network Training

We view R BV2(Rd) as the natural function space associ-
ated with shallow ReLU networks since the problem in (5) can
be recast as a finite-dimensional neural network training prob-
lem that corresponds to training a sufficiently wide shallow
ReLU network (with a skip connection) with weight decay
or with the so-called “path-norm” regularizer. In particular,
consider the shallow ReLU network with a skip connection:

fθ(x) =
K∑

k=1

vk ρ(wT
kx − bk) + cTx + c0,

where θ denotes the parameters of the neural network, i.e.,
{vk, wk, bk}K

k=1, c and c0. Then, it was shown in [35, Theo-
rem 8] that, the solutions to either of the following (equivalent)
finite-dimensional neural network training problems

min
θ∈Θ

N∑

n=1

ℓ(yn, fθ(xn)) +
λ

2

K∑

k=1

|vk|2 + ∥wk∥2
2 (7)

min
θ∈Θ

N∑

n=1

ℓ(yn, fθ(xn)) + λ
K∑

k=1

|vk|∥wk∥2 (8)

where Θ = RM is the parameter space and M is the total
number of scalar parameters of network, are solutions to the
variational problem in (5), so long as K ≥ N − (d + 1).
The problem in (7) corresponds to training a shallow ReLU
network with weight decay [26] and the problem in (8)
corresponds to training a neural network with path-norm

regularization [32]. Therefore, the above says that trained2

shallow ReLU networks are “optimal” with respect to the
space R BV2(Rd). This result follows from the fact that

R TV2(fθ) =
K∑

k=1

|vk|∥wk∥2, (9)

which can be viewed as a kind of ℓ1-norm, giving insight
into the sparsity promoting nature of the R TV2-seminorm on
neural network parameters.3 Moreover, this result also gives
insight into the sparsity-promoting nature of training a shallow
ReLU network with weight decay. We refer the reader to [35]
for more details about recasting the problem in (5) as the
problems in (7) and (8), the equivalence of (7) and (8), and
the derivation of the equality in (9).

This result also says, in the univariate case, that the function
learned by training a sufficiently wide ReLU network with
weight decay or with path-norm regularization on data is a
locally adaptive linear spline [34], [40].

IV. THE R BV2-SPACE ON A BOUNDED DOMAIN

In approximation theory and nonparametric function esti-
mation it is common to quantify error with respect to the
Lp(Ω)-norm, 1 ≤ p ≤ ∞, where Ω ⊂ Rd is a bounded
domain. Therefore, we are interested in working with the
R BV2-space defined on a bounded domain. In this section we
will define the R BV2-space on a bounded domain while still
maintaining a similar representer theorem as in R BV2(Rd).

We can define the R BV2-space on a bounded domain
Ω ⊂ Rd using the standard approach of considering restric-
tions of functions in R BV2(Rd). This provides the following
definition:

R BV2(Ω) := {f ∈ D ′(Ω) : ∃g ∈ R BV2(Rd) s.t. g|Ω = f},

where D ′(Ω) denotes the space of distributions (generalized
functions) on Ω. Similarly, we can define the second-order
total variation in the Radon domain of a function f defined
on a bounded domain Ω ⊂ Rd:

R TV2
Ω(f) := inf

g∈R BV2(Rd)
R TV2(g) s.t. g|Ω = f. (10)

This gives an alternative characterization of R BV2(Ω) as

R BV2(Ω) = {f ∈ D ′(Ω) : R TV2
Ω(f) < ∞}.

We also remark that since R BV2(Rd) is a Banach space,
R BV2(Ω) is also a Banach space. In particular, it is a Banach
space when equipped with the norm

∥f∥R BV2(Ω) := inf
g∈R BV2(Rd)

∥g∥R BV2(Rd) s.t. g|Ω = f.

2Assuming that the network is trained to a global minimizer.
3The equality in (9) assumes that the neural network is written in reduced

form, i.e., the weight bias pairs (wk, bk) k = 1, . . . , K are unique up to
certain symmetries. See [35] for more details.
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A. Extensions From R BV2 (Ω) to R BV2 (Rd)

In this section we will discuss how to identify functions in
R BV2(Ω) with functions in R BV2(Rd), where Ω ⊂ Rd is
a bounded domain.

Lemma 2: Let Ω ⊂ Rd be a bounded domain. Given f ∈
R BV2(Ω), there exists an extension fext ∈ R BV2(Rd) that
admits an integral representation

fext(x) =
∫

Sd−1×R
ρ(wTx − b) dµ(w, b) + cTx + c0,

such that supp µ ⊂ ZΩ, where ZΩ is the set

{z = (w, b) ∈ Sd−1 × R : {x : wTx = b} ∩ Ω ̸= ∅},
(11)

where A denotes the closure of the set A. This extension has
the property that fext|Ω = f and

R TV2
Ω(f)=R TV2(fext)=∥µ∥M(Sd−1×R) = ∥µZΩ

∥M(ZΩ).

The set ZΩ simply excludes ReLU functions that are lin-
ear functions (no activation threshold) when restricted to Ω.
The proof of Lemma 2 relies on several properties of the
space R BV2(Rd) from our previous work in [35]. We intro-
duce the relevant background and then prove Lemma 2 in
Appendix A.

Remark 3: When

Ω = Bd
1 := {x ∈ Rd : ∥x∥2 ≤ 1}, (12)

the Euclidean unit ball in Rd, we have that ZΩ from (11) is
exactly

ZΩ = Sd−1 × [−1, 1].

Therefore, from Lemma 2, we can identify functions in f ∈
R BV2(Bd

1) with integral representations of the form

f(x) =
∫

Sd−1×[−1,1]
ρ(wTx − b) dµ(w, b) + cTx + c0,

where x ∈ Bd
1.

Remark 4: Similar to the discussion in Section III-A,
when d = 1, the space R BV2(Bd

1) is exactly the clas-
sical second-order bounded variation spaces defined on
[−1, 1]:

BV2[−1, 1] := {f : [−1, 1] → R : TV2
[−1,1](f) < ∞},

where
TV2

[−1,1](f) :=
∥∥D2 f

∥∥
M[−1,1]

,

where we recall that D is the (distributional) derivative
operator. Moreover, we also have that R TV2

[−1,1](f) =
TV2

[−1,1](f).

B. A Representer Theorem in R BV2(Ω)
We will now discuss a representer theorem for functions

in R BV2(Ω), where Ω ⊂ Rd is a bounded domain. For
simplicity we will suppose that Ω = Bd

1 as defined in (12).
Similar results as those stated in the sequel can be derived
for more general bounded domains Ω ⊂ Rd. We have the

following new representer theorem for data-fitting variational
problems over R BV2(Bd

1).
Theorem 5: Let ℓ(·, ·) : R × R → R be a strictly convex,

coercive, and lower-semicontinuous loss function and let λ >
0 be an adjustable regularization parameter. Then, for any
data {(xn, yn)}N

n=1 ⊂ Bd
1 × R, there exists a solution to the

variational problem

min
f∈R BV2(Bd

1)

N∑

n=1

ℓ(yn, f(xn)) + λ R TV2
Bd
1
(f) (13)

that takes the form of a shallow ReLU network with a skip
connection. In particular, it takes the form

s(x) =
K∑

k=1

vk ρ(wT
kx − bk) + cTx + c0, x ∈ Bd

1, (14)

where K ≤ N − (d + 1), ρ is the ReLU, wk ∈ Sd−1, vk ∈
R \ {0}, bk ∈ [−1, 1], c ∈ Rd and c0 ∈ R.

