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Abstract. Braverman and Kazhdan proposed a conjecture, later refined by Ngo and broadened
to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties
admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in
joint work with B. Liu and later the first two authors proved these conjectures for certain spherical
varieties Y built out of triples of quadratic spaces. However, in these works the Fourier transform
was only proven to exist. In the present paper we give, for the first time, an explicit formula for the
Fourier transform on Y. We also prove that it is unitary in the nonarchimedean case. As preparation
for this result, we give explicit formulae for Fourier transforms on the affine closures of Braverman—
Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups.
These Fourier transforms are of independent interest, for example, from the point of view of analytic
number theory.
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1. Introduction

In the seminal paper [9], Braverman and Kazhdan suggested that the Poisson summation
formula for a vector space is the first case of a general phenomenon. Let X be an affine
spherical variety over a global field F with smooth locus X*™ C X. Building on work in
[10,39,41], one now expects that there is a Schwartz space S (X(AFf)) C C®(X™(AF))
and a Fourier transform

Fx : S(X(AF)) — S(X(AF))

such that
Yo o= > Fx(NHX).
xeXsm(F) xeXsm(F)
at least for test functions f satisfying certain assumptions to eliminate “boundary terms.”
Let us refer to this expectation as the Poisson summation conjecture. The import of the
Poisson summation conjecture is that it implies the analytic properties of Langlands L-
functions (and hence, by converse theory, Langlands functoriality) in great generality.

Remark 1.1. A study of y-factors for quite general Langlands L-functions using reduc-
tive monoids (an important special family of spherical varieties) is contained in [44]. In
the function field setting for many spherical varieties, including reductive monoids, a geo-
metric interpretation of basic functions in the still conjectural Schwartz space is contained
in [7,42].

The only case that is completely understood is that of a vector space. However, the
Poisson summation formula is known under assumptions on the test functions involved
provided that X is the affine closure of a Braverman—Kazhdan space, that is, a scheme
of the form P%"\G where G is a reductive group and P < G is a parabolic subgroup
[10,19,21,24,30,31].

Though the original motivation for the Poisson summation conjecture comes from
Langlands functoriality, in personal communications to the first author, Kazhdan has
emphasized that it should have implications broadly in harmonic analysis. This is also the
theme of the monograph [31], which develops harmonic analysis on a special family of
Braverman—Kazhdan spaces in the archimedean case. Thus, though our primary motiva-
tion for this work was to prove Theorem 1.2 below, we have taken the occasion to develop
the theory of Fourier transforms for many Braverman—Kazhdan spaces to a point where
one can use them in harmonic analysis (or analytic number theory). The Schwartz space
of the affine closure of a Braverman—Kazhdan space with its associated Fourier transform
is in a strict sense a generalization of the Fourier transform on the Schwartz space of
a vector space. Whenever one has employed Fourier transforms to answer questions on
vector spaces, one can try to do the same for Braverman—Kazhdan spaces.

1.1. The Fourier transform for triples of quadratic spaces

In [20], the Poisson summation conjecture was proved for the first time for a spherical
variety that is not the affine closure of a Braverman—Kazhdan space. In more detail, let
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F be a number field, and let (V;, Q;), 1 <i < 3, be a triple of even-dimensional vector
spaces V; over F equipped with nondegenerate quadratic forms Q;. Let V := ]_[?:1 Vi
and for F-algebras R, let

Y(R) := {(v1,v2,v3) € V(R) : Q1(v1) = Q2(v2) = Q3(v3)}. (1.1)

Let Y C Y be the open complement of the vanishing locus of Q; (which is independent
of i). The “ani” stands for anisotropic. In [20] a Poisson summation formula was proved
for this scheme. However, it was phrased in terms of functions and a Fourier transform on
an auxiliary space; the theory was not intrinsic to Y. In [19] the first two authors defined
the Schwartz space of Y and proved the existence of a Fourier transform

Fy :S(Y(AF)) = S(Y(AF))

such that the Poisson summation conjecture holds for suitable functions f € S(Y(AFr)).
The Fourier transform ¥y is a restricted tensor product of local transforms

Fyp, 1 SY(Fy)) = S(Y(Fy))

for all places v. Below we will abuse notation and write simply Fy for these local trans-
forms. The proof of the existence of ¥y in [19] is indirect, and does not provide any
formula for ¥y . In this paper, we prove such a formula.

Let F be alocal field and let ¢ : F — C* be a nontrivial additive character. Moreover,
fora = (a1, a»,az) € (F*)3, let

(a1az + azas + asza)?
[a] '
Theorem 1.2. Let F be a local field of characteristic 0. Suppose d; := dim V; > 2 for all

1 <i <3and Y™ (F) # @. There is a constant ¢ € C* depending on v, F, and the Q;
such that for all f € S(V(F)) and £ € Y™ (F),

la] := ai1aza3, r(a):= (1.2)

A©=c [ ve([ | TE@

§ 0(5)2) xola)d*ay .
* (/Y(F) v (<;’ y> 922[d] )f(y) du(y)) {a}d/271 ) =
Here we use [19, Lemma 5.3] to regard f as an element of §(Y(F)) by restriction.
Moreover

Ei=(é—1 5 §—3)7 0:=01+ 02+ 03,

al’az’a3

3
xol@d*a _ v xo,(ai)d*ai
{a}d/z—l - |ai|di/2_1 ’

a ,
i=1
where the quadratic character y o, attached to Q; is defined asin (9.1), (-,):= Z?:l (s,
where (-, -); is the pairing attached to Q;, and du(y) is the measure defined in Section 8.
Theorem 1.2 is restated and proved as Theorem 9.1 below.
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The formula in Theorem 1.2 will be useful in applications of the Poisson summation
formula on Y. Moreover, it provides a precious example of a Fourier transform for a
spherical variety that is not the affine closure of a Braverman—Kazhdan space. Though
intricate, we observe that the formula has a pleasing form. Naively, one might expect the
Fourier transform to take the form

£ / VUE D FO) du(y).
Y(F)

just like the traditional Fourier transform on a vector space. From a less naive perspec-
tive, since the Fourier transform is invariant under the product of the orthogonal groups
attached to the V; [19, Corollary 12.2], one might expect an expression in terms of the
invariant pairings (, ); and the invariant polynomial Q. This is indeed the shape of the
formula. It is instructive to compare this with the Fourier transform on the zero locus of a
quadratic form given in Corollary 6.9 below, generalizing earlier work in [25,31].

As a first application of Theorem 1.2, we prove the following.

Theorem 1.3. Let F be a nonarchimedean local field of characteristic zero. Suppose
dimV; > 2 foralll <i <3 and Y™ (F) # @. The operator ¥y extends to an isometry

Fy 1 LA(Y(F)) — L*(Y(F)).

For f1, f» € L*(Y(F)), we have the Plancherel formula
[ AA0A0 0 = [ AT ) ).
Y(F) Y(F)

This theorem puts Fourier analysis on L2(Y(F)) on a sound footing. Theorem 1.3 is
proven as Theorem 10.1 below.

Remark 1.4. The assumption that F has characteristic zero is only used to prove the
geometric integrality statement in the proof of Lemma 9.4. Otherwise, the proofs of these
two theorems work more generally provided the characteristic is large enough to apply an
analogue of Proposition 9.13.

1.2. The Fourier transform on the affine closures of Braverman—Kazhdan spaces

Suppose now F' is any local field. For a reductive group G with parabolic subgroup P, let
Xp = P\ G and let Xp be its affine closure. The space Xp is known as a Braverman—
Kazhdan space. We prove Theorem 1.2 using an explicit formula for the Fourier transform
on a certain Braverman—Kazhdan space. Since the method is general and of independent
interest, we prove the formula for split, simple, simply connected groups G and maximal
parabolic subgroups P.

Let M be a Levi subgroup of P and let P°P be the unique parabolic subgroup of G
with P N P°® = M. We define $(Xp(F)) and S(Xpe(F)) in Section 5.2 following
previous work in [19,21], which in turn refines the definition in [10]. We then prove the
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existence of a Fourier transform
Fpipo : §(Xp(F)) = S(Xpu(F)) (1.3)

(see Theorem 5.12). This transform is unitary, and induces the same transform that Braver-
man and Kazhdan defined at the level of L2-functions in [10] (see Section 5.3). We point
out that the construction of the refined Schwartz space §(Xp(F)) and the proof that
it is preserved by the Fourier transform is not contained in [10]. We explain the rela-
tionship between Braverman and Kazhdan’s definition of the Schwartz space and ours
in Section 5.4.

We observe that Xp and Xp,, admit a natural action of M B by left multiplica-
tion. Thus, at least formally, it makes sense to integrate functions in § (X pop (F')) against
functions in M (F). Following Braverman and Kazhdan, we use this to define an oper-
ator u;‘fg on a certain subspace of C*°(Xpo (F)) (see (6.6)). It is essentially a sequence
of weighted Fourier transforms along the M (F)-action.

Theorem 1.5. We have Fp|pow = % o F, IfTOPOp, where

Fhipa NG = [

X5

JOY((x, x¥) pipon) dx
F)

for f € 8§(Xp(F)) and x* € Xpo,(F). Here (-,-) p|pov is the canonical pairing between
Xp(F)and X o (F) of (3.4), and dx is an appropriately normalized right G (F )-invari-
ant Radon measure.

We use the superscript “geo” to indicate that the geometric part of the Fourier trans-
form is what one might expect of a Fourier transform from naive geometric considera-
tions, and the superscript “aug” to denote the “augmentation” of the normalization that
is necessary to obtain the true Fourier transform (for example, to ensure the resulting
operator is unitary).

Remark 1.6. Apart from trivial cases where Xp is a vector space, our formula was only
known when G is a special orthogonal group on an even-dimensional quadratic space
and P is the stabilizer of an isotropic line [25,31]. In this case, Xp is the zero locus
of the quadratic form. The proofs in these two references rely on the interpretation of
L?(Xp(F)) as the minimal representation of a larger orthogonal group. This additional
structure on L2(Xp (F)) does not exist in general, so our proof of Theorem 1.5 is not a
generalization of these proofs.

As mentioned above, to prove Theorem 1.5 we extend the refined definition of the
Schwartz space given in [21] in the special case where G = Sp,, and P is the Siegel
parabolic to the general case of maximal parabolic subgroups in split, simple, simply con-
nected reductive groups. In the nonarchimedean setting, when P is the Siegel parabolic
subgroup of G = Spy,,,, the Schwartz space is also investigated in work of Jiang, Luo, and
Zhang [30], although their approach to Schwartz spaces is closer to [10] and they do not
obtain Theorem 1.5 in their setting. In loc. cit. the authors emphasize [30, Theorem 5.5]
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as a key technical result. We obtain the analogous result in general (i.e. for all maximal
parabolic subgroups of simple simply connected groups) in Theorem 5.12. Our proof is
not a generalization of the proof of [30, Theorem 5.5]; see Remark 4.1 below. The ref-
erences [33,43] contain useful information on the Braverman—Kazhdan program, though
neither address the analytic issues that must be overcome to prove Theorem 1.5.

1.3. Some reductive monoids

Due to its connection with Langlands functoriality as outlined in [9, 38, 39], finding
explicit formulae for Fourier transforms on reductive monoids has become a focus of
research. It is well-known that Braverman—Kazhdan spaces built using the doubling
method construction give rise to reductive monoids [10, 30, 33, 43]. Theorem 1.5 gives
an explicit formulae for the Fourier transform in these cases. We point out three addi-
tional reductive monoids to which the results in this paper apply. Let g, be the scheme
of 2 x 2 matrices. For F-algebras R set

X1(R) :={(A,a) € gl,(R) x R : det A = a?},
X5(R) := {(A, B) € gl5(R) : det A = det B},
X3(R) :={(A,B,C) € gl3(R) : det A = det B = det C}.

Then X; and X, are the affine closures of Braverman—Kazhdan spaces for appropriate
special orthogonal groups, hence also the affine closures of Braverman—Kazhdan spaces
associated to spin groups, and X3 is a special case of the scheme ¥ above. We point out
that X, was treated using the circle method in [18], and the Fourier transform in this case
is a special case of the Fourier transform computed in [25,31]. The functional equations
of the Langlands L-functions giving rise to these reductive monoids are already known.
However, even in the relatively simple case of § (X1 (F)) and S (X3(F)), the formulas for
the Fourier transform given by Theorems 1.5 and 1.2 (respectively) are new.

1.4. Outline of the paper

In Section 2 we state conventions regarding Schwartz spaces, quasi-characters, measures
and estimates. We recall some basic facts on Braverman—Kazhdan spaces in Section 3.
The definition of the Fourier transform on the Schwartz space of the affine closure of a
Braverman—Kazhdan space relies on operators that correspond, under the Mellin trans-
form, to multiplication by y-factors. Only the nonarchimedean case appears in the lit-
erature. Even in this case the domain and range of these operators is never elucidated.
This makes it problematic to define the composition of the operator on an explicit space
of functions. We develop a new approach to these operators that works uniformly in
the archimedean and nonarchimedean cases in Section 4. The new approach allows us
to explicitly control the domain and range of the operators and to compose them. We
expect these ideas will have applications to Fourier transforms beyond those constructed
by Braverman and Kazhdan.
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In Section 5 we give a refined definition of the Schwartz space of the affine closure of
a Braverman—Kazhdan space whenever P is a maximal parabolic subgroup of a split, sim-
ple, and simply connected G, and prove that the Fourier transform preserves this space. In
the special case where P is the Siegel parabolic of G = Sp,,,, this definition is contained
in [21]. This refinement goes beyond the work in [10], in which the Fourier transform is
only defined via a transform defined on an inexplicit dense subspace of a Hilbert space
and then extended by continuity.

In Section 6 we prove Theorem 1.5, restated as Theorem 6.5. The proof of The-
orem 1.5 requires computations of various normalizing factors which are given in
Appendix A. These computations also allow us to give an explicit description of pcifg .
This is particularly important for readers without extensive background in representation
theory who may want to apply our formula.

At this point we begin to shift our attention to the space Y. In the preparatory Sec-
tion 7, we introduce various regularized integrals we will require. We recall the definition
of the Schwartz space of Y in Section § and the indirect characterization of the Fourier
transform ¥y proved in [19]. We then prove Theorem 1.2, restated as Theorem 9.1, in
Section 9. The proof is satisfying in that we make crucial use of standard tools of Fourier
analysis including the Plancherel formula. We point out, however, that in most cases
adapting these tools to our setting is nontrivial. The unitarity of ¥y is proven in Sec-
tion 10 (see Theorem 10.1). The heuristic arguments for Theorems 9.1 and 10.1 are fairly
short, but making them rigorous requires careful analysis. Certain technical estimates are
relegated to Section 11. To aid the reader we have appended an index of notation.

2. Preliminaries

2.1. Schwartz spaces

In this paper, we will work with various types of Schwartz spaces for quasi-affine schemes
over a local field F. If X is a smooth quasi-affine scheme over F, we let

S(X(F)) :=CP(X(F))
when F' is nonarchimedean. When F' is archimedean, we define
S(X(F)) = S(Resp/r X(R))

as in [14, Remark 3.2] (this is based on previous work in [1]). Briefly, one chooses an
embedding Resr/r X(R) — R” in the category of real algebraic varieties with closed
image and then defines S(X(F)) = S(R")/I, where I < §(R") is the (closed) ideal of
functions that vanish identically on X (F). The embedding ResF/r X(R) — R” always
exists in the real algebraic category, even if X is merely quasi-affine (see [14, Sec-
tion 2.1] for references). This recovers the usual definition when X (F) = F¢ for some d.
One endows S(X(F)) with the quotient topology, which is Fréchet and nuclear. The
space S(X(F)) and its topology are independent of the choice of embedding [14,
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Lemma 3.6 (i)]. It is known [14, Theorem 3.9] that if X, is a smooth quasi-affine scheme
and X C X» is a closed subscheme, then restriction of functions induces a surjection

$(Xa2(F)) = S(X1(F)).

We will define Schwartz spaces § (X (F')) for several singular affine schemes X. They
will always be spaces of functions on X*™(F), where X*™ C X is the smooth locus. If
F is archimedean, the space § (X (F')) will always be a Fréchet space. Unfortunately, we
will not always know whether it is nuclear.

Let X and Y be quasi-affine schemes. Assuming that Schwartz spaces § (X (F)) and
S (Y(F)) have been defined, we define

S(X(F) xY(F)) := S$(X(F)) ® S(Y(F))

in the nonarchimedean case (algebraic tensor product). In the archimedean case, we define
S(X(F) x Y(F)) tobe the completed projective tensor product of S (X(F)) and S (Y (F)).
Unfortunately, we do not know if this product is independent of the choice of realization
of X x Y as a product in general. Therefore this realization will be part of the data.
We observe that if X and Y are smooth then this definition agrees with the previous
definition. This follows from [2, Corollary 2.6.3] and the fact that the Schwartz space
of a real algebraic variety and the Schwartz space of its underlying Nash manifold are
naturally isomorphic [14, Section 2.2].

2.2. Quasi-characters and the norm

Let F be a local field. We denote by | - | the number-theorist’s norm on F. Thus |- | is
the usual Euclidean norm if F = R, |z| = zZ if F = C, and if F is nonarchimedean
with ring of integers @ r and uniformizer @ then |w ~!| is the cardinality ¢ of the residue
field Of /w. For local fields F and quasi-characters y : F* — C*, we let Re(y) € R
be the unique real number such that y| - |~R¢®X) is a character (i.e. is unitary). Consider a
function f of quasi-characters. We say that it is holomorphic (resp. meromorphic) if for
all characters y, the function f(y|-|*) is holomorphic (resp. meromorphic) in s € C.

We also denote the usual norm on C by | - |. This creates the possibility of confusion
when we have chosen an identification F = C. When F is denoted by C, we use the stan-
dard norm, and when F is denoted simply F, we use the number-theorist’s norm. Thus,
for example, if X isasetand f : X — C is a function, then | f(x)| = (f(x) f(x))'/2 for
x € X. This is a standard convention adopted to lighten notation.

2.3. Measures

For local fields F, if dx denotes a Haar measure on F, then d*x := % where ¢

is the usual local zeta function. We often regard dx as a measure on the open dense
subset F* C F. We fix once and for all a nontrivial additive character ¢ : F — C*. The
measure dx will always be normalized so that it is self-dual with respect to the Fourier
transform on § (F') defined by .
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2.4. Asymptotic notation
Letg; : X — Rsp and g : X — R3¢ be functions defined on a set X. We write

g1(x) K2 g2(x),  g1(x) = O2(g2(x)) 2.1

if there is a constant Cy > 0 depending on the set ? such that g;(x) < Crg»(x) for all
X € X. We drop set symbols when denoting the set, e.g. we write C, p, instead of Cyg p).
We will also say g, dominates g1 in order to avoid repeating the phrase “is bounded by a
constant times.” If F' is archimedean and ? contains an element f of § (V(F')) (or another
topological vector space of functions), (2.1) will in addition mean that the implied con-
stant can be chosen continuously as a function of f when the other elements in ? are fixed.

3. Braverman-Kazhdan spaces

3.1. Braverman—Kazhdan spaces

Let G be a split connected simple reductive group over a field F' and let P be a maximal
parabolic subgroup with Levi decomposition P = M Np. By simple, we mean that G has
no nontrivial normal proper smooth connected subgroups. Set

Xp = PY"\G.

We refer to Xp as a Braverman—Kazhdan space; it is also known as a pre-flag variety
since it is a Gp,-torsor over the generalized flag variety P\G. This is a right M® x G-
space, where the action is given on points in an F-algebra R by

X3 (R) x M®™(R) x G(R) — Xp(R), (x,m,g)r> m 'xg. (3.1)

We point out that Braverman and Kazhdan work with G/ P %" instead.

3.2. Pliicker embeddings

Fix a maximal split torus T < M and a Borel subgroup 7 < B < P, and let A = Ag be
the corresponding set of simple roots. Then B N M is a Borel subgroup of M. Suppose
that B € A is the simple root of (G, T') associated to P; that is, Ayy = A — {8} is the
set of simple roots for the based root system of (M, M N B). Let wg € X*(T)q :=
X*(T) ®z Q be the fundamental weight of T" determined by the relation

(wp,aV) =84 p foralla € A,

where 8, g is the Kronecker §. It is not necessarily true that wg € X*(T). We let mg be
the least positive rational number such that mgwg € X*(T') and define

wp = mpwg. (3.2)

In particular, wp is denoted w in [21]. We claim that mg € Z. To see this, note that if A
is the lattice in X *(T")q spanned by the fundamental weights, one has

LeAN < (L aY)eZ
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for all simple roots o € A. Since X*(T) < A the claim now follows by pairing wp
with gV.
We leave the proof of the following lemma to the reader:

Lemma 3.1. If T is a maximal torus of a (connected) reductive F-group H, then
T N H® is a maximal torus of HY. If T is split, then so are T N H% and
T/T N H, |

Lemma 3.2. The torus M ™ is split and isomorphic to Gy,. The map M(F) — M®(F)
is surjective.

Proof. The first assertion follows from our assumption that G is a split, simple reductive
group and P is maximal, and Lemma 3.1.
For the second assertion, consider the maximal split torus 7" < M. The intersection
T N M9 is a split torus by Lemma 3.1, and the restriction of the map M — M® to T is
the quotient map
T — T/(T N M®) = M,

Since T N M % is a split torus, this map is surjective on F-points by Hilbert’s theorem 90
and we deduce the lemma. ]

Corollary 3.3. The map G(F) — Xp (F) is surjective.

Proof. Consider the commutative diagram

G(F) —2— X3(F)
& l@
(P\G)(F)

where the g; are the canonical quotient maps. The map ¢35 is surjective [6, Théoreme 4.13].
For y € (P\G)(F), choose g € G(F) such that ¢3(g) = y. Set x = q1(g). Since M
is a split torus by Lemma 3.2, ¢5 ' (y) is an M®(F)-torsor. In other words,

a5 ' (y) ={tx 1 € M™(F)} = {g1(mg) : m € M(F)}

since M(F) — M®™(F) is surjective by Lemma 3.2. Thus ¢5'(y) is in the image of ¢;
forall y € (P\G)(F). |

Let Vp be the right representation of G of highest weight —wp. We remind the reader
that for a right representation, the character of a highest weight vector is anti-dominant,
explaining why the highest weight is —wp . Fix a highest weight vector vp € Vp(F).

Lemma 3.4. The derived subgroup P is the stabilizer of vp, so that the map Pl :=
Ply, : Xp — Vp induced by

G(R) = Vp(R), g+ vpg.
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maps X p, isomorphically onto the orbit of vp under G. The map wp, originally a char-
acter of T, extends to a character of M, and the induced map

wp : M® > G,
is an isomorphism. For m € M™(R), one has
Pl(m~'g) = wp (m)PI(g). (3.3)

Proof. Tt is well-known that P is the stabilizer of the line spanned by vp (this follows
from the discussion in [5, Section 24.4]), and thus this line is a one-dimensional represen-
tation of P. We deduce that —wp extends from 7" to a character of P, and P acts via the
character —wp on the line, and hence the stabilizer of vp contains P %,

Since P = MY Np | to prove that Pder i the full stabilizer, it suffices to check that
wp : M*® — G, is an isomorphism. Upon choosing an isomorphism M® =~ G, we see
that wp is given on points by x — x" for some nonzero n € Z. Then wp/n € X*(T).
By our choice of wp, we deduce n = %1 and wp is an isomorphism. The equivariance
property (3.3) of Pl is now clear. ]

Consider the affine closure
° —oaff
Xp ;= Spec(F[Xp]) = Xp .

The scheme Xp is of finite type over F and the natural map Xy — Xp is an open immer-
sion [8, Theorem 1.1.2]. We will actually not require any properties of Xp in this paper,
but the fact that it has simple singularities provides good intuition for the Schwartz spaces
we define later. Therefore we recall the following theorem (see [50, Theorems 1 and 2]):

Theorem 3.5. The embedding P1: Xy — Vp extends to a closed immersion P1: Xp — Vp.
The closed subscheme Xp — Xp, is a point and it is mapped under P1 to 0. ]

Let PP be the parabolic subgroup opposite to P so that P N P® = M. Let V' be
the representation of G dual to Vp and let v}, € V' (F) be the lowest weight vector
of V' (F) dual to vp. We then have an embedding Plv;op : Xpop =V, induced by

G(R) = VP (R), g+ Vpwg.

Let (-, -) be the canonical pairing of Vp and V. Consider the G-equivariant pairing
given on F-algebras R by

()P : Xp(R) X Xpop(R) = R, (x,x™) > (Ply, (x),Plv;kmp (x™)). (34)

If we replace vp by any other highest weight vector v}, then v}, = tvp for some t € F*.
Thus the dual vector of v}, is t_lv;‘,(,p. It follows that (-, -) p|por is independent of the
choice of vp.
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3.3. Relation to induced representations

We now assume F is a local field. The space $(Xp(F)), equipped with the M (F)-
action induced by (3.1), can be thought of as a universal (degenerate) principal series
representation.

For a quasi-character y : F* — C*, let

G(F T T G(F
10 = Ip(x) == Indgp) (Yo wp). T(x):=Tpw(x) :=Indgesp (x o wp) (3.5)

be the normalized inductions in the category of smooth representations. Let §p be the
modular character of P. We define Mellin transforms

$(Xp(F)) = 1(x).
f = SO = frr() :Z/ 82 (m) x(wp (m)) f (m™"") dm,
Mab(F)
$(Xpw (F)) = 1(2),

£ 120 = Fh) = [

Spa(m)y(wp(m)) f(m™ "y dm. (3.6)
M®(F)

Here dm is the Haar measure on M (F) obtained from the isomorphism wp : M*®(F)
— F* and the Haar measure d *x on F* by our convention in Section 2.3. In the notation
Ipor(y) and f; I},op, the bar and the superscript “op” indicate that we are inducing from
x o wp instead of y o wpop.

We use the same notation for extensions of the Mellin transform to larger subsets of
C®(Xp(F)) and C*®°(Xp,(F)), when in general the integrals defining f5, Sy only
exist for Re(y) in a proper subset of R, and in some cases will be extended to larger
complex domains by analytic continuation.

Let A < B be extended real numbers (we allow A = —oo and B = o0) and let

Vap:={s € C: A <Re(s) < B}. (3.7)

For quasi-characters y of F* ands € C, let y5 := y|-|°. Assume F is archimedean. We
say that a section f(y)® € I(yy) is holomorphic (resp. meromorphic) in V4 p if for all

g € G(F) and (unitary) characters y of F*, the function

Vag —C, s (0%, (3.8)

is holomorphic (resp. meromorphic). In the nonarchimedean case, we say that a section
f(0® € I(ys) is holomorphic (resp. meromorphic) if for all g € G(F) and characters
yof F*,(3.8)isin Clg™*, ¢°] (resp. C(¢~*, q%)).

|S

4. Twisting by abelian y-factors

For the remainder of the paper, F denotes a local field. As discussed in Section 5.3 below,
the definition of the Fourier transform Fp|po involves normalization operators Ay(iis)
which correspond, under the Mellin transform, to multiplication by y(—s, w0 (see
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Lemma 4.3). Here and below, y(s, x, ¥) denotes the usual Tate y-factor attached to a
complex number s, a quasi-character y : F* — C*, and the additive character . The
operators A;(js) were previously defined in [10] and an exposition is given in [43]. The
approach of [10] is inconvenient in the sense that each operator is only defined on an
inexplicit subspace of §(Xp(F)) that is dense in L?(Xp(F)). Thus as one composes
operators, one loses control of their domain and range. Moreover, the operators are only
defined in the nonarchimedean case in [10].

In this section we set up a general theory of the operators A;(us) that is applicable
uniformly in the archimedean and nonarchimedean settings. We also explain how to con-
trol their domain and range. This is quite delicate. In particular, to construct the Fourier
transform, the normalizing operators A;(js) have to be composed in a particular order.
This motivates the definition of a good ordering in Definition 4.9 below. Essentially the
situation is as follows: to compose the operators A1(js), we require the domain of abso-
lute convergence of certain Tate integrals to overlap. This is only possible if we arrange
the operators in a particular order.

