
© 2023 European Mathematical Society

Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1381

Jayce R. Getz · Chun-Hsien Hsu · Spencer Leslie

Harmonic analysis on certain spherical varieties

Received June 1, 2021; revised November 3, 2022

Abstract. Braverman and Kazhdan proposed a conjecture, later refined by Ngô and broadened
to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties
admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in
joint work with B. Liu and later the first two authors proved these conjectures for certain spherical
varieties Y built out of triples of quadratic spaces. However, in these works the Fourier transform
was only proven to exist. In the present paper we give, for the first time, an explicit formula for the
Fourier transform on Y: We also prove that it is unitary in the nonarchimedean case. As preparation
for this result, we give explicit formulae for Fourier transforms on the affine closures of Braverman±
Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups.
These Fourier transforms are of independent interest, for example, from the point of view of analytic
number theory.
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1. Introduction

In the seminal paper [9], Braverman and Kazhdan suggested that the Poisson summation
formula for a vector space is the first case of a general phenomenon. Let X be an affine
spherical variety over a global field F with smooth locus X sm � X: Building on work in
[10,39,41], one now expects that there is a Schwartz space �.X.AF // � C1.X sm.AF //

and a Fourier transform
FX W �.X.AF // ! �.X.AF //

such that X

x2X sm.F /

f .x/ D
X

x2X sm.F /

FX .f /.x/;

at least for test functions f satisfying certain assumptions to eliminate ªboundary terms.º
Let us refer to this expectation as the Poisson summation conjecture. The import of the
Poisson summation conjecture is that it implies the analytic properties of Langlands L-
functions (and hence, by converse theory, Langlands functoriality) in great generality.

Remark 1.1. A study of 
 -factors for quite general Langlands L-functions using reduc-
tive monoids (an important special family of spherical varieties) is contained in [44]. In
the function field setting for many spherical varieties, including reductive monoids, a geo-
metric interpretation of basic functions in the still conjectural Schwartz space is contained
in [7, 42].

The only case that is completely understood is that of a vector space. However, the
Poisson summation formula is known under assumptions on the test functions involved
provided that X is the affine closure of a Braverman±Kazhdan space, that is, a scheme
of the form P dernG where G is a reductive group and P � G is a parabolic subgroup
[10, 19, 21, 24, 30, 31].

Though the original motivation for the Poisson summation conjecture comes from
Langlands functoriality, in personal communications to the first author, Kazhdan has
emphasized that it should have implications broadly in harmonic analysis. This is also the
theme of the monograph [31], which develops harmonic analysis on a special family of
Braverman±Kazhdan spaces in the archimedean case. Thus, though our primary motiva-
tion for this work was to prove Theorem 1.2 below, we have taken the occasion to develop
the theory of Fourier transforms for many Braverman±Kazhdan spaces to a point where
one can use them in harmonic analysis (or analytic number theory). The Schwartz space
of the affine closure of a Braverman±Kazhdan space with its associated Fourier transform
is in a strict sense a generalization of the Fourier transform on the Schwartz space of
a vector space. Whenever one has employed Fourier transforms to answer questions on
vector spaces, one can try to do the same for Braverman±Kazhdan spaces.

1.1. The Fourier transform for triples of quadratic spaces

In [20], the Poisson summation conjecture was proved for the first time for a spherical
variety that is not the affine closure of a Braverman±Kazhdan space. In more detail, let
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F be a number field, and let .Vi ; Qi /; 1 � i � 3, be a triple of even-dimensional vector
spaces Vi over F equipped with nondegenerate quadratic forms Qi . Let V WD

Q3
iD1 Vi

and for F -algebras R; let

Y.R/ WD ¹.v1; v2; v3/ 2 V.R/ W Q1.v1/ D Q2.v2/ D Q3.v3/º: (1.1)

Let Y ani � Y be the open complement of the vanishing locus ofQi (which is independent
of i ). The ªaniº stands for anisotropic. In [20] a Poisson summation formula was proved
for this scheme. However, it was phrased in terms of functions and a Fourier transform on
an auxiliary space; the theory was not intrinsic to Y: In [19] the first two authors defined
the Schwartz space of Y and proved the existence of a Fourier transform

FY W �.Y.AF // ! �.Y.AF //

such that the Poisson summation conjecture holds for suitable functions f 2 �.Y.AF //:

The Fourier transform FY is a restricted tensor product of local transforms

FYFv
W �.Y.Fv// ! �.Y.Fv//

for all places v: Below we will abuse notation and write simply FY for these local trans-
forms. The proof of the existence of FY in [19] is indirect, and does not provide any
formula for FY . In this paper, we prove such a formula.

