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Abstract—This paper addresses the critical challenge of Op-
timal Power Flow (OPF) in electrical engineering, emphasizing
the intersection of complexity and technological advancements.
Leveraging quantum computation, particularly the Primal-Dual
Interior Point Method (PD-IPM) and the Harrow-Hassidim-
Lloyd (HHL) algorithm, we explore enhanced solutions for both
Alternating Current OPF (ACOPF) and Direct Current OPF
(DCOPF). PD-IPM generates linear systems during optimization,
aligning with the selected quantum techniques that offer expo-
nential speedup. We investigate the scalability and challenges
of HHL, emphasizing the current limitations for larger power
systems. Additionally, we introduce a hybrid approach that
dynamically transitions between quantum and classical methods
to optimize convergence. Our study evaluates the proposed
methodology’s performance under diverse error conditions, em-
phasizing its potential to revolutionize solving times for OPF in
power systems.

Index Terms—Quantum computing, optimal power flow,
Harrow-Hassidim-Lloyd algorithm, ACOPF, DCOPF.

I. INTRODUCTION

ACCURACY and speed of the mathematical methodolo-
gies in addressing complex engineering problems have

consistently been given significant attention [1], [2]. Among
these challenges, Optimal Power Flow (OPF) stands out as a
pivotal concern in electrical engineering, with its complexity
increased by the integration of advanced technologies [3].
The advent of quantum computation, surpassing conventional
methods in various instances, presents an opportunity to accel-
erate solutions to power system-related problems. By leverag-
ing quantum computation, traditional optimization problems
like OPF can be efficiently transformed and resolved at a
quicker speed than previously achievable [4], [5].

Various approaches for solving OPF have been proposed,
ranging from linear to non-linear and convex to non-convex
formulations [6], [7]. The Alternating Current OPF (ACOPF)
provides a detailed description of power systems, but it is
non-convex and computationally demanding [8]. In contrast,
although Direct Current OPF (DCOPF) is less accurate, it
is less complex than ACOPF, featuring linear equations that
enhance computational efficiency [9]. The Primal-Dual Interior
Point Method (PD-IPM) emerges as a promising approach
for achieving optimal solutions in both ACOPF and DCOPF
[10]. A salient feature of PD-IPM is the generation of a linear
system of equations during the optimization process [11], [12].
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This linear system holds significance since certain quantum
computation techniques have been developed to solve it [13],
[14]. Leveraging these quantum approaches can reduce the
time required for solving the system, particularly considering
the iterative nature of PD-IPM that needs multiple attempts.

Several advanced traditional methods exist for solving sys-
tems of linear equations, but their speed intensively relies
on the dimension of the system [15]. Quantum computation
often introduces a logarithmic time complexity, surpassing the
fastest traditional approach, which typically exhibits a cubic
time complexity [16]. Therefore, the shift from traditional
to modern quantum methods appears inevitable to improve
the runtime of critical problems like OPF, which forms the
core of numerous challenges in power systems. The Harrow-
Hassidim-Lloyd (HHL) algorithm has recently gained attention
for its ability to compute the inverse of a square matrix
exponentially faster than conventional algorithms [17]. It uses
a phase estimation stage to guess the eigenvector and subse-
quently rotates it 180◦ to determine the inverse, leading to the
solution of the linear system [18]. While [19] uses HHL to
solve the DC Power Flow, [20] employs a quantum algorithm
to solve AC Power Plow, both of which are considered a small
test system. [5] moves further and reveals the scalability of
HHL and solves ACOPF for larger systems. The author shows
that HHL cannot be implemented for larger power systems due
to noises and an increase in the depth of the circuit needed for
the implementation of HHL. [18] uses the Lagrangian function
method to address the Karush-Kuhn-Tucker (KKT) conditions
for obtaining the DCOPF solution. [21] applies an advanced
noise-tolerant quantum IPM to solve the DCOPF using HHL
as a linear solver.

This study uses PD-IPM to address DCOPF and ACOPF
using HHL. In both cases, we encounter Newton’s direction
which is a system of linear equations. Solving this system
imposes many challenges due to imperfections in current
quantum algorithms and hardware. We examine the perfor-
mance of the proposed approach under various noise and error
conditions, to realize the effectiveness and inefficiencies of our
approach.