Just as in Section III-B, we view R BV2(Bd
1) is the natural

function space associated with shallow ReLU networks since
the problem in (13) can also be recast as a finite-dimensional
neural network training problem that corresponds to training a
sufficiently wide shallow ReLU network (with a skip connec-
tion) with weight decay or with path-norm regularization as
in (7) and (8) with the additional restriction that the activation
thresholds of the neurons stay within Bd

1. Moreover, similar
to (9) we have in this case that4

R TV2
Bd
1
(fθ) =

K∑

k=1

|vk|∥wk∥2. (15)

V. R BV2(Ω) AND PREVIOUSLY STUDIED SPACES

Understanding the properties of shallow neural networks
has received much attention since the 1990s starting with
the seminal work of Barron [2] in which he studied the
approximation properties of shallow sigmoidal networks in the
so-called first-order spectral Barron space. The fundamental
idea is to consider functions that are synthesized from contin-
uously many neurons. Such functions can be expressed as an
integral of a neural activation function against a finite (Radon)
measure. This idea was adopted by a number of authors in
the study of the so-called variation spaces of shallow neural
networks [1], [27], [31], [43].

In this section we will discuss how R BV2(Ω) is related
to previously studied function spaces, including the varia-
tion spaces. For simplicity we will suppose that Ω = Bd

1

as defined in (12). Similar results as those stated in the
sequel can be derived for more general bounded domains
Ω ⊂ Rd.

A. Variation Spaces

Following the setup from [43], in the case of shallow ReLU
networks, the associated variation space for functions defined

4Just as in (9), the equality in (15) holds assuming the neural network is
written in reduced form.
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on Bd
1 is defined as

V 2(Bd
1) :=

{
f : Bd

1 → R :

f =
∫

Sd−1×[−2,2]
ρ(wT(·) − b) dµ(w, b)

}
,

where ρ is the ReLU and µ ∈ M(Sd−1× [−2, 2]). The reason
for integrating the b variable over [−2, 2] is so that affine
functions can be captured by this space (see [43, Section 3]
for more details). This space is known to be a Banach space
(see [43]) when equipped with the norm

∥f∥V 2(Bd
1) := inf

µ∈M(Sd−1×[−2,2])
∥µ∥M(Sd−1×[−2,2])

s.t. f =
∫

Sd−1×[−2,2]
ρ(wT(·) − b) dµ(w, b).

We will now show that R BV2(Bd
1) and V 2(Bd

1) are in fact the
same space, providing more evidence that R BV2(Bd

1) is the
natural function space associated to shallow ReLU networks.

Theorem 6: R BV2(Bd
1) and V 2(Bd

1) are equivalent
Banach spaces (i.e., Banach spaces with equivalent norms).

Proof: Given f ∈ V 2(Bd
1), we have the representation

f(x) =
∫

Sd−1×[−2,2]
ρ(wTx − b) dµ(w, b). (16)

Given g ∈ R BV2(Bd
1), we have from Remark 3 the

representation

g(x) =
∫

Sd−1×[−1,1]
ρ(wTx − b) dµ(w, b) + cTx + c0.

Clearly we can represent any function in V 2(Bd
1) with

the representation of R BV2(Bd
1) and vice-versa. Therefore,

R BV2(Bd
1) = V 2(Bd

1). To see why the norms are equivalent,
note that the only difference between the norms is how they
handle the null space of the R TV2

Bd
1
(·) seminorm. Since

this null space is the space of affine functions, which is
finite-dimensional combined with the fact that all norms are
equivalent on finite-dimensional spaces, we have that the
norms ∥·∥R BV2(Bd

1) and ∥·∥V 2(Rd) are equivalent. #

B. Spectral Barron Spaces

The spectral Barron spaces were first studied by Barron
in [2]. These spaces are defined by

Bs(Bd
1) :=

⎧
⎪⎪⎨

⎪⎪⎩
f : D ′(Bd

1) : inf
g∈L1(Rd)

g|Bd
1
=f

∥∥∥∆̂s/2g
∥∥∥

L1(Rd)
< ∞

⎫
⎪⎪⎬

⎪⎪⎭
,

where D ′(Bd
1) denotes the space of distributions (generalized

functions) on Rd, ·̂ denotes the (generalized) Fourier transform
and ∆ denotes the (weak) Laplacian operator where fractional
powers are defined in terms of Riesz potentials.

Barron studied the first-order spectral Barron space, B1(Bd
1)

in his seminal work about approximation and estimation
with shallow sigmoidal networks in [2]. The higher-order
variants were studied by a number of authors [25], [36],

[43], [52]. In particular, it was shown in [25] that
B2(Bd

1) ⊂ V 2(Bd
1). Therefore, by Theorem 6, we have that

B2(Bd
1) ⊂ R BV2(Bd

1).

C. Sobolev Spaces

R BV2(Bd
1) also contains the classical L1- and L2-Sobolev

spaces of order d + 1. Let Ω ⊂ Rd be a domain (either
bounded or unbounded) and recall the Sobolev space W k,p(Ω)
of functions in Lp(Ω) with all (weak) derivatives up to and
including order k also in Lp(Ω). This is a Banach space when
equipped with the norm

∥f∥W k,p(Ω) :=

⎛

⎝
∑

|α|≤k

∥∂αf∥p
Lp(Ω)

⎞

⎠
1/p

,

where α = (α1, . . . , αd) ∈ Nd, |α| = α1 + · · · + αd, and ∂α

is the usual multi-index notation for mixed partial derivatives.
When p = 2, W k,2(Ω) is a Hilbert space and we write
Hk(Ω) for W k,2(Ω). The following theorem summarizes the
relationship between Sobolev spaces and R BV2(Bd

1).
Theorem 7: Given f ∈ Hd+1(Bd

1),

R TV2
Bd
1
(f) !d ∥f∥W d+1,1(Bd

1) !d ∥f∥Hd+1(Bd
1),

where we recall that !d means the implicit constant depends
on d. In particular, the above display says that Hd+1(Bd

1) ⊂
W d+1,1(Bd

1) ⊂ R BV2(Bd
1).

The proof of Theorem 7 appears in Appendix C. We also
remark that in order to generalize Theorem 7 to more general
bounded domains Ω ⊂ Rd requires that the boundary of Ω is
sufficiently nice. It suffices that Ω has Lipschitz boundary.