Let F be a local field and let WF ! C� be a nontrivial additive character. Moreover,
for a D .a1; a2; a3/ 2 .F �/3, let

Œa� WD a1a2a3; r.a/ WD
.a1a2 C a2a3 C a3a1/

2

Œa�
: (1.2)

Theorem 1.2. Let F be a local field of characteristic 0. Suppose di WD dimVi > 2 for all

1 � i � 3 and Y sm.F / ¤ ;. There is a constant c 2 C� depending on  ;F , and the Qi
such that for all f 2 �.V .F // and � 2 Y ani.F /;

FY .f /.�/ D c

Z

F �

 .z�1/
�Z

.F �/3
 .z2r.a//

�

�Z

Y.F /

 

��
�

a
; y

�
�
Q.�/Q.y/

9z2Œa�

�
f .y/ d�.y/

�
�Q.a/ d

�a

¹aºd=2�1

�
d�z:

Here we use [19, Lemma 5.3] to regard f as an element of �.Y.F // by restriction.
Moreover

�

a
WD

�
�1

a1
;
�2

a2
;
�3

a3

�
; Q WD Q1 CQ2 CQ3;

�Q.a/ d
�a

¹aºd=2�1 WD

3Y

iD1

�Qi
.ai / d

�ai
jai jdi=2�1 ;

where the quadratic character �Qi
attached toQi is defined as in (9.1), h�; �iWD

P3
iD1h�; �ii ;

where h�; �ii is the pairing attached to Qi ; and d�.y/ is the measure defined in Section 8.
Theorem 1.2 is restated and proved as Theorem 9.1 below.
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The formula in Theorem 1.2 will be useful in applications of the Poisson summation
formula on Y: Moreover, it provides a precious example of a Fourier transform for a
spherical variety that is not the affine closure of a Braverman±Kazhdan space. Though
intricate, we observe that the formula has a pleasing form. Naïvely, one might expect the
Fourier transform to take the form

� 7!

Z

Y.F /

 .h�; yi/f .y/ d�.y/;

just like the traditional Fourier transform on a vector space. From a less naïve perspec-
tive, since the Fourier transform is invariant under the product of the orthogonal groups
attached to the Vi [19, Corollary 12.2], one might expect an expression in terms of the
invariant pairings h ; ii and the invariant polynomial Q. This is indeed the shape of the
formula. It is instructive to compare this with the Fourier transform on the zero locus of a
quadratic form given in Corollary 6.9 below, generalizing earlier work in [25, 31].

As a first application of Theorem 1.2, we prove the following.

Theorem 1.3. Let F be a nonarchimedean local field of characteristic zero. Suppose

dimVi > 2 for all 1 � i � 3 and Y sm.F / ¤ ;. The operator FY extends to an isometry

FY W L2.Y.F // ! L2.Y.F //:

For f1; f2 2 L2.Y.F //; we have the Plancherel formula

Z

Y.F /

FY .f1/.y/f2.y/ d�.y/ D

Z

Y.F /

f1.y/FY .f2/.y/ d�.y/:

This theorem puts Fourier analysis on L2.Y.F // on a sound footing. Theorem 1.3 is
proven as Theorem 10.1 below.

Remark 1.4. The assumption that F has characteristic zero is only used to prove the
geometric integrality statement in the proof of Lemma 9.4. Otherwise, the proofs of these
two theorems work more generally provided the characteristic is large enough to apply an
analogue of Proposition 9.13.

1.2. The Fourier transform on the affine closures of Braverman±Kazhdan spaces

Suppose now F is any local field. For a reductive group G with parabolic subgroup P; let
Xı
P WD P dernG and let XP be its affine closure. The space Xı

P is known as a Braverman±
Kazhdan space. We prove Theorem 1.2 using an explicit formula for the Fourier transform
on a certain Braverman±Kazhdan space. Since the method is general and of independent
interest, we prove the formula for split, simple, simply connected groups G and maximal
parabolic subgroups P:

Let M be a Levi subgroup of P and let P op be the unique parabolic subgroup of G
with P \ P op D M . We define �.XP .F // and �.XP op.F // in Section 5.2 following
previous work in [19, 21], which in turn refines the definition in [10]. We then prove the
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existence of a Fourier transform

FP jP op W �.XP .F // ! �.XP op.F // (1.3)

(see Theorem 5.12). This transform is unitary, and induces the same transform that Braver-
man and Kazhdan defined at the level of L2-functions in [10] (see Section 5.3). We point
out that the construction of the refined Schwartz space �.XP .F // and the proof that
it is preserved by the Fourier transform is not contained in [10]. We explain the rela-
tionship between Braverman and Kazhdan’s definition of the Schwartz space and ours
in Section 5.4.