Remark 4.1. This difficulty was also encountered in the nonarchimedean setting in a
special case in [30]. They overcame it by packaging all the normalizing operators together
and relating them to transforms coming from prehomogeneous vector spaces. We do not
know if their method can be used to obtain an explicit formula for the Fourier transform,
or if it can be applied in the generality considered here.

For A € Z and s € C, we define a linear map
M) : S(Xpun(F)) = C=(Xpun(F) (.1
by
dm
¢y
This was denoted A, (nfp) in [10]. In loc. cit. a measure is incorporated into the distribution;
this is why our formula looks different.

‘We work with X ;op here to be consistent with our notation later on, when these oper-
ators are applied after the operator Rp|por of (5.2). Of course in the formula for (4.2)
we could write everything in terms of P or P°P by taking appropriate inverses. We have
written it in the form above to remind the reader that f is a function on Xp.,(F), but
the normalizing factors A and s we will use in our case of primary interest are defined in
terms of P (see Section 4.1 below).

To extend the domain of definition of A;(us), choose ® € §(F) such that $(0) = 1

and € CX°(F). Here &D(x) = fF ®(y)¥(xy) dx is the Fourier transform of ®. For
continuous functions f : Xp,,(F) — C, we define the regularized integral

Ar(ps) 8 (f)(x)
wp (m)

= Ibl\i—r>noo Mab(F)CD( b )w(wP(m))|wp(m)|s+15%§(m)f(m_1x)

BN = [ oremopem 5 o 42

dm

c(1y

4.3)
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We say this integral is well-defined if

Lo 1915 or @ sz ot dm @)
Mab(F)

is finite for |b| sufficiently large, and the limit in the definition of Ay(ws)™8( f)(x) exists

and is independent of .

Lemma 4.2. If the integral defining A(ius)(f) is absolutely convergent, then
M(us) 5 (f) = Ai(ps) (f).

In particular, this equality holds whenever f € §(Xp., (F)). |

To avoid more proliferation of notation, we will drop the “reg” from notation. Lemma
4.2 shows this is harmless, as it implies that the two integrals yield the same result when
both are well-defined.

Lemma 4.3. Assume that f € I(x) and Re(s) + 1 — ARe(y) > 0. The function
Av(ps) (f)(x)
is well-defined and equal to y(—s, y*, ) f(x).

Proof. Since Re(s) + 1 — ARe(y) > 0, (4.4) is finite for all ». By the functional equation
of Tate zeta functions, we have

/ @(w”( ))w(wP(m)NwP(m)w“ “(wp (m)) £ (x) L
M(F) ¢(1)

— y(—g. o* L -
st s [ ([ oG )roronda)sim i

Using our assumption that ®(0) = 1, we have

im 161 [ ([ o0wi—mar)orio 55

|b]—>00 é'(l)
= Jim bl [ @00 -0 5
= lim [ ®()|1—y/bI7 'y (1 —y/b)dy
|bl>oco JF
=1. 4.5)

Here for small |b| the integral may diverge, but since decC 2°(F), the integral converges
for |b| sufficiently large. |

Now consider a graded G,-representation L = P, ; L; for some finite index set /.
We assume that each L; is 1-dimensional and that G, acts via a character A; on L;. We
identify X*(G,,) with Z by taking the identity character to 1, so we can speak of positive
or negative characters. We assume that each character A; is nonzero and assign to each L;
a real number s;.
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We then have linear maps
Air(ps;) 2 S(Xpop (F)) = C¥(Xpop (F)) (4.6)

for each i € I. Following [10], we wish to compose these linear maps to give a single
transform

pL 2 S(Xpow(F)) = C*(Xpo(F))

associated to the Gy,-module L and the data {(s;, ;) e Rx Z :i € I}.

It is convenient (and perhaps necessary) to extend the work in [10] by elucidating the
domain and range of these operators. We proceed as in [21], which borrows from [29].
Let

ar(x) == [ [ L(=si, ™). (4.7)
iel

We introduce extended real numbers A(L), B(L) as follows:

A(L) = max {s;/A; :i € I, A; >0} ifA; >.0 for some i,
—00 otherwise,

B(L) = min{s; /A; :i € I, A; <0} ifA; <.0 for some i, “8)
00 otherwise.

Assume that A(L) < B(L).
Lemma 4.4. The function ay,(x) has no poles for A(L) < Re(y) < B(L). |
We now define the space
8L :=8L(Xpwr(F)) < C®(Xpop(F)). (4.9)

When F is nonarchimedean, we define §; to be the space of smooth functions f :
Xpop(F) — C that are finite under a maximal compact subgroup of G(F) and satisfy
the following additional condition: the integral defining f; f is absolutely convergent for
A(L) < Re(s) < B(L) and fy* (x)/ar(xs) lies in C[g*, ¢°] for each x € X3, (F) and
all (unitary) characters y : F* — C*.

When F is archimedean, we require a bit more notation. Let I?Gm be the set of char-
acters of the maximal compact subgroup K¢, of F*. Thus, setting

z

u(z) = W’

where we use the positive square root, we have

(4.10)

IeGm - {Ma .o € {0, 1} if F is real }

a € 7 if F is complex

For real numbers A < B, p € C[s], and meromorphic functions ¢ : C — C, we let

|¢la,B.p := sup [p(s)P(s)] (4.11)

seVa. B
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where V4, g is defined as in (3.7). Consider the Lie algebra
m® @ g := Lie(M®(F) x G(F)). (4.12)

It acts on C*°(Xp,, (F)) via the differential of the action (3.1) and hence we obtain an
action of U(m® @ g), the universal enveloping algebra of (m® @ q)c (here we view
m® @ g as a real Lie algebra).

We let §; be the space of smooth functions f : Xp,,(F) — C such that for all
n e I?Gm and all D € U(m™ @ q), the integral defining (D. f)y: (x) converges abso-
lutely for all A(L) < Re(s) < B(L), and admits a meromorphic continuation to the plane
such that

(1) forall A < B,

(2) all polynomials p € C[s] such that p(s)ar(ns) has no polesin V4 p forall n € EG,,,,
(3) all compact subsets 2 C X p,(F),

@) all D € Um™ @ g),

one has
|flaspep = Y. sup|(D.f)P ()45, < oo (4.13)

- xXEN
N€EKG,

This collection of seminorms gives §;, the structure of a Fréchet space by the same argu-
ment as in [19, Lemma 3.2].

In all cases, this definition allows us to recover analytic properties of f from its Mellin
transforms via Mellin inversion. More specifically, let I€Gm be a set of representatives for
the characters of F* modulo the equivalence relation

|** for some ¢ € R.

X1~ x2 ifandonlyif y; = yo|-
The set of equivalence classes can be identified with the set of characters of the maximal
compact subgroup K¢, < F*, which explains the notation. In the archimedean case
we always use the representatives given by (4.10). Let k € R (depending on y) be
chosen so that «dx is the standard Haar measure on F. Here the standard Haar measure
is the Lebesgue measure if F = R, twice the Lebesgue measure if F = C, and satisfies
kdx(OF) = |d]'/? where b is a generator for the absolute different of @ when F is
nonarchimedean. We then let

[-iZ.Z] if F is nonarchimedean,
Ip = 0gq " logq (4.14)
R if F is archimedean,
and
klogg if F is nonarchimedean,
CFi=14% if F =R,
5= if F=C.
Suppose A(L) <o < B(L). Then ay,(ys) has no poles for any character y and any s with
Re(s) = o.
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We fix now a maximal compact subgroup K < G(F) such that the Iwasawa decom-
position
P(F)K = G(F) (4.15)
holds. The following is a version of Mellin inversion (see [21, Lemma 4.3], [15, Theo-
rem 4.32], [4, (2.2)]):

Lemma 4.5. Let f € C®(Xpo,(F)) and assume for all n € ﬁ@m the integral defining
Jo? is absolutely convergent for Re(s) = o. Suppose moreover that for all x € X pop (F)

one has

> / | /2P (x)| ds < oc.

r]EK(G,m

Then for all x € X po, (F) one has
d

fo= Y [ JAIE) e (4.16)
~ Joiry " 2mi
n€EKG,

Moreover, f is K-finite if and only if the sum over 1 has support in a finite set independent

of x.
Conversely, suppose that we are given continuous f(7)® € I(ns) for all s with
Re(s) = o and all n € Kg,, and that

> [ O mlds < oo

~ o+ilfp
n€EKG,

2mi
forall x € Xp.,(F). Assume moreover in the nonarchimedean case that f (r;)(s Fioga) =

f(n)(s). Define
— (S) CFdS
£ - n;ze@: / LA

If the integral defining f,,s is absolutely convergent for all n € KG and s withRe(s) = o

m

then fy, P — f(n)(s) [

The lemma implies in particular that (4.16) holds for f € Sy and A(L) <o < B(L).
As an immediate consequence of Mellin inversion (4.16), we deduce the following
estimate for functions in Sz,:

Lemma 4.6. Assume € > 0 is chosen so that A(L) + ¢ < B(L) — ¢, and let Q C Xpop (F)
be a compact subset. For each f € 8y and (m,x) € M®(F) x Q, one has an estimate

| f(mx)| Ka. e Spet(m) min(|lop (m)| AL+ |wp (m)| BD=#),

Here when A(L) = —oo we interpret A(L) + & as any negative real number A, and when
B(L) = oo we interpret B(L) — ¢ as any positive real number B. In these cases, the
implied constant depends on A and B. ]

We now use this to give a criterion for when the regularized integral is the usual
integral:
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Lemma 4.7. Assume A > 0and let s € C. If

A(L) < % < B(L),

then the integral defining Ay(us)(f) is absolutely convergent for f € Sy.
Proof. Substituting the bounds from Lemma 4.6, it suffices to observe that
/ |t |Re(s)+1 min(|t|_MA(L)+8), |[|—)L(B(L)—e))dx[
FX
is convergent for ¢ > 0 sufficiently small. Here when A(L) = —oo or B(L) = oo, we
interpret A(L) + € and B(L) — ¢ as in Lemma 4.6. [

For each i, let

L; 4.17)

be Ll\", the one-dimensional vector space on which G, acts via —A;. We assign the real
number —1 — s; to L;. If —oo < A(L), choose Ly such that A(L) = si/Ax, and define

L = Zk (S @Li.
i#k
Since we have assumed A(L) < B(L), we have
AL < A(L) < B(L) < B(L), (4.18)

SO
(A(L), B(L)) N (A(L"), B(L")) = (A(L), B(L))) # 0. (4.19)

Using this observation, we prove the following proposition:
Proposition 4.8. For —oo < A(L) < Re(y) < B(L'), there is a commutative diagram

Arr(iesy )
SL k! sy SL/

(~)}"l lc);’f

I() —— I(y)

where the bottom arrow is multiplication by y(—sk, x*, ) and the vertical arrows are
f = f;p. In particular, the regularized integral Ak (is, ) is well-defined on Si..

Proof. Let f € 8§, and x € Xp,,(F). By Lemma 4.6, for any & > 0 we have

wp (m) SpH1 oAk /2 o dm
/Mab(F) |d)|( b )|CUP(m)| SP(,p m)| f(m x) 0

<<fsx/ |q>|(£)|[|sk+l_/lk(A(L)+£)dxt,
T JEx b

which is finite for any b when ¢ is sufficiently small.
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We claim that

Akt (s ) () ()
L wp (m) sk+H1ghe /2 —2
= im [ o 25w wranlor )l o s £
converges and is equal to
ds
no= 3 [ ks e 0TS (4.20)

nEEGm
for
A(L) <o < B(L").
Before proving the claim, it is convenient to study /(x). By standard properties of the
Tate y-factor, we have

yies = s ) fof g(s. . ¥) for
ar(ns) ar(ns)
where g(s, n, ¥) lies in C[g~*, ¢°] in the nonarchimedean case and is holomorphic and
bounded in V4, p for all —oo < A < B < oo by a constant independent of n when F
is archimedean. Thus the expression defining 4 (x) is absolutely convergent for A(L) <
o < B(L’) since ay/(n5) has no poles in this range (see (4.19)). Here when F is nonar-
chimedean, we have used the fact that functions in §; are finite under a maximal com-
pact subgroup of G(F) and hence the sum over 7 in (4.20) has finite support. In the
archimedean case we have used the fact that y(Ars — sk, 7%, ¥) is bounded by a poly-
nomial in s independent of 7 for A(L) < Re(s) < B(L’) (see [21, proof of Lemma 3.3]).
Let A(L) <o < B(L')and x € Xp,,(F). We claim the integral

, 4.21)

/ $42(m) wp (m)|° [h](m ™" x) dm
Mab(F)

/1;4:1b(1:‘) neme i

[ 0 @y Gao + s = s v £32, (v

4.22)

is convergent. This implies in particular that 45, is well-defined for A(L) < o < B(L').
If F is nonarchimedean, it suffices to fix 1 € KGm and show

/ (1)~ @ ()Y Ok + s — s 1) 122, (022 < o,
MadFY il
Since 7 is a character, it suffices to show
S| @ rouo + dus— st n e (4.23)
F

neZ

This is nothing but the £'-norm of the Fourier transform of the smooth function

R/

2é’qZ—><C, s > y(Ako + Akis — se. 17 ¥) s ().

lo,
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Hence (4.23) is valid by a standard integration by parts argument. In the archimedean
case the proof that (4.22) converges is similar. One uses the fact that f € §; and that
Y(Aks — sg, ™%, ¥) is bounded by a polynomial in s independent of 7 for A(L) < Re(s)
< B(L’) as mentioned above.

We conclude that Ay = y(Ags — sk, k¥ fa? by Mellin inversion, specifically
the converse statement in Lemma 4.5. Using (4.21) (and its analogues with f and h
replaced by various derivatives in the archimedean setting) we also deduce that 4 € Sp/.
Thus we can conclude the commutativity of the diagram upon verifying our claim that
Akt (s ) (f) (x) is equal to A(x).

Observe that the convergence in (4.5) is uniform in Re(s), Re(y), A in a compact set.
Therefore, we can reverse the proof of Lemma 4.3 and deduce that (4.20) is equal to the
limit as |b| — co of

S [ vus s

7 d
X(/FX(/F q’(%)l/f(l)l/f(yt)dt)lylSkns(y*k)dx )f ()CF s

ortm) »
ne;@ L+iIF ([Mab(p) ( b w(a)P (m))|(l)P (m)l

' X ne(@p (m) ) £ (x )m)” 95 424

Moreover, the expression

S o, e
= o+ilp JM®(F)

'] € KG]]]

|fn‘1?(x)’ dmds

(“552 top @l as(p ()

is finite. Indeed, the inner integral is bounded independently of 1 and s since we have

assumed o0 < B(L') and
3 / |£2P()] ds

r]EKGm
is finite by definition of Sz, since ar (1) has no poles for A(L) < Re(s) < B(L').
Therefore, we can rearrange the order of integration in (4.24) and arrive at

[y (255 ) vnaloponps 163
Mab(F)
(2]

B wp(m) sp+1eAk/2 k) 20
‘/Mabm@( b‘)‘”“"”(m”"””(m)' i/ )5(1)

Here in the last step we have used Mellin inversion (Lemma 4.5), which is valid by def-
inition of §; because A(L) < o < B(L’). This completes the proof of our claim that
A (s, ) (f ) (x) is equal to /2(x). u

Ak cpds\ dm
o) 1

+ilp
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Definition 4.9. Let L = D,.; L; and {(si, A;)}ier be as above. Assume A; > 0 for
alli. A good ordering of {L;} is a bijection I —> {1, ...k} for some k, such that after
identifying I with {1,..., k} via the bijection one has

Si+1 _ S :
— > — forl <i<k-1. 4.25)
Aig1 T A

We also refer to a good ordering of {L;} as a good ordering of {(s;, A;)}ier. We
henceforth assume that A; > 0 for all i and {L;} is equipped with a good ordering (it is
easy to see it exists). In particular, we use the good ordering to identify I and {1, ..., k}.

For 0 <i < k, we define

L= @ L)e( @ L)
1<j<k—i k—i<j<k

Note that L = L(0), and set
L := L(k).

Under assumption (4.25), for each 1 <i < k one has

. ' . . Lts: . . 14s;
ALG) = fi=t < BILG+ D)= min 52 < BLM) = min 5

and

(A(L), B(L)) = (5-,00) and (A(L), B(L)) = (—oo, min, L),

In particular, for each 0 <i < k we have A(L(i)) < B(L(i)), so Proposition 4.8 implies
the map

Ak—in (Msr—;) 2 SLG)y = SLi+1)

is well-defined. Thus we define
pr = An(ps,) o0 Ap(ps,) - L — Sp (4.26)

as an iterated composition. Define

k

pe (o = [ r=si. 9. (4.27)

i=1

Corollary 4.10. One has a commutative diagram

S, ——— 7

(~)§;’l lc);’;’

I(x) — I(p

where the bottom arrow is multiplication by g, ().
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Some care is needed in interpreting the commutativity of this diagram. Indeed, for
general elements of Sz, the half-planes of absolute convergence of fy" and ur(f)y
may be disjoint. Thus, the identity wr (x) fy© = pr(f)y (for f € S1) asserted by the
corollary must be understood in the sense of meromorphic continuation.

Proof of Corollary 4.10. Suppose that A(L(i)) < Re(y) < B(L(i + 1)) and consider the
diagram in Proposition 4.8 in the special case L = L(i). Using the string of inequalities
(4.18) we see that both vertical arrows in Proposition 4.8 are given by absolutely conver-
gent integrals. The diagram in Proposition 4.8 continues to commute for arbitrary Re(y)
if interpreted in the sense of meromorphic continuation. In other words, forall 0 <i < k
and arbitrary y, we have an identity of meromorphic functions

Y (=Sk—is X ) [P = Amint (s ) (F)F

for f € S1). The corollary follows. L

4.1. Braverman and Kazhdan’s graded representation

We now recall the graded representation L identified by Braverman and Kazhdan, restrict-
ing our attention to the case of a fixed maximal parabolic P containing M and its oppo-
site P°P. We use fraktur letters to denote Lie algebras and ~ to denote the complex-
algebraic dual groups and dual Lie algebras. We have embeddings of Lie algebras

ip > P — Q.

Let {e,h, f} be a principal s[,-triple in 1i1; it defines an embedding [, — 1. The adjoint
action of fit on Tip restricts to an action of sl on fip, and we let 1%, denote the space of
highest weight vectors.

Recall our fixed isomorphism

wp : M = Gp.
This induces a dual isomorphism
G > M = Z(M), (4.28)

where Z (]\71 ) is the center of M . Thus we obtain a G-action on 1% Setting

= Q¢ = @ Li, (4.29)

we let A; be the G,-character and s; be % times the /-eigenvalue on the line L;.

Lemma 4.11. For each L; as above, s; is nonnegative and A; is positive.

Proof. The s; are all % times the h-eigenvalue of a highest weight vector of an sl,-
representation and hence are nonnegative. The A; are all positive by Lemma A.1. ]
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We define
pp =pr 8L —> Sy and  wp(y) = puL(x) (4.30)

for the choice of L given in (4.29). Here uy () is defined as in (4.26).

4.2. Switching to the opposite parabolic

In Corollary 6.6 we will switch between P and P °P for self-associate parabolic subgroups.
This requires care regarding signs. We choose a principal sl,-triple {e, &, f} as above and
consider L% = (fipo)¢. We claim that

L = @Lf", (4.31)

iel

where Gy, and % act on L;’p via A; and 2s;, respectively. Indeed, the sl,(C) x Z (1\71 )-
representations fip and fipor are dual. Thus as representations of s[,(C) they have the
same highest weights. Since the parameters A are defined using (4.28), we deduce the
claim from the observation that wp = w}_,gp.

4.3. The Lagrangian Grassmannian

As an example, let Sp,,, denote the symplectic group on a 2n-dimensional vector space
and let P < Sp,, and M < P denote the Siegel parabolic and Levi subgroup, respectively.
Specifically, for Z-algebras R, set

Span(R) := {g € GL2x(R) : g’ (_In ’”)g = (_,n ’)}
M(R):={(* ;=) : A€ GL,(R)} .
NR) :={(" £):Z egl,(R). 2" = Z},
and P = MN. We have
wp:M(R)— R*, (" ,-) > detm,
g = s02,+1, and u = gl,. Moreover, as a representation of nt,
fip = Ve ® A* Vi

where V;, is the standard representation of gl,. We use the standard principal s[,-triple
in gl,,. Concretely it is the image of [, under Sym”~!. The space % is just the direct
sum of the highest weight spaces of the sl,-representation

L(n—2)/2]
Symn—l(CZ) ® /\2 Symn—l(CZ) o~ Symn—l ((CZ) ® @ SymZ(n—Z)—4j ((CZ)
Jj=0
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Here we have used some well-known plethysms (see Lemma A.6 below). Then

(Sr,Ar) =M +2r—=2|n/2]1—=2,2) forl <r <|n/2],
(Stn/2)+1> An/2)+1) = ("2;1 1)-
This is a good ordering.
We observe that

an, (s, x) =az((xs)™") and  aw,(s, x) = ar(xs) (4.32)

in the notation of [21, Section 3].

5. The Schwartz space of the affine closure of a Braverman—Kazhdan space

Throughout this section we assume that our simple group G is simply connected so that
we can apply the results of [10]. Braverman and Kazhdan originally defined operators
Fpor|p via a series of integral operators on an inexplicit subspace of § (X p,, (F')), proved
that the operators extended to unitary operators on L?(X pop (F)), and then proposed the
following definition:

Definition 5.1. The BK-Schwartz space Spg (Xp (F)) is defined as the sum
Sr(Xp(F)) = S(Xp(F)) + Fpoo|p (S (Xpop(F))).

Here the sum is taken in L?(Xp (F)). We point out that Fpop|p (S (Xpop (F))) means
that we apply the L2-extension of Fpo|p to §(X pop(I7)). It is far from obvious that the
integral operators defining Fpop|p converge when applied to elements of $ (X p,,(F)). In
fact, this is not known in general; see Section 5.4 below.

Remark 5.2. Braverman and Kazhdan only state this definition in the nonarchimedean
case, but the extension to the archimedean case is natural and was suggested to the first
author by Kazhdan.

In [21] the first author and Liu refined Braverman and Kazhdan’s definition when
G = Sp,, and P is the Siegel parabolic, and gave explicit spaces of functions that are
mapped to each other under the Fourier transform. We do the same for Braverman—
Kazhdan spaces attached to simple groups G and maximal parabolic subgroups P < G
in this section. This goes beyond the work of Braverman and Kazhdan in that it allows us
to isolate an explicit subspace on which our formulae for the Fourier transforms given in
Section 6 are valid.

5.1. Measures redux

Thus far we have only made use of Haar measures dx and d*x on F and F* related as
in Section 2.3. In order to study the Schwartz space and the Fourier transform, we require
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right G(F)-invariant measures on X p (F), Xp.,(F'), and choices of Haar measures on
Np (F) and Npo (F). First, we fix a Haar measure on M (F). We give M %"(F) the unique
measure such that wp : M/M%(F) = F* is measure preserving.
Recall that we fixed a split maximal torus 7 < M and a Borel subgroup7 < B < P
in Section 3.2. Let
®:g—g

be the opposite involution attached to t (here we follow the conventions of [36, Sec-
tion 23.h]). Fix a Chevalley basis of the Lie algebra of G with respect to the Lie algebra
of T. For all roots «, this gives us vectors X, in the root space of « that satisfy X_, =
—0O(Xgy) [36, Section 23.h], and provides us with isomorphisms

G, — Ny

where N, < G is the root subgroup of «. We use this to endow each N, (F) with the
measure dx by transport of structure, which in turn gives rise to Haar measures on Np (F)
and Npop (F). This is the same normalization as in [32]. The motivation for this choice of
measures is to make factorization of intertwining operators valid.

Now we normalize the right G (F')-invariant measures on Xp (F) and Xp.,(F). By
the Bruhat decomposition, one has an injection

M®™(F) x Npo(F) — Xp(F), (m,u) > P*(F)mu,

with Zariski open and dense image (hence, of full measure). We can and do normalize the
right G(F)-invariant nonnegative Radon measure dx on Xp, (F) so that
Spo dmd
d(mu) = M. (5.1
¢(1)
Similarly, we normalize the right G(F)-invariant nonnegative Radon measure dx on
X pop (F) so that
) dmd
d(mu) = Sp(m)dmdu
¢

for (m,u) € M®(F) x Np(F).

5.2. The Schwartz space

For functions f € C*®(Xp(F)) and x = Porder(Fyg ¢ Xpop(F), we define the unnor-
malized intertwining operator

Rpipon(f)(x) = /

Npop(F)

FPY (Fyug) du = / fug)du  (5.2)

Npop(F)

whenever this integral is absolutely convergent (or obtained via some regularization pro-
cedure). We refer to Rp|por as a Radon transform, as it is a generalization of the classical
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Radon transform [10, Section 2.9]. That this agrees with the operator defined by Braver-
man and Kazhdan is proved in [43, Section 5]. For example, we have maps

Rpiper 1 S(Xp(F)) = CZ(Xpop(F))
and :
Rpipor 2 1(xs) = 1(xs)

for Re(s) sufficiently large that may be extended meromorphically to C [52, Sections
10.1.2, 10.1.6] [51, Theorem IV.1.1]. For notational convenience, we write

Rpip : CZ(Xp(F)) — CZ(Xp(F))

for the identity operator.
Let L be the graded G,-representation associated to P in Section 4.1 and let {(s;, A;)}
be a good ordering of L. For quasi-characters y : F* — C*, we set

apip(x) :=az(x~") and ap|pw(y) :=ar(y). (5.3)

Bearing in mind the discussion in Section 4.2, the definition (5.3) implies

app(x) = apojpe(x) and apipor()) = apor|p (). (5.4)
Lemma 5.3. The function ap|p () is holomorphic for Re(y) > 0.

Proof. Tt suffices to show that s; + 1 > 0 and A; > 0 for all L;. This follows from Lemma
4.11. [

Fix now a character y and recall that y; = y| - |* fors € C. A section () of I(xs)
is good if it is meromorphic, and if for Q € {P, P°P} the sections

_, Reiof (0N®(g)

5.5
ario (1) -3

of I(ys) and I () are holomorphic for all g € G(F).

Definition 5.4. Assume F is nonarchimedean. The Schwartz space S (Xp (F)) is defined
to be the space of right K-finite functions f € C°°(Xp (F)) such that for each g € G(F)
and each character y of F*, the integral (3.6) defining f,(g) is absolutely convergent
for Re(s) large enough and defines a good section.

For F archimedean, recall we have an action of U(m® @ g) on C ®(Xp(F)) via the
differential of (3.1).

Definition 5.5. Assume F' is archimedean. The Schwartz space S(Xp (F)) is defined to
be the space of functions € C*°(Xp (F)) such that for all D € Um® @ q), g € G(F),
and each character y of F*, the integral (3.6) defining (D. f),, (g) is absolutely conver-
gent for Re(s) large enough, defines a good section, and satisfies the following condition:
For all real numbers A < B, Q € {P, P°?}, any polynomial pp|g € C[s] such that
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pprlo(s)apo(ns) has no poles for all (s,n) € Vy,p X I%Gm, and compact subsets Q C
Xp (F) one has

| fla.B.ppio.2.D = Z sup |Rpo(D. [, (&)|a,B,pp o < 00 (5.6)

~ g€
r]GKGm

To understand this definition, it is useful to point out that it is indeed possible to choose
pp|o (independently of 1) that satisfy the given assumptions. This follows directly from
the definition of the ap|g(ns). We also observe that the | - [4,8,p,o.2,p are seminorms
and they give § (Xp (F)) the structure of a Fréchet space by essentially the same argument
proving [19, Lemma 3.2].

Remark 5.6. Note that f;‘}, = fy-1, p. Using this observation and the discussion in
Section 4.2 we see that $(Xp(F)) < §7(Xp(F)).