D. Observations

The result of Theorem 7 says that very regular functions
(those with d + 1 derivatives in either L1(Bd

1) or L2(Bd
1)) are

contained in R BV2(Bd
1). On the other hand, functions that are

not very regular are also in R BV2(Bd
1). For example, take any

univariate function g ∈ H2(R) and use it as the profile of a
ridge function

f(x) = g(wTx), x ∈ Bd
1, (17)

where w ∈ Sd−1. If g has only has two weak derivatives,
then the function f is in R BV2(Bd

1) and H2(Bd
1), but not in

Hd+1(Bd
1). Although this function may not be very regular,

it only varies in the direction w ∈ Sd−1. This shows that
R BV2(Bd

1) can be viewed as a mixed variation space [12] in
that it includes highly regular functions that are very isotropic,
e.g., functions from the Sobolev space Hd+1(Bd

1) or less
regular functions that are highly anisotropic, e.g., the ridge
function in (17).

VI. APPROXIMATION RATES IN R BV2(Ω)
A well-known result in approximation theory, first due to

Maurey and Pisier [38], is that given a dictionary of atoms
contained in a Hilbert space H, the closure (with respect to the
topology of H) of the convex, symmetric hull of the dictionary
is immune to the curse of dimensionality [2], [3], [11], [22],
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[38]. This means that given a function f in the closure of
the convex, symmetric hull of the dictionary, there exists a
K-term superposition of atoms from the dictionary fK such
that ∥f − fK∥H ! K−1/2, which does not depend on the
input dimension of the function. This fact was fundamental to
the approximation rates (which do not grow with the input
dimension) derived for functions belonging to the spectral
Barron spaces (first studied by Barron in [2]).

It turns out that the unit-ball in the variation spaces of
shallow neural networks can be characterized by the closure of
the convex, symmetric hull of a dictionary of neural activation
functions and are therefore also immune to the curse of
dimensionality [1], [43]. We will use results from [1], [43] to
readily derive approximation rates for functions in R BV2(Ω)
that are immune to the curse of dimensionality. For simplicity
we will suppose that Ω = Bd

1 as defined in (12). Similar results
as those stated in the sequel can be derived for more general
bounded domains Ω ⊂ Rd.

Theorem 8: Given f ∈ R BV2(Bd
1), there exists a shallow

ReLU network (with a skip connection) with K neurons of
the form in (14), denoted fK , such that

∥f − fK∥L∞(Bd
1) !d R TV2

Bd
1
(f)K−d+3

2d .

Proof: Given f ∈ R BV2(Bd
1), we have from Remark 3

the representation

f(x) =
∫

Sd−1×[−1,1]
ρ(wTx − b) dµ(w, b) + cTx + c0.

It is known that the integral in the above display can be
approximated in L∞(Bd

1) by a superposition of K ReLU
neurons of the form x "→ ρ(wTx − b), w ∈ Sd−1 and
b ∈ [−1, 1], denoted f̃K , with an approximation rate of

∣∣∣∣

∣∣∣∣
∫

Sd−1×[−1,1]
ρ(wT(·) − b) dµ(w, b) − f̃K

∣∣∣∣

∣∣∣∣
L∞(Bd

1)

!d ∥µ∥M(Sd−1×[−1,1]) K− d+3
2d ,

We refer the reader to [30] and [1, Proposition 1] for this
fact. Next, since ∥µ∥M(Sd−1×[−1,1]) = R TV2

Bd
1
(f), the result

follows by choosing fK(x) := f̃K(x) + cTx + c0. #
Remark 9: The approximation rate in Theorem 8 cannot be

improved. We refer the reader to [44] for approximation lower
bounds in the variation spaces of shallow neural networks.
We also remark that since Theorem 8 holds in L∞(Bd

1), it also
holds for any Lp(Bd

1), 1 ≤ p < ∞, where the implicit constant
will depend on d and p.

Remark 10: As d → ∞, Theorem 8 and Remark 9 says
that the approximation rate is K−1/2 and is therefore immune
to the curse of dimensionality.

VII. FUNCTION ESTIMATION IN R BV2(Ω)

In this section we will consider the usual setup of non-
parametric regression in the fixed design setting. Consider the
problem of estimating a function f ∈ R BV2(Ω) from the
noisy samples

yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 ⊂ Ω are fixed, but scattered, design points. For

simplicity we will suppose that Ω = Bd
1 as defined in (12).

Similar results as those stated in the sequel can be derived for
more general bounded domains Ω ⊂ Rd.

Theorem 11: Consider the problem of estimating a function
f ∈ R BV2(Bd

1) such that R TV2
Bd
1
(f) ≤ C from the noisy

samples
yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 ⊂ Bd

1 are fixed design points. Then, any solution
to the variational problem

f̂ ∈ arg min
f∈R BV2(Bd

1)

N∑

n=1

|yn − f(xn)|2 s.t. R TV2
Bd
1
(f) ≤ C

(18)

has a mean-squared error bound of

E
[

1
N

N∑

n=1

∣∣∣f(xn) − f̂(xn)
∣∣∣
2
]

!d Õ

(
C

2d
2d+3

(
N

σ2

)− d+3
2d+3

)
,

(19)

where Õ(·) hides universal constants and logarithmic factors,
where the only random variables in the expectation above are
the noise terms {εn}N

n=1.
Remark 12: Notice that as d → ∞, we have that C

2d
2d+3 →

C and so the bound scales linearly with the constant C.
The proof of Theorem 11 follows standard techniques (see,
e.g., [49, Chapter 9] or [51, Chapter 13]) based on the metric
entropy of the model class

{f ∈ R BV2(Bd
1) : R TV2

Bd
1
(f) ≤ C} (20)

with respect to the empirical L2-norm defined with respect to
the sampling locations {xn}N

n=1

∥f∥2
N :=

1
N

N∑

n=1

|f(xn)|2. (21)

We use our approximation rate Section VI to upper bound
this metric entropy. The proof of Theorem 11 appears in
Appendix D.

Remark 13: Computing an estimator that satisfies the
bound in (19) requires finding a solution to the variational
problem in (18). By Theorem 5, one can find a solution to
the variational problem by training a sufficiently wide shallow
ReLU network via gradient descent with weight decay (to
a global minimizer). This is the same as finding a solution
to the non-convex neural network training problem in (7),
where, by Lagrange calculus, the choice of λ depends on
C and the data through the data-fitting term. An alternative
approach would be to the use greedy algorithms (also known
as Frank–Wolfe algorithms) [1], [16], [22], [45].

Remark 14: Since when d = 1, R BV2(Bd
1) is exactly the

space BV2[−1, 1] (see the discussion in Section IV), the result
of Theorem 11 recovers the well-known mean-squared error
rate of N−4/5 of locally adaptive linear spline estimators [29].
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The result of Theorem 11 can be extended from the fixed
design setting to the random design setting using standard
techniques (see, e.g., [51, Chapter 14]). In particular, assuming
the design points {xn}N

n=1 ⊂ Bd
1 are i.i.d. uniform random

variables on Bd
1 , we can use the techniques outlined in

[51, Chapter 14] to derive the same mean-squared error rate
(for sufficiently large N ) with respect to ∥·∥L2(Bd

1 ;PX), where
PX denotes the uniform probability measure on Bd

1. This fol-
lows from the fact that the empirical norm ∥·∥N concentrates
to the population norm ∥·∥L1(Bd

1 ;PX) at the same rate as the
right-hand side of (19) [51, Chapter 14, Corollary 14.15].
Therefore, we have the following corollary to Theorem 11.