We observe that Xı
P and Xı

P op admit a natural action of M ab by left multiplica-
tion. Thus, at least formally, it makes sense to integrate functions in �.XP op.F // against
functions in M ab.F /. Following Braverman and Kazhdan, we use this to define an oper-
ator �aug

P on a certain subspace of C1.XP op.F // (see (6.6)). It is essentially a sequence
of weighted Fourier transforms along the M ab.F /-action.

Theorem 1.5. We have FP jP op D �
aug
P ı F

geo
P jP op ; where

F
geo
P jP op.f /.x

�/ D

Z

Xı
P
.F /

f .x/ .hx; x�iP jP op/ dx

for f 2 �.XP .F // and x� 2 Xı
P op.F /. Here h�; �iP jP op is the canonical pairing between

Xı
P .F / and Xı

P op.F / of (3.4), and dx is an appropriately normalized right G.F /-invari-

ant Radon measure.

We use the superscript ªgeoº to indicate that the geometric part of the Fourier trans-
form is what one might expect of a Fourier transform from naïve geometric considera-
tions, and the superscript ªaugº to denote the ªaugmentationº of the normalization that
is necessary to obtain the true Fourier transform (for example, to ensure the resulting
operator is unitary).

Remark 1.6. Apart from trivial cases where XP is a vector space, our formula was only
known when G is a special orthogonal group on an even-dimensional quadratic space
and P is the stabilizer of an isotropic line [25, 31]. In this case, XP is the zero locus
of the quadratic form. The proofs in these two references rely on the interpretation of
L2.XP .F // as the minimal representation of a larger orthogonal group. This additional
structure on L2.XP .F // does not exist in general, so our proof of Theorem 1.5 is not a
generalization of these proofs.

As mentioned above, to prove Theorem 1.5 we extend the refined definition of the
Schwartz space given in [21] in the special case where G D Sp2n and P is the Siegel
parabolic to the general case of maximal parabolic subgroups in split, simple, simply con-
nected reductive groups. In the nonarchimedean setting, when P is the Siegel parabolic
subgroup ofG D Sp4n; the Schwartz space is also investigated in work of Jiang, Luo, and
Zhang [30], although their approach to Schwartz spaces is closer to [10] and they do not
obtain Theorem 1.5 in their setting. In loc. cit. the authors emphasize [30, Theorem 5.5]
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as a key technical result. We obtain the analogous result in general (i.e. for all maximal
parabolic subgroups of simple simply connected groups) in Theorem 5.12. Our proof is
not a generalization of the proof of [30, Theorem 5.5]; see Remark 4.1 below. The ref-
erences [33, 43] contain useful information on the Braverman±Kazhdan program, though
neither address the analytic issues that must be overcome to prove Theorem 1.5.

1.3. Some reductive monoids

Due to its connection with Langlands functoriality as outlined in [9, 38, 39], finding
explicit formulae for Fourier transforms on reductive monoids has become a focus of
research. It is well-known that Braverman±Kazhdan spaces built using the doubling
method construction give rise to reductive monoids [10, 30, 33, 43]. Theorem 1.5 gives
an explicit formulae for the Fourier transform in these cases. We point out three addi-
tional reductive monoids to which the results in this paper apply. Let gl2 be the scheme
of 2 � 2 matrices. For F -algebras R set

X1.R/ WD ¹.A; a/ 2 gl2.R/ �R W detA D a2º;

X2.R/ WD ¹.A;B/ 2 gl22.R/ W detA D detBº;

X3.R/ WD ¹.A;B; C / 2 gl32.R/ W detA D detB D detC º:

Then X1 and X2 are the affine closures of Braverman±Kazhdan spaces for appropriate
special orthogonal groups, hence also the affine closures of Braverman±Kazhdan spaces
associated to spin groups, and X3 is a special case of the scheme Y above. We point out
that X2 was treated using the circle method in [18], and the Fourier transform in this case
is a special case of the Fourier transform computed in [25, 31]. The functional equations
of the Langlands L-functions giving rise to these reductive monoids are already known.
However, even in the relatively simple case of �.X1.F // and �.X3.F //; the formulas for
the Fourier transform given by Theorems 1.5 and 1.2 (respectively) are new.