II. METHODOLOGY

A. IPM Based OPF

OPF problem is a critical optimization task in power sys-
tems that can be shown as follows:

minimize f(x)

subject to

{
g(x) = 0

hl ≤ h(x) ≤ hu
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OPF is often expressed in the form of either ACOPF or
DCOPF. Although their general structure is the same, these
formulations differ in their constraints. ACOPF addresses var-
ious constraints, including active and reactive power balance,
voltage magnitude and angle, line flow limitations, generator
output limits, and nonlinear network equations. These network
equations capture the intricate relationships among bus volt-
ages, power injections, and power flows. In contrast, DCOPF
is a simplified version of ACOPF, neglecting reactive power
considerations and assuming uniform voltage magnitudes. This
simplification results in a linearized OPF, facilitating a less
complex solution process.

PD-IPM stands out as an efficient mathematical approach
capable of determining optimal solutions for both ACOPF and
DCOPF. Given the familiarity of both ACOPF and DCOPF
within the power system community, we neglect the explicit
representation of their formulations and instead focus on the
general form of the OPF problem in the subsequent discussion.
Interested readers can easily substitute these equations with
well-established formulations.

PD-IPM involves a four-step process to solve optimization
problems. The initial step entails transforming inequality con-
straints into equality constraints through the introduction of
positive slack variables. Subsequently, in the second step, non-
negativity conditions are incorporated into the objective func-
tion in the form of a logarithm barrier function. This addition
penalizes the objective function when variable values approach
zero. Following these two steps, the resulting problem takes
the following form:

minimize f(x)− µ(ln sl + ln su)

subject to


g(x) = 0

h(x)− hl − sl = 0

−h(x) + hu − su = 0

(2)

The third step aims to convert the constrained optimization
problem established in the previous steps into an uncon-
strained optimization problem. This transformation is facil-
itated through the formulation of the Lagrangian function,
denoted as:

L = f(x)− µ(ln sl + ln su)− λT g(x)

− πT
l (h(x)− hl − sl)− πT

u (−h(x) + hu − su) (3)

where the Lagrange multipliers λ, πl, and πu are called dual
variable. This process results in a problem with only equality
constraints.

Moving on to the fourth step, we aim to identify the optimal
solution using the perturbed Karush-Kuhn-Tucker (KKT) first-
order optimality conditions. This leads us to a system equation,
which can be efficiently solved using the Newton-Raphson
method. The Hessian matrix, which represents the second-
order derivatives, can be expressed as a linear symmetric
system (4). While this system shows the KKT condition, the
symmetry of the matrix enables a reduction in dimensionality,
simplifying the problem-solving process:

[
0 −∆g(x)

−∆g(x)T H

] [
∆λ

∆x

]
= −

[
∆λL
η

]
(4)

where:

H = ∆2
xL+ µ∆xh(x)

T (S−2
l + S−2

u )∆xh(x) (5)

η = ∆xL+∆xh(x)
T [µ(S−2

u ∆πuL − S−2
l ∆πl

L
+∆slL −∆suL] (6)

In PD-IPM, we guess an initial number for positive scaler µ,
called the barrier parameter, and then gradually diminish it by
each iteration of the Newton step. System (4) is a Hermitian
matrix that can be solved by a quantum linear solver. The
approach that we use to find the solution of OPF is outlined
in Algorithm I.

Algorithm I OPF.
Input: Objective function and constraints
Output: Solution of OPF
1: Form the OPF formulation
2: Use positive slack variable to make h(x) as equality constrains
3: Using the logarithmic barrier function bring the non-negativity constraint
to the objectives function
4: Form unconstraint optimization problem (3) using Lagrange theory
5: While PD-IPM is not converged or number of iterations < kmax

6: Form (4) using KKT condition
7: Solve system (4) using quantum Algorithm II
8: update variables and µ
9: end
10: Return solution of OPF

B. Quantum Linear Solver

The HHL algorithm has caught the attention of researchers
for its ability to solve small-scale linear systems of equations,
albeit with some errors. HHL works by estimating the eigen-
vector of a Hermitian matrix using a Fourier Transformer. This
involves rotating phases and multiplying them with the vector b
(in Ax = b), ultimately yielding the solution vector x. Notably,
the time required for this quantum calculation is significantly
faster than classical approaches.