Corollary 15: Consider the problem of estimating a func-
tion f : Bd

1 → R satisfying R TV2
Bd
1
(f) ≤ C

yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 ⊂ Bd

1 are i.i.d. uniform random variables on Bd
1.

Then, for sufficiently large N , any solution to the variational
problem

f̂ ∈ argmin
f∈R BV2(Bd

1)

N∑

n=1

|yn − f(xn)|2 s.t. R TV2
Bd
1
(f) ≤ C

has a mean-squared error bound of

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1 ;PX)

!d Õ

(
C

2d
2d+3

(
N

σ2

)− d+3
2d+3

+
(

N

C′

)− d+3
2d+3

)
,

where Õ(·) hides universal constants and logarithmic factors,
C′ > 0 is a constant that depends on C, and PX denotes the
uniform probability measure on Bd

1.
Remark 16: Corollary 15 also provides an upper bound on

the sampling number for the R BV2(Bd
1) model class when

σ → 0. We refer the reader to [4] for a precise definition of
sampling numbers for model classes.

The following theorem shows that this mean-squared error
rate cannot be improved. In other words, the rate in Theo-
rem 11 is (up to logarithmic factors) minimax optimal.

Theorem 17: Consider the problem of estimating a function
f : Bd

1 → R satisfying R TV2
Bd
1
(f) ≤ C from the noisy

samples
yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables. Then,

we have the following minimax lower bound

inf
f

sup
f∈R BV2(Bd

1)
R TV2

Bd
1
(f)≤C

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1 ;PX)

"d

(
N

σ2

)− d+3
2d+3

,

where the inf is over all functions of the data and PX denotes
the uniform probability measure on Bd

1.
The proof of Theorem 17 invokes a general result of Yang

and Barron [53] regarding minimax rates over model classes.
Invoking the result involves bounds on the L2(Bd

1; PX)-metric
entropy of the model class in (20). We can readily bound this

metric entropy due to recent results which tightly bound the
metric entropy of model classes in the variation space V 2(Bd

1)
from [44]. The proof of Theorem 17 appears in Appendix E.

A. Breaking the Curse of Dimensionality

When d = 1, Theorems 11 and 17 recovers (up to loga-
rithmic factors) the well-known minimax rate of N−4/5 for
BV2[−1, 1] model classes [13]. On the other hand, when d →
∞, the rate approaches (up to logarithmic factors) N−1/2, and
is therefore immune to the curse of dimensionality. To under-
stand why this is happening, we recall from Section V-D that
R BV2(Bd

1) can be viewed as a mixed variation space.
Classical folklore in nonparametric statistics says that the

minimax rate for Hk(Bd
1) model classes is N− 2k

2k+d . From
Theorem 7, we have that Hd+1(Bd

1) ⊂ R BV2(Bd
1). The

minimax rate for Hd+1(Bd
1) model classes is then N− 2d+2

3d+2 .
As d → ∞, this rate is N−2/3. Therefore, we see that the
space Hd+1(Bd

1) is also immune to the curse of dimensional-
ity, but estimating functions in Hd+1(Bd

1) is strictly easier than
estimating functions in the larger R BV2(Bd

1) space. This is
due to the fact that R BV2(Bd

1) is a mixed variation space that
contains highly isotropically regular functions that belong to
the Sobolev space Hd+1(Bd

1) as well as anistropic less regular
functions such as the ridge function defined in (17), which may
only have two weak derivatives.

These observations about R BV2(Bd
1) make it a compelling

framework for high-dimensional nonparametric estimation.
Moreover, the connections with shallow ReLU networks could
also shed light on the empirical success of neural networks in
practice: neural networks learn functions in spaces that are
immune to the curse of dimensionality.

VIII. NEURAL NETWORKS VS. LINEAR METHODS

In this section we will illustrate the idea that the estimator
studied in Section VII is locally adaptive (a term coined
by Donoho and Johnstone in [13]) unlike more classical
linear methods (which include kernel methods [42]). We will
illustrate this both quantitatively via rates for function esti-
mation as well as qualitatively via numerical experiments.
For the problem of function estimation, a linear method is
a method in which the estimator is a linear function of the
data (y1, . . . , yN), i.e., the estimator is computed via a linear
map T : RN → F , where F is some model class and T
can depend on the design points {xn}N

n=1 in an arbitrary
way. Due to the sparsity-promoting nature of the M-norm
used to define R TV2

Bd
1
(·), the estimator in Theorem 11 is a

nonlinear function of the data. This is analogous to LASSO-
type estimators arising from ℓ1-norm regularized problems,
which are nonlinear estimators for discrete-domain problems.

A. The Univariate Case

In the univariate case, we have from Remark 4 that the vari-
ational problem in (18) reduces to the (regularized) variational
problem

min
f∈BV2[−1,1]

N∑

n=1

|yn − f(xn)|2 + λ
∥∥D2 f

∥∥
M[−1,1]

, (22)
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where λ > 0 is the regularization parameter. The solutions are
locally adaptive linear spline estimators [29]. It is known that
the minimax rate for BV2[−1, 1] model classes is N−4/5 [13],
which is achieved by the locally adaptive linear spline estima-
tor [29]. Moreover, when restricted to linear estimators, the
linear minimax rate is known to be N−3/4 [13], which is
achieved (up to logarithmic factors) by the cubic smoothing
spline estimator [10], [23]. The cubic smoothing spline is a
solution to the variational problem

min
f∈H2[−1,1]

N∑

n=1

|yn − f(xn)|2 + λ
∥∥D2 f

∥∥2

L2[−1,1]
, (23)

where

H2[−1, 1] := {f ∈ D ′[−1, 1] : ∥D2 f∥L2[−1,1] < ∞},

is the second-order L2-Sobolev space and D ′[−1, 1] denotes
the space of distributions (generalized functions) on [−1, 1].
Moreover, we have the strict containment H2[−1, 1] ⊂
BV2[−1, 1]. The key difference between the problem in (22)
and the problem in (23) is the difference between the sparsity-
promoting M-norm regularization in (22) and the L2-norm
regularization in (23). This is analogous to the difference
between ℓ1-norm and ℓ2-norm regularization in discrete-
domain problems.

The main takeaway message here is that this difference
quantifies a fundamental gap between neural network esti-
mators and any linear/kernel estimator; the gap between the
rates N−4/5 and N−3/4. The reason for this gap is that
functions in BV2[−1, 1] are spatially inhomogeneous, while
functions in H2[−1, 1] are spatially homogeneous. Neural
network estimators are able to adapt to the inhomogeneities
of the data-generating function (and are therefore locally
adaptive), while linear methods cannot. This shows that even
the simplest neural networks (shallow, univariate) outperform
linear methods when the data-generating function is spatially
inhomogeneous. We illustrate this phenomenon in Fig. 1,
where we consider the problem of fitting data generated from
a spatially inhomogenous function in BV2[−1, 1] that is not
in H2[−1, 1] using a shallow ReLU network and a cubic
smoothing spline. As these results are qualitative, we manually
adjusted the regularization parameter λ in the experiments in
order to find solutions that visually capture the phenomenon
described above. The code to generate Fig. 1 is publicly
available.5

In Fig. 1(a) we plot a function (in blue) and generate a
data set by taking noisy samples (in red) of the function plus
i.i.d. Gaussian noise. Clearly this function is in BV2[−1, 1] but
not in H2[−1, 1] since taking two (distributional) derivatives
of this function is an impulse train. This function is spatially
inhomogeneous since it is highly oscillatory in some regions
and less oscillatory in others.