For any F, the action of M®(F) x G(F) on Xp (F) induces a smooth action on
S§(Xp(F)) (in either the archimedean or nonarchimedean setting). In the archimedean
setting, this action is continuous in the Fréchet topology of § (Xp (F')).

In the special case of the Siegel parabolic subgroup of G = Sp,,,, a slight variant of
this space was introduced in [19]. Their definition generalized and slightly modified the
K-finite Schwartz space S (X (F), K) introduced in [21]. To compare our definition with
the one given in [19], we use (4.32) and observe that we have not applied a Weyl element
to turn P°P into a standard parabolic.

The elements of the Schwartz space are well-behaved analytically. They can be
bounded in an intuitive manner using the Pliicker embedding. Let

Pl: Xp — Vp

be the Pliicker embedding defined by a choice of highest weight vector vp as in
Lemma 3.4. Choose a norm | - | on Vp (F) that is invariant under K and let

[-]: Xp(F) = Rso, x> [Pl(x)[;

here, K is chosen as in (4.15). Replacing vp by tvp fort € F* multiplies this norm by |¢].
Let r € Q¢ be such that
|a)p |r = 8p .

Note that our assumption that G is simply connected implies that r € Z~; indeed, we
compute this value in Proposition 6.2 below.

Lemma 5.7. Assume o > 0 is sufficiently small. Let f € §(Xp(F)). When F is nonar-
chimedean, f(x) vanishes for |x| sufficiently large and

|FGO] <o 6] 7772
When F is archimedean, for all N € Z s one has
| fCO] = vna ()72 max(1, x) ™

where vy q is a continuous seminorm on §(Xp (F)).
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Proof. Write x = PY"(F)mk withm € M®(F) and k € K. By definition of § (Xp (F))
and Mellin inversion (4.16), we have

d
o =am X[ nerom) k05 57)

~ o+ilfp
nekKg,,

provided that there are no poles of ap|p (15) for Re(s) > 0. Moreover, the sum and integral
converge absolutely. Therefore to prove the bounds for |x| < 1 in the archimedean case
and for all x in the nonarchimedean case it suffices to recall ap|p (75) has no poles for
Re(s) > 0 by Lemma 5.3.

The support assertion in the nonarchimedean case follows as in [21, Lemma 5.1]. The
bound for |x| >> 1 in the archimedean case follows as in [19, Lemma 3.5]. (]

As Xp(F) is open and dense in Xp(F), we can and do extend the right G(F)-
invariant Radon measure on X (F) by zero to Xp (F).

Corollary 5.8. One has $(Xp(F)) < L>(Xp(F)) N LY (Xp(F)).

Proof. This follows from Lemma 5.7 and the Iwasawa decomposition. ]

5.3. The Fourier transform

Braverman and Kazhdan [10] prove that the Fourier transform
.(Fp|Pop = up ORP‘POP (58)

is well-defined on a subspace of §(Xp (F)) that is dense in L?(Xp(F)) and defines an
isometry
Fpipor : L2(Xp(F)) — L*(Xpor(F)). (5.9)

They also prove that
$P|P0pO$P0p|P :Id (510)

In this subsection we use the results of the previous subsections to refine Fp|por to an
isomorphism between § (Xp (F)) and § (Xpop (F)).

Lemma 5.9. One has a commutative diagram

P|POP

S(Xp(F)) 2% s,

ml l(-)‘;}"

eR[)l[)()p

() —— 1(n
for Re(y) sufficiently large.

Proof. For g € G(F) consider the integral

f / 857 (m) | 11 (@p ()| f |(m™ ug) dm du. (5.11)
Npop(F) M (F)
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The inner integral converges and defines an element of /(| y|) for Re(}) sufficiently large
by definition of § (Xp(F)), and the outer integral converges for Re(y) sufficiently large
[52, Lemma 10.1.2], [51, Theorem IV.1.1]. Thus by Fubini’s theorem, we have a commu-

tative diagram
‘RP | POP

$(Xp(F)) —— Rpipe(S(Xp(F)))

(')xl o _l(-)‘;’
1(x0) I(x)

for Re() sufficiently large. We are left with proving that Rp|per (S (Xp(F))) < Sr. By
the definitions of S(Xp (F)) and Sy, it suffices to check that

Rpipe(S(Xp(F)) = CZ(Xp(F)). (5.12)

Let f € §(Xp(F)). By Fubini’s theorem and the argument above for almost every m
with respect to dm the integral || Npoo (F) f(m~'ug) du converges. When F is nonar-
chimedean we can use the fact that f is K-finite and Lemma 4.5 to deduce that f is
fixed by a compact open subgroup of M (F). This implies that || Npoo (F) f(ug) du con-
verges absolutely. Since R p|por is a G(F)-intertwining map this implies that Rp|por ()
is smooth. Now assume that F is archimedean. In this case we can view the integral (5.11),
as g varies, as valued in the Fréchet space C°°(G(F)) (with the usual Fréchet topology).
Using the Fubini theorem in this setting [46, Theorem 8], we deduce that for almost all m
with respect to dm, |, Npon(F) f(m~'ug) du converges absolutely and defines a smooth
function of g. For such an m, we change variables u — mum™~! and replacing g by mg,
we deduce that Rp|popr(f) is smooth. |

To proceed, we recall the subspaces €g < §(X zz(F )) for Q € {P, P°P} considered
in [10, Proposition 4.2] that are used to proved the unitarity of the operator Fp g on
L?*(Xg(F)). In the following, we will use the notation in (3.5) and (3.6) to keep track of
the domain of our Mellin transforms.

Lemma 5.10. For each y € E@m we can choose holomorphic functions hg(ys) that
lie in C[q™*, q°*] in the nonarchimedean case and are bounded in vertical strips in the
archimedean case such that

ho(xs)Rojoer : 1o (xs) = Tgor (xs) (5.13)

is holomorphic when evaluated on a holomorphic section f(x)® € I o(xs) and an iso-
morphism for s outside a discrete countable subset of C.

Proof. Assume first that F' is nonarchimedean. Then one can use the usual normaliz-
ing factors for intertwining operators [3, Section 2-4] to construct /1o (xs) satisfying the
requirements in the lemma. If F is archimedean, loc. cit. implies the existence of a set
{ai, bi}!_, of complex numbers such that

n

1
(l:]_[1 m)ﬂzggop (5.14)
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is holomorphic when evaluated on a holomorphic section f(x)® e I 0(xs) and is an
isomorphism for s outside a discrete countable subset of C. The factors of I" here are
archimedean L-functions of quasi-characters of F* up to irrelevant factors. To obtain
h(xs) we take the product of reciprocals of I"-functions and multiply by ¢5” to make the
result rapidly decreasing in vertical strips. |

We henceforth assume the &g (ys) are chosen as in Lemma 5.10. Let S(Xé (F),K)
be the space of K-finite functions in § (X é (F)), and let

There exists an /' € § (X5 (F), K) such that

€ =1 [ €SXQ(F).K): fys.0 =how((xs)"Dho(xs) fy, 0
for all characters y : F* — C* andalls € C

For a subspace W < §(X a(F )), let Wy o denote its image in /() under the Mellin
transform (3.6). We also use the notation §(Xo(F))y,,o for the image of S(Xo(F))
in I(xs) under the Mellin transform, which must be understood in the following sense: For
Re(s) sufficiently large these Mellin transforms are absolutely convergent by definition of
the Schwartz space. Again by definition of the Schwartz space the Mellin transforms are
defined E)y meromorphic continuation for s outside a countable subset of C independent
of y € Kg,,.

Lemma 5.11. For f € €9 the functions R gor(fys,0) and Roojg(Rojon(fys,0))
are holomorphic for all y € Kg,,. One has

€o < $(Xo(F)).
For s outside a countable subset of C (independent of x) one has

(€00 = S(X;g(F), K)ys.0

which is dense in S (X o (F))y,,0 in the usual Fréchet topology if F is archimedean and
equal to S(Xo(F))y,,0 if F is nonarchimedean.

Proof. The first assertion is immediate from the definition of €p. The inclusion €p <
S(Xg(F)) follows from the fact that ag|gw (xs) and ag|o(xs) have no zeros. Since
how((xs) ")ho(xs) is nonzero outside a discrete countable subset of C, we have
(€0)ys.0 = (X (F). K)y,,0 outside a discrete countable subset of C. The union over
X € I?Gm of these sets is again countable. Since § (Xé (F),K),,,o is the space of K-finite
vectors in I(ys) (which is all of 7(x;) in the nonarchimedean case), the last assertion of
the lemma follows. |

We remark that here the definition of €y depends on the choice of hg(ys) and
hgo ((xs)™1). Using Corollary 4.10, and a minor variant of the proof of Lemma 5.10
above, we fix a choice of hg (x5) and hgo ((x5) ") such that Fp|per (€p) < S(Xpor(F)).
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Theorem 5.12. We have a well-defined isomorphism
\(fTP|P0p : S(XP(F)) — S(XPQp(F)),

that is continuous with respect to the Fréchet topologies in the archimedean case. The
diagram
Fpipop

S(Xp(F)) —— $(Xpor(F)))
(-)Xl l(-);" (5.15)
up(ORppor —
I() ———— 1(0)

commutes.

As in Corollary 4.10, some care is required in interpreting the statement that the dia-
gram commutes. The Mellin transform (-), converges absolutely for Re(y) large and
the Mellin transform (-)§ converges absolutely for Re(y) small. The factor wp(y) is
meromorphic, and the operator Rp g : I(x) — I(x), originally defined for Re(y) large,
extends to an operator sending meromorphic sections to meromorphic sections. The defi-
nition of § (Xp (F)) is designed to control the poles of all of these objects in terms of the
functions ap|g ().

Proof of Theorem 5.12. By Corollary 5.8,
S(XQ(F)) < LZ(XQ(F)) for Q € {P, Pop}.

Combining this with (5.9) and (5.10), we see that to prove Fp|po is an isomorphism, it
suffices to check that
Fpipor(8(Xp(F))) = S(Xpor(F)). (5.16)

On the other hand, Corollary 4.10 and Lemma 5.9 imply that Fp|por (S (Xp(F))) < S7
and that if we replace §(Xpo (F)) by S7 in (5.15) we obtain a commutative diagram.
Thus proving (5.16) implies everything in the theorem besides the continuity assertion.

Since Fp|por(f) € S5 and apjp(y) = az()(_l) for all quasi-characters y, by (5.4)
we deduce that for f € §(Xp(F)),

Foipo (f)ys,pn(x) _ FrIPolf ) tgsy—t.por (X
apoe|por(Xs) ap((xs)™)

in the nonarchimedean case, and

€Clg*.q"]

|Fp1por (f)|4,B,ppop pop,2,D < OO

for all data as in Definition 5.5 in the archimedean case. Hence we are left with checking

that
Cﬂ 0] ?’ 0] 0]
P p|P( P|P P(f)XS,P p) c (C[qs’q—S] (517)
apoo|p(Xs)
in the nonarchimedean case and
|Fp 1P (f)|4,B,ppop p.2.D < OO (5.18)

in the archimedean case for all data as in Definition 5.5.
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For any f € €p and any y € I?Gm, by Corollary 4.10, Lemma 5.9, (5.10), and our
choice of €p, we have the identities

1L ()" D Rpor p(Rp1pov(fi)-1,P))  Rpoop(Fppor (f) gy, pov)
apo|p(Xs) B apo|p(Xs)
— (Rpoip Fpipe () p
B apor|p(Xs)
_ (Fpoyp Fpip (), p
s (xs)apop(1s)
_ e (5.19)
Lo (xs)arer (xs)

Since fy)-1.p = f;p p» the first and last quantities in (5.19) depend only on the image
of f under the map to I((ys)™!). Let $(Xp (F), K) be the space of K-finite functions in
S(Xp(F));itisall of §(Xp(F)) when F is nonarchimedean. By Lemma 5.11, the equal-
ity of the first and last terms in (5.19) holds for all f € S(Xp(F), K) and all y € If(g,m
for s in a dense subset of C.

Since the first equality in the previous calculation is valid for all f € S(Xp(F), K)
by Corollary 4.10, we deduce that

lrod op
Rpoo|p(Fpipoo (f)ys,p0) Js.p

= 5.20
apor|p(Xs) proe (Xs)arer(xs) 620

forall f € S(Xp(F),K) and y € KAGm, at least for all s in a dense subset of C. But
then (5.20) is valid as an identity of meromorphic functions for all s. As discussed in
Section 4.2, we have wro (ys)aroe(xs) = ur(xs)ar(xs). Moreover, with L; defined as
in (4.29),

pr; (Xs)ar; (ts) = y(=si, )™, ¥) L(=si, (xs)*)
e(=si, () VLA + 51, () ™4) = e(=si, ()M ¥)ag, (xs)-

Here &(—s;, (x5)*, %) denotes the usual Tate e-factor. Therefore,

Rpoo|p(Fpipoe(f)ys,pw)  Jiz)—1.p So-1.p
s A = == N 5.21
8.1 ¥) apoo|p(Xs) az(xs) apip((xs)™h) ©:2D

where g(s, x. ) = [1; e(=si, (xs)* . ¥).

In the remainder of the proof we use some basic facts on e-factors that are nicely
summarized in [45, Section 3.2]. Assume F is nonarchimedean. In this case g(s, y, ) is
equal to cg?® for some polynomial p and some ¢ € C*. Thus (5.21) and the fact that
f € 8(Xp(F), K) implies (5.17). Now assume that F is archimedean. Then

gl 1) = ]_[ €il ()I(;I)‘ +§la)
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where a and r depend only on i (which determines the normalization of the Haar mea-
sure) and ¢; , is a fourth root of unity. By an analogue of [19, Lemma 3.6], (5.21)
and the fact that f € S(Xp(F), K) implies (5.18), at least in the special case where
D is the identity operator. It also follows for general D once we note that Rp|po ©
R(m,g) = pow(m)R(m, g) o Rp|pw. Here we have used R to denote the right action of
M(F)x G(F)on C®(Xp(F))and C*®(Xp.,(F)).

To deduce (5.18) without the condition of K-finiteness, we point out that the same
argument proving [19, Proposition 3.7] implies that

Fpipr : S(Xp(F),K) = S(Xpw(F), K)

is continuous in the Fréchet topology. Since S(Xp(F), K) is dense in §(Xp(F)) [53,
Section 4.4.3.1] it extends to a topological isomorphism

Fpipo : S(Xp(F)) = S(Xpw (F)).
This already implies the first assertion of the theorem, and additionally (5.18). |

As usual, we say that a parabolic subgroup of a reductive group is self-associate if it
is conjugate to its opposite. Assume P is self-associate. Choose

wo € G(F) (5.22)

normalizing M such that wg 1Pwy = P°. Then conjugation by wq acts as inversion
on M.

Lemma 5.13. Let w be a representative for the long Weyl element of the Weyl group of T
inG. Then wo € M(F)w = wM(F).

Proof. The normalizer of P in G is P and the normalizer of M in P is M. Therefore,
wo € P(F)w as w(wgleO)uF1 = P. As w normalizes M, for wo to normalize M,
one must have wy = mnw for some n € N(F) such that n='Mn = M. This is only
possible when 7 is the identity. ]

We observe that wo Pwy I — pop Indeed, by Lemma 5.13 it suffices to check this in
the special case where wy is the long Weyl element of 7'(F), in which case wg and wy!
differ by an element in T'(F').

In Section 5.1 we gave Np(F) and Npop (F') measures using a Chevalley basis. We
assume that wy is chosen so that these measures correspond under

Np(F) — Npo(F), n > wy'nw. (5.23)
Lemma 5.14. One has an isomorphism
twg : S(Xpa(F)) = S(Xp(F)), [ (x = f(wy'x)).
Proof. We have an isomorphism

twy 1 CP¥(Xpo(F)) = C¥(Xp(F))., [ (x> flwg'x)).
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For f € $(Xpw(F)) and Q € {P, P°P}, one has
Rp10(two (fxs,P) _ Rei(twe (S5, Pr)) _ twg © Rpovjgor (fys, Por)
aP\Q(Xs) aPIQ(Xs) aP"P\Q"P(Xs) '
where we have used (5.4). Assume F is nonarchimedean. Then since fy por is a good
section, we deduce that 1, (f),,,p is a good section. Thus the lemma follows from the

definition of the Schwartz space. A similar argument proves the lemma in the archimedean
case. |

Thus when P is self-associate, we have an isomorphism
Fxp = Fxpwy 1= two © Fpipor : S(Xp(F)) = S(Xp(F)). (5.24)

By Theorem 5.12 and (4.32), we see that the Fourier transform Fy, agrees with the
Fourier transform used in [19-21] when Xp is as in Section 4.3 and wy is chosen as in
loc. cit.

For use in Section 6.2, we also consider how ¢y, interacts with the operators A1 (uy).
Suppose that L and L', etc., are as in the discussion prior to Proposition 4.8. Recall L°P
and its associated data {(s;, A;)} from (4.31). Arguing as in the proof of Lemma 5.14, we
have an isomorphism

twg : SL(Xpow(F)) = Spow(Xp(F)).
Lemma 5.15. We have a commutative diagram

S (Xpo(F)) —20%) g (X pon (F))

lwol Jf wq

S (Xp(F)) —X0) ¢ (Xp(F))

We caution the reader that the bottom row in the diagram is given by the same defini-
tion as (4.3), but the roles of P and PP switched as we are applying the operator Ax1 (i, )
to functions on Xp (F).

Proof of Lemma 5.15. Let f € §;(Xpor(F)). Then by Proposition 4.8, Agi(s, )(f) €
81/ (Xpor(F)), and for A(L) < Re(y) < B(L'), traversing the top of the diagram and
applying a Mellin transform yields

(two(kk!(ﬂsk)(f)))zP b (At (15 ) 1 pon) = 7 (=850 X ) (fy o)
Y (=Skes 1, 9) (tang (f))())(}?P'

Noting that
A(L®) = A(L) and B(L°®) = B(L),

we may apply Proposition 4.8 again to see that this equals

(Mt () g (/D) p-
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This is the result of traversing the bottom of the diagram and applying a Mellin transform.
Thus applying Mellin inversion yields the lemma. ]

5.4. Containment of Schwartz spaces and relation between definitions

One can construct many functions in § (Xp (F)) using Mellin inversion. What is not as
clear is the following conjecture:

Conjecture 5.16. The Schwartz space S(Xp(F)) of Xp(F) C Xp(F) is contained in
S(Xp(F)).

Theorem 5.17. When G is a symplectic group and P is the stabilizer of a maximal
isotropic subspace, Conjecture 5.16 is true.

Proof. This was proved in the nonarchimedean case in [21, Proposition 4.7] and in the
archimedean case in [19, Proposition 3.13]. [

More generally, one of the authors recently proved the following [27]:

Theorem 5.18. When F is nonarchimedean and G is not of type E or F, Conjecture
5.16 is true. ]

Conjecture 5.16 implies Spx (Xp (F)) < S(Xp(F)), where Spx (Xp (F)) is defined
as in Definition 5.1. It would be convenient if this containment were an equality. We pose
this as the following question:

Question 5.19. Is it true that S (Xp(F)) = Spx (Xp(F))?

We discuss the relative benefits of the two definitions of the Schwartz space. Braver-
man and Kazhdan’s definition of Spx (Xp(F)) is beautifully succinct. However, it is
difficult to extract analytic information about elements of the Schwartz space from the
definition. The definition of §(Xp(F)) is more involved, but it seems to be the cor-
rect definition. For example, in the nonarchimedean case we certainly want the image
of $ (Xp (F)) under various Mellin transforms to consist exactly of good sections, and we
have defined §(Xp(F)) so that this is true. Moreover, analytic information is relatively
straightforward to extract from the definition of § (Xp (F)). In particular, the following is
an immediate consequence of Lemma 5.7:

Theorem 5.20. Assuming Conjecture 5.16, [10, Conjecture 5.6] is valid for maximal
parabolic subgroups of simple reductive groups. That is, when F is nonarchimedean the
support of any [ € Sprx (Xp(F)) is contained in a compact subset of Xp (F). |

In the special case where Xp is as in Section 4.3, this was already proven in [21]
up to identifying the Fourier transform of [21] with the Fourier transform of Braverman
and Kazhdan. The agreement of the two Fourier transforms is implied by Theorem 5.12
above.
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6. A formula for the Fourier transform on X p

In this section, we combine our analytic results with the geometric pairing between oppo-
site Braverman—Kazhdan spaces to give a formula for the Fourier transform. We then
work out several examples explicitly, connecting this result to known formulae in the lit-
erature. Our aim is to be explicit enough that the formula can be applied by readers who
are not experts in algebraic group theory.

6.1. Preliminary calculations

We continue to impose the notation from the previous sections; thus P < G is a maximal
parabolic subgroup in a simple, simply connected, split group G. Recall that wg is the
fundamental weight attached to P as in (3.2). Since G is simply connected, wp = wg
in the notation of (3.2). As above, Vp is the associated highest weight representation. By
Lemma 3.4, wp may be extended to a character of P (trivial on P%") and defines an
isomorphism

wp = wg : M™® = Gy,

Recall the graded representation L = 1% of Section 4.1. We fix a good ordering
{(sisAi) 11 =i <k},

S0
Si+1 Si . :
> — forl <i<k=dimL.
Aig1 — A

In particular, we have the highest datum (sg, Ag).
Proposition 6.1. Any good ordering of L = 1§, satisfies Ay = 1.

Proof. Our proof is a case-by-case analysis. As this is a computation on the Langlands
dual group, we defer the details to Appendix A. In fact we compute all of the parameters
{(si, A;)} for all simple Cartan types. The results required to observe the current propo-
sition are Lemmas A.3 and A.7 and the tables at the end of Appendix A. We alert the
reader that we work entirely on the Langlands dual side in the appendix. One has to use
the following well-known computations of Langlands dual groups:

Span = SO2,41(C),  Sping, = PS0,,(C), Spingnt; = PSp,, (C),

together with the fact that the dual group of a simply connected semisimple group is
adjoint. [ ]

Proposition 6.2. One has

8p = lop P+,

Remark 6.3. The proof shows that the proposition is still valid if we weaken the assump-
tion that G is simply connected to the assumption that wg € X™*(T).
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Proof of Proposition 6.2. Let ®* denote the set of positive roots of our split maximal
torus T < M < G with respect to the Borel subgroup B and let CDIT,, C ®* denote the
subset of roots of T in M. As above, A C ®T denotes the set of simple roots defined
by ®*. Then Ay = A — {B} is a set of simple roots of T in M.

Fort € T(F), we have

sp(t) = |[ZVE<I>+—cI>A+4 14 )

On the other hand, X*(M) = Zwp, so there is an integer r > 0 such that

Z y =rop.

+
yedt—o,,

We are to show that r = 255 + 2.

Let {e, h, f} C m be a principal s[,-triple. The copy of sl, it spans acts on fip by
the adjoint action. The root systems of M and M are in Langlands duality. We use this to
identify

P=X(T)®2C=X*T)®2C. (©6.1)

Under this identification, # € T may be chosen so that it is sent to the sum of positive
coroots of M [22, Section 2]:

20 = Y vV € Xu(D),
ye(bjél

which corresponds under the second equality of (6.1) to

2om = Y y=2 Y @€ X*T), (6.2)

VECI);‘Z aE€Ap

where @,, is the weight of the fundamental representation of M associated to « € Ayy.
Thus
htrop= Y y=2) w,. (6.3)

yedt aEA

where w, is the fundamental weight of G associated to o € A. Note that in general
Dq # Wy for a € Ay since @y € X*(T N M),
Consider now the s-eigenvalues on the space of highest weight vectors L = 1i%,. By
Proposition 6.1,
Ly = Cvr < 1p(1)°,

where the 1 indicates the subspace on which Z (1\2 ) acts via 1. As mentioned in [34,
Section 5.2], the space fip (1) is the irreducible representation of M with lowest weight
space corresponding to 8V, the coroot of .

By the definition of a good ordering, the h-eigenvalue 2s; is largest among all h-
eigenvalues occurring in the M representation fip (1). It follows that vy is a highest weight
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vector for ip (1). Let
v =B+ D calyy)a”
ac€Ap
be the weight of vg. We claim that 2sx = Y _,cn,, Ca(Vg)-
Since this is the largest h-eigenvalue in L, it follows that the lowest weight space
figv < nip(1) is the lowest weight space for the irreducible sl,-representation containing
Uk, and thus has the eigenvalue

(h, BY) = —2s¢. (6.4)
Here (-, ) is the pairing on X*(T) ® X«(T). Therefore, since (6.2) implies (h,a¥) = 2

foralla € Ay,

251 = (hy) = ) calyg)(ha¥) + (b BY)

aeAy

=2 Z ca(Vg) — 25k,

a€Ap

proving the claim that 2sp = 3", ca,, o (Vg )-
Since wp = wg, we see that for any root yV occurring in fip(1), (wp,y") = 1.
Evaluating both sides of (6.3) on y, thus implies

2sk+r:<22wa,y(;/>=2+2 Z ca(yy) =2+ 4s.

aeA aEA )N
We deduce that r = 2s; + 2, and the proposition follows. ]
6.2. The general formula
For integers n, let
] : Gy — Gy (6.5)

be the map x +— x”. We define

aug |

pp- = An(ps,) o0 Ag—1y(ps,_,) and M%Jeo = [ (ks ), (6.6)

where the “aug” stands for “augmented”, and consider the factorization

[P = Wpt o up -
Remark 6.4. In light of our formula for the Fourier transform below, it would be inter-
esting to illuminate the relationship between the operator M;ﬁ'g and the singularity of Xp
at 0.

Set

Fpipo = Wp. © Rppor 1 S(Xp(F)) — SLqy.- (6.7)
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Theorem 6.5. For [ € $(Xp(F)) and x* € Xpo,(F), we have Fp|po = jip" 0 ff*‘ﬁ‘eg(,p,
where

TGN = [ Fw (s ppds,
Xp
Here (-, ) p|pov is as in (3.4) and the measure on X p (F) is normalized as in Section 5.1.

Proof. For x* € Xp4,(F), we have

Fppen (/) ()

) % M®(F) ¥ (@p () wp (m)* 1850 (m)Rpipor (f) (™" x%) dm
1

N m Mab(F) 1/f(wp(m))“RPH”"P(f)(m_lx*) dm.

Here we have used Proposition 6.2. We note that there is no need to regularize the outer

integral: the absolute convergence of [1]i(jts, ) on Rp|pow (S (Xp(F))) follows from our
use of a good ordering and from Lemmas 4.7 and 5.9. If we write x* = PoP4r(F)g,

Rpipon(f)m™ - x*) = /N L S

= ép(m) fm Y ug) du. (6.8)
Npop(F)

We have an injection
®, : M®(F) x Npo(F) — Xp(F), (m,u) > P (F)ym 'ug,
with dense image denoted by X , (F). Moreover, we have

1 _ Spoo(m~Ndmdu _ dp(m)dmdu
dimug) = === = 2

by (5.1).
For x € X;’g(F), let

(m(x).u(x)) = D5 (x).
By (6.8) and (6.9), we have

Fppon (F)(¥) = / Ve S (6.10)

P.g
Now for (m,u) € M®(F) x Npo(F) and g chosen as above (so PP4T(F)g = x*), we
have
(vpm™ug. vpag) = (vpm™' Vpy) = wp(m);
here we have used (3.3). Thus (6.10) is
TN = [ ) @ dx = [ o) ) d
X3 o (F) X3.(F)

since Xp , (F) is open and of full measure in Xp (F). |
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Assume for the moment that P is self-associate. In this special case, fix a wg € G(F)
normalizing M such that wg 1Pwy = P°P and (5.23) is measure preserving. We saw in
(5.24) that this allows us to define a Fourier transform

?XP = ‘?XPsw() = lwg © ?PlP()p . S(XP(F)) — S(XP(F)). (6.11)

Corollary 6.6. Assume that P = wo P°Pwy! is self-associate. Then for f € $(Xp(F)),
we have Fx, (f) = y,?fp ?geo(f) where

TN = [ e wg ) pp)dn
X5 (F)
for x" € Xp(F). Here the measure on X p,(F) is normalized as in Section 5.1.