In the context of ACOPF and DCOPF, where we encounter
system (4), that is Hermitian, we can leverage the HHL
algorithm directly. This entails feeding the Hermitian matrix
from the system (4) into the HHL circuit during each iteration
of the PD-IPM. In this system, we assume the matrices are
defined as follows:

A =

[
0 −∆g(x)

−∆g(x)T H

]
, x =

[
∆λ

∆x

]
,

b = −
[
∆λL
η

] (7)

The first step in applying this system to quantum hardware
involves encoding these classical matrices into a quantum
state. This encoding process serves a critical role, enabling
the translation of classical information into a quantum state,
and paving the way for the efficient or even inefficient use of
HHL.
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In the quantum computation framework, the transformed
system (4) is represented as |Ã⟩|x̃⟩ = |b̃⟩. Following the
phase estimation stage, the quantum state is expressed as
|ω⟩ =

∑
j |0⟩ ⊗ |b̃j⟩|λj⟩ ⊗ |uj⟩, where |λj⟩ denotes the

eigenvalue and |uj⟩ represents the normalized eigenbases of
the matrix Ã. The vector b̃ is encoded as quantum state |b̃⟩.
Applying a rotation gate around the y-axis and subsequently an
inverse of the Fourier Transformer leads to the quantum state

|ω⟩ = |0⟩⊗
∑

j

(√
1− C2

0

λ2
j
|0⟩+ C0

λj
|1⟩

)
⊗ b̃j |u⟩j . Measuring

the state |1〉 allows the identification of the quantum state
|ω⟩ = C0

∑
j

b̃j
λj
|uj⟩. Normalizing this state provides the

solution to the linear system or the vector x for the system
(4). This resulting vector serves as the step size or the Newton
direction in the PD-IPM. This quantum-enhanced approach ac-
celerates the computation of the Newton direction, contributing
to the enhanced efficiency of the overall optimization process
in systems like ACOPF and DCOPF. The approach used to
solve the solution for the system (4) is outlined below:

Algorithm II Quantum linear solver.
Input: Matrix Ã and column vector b̃
Output: A solution vector x̃
1: Encode vector b = −(∆λ, η)

T as|b̃⟩
2: Initialize unitary operation U = e(−iÃt)

3: Perform quantum Fourier transform and rotate the obtained phases
4: Uncompute the work registers
5: Measure state |1⟩ from the ancilla qubit
6: Using the normalization proportionality factor, convert |x̃⟩ to classical
vector x
7: Return x

The outcome of this equation relies on various factors,
including quantum hardware performance, matrix condition,
initialization, encoding method, and the HHL circuit. While
these challenges currently limit the effectiveness of the HHL
algorithm in many power systems, it remains applicable for
smaller systems, particularly those with fewer than 9 buses
[5].

C. Hybrid quantum classic IPM (HIPM)

To ensure both speed and accuracy compared to the classical
IPM, we introduce Algorithm III.

Spi = |fi+n − fi| ∀i = 1, 2, ..., kmax − (n− 1) (8)

InConv
j =

∣∣Spi+1 − Spi

∣∣ ∀i = 1, 2, ..., kmax − (n− 2) (9)

Algorithm III HIPM.
Input: Matrix Ã and column vector b̃
Output: A solution vector X
1: Do: Algorithm I
2: Compute InConv

j as the objective function improvement index
3: If InConv

j < ϵ
4: Use the last iteration data as the initial point for IPM
5: Do: IPM
6: Else Iteration number < kmax

7: Continue: Algorithm I
Return: Solution x

Although not as fast as Algorithm I, Algorithm III signif-
icantly improves upon the classical IPM. The core concept
of Algorithm III revolves around dynamically assessing the
convergence rates of QIPM. If QIPM demonstrates a slow
convergence rate, Algorithm III stops it and uses the last
obtained information as an initial guess for the classical IPM.
Subsequently, the classical IPM continues from this point,
benefiting from the proximity of the initial guess to the exact
solution. We anticipate observing fewer iterations than the pure
IPM approach without the integration of the HHL. By reducing
the computational burden of some of the iterations by using
HHL, Algorithm III aims to reduce the overall solving time
for OPF.