In Fig. 1(b) and Fig. 1(c), we plot the cubic smoothing
spline fit to the data for large and small λ, respectively.
This illustrates that the cubic smoothing spline (which is a
kernel method) cannot adapt to the spatial inhomogeneity of
the underlying function. Even by adjusting the regularization

5https://github.com/rp/estimation-shallow-relu

Fig. 1. In (a) we generate data from noisy samples of a function in
BV2[−1, 1] but not in H2[−1, 1]. In (b) and (c) we fit the data using a
cubic smoothing spline with both large and small λ. In (d) we fit the data
using a locally adaptive linear spline which corresponds to training a shallow
ReLU network (to a global minimizer) with weight decay (or path-norm
regularization).

parameter λ, the solution cannot adapt to the spatial inhomo-
geneity of the underlying function. Indeed, we see for large
λ in Fig. 1(b) that the cubic smoothing spline oversmooths
the high variation portion of the data and we see for small
λ in Fig. 1(c) that the cubic smoothing spline undersmooths
(overfits) the low variation portion of the data.

In Fig. 1(d) we plot a solution to the variational problem
in (22), which is a locally adaptive linear spline which can be
computed by training a shallow ReLU network (to a global
minimizer) with weight decay or path-norm regularization.
In this case, we see that the locally adaptive linear spline is
able to adapt to the spatial inhomogeneities of the underlying
function.

We also remark that wavelet shrinkage estimators, in which
the mother wavelet is sufficiently regular, are also a minimax
optimal estimators for nonparametric estimation of BV2[−1, 1]
functions [13]. This shows that in the simplest setting, shallow
ReLU networks trained with weight decay (to a global mini-
mizer) perform exactly the same as classical techniques such
as locally adaptive spline estimators and wavelet shrinkage
estimators.

B. The Multivariate Case

In the multivariate case, we see a similar gap from the
univariate case. In particular, we derive the following lin-
ear minimax lower bound for the estimation problem over
R BV2(Bd

1).
Theorem 18: Consider the problem of estimating a function

f ∈ R BV2(Bd
1) satisfying R TV2

Bd
1
(f) ≤ C from the noisy

samples
yn = f(xn) + εn, n = 1, . . . , N,
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Fig. 2. In (a) we generate noisy samples of a function in both R BV2(B2
1) and H2(B2

1). In (b) we fit the data using a thin-plate spline. In (c) we fit the
data with a shallow ReLU network trained with weight decay.

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 ⊂ Bd

1 are i.i.d. uniform random variables on Bd
1.

Then, for sufficiently large N , we have the following linear
minimax lower bound

inf
f linear

sup
f∈R BV2(Bd

1)
R TV2

Bd
1
(f)≤C

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1 ;PX)

"d

(
N

σ2

)− 3
d+3

,

where the inf is over all linear functions of the data and PX

denotes the uniform probability measure on Bd
1.

The proof of Theorem 18 appears in Appendix F and
hinges on several results from ridgelet analysis developed by
Candès [7], [8]. Just as in the univariate case, the takeaway
message here is that this lower bound quantifies a fundamental
gap between neural network estimators and any linear/kernel
estimator. The minimax rates for nonlinear and linear estima-
tion are N− d+3

2d+3 and N− 3
d+3 , respectively. As d → ∞, the

nonlinear estimation rate tends to N−1/2, which is immune
to the curse of dimensionality, while the linear estimation
rate suffers the curse of dimensionality. Moreover, these rates
recover the univariate (d = 1) rates of N−4/5 and N−3/4.
The reason for the gap between the nonlinear and linear
minimax rates is that functions in R BV2(Bd

1) are spatially
inhomogeneous since it is a mixed variation space and neural
network estimators are able to adapt to the inhomogeneities
of the data-generating function (and are therefore locally
adaptive), while linear methods cannot.

We illustrate this phenomenon by considering the problem
of estimating a two-dimensional function and compare solu-
tions to the variational problem in (18) with the thin-plate
spline estimator [50], which is a linear method and a special
case of a kernel method. The thin-plate spline is a solution to
the variational problem

min
f∈H2(B2

1)

N∑

n=1

|yn − f(xn)|2

+ λ
(
∥∂2

x1
f∥2

L2(B2
1)

+ 2∥∂x2∂x1f∥2
L2(B2

1)
+ ∥∂2

x2
f∥2

L2(Bd
1)

)
,

where H2(B2
1) is the second-order L2-Sobolev space, which

is defined as the space of all functions where the regularizer in
the above display is finite. Notice that the problem in the above
is a generalization of the cubic smoothing spline problem
in (23). We compare the shallow ReLU network estimator
to the thin-plate spline estimator for two functions, one that
is in both R BV2(B2

1) and H2(B2
1), and one that is only in

R BV2(B2
1). In all the experiments, we manually adjusted

the regularization parameter λ to obtain the best results for
each method. Thus, the results (visually) compare the best
performance of each method.

In Fig. 2 we consider a function that is a superposition
of three Gaussians. This function is infinitely differentiable
and therefore in both R BV2(Bd

1) and H2(B2
1). In Fig. 2(a),

we plot the function with a heatmap where lighter colors
correspond to larger values and darker colors correspond to
smaller values. We then generate a data set by taking noisy
samples (in red) of the function plus i.i.d. Gaussian noise.
In Fig. 2(b), we plot the heatmap of the thin-plate spline fit to
the data. We see that the thin-plate spline estimates the original
function quite well. In Fig. 2(c), we plot the heatmap of the
shallow ReLU network. We also see that the shallow ReLU
network estimates the original function quite well.

In Fig. 3 we consider a function that is a ridge function in a
random direction where the profile is a continuous piecewise-
linear function, a triangular waveform. This function does not
have two weak derivatives and is therefore not in H2(B2

1),
but is in R BV2(Bd

1). In Fig. 3(a), we plot the heatmap of
the function. We then generate a data set by taking noisy
samples (in red) of the function plus i.i.d. Gaussian noise.
In Fig. 3(b), we plot the heatmap of the thin-plate spline
fit to the data. We see that the thin-plate spline struggles to
estimate the original function. In Fig. 3(c), we plot the heatmap
of the shallow ReLU network. We see that the shallow ReLU
network estimates the original function quite well.