Proof. By the discussion in Section 4.2, we have iy, o ;ﬁ;lg = /L?fogp O Ly, and it is clear

that

rvgeo geo
Fxp = twy © Fp|pop- L

Remark 6.7. By Corollary 5.8,8(Xp(F)) < LY(Xp(F)). Thus the integrals in the def-
inition of ¥ I;g | Pop and ?X converge absolutely.

6.3. Examples

In this subsection, we explicate the objects appearing in Theorem 6.5 in several cases of
interest. Only the example in Section 6.3.3 will be used later in the paper: it is used in
Section 8 to study Fy.

6.3.1. Line bundles over Grassmannians. The maximal parabolic subgroups of SL,, are
stabilizers of planes. Concretely, fix 1 < £ < n and let P be the stabilizer of the £-plane
{€n—t+1,---,en}. Here we use the standard basis of F", viewed as row vectors with a
right action of G. Then P\G is a classical Grassmannian, and X p (F') can be viewed as
the space of £-planes W C F” together with an associated nonzero vector in /\Z w.

For F-algebras R, we have

P(R) =

{(m1 ) (’" ¢ w) € SLy(R) : (my,ma, w) € GL,_¢(R) x GL¢(R) x M,,_ ”(R)}.
Then
P(R) =

{(’"1 m) (";U—/ 1«) € SLn(R) : (m1,m2, w) € GLy_¢(R) X GLy(R) x M,,,“(R)} :
In this setting,

wp: M(F)— F*, (™ ,,) > det(m;) = det(my)™"
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Our representation Vp is just /\Z GJ. We realize the dual as the space /\"_4 G7 equipped
with the pairing

AR N"R" > R, (wi.wp) > ) A Ae) (wy Awy).

We choose the highest weight vector vp := e,_y+1 A -+ A e, and dual lowest weight
Vector Vo, 1= ey A --- A e,_g. With these choices,

Pl.(25) s N (e d),

where we are taking the (ordered) wedge product of the row vectors from top to bottom.
Similarly,

Pls (“5)> N"C@ b),

where the wedge product is taken from top to bottom.

*
Upnp

6.3.2. Orthogonal groups and the transform on the isotropic cone. Assume the charac-
teristic of F is not 2. Consider the split orthogonal group SO,, for n > 4, defined with

respect to the matrix
1
Jy = ( ) |
1

Denote the corresponding pairing by (-, -), and let

0,() = %(v v).

Let T be the split maximal torus of diagonal matrices and let B be the Borel subgroup
of upper triangular matrices of SO,,. There is a natural right action of SO, on V,, = G[.
We let P < SO, be the parabolic subgroup fixing the line spanned by e¢,, = (0,...,0,1).
Then Vp = V,,, and we choose the highest weight vector vp := e,.

Consider the split spin group G = Spin,, over SO, and let p : G — SO, be the double
cover. Then P := p~1(P) is a maximal parabolic subgroup of G. Moreover, the repre-
sentation V of G descends to the representation V;, of SO, via p. It therefore follows
from Lemma 3.4 that p induces an isomorphism

p:Xg=PeN\G = P*N\SO,.

Let M be a Levi subgroup of Pand M := p(ﬂ). Since V descends to V;, it also
follows from Lemma 3.4 that the map M — M® induced by p is an isomorphism and
the diagram

Mx X% — X3
”l l” (6.12)
M x Xy — X3

commutes. Here the horizontal arrows are the action maps. Thus we can and do work with
P9\ G in place of P%"\G below.
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The Pliicker embedding
Pl, : Xp =V,

maps Xp isomorphically onto the affine scheme whose points in an F-algebra R are
C(R) :={v e Vy(R): Qn(v) =0}.

This is the isotropic cone of Q.
We define the Schwartz space S (C(F)) to be

(PL,)*(S(Xp(F))) < C®(C(F) —{0}).

The parabolic P is self-associate. Thus the Schwartz space comes equipped with a Fourier
transform
Fe = (PI,1)* 0 Fxpwo 0PI}, 1 S(C(F)) — S(C(F)).

Here wy is chosen as in Lemma 6.8 below. There is a natural measure on C(F) as we now
explain. Let dv; be the standard 1-form on G,, viewed as the ith coordinate of V,, = G7.
Recall [17, Section II1.1.2] that to give a measure on C(F'), we may choose any (n — 1)-
form wg,, such that

dvi A Adv, =d0, Awg, (6.13)

and then consider the measure |wg, |. If we write

1.2 r .
SVrpr + 2 imy ViVpg1—  ifn=2r+1,

r .
D iy ViVng1—i ifn = 2r,

Qn(vlv""vn) = {

with respect to the standard basis of F”, then on G"~! x G, we choose wg, = %d U A
<o A dvy.

Lemma 6.8. We can choose wy € SO, (F) normalizing M such that wy' Pwo = PP
and such that for x,x' € X3 (F) one has

(x, wy ' xX") ppor = (Plg,, (x), Ple, (x")).
Moreover, Pl; (|wg,|) = cdx for some ¢ € R~y.

Proof. We identify the dual of V,, with V}, itself via the form (-, -). Then the vector dual
to e, is ey. Let

Jn if n =0 (mod 4) orn = 1 (mod 4),
Jin—1)/2
._ -1 if n = 3 (mod 4),
Wo -= (Jm—l)/z ) ( )
Jn—2y/2
I ) if n = 2 (mod 4).
Jin—2)/2
Thus wy € SO, (F), Ple, (g) = eng and Pl,, (wy ' g) = e, g. This yields the first assertion.

For the second assertion, it suffices to observe that (6.13) implies that wg,, is SO,-
invariant. u
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Corollary 6.9. If the measure |wg, (v)| is normalized so that PI; (|wg, |) = dx, then for
f € S(C(F)) one has

d)(
Fe(n@)= [ waine ([ )o@ g 61
ifn > 4 is even, and
N — —1y[4n—3 2. d>t
Fen@)= [ vatir=( [ oo oo, £ 619

ifn > 3is odd.

Proof. This is a consequence of Corollary 6.6 and Lemma 6.8 as we now explain. Using
(6.12), we are free to work with the action of M instead of M in applying Corol-
lary 6.6.

For (1, g) € R* x SO,_>(R) write

m.g)i= ("¢ ). 1R geSO(R).
The character wp is given by wp (m(t, g)) = t. Note that for x,x" € Xp(F) and A € Z,
(x, wo_lm(t,g)_xx/)P|P0p = wp(m(t, g))*(x, wo ' x)ppor = *x, wo ' XY plpor.
Applying Lemma 6.8 now shows that if v = Pl,, (x) and v’ = Pl,, (x'), then
(X,w(;lm(t,g)_/\x/>P|Pnp = (v,tkv’).

By Lemma A.7, we have ppoy = [1]1(i(n—a),2) for all n, and

ag ) [1(o) ifn > 4iseven,
P2 21(io)  ifm > 3is odd.

The regularized operators are equal to the unregularized operators by Lemma 4.7. ]

When F is nonarchimedean with odd or zero characteristic, Corollary 6.9 implies
that when 7 is even ¢ agrees with the operator of [25, Theorem 4.1] (after replacing
by ¥). Gurevich and Kazhdan also treat nonsplit isotropic quadratic forms. When F = R
and n is even, a Fourier transform on L2(C(F), |wg|) was investigated in [31] (they also
treated arbitrary isotropic quadratic forms in an even number of variables). It likely agrees
with F¢ when the form is split but we will not verify this.

6.3.3. The Lagrangian Grassmannian. Define Sp,,, and P as in Section 4.3. We let Sp,,,
act on V' = G2" on the right. The representation Vp may be realized as an irreducible
subrepresentation of /\" V, and we choose the highest weight vector to be

Vp (= €p1 N Neézy.
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Thus

*
an+1
Plvp . =dp+1 N Ndap (616)

aén
is the (ordered) wedge product of the last n rows.
There is a perfect pairing

(Y IATGH X NG - NG S G, (6.17)

where the first map is canonical and the second is obtained by specifying that e; A --- A
eap is sent to 1. We use this pairing to identify the dual of Vp with Vp. Thus

(X, X*>P|P°P = (Plvp (X), Plv}",op (X*))’

where vgo, = (—1)"e; A --- A ey is the lowest weight vector dual to vp.
The parabolic subgroup P is self-associate. More precisely, wg LPwy = P for

wp = (,n *’n) . (6.18)

Corollary 6.10. For f € S(Xp(F)), Fx, (f) is

2 (tn—2n/2)) © 21 (n—2[n/2]+2) © -+ - © 211 (tn—2)
o / FEOP((=1)" (Pl (x). Ply () dx.
XS (F)

P

Here [2]1(j4s) is defined as in (4.2) but with P replaced with P°P. See Lemma 5.15.
Proof. Since vh,wy! = (—1)"vp, we have
{x, walx/)p“:op = (—1)"(Ply, (x), Pl (x")).
Thus the result follows from Corollary 6.6 and the computation in Section 4.3. ]

Corollary 6.11. When n = 3, one has

Fe )= [ vaie( [

P

X

,, SOTEEI P oot

forall f € $(Xp(F)). In particular, the integral over t is absolutely convergent.

(6.19)

Proof. Only the last claim is not clear from Corollary 6.10. By Lemma 4.7 the regularized
operator [2];(u1) is equal to the unregularized operator in the case at hand as

A(L() =34, BLO) =2, =1

This implies that the integral over ¢ converges absolutely. |
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7. Regularized integrals

In the remainder of the paper we apply the results of Section 6.3 in a specific case to
establish a formula for the Fourier transform on certain affine spherical varieties. For this,
it is convenient in several calculations to work with regularized integrals. We work in the
category of affine schemes because this is what we require; the techniques can probably
be generalized to analytic spaces or Nash manifolds.
Let F be a local field. For r € Z>1, let
(,): F"xXF" - F

be a perfect pairing. Let

= [ v seax

be the associated Fourier transform with the Haar measure on F" normalized so that the
Fourier inversion formula

f = [ Fniod

is valid for f € S(F"). For f € Ll (F")and ® € C°(F") with ®(0) = 1, we define
the regularized integral
* X
dx = 1li o — d 7.1
[ o= g [ o(5)rwax .

whenever the limit exists and is independent of ®. Here B € F* is embedded diagonally
in F7. If f € L'(F"), we have

/ f(x)dx:/ f(x)dx.
Fr Fr
Lemma 7.1. For f € LY(F7"), let

?@r=£”EwJ»ﬂom.

Then f* (y) = f(y) if y is a Lebesgue point of f. In particular,

P
A~

ff=7f ae,
and if f is continuous at y, then f*(y) = f(y).

Proof. The first assertion can be proved following the argument of [55, Theorem 13.15].
For the second assertion, we need to show that almost every point is a Lebesgue point.
This is the Lebesgue differentiation theorem; a version that is general enough to treat both
the archimedean and the nonarchimedean case is given in [26, Section 3.4]. [



J. R. Getz, C.-H. Hsu, S. Leslie 46

Now let V = Gf, where d > r. Let py,..., pr € F[x1,...,x4]. For each ¢ =
(c1y...,cr) € F7 let

Yo :=Spec(Flx1.....,xql/(p1 — C1...., Pr —¢r)). (7.2)

We assume that Y, is geometrically integral for all ¢ (hence a variety). In particular, the
smooth locus Y™ is dense in Y, for all c¢. Note that if Y ™(F) is nonempty, then it is
dense in Y, (F') in the Hausdorff topology by [40, Remark 3.5.76].

Let V(F) be equipped with the Haar measure dv = dv; --- dvg, where the measure
dv; on G, is defined as in Section 2.3. Let wy, be the differential form on Y™ satisfying

dpr—ci)) A= Nd(pr —cr) Noy, = oy, (7.3)
where wy is a top degree differential form on V' with |wy| = dv, and let

dpc(y) = |wy,| (7.4)

be the corresponding positive Radon measure on Y. (F) (we extend by zero to obtain a
measure on all of Y, (F) from the given measure on Y™ (F)). The measure dpu.(y) does
not depend on the choice of wy, , but it does depend on the choice of py, ..., p,. We let

du = due and Y :=Y,. (7.5)

A nice reference for the definition of du.(y) in a more general context is [17, Sec-
tions III.1, B2.1] in the real and complex cases. For the nonarchimedean case we refer to
[28, Section 7.6].

Suppose Y™ (F') is nonempty. Hence Y *™(F) is dense in Y (F). For f € §(Y*™(F)),
the integral fY( F) f()du(y) is well-defined. Let us extend its domain of definition and
at the same time develop a useful formula for it. Let p(v) := (p1(v), ..., pr(v)). Let
(.,}s : FT x F" — F be the standard pairing. For f € L' (V(F)), we have

[ wteronafore= [ vaao([ Fordaem)a  ao
V(F) Fr Ye(F)
by the change of variables formula. On the left, the integral is absolutely convergent by

assumption; on the right, the inner integral over y is finite for almost every ¢ and defines
a function of ¢ that is in L'(F”). With this in mind, for f € L'(V(F)) we define

reg - * ~
/ T du(y) = / (/ w«z,p(v»sr)f(v)dv) d1 an
Y(F) Fr V(F)

provided it exists.

Remark 7.2. If £ > [, py ¥ ({t. p(v))s) f (v) dv is in L'(F"), then

reg _
/ Fo)duty) = / ( / w«r,p(v))st)f(v)dv) dar.
Y(F) Fr \JV(F)
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Lemma 7.3. Suppose p; are homogeneous polynomials all of degree k and any r x r

minor of the Jacobian of p = (p1, ..., pr) is a monomial. Assume further that for any set
S C{1,...,d} of cardinality m, there is a nonzero r X r minor that is a monomial in v;,
ield.

If kr +m < d, then for any fe S(V(F)) one has f := f|ysm(p) € LV\(Y(F), du)
and

reg
/ Foydu(y) = / FO) du(y).
Y(F) Y(F)

Proof. Assume f € L'(Y(F), du) until otherwise stated. We claim that 0 is a Lebesgue
point of the function

¢ / FO)dpe). (1.8)
Yc(F)

Hence the identity in the lemma holds by (7.6) and Lemma 7.1.
For each positive integer n, let

W, C {v e V(F):|v|:= max |v;| < n}
1<i<d

be the subset on which some r x r minor of the Jacobian of p has norm greater than n™1!.
These are open, relatively compact subsets of V(F). If f is supported on W, then (7.8)
defines a continuous compactly supported function on F” and thus 0 is a Lebesgue point.

For general f we wish to show

lim sup |¢| %" /
lt|—>0 le|<lelk

Here

/ FO)dpe(y) / f(y)du(y)‘dC=0- (7.9)
Yo(F) Y(F)

|c] := max |c;],
<r

1<i

for ¢ = (c1,...,¢,) € F". Note that | J,, W, and |, W,, N Y*™(F) are of full measure
in V(F) and Y*™(F) respectively. Let {¢,} be a smooth partition of unity of |, Wy
subordinate to {W, }. Put ﬁ, =y f(pm and f, 1= ﬁ,|ysm(p). Then |v|Nf;, — |v|Nf
in LY(V(F)) forany N € Zsg, and f, — f in LY (Y(F), du).

Now for each 7 € F*, we have

—kr P disa(y) . ‘d
. /lcsnk /Yc(F)f(y) pe(y) [Y(F) f)du(y)|de

< eI F(y) dpe(y) = fu(¥) dpc
s [ A Fodem = [ e

+ |t|_kr/
le|<e|k

+c / fa ) — FO)] da(y)
Y(F)

dc

[ Amao-[ o du(y)‘dc
Y (F) Y(F)
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for any n for some positive constant C. Since f;, is supported on W, taking lim sup over
|| — 0 on both sides shows that the limit superior in (7.9) is bounded by

lim sup |t|_kr/
le|—>0 lel<lz|¥

/ F)due(y) —/ Fa(») duc(y)‘ de
Yo (F) Y. (F)

+C / fa ) = FO)du(y).
Y(F)

Since the second term converges to 0 as n — oo, the change of variables formula implies
that it suffices to show

lim sup lim sup |z|—k’/ | F(v) = ful(v)| dv = 0. (7.10)
lp()|<(z|*

n—>o00  |t|—0

We have
[ o= Awla= [ (Fe) - Geold. @
[p()|<[e]¥ [p(v)|=1

By symmetry it suffices to bound the contribution of the domain |v{| > --- > |vg] to the

integral. By assumption, there exists a subset J C {1,...,d} of cardinality r such that
det (%)KKWEJ is a nonzero monomial in {vy, ..., v, }. Let
1=i<

T:{1,....d}—J —=>A{l,....,d —r}
be the increasing bijection. For v/ € F4~7" let
hn(V') := sup{| f(v) — fu(W)| : v € F gy = viforl < j <d —r}.

Choose the smallest 1 < £ < d — r such that T~1(£) € {m,...,m+r}—J. Then by
changing variables, the contribution of |v;| > --- > |vg]| to (7.11) is dominated by

|z|d/hn(zv')|v;|—'<k—1> dv’,

where the integral is taken over |v{| > --- > |[v/,_ |. Changing variables v’ > 110/, we
arrive at

|t|rk/hn(v/)|v2|—r(k—l) dv/

& |e|* / ( sup g (w, u/)) lwe |46 gy - - dwy.
Ft \yrepd—r—t
Asl <m,wehaved —{ —r —r(k —1) > d —m — rk > 0 by assumption, so the latter
integral is finite and converges to 0 as n — oo. This implies (7.10).
We are left with proving that for any fe S(V(F)) one has f|ysm(p) e LY (Y(F), dw).
This follows from an analogue of the argument bounding (7.11). ]
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8. The Schwartz space and Fourier transform on Y

For the remainder of the paper, let F be a local field of characteristic zero. We refer to
[19,20] for more details on the constructions in this section. For 1 <i <3,letV; = Gf i
where d; is even and let Q; be a nondegenerate quadratic form on V; (F'). We assume that
d; > 2 for each i; this plays a role in some convergence arguments below (see the proof
of Theorem 9.1). Let V := V; x V, x V3, and for an F-algebra R, let

Y(R) :={(v1,v2,v3) € V(R) : O1(v1) = Q2(v2) = Q3(v3)}. (8.1

The anisotropic locus
y®™cvy (8.2)

is the open complement of the vanishing locus of Q; (which is independent of i). We
assume Y™ (F) is nonempty, which implies Y (F) is nonempty and dense in Y (F) in
the Hausdorff topology by [40, Remark 3.5.76].

We assume that G = Spg and P is the Siegel parabolic as in Section 4.3, and set
X := Xp. We identify SL% with the subgroup of Sp,; whose points in an F'-algebra R are
given by

ap by
az by

a0 Ca b3 | € GLg(R) : aidi —bic; = 1for1 <i <3
) d>
c3 d3

Thus we obtain an action of SL3 on X°. Let

000-100
010 0 00
vor=11%910 90 (8.3)
000-110
000-101
Then
xo := P (F)yo (8.4)

is a representative for the unique SLg-orbit in X° of maximal dimension. This follows
from the computation of the stabilizers of all orbits given in [20, Lemma 2.1]. By the
same lemma, the stabilizer of x¢ is the group whose points in an F-algebra R are given
by

No(R):={((" 7). (" 7). (" ™)) 111,12 € R} 8.5)

By upper semicontinuity of the dimension of stabilizers [37, Section 0.2] we deduce that
the orbit of xg is the unique open SL3-orbit in X°.

Let p be the Weil representation of SLS(F ) on S(V(F)) attached to our additive
character ¢ and the quadratic forms Q;. Let S(X(F) x V(F)) be the algebraic tensor
product S (X(F)) ® S(V(F)) in the nonarchimedean case and the completed projective
tensor product in the archimedean case.
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There is a map
I:8(X(F)xV(F)) > C®(Y*™(F))

given on pure tensors by

he s = fixo)p(e) fod. 8.6)
No(F)\SL3(F)

The integral is absolutely convergent for all f € §(X(F) x V(F)) (see [20, Propositions
7.1, 8.2, 8.3]). By definition, the image of [ is the Schwartz space § (Y (F)). The kernel
of I is closed in the archimedean case by [19, Lemma 5.1], and hence in this case we
equip S (Y (F)) with the quotient Fréchet space structure.

By [19, Theorem 12.1], there is a unique C-linear isomorphism ¥y : S(Y(F)) —
S (Y (F)) such that the diagram

S(X(F) x V(F)) —2* 5 S(X(F) x V(F))

1] U
F
S(Y(F)) ————— S(Y(F))
commutes; in the archimedean case, ¥y is continuous in the Fréchet topology on
S(Y(F)). In loc. cit., this is the only description of ¥y that is given. The definition of
I(f1 ® f») depends on the choice of measure d g, but from the description of Fy given
above, it follows that y does not depend on this choice.

The definition of Fy is indirect; the goal of the rest of this paper is to give a direct
definition of ¥y, at least on a subspace of S (Y(F)). Let

$ :=Im(S(V(F)) = C®(Y*™(F))). 8.7)

where the implicit map is restriction of functions. Then § = (S (xo SL;(F ) x V(F))) <
S(Y(F)) by [19, Lemma 5.3]. Moreover, S(Y(F)) < L?(Y(F), du) for p <2 and the
inclusion is continuous in the archimedean case by [19, Proposition 11.2]. Here the Radon
measure du on Y (F) is defined as in Section 7 using the polynomials p;(vy, vz, v3) =

01(v1) — 02(v2) and py(v1, v2,v3) = Q2(v2) — Q3(v3).
9. A formula for Fy

For u;, v; € V;(F), let
(ui vi)i i= 3(0i(u; +vi) — Qi (u;) — Qi (vy)).

Foru = (uy,uz,u3),v = (v1,vs2,v3) € V(F), we write

Q@) := Q1(u1) + Qa(uz) + Q3(u3),  (w,v) =) (uivi)i.
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Fora = (ay,as,a3) € (F*)3, let

3
x0: (@) = (ai. (=)%/? det((-.-)1).,  xo(@) =[] xe;@). ©.1)
i=1
where (-, -) is the Hilbert symbol. Finally, let

la] := ar1aza3, r(a):= (@az + a2[2]3 + a3a1) 9.2)

For the convenience of the reader, we restate Theorem 1.2:

Theorem 9.1. Suppose as above that the characteristic of F is zero, d; = dim V; > 2 for
all1 <i <3 and YS™(F) # 0. There is a ¢ € C* depending on W, F and the Q; such
that for all f € § (defined as in (8.7)) and &€ € Y™ (F), one has

A(@=c [ v Ter

£\ 0©00) ro@d*ay .,
X(L(F>w(<5’y>_ 9:2[4] )f(y)d“(”)w)d z

Here the measure on Y (F) is defined as in Section 8 and

§._ (8 & & /21 . di/
a._(al’az’azy)’ }21' l_[|a| =

Let y(Q;) := y(¥ o Q;) be the Weil index, defined as in [54, Section 24]. The constant
ceC*is ﬂ’gg(l) , where y(Q) = y(Q1)y(Q2)y(Q3) is the product of the Weil indices,
k is defined as in (9.34) and « is defined as in Remark 9.5 below; these are both ratios of
suitable invariant measures. When F is nonarchimedean and the matrix of each Q; with

respect to the standard basis of F% lies in GLy; (OF) foreach i, thenk = 1.

9.1. Comment on norms

We pause to introduce some notation used throughout the rest of the paper. For n € Z -,
unless otherwise stated, we equip F” with the box norm

|y]:= max |y;|, y= 1,...,¥n) € F". 9.3)

1<i<n

This includes vectorsin V; and V; ® V> ® V3. Let y € F* —{0}. If F is nonarchimedean,
let
ord(y) := min ord(y;).
1<i<n

where ord(y;) € Z U {oo} satisfies |y;| = ¢~°0). When F is nonarchimedean, we fix
a uniformizer @ and set

~ { w°40) if F is nonarchimedean,

AT ©4)
|y|TF R if F is archimedean.

Thus |y/y]| = 1.
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For any integer m € Z, we denote

3

3
{a}m = l_[ |ai|m and {a}d/2+m — l_[ |ai|d,j/2+m.

i=1 i=1

9.2. Proof of Theorem 9.1

To aid the reader, we present the proof modulo various technical analytic results that will
be proved later in this section and in Section 11. By Theorem 5.17 we have §(X°(F)) <
S(X(F)). We will use this fact without further mention below.

Let f € S(V(F))andfor0 <§ < 1, let

Ks:={('f*,2,) € SL3(F) : |(u,v, w, x)| < §}. 9.5)

w
It is an open neighborhood of the identity in SL3 (F).

Lemma 9.2. Assume F is archimedean. We can choose a sequence of nascent delta-
functions ¢, € C£°(xo SL;(F)) indexed by n € Z~4 such that

lim 1(gn ® f) = [lymer) (9.6)

with respect to the Fréchet topology on S(Y(F)). Moreover, we can assume supp(¢,) C
XoK1/n.

Proof. There is a map
T:S(SLY(F)x V(F)) = S(V(F)) — 8.

where the left arrow is given on pure tensors by f1 ® f> — fSL%(F) fi1(g)p(g) f> dg and
the right is given by restriction of functions. The left arrow is continuous by continuity
of the Weil representation and surjective by the Dixmier—Malliavin lemma. The right
arrow is surjective with closed kernel and we endow § with the quotient topology (see
[14, Section 3] for more details about this topology). Thus T is surjective and continuous.
We also have a continuous map

P S(SL3(F)) — §(xo SL3(F))
given by sending f1 to p(f1)(x0g) := fNo(F) f1(ug) du. We observe that

I(fi ® f2) = 1(p(f1) ® f).

Choose ¢, € C° (SL%(F)) with support in K, such that lim, f((ﬁn ® f) = f with
respect to the topology on §. Then ¢, := p(@,) satisfy (9.6) with respect to the topology
on §. It thus suffices to show that the inclusion § < §(Y(F)) is continuous.

We have a commutative diagram

SSL3(F) x V(F)) 22 $(xo SL3(F) x V(F)) — S(X(F) x V(F))

\ I I
S > S(Y(F))
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The top horizontal arrows are continuous, and the maps T and I are continuous and surjec-
tive. By the open mapping theorem, [ is open, and we deduce that the bottom horizontal
arrow is continuous. ]

Up to scaling by a positive real number, there is a unique right SL3(F)-invariant
measure d ¢ on the open dense subset xq SL%(F ) C X°(F), and a unique (up to scaling)
right Spg(F)-invariant measure dx on X°(F). On the other hand, dx is clearly right
SLg(F )-invariant. Thus the restriction of dx to the open full measure subset xg SLS(F )
C X°(F) (which we continue to denote by dx) satisfies

Cdx =dg 9.7
for some C € R . Therefore, we have an isomorphism
LP(X°(F)) = LP(No(F)\SL3(F)), [ > (g+> f(x08)),

for 0 < p < co. We normalize the measures so that C = 1. Thus these isomorphisms are
isometries.
When F is nonarchimedean, we let

IXOKl/n
On = ————.
dg(xoK1/n)

Since the Weil representation is smooth, there is an integer N depending on f such that
I{pn ® f) = flym@) forn >N > 4.
In all cases, we have

Jim 1(Fx (¢n) ® f) = lim Fy(I(gn ® f))
= Fy (flysmr))-

Indeed, in the archimedean case, this follows from the continuity of ¥y, and in the nonar-
chimedean case, it follows from the observation that /(¢, ® f) stabilizes as n — oo.
Therefore, we are to compute

lim 1(Fx(on) ® )(E) for§ € Y™(P).

Extension by zero induces an injection S (xg SL%(F )) = S(X°(F)). This is obvious if
F is nonarchimedean, and proved in [14, Theorem 3.23] if F' is archimedean. Moreover,
S(X°(F)) < $(X(F)) by Theorem 5.17. For (£, W, g) € Y™ (F) x §(x¢ SL;(F)) X
SL3(F), let
Jew (x08) := W(xog)p(g) f(§).