III. RESULTS

A. Settings

This study employs four systems including 3-bus, 5-bus,
118-bus, and 300-bus systems to evaluate the proposed ap-
proach. To test the method on the first two smaller systems,
we utilize the Qiskit simulator to implement the HHL [22].
For larger systems, we simulate errors and noise on classical
computers to demonstrate the effectiveness of our approach.
The simulations use Python for Qiskit and the Matpower
package in MATLAB for classical computation. Both DCOPF
and ACOPF are performed for all systems under consideration.
Using HHL as a linear solver on real quantum computers
or quantum simulators imposes various challenges due to
errors and noises inherent in current quantum systems and
algorithms. Regarding algorithmic imperfections, HHL suffers
from the preparation and initialization stages to achieve a
satisfying solution. Additionally, the phase estimation process
introduces its own set of challenges. The number of required
qubits and the amount of auxiliary quantum resources needed
by the algorithm can pose scalability concerns. Moving beyond
algorithmic aspects, the real-world implementation of the HHL
on quantum hardware introduces additional challenges. Quan-
tum gate noise, arising from imperfections in gate operations,
can compromise the accuracy of quantum computations. Gate
errors, such as deviations in rotation angles, further contribute
to inaccuracies in quantum operations. Readout and mea-
surement errors represent another significant challenge, where
inaccuracies in the measurement process can distort the results.
To consider the impacts of these errors, we simulate them
classically. In the context of error simulation, we introduce
a random uniform error within the range of ±e%. We use
three values for e, namely 5, 10, and 20, to examine the
impact of errors on the proposed approach. To validate the
accuracy of our error approximation, we conduct both Qiskit
and classical simulations for the two smaller systems. This
comparative analysis allows us to assess how closely our error
approximation aligns with the Qiskit simulation results.

B. Qiskit simulation

Using Algorithm I and Algorithm II, the solution for the
OPF in the 3-bus system, considering the DCOPF, is as
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Fig. 1: DCOPF objective function for the 3-bus system.

Fig. 2: ACOPF objective function for the 3-bus system.

follows: When the ACOPF constraints are considered the fol-
lowing figures result: Fig. 2 Shows that even with the presence
of nonlinear constraints, QIPM follows a trajectory similar
to the classical IPM, as shown in Fig. 1. However, the high
linearity nature of the ACOPF introduces increased complexity
for the QIPM, resulting in a more challenging convergence
towards a solution closely resembling the classical IPM. In
both Fig. 1 and Fig. 2, the trend observed from Qiskit closely
aligns with the error simulation in both cases.

Fig. 2 highlights the sensitivity of ACOPF to errors, where
an error of 20% leads to an overshooting trend that results
in a deviation from the classical IPM solution within a few
iterations. In the case of DCOPF, although the magnitude of
errors influences the relative convergence error between QIPM
and classical IPM, its impact on the convergence trend is
minor. This phenomenon is attributed to the linear nature of
DCOPF, resulting in lower complexity compared to ACOPF.

In the case of the 5-bus system, the results for the DCOPF
scenario are presented in Fig. 3. Notably, the number of
iterations required to achieve an objective function close to the
classical IPM is greater than the 3-bus system. This indicates
that the system type exerts an influence on the outcome trend.

Fig. 3: DCOPF objective function for the 5-bus system.

Fig. 4: ACOPF objective function for the 5-bus system.

Fig. 5: Relative error percentage for the 5-bus system.

However, it is noteworthy that by adjusting the maximum
number of iterations (kmax) to a higher value, a satisfactory
solution can be obtained. Generally, a larger error tends to need
more iterations for approaching the IPM solution. Continuing
our study with the ACOPF scenario, the subsequent figure,
Fig. 4, is obtained. The results for the 5-bus system in the
case of ACOPF reveal that the algorithm faces challenges in
moving close to the IPM solution. Despite increasing the max-
imum iteration number kmax to higher values, no noticeable
improvement is observed. When examining the relative error
between the QIPM and IPM, Fig. 5, it becomes evident that the
error percentage remains unacceptably high, even with a large
maximum iteration number. This underscores the difficulty of
achieving convergence in the ACOPF scenario for the 5-bus
system, highlighting potential limitations of the approach in
certain system configurations.

C. Error simulation

In this section, our focus shifts to simulating errors and
determining solutions for larger systems. To observe the be-
havior of the proposed approach under extreme conditions, we
have selected two large systems. It’s worth noting that current
quantum computers or simulators face limitations in providing
suitable solutions for larger matrices in the case of HHL.
However, we anticipate that with the ongoing development of
HHL and quantum hardware, the proposed method outlined in
this paper could be applied to find the OPF for power systems
in these challenging scenarios.

We conducted error simulations and obtained solutions
for larger systems, selecting two larger systems to examine
the behavior of our approach in extreme scenarios. While
current quantum computers or simulators face limitations in
finding suitable solutions for larger matrix dimensions in linear
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Fig. 6: DCOPF objective function for the 118-bus system.

Fig. 7: ACOPF objective function for the 118-bus system.

systems, we anticipate that with further advancements in the
HHL and quantum hardware, the method proposed in this
paper could be applied to address OPF.