The main takeaway message here is that the shallow ReLU
network is able to locally adapt to the mixed variation of the
data-generating function, whether it be a highly isotropically
regular function or a anistropically less regular function,
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Fig. 3. In (a) we generate noisy samples of a function in R BV2(B2
1) but not in H2(B2

1). In (b) we fit the data using a thin-plate spline. In (c) we fit the
data with a shallow ReLU network trained with weight decay.

while linear/kernel methods cannot. The code to generate
Figs. 2 and 3 is publicly available.6

Remark 19: We believe that the results of Sections VIII-
A and VIII-B provide compelling evidence that trying to
understand neural networks via linearization schemes such as
the neural tangent kernel [21] do not properly capture what
neural networks are actually doing in practice. The key idea
being that neural networks are able to locally adapt to the
mixed variation of the underlying data-generating function.

IX. CONCLUSION

In this paper we studied the problem of estimating an
unknown function defined on a bounded domain Ω ⊂ Rd

from R BV2(Ω), the natural function space of shallow ReLU
networks, from noisy samples. We studied the estimators that
correspond to training a shallow ReLU network with weight
decay (or path-norm regularization) to a global minimizer.
We showed that these estimators provide (up to logarithmic
factors) minimax optimal rates of convergence for R BV2(Ω)
model classes. Moreover, these rates were immune to the curse
of dimensionality. We showed that R BV2(Ω) contains highly
isotropically regular functions that belong to the Sobolev
space Hd+1(Ω) as well as anisotropic less regular functions,
and therefore can be viewed as mixed variation spaces,
giving insight into why shallow ReLU network estimators
are immune to the curse of dimensionality. In particular,
we quantify an explicit gap between linear and nonlinear
methods and show that linear methods are suboptimal for
estimating functions in R BV2(Ω).

There are a number of open questions that may be asked.
For example, considering higher-order variants of R BV2(Ω).
Our previous work in [35] also studied the higher-order
variants defined on Rd, R BVm(Rd), where m ≥ 2 is an
integer. These higher-order spaces are defined by the semi-
norm R TVm(·), which corresponds to replacing ∂2

t with
∂m

t in (4) and considering a different growth restriction than
in (3). These higher-order spaces correspond to shallow neural

6https://github.com/rp/estimation-shallow-relu

networks with activation functions that are the (m − 1)th
power of the ReLU. Although many of the results in this
paper are straightforward to generalize to R BVm-spaces,
some of the results are also very specific to R BV2-spaces.
In particular, it is currently an open question on whether or not
similar approximation rates as in Theorem 8 can be derived
in L∞(Bd

1). Using results from [44], we can derive similar
optimal approximation rates in L2(Bd

1), but the mean-squared
error rates hinged on the L∞(Bd

1) approximation rates. Finally,
perhaps the most important open question regards estima-
tion with deep ReLU networks fit to data. Our prior work
in [37] developed a deep variant of R BV2(Rd), and derived
a representer theorem for deep ReLU networks. This deep
R BV2-space could provide the right framework for nonpara-
metric estimation with deep ReLU networks.

APPENDIX A
PROOF OF LEMMA 2

The proof of Lemma 2 relies on the direct-sum decomposi-
tion of the space R BV2(Rd) from our previous work in [35].

A. The Direct-Sum Decomposition of R BV2(Rd)
It was shown in [35, Theorem 22] that R BV2(Rd) is

a non-reflexive Banach space, in particular, it is a Banach
space with a sparsity-promoting norm. In this section we will
summarize the relevant results from [35] about the Banach
structure of R BV2(Rd). We first remark that the space
R BV2(Rd) as defined in (3) is defined by a seminorm
R TV2(·). The null space of this seminorm on R BV2(Rd)
is the space of affine functions, i.e., polynomials of degree
strictly less than 2, on Rd, denoted by P1(Rd). In [35],
we equip R BV2(Rd) with a bona fide norm by considering
an arbitrary biorthogonal system for P1(Rd).

Definition 20: defn]defn:biorthogonal-system Let N be a
finite-dimensional space with N0 := dimN . The pair
(φ, p) = {(φn, pn)}N0

n=1 is called a biorthogonal system for N
if p = {pn}N0

n=1 is a basis of N and the “boundary” functionals
φ = {φn}N0

n=1 with φn ∈ N ′ (the continuous dual of N )
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satisfy the biorthogonality condition ⟨φk, pn⟩ = δ[k − n],
k, n = 1, . . . , N0, where δ[·] is the Kronecker impulse.

Recall from (4) that

R TV2(f) = cd

∥∥∂2
t Λd−1 R f

∥∥
M(Sd−1×R)

.

For brevity, put
R := cd ∂2

t Λd−1 R,

i.e., R TV2(f) = ∥R f∥M(Sd−1×R). Also, note that
dimP1(Rd) = d + 1.

Proposition 21 (See [35, Lemma 21 and Theorem 22]):
prop]prop:direct-sum-inverse Let (φ, p) be a biorthogonal
system for P1(Rd). Then, every f ∈ R BV2(Rd) has the
unique direct-sum decomposition

f = R−1
φ µ + q, (24)

where µ = Rm f ∈ M(Sd−1 × R) is an even measure,7 q =∑d+1
k=1⟨φk, f⟩pk ∈ P1(Rd), and

R−1
φ : µ "→

∫

Sd−1×R
gφ(·, z) dµ(z), (25)

where

gφ(x, z) = rz(x) −
d+1∑

k=1

pk(x)qk(z), (26)

where rz = r(w,b) = ρ(wT(·)− b), where ρ is the ReLU, and
qk(z) := ⟨φk, rz⟩, where z = (w, b) ∈ Sd−1 × R.

The operator R−1
φ defined in (25) has several useful proper-

ties (see [35, Theorem 22, Items 1 and 2]). In particular, it is
a stable (i.e., bounded) right-inverse of R and, when restricted
to

R BV2
φ(Rd) := {f ∈ R BV2(Rd) : φ(f) = 0},

it is the bona fide inverse of R when restricted to the
subspace of even measures in M(Sd−1 × R). The space
R BV2

φ(Rd) is a concrete transcription of the abstract
quotient R BV2(Rd)/P1(Rd). Additionally we have from
Proposition 21 the direct-sum decomposition R BV2(Rd) ∼=
R BV2

φ(Rd)⊕P1(Rd), where R BV2
φ(Rd) is a Banach space

when equipped with the norm f "→ ∥R f∥M(Sd−1×R) and
P1(Rd) is a Banach space when equipped with the norm
f "→ ∥φ(f)∥1. We also remark that the construction of R−1

φ
guarantees orthogonality of the two components in (24) and
the biorthogonal system (φ, p) guarantees unicity. This leads
the following result equipping R BV2(Rd) with a norm to
provide a Banach space structure.

Proposition 22 (See [35, Theorem 22, Item 3]): Let (φ, p)
be a biorthogonal system for P1(Rd). Then, R BV2(Rd)
equipped with the norm

∥f∥R BV2(Rd) := R TV2(f) + ∥φ(f)∥1,

where φ(f) = (⟨φ1, f⟩, . . . , ⟨φd+1, f⟩) ∈ Rd+1, is a Banach
space.

With these results we can now prove Lemma 2.

7i.e., dµ(z) = dµ(−z).