Note that fz w € S(xo SL;(F)) < §(X(F)). In Section 9.6, we construct a directed set
of functions Vg, 8, € S(xo SL;(F)) such that

|Va,,8,] <1 and lim lim Vg, 8,(x0g) =1, (9.8)

|B2|—>00 |B1|—>00
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where convergence is pointwise a.e. for g € No(F)\ SL3(F) with respect to d ¢. Thus by
the dominated convergence theorem and the Plancherel formula [19, Proposition 3.9],

[(Fx(pn) ® f)(E) = lim  lim Fx (@n)(X08) fe,vg, 5, (X08) dg
|Ba2|—>00 [B1]—>00 J Ny (F)\ SL3(F)

= lim lim On(x08) Fx (fe,vg, 5,)(—X08) dg.
|B2|—>00 |B1|—>00 J Ny (F)\ SL3(F) '

Let
Q= K1/4 (99)

be the closure of K4 in SL;(F). Foru € V(F)and v = (v1,v2) € F?, let

c(u,v) ;== v101(u1) + v202(u2) — (V1 + v2)Q3(u3z) and dv =dvidvz.  (9.10)
We prove in Sections 9.6 and 9.7 the following:

Proposition 9.3. Fix £ € Y3 (F). For each 8B, there is a constant M(B,) > 0 such that
| Fx (fE,lemz)(_xogN < M(8B5) forall g € Q and all | B, | sufficiently large. Moreover,
there is a constant M > 0 such that

lim fFX(fE,Vgl,Bz)(—xog) <M

[8B1]—>00

for all B,. Furthermore,

lim lim ‘?X(ff’vﬁlﬁz)(_xog)

[8B2]|—>00 | By |00

k _
_ 19 w(z—1>( / (@)
(F>)3

—BIE) S~
£\ 0®0ow rol@yd*ay
X /FZ (/V(F) W(<;,u> ECETA + c(u, v))p(g)f(u) du) dv ST ) d*z
9.11)
for all g € 2, and the integral defines a continuous function of g € Q.

Here k > 0 is as in (9.34), and the Haar measure du on V(F') is normalized to be
self-dual with respect to ¥ and the pairing (-, ).

Assume Proposition 9.3. Applying the bounded convergence theorem, the proof of
Theorem 9.1 will be complete once we prove the following:

Lemma 9.4. There is a constant k > 0 such that for f € S(V(F)), one has

§ Q) 0u)
/F2 (/V(F) 1//(<5, u> TR ”))f(u) du) dv

— w(<§,y>—w)f(y)du(y).
Y(F)

a 9z2[a]
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Proof. We use the results of Section 7. We must first check that the schemes Y, ., for
(c1.c2) € F? defined as in (7.2) are geometrically integral. We can check this over the
algebraic closure. Consider the quadratic form defined by pq(u1,uz,u3,2z) = Q1(uy) —
03(u3) —ci1z? and po(uy,uz,uz,z) = Qz(uz) — Q3(u3) — c2z2. Then Y, ¢, is an open
subscheme of the projective variety Y’ C P(V @ G,) cut out by p; and p,. Therefore
Y¢, ¢, 1s geometrically integral by [13, Lemma 1.11].

By Lemma 11.2, the integral over F? in the statement of the lemma is absolutely
convergent. Therefore Remark 7.2 implies that the top integral in the lemma is equal to

o w((%} - M)f(y)du(y)

Y(F) a 9z2[a]

defined as in (7.7) for some « > 0. By changing variables, we may assume each Q;
is associated to a diagonal matrix. One checks that the hypotheses of Lemma 7.3 are
satisfied with m = 1 4+ max(dy, d3, d3) as d; > 2 for all i, and we use it to deduce the
current lemma. ]

Remark 9.5. The constant « of the lemma is the positive real number such that k! du
is the Haar measure on V(F') that is self-dual with respect to ¥ and the standard pairing
on V(F).

9.3. Finiteness of the integral

As a first step toward the proof of Theorem 9.1, in this subsection we prove that the
integral (9.11) is finite.

Let f € §(V(F)) and £ € Y *(F). Recall the notation E = (51,52, 53) € (F*)3 from
(9.4). For (a,b) € (F*)® x F, define

_ at \ | blalQ()
Ye(a,b, f):= /;72 (/V(F) w(< g u> + —9[5] + c(u,v))f(u)du)

X yo(ad){a}*2dv.  (9.12)

We deduce from (11.3) below that the integral over F2 is absolutely convergent. More-
over, We(-, b, f) € L'(F?, da) for all b € F (see Corollary 9.8). After a change of
variables a — a~'£, we have

V(22 £ >_Q(§)Q(U) ) )
[(FXPWZ r(a))/pz(/vmw«a’u oz2fq] T W) ) S du Jdv

xo(a)d™a
(ayd721
3
i . 0@
s ([T ) [ e By (o -2 1) a1

i=1

t(1)3da

for z € F*. Here we have replaced d*a by 7Y
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Let

12
|§1®§2®§3|) . 9.14)

Q)]

This subsection is devoted to proving the following:

Ge) = (

Proposition 9.6. Let (z,£) € F* x Y3(F). For 1/2 > & > 0 sufficiently small, we have

(121G (§)ymn(r-d2-d3)=2=2¢ if [21G(§) = N,
(121G ()~ +min(&1l, &1, 1D 107 (2IGE) ™ if [21G(E) > N,

L6/ ,N, f {
for some &' > 0 depending on ¢ and N € Z > depending only on f,r; if F is archimedean,
then N = 1.

We deduce the following bound directly from Proposition 9.6, (9.13), and Lemma 9.4.

Corollary 9.7. Let £ € Y*™(F). For 1/2 > & > 0 sufficiently small, we have

) § >_Q(§)Q(J’)) )XQ(a)dXCl
/. /(FX)J/“Z r(a))(/Y (F)vf(<a,y Cne ) 1o du) | 2O

3

<er ([TIE142)0 + min(&], |Eal, 1631 Q€)1 7). m

i=1

d*z

By the smoothness of the Weil representation, Corollary 9.7 implies the integral
in (9.11) defines a continuous function of g € 2. When checking this point in the
archimedean case it is helpful to recall our conventions regarding asymptotic notation
explained in Section 2.4.

The proof of Proposition 9.6 will involve several reductions relying on results proved
in Section 11. Theorem 11.1 implies the following corollary:

Corollary 9.8. Suppose di = dimV; > 2 forall 1 <i <3. Let f € S(V(F)). Given
1/2 > & > 0 one has

min(d1 ,d2,d3)/2—1—€
)

/ |We(a,b, f)lda L, g min( 1,
(F)3

as a function of (b, £) € F x Y™ (F). Here by convention min(l, |%|) =1if
b=0. L]

By Corollary 9.8, for any N € Zx; we have, for |z|G(§) < N,

Jie

W (a, ——Qz(f ), f) ’ da Lo g (|2|G(E)mnrd2d3)=272e, (9.15)
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Thus to prove Proposition 9.6, it suffices to bound the integral

[ 7 Byw(a 20 ) o ©.16

for N < |z|G(§).
To proceed further, we need the following corollary of Theorem 11.17:

Corollary 9.9. Suppose |§1 ® &2 ® &3] > |b| > 0. If d; > 2 for all i, given a > 0, there
exists B > 0 such that

L[
flalzmiz% R e .
By Corollary 9.9 we have, for N < |z]G(§),
28 _
/ ‘Ps(a»——z,f da <ap.s (121GE) . 9.17)
lal>(1z|G(&))% z

Thus to bound (9.16) (and hence prove Proposition 9.6), it suffices to bound

’/ V(z%v(a™ lg))wg( Q(S) )da‘ (9.18)
la|<(1z|G(#))2 z?

for N < |z|G(§) and 1/6 > o > O sufficiently small.
Over the domain |a| < (|z|G(£))?*, we have

[a] 0 (§) O (u)
9z2[¢]
Assume F is nonarchimedean. Since f has compact support and |Q (1)| < |u|?, we

can choose N sufficiently large (depending on f, ¥) such that

p(HeO0w) _,
922(§]
provided u € supp(f), |a| < (|z|G(£))?%, and N < |z|G(£). In particular, under these

assumptions,
0()
We (a, 2 [ ) =Y(a,0, f).
In the archimedean case, we choose N = 1. Observe that

J [a]
%‘Ps(a,b,f) —Cﬁ‘l’s(a b,0f)

<1971 (|zIG(£))%* 2| Q(u)]. (9.19)

for some ¢ € F depending on v, and Q f € S(V(F)). Thus the function
B,z f) = [ V(e H)¥e(a.b. f) da
lal<(z|G(&))%

is differentiable and Lipschitz in b by Corollary 9.8 and the Leibniz integral rule. Let
CO%1(F) denote the Holder space of Lipschitz continuous functions on F. We bound the
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Lipschitz constant by bounding the derivative in b using Corollary 9.8. This yields

|We(br,z. f) — Ve(ba, 2, )

Ve, 2, llcorry = b by — by [V/IFR]
(121G(£))* )“ R
s (|§1®§2®53| '
We have
~ ( 0() ~ fo2
W _z_Z’Z’f —We(0,z, )| K5 (|2]|G(§))TF R (9.20)

for 1 < |z|G(§). Thus in either the nonarchimedean or archimedean case to bound (9.18)
(and hence prove Proposition 9.0), it suffices to bound

‘ f Y (2*r(a )W (a,0, f) da (9:21)
lal<(1z|G(&))%*
for N < |z|G(§) and 1/6 > « > O sufficiently small.
Lastly, we require the following consequence of Theorem 11.4:
Corollary 9.10. For £ € Y™(F), ifd; > 2 forall i, we have
|We(a, 0, f)
<Lf {a}d/z_2 Z max(1, |ag(1)|)1_“"’(”/2 max(1, |a|)1_d"(2)/2_d"(3’/2 <1 =

oceCs3

Here S5 is the permutation group on {1, 2,3} and C3 < S3 is the order-3 subgroup
generated by the permutation (123). By Corollary 9.10 and a direct computation, for
1 < G(§)|z| we have

/ |We(a,0, f)lda <y (|2]|G(§))~2* /27D (9.22)
lal<(1zIG(£))2%, lag 1) |<(z|G(§))~2«

for all 0 € C3. This combined with the following bound (9.21) completes the proof of
Proposition 9.6.

Lemma 9.11. For o > 0 sufficiently small, there exist 1/2 > & > &' > 0 such that

V(z%r(a™"€) Ve (a, 0, f) da

min(|€1], 621, |§3))%
Q&)

‘ [(IZIG(E))_Z“ <la;1=(z|G(&))>*

Lew'f (121G (§))2¢ 2.

9.4. Proof of Lemma 9.11

Suppose F' = R. We restrict the integral over the domain where all a; > 0 as an analogous
argument works for the other connected component of (R*)3. In particular, y o (a§) = 1.
We will apply the van der Corput lemma, and for this purpose we first prove the following:
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Lemma 9.12. Let g be a bounded continuous function on R2,,. For ¢ > 1, we have

ai a as
/ / / g(r)dr
c—lJe=1 Je—l

Proof. First note that We(a, 0, f) is smooth as a function of @ by Lemma 11.2. By inte-
gration by parts over a;, we have

<Ly sup

c~l<a;<c

/71 A g(a)We(a,0, f)da

/_1 ‘ g(a)¥e(a,0, f)da

c
:/ / (/ g(a1,az,a3)dal)\llg(c,az,a%o’ f)dazda3
c—l<az<c Je—l<ar<c 1

ai
_/ (/ g(rl,az,a3)drl)aalllfg(al,az,ag,o,f)da1 da, das.
cl<aj<c \Jc!

Applying integration by parts over a, and a3 to these two integrals, we see the original

integral is bounded by
ai; az as
/ / / g(r)ydr
¢l Je=1 Je—l

times the sum of the following terms and analogues that can be treated at the same time
by symmetry:

sup
cl<a;<c

c

|[We(c,c,c,0, 1), /_1 |0a3We(c,c,a3,0, f)|das,
C c ¢

/ 1/ 1|8a28a3\115(c,a2,a3,0,f)|da2da3,

c c

c c c
/ / / |aa18azaa3q"§‘(al,az,a3,0, f)lda1 day das.
clJe—l Jet

These are all bounded by a constant that is continuous in f by Corollary 9.10 and the fact
that the terms

9
ajlj=aj=c

c
/ {272 % 7 max(lag(n)' =02 max(1, Ja|)! "4 @274 /2 day
c—1

geCs

c c
[, [ @ Y max(tap) =2
c— c—

oeCs
x max(1, |a|)1_"""2)/2_d"‘3>/2 dasdas

c c c
/ 1 / 1 / 1{a}d/2_2 Z max (1, dg)!~4o0/?
c— c— c—

geCs
x max(1, |a])! "4 @/274®/2 a4, day das

)

aj=c

are bounded by a constant independent of c. ]
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By Lemma 9.12, the integral in the statement of Lemma 9.11 is bounded in absolute
value by O (1) times

r 2 r3 o -
p / / / W(er(a_lé)) dal, (9.23)
(1zIGE) 2> J(Iz|G(£) 72> J(IzIG(§))~2«

where the supremum is taken over

{ri 1 (2IG(EN ™ =i = (121G (§)*}.

Changing variables, this is equal to the supremum over the same set of

—(, £ )) .,
V[o,us ‘”(2 r((r —(F1G@E) 2)a + (216 E) 2= ) ) ¢

su

= (121G () 7).

(9.24)
Here (r — (|z|G(£))™2%)a + (|z|G(£)) 2% is shorthand for the vector
((ri — (121G E))a; + (121G () ™) € (R™)’.
Note that L _
—1F _ §5250(3)  da(1) 256(1))
@9 0;( £y 9020() "o ) 02
Therefore,
aa 82 82 ( g )
e\ (= (1z16®)- 2"‘)a+(|Z|G(E)) 2
£283 20 ri = (21G(§)7>*)?
=422=(r1 — (|z|G
&1 (= EeEr )H ((ri—(IZIG(E)) 2)a; + (|2|G(§))72*)?
—20)\2
253 (r — (121G (€)™ 2"‘)]_[ i - (|z|’i(§)) ) 9.26)
i=2 i

if ap,as < 1. Thus, by the van der Corput Lemma [11, Theorem 1.4], (9.24) is dominated
by

—2a\2\ —¢ 3
|Z|—28( %‘253( - (| |G(%‘)) 201) l_[ (rl (|Z|G3(§‘)) ) ) l_[(ri . (|Z|G(é))_2a)
o & = (9.27)

i=2 1

for some 1/2 > & > 0. Hence, the supremum over {r; : (|z|G(£))72% <r; < (|z|G(§))**}
of (9.24) is dominated by

217241216 )6 ol ~*[6s] - ©-28)

Thus the same bound holds for (9.23), and we deduce the lemma by symmetry.
Suppose F = C. Taking a change of variables in z, u, v and replacing f by another
Schwartz function if necessary, we may assume ¥ (f) = Yg (2Re(t)) := e 47 Re() Write
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z = |z|1/2¢!%. Using polar coordinates, we are to study

/ / W(|Z|ei2¢r(s_le_ieg))\llg(seie,0, slds d@‘
0<6; <27 J(|z|G(§))~*<s; <(|z|G(§))~

S /
0<0; <27

Now for a fixed 6 and ¢, we have

W(|z|ei2¢r(s_le_ieg))\llg(seie, 0, f)[s]ds| do.

/(IZIG(S))"‘SSi =(Iz|G &)«
(9.29)

(|z]e'2®r(s~1e710E))

5 zs&. 3) So(1
(2| 1> ( 00200 20D 052 + by (1) — bo2) — Bo(3)

0eCs So(l) Sa(2)55(3)
26,1
RELIO) cos(2¢ — O5(1))
Sa(l)

We observe that Corollary 9.10 implies |We (se'?,0, fHls]] < # 1. Hence arguing as in
Lemma 9.12, the absolute value of the inner integral over s in (9.29) is bounded by a con-
stant (continuous in f) times the supremum over {r; : (|z|G(§))™ <r; < (|z|G(§))*}
of

S
‘ / wR(2| |Z(E"‘”$"(3) 7D o526 + bo(1) — Oo(2) — b (3)

vecs N So()  So@5003)
éo(l) COS(2¢ 90(1)))) ds
Sa(l)

where the integral is taken over (|z|G(§))™® < s; < r;. Arguing as in the real case, the
supremum is bounded by

|28 lcos(2¢ + 01 — 02 — 03)|°(|2| G () CH) |&,[5/2 £, /2 |&5]¢/2.

Using the fact that |cos|~¢(x) is locally integrable for 1 > ¢, the desired bound follows by
symmetry. This completes the proof of Lemma 9.11 in the archimedean case.
For the nonarchimedean case, we will apply the following van der Corput lemma:

Proposition 9.13. Let F' be a nonarchimedean local field of characteristic zero. For any
nonzero multi-index f € Z>0, there existe >0, N € Z~y, that depend on ¥,n, B, such that
for any formal power series f(x) € F[[x1....,Xy]] that converges on O% and satisfies

108 f(x)| =1 forallx € O,

we have
Ly p.r max(L || f = fODY ]y~

‘ / V() dx
o

forall y € F. Here || f || is the supremum of the norms of the coefficients of f .

Proof. This is a consequence of [12, Propositions 3.3, 3.6] and their proofs. [
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We now complete the proof of Lemma 9.11 in the nonarchimedean case. Choose
n € Zsg such that (1 + @"0OFf)3 < ker yo.Forr := (r1,r2,13) € (F*)3and £ € Z~y,

let
3

B,y = l—[(r,- + wZOF).
i=1

Choose m > n > 0 such that W(wm(é/g,u)) = 1forall £ € Y*i(F)and u € supp( f). Let

¢ be any integer such that || < |@™|(|z|G(§))72%. Note that for |a;| > (|z|G(§))~2*
and u € w03, we have [u/a| < |@™| < |w"|, and thus

xo((a +wk) = yo(ak +uf) = yo(dé).

Then we can write

[ V(@ ) We(a.0. f) da
(IzIG ()22 <|a; |<(|z|G(§))2«

=" We(r.0. f) /B Y (z2r(a"'E)) da

= Y w0 Nl [ e+ /B da.
, 03

where r runs though a set of representatives of (|z|G(£)) 2% < |r;| < (|z|G(£))?** modulo
we(9}. In particular, |r;| > |@?| for all i. Therefore, for a € (913,,

n+1
al+r/we Z( l)n( ) ai-

With notation as in Proposition 9.13, using (9.25) one has

le((a + r/@w"7E) — v((r/m) 'Ol
(léa(z)ll&(s)l rey®@?| ée)l lEoz)| |2 |§o(1)||we|2)
el el lEewl  Ire@fe@!’  Ireml?

< (max S0 Iéa(a)l) rl (max S| |€:0(3)|)(|Z|G(€:))2a'
oceCs

0eCs &l )@t~ & )] |ot|
Moreover, for all a € 93, we have
= &2 |83 || &2 &3] _
|0a, 02,02, v((a + r/@")'E)| = |4] anlF r3|3_|4| g (5166 120) e,

Consequently, by symmetry and Proposition 9.13, we obtain

/ V(2w (@ + r/wY) 7)) da
o}
5o 553 )_8 (|Z|G(§:))l4aN+12as.

< (max
oeCs [&o(n)l |z|2¢|a ¢V +5e

(9.30)
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Now assume £ is chosen so that
[t = ¢ @™ |(|2|G€)7>.

Since [We(r,0, f)| <y 1 by Corollary 9.10, using (9.30) we obtain

> w0, f)lwtP? f V(o (@ + r/wh ) da
; 0}

—&
& |Z|_28(max |SU(2)| |SU(3)|) (|Z|G(g))_6a+14QN+120[8_20‘(_7N_56).
oeCs  [&o (1)l

We thus obtain Lemma 9.11 in the nonarchimedean case by choosing « small. ]

9.5. Preliminary truncation

Let f € S(V(F)).For& € Y™ (F)and W € §(xg SL%(F)), recall

few :x0SL3(F) — C,  xog = W(xog)p(g) f(£), (9.31)

and few € S(xo SL;(F )) < S(X(F)). Our goal in this section is to prove the formula
(9.39) below for Fx (f¢,w)(—xo).
Applying Corollary 6.11, for x € X°(F) we find that Fx ( f¢, w)(x) equals

X

_ — \d”z
/ Yz (f ¥ (22Pl(x0g) A PI(x) W (x08)p(g) f (§) dg) :
Fx No(F)\SL3(F) ¢(1)
(9.32)
Here we have identified \® G® =5 G, viae; A--- A eg — 1 (see (6.17)). The measure d &
is normalized so that it coincides with the measure dx in Corollary 6.11 restricted to
xo SL3(F) (see (9.7)).
Since we are studying Fx (f¢,w) in a neighborhood of —xg in —xo SL;(F ), we need
only consider

X = —xog

for g’ € SLg(F ) sufficiently close to 1. In this case, after a change of variables g > gg’
in (9.32), we have

Fx (few)(x) = Fx ((p(g") e, r@eyw)(—x0). (9.33)

where R(g")W(xog):=W(xogg’). This allows us to focus on computing Fx (f¢,w)(—xo)
as long as we are able to control its behavior as a function of W and f.

Letw := (_01 (1)) € SL,(F'), and denote again by w the image of w under the diagonal
embedding SL,(F) — SL3(F). Let

A:F — F3

be the diagonal embedding. Let B, < SL, be the Borel subgroup of upper triangular matri-
ces and let N, < B, be its unipotent radical. By Bruhat decomposition, xo B3 (F)wN; (F)
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is open in SL;(F ) with full measure. Therefore, there is a constant k¥ > 0 (independent
of ) such that

k|a1a2a3|2 dt d*adbgy
—d((*AW) (a7 Yuw (1bo)) forie Foae (FX) boe F3.  (9.34)

Therefore,
e _L —1y/,12
T )=o) = 7o [ e

) (/ v (FPL(xo (1 417) («7 ) w () A PI(=x0)
Fx(F*)3xF3
x W (xo (" A0) (7 )w (M) e (M) (a7 ) w ()
x f(E)ay? di d*a dbo)dxz. (9.35)

As we will always restrict W to the open Bruhat cell, we identify W with a smooth
function on F x (F*)? x F by writing

Wi(t.a.bo) :== W (xo (' 20) (a7 Y w (! 20)) (9.36)

for (t,a,by) € F x (F*)3 x F3.
By the formula for the Weil representation (see [20, Section 3.1] and the references
therein), one has

p((MA0) (¢ Jw (M B)) £©

3
_ V(Q)XQ(a)w(tQ(s))/ w(<§,u> + ZbiQi(u))f(u) du, (9.37)
V(F) a

FIp
taje/ P

where by = (b1, bs, b3). Here the Haar measure du on V(F) is normalized to be self-dual
with respect to the pairing (-, -) and ¥. On the other hand, we have

PL(xo (140 (47 ) w (1 40)) A PI(—x0)
= —Pi(xo (1A0) () w (1 %0) y5") A PIg)

= —Pl(xo (_“_Aa(’) “7]_“’)‘”"’) yo_l) Aeg Aes A eg,

—abg
where )y is defined as in (8.3). Under the identification
e1AN---Negt— 1,
this is

— 3
17 aibi=Yi— a;! t(a1—a2) t(a1—a3)
—det ( arbr—a1 by l —ai—az —aj = _3tala2a3 E bi + r(a),

azbz—ayb —ay —aj—as i=1
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where 1 is defined as in (9.2). Combining this with (9.35)—(9.37), we obtain

Fx (fe,w)(—=x0)

_ r(Q)k 1 2( s L
=20 /;X Y(z7hz| /FX(FXXF)SV/(SZ t[a];bl z r(a)—i-tQ(é))

)+ S ) s )

=, b; Qi (u; du \W(t,a,bg)~—=—~——dbodt | d*z.

* (/V(F) W(<a e i Citua) ) 7wy J(t-a-bo) {aydrz=2 =70 )
Changing variables by = (b1, by, b3) — (b 4+ v1,b + v2,b — v; — v3), this becomes

y(Q)kI3|
¢

/ w<zl>|z|2( / V(9=21lalb — 2v(a) + 10(8))
Fx F2x(F*)3xF2

X (/ 1//(<§,u>+bQ(u)—i—c(u,v))f(u)du)
V(F) a

xo(a)d*a x
dedl d”z.

x W(t,a, A(b) +v)dv
Here we have used the notation in (9.10) and
v = (v1, V2, —V1 — V2). (9.38)

Taking a change of variables b > 92%[‘1], we arrive at

y(Q)k
1312(1) J

w(z—l)( / VOE) + 10T (=*x(@))
F2x(F*)3xF?2

§ bO(u)
* ([V(F) W(<;, u> TP c(u, U))f(u) du)

b , xo(a)d*a %
XW(I’G’A(ng[a])_‘_U)dedbdl)d Z. (939)

9.6. Choice of Vg,,8,

Let F-1 be the set wZ<o (resp. R~ 1) when F is nonarchimedean (resp. archimedean). In
this subsection, we specify our choice of Vg, g, indexed by

{(B1,8B>) € F2, : 1381 > | B|*}.

and derive formula (9.44) for Fx ( ff""ﬂl. 32)(—x0 g). Then we explain how Proposition
9.3 follows from Proposition 9.15, which is stated below and proved in Section 9.7.
We point out that in the argument below, we only require [38;| > |8B5|? in the nonar-
chimedean case, but for uniformity we impose it in the archimedean case as well.

Recall from (9.9) that Q := f1/4 is the closure of K4 in SLS(F). Suppose F is
archimedean. Choose functions H, J € §(F) satisfying the following conditions:
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(1) Hw) = H(ju|YF Ry and J(u) = J(ju|VIFR]) forallu € F.
(2) H(0) =1and H , the Fourier transform of H, is compactly supported.
(3) The function J is nonnegative and bounded by 1, and

1 if|ul <1,

) = {0 if Ju| > 2.

(4) The function J satisfies the condition in Lemma 9.16 below.
For (u, B) € F x F*, define Hg(u) := Hu/B) and Jg(u) = J(u/B). Given
B1, B, € F-q, define Vg, 8, € S(xo SLS(F)) using the coordinates (9.36) by

3
Vg, .8,(t.a.bo) := Hg, (1) [ | Jiog 8, (og |ai |/ ®)) J g, (B).

i=1

Forg = (¥ }) € Q, we have
R(g)vﬁl,ﬂz(taa7b0)

3
= Hg, (t — 15(a,bo)) [ | Jioe 8, (log|ai (m; + bix;)|"/ [F:RI)J&(

i=1

ni + biyi
m; + b;x;
(9.40)

if m; +b;x; # Oforalli, and R(g)Vg,,8,(t,a,bp) = 0 otherwise. Here

3
1 Xi
to(a,by) := = _—
g(@.bo) 3;ai2(m,~+b,-x,~)
The limit

R(g)Veo,8,(a.bo) := lim R(g)Vg,,8,(0.a.bo)

|B1|—>o00
3 1
[ 1 Zi0e 3, (log |a; (m; +bixi))| [F:R])Ji?z(

i=1

ni+b;y;
m; +b;x;

) 9.41)

converges pointwise.
Suppose F' is nonarchimedean. For B;, 8, € F~; and g € SL;(F ), let

1 if xog = xo (C_l CAC(”)) h,

Vg,.8,(x0g) := where |u| < |8B1], |Ba2|™' < |ci| < |Bal, h € SL3(OF),

0 otherwise.