The performance of QIPM for the IEEE 118-bus system in
solving the DCOPF is shown in Fig. 6. Despite not observing
apparent convergence, it is noteworthy that QIPM consistently
progresses towards the classical IPM. While there may be a
slight error, its impact can be considered negligible, as the
output values closely align with the exact ones. Executing the
algorithm for ACOPF yields Fig. 7. The results exhibit a trend
converging towards the classical IPM solution within a few
iterations. However, convergence was not observed under the
default error convergence setting of IPM in Matpower.

In the context of the 300-bus system DCOPF, Fig. 8
illustrates an exceptional approach to the classical value even
under varying degrees of errors. Conversely, when considering
the case of ACOPF, a distinct behavior emerges, as depicted
in Fig. 9. For smaller errors, a proper convergence towards the
exact value is evident. However, with an increase in the error
magnitude (e.g., e = 20), a numerical failure occurs, indicating
a transition to an infeasible region. In such instances, QIPM
struggles to approach any valid solution. Based on our

Fig. 8: DCOPF objective function for the 300-bus system.

Fig. 9: ACOPF objective function for the 300-bus system.

(a) (b)

Fig. 10: HIPM-based for 5-bus system a) DCOPF and b)
ACOPF.

observations, particularly in the nonlinear ACOPF scenario,
it is necessary to use a more reliable method to ensure
secure convergence towards exact values. This underscores
the necessity for enhanced methodologies when dealing with
nonlinear optimization problems in power systems.

D. Hybrid Quantum Classic IPM

In this section, our objective is to use Algorithm III to
guarantee a reliable solution for all types of OPF. We have
selected the worst-case scenarios, represented by the 5-bus
system and the 300-bus system, as our case studies. For the
5-bus system, ACOPF and DCOPF are executed using Qiskit,
alongside error simulation with e = 20. For the 300-bus
system, only the most challenging error scenario is simulated
on a classical computer. The obtained results are presented in
Fig. 10a and Fig. 10b, respectively, for DCOPF and ACOPF.
These figures showcase the performance and effectiveness of
Algorithm III in ensuring reliable solutions under extreme
conditions. The proposed HIPM is anticipated to outperform
classical algorithms in terms of computational speed. This is
due to each iteration of the classical algorithm requiring more
time compared to all iterations of QIPM. The polynomial time

(a) (b)

Fig. 11: HIPM-based for 300-bus system a) DCOPF and b)
ACOPF.

Authorized licensed use limited to: Louisiana State University. Downloaded on August 14,2024 at 23:10:30 UTC from IEEE Xplore.  Restrictions apply. 



6

complexity of the classical algorithm becomes notably exten-
sive, especially when dealing with high matrix dimensions.
In contrast, the quantum counterpart, leveraging quantum
parallelism, is expected to provide a computational advantage,
potentially leading to faster convergence and solution times
for large-scale problems.

IV. CONCLUSION

In this study, we proposed a novel approach to address
OPF challenges, leveraging quantum computation techniques,
particularly PD-IPM and HHL algorithms. We examined the
performance of the proposed approaches under various sce-
narios through comprehensive evaluations of various systems.
Classical IPM, QIPM, and HIPM were the optimization ap-
proaches used for solving the DCOPF and ACOPF.

Both DCOPF and ACOPF were successfully addressed us-
ing Qiskit for the two small systems. The results demonstrated
that, despite the presence of nonlinear constraints in ACOPF,
QIPM closely followed a trajectory similar to the classical
IPM. However, the increased linearity in ACOPF added com-
plexities, which made the convergence process more challeng-
ing, particularly in the presence of errors. ACOPF presented
notable challenges in approaching the classical IPM solution
and showed potential limitations in certain systems such as
the 5-bus system.

Moving to larger systems, such as the 118-bus and 300-bus
scenarios, we conducted error simulations on classical comput-
ers due to current limitations in quantum hardware for larger
matrices in HHL. Despite not achieving apparent convergence
in some instances, the QIPM consistently progressed towards
the classical IPM, showcasing its resilience under challenging
conditions.

The introduction of HIPM further enhances the reliability
of our approach. By dynamically evaluating convergence rates
and transitioning between quantum and classical methods,
Algorithm III ensures reliable solutions even under extreme
conditions. The results for the 5-bus and 300-bus systems
using HIPM underscore its potential to outperform classical
algorithms, offering faster convergence and solution times,
particularly for large-scale problems.

Future work should focus on refining quantum hardware and
algorithms to overcome current limitations, paving the way for
practical implementations in larger power systems.
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