Proof of Lemma 2: Given f ∈ R BV2(Ω) suppose
there exists an extension f̃ext such that f̃ext

∣∣∣
Ω

= f and

R TV2
Ω(f) = R TV2(f̃ext) with direct-sum decomposition

f̃ext =
∫

Sd−1×R
gφ(·, z) dµ̃(z) + q̃, (27)

such that supp µ̃ ̸⊂ ZΩ. Next, notice that given gφ(·, z), where
z ̸∈ ZΩ, we have that gφ(·, z)|Ω is an affine function. There-
fore, we can find another extension fext such that fext|Ω = f
where R TV2(fext) < R TV2(f̃ext) = ∥µ̃∥M(Sd−1×R) by
absorbing every gφ(·, z) where z ̸∈ ZΩ in the integrand
of (27) into the affine term in the direct-sum decomposition
so that the restriction to Ω stays the same, a contradiction.
Therefore, there exists an extension fext ∈ R BV2(Rd) that
admits an integral representation

fext(x) =
∫

Sd−1×R
gφ(x, (w, b)) dµ(w, b) + q(x) (28)

such that supp µ ⊂ ZΩ, where µ is an even measure and q is
an affine function.

Next, since Ω ⊂ Rd is a bounded domain, ZΩ ⊂ Sd−1 × R
is also a bounded domain. Therefore, since supp µ ⊂ ZΩ,
we can write

fext(x) =
∫

ZΩ

ρ(wTx − b) dµ(w, b) + q̃(x), (29)

where we combine the affine terms from gφ (defined in (26))
and q into the new affine function q̃. Moreover, with the
above representation we have that R TV2

Ω(f) = ∥µ∥M(ZΩ).
We also remark that although µ is even from Proposition 21,
we can replace µ with a generic, i.e., not restricted to being
even, measure µ̃ ∈ M(ZΩ) by noting that integrating against
an even measure in (28) corresponds to integrating against a
generic measure by considering the activation function ρ = |·|.
Then, since |·| and max{0, ·} only differ by an affine function,
we can absorb this difference for every neuron in the integrand
with and the affine function q̃ into a new affine function ˜̃q.
Finally, this generic, i.e., not even, measure has the same
M-norm as the even measure. #

APPENDIX B
PROOF OF THEOREM 5

The proof of Theorem 5 relies on notation introduced in
Appendix A.

Proof: Let (φ, p) be a biorthogonal system for P1(Rd).
From the proof of Lemma 2, we can identify functions in
R BV2(Bd

1) with integral representations as in (28). Therefore,
we can instead consider the variational problem

min
f∈R BV2(Rd)

f=R−1
φ µ+q

suppµ⊂Sd−1×[−1,1]

N∑

n=1

ℓ(yn, f(xn))+λ ∥R f∥M(Sd−1×[−1,1]).

The restrictions of the functions in the solution set of the above
display to Bd

1 will then correspond to the solution set of the
problem in (13). Next, we remark that the proof is identical
to the proof of Proposition 1 (which is a special case of our
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prior work in [35, Theorem 1]). This is because the proof of
[35, Theorem 1] boiled down to the fact that Sd−1 × R is
locally compact. Since Sd−1× [−1, 1] is also locally compact,
the same proof holds. #

APPENDIX C
PROOF OF THEOREM 7

Proof: Since Bd
1 has a Lipschitz boundary, there exists a

bounded extension operator

E : W d+1,1(Bd
1) → W d+1,1(Rd),

where we refer the reader to [6] or [46, Chapter VI] for explicit
constructions of this operator. Therefore, for f ∈ W d+1,1(Bd

1),

∥E f∥W d+1,1(Rd) !d ∥f∥W d+1,1(Bd
1).

Given f ∈ W d+1,1(Rd), it was shown in [33] that

R TV2(f) !d ∥f∥W d+1,1(Rd).

Next, we have from the definition of R TV2
Bd
1
(·) in (10)

that given any g ∈ R BV2(Rd),

R TV2
Bd
1

(
g|Bd

1

)
≤ R TV2(g).

Therefore, for any f ∈ W d+1,1(Bd
1),

R TV2
Bd
1
(f) ≤ R TV2(E f)

!d ∥E f∥W d+1,1(Rd)

!d ∥f∥W d+1,1(Bd
1).

The result then follows from the fact that L2(Bd
1) is continu-

ously embedded in L1(Bd
1). #

APPENDIX D
PROOF OF THEOREM 11

To prove Theorem 11, we will use the general result regard-
ing nonparametric least squares estimators from [51, Chap-
ter 13]. This general result follows from Theorem 13.5 and
the remarks following, the discussion on pg. 424, and Corol-
lary 13.7 in [51, Chapter 13]. We summarize this general result
in the following proposition.

Proposition 23 (See [51, Chapter 13]): Let F be a con-
vex model class that contains the constant function, i.e.,
f ≡ 1 ∈ F . Given f ∈ F , consider the problem of estimating
f from the noisy samples

yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 are fixed design points in the domain of f . Then,

assuming a solution exists, any solution to the nonparametric
least-squares problem

f̂ ∈ arg min
f∈F

N∑

n=1

|yn − f(xn)|2

has a mean-squared error bound of

E
∥∥∥f − f̂

∥∥∥
2

N
! δ2

N ,

where ∥·∥N is defined in (21) and δN = δ satisfies the
inequality

16√
N

∫ δ

δ2
2σ2

√
logN (t, ∂F , ∥·∥N) dt ≤ δ2

4σ
, (30)

where N (t, ∂F , ∥·∥N) denotes the t-covering number of the
metric space (∂F , ∥·∥N) and

∂F = F − F = {f1 − f2 : f1, f2 ∈ F}.

We will now use Proposition 23 to prove Theorem 11.
Proof of Theorem 11: In Theorem 11, our model class is

FC := {f ∈ R BV2(Bd
1) : R TV2

Bd
1
(f) ≤ C}. (31)

Since R TV2
Bd
1
(·) is a seminorm on a Banach space, FC is

convex. The constant function is contained in FC since the
null space of R TV2

Bd
1
(·) is the space of affine functions.

Notice that

∂FC = FC − FC = 2FC ⊂ F2C ,

so it suffices to upper bound the metric entropy of F2C to find
a δN that satisfies (30). By noticing that ∥·∥N ≤ ∥·∥L∞(Bd

1),
we can use the approximation rate from Theorem 8 to upper
bound (up to logarithmic factors) the metric entropy

logN (t, F2C , ∥·∥N) $d

(
C

t

) 2d
d+3

where $ hides constant and logarithmic factors. The sub-
script d denotes that the implicit constant depends on d. The
connection between approximation rates and metric entropy
can be viewed as a variant of Carl’s inequality [9] (also see
[44, Theorem 10])

Next,

1√
N

∫ δ

δ2
2σ2

√
logN (t, ∂F , ∥·∥N) dt

≤ 1√
N

∫ δ

0

√
logN (t, ∂F , ∥·∥N) dt

$d
1√
N

∫ δ

0

(
C

t

) d
d+3

dt

=
C

d
d+3

√
N

[
t

3
d+3

∣∣∣
δ

0

= C
d

d+3
δ

3
d+3

√
N

.