The conditions on |u| and |c;| are independent of the choice of decomposition of x¢g if
|381| > |8B2|%. More explicitly, one can check the following lemma:
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Lemma 9.14. Suppose F is nonarchimedean. Let ¢, ¢’ € (F*)3 and u,u’ € F. If
X0 (c_l cAc(u))h = xo (c’_1 c’Acgu’)) 1%

for some h,h' € SL3(OF), then |c;| = |c!| for each i. If in addition |381| > |B|* and
|B2|7! < |ci| = |c}| < |Bal| foreachi, then |u| < |B1| if and only if |u'| < |By]. [

Because of Lemma 9.14, we henceforth assume that |38 | > |85 |?. Clearly, Vg, 8, €
$(xo SL3(F)) is right SL3 (O r)-invariant. Observe that for (¢,a;,b;) € F x F* x F, one
has

) | a;! ar) (b -n~! if b € Op,
(1 {) (a,- 1 ai) (- 1) (l bll) - E(uibi;ﬂ)aib;i;;l,f_l ) (b:—ll _1)_1 ifb: Q/@:

Combining this with Lemma 9.14 and using coordinates as in (9.36), we have

3
V.8, (t.a,b0) = 15,0, (t —7(a.bo)) [ [Ag,0, —1g 10, ) (@@ 4P)),  (9.42)

i=1

where T : (F*)3 x F3 — F is given by

3
1 _
w(abo) := 3 ) (aib) " po, (bi).
i=1

Here we view 1r_¢, as a function valued in {0, 1} C F, and take the convention that
(aizbi)_llF_(gF (b;) = 0if b; = 0. Consequently,

Veo,8,(@,bo) := lim Vg, 3,(0,a,bp)

|B1|—>00
3

= [[As0, — 15510, ) (@@ %)

i=1

where the convergence is pointwise. To unify the notation, we write H := 1g,, Hg, 1=
18,0, and for g € Q we write

Tg:=7 and R(g)Veo,8, ;= Voo,8,-
For F archimedean or nonarchimedean, we can rewrite (9.40) and (9.42) as
R(g)Vg,,8,(t.a.bo) = Hg, (1 — 74(a, b)) R(8) Veo,8, (@, bo). (9.43)

For every g € Q the function R(g)Vs,8, converges pointwise a.e. to 1 as |B,| — oo.
Moreover H(0) = 1. Thus (9.8) is satisfied.
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Let g € Q. By (9.33), (9.39), and (9.43), we obtain
Fx (fevs, 5,)(~%08)

_ 7(Q)k . ( N
|3|Z(1)/FXWZ ) /sz(FxpxFﬁ(fQ(S)ﬂ Y (z%r(a))

£\, bow
* (/V(F) w(<a’u> * 922[a] + C(”’”))P(zs")f(u)a’u)

<t (1= (0.8 (g ) +0) RV (08 (g ) )

xo(a)d*a %

Taking a change of variables f > ¢ + 7, (a, A(%) + v’) and b — b — Q(§), we arrive

at

where H 8, 1s the Fourier transform of Hg, , and we set

Ot g 8,(b, 2, f)

_ b
- / V(@) ( / w((s >+£+e(u v))p(g)f(u)du)
(F*)3 F2\Jv(F) a 9[a]
. w((zzb L 0E), ( A(9[ ]) T ))

b , xo(a)d*a
% R(8)Voo.3, (a A(9[a]) +v ) dv —{Qa}d/z—l .

We prove in Section 9.7 the following:

Proposition 9.15. There exist 1/2 > ¢ > 0 and ¢’ > 0 such that forall g € Q and b € F
with [Q(§)[/2 < |b— Q&) = 2|0(5)|,
b— i ’
‘cbé,g,-ﬁz (&7 z, f)' Lee! f£.8) min(1, |Z|)mm(d1,d2,d3)—2—26 max(1, |z])~¢ .
z
(9.45)

In particular, the bound is independent of b, g. Moreover, if b = 0, the implied constant
can be chosen so that it does not depend on B,.

We claim Proposition 9.15 implies Proposition 9.3. As His compactly supported, we
can choose M € Z~¢ such that for all |B;| > M, |Q(&)|/2 <|b— Q(&)| <2|0Q(&)| forb
in the support of Hg,. Then by (9.44) and (9.45), we have

|Fx (fe,8,,8,)(—X08)|

Lee 168 |Hs, / min(1, |z])min(@142:83) 2728 max (1, ]2)) 7 d¥z Keer |
F><
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for all g € Q. Here we use the fact that the L'-norm ||1’-AI;3l lh = ||ﬁ||1 < oo for all B;.
By Fourier inversion, Hg, converges to the Dirac delta distribution as |8;| — oo, and
thus by the dominated convergence theorem we have

i P (x0) = SO0 [ a0 (52 f )
|1B11—~> 13[2(1)
Applying the bound in Proposition 9.15 for b = 0 and that R(g)Vu,8, converges to 1
a.e. for any g € €2, (9.11) follows from the dominated convergence theorem and Theo-
rem 11.1. This proves Proposition 9.3.
We end this subsection with a lemma on the choice of J in the archimedean case. For
ease of notation, let

={beF:|0@)|/2<Ib-0®)] <210} x F? x F* xRy,
and for (g,a,d) = (g,a.b,v,z,B5) € Q x (F*)3 x D, let

a0, )
8) 1= R(g)Voos, [ 2. A( UV~ . 46
Te(e.a0) = R@ Vs (1 A2 946)

When F = C, write a, = rpe¥ ™! O in polar coordinates.

Lemma 9.16. The function J can be chosen so that the following conditions are satisfied.
Suppose F = R (resp. F = C). In each variable a, (resp. ry), the preimage of zero for
each function

04, Te(g,a, ), 0gq Baj Te(g,a,d), 04,04,04;Te(g,a,d)

(resp. 8r; Te(g.7eY ™10, 0), 87,0, Te(g,reY™10.0), 87,8100, Te(g, re¥ ™19, b))
(9.47)

has finitely many connected components, and the number of connected components is
bounded by an absolute constant.

Proof. Assume first F = R. We will make use of some standard facts on o-minimal geom-
etry. A nice reference is [48]. Consider the o-minimal structure R, [56] generated by the
exponential function (and algebraic functions). We can choose J € §(F') that is definable
and satisfies (1) and (3) above. An explicit construction is given in [47, Section 13.1].
Since the domain of T is semialgebraic and log is definable, T is definable and
smooth in a, and so are the derivatives in (9.47). Let Y; be the graph of the function

0, T¢ - Q2 x (R*)*x D - R

Thus Y; is a definable set. It admits a decomposition into finitely many definable cells
[48, Chapter 3, (2.11)]. For each (g, az, as, ), consider the fiber over (g, a;, as, d,0) of
the projection map

Yi - Q@ x (R*)?x D xR.
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The intersection of the fiber with each cell of Y; is either empty or connected. This follows
from [48, Exercise 7 of Chapter 3, (2.19)] and the definition of cells; see the proof of
Chapter 3, (2.9) in loc. cit. Hence the number of connected components of the fiber is
bounded by the number of cells, which is an absolute constant. This proves the assertion
for the function d4, T¢(g, a, d) in the variable a,. The same argument can be applied to
the other functions and variables.

For F' = C, T is definable in the o-minimal structure Ry exp [49], generated by the
exponential function and restricted real analytic functions. The rest of the arguments carry
over. |

9.7. Proof of Proposition 9.15
Define, for (a.b,z,g) € (F*)3 x F x F* x Q,

b
Wegg(a bz, f) = /Fz(/w)w«% > [a;[g](u) +c(u,v)),o(g)f(u)du)

x w((zzb +0() g(i ([ [];) o ))
X R(g)Vee, 32(5 A([Q[Z) ) rotad ()’ 2 .

Comparing with We(a, b, p(g) f) defined in (9.12), the only difference between the two
functions is the introduction of the weight function

((22b +0®)t (g ([ ]b) + v/))R(g)'Voo,igz(g, A(@) + v’). (9.48)
a 9[£] a 9[¢]

Changing variables @ > a~'£ in the definition of D¢ e.3,(b, 2z, ) we have

3
Be g5, (b7, f) = L) 1172 /( o VEH@ D 5,0 .2 /) da
i=1

just as in (9.13). Thus the bound (9.45) would be implied by Proposition 9.6 except we
have introduced the weight function (9.48) and replaced —% by %. The remainder
of the proof of Proposition 9.15 amounts to modifying the proof of Proposition 9.6 to
prove (9.45).

Let us begin this process. We assume for the remainder of the proof that b € F is such

that [Q(£)|/2 = [b = Q(§)| = 2[Q(§)]. Put

|b— Q)|

for some (1/2)'/2 < C < 22, where G(£) is defined in (9.14). As the absolute
value of (9.48) is bounded by 1, the bounds in (9.15), (9.17) are valid if we replace

1/2
G(b.£) = ( ) = CpG(§)
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We(a. ~Q(§)/22, p(g).f) and G(€) by Vg ¢ 8,(a.b — Q(€)/2% 2. f) and G(b. §). and
the implied constants can be taken to be independent of b, g, 8,. One simply replaces
Corollaries 9.8 and 9.9 with Theorems 11.1 and 11.17, respectively. In fact, the only dif-
ference between the latter results and the former is that one absolute value sign is outside
(resp. inside) the integral over F?2 in the former (resp. latter). Thus to prove (9.45) we are
left with bounding the analogue of (9.18), namely

_ ~ b —
w(zzr(a—ls»wg,g,sz( 8-20 ., f)

‘ /IaIS(ZIG(b,E))z"‘

for N < |z|G(b,&) and 1/6 > o > O sufficiently small. Here N € Z~ is a constant to be
determined in the nonarchimedean case, and is 1 in the archimedean case. We therefore
assume for the remainder of the proof that |a| < (|z|G(b,£))?>* and N < |z|G(b, £), where
O<a<l1/6and N € Z=y.

Let F be nonarchimedean. Define

Vi .3,(@b )= /F2 (/;/(F) lﬁ(<?u> + c(u, v))p(g)f(u) du)

xy (bfg (% v’))l’i(g)’Veo,;B2 (% v’)XQ(ag){a}d/“ dv.

la]l(b—0(§))
9z2([£]
we can choose N large, independent of b, g, 85, such that

ool () ) ()

Moreover, in view of (9.43), R(g)Vwo, 8, (g/a, bg) is invariant under by — by + u’ for
u’ € wO3. Consequently,

la|? < (zIG(b. §)1* 2, (9.49)

h—
Ve, (a, Z—g@)»Z»f) = ‘Pé’g,gz(a,b, )

for N large by (9.49) and (9.19). The analogue of (9.22) with We(a, 0, f) replaced by

Sg 3, (a,b, f)is valid since || = 1 and |R(g) Vo, 8,| < 1. We simply replace Corol-
lary 9.10 by Theorem 11.4. Thus to complete the proof of (9.45) in the nonarchimedean
case, it suffices to show that the analogue of Lemma 9.11 holds, namely, for ¢ > 0 suffi-
ciently small, there exists & > 0 such that

Ll 1k |z|_€'.
(9.50)

V(@ 0V, , g (.. f)da

[ZG(b=$))_2“ <la;1=(z|G(b.§))%~

To deduce the bound (9.50), observe that for [u| <¢ (|z|G(b, £))~2¢,

) e
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Note that R(g) Voo, 8, (g/a, bg) is also invariant under a + a + u foru € w ]_[?:1 a;OF.
Therefore, for m € Z sufficiently large, depending on £, f, yo, and any £ € Z such
that || < |@™|(|z|G(b, £))~2%, the function \Ilé’g,ﬂz (a,b, f) is invariant under a
a+ wx forany x € O3 . Furthermore, since || = 1 and |R(g) Voo, 8,| < 1, we can use
Theorem 11.4 in place of Corollary 9.10 in the proof of Lemma 9.11 and argue as in that
proof to prove (9.50). We also observe that all of our bounds are independent of 8B,, even
if b #£ 0, so the last assertion of Proposition 9.15 follows as well.

Suppose that F is archimedean. First consider the analogue of the bound (9.20) for
Weg.8,(a. 5. 2. f). Write

) £ (lal(b—0(®)
= /F2 Tg(g,a,b)W(bfg(a’A(T[g]) ))
(f () 02D )
V(F) § 927[]
(o)) 5
£ a(We=26)
+/F Te(g,a, b)‘/’(bfg(a A( 922(£] )+v))

ag Xo(af)
X (/V(F) 1//(< F ,u> + c(u, v))f(u) d”)—{a}z—d/z dv. (9.51)

Here we use the notation (9.46). Let

®M£J&&Zfﬁ=/ T

la|<(1z|G(b,8))>*

«f s (i (o (HZEE) )

a§ [alc Q(u) xola 5)
) (L(F)W(<?,u> [5] + c(u, v))f(u){ \2-d/2 )dvda,

By the same argument proving (9.20), with Theorem 11.1 replacing Corollary 9.8, we
deduce the following analogue of (9.20):

~ b—0(¢) ~ 60—2 60—2
Ve g3, | 0. Q2 Zof ) = Wee.8,(0.0,z, )| L5 (|2|G(b, §))IFRT K¢ |z|IFRI.
Here we have used the fact that || = 1 and |R(g)Veo,8,| < 1. As in the nonarchimedean
case, the analogue of (9.22) with W¢(a, 0, f) replaced by the second term of (9.51) is
valid; one applies Theorem 11.4 in place of Corollary 9.10.
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Therefore, we are left with showing that the analogue of the bound in Lemma 9.11
remains valid for the second term of (9.51). In other words, we need to show that for all
|z|G (b, §) > 1 the quantity

' [ T B
(IzIG(,8)) 2% <|a; |<(|z|G(b,£))2™
E (b 06)
<[ Tt b)"f(’”g( A(T{g])+v))

& X0 (af) ‘
x (/V(F) 1//(< z u> + c(u, v))f(u)du) —{a}z—d/z dvdal (9.52)

is bounded by a constant, depending on B, if b # 0, times |z| ¢ for some &’ > 0. We show
that the argument proving Lemma 9.11 can be adapted to the current setting. Assume F is
real. We prove an analogue of Lemma 9.12, namely, for any bounded continuous function
honR2 and (|z|G(b,§))** > ¢ > 1 one has

[ f s (4420 )
</<<<>>>— e
1L s

Combined with (9.28), this gives rise to the desired bound on (9.52) by choosing & > 0
sufficiently small.
We prove (9.53) using integration by parts as in the proof of Lemma 9.12. We have

L1 121°% sup (9.53)

cl<a;<c

analogues of all of the terms appearing in that proof. They can all be bounded as before
using the fact that || = 1 and |T¢| < 1, replacing the use of Corollary 9.10 by Theo-
rem 1 1.4. We also have additional terms that can be bounded similarly as we now explain.
First, using (9.41), one checks that (for |a| < (|z|G(b, £))?) in the support of T¢(g, a, D)

the quantities

(e (o (55E ) +)
aa,aa_,w(brg(i (%) ))' (9.54)
aalaazaﬁw(brg(g,A(%) ; v))'

are bounded by Og, (1). The additional terms that we have to bound involve the deriva-
tives in (9.54) and derivatives of T¢(g, a, ). One such term is

3
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[ s o (2 5 o(2280) )

X £ > < asés > ) ) das dv
(/V(F)w(z<g] Uj ; % Jusz) +e(u,v) ) F(u)du

; cA-di+d2)/2427 0312

This term is nonzero only if b # 0 and is bounded by Og,, r(c) times

o) ) )
Ll ) ),

Jj=1
dv

X
cA=di+dr)[24243/2

by our bounds on (9.54), which is Og, r(c) by Theorem 11.4. This is a sufficient bound
for the purposes of proving (9.53), and all the terms not involving any derivative of
T¢(g, a, d) can be treated in the same manner.

Consider the terms involving derivatives of T¢(g,a, d), e.g.

X (/V(F) 1//(2 <C§J, ]>1 <—;3§3 u3>3 + c(u,v))f(u)du)‘
J

das dv
X 9
A-(di+d2)[24243/2

0a;Te(g,c,c a3, d)

(9.55)

where 1 < ¢ < (|z|G(b, £))?*. Here we have used the fact |1/| = 1 and the Fubini—Tonelli
theorem to switch the order of integrations over a3 and v. Note that as a function of
¢c'<az<ec,

o), (5 ), e s
/“/(F)w(;<§] ’ ]] 53 » U3 3+c(u,v) f(u) u

is Lipschitz continuous by Lemma 11.2 and hence absolutely continuous, so it is dif-
ferentiable a.e. and the derivative is integrable and satisfies the fundamental theorem of
calculus [55, Theorem 7.29]. Applying integration by parts [55, Theorem 7.32] to the
integral over as, (9.55) is bounded by the sum of

/ 1//(23:<c~iuj> +c(u,v))f(u)du
v(E) \iZp\ & j

Jj=1
dv
X _—
C6—(d1 +d>+d3)/2

1
c4—(dy +d2)/za§—d3/ 2

c
// 1003 Te (g, ¢, ¢, a3, b)| das
F2 Jc—1

(9.56)
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/F2 /—1 /—1 |0a;Te (8. c. c.as, b)| das
c c

c§j ré; du
/V(F)w(2< E,J’ J>, <53 ’u3>3+c(u v))f(u) 2-d3/2

J=

dr dv

X Or A a2

(9.57)

By Theorem 11.4, the first term (9.56) is bounded by Oy (1) times
c
sup / |0a5T:(g.c,c,as, b)| das.
v1,02€F Je—1

By Lemma 9.16 and the fundamental theorem of calculus, the integral is dominated by 1
forall 1 < ¢ < (|z|G(b, £))**. On the other hand, by the second mean value theorem for
Lebesgue integrals [57, Theorem 1], (9.57) equals

/;:2 /—1 [04;Te(g,c,c a3, b)|das

¢t rés > ) du
e(gb) ‘/V(F) ( <§, ’ ’>,-+<§3 ' 3+C(u’v) S =g

J=
dr dv
X @tz

for some e(g, d) € (¢!, c). For the same reason as above, this is bounded by Or(1). The
other terms can be treated similarly, yielding the bound (9.53).

The case F = C can be handled similarly using polar coordinates. As mentioned
above, this is enough to deduce (9.45). Now we observe that the only place in this argu-
ment where our bounds are not uniform in 8B, is in the estimation of (9.54). These terms
vanish if » = 0. Thus we obtain uniformity of the bound when b = 0 as claimed. |

10. The operator Fy is unitary

In this section, we apply Theorem 9.1 to prove the following.

Theorem 10.1. Let F' be a nonarchimedean local field of characteristic zero. Suppose
dimV; > 2 forall1 <i <3 and Y™ (F) # @. The Fourier transform Fy extends to a
unitary operator on L*(Y(F)). Moreover, for f1, f» € L>(Y(F)),

/ f‘y(fl)(y)fz(y)du(y)=f SiFy () () du(y). (10.1)
Y(F) Y(F)

Recall the definition of § from (8.7). The following lemma is the only place in the
argument where we use the assumption that F is nonarchimedean:
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Lemma 10.2. Assume F is a nonarchimedean local field of characteristic zero. Given
f € 8, there exists a sequence of functions f; € S such that

i—00

im [ AT D)) = / Fy (N0 Fr (D) du(y).
Y(F Y(F)

lim ?Y(fz)(y)f(y) du(y) = / FO)f)du(y).
Y(F Y(F)

i—>00

Remark 10.3. We expect that the proof of this lemma could be adapted to the
archimedean case if one develops a theory of Sobolev spaces for X(F) together with
an analogue of Morrey’s inequality.

Proof of Lemma 10.2. We can and do assume Fy (f) = I(fl ® ]é) for some ]71 ® ]é
S(X(F)) ® S(V(F)) (see (8.6)). Choose a compact open subgroup K of Spe (OF) such
that f1 is right K-invariant. Choose f,l € C(xo SL3(F))K such that f,1 — f1 in
L%2(X(F)). Put f; := I(f,l ® fz) There is a constant ¢ > 0 (depending only on f2
and K) such that

3
Ty (£)) = i) <cllfi = fall2 1_[ |y, |~ 4i/2+2/3

Jj=1

for all y € Y (F). Indeed, this is implicit in the proof of [19, Proposition 11.4]. Thus by
[19, Proposition 11.1] we have

3
1Py ()0) = LTy (DD Lzpx 1A= Fall [ 1y P24+ 102)
j=1

for 1/2 > B > 0. Moreover, ¥y (/) has support contained in a compact subset of Y (F)
[20, Proposition 7.1]. Thus applying (10.2) and (10.3) to be proved below, we obtain

/Y(F) 1Py (N)) = LONFr (DO diy) <z 1L = firlla.

The first equality follows. Since F is an isometry on L2(X(F))X, the second equality
follows from the same argument. ]

Before giving the proof of Theorem 10.1, we prepare some estimates.

Lemma 104. Let F¢ be a vector space of dimension d and @ be a nondegenerate
quadratic form on F2. There exists « > 0 such that for any 0 <t < 1,

/ dv K t*
vl=1, @)=t

Proof. We can and do assume the matrix of @ is the diagonal matrix diag(cy, ..., cq)
where ¢; € F*.



Harmonic analysis on certain spherical varieties 77

We first consider the archimedean case. Suppose F' = R. We may assume some ¢; > 1.
Then the lemma is a consequence of [ 11, Theorem 1.3]. If F = C, we may assume each c;
equals 1. Thus in real coordinates, |@(v)| is a homogeneous polynomial of degree 4 with
coefficients in Z . The assertion again follows from loc. cit.

Suppose F is nonarchimedean. We may also assume |¢;| > 1 for some i. Assume that
the conductor of the additive character 1y is O r. According to [12, Proposition 3.6],

<« max(1, [u])~/?

‘/ V@) dv
o

for u € F*. Consequently for n > 0 we have

1
dv =00 Q) dv ) d
/Ivlﬁ,la(v)sq—n ' T rdx () /w—nap(/@z v e U) !

1
L — lu|~Y2 du
q" Jiul<qn
1
<< an | ]
Lemma 10.5. For f € §,
3
[ O Iyl dpy) < o0 (103)
Y ani(F) im1

and

3
/ NI [Tl dut) <00 (104)
1QI=lyilly2llys] ie1

forany e; < di —4/3 and ¢ > 0 sufficiently small (depending on e;). Here the integral in
(10.4) is over y € Y®i(F) satisfying the given inequality.

Proof. Since f € §, we have

| f] < 1g=nv©r) () (10.5)

for some n if F is nonarchimedean, and

| f()] <n max(1, |y~ (10.6)

for any N € Z~¢ if F is archimedean. Therefore (10.3) follows from the proof of [19,
Proposition 11.2].
In the following, we use the homogeneity property: for r € F*,

dp(ry) = ||t g (y).

All of the integrals with respect to the measure du(y) in the remainder of the proof will
be over subsets of Y ¥ (F) satisfying the inequalities given in the subscript.
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Assume that F is nonarchimedean. By (10.5), for some n > 0, (10.4) is dominated by

3
O T il du(y)

/IQ(y)|5|y3,y|5q" i=1

3
< f QI [T 1l ™ du(y)
[0(I=q"y13,1¥1<1 e
oo 3 3
- Zq—J(—28—4+ZE:1(di—ei)) / ' 100~ 1—[ lyi |74 di(y).
j=0 Q=g 7, 1=]y|<2 im1

Here we could just write |y| = 1, but we have written 1 < |y| < 2 so that we can
use the same formula in both archimedean and nonarchimedean cases. Suppose F is
archimedean. By (10.6), we find that (10.4) is dominated by

[e.]

3
/ O [ vl duy)
1 /10Oy P, 27/ <ly|<2—/+] i=1

j=1
o} 3
-N —& =€
+,§0 /Q(y)|5y|3,2f5|y|<zf+u QO [T il duy)
o} 3 3
= Y e [ ) [Tl duy)
= loI<2=/ |y, 1<|yl<2 i=1

o0
+ Y N2 T die)

Jj=0 3
x / _ NI [ THyel ™ du(y)
[0I=2/1y3, 1<|y|<2 el
0 3
(2644 (di—ei ~ -
< Zz J(—2e—4+>"7_(d; ez))/ 4 10y 81_[|yi| e; du(y)
j=1 [OI=2—7+3,1<|yl<2 el
- j(—N —2¢e— 3 P _ 3 .
+Zzl( N—2e—4+>";7_,(d; ez))/ ‘ 10| 81_[|,Vi| e; du(y).
j=0 l0)=2/ 13, 1<|y|<2 bl
Consider ,
[ 10~ [T Iy du(y), (10.7)
[Q(y)=c/,1<]yl<2 Pl
where

q if F is nonarchimedean,

c=c(F)={

2 if F is archimedean.

The integral (10.7) is nondecreasing as j — oo and is independent of j for j sufficiently
large since |Q(y)| < |y|?. Choose N > —4 + Z?=1(di — e;) in the archimedean case.
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The manipulations above show that to prove (10.4) it suffices to show that we can choose
& > 0 that is sufficiently small in a sense depending on e; such that (10.7) is finite for a j
greater than a constant depending only on Q.

Observe that (10.7) is bounded by

3

j—1
) / [Tyl dniy). (10.8)

k k+1
k=—o00 <|Q)|=ck+ :IS‘Y|<2i=1

To proceed, we first obtain a bound on

3

/ [T1il™% duy).

k<lo)l=ck 1, 1<lyl<2 ;_;

By symmetry, it suffices to bound

3
k<305 (y3)|<ck+! [Tl dp(y). (10.9)

max(|y1],ly2))<|y3l, 1<|y3|<2 i=1

Arguing as in the proof of the finiteness of the integral in (11.0.7) of [19, Proposition
11.2], (10.9) is bounded by a constant depending on d;, e; times

/ dvs. (10.10)
lvsl<2,[3Q3(v3)|<ch+!
By Lemma 10.4, (10.10) is O(c®™©*+1) for some 1 > a > 0. Take & < o/2. Then

(10.8) is dominated by
j—1
Z C—ka/zca min(0,k+1) < oo, -

k=—00

Proof of Theorem 10.1. Assume for the moment that (10.1) is valid for functions in §.
Let f € § and choose f; as in Lemma 10.2 for f. We recall from [19, Corollary 12.7]
that

FyoFy(f)=f and Fy(f) = Fy(f).

Thus we obtain

17y ()3

[ ?y(f)(y)?y(f)(y)du(y)=/ Fr (Y0 Fy (N () dp(y)
Y(F) Y(F)

= lim fiFr (Hy)dpy) = ,lim/ Fy ()0 () dp(y)
Y(F) 1= JY(F)

i—00

/ SO T dpy) = 11 12.
Y(F)

Since § contains CX° (Y™ (F)), which is dense in L2(Y(F)), the operator Fy extends to
a unitary operator on L2(Y(F)) and (10.1) is valid for all f1, f> € L2(Y(F)).
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It remains to prove the identity (10.1) for fi, f> € §. Recall that as Y *™(F) is non-
empty, Y #(F) is dense in Y (F) in the Hausdorff topology. Using Theorem 9.1, we have

/ |y TN A0) i)

B /Ymm f.v “>(/ L PE@)

y L\ 2®)0w) rol@ d*a\ .
) (/Y(F) v (<;’$> - T[a])fl@)fz(y) du(é))w)d zdu(y).
(10.11)

By Corollary 9.7 and Lemma 10.5, the integral

y 0()0(y)
[ ][ ([, () 220) i)

xo(a)d>a

(a)da d*zdu(y)

is finite. By (9.13), Corollary 9.8, and Lemmas 9.4 and 10.5, so is the integral

y 0©6)00W) d*a
/Y(F) /(FX)3 |f2(y)|‘ »/Y(F) W(<Z,g> - T[a])fl(é) du(&)‘ {a)d/2—1 dp(y).

Finally, by Lemma 10.5 we have

[ 10liA@dee duo) <o
Y(F) JY(F)

Thus by the Fubini—Tonelli theorem, we can move the integral over y € Y(F) in (10.11)
to see that it is equal to

c w(z—‘)( / V(@)
Fx (F>)3

£\ 000 ro@d*a\
x( / (F)Xm)w(<y,5>——922[a] )fl(é)fz(y)dM(S)dM(y))—{a}d/z_l )d -

This is visibly symmetric in f; and f> and we deduce the theorem. ]

11. Analytic estimates

Let F be a local field of characteristic zero. In this section, we establish the estimates
used in Section 9. We follow the notation in Section 9. The Haar measure du on V(F) is
normalized to be self-dual with respect to ¥ and the pairing (-, -). The following theorem
is the main result:
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Theorem 11.1. Suppose dimV; > 2 forall 1 <i < 3. Let f € S(V(F)). Given 1/2 >
g > 0, one has

ﬁ bla] O (u) ) J dvd>*a
/(FX)3><F2 /;/(F)w(<g’u>+ 9[?] e, ) )f ) du {ay1=d/2
min(dy,d>,d3)/2—1—¢
L, f min(l, El@i—z(g)& ) (11.1)

for (b, ) € F x Y®(F). Here by convention min(l, |%D =1ifb=0.

We bound the left-hand side as an iterated integral, first establishing a bound on the
inner integral in (11.3). We then treat the integral over F2 = No(F) in Section 11.1 by
analyzing the bound in (11.3) term-by-term. Finally, we bound the integral over (F*)3 in
Section 11.2, proving the theorem.

We begin with a lemma that estimates the integral over V(F).

Lemma 11.2. Let f € S(V;(F)), € € Vi(F) and b € F. There are a pair of C-linear
maps
S(Vi(F)) = S(F x Vi(F)), [ ¥y,

for 1 < j <2, continuous in the archimedean case, such that

s

1

) Y(bQi(u) + (& u)i) f(u) du

_ { Wi p(b,§) + Va7 (1/b,E/b) DIy (b Q)Y (Qi(§)/b) if b # 0,
¥1.7(0,8) if b=0.

Here y(bQ;):=y (¥ o bQ;) is the Weil index [54, Théoreme 2]. It satisfies |y (bQ;)| =1.
Proof. Let p1, p2 € C%°(F) be a partition of unity such that
pi(x)=1for|x| <1 and py(x)=1"for|x|> 2.

For (x,y) € F x V;(F), let
Wi, (x,y) i= p1(x) /V(F)W(XQi(u) + (v, u);) f(u) du.

It is easy to check that Wy r € S(F x V;(F)).
By Fourier inversion and [54, Théoreme 2], for (x, y) € F* x V;(F) one has

/ V(0 ) + (v ub) £(0) du
Vi(F)
_y(x0y)

—(Qi(y —u)\ 2
= AP Vi) W(—X )f(u) du
i —(Qi(u) —2(y,u); i ~
_ V(ng/z) 1//(Q () =2(y,u)i + Q (y))f(u)du.
|x[472 Jv, (F) x
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Here f denotes the Fourier transform of f with respect to the pairing (-, -);. Thus we can
set

W p ()= a7 [ T2 50,00 Fl

ifx # 0and Wa, £ (0.7) 1= [y, py ¥ (=2, u)0) [ () du = f(=2y). .

It suffices to prove Theorem 11.1 when f = f; ® f> ® f3 is a pure tensor; we
henceforth assume this. To simplify matters, we introduce the space A(F™) of rapidly
decreasing functions on F" as follows. If F is nonarchimedean, A(F") := S(F"). If F
is archimedean, let C(F") be the space of continuous complex-valued functions on F".
For a multi-index o = (a1,...,0,) € Z%, and x = (x1,...,x,) € F", define x* :=
[172, x{ € F.Put -

A(F™) = {f € C(F™) : | flla := sup | f(x)](x?T*)2 < oo forall « € Z';O}.
xeFn -

Here the bar denotes complex conjugation, which is trivial if F is real. The seminorms
|-l define a topology on A(F™) under which the natural inclusions

S(F") — A(F") — LP(F")
for 0 < p < 0o and the linear operators
A(F") — C, fl—)/ x* f(x)dx,
Fn

are continuous for any o € ZZ,.
Consider the map

AV (F)) => AF), fi+— (a [ sup
0#£& €V (F)

f,(agﬁ)') (11.2)

It is continuous when F is archimedean. Thus by Lemma 11.2 one has

ag bla]Q(u)
/V(F) 1/I(<? u> * G + e, v))f(u) du

< H(a, M, vy, vz), (11.3)
3[¢]
where

1
H(a,c,v1,v3) := (<D1(v1 +c¢/3,a1) + 9] (ﬂ)lvl + c/3|_d‘/2)

v1 +c¢/3
(1,a2) —d
X(®2(02+0/3’az)+q’/2(02+—c/3 vz + ¢/3]742/
/ (1, as3) —d3/2
x| ®3(—v1—v2+c/3,a3)+ 5| ————————= || —v1i—v2+¢/3| (11.4)
—v1—va+c¢/3

for some @; := @y 1, D 1= D, 4, € 4 (F?), which can be chosen continuously in f; €
S (Vi (F)) in the archimedean case.
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11.1. Estimation of the integral over No(F)

We will expand the product in H (a, ¢, v, v3) and then integrate each of the corresponding
terms in (11.3).

Lemma 11.3. Suppose d,dy,d, > 2. Let &, &1, &, € A(F).
(i) There exist W, € A(F), Uy € A(F?) such that

V @, (f)|v|—dq>2(c —v)dv
F v

for (x,c) € F x F* with |x| > 1.
(ii) There exists W € A(F?) such that

/cpl(ﬂ)wrdlcpz( 2 )|c—v|—d2dv
F v c—v

X1, X _ _ _ _
cw(( B e e

<, (f)|c|—d +Wa(r.0)
C

+ max(lc|, |xq], [xo[)! 91742

for (x1,x2,¢) € (F*X)3.
(>iii) One has

< max(fe|, |x|)™?

'/ max([v], |x]) "¢ ®(c — v) dv
F

for (x,c) € F? with |x| > 1.
(iv) There exists W € A(F) such that

'/ max(|v|,|x1|)_d‘®( 2 )|c—v|—d2dv
F Cc—0

X2 — — - - 3
< w(?)(max<|xl|,|c|> M| 4 21|~ [e| % min(|x |, |e]))

+ max([c|, |x2) '~ max(jel, |x1], [x2]) "

for (x1,x2,¢) € (F*)3.
The implicit constants and rapidly decreasing functions W, W1, W, may be chosen contin-
uously as a function of ®, @1, &, € A(F) in the archimedean case.

For the proof of the lemma, we consider the following extension of functions: Let W
be a continuous function defined on {x € F” : |x| > 1}. In the nonarchimedean case, if ¥
is smooth of compact support, let W, € A(F") be the function that extends W by zero.
In the archimedean case, for 0 < ¢t < 1 and x € F" of norm 1, W (tx) := t¥(x). One
has

[Wextlle = sup  [x*W(x)].

xeF,|x|>1
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If this is finite for all o € Z%, then we say W is rapidly decreasing. In this case
Wyt € A(F™). In either the nonarchimedean or archimedean case if W is nonnegative
then so is Wey;.

Proof of Lemma 11.3. We can and do assume every function under consideration is non-
negative.
For (i), take a change of variables v +— cv. The integral becomes

|c|1—d/Fq>1(x/c)|v| 4%, (c —cv)dv.

The contribution of |v| < 1/4 is bounded by
|c|l_d/ @1(x/c)|v| dgy  sup  Da(w). (11.5)
lv|<1/4 v 3le|=[w]=c|/4

For (x,c) € F2, put

¥'(c) = |c| sup Dy (w), Wh(x,c):= [ sup W(r)¥(c).
3lel=|wl|=lcl/4 [x]<|r|

Note that if |[x/c| < 1 and |x| > 1, then taking a change of variables v > vx/c in (11.5),
we see that it is bounded by

V() x| /F 1 (o] dv <oy V(. o).

Fory € F and |y| > 1, put

v [ o (L) pran
lv|<1/4 v

Then (¥))ext € A(F), W, € A(F?). Bounding the contribution of |x/c| > 1 in terms
of W} and the contribution of |x/c| < 1 in terms of W}, we see that (11.5) is bounded by
a constant Co, ¢, times

e[ (¥, )( )w’(x o).

The contribution of |1 — v| < 1/4 is bounded by |c|~¢ times

X Cc _
\Pi’(—) = sup <1>1( */ )|v| s ).
¢ 3>|v|>1/4

Note that W] € A(F). Finally, define

W/(y) = sup /(H D /cbl("/")| o[, (1 v)) dv
min(|v|,|1—v|[)>1/4

y=x/c v
|x|>1,|c|<1 fory S F7 |y| 2 1’
x/c

W(x.c) = |c|1—d/ d>1( )| (e (1 - v) dv
min(|v|,|1-v])>1/4 v

for (x,c) € F?,|c| > 1.
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Let W' (x,¢) := (W)(x,))ex(c). Thus W) € A(F?). Taking ¥; := (V))ext + ¥ +
ext and Wy 1= + roves (1).
vy dw v, + W) p @)
For (ii), the contribution of |v| < |c|/2 is dominated by

X X
/ @1(—1)|v|_d‘ dv sup @2( 2 )|c|_d2
lvl<lel/2 v lwl<lel/2 c-w

< / O,()|v|T2dv sup Do(w)|xq | T |74
[v[=2]x1 /c]

lw|=[x2]/4]c|

Here we have used the fact that if |w| < |c|/2 then |c — w| < 4]c|. Put
Vor = [ e@pfdr s o).
[v]=2]y1] lw|=>|y2|/4

It is a function in A(F2). We obtain an analogous bound W ((x1, x2)/c)|c|' =91 |x, |1 ~%2
in the |¢ — v| < |c|/2 range by symmetry. Take ¥ := ¥ + ¥”. Now we bound
the integral over the range |v| > |c|/2, |c — v| > |c|/2, giving bounds in terms of
|x1], |x2], and |c| so that we can take the minimum. Clearly, the integral is dominated
by | P10 | P2 loolc] ~91 742, Tt is also bounded by

X
1921106 / <1>1(—‘)|v|—d1|c—v|—d2 dv
[v|>lcl/2,le—v|>le|/2 v

= s lools |14 /

[v|>[y1/2,ly—v|>|yl/2 v

1
P, (—)|v|_d‘ ly —v|~% dv,

where y = ¢/x;. Note that |[v|/|y — v| < 1 in the domain of integration. Therefore the
integral is dominated by

1
/(Dl(—)lv|_d1_d2dv:/ @, (v)|v]1 4272 gy,
F v F

Now (ii) follows by symmetry.
For (iii), if |c| < 2|x|, using max(|v|, |x|) > |x|, we have

/ max([ol. [¥)) 4 P(c — v) dv < x| ®].
F
If |c] > 2|x]|, as |x| > 1 we have

[ max(|v|, [x]) "¢ ®(c — v) dv
F

< / |x|_dCI>(c—v)dv+/ v~ ®(c —v) dv
[v]=|x]| le—v|<el/2

+/ lv|~4 ®(c — v) dv
[v|=|x],le—v]>|c|/2

< x4 sup @(c—v) + ][ @[l + x| sup D(v)

[vl<]x| [v|=lel/2
<o lc[™.

Since max(|c|, |x]) < max(|c|,2[x|) < 2max(|c|, |x]), this proves (iii).
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For (iv), consider the integral over |v| > |x1|. By the proof of (ii), the contribution of

|v| < |c|/2 is bounded by

\I/(E) |X1 |1—d1 |C|_d2,

¢

and the contribution of |¢ — v| < |c¢|/2 is bounded by

X

w (22 il (| ey
¢

for some W’ € A(F) that can be chosen continuously in ® in the archimedean case. The
contribution of |v| > |x1|, [v| > |c|/2, |c — v| > |c|/2 is dominated by

max(Jel, [x1], [x2))' "1 7% < max(lel, |x2)) "7 max(le|, |x1, 2 ]) 7

Indeed, this follows from the same argument as in the last part of the proof of (ii).
Thus we are left with bounding

|x1|_d1/ o 22 )jc — v[~% av. (11.6)
lvl<|x1 | c—v

If 2|x3| > |c| = 2|x1], then (11.6) is bounded by

d>
X X X
a4 a2 sup @( 2 ) 2 s|x1|1—dl|c|—d2w”(—2),
lv|<lxq] c—vjjc—v c
where
d>
X X
W'(y):=  sup sup <I>( 2 ) 2 fory € F, [y| > 1/2.
y=xa/c  |vl<|x1] c=v/jc—=v

2[xz[=|c|=2]x1]

We can extend this function to a function in 4A(F) by a minor variant of the construction
explained before the proof. For 2|x,| > 2|x1| > |c|, arguing as for 2|x,| > |c| > 2|xq],
the expression (11.6) is bounded by

X
|)C1|_d1 |x2|1—d2\p///(_2) < |x2|1—d2—d1 sup \IJW(U)|v|d1
X

1 lv]>1

for some U € A(F). If |c| > 2max(|x2[, |x1]), then (11.6) is bounded by

X
4 sup @( 2 )|c—v|—d2

<l \€—V

X»/C
— e sup @(12/ )|1—v|d2

[vl<|xy /el -

_ _ u _ _ _
<|x | e[™%  sup cp( )|1—v| b o x| e,
hlul<1/2 \1—v
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Suppose 2|x;| > max(|c|, 2|x2]). We write (11.6) as |x1|~91 |x5|' %2 times

1
/ q)(—)|c/xz—v|_d2dv 5/ ®(v)|v]|22dv.
l<lx/xal  \€/X2 =V F

Altogether, we have proven (iv). ]

Recall the definition of H(a, c, vy, v2) from (11.4). It depends on functions ®;, <I>;
€ A(F?). In the rest of the section, all implicit constants and rapidly decreasing functions
can be and are chosen continuously as a function of @;, d>;. when F is archimedean.

Assume ¢ # 0. By taking a change of variables v, — v, — v and then vy > v; —¢/3
and v, > v — 2¢/3, one has

1, _
H(a,c,vl,vz)dvz/(®3(c—v2,a3)+d>'3(( a3))|c—v2| d3/2)
F2 F Cc— Uy

[ (01000 -+ 05 (L), )

1, B
X (Cbz(vz —v1,a2) + <I>’2( (1. a2) )|v2 — dz/z) dv.
V2 — Vg

2
a7
Here the d; are all even integers greater than 2. This is necessary so that we can invoke
Lemma 11.3 in the argument below.
This integral corresponds to the integral over Ny (F'), hence the title of this subsection.
By Lemma 11.3 (i, ii) and the map (11.2), the integral over vy in (11.7) is dominated by

1,a _ l,a _
\I’O(UZ,al»a2)+\I’1(( - l),az)|U2| d1/2+\p2(( - 2)7a1)|v2| dz/2
2 2

l,ay, - - - -
+\I/3((a—w‘u))(max(l,|al|)1 D200, |792/2 4 v, |72 max(1, |az))! d2/2)
U2

+ max(l, |va, |ay ], |ap]) ! 91/2742/2

for some W; € 4 (F3). Note that
Wy (v, a1, az) < max(1, |va), |ay], |az|)!~41/2=42/2,

Therefore, by symmetry in a@; and a», to bound (11.7) it suffices to study the integral

17 — 19 3 — —
L (w0 (S22 o2 (122 ) a1, a2 2
F 2

U

+ max(L. Jual. Jaul. |a2|>1—d1/2—“’2/2)

1, _
X (CI>3(c—v2,a3)+<D’3(( a3))|c—v2| d3/2) dv,.
c—v

2

In the following discussion,
My, My, M|, My, My, Ms € A(F*), Mg € A(F?), and Mz, M € A(F)

are suitable rapidly decreasing functions. By Lemma 11.3 (i), we have
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17
/ ‘1’1(( al),az)|vz|_d‘/2q’3(c—Uz,az)dvz
F 1%

1, _
SMl(( 51)702,03)|C| d1/2+M{(C,a), (11.8)

and

1,a4, _
max(1, [y )1 ~41/2 / %(”‘J—“Z))M B2 (¢ — vy, a3) dvs
F 2

15 9 j— p—
< max(l, |a1|)1_d1/2M2(M,a3)|c| /2 4 max(1, |ay ) =2 M (e, a).
C
(11.9)
By Lemma 11.3 (iii),

/max(l,|v2|,|a1|,|a2|)1_d‘/2_d2/2¢3(c—vz,a3)dv2
F
< Ms(as) max(1, c|, lay], |az ) ~94/27%/2 (11.10)

By Lemma 11.3 (ii),

1, _ L, -
J R G L A e I
F 1%) C—U2

1l,a1,a _ _ _ _
§M4(¥,az)(max(l,|al|)1 /21|32 4 o792 max(1, |as]) 1 9/2)

+ Mj(az) max(l, |c|, |ai], |as|)!~91/2743/2, (11.11)

and

l,a,, _ 1, _
max(Lfanl)' 7 [ (L2 gy iz (D) vz g,
F Vs Cc — Uy

17
<« max(1, Ja; )" /2 M5 ((C—a))

+ (max(1. a1, |aa])' =#2/2|c[793/2 4 |e[~42/2 max (1, |as]) ! ~43/2)

+ max(1, |a1 )" ™/? max(1, |c|, |a|) ' ~%/?793/2, (11.12)

By Lemma 11.3 (iv),

— — (1,(13) _
fmax(l,|v2|,|m|,|az|>1 a2 dz/zcbg(ﬁ | — va| 7%/ ?dv,
F — V2

(1,a3)
C

< Ms( )(max(l, el lai], laz])t=4/2792/2 max (1, |as]) ! ~93/2

+ max(1, |ay ], |ap])!~41/2792/2|¢|793/2 min(max (1, |a: ], |a2|). |c]))

+ max(1, |¢], |a3|)1_d3/2 max(1, |¢|, |a|)1_d‘/2_d2/2. (11.13)
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Note that both M{(c, a) and max(1, |a, |)1_d1/2M2’(c, a) are dominated by
max(1, |a1)' =92 max(1, |c|, |a|)}~92/2793/2,

Therefore, by symmetry there are M € A(F?), My, Mas, M3, € A(F*) (indexed by
o € S3, the symmetric group on three letters) such that (11.7) is dominated by the sum of
the following terms:

I,
> Mw(m,ag(z),aa)Icl“""“/z, (11.14)
C

gesSH

17
1 (20 ) a1, el el a2 (1, o]
Cc

+ max(1, |ay], [az])!~91/2742/2)c|793/2 min(max(1, a1 |, |a2|), |c])), (11.15)

1,a ,a _ _
Z MZU(MvaO(:’:)) max(1,|ao(1)|)1 d(r(l)/2|c| d0(2)/27 (11.16)
c

ogEeS3

1,a
) Mgg(u) max (1, o) =4 /2 max(1, la sy )1 %00 2| 4o /2,
C

geCs

(11.17)

> max(1, |agmy)' ™/ max(1, [c|. |a]) ' 4o @ />l /2, (11.18)

geCs

The following table explains how the terms (11.14)—(11.18) are used to bound the
previous contributions:

The contribution of | is dominated by
(11.8) (11.14), (11.18)
(11.9) (11.16), (11.18)
(11.10) (11.18)

(11.11) (11.16), (11.18)
(11.12) (11.17), (11.18)
(11.13) (11.15), (11.18)

The M and M, can all be chosen continuously as a function of the ®;, CD;. in the
archimedean case.

Before continuing the proof of Theorem 11.1, we prove the following strengthening
of the theorem in the special case b = 0:

Theorem 11.4. For § € ]_[?Zl(Vi(F) —{0}), if d; > 2 foralli, we have

Jo

V(& u) + c(u,v)) f(u) du| dv

V(F)

3
<Lf Z max(1, |§g(1)|)1_d0“<1>/2 max(1, |§])! "% @/27403)/2 « l_[ & |24/,

oceC3 i=1
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Proof. Given Lemma 11.2 and our manipulations above, the integral to be bounded is
dominated by the limit as ¢ — 0 of the sum of (11.14)—(11.18) in the case a; = &;. After
taking the limit as ¢ — 0 the only term that is nonzero is (11.18). ]

11.2. Estimate of the integral over (F*)3

In this subsection, we bound

/ / H(a,M,vl,uz) dv{a}?* ' d*a (11.19)
(F*)3 JF2 3[&']

using the bounds on the inner integral obtained in the previous section. Throughout this

subsection we assume d; > 4 for 1 <i <3 and we fix 1/2 > ¢ > 0. To avoid repetition, we

point out once and for all that in the archimedean case all implicit constants and rapidly

decreasing functions appearing in bounds in this section can be chosen continuously as a

function of whatever rapidly decreasing functions appear in the hypotheses of the bounds.
We start with a general bound that will be useful later.

Lemma 11.5. Suppose ey, e € Rog. Let ® € A(F). As a function of (r1,r2) € (F*)?,
we have

r _ d*a
& — )| max(1, |rpal)™!
J.. (a)' (1 Ir2aD) ™ fojeaer
[r1]¢17¢2 max(1, [ryra]) ™! if ea > ey,
Le,@ | |r2127¢ max(1, [r1ra])”¢2 if ez < ey,

max(1, |r1r2|) 72 min(1, |r1r2|) 7% if e2 = €.

Proof. We assume ® is nonnegative. Taking a change of variables a +— a~!

integral to be bounded, we obtain

|rq |61 72 / ®(a) max(l,
FX

Let r = ryrp. We write the integral above as

ry1 in the

rirz

ey
) |a|®27¢ d*a.

e [ el da a7 [ e@la T da
al<|r

la|=|r|

When e, > e; we observe that this is dominated by the bound claimed in the lemma. Now
suppose e, < e;. Then after a change of variables a — ar, the integral above is

Irzlez_“/ ®(ar)lal®® d*a + Irzl”_e'/ d(ar)|al®?™t d*a,
lal<1

la|=1

which is dominated by the bound asserted in the lemma. ]
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Lemma 11.6. For nonnegative M, € A(F*) and ¢ € F*, one has

/ Ml((l’al)c,az,cu) [a]
(F*)3 a]

for some J € A(F).

—di/2
{a}d/Z—ldxa e J(C)|C|min(d1,dz,d3)/2—1—6

Proof. A direct computation shows the integral over a; is dominated by
e]1/271 7' (= az. a3 | laa| /25| =0/ (11.20)
asds ’

for some J' € A (F?3). By symmetry, we may assume d» < d3. Note that (11.20) is dom-
inated by

— ¢ - - -
A s e P
2

for some J” € A(F?). The integral of this function over a, is dominated by

|(d2_d1)/2_5 if d] > d2,

[+
|C|d1/z—1jw(i’a3)|a3|(d3—d1>/z s
as 1 if d] < dz.

for some J"” € 4(F?). The integral over a3 of this expression is dominated by the bound
in the lemma. u

Lemma 11.7. For nonnegative M, € A(F*) and ¢ € F*, we have

17 b —
/ Mz(%,as) max(1, |a;])'~91/2
(F><)3 a

&g min(1, |¢[)™n@1:d2.d3)/2=1=¢ pay (1 |e[) 7L

—d>/2

M {a}d/Z—l d%a
C

Proof. Changing variables as — aj!

integral over a, is dominated by

a;laz and then computing directly, we see that the

|C|d2/2—1|a3|(a’3—d2)/2 max(1, |a1|)_d1/2M2’( ,a3)|a1|(d1_d2)/2

aias

for some M) € A(F 2). By Lemma 11.5, the integral of this function over a; is bounded

by a constant depending on ¢ times
c |(d1—d2)/2—¢ c N—di/2+e .
P max(1, | ) if di < ds,

max(1, };—3|)‘d2/2 ifdy > dy

|22 fas| B2 M (a3) {

for some M} € 4(F). Change variables a3 > a3 ' and apply Lemma 11.5 again to com-
plete the proof. ]
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Lemma 11.8. For nonnegative M3 € A(F*) and ¢ € F*, one has

—d3/2
{a}d/Z—l d*a

19
/ M3(( a)c) max(1, |ay |)1_d‘/2 max(1, |a2|)1—d2/2
(F*)3

a]
a] c

e min(l, |C|)min(d1 ,dz,d3)/2—1—8.

Proof. By symmetry, we may assume d; < d,. A direct computation shows the integral
over a3 is dominated by

|c|d3/“M;( - )|al|(d'_d3)/2|az|(d2_d3)/2max(lv|al|,|a2|)_1
aidas
x max(1, |al|)1_dl/2 max(1, |a2|)1—d2/2 (11.21)
for some M} € A(F). Since
max(1, |ai],]az])~" < max(1, |a; )",
by Lemma 1 1.5 the integral over a; is dominated by

|C|d3/2_1|(12|d2/2_d3/2 max(l, |a2|)1—d2/2

|5 max (1 )T ey < s,

az
%|)g_d3/2 if d; > ds.

(11.22)
|£|_8 max(l,

Choose o € {Id, (13)} such that ds(1) < dy(3). Then by (11.22) the integral in the lemma
is bounded by a constant depending on & times

do(1y/2—1—¢|,, 1d2/2—dg(1y/ 2+ 1-d»/2 c [\ x
|c]¢e® |ap|*2/ =4 max(1, |az|)" ~%*/“ max| 1, d”as.
x

asz

Writing a for a,, for |c| > 1 this is

|c|—1/ la|2/? d*a + |c|—1/ la| d*a
lal<1 1<|a|<|c|

+ |C|d0(1)/2—1—8/ |a|1—d0(1)/2+8 an < 1.
lel<lal
For |c| < 1, this is

|C|_1[ |Cl|d2/2 an + |C|d0(1)/2—1—8/ |a|d2/2—dg(1)/2+8 dxa
lal<lel

lel<lal=<1

n |C|dg(1)/2—1—6/ =T /24 g%y« |t dads)/2-1-e g

1<|a|

As a corollary of the proof we obtain:
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Corollary 11.9. Suppose |c| > 1. For nonnegative M3 € A(F*), given a > 0, there exists
B > 0 such that

—d3/2
[j_]' {a}d/Zfldxa

1
/ M3(( ,a)c) max(1, |a;])! =92 max(1, |az|) ! ~9>/?
lal el [a]

Lap eI, (11.23)

Proof. We can and do assume 1/2 > «. Consider the contribution of |a;| > |c|*. In view
of (11.21), the integral over a3 is dominated by

C
|c|d3/2—1M§(—) lay|'793/2]a, | “9293)/2 max(|ay |, |a2]) ™ max(1, az])' 79272,
apar
When |as| > |c|!™%, this expression is dominated by
M}l oole]®3/2  ay | =93/2|a, |~3/2,

Thus, the contribution of the range |a;| > |c|%, |as| > |c|' ™% is dominated by |¢|*~!. To
bound the contribution of the range |a;| > |c|%, |az| < |¢|'™* to (11.23), we argue as
above and then make a change of variables a; — a; ;—2 This yields a bound of

|c|_1/ M (a7 har |75 as| %2 max(1,|as|) ' ~/? d*ay d*as
le' =@ >lasl,lay|=|az||c|*—1
< Icl_a/ M3(ap)ar| B/ day.
F

The contribution of |az| > |c|* admits the same bound by symmetry.
Now consider the contribution of |a3| > |c|*. It is dominated by |¢|™* times

e [ ()
(F>*)2 ayaz

x max(l, |(l1|)1_d1/2 max(l, |a2|)1—d2/2|a1|d1/2—d3/2—1|a2|d2/2—d3/2—1 dxa1 dxa2

Layer lel”

for some M} € A(F) and 0 < ¢’ < «. Here the last inequality follows from an argument
similar to that in the proof of Lemma 11.8. ]

Lemma 11.10. For ¢ € F*, we have

/ max(1,|a1|)1_d1/2max(1,
(F>)3

a]

{a}d/z—l d*a

1—d>/2—d3/2
)

< min(1, [e]ymint@-d2.d3/2=1=e (1] 24)

Proof. We start with an easy estimate:
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Sublemma 11.11. Suppose e1, e; € R~g. As a function of r € F*,

IrlF=e  if [r] =1,
/ max(1, [a])~¢" max(|al, |r|)"*?|a|' d*a K¢ { |r|7¢ if e > ey and|r| <1,
FX

[rle17¢2  jfe; <eyand|r| < 1.