From (30), we want to find δN = δ that satisfies

C
d

d+3
δ

3
d+3

√
N

$d
δ2

σ
. (32)

We have (up to logarithmic factors) that

δ2
N ≍d C

2d
2d+3

(
N

σ2

)− d+3
2d+3

satisfies (32). #
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APPENDIX E
PROOF OF THEOREM 17

To prove Theorem 17 we will use the general result of Yang
and Barron (see [53, Proposition 1] and [51, Chapter 15])
regarding minimax rates over model classes. We summarize
this result in the following proposition.

Proposition 24 (See [53, Proposition 1] and [51, Chap-
ter 15]): Let F be a model class. Given f ∈ F , consider the
problem of estimating f from the noisy samples

yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 are i.i.d. from some probability measure PX sup-

ported on Bd
1. Then, if functions in F are uniformly bounded

and the metric entropy is of the form

logN (t, F , ∥·∥L2(Bd
1 ;PX)) ≍

(
1
t

)r

, r > 0,

where ∥·∥L2(Bd
1 ;PX) denotes the L2-norm with respect to the

measure PX on Bd
1, we have the minimax rate

inf
f

sup
f∈F

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1 ;PX)

≍ t2N ,

where t2N = t2 satisfies

t2 ≍
logN (t, F , ∥·∥L2(Bd

1 ;PX))
N

.

We will use the result of Proposition 24 to derive the
minimax rate for the model class

GC := {f ∈ V 2(Bd
1) : ∥f∥V 2(Bd

1) ≤ C}, (33)

where V 2(Bd
1) is the variation space defined in Section V.

We will then use this minimax rate to derive a minimax lower
bound for the model class in (20).

Lemma 25: Consider the problem of estimating f ∈ GC

(defined in (33)) from the noisy samples

yn = f(xn) + εn, n = 1, . . . , N,

where {εn}N
n=1 are i.i.d. N (0, σ2) random variables and

{xn}N
n=1 are i.i.d. uniform random variables on Bd

1. The
minimax rate for this model class is

inf
f

sup
f∈GC

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1 ;PX)

≍d N− d+3
2d+3 ,

where the L2(Bd
1 ; PX)-norm is the L2-norm with respect to

the uniform probability measure on Bd
1.

Proof: We are interested in applying Proposition 24 with
PX being the uniform probability measure on Bd

1. Since the
Lebesgue measure is just a constant scaling of the uniform
measure (where the constant is the volume of Bd

1), it suffices
to know the metric entropy with respect to the L2(Bd

1)-norm.
The model class in (33) was extensively studied in [44] and
it is known that

logN (t, GC , ∥·∥L2(Bd
1)) ≍d

(
1
t

) 2d
d+3

.

We refer the reader to [44, Theorem 4 and Equation (68)] for
the upper bound and [44, Theorem 8] for the lower bound.

We also remark that the model class GC is uniformly bounded
since the functions in V 2(Bd

1) can be written as a superposition
of L∞(Bd

1)-bounded atoms. With the metric entropy in the
above display, we immediately have the minimax rate in the
lemma statement by applying Proposition 24. #

We will now use Lemma 25 to derive a minimax lower
bound for the model class in (20).

Proof of Theorem 17: It suffices to show that GC ⊂ FC ,
where FC is defined in (31). Given f ∈ V 2(Bd

1) (or in
R BV2(Bd

1), since they are the same space by Theorem 6),
we can find an integral representation as in (16) such that

∥f∥V 2(Bd
1) = ∥µ∥M(Sd−1×[−2,2]).

Next, if we let ν := µ|Sd−1×[−1,1], we can write f as an
integral representation as in Remark 3 such that

R TV2
Bd
1
(f) ≤ ∥ν∥M(Sd−1×[−1,1]).

The previous two displays imply R TV2
Bd
1
(f) ≤ ∥f∥V 2(Bd

1).
Therefore, GC ⊂ FC . #

APPENDIX F
PROOF OF THEOREM 18

To prove Theorem 18, we will require several results from
ridgelet analysis. It was shown in [7, Theorem 7] that we have
the continuous embedding

R(d+3)/2
1,1 (Bd

1) ⊂ V 2(Bd
1)

where we recall that V 2(Bd
1) is the variation space for shallow

ReLU networks, and Rs
p,q(Bd

1) denotes the ridgelet space of
Candès [7]. Ridgelet spaces were proposed as a generalization
of Besov spaces, and in the univariate case, the ridgelet space
Rs

p,q(Bd
1) coincides with the Besov space Bs

p,q[−1, 1].
Next, recall that we showed in the proof of Theorem 17 that

GC ⊂ FC , where GC and FC are the model classes defined
in (33) and (20), respectively. Combining this fact with the
above display, we see that to prove Theorem 18, it suffices
to show the linear minimax lower bound for the model
class

HC := {f ∈ R(d+3)/2
1,1 (Bd

1) : ∥f∥
R(d+3)/2

1,1 (Bd
1)

≤ C}.

We will make use of the following generic result.
Proposition 26 (See [8, Proof of Theorem 4.1]): Let F ⊂

L2(Bd
1) be a convex model class and consider the problem of

estimating f ∈ F from the continuous white noise model

dYε(x) = f(x) dx + ε dW (x), x ∈ Bd
1,

where ε is the noise level and dW (x) is a standard
d-dimensional Wiener process. Furthermore, suppose that for
any δ > 0, there exists !d Kδ orthogonal elements {gk}K

k=1 ⊂
F such that ∥gk∥L2(Bd

1) = δ, k = 1, . . . , K . Then, the linear
minimax rate is lower-bounded by

inf
f linear

sup
f∈F

E
∥∥∥f − f̂

∥∥∥
2

L2(Bd
1)

"d δ2
ε ,

where δε = δ solves
δ2 = ε2Kδ.
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Proposition 27 (See [7, Theorem 11] and [8, Lemmas A.1,
A.2, and A.3]):

For any integer j ≥ 2, There exists a set {gk}K
k=1 of

orthogonal elements with K "d 2jd contained in

{f ∈ Rs
1,1(Bd

1) : ∥f∥Rs
1,1(Bd

1) ≤ C},

where C > 0 is a constant, such that

∥gk∥L2(Bd
1) = 2j(s−d/2), k = 1, . . . , K.

If we choose δ = 2j(s−d/2), we see that K "d δ−2d/(2s−d)

and so the linear minimax lower bound is δ2
ε , where δε = δ

solves
δ2 = ε2δ−2d/(2s−d),

i.e.,
δ2
ε = (ε2)(2s−d)/2s.

With these results, we will now prove Theorem 18.
Proof of Theorem 18: The linear minimax lower bound

for the model class HC corresponds to the case when s =
(d + 3)/2 and so the linear minimax lower bound for this
model class (in the continuous white noise setting) will be

(ε2)3/(d+3)

By a standard sampling argument,8 we have that the contin-
uous white noise model is asymptotically equivalent to the
estimation problem with discrete samples drawn uniformly on
Bd

1, where ε = σ/
√

N , for sufficiently large N , so we get the
linear minimax lower bound of

(
N

σ2

)− 3
d+3

.
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