Proof. If |r| = 1, then the integral is

|r|_‘32/ la|®t d*a + |r|_62/ d*a +/ la|¢2 d™a <, |r|*7¢2.
lal<1 1<|a|=|r| [r|<lal

If |r| < 1, the integral is

|r|_e2/ lal®t d*a +/ la|* %2 d*a +/ la|~2 d*a. m
lal<|r| [rl<lal<1 1<la|

max(1,lazl,laz|)
layasl|
max(1, “£53)

the integral over a; in (11.24) is dominated by |a,|%/%~1]a3|%3/2~1 times

Applying Sublemma 11.11 to the integral over a; with |r| = , We see

max (1, %)_8 max(1, |az|. [az|)! o7 42/27 4/
if O > 1,
lel

max(1,
max(1, |az|. las|)™*
ifd, > dy + ds max(L,lazl,laz) ¢

laraszly —
max(1, |2t'|3)

|a2a3| 1+8—d2/2—d3/2
max(l,—lc| )

max (1, 192420) % max(1, az|. as )1 /2-2/2=0 2

lc]
ifdy < dy + ds, 2xlazllas)

max(l,lalzcaﬁ‘) -

We now bound the integral of this expression over a,, as.
Consider the contribution of the domain |asaz| > |c¢|, |az| > max(1, |az|). The con-
tribution of |c| > |az| is dominated by

& dr/2—1—¢ —dr /2 g% X
| a5~/ 4 a3 d*a
le|=laz] laz|=max(1,|az|,laz|~cl)

< |c|8/ las|%2/27 18 max(1, |az|, las| 7 |c|)"%/? d*a,
le|=laz]
= Je] /> f a2l max((as [c]. laa| ")/ d%as.
1>las|

Here we have made the change of variables a, + asc. This term is

|c|d2/271 if ] <1,
e\ e el > 1.
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Consider the contribution of |c| < |az|. If dy > dy + d3, itis

|c|d2/2+d3/2—1—s/

lel<laz|

= [ a3/ d*a3 d*a;
laz|=max(1,|azl,laz|~1lc])
& |e]92/?! / las|6=9/2 max(1, |as| |c)~%/% d*ax
1<lay|

<« le|2/271if fe] < 1,
1 et if |c] > 1.

If di < dy + d3, a similar argument yields a bound of |¢|™™(?1-42)/2=1=¢ jf |¢| < ] and
|V if || > 1.
Over the domain |azas| < |c¢|, |az| > max(1, |az]), the integral is

d>/2—1 e—d>/2 7% X
/ laz |2 Yas|*~2/2 d*asz d*ay
laz|~1c|=]az|=max(1,]az])

< / lazl* d%az + f a2l 2271 d%a,
laz|>1,c|>]az|? min(1,|c[)>|az|
< min(1, |c|)®/271, (11.25)

By symmetry in a,, a3, we are left with bounding the integral over |az|, |az| < 1. If
dy > dy + d3 then over this domain, the integral is

|a2a3| 14+e—dr/2—d3/2
/ll | max(l, o ) |a2|d2/2—1|a3|d3/2—1 d*ay d*as
az|<l,laz|=1

— |C|d2/2+d3/2—1—£/ |a2|£—d3/2|a3|s—d2/2 dxazdxa3
laz|<1,]az|~te|<|as|<1

+/ |a2|d2/2—1|a3|d3/2—1 dxazdxa3
laz|<1,|az|<min(laz|~1lc],1)
& |c|d3/2—1/ |a2|d2/2—d3/2 dxa2

lellaz|<1

+/ |a2|d2/2_d3/2min(|a2|,|c|)d3/2_1dxa2
laz|<1
|C|min(d2,d3)/2—1—s if|C| <1,
<Le ) -
1 if [c| > 1.
The case di < d, + d3 follows from a similar computation. [ ]

Corollary 11.12. Suppose |c| > 1. Given a > 0, there exists B > 0 such that

/ max(1, |a;[)'~9/? max(l, ‘M', |a| (@} d%a g p |c|7P.
la|=lc| ¢

(11.26)

)l—d2/2—d3/2
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Proof. We may assume « < 1/2. In view of the proof of Lemma 11.10, it suffices to
bound the contributions of the domain |as|™|c| > |as| > |c|%, |az| < |c|*, the domain
laz| 7Y c| > |as| > |az| > |c|*, and the domain |a;| > |c|* > max(|az], |as]).

Over the first domain, by (11.25), the integral to be bounded is dominated by

/ |a2|d2/2—1|a3|€—d2/2 dxag, dxaz
laz|=tc|zlas]=]cl¥,|az|<]c]|¥
< |c|a(s—d2/2)/ 142 42/271 4% gy < |c[*ED,

lel®>laz|

Over the second domain, the integral is dominated by
/l " |a3|€—d2/2 min(|a3|,|c|1/2)d2/2_1dxa3 < |C|a(€_l).
as|=|c

Over the third domain, the integral is dominated by

/ |a1|1—d2/2—d3/2|a2|d2/2—1|a3|d3/2—1 d*a < |C|—Ol. -
lat]=|c|¥=max(lazl,|az)

Lemma 11.13. Assume ds < d,, d». For ¢ € F* and nonnegative M € A(F?), we have

/ M((],a3)c) (max(l, M max(1, |a3|)1_d3/2
(F*)3 [a]

1-dy/2—d>/2
arl, |az|)

—dz/2
)1—d1/2—d2/2 M ?

Cc
[Z_]’)){a}d/Z—l d%a

)—1/2+s/2

+ max(1, |ay], |az|

X min(max(l, lai], |a2|),

Keom min(1, |c[)¥3/271-¢

max(1, |c|

Proof. We first compute

1-d/2—d>/2
c c aidna
/ M( , )maX(I,M,|a1|,|a2|) max(1, |as|)'~%/?
(F*)3 aijaxas aias lc]

x |ay |12 a,y | %227 a5 B3/27Y 4% gy d > ay day

1-d3/2
C
=|c|d3/2_1/ M(agl, )max(l,|a|)1_d1/2_d2/2max(|a3|_1, )
(F*)3 aidp

x |ay | D/243/2|q,|92/2743/2 g% gy d¥ay d ¥y, (11.27)

Cc

aiay

We break down the integral into several domains.

Sublemma 11.14. Over the domain |c| < |ayaz|, |az| < 1, (11.27) is dominated by

min(l, |C|)d3/2—1—8 max(l, |C|)_1/2.
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Proof. Over this domain, (11.27) is dominated by

|C|d3/2—1 / max(l, |a1|, |a2|)1—d1/2—d2/2|a1|d1/2—d3/2|a2|d2/2—d3/2 dxazdxdl.
lel<laiaz|

(11.28)

The contribution of |a1|, |as| < 1 (which is zero unless |c| < 1) is Og(|c|93/2717¢). For
the rest, by symmetry it suffices to bound the integral over the domain |a{| > max(1, |a3]).
This contribution is bounded by

|c|d3/2—1/ lay|142/243/2 g, | 42124512 g% ) 4 %q,
max(1,laz|,lc/az)<lay|
& B2 / max(1, |az|, [¢/as ) ~4/>7 42 |ay| 21272 4% ay
F><
— |C|d3/2—1 / max(|a2|, |a2|2’ |C|)l—d2/2—d3/2|a2|d2—] dxaz.
FX

The contribution of the domain |a;| < 1 to the integral is bounded by

|C|_d2/2/ |a2|d2—1dxa2+|c|d3/z—1/ (ap] 2124312 g% g,
|az|<min(1,]c]) min(1e])<laz|<1
e max (1, [e))™/> min(1, [c[)3/>71 ¢

Over the domain |a,| > 1, the integral becomes

|C|—d2/2/ |a2|d2—ld><a2+ |C|d3/2_1/ |612|1_d3 dxa2
1<laz|<le|1/2 max(le[1/2,1)<|az|

< max(1, [e[)™? min(1, [¢[)%/?>7'. =
Sublemma 11.15. Over the domain
lc| < laraz], laz| =1, |ajaz| <las||cl,
(11.27) is dominated by
)min(dl,dz)/Z—l—E )—1/2+6/2.

min(1, |c| max(1, |c|

Proof. Over this domain, (11.27) is dominated by
/ a1 /2212 [ 411271 g |21271 g% g 4%y d*ay
lcl<laiaz|<las]lc]

1—di/2—d>/2 di/2—1 d>/2—1 X X X
=/ a1 /2212 |41/27 g, 421270 % g 1% gy day
lcl<laraz|<laz]lcl|,|az|=]al

2
n / a1~/ 212 |12 1221 g% g 0% gy A%y

i—1 Ylcl=laiaz|<lasllcl, |a;|=lal

The first term is dominated by
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/ max(|ai1], |az|, |araz|/|e])' = /2922 |q, |91/27 q, |2/27 4% a, d % ay
[e|<layaz|

—d, 2 d, 2—1 g% X
/ lao )| "4 @ 2 |ap )| %@/ d%ay d*ay
ces, Yasmzmax(lac @)l lel/lac@))slac @) | <lel

+ |C|d1/2+d2/2—1/ |a1|—d2/2|a2|—d1/2 dxazdxal

lel=laillel=lazl; lcl<lar]laz|

<) / max(|ao ()|, [c)) ™90 @ 2 ag (o) |90 @ 7! d¥ag )
lao2)|=lc]

0ESH
+ |C|d1/2—1 / max(l, |a2|)—d2/2|a2|d2/2_d1/2 dxaz
lel<laz|
< min(1, |c])™n@1-42)/2=1=¢ max (1, |e[) V2.

For the second term, by symmetry, we may assume i = 1. Then the integral is

jar |72 ap| BT d*ay d*ay d*ay

/ICI§Iala2|§a3| el lazl<larl,laz|<lai]

&
a
S/ |611|_a’2/2(—| 1|) las|/?71 d* a3 d*ar d*a;
lel<laraz|<las|lcl, laz]<la |, la3| <la; | |as|

& —d> /2 dr/2—1—¢ jXx X
L |c| / |ay|~%2/2|ay| %/ d*ard”a;
lel<larazl, laz|<lall,laz|<lcl

< ef [ max(lc]. Jaal?) "% az] 2716 d%ay
laz|<lc|
« min(1, [e))?/?>  max(1, |c])~V/2F4/2, .

Sublemma 11.16. Over the domain |c| < |a1az|, |as| > 1, |a1az| > |as||c|, (11.27) is
dominated by

min(1, [e[)*/2 ¢ max(1, [c[) /2.
Proof. Over this domain, (11.27) is dominated by
|C|d3/2—1/ (|1 1/22/2 ) | d3/2-1 g, d1/2-d3/2
lasllc|<laiazl,laz]|>1
x |aa| /2912 g% ay d*ay d*ay.  (11.29)
We argue as above. Over |az| = |a|, (11.29) is
|C|d3/2_1/ |a3|d3/2—d1/2—d2/2|a1|d1/2—d3/2
lazllcl<laazl, laz|=1, laz|=lal
X |aa| /2512 4% a3 d*ay d*ay
& |C|d3/2—1 / max(l, |a1|, |a2|)d3/2—d1/2—d2/2|a1|d1/2—d3/2
lc|<min(lay |,lazl.la1a2])

X |a2|d2/2_d3/2 dxaz dxal.
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If |ai], |az| <1, thisis

|C|d3/2_1/ |a1|d1/2—d3/2|a2|d2/2—d3/2 dxazdxal e |C|d3/2_1_8.
lel<laiazllai|<1,]az|<1

If |a;| > max(1, |az|), this is dominated by

|C|d3/2—1 / max(l, |a2|)—d2/2|a2|d2/2—d3/2 dxaz
lel<laz|

& min(1, [e[)%/>71 7 max(1, |¢|) 7.

Over |a;| = |a], (11.29) is

c|d3/2-1 / a3 43/271 |, |1—d2/2~da/2
laz|lc|<layazllar|=laz|>1,la;|>|az|

x |a|%2/>9312 4% a3 d*ap d*ay

< |c|d3/2_1

x/ min(|az|/|c], )/ ay|79/2|ay|92/278B/2 4% ay d*ay
lcl<laiaz|,max(1,laz|)<l|ay|

< [ minaal, oD~ max(aal. o el) /2 az = a%ay
< min(1, |e)%/>7 1= max(1, |¢|) /2.
The rest follows by symmetry. ]

Now suppose |ajaz| < |c|. Then the integral (11.27) over a3 is dominated by a con-
stant depending on ¢ times

|c|d3/2—1/ J( c )max(l’|a1|7|a2|)s+1—d1/2—d2/2|a1|d1/2—d3/2
lataz|<|c| aaz
X |az|‘7l2/2_d3/2 d*ayd*a; (11.30)

for some J € A(F). Over the domain |aq |, |az| < 1, this integral is rapidly decreasing as
a function of ¢, and dominated by |¢|93/2717€ for |c| < 1. For the rest, by symmetry it
suffices to bound the integral over the domain |a;| > max(1, |az|), which is

|C|d3/271/ J( c )|a1|1+ed2/2d3/2|a2|d2/2d3/2 d%a, d*a
max(1,|az|)<la|<|c/az| aaz

— |C|8—d2/2/ J(al—l)|a1|1+8—d2/2—d3/2|a2|d2—1—8 dxdl dxaz
max(laz|,|a2|?)le|~! <la1|<1

<l | laxl71 d%a
max(lazl,laz]?)<le]

« max(1, |¢|)"V?+¢/2 min(1, |c|)%/?71.
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This completes the proof of the bound for the first summand in the statement of Lem-
ma 11.13.
The second summand is bounded by

c ¢ —d3/2+1—¢
/ M , max(l,|a1|,|a2|)8+1_d‘/2_d2/2
(F>*)3 aijdpds daidp

a]

c

X {a}d/z_1 d*a

c
= |c|d3/2_1/ M(agl, )max(l, las ], |ag|)f 1 md1/2= /2
(F>)3 aiap

% |a1|d1/2—d3/2|a2|d2/2—d3/2|a3|—s d*a

C
< |C|d3/2—1 / J/( )max(l, |a1|, |a2|)8+1—d1/2—d2/2
(F>)2 aidap

% |a1|d1/2—d3/2|a2|d2/2—d3/2 dxazdxal

for some J' € A(F). Break down the integral into |ayaz| > |c| and |ayaz| < |c]|, which
are (11.28) (up to ¢) and (11.30) respectively. In both cases, the integral is dominated by
max(1, |c[)~Y2+¢/2 min(1, |c[)93/21 ¢, m

Proof of Theorem 11.1. By symmetry, we may assume d, d, > d3; this assumption is
used to apply Lemma 11.13. We showed (11.7) was dominated by (11.14)—(11.18) with
c= % in Section 11.1. To estimate the integrals over (F*)3 of the terms (11.14)—

(11.18), we apply Lemmas 11.6, 11.13, 11.7, 11.8, 11.10 (respectively) with ¢ = 3[5]/b
Given our comments on the continuity of our bounds as a function of f at the beginning
of Section 11.2, the theorem follows. [

Moreover, we have the following bound.

Theorem 11.17. Suppose &1 @ & ® &3| > |b|. If d; > 2 for all i, given o > 0, there
exists B > 0 such that

E [a]bQ(u) dvd*a

/.. /V<F>‘/f(<§’”>+ 9[E] +C("’”))f | {ay=ar
-8
Lap.f —g‘m;@& :

where the outer integral is over |a| > |% *,

Proof. Replacing Lemmas 11.8 and 11.10 with Corollaries 11.9 and 11.12 in the proof of
Theorem 11.1 yields the bound. ]
Appendix A. Computation of normalizing factors

In this appendix we compute the normalizing factors {(s;, A;)}. The parameters depend
only on the action of the dual group M acting on the dual Lie algebra tip and our fixed
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isomorphism
wp : M® 5 Gy (A1)

defined as in (3.2).

To avoid proliferation of duals, we work directly in the dual picture in this section.
Thus now G denotes an adjoint simple group over C with maximal parabolic subgroup P
and Levi subgroup M, and we are studying the action of M on np, the complex Lie alge-
bra of the unipotent radical Np of P. We define the parameters (s;, A;) as in Section 4.1
but with M, & p in that section replaced by M and unp, respectively. We let T be a max-
imal torus in M, T < B < P a Borel subgroup, and A the corresponding set of simple
roots. We let B be the simple root such that A — {8} is the set of simple roots of T N M
in M with respect to B N M. The dual of (A.1) is an isomorphism

0 Gy = Z(M). (A2)

For any representation W of M and any integer A, we write W(A) for the subspace on
which Z(M) = Gy, acts via x — x*.

Lemma A.1. IfA <0, thenup (L) = 0.

Proof. Let y be a positive root of (G, B, T'). Note that the root space (1p), is nonzero if
and only if writing y = )", A ca We have cg > 0. It follows from (3.2) that

(v.@) = cp(B.@) = cgmpv > 0.
We deduce the lemma. .

In each of the cases given below, the isomorphism ¢ : G, — Z(M) will be the “obvi-
ous one”, so we will not record it. In fact, there are only two choices of isomorphism
Gm = Z(M), and there is only one of them so that Lemma A.1 is true, so the reader can
easily check which isomorphism is ¢.

In the following computations, we interpret Sym®(C?2) as the trivial 1-dimensional
representation of sl,.

A.l. Projective general linear groups
The following is the classical Clebsch—Gordan rule [16, Exercise 11.11]:

Lemma A.2. We have an isomorphism of sl,-representations
Sym”(C?) ® Sym™(C?)
~ Sym" " (C?) @ Sym™ " 2(C?) & --- & Sym"(C?). .
Lemma A.3. Let P < PGL,, be the parabolic stabilizing an {-plane. Then

(200, (=20, (32 )

is a good ordering for up.
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Proof. It is not hard to see m%" = sl,,_, x s, and np is isomorphic as a representation
of m to Hom(C"~¢, C*) with the natural action. The induced representation of a principal
sl,-triple is

Symn—f—l((CZ)V ® Symé—l((CZ) o~ Symn—l—l((CZ) ® Symz—l((CZ)
=~ Sym"2(C2?) @ Sym" *(C?) & --- @ Sym"2!/(C?)

by Lemma A.2. The lemma follows. ]

A.2. The classical groups

Let V be a complex vector space equipped with a nondegenerate €-symmetric form (-, -),
that is,
(v, w) = e{w, v)
forv,w € V. We assume € € {1, —1}. For C-algebras R, let
Gy(R) :={g € SLy(R) : (gv,gw) = (v, w)}.
We refer to Gy as a classical group. The corresponding Lie algebra is
gy ={X esl(V): (Xv,w) + (v, Xw) =0 forv,w € V}.
Let P Gy be the associated projective group. Concretely,

PSOdimV ife = 1,

PGy =~

We assume that P Gy is simple and not isomorphic to a projective general linear group.
ThusdimV & {2,4}ife = 1 and dim V' # 2 if e = —1. We also observe that PSO,, 41 =
SOz 41.

The maximal parabolic subgroups of PGy are precisely the stabilizers of isotropic
subspaces. For a parabolic P = M Np, we denote by Wp the corresponding isotropic
subspace. We let W, be the linear dual of Wp with respect to (-, -). Then there exists a
subspace Vp < V such that the pair (Vp, (-, )|y, is of the same symmetric type as V,
and such that there is a direct sum decomposition V = Wp & Vp & W}Y . Note that the
pair (Wp @ Wy, (-, ‘)|Wpe;W,¥) is also nondegenerate and of the same symmetric type
as V. We have

m = gly, & gv,.
We refer to £ := dim Wp as the linear rank of M or m.
The following lemma is well-known. See for instance [58, Theorems 8.6 and 12.6].

Lemma A.4. As a representation of m,
np = Homc (Vp, Wp) @ Symy (Wp),

where
Sym?(Wp) ife = —1,

Symy (W) := { AIC(Wp)  ife = 1.
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We have
np(l) = Homc(Vp, Wp) and np(2) = Symy, (Wp) (A.3)
unless P Gy is PSO,, or PSp,, and m = gl,, in which case
np = np(l) = Symy (Wp). (A4)
The following lemma explicates the principal sl,-subalgebra of gy,..

Lemma A.5. As a representation of a principal sl,-subalgebra of gy, the standard rep-
resentation V of gy is isomorphic to Sym*™ Y ~1(C?2) unless G = PSO,,, in which case
it is Sym¥™V=2(C2) ¢ C.

Proof. The nth tensor power of the standard symplectic form on C? is (—1)"-symmetric,
and the nth symmetric power of the standard representation C? of sl, is a subrepresen-
tation of the nth tensor power. Thus the principal s[; — sl may be chosen to factor
through the standard representation gy — sly. This implies the lemma unless G =
PSO,,. For this last case see [23, Section 7]. [

For the following lemma, see [16, Exercises 11.31 and 11.35]:

Lemma A.6. For any n > 1, we have the following equivalences of sl,-representations:

l(n—1)/2]
A*(Sym"(C?) = Sym*(Sym""1(C)) = P Sym®*DTH(C?).
j=0
Let
p(V) :=dimV (mod 2)

be the parity of dim V, viewed as an element of the set {0, 1}. Note that if G =~ PSO,,,
linear ranks are either r or < r — 2.

Lemma A.7. Assume r > 1. Assume that either G is PSp,, and the linear rank £ of M
isnotr, or G = SOy, 41. For £ > 1, the parameters {(s;, i)} are

{(\2r+p(2V)—3€| i 1)’ (|2r+p(I/2)—3€\+2’ 1) (2r+p(g)—€—2, 1)}

Uil —=1=p(V)=2/,2):0=j < [(t—-1-pV))/2]}.

If £ = 1, the parameters are

((Z21)}if G = SOsr41 and  {(252,1),(0,2)} if G = PSp,,.

Suppose G = PSOy, withr > 3 and { <r — 2. If £ > 1, then the parameters are

(gt (222 ) (2 ) U ()
U{t—2-27,2:0=<j < [(£—-2)/2]}.
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If £ = 1, the parameters are {(0, 1), (r —2,1)}. If £ = r and G is isomorphic to PSp,,
or PSO», then the parameters {(s;, A;)} are

(r=1-2j,1):0<j < [(r—1)/2]} i G =PSp,,
{r—=2-25,1):0<j<[(r—2)/2]} if G =PSOy andr > 3.

In all cases, every good ordering has the largest parameter (sg, Ay) with Ay = 1.

Proof. We use Lemmas A.2, A.5, and A.6 freely in the following. If G = PSp,, or G =
SO,,4+1, then as a representation under a principal sl,-triple,

Homc (Vp, Wp) = Sym*™1(C?) @ Sym?>" 7(")=2-1(C?)
~ Sym2r+P(V)*€*2(C2) @ Sym2r+P(V)*5*4(CZ) DB Sym\2r+p(V)73£|(Cz)‘
This space is understood to be zero if r = £ and G = PSp,,. If G = PSO,,, then
Home (Vp, Wp) = Sym*™1(C?) ® (C @ Sym?* ~2¢72(C?))
o~ Syme—l((c2) @ Sym2r—e—3((c2) @D Sym|2r—32—l|(Cz).
If G = PSp,,, we have

LE=1)/2]
Symy (Wp) = Sym*(Sym™ ' (C?) = (P Sym*“=V7¥(C?).

j=0
If G is PSOs, or SO, 41, we have
L(t=2)/2] '
Symy(Wp) = A\*(Sym 1 (C?) = P Sym* 7 (C?).
Jj=0

Here by convention this space is zero if £ = 1. The lemma now follows from Lemma A 4,
(A.3) and (A.4). [

A.3. Exceptional cases

For exceptional types, we compute the decomposition of np using LieART 2.0.2 (a Math-
ematica application) based on the tables of [35].

Assume G is adjoint of type E, F, or G. Let Py = My Ny < G denote the maximal
parabolic associated to the kth node of the Dynkin diagram of G, using the Bourbaki
numbering. For a given parabolic subgroup, consider the grading

np, = @nPk(i)»

i>1

associated to the action of Z(M). The columns of the tables correspond to the graded
piece we consider.
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We list the resulting sl,-representations by the highest weight. For example, the rep-
resentation Sym” (C?2) will be denoted n. In particular, under the assumption that G is
adjoint, the data (s, A) associated to the representation n appearing in np, (i) is (n/2,1).

E¢: Node i=1 i=2 i=3
1 10,4
2 9,53 0
3 7,5,3,1 4
4 53311 420 1
5 7,5,3,1 4
6 10.4
E7: Node i=1 i=2 i=3 i=4
1 15,9.5 0
2 12.8,6,4,0 6
3 9,7,5,3,1 8,4,0 1
4 6,4,4,2,20 6,422 42 2
5 8,6,4,42,0 6,42 4
6 11,9,5,3 8.0
7 16,8,0
Eg: Node i=1 i=2 i=3 i=4 =5 (=6
1 21,15,11,9,3 12,0
2 15,11,9,7,5,3 12,8,4,0 7
3 11,9,7,5,3,1 12,8,6,4,0 17,5 6
4 7,5,5.3,3,1 8,6,4420 7531 642 31 4
5 9.7,5,5,3,3,1 8,6,4,420 7,531 6,2 3
6 12,10,8,6,4,2 10,8,6,2 10.4 2
7 17.15.9,7,1 16,8,0 1
8 27,17,9 0
Fy: Node i=1 i=2 i=3 i=4
1 9,3 0
2 53,1 4,0 1
3 3.1 420 1 2
4 6.0 6
Gy Node i=1 i=2 i=3
1 1 0 1
2 3 0
List of symbols
¢S PeN\G §3.1
B simple root in A associated to P §3.2
wg fundamental weight associated to §3.2
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wp weight in X *(T') attached to P (3.2)
Xp affine completion of X ;’, §3.2
vp highest weight vector in Vp (F) §3.2
v}",op lowest weight vector dual to vp in V[Y(F) §3.2
Pl =Pl Pliicker embedding P1: Xp — Gup §3.2
Vp right representation of G of highest weight —wp §3.2
() p|Pop pairing on Xp x Xp,, (3.4)
)y, P> (');)(IjP"P Mellin transform along x (3.6)
Ip (), Ipor(¥) normalized induction (3.5)
Va.B {s €eC: A <Re(s) < B} 3.7)
|-1a,B.p supsev, 5 1P(5)P()] (.11
EG,,, set of (unitary) characters (4.10)
[ |A,B,pP‘Q,Q’D seminorm (5.6)
Um® @ g) universal enveloping algebra of (m®® & g)¢ §4
Ay(pas) normalized operator attached to (s, A) 4.2)
L graded representation L of Gy, with attached data {(s;, 1;)} §4
A(L), B(L) extended real numbers attached to L (4.8)
ar(x) [ier L(=si, x*1) 4.7
apip(x) ay (x~") with L = @5, (5.3)
appor () ap (x) with L = 1% (5.3)
St Fréchet space attached to L §4
S(Xp(F)) Schwartz space on Xp (F) Def. 5.5
{e,h, f} principal s[5 triple in it §4.1
a4 space of highest weight vectors in fip for a principal s[,-triple (4.29)
L normalized operator attached to L (4.26)
nL(0) MMy v (=sio a%iw) (.27)
up pur with L = ﬁ; (4.30)
Rp|p:Rp|por Radon transform (5.2)
Lwo isomorphism ty, : $(Xp(F)) = S(Xpopr(F)) §5.3
Fp|pov up o Rp|pop (5.8)
wo wo Pwyl = PP (5.22)
FEipor 15’ o Rp|por (6.7)
.{Fg{lfg, LwO O.{}’vplpnp (611)
“, Ar(psy) 0+ 0 Age—1)1 (Hs—y) (6.6)
1y (11 (esy0) (6.6)
Vi, Qi) quadratic space of even dimension §8
(V.0) (=1 Vi 0oy 00) §8
Xo quadratic character attached to Q ©.1)
y(Q) Weil index of Q §9
X Xp where G = Spg and P is the Siegel parabolic §8
X0 representative of the open SLg-orbit in X (8.4)
No stabilizer of xg in SL3 (8.5)
Y {01, y2,¥3) € V1 Q1(y1) = Q2(y2) = Q3(»3)}- 8.1
yan anisotropic vectors in Y (8.2)
du(y) measure on Y §8
S(Y(F)) Schwartz space of Y (F) §8
Fy Fourier transform on S (Y (F)) §8
S Im(S (V(F)) — C®(YS™(F))) 8.7
T rational function on (F>)3 9.2)
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c(u,v) v101(u1) +v202(u2) — (v1 + v2)03(u3) 9.10)
v’ (v1,v2,—v1 —v2) (9.38)
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