1.4. Outline of the paper

In Section 2 we state conventions regarding Schwartz spaces, quasi-characters, measures
and estimates. We recall some basic facts on Braverman±Kazhdan spaces in Section 3.
The definition of the Fourier transform on the Schwartz space of the affine closure of a
Braverman±Kazhdan space relies on operators that correspond, under the Mellin trans-
form, to multiplication by 
 -factors. Only the nonarchimedean case appears in the lit-
erature. Even in this case the domain and range of these operators is never elucidated.
This makes it problematic to define the composition of the operator on an explicit space
of functions. We develop a new approach to these operators that works uniformly in
the archimedean and nonarchimedean cases in Section 4. The new approach allows us
to explicitly control the domain and range of the operators and to compose them. We
expect these ideas will have applications to Fourier transforms beyond those constructed
by Braverman and Kazhdan.
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In Section 5 we give a refined definition of the Schwartz space of the affine closure of
a Braverman±Kazhdan space whenever P is a maximal parabolic subgroup of a split, sim-
ple, and simply connectedG; and prove that the Fourier transform preserves this space. In
the special case where P is the Siegel parabolic of G D Sp2n; this definition is contained
in [21]. This refinement goes beyond the work in [10], in which the Fourier transform is
only defined via a transform defined on an inexplicit dense subspace of a Hilbert space
and then extended by continuity.

In Section 6 we prove Theorem 1.5, restated as Theorem 6.5. The proof of The-
orem 1.5 requires computations of various normalizing factors which are given in
Appendix A. These computations also allow us to give an explicit description of �aug

P .
This is particularly important for readers without extensive background in representation
theory who may want to apply our formula.

At this point we begin to shift our attention to the space Y: In the preparatory Sec-
tion 7, we introduce various regularized integrals we will require. We recall the definition
of the Schwartz space of Y in Section 8 and the indirect characterization of the Fourier
transform FY proved in [19]. We then prove Theorem 1.2, restated as Theorem 9.1, in
Section 9. The proof is satisfying in that we make crucial use of standard tools of Fourier
analysis including the Plancherel formula. We point out, however, that in most cases
adapting these tools to our setting is nontrivial. The unitarity of FY is proven in Sec-
tion 10 (see Theorem 10.1). The heuristic arguments for Theorems 9.1 and 10.1 are fairly
short, but making them rigorous requires careful analysis. Certain technical estimates are
relegated to Section 11. To aid the reader we have appended an index of notation.

2. Preliminaries

2.1. Schwartz spaces

In this paper, we will work with various types of Schwartz spaces for quasi-affine schemes
over a local field F: If X is a smooth quasi-affine scheme over F; we let

�.X.F // WD C1
c .X.F //

when F is nonarchimedean. When F is archimedean, we define

�.X.F // D �.ResF=RX.R//

as in [14, Remark 3.2] (this is based on previous work in [1]). Briefly, one chooses an
embedding ResF=RX.R/ ! Rn in the category of real algebraic varieties with closed
image and then defines �.X.F // D �.Rn/=I; where I � �.Rn/ is the (closed) ideal of
functions that vanish identically on X.F /: The embedding ResF=RX.R/ ! Rn always
exists in the real algebraic category, even if X is merely quasi-affine (see [14, Sec-
tion 2.1] for references). This recovers the usual definition whenX.F /Š F d for some d .
One endows �.X.F // with the quotient topology, which is Fréchet and nuclear. The
space �.X.F // and its topology are independent of the choice of embedding [14,
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Lemma 3.6 (i)]. It is known [14, Theorem 3.9] that if X2 is a smooth quasi-affine scheme
and X1 � X2 is a closed subscheme, then restriction of functions induces a surjection

�.X2.F // � �.X1.F //:

We will define Schwartz spaces �.X.F // for several singular affine schemes X: They
will always be spaces of functions on X sm.F /; where X sm � X is the smooth locus. If
F is archimedean, the space �.X.F // will always be a Fréchet space. Unfortunately, we
will not always know whether it is nuclear.

Let X and Y be quasi-affine schemes. Assuming that Schwartz spaces �.X.F // and
�.Y.F // have been defined, we define

�.X.F / � Y.F // WD �.X.F //˝ �.Y.F //

in the nonarchimedean case (algebraic tensor product). In the archimedean case, we define
�.X.F /�Y.F // to be the completed projective tensor product of �.X.F // and �.Y.F //.
Unfortunately, we do not know if this product is independent of the choice of realization
of X � Y as a product in general. Therefore this realization will be part of the data.
We observe that if X and Y are smooth then this definition agrees with the previous
definition. This follows from [2, Corollary 2.6.3] and the fact that the Schwartz space
of a real algebraic variety and the Schwartz space of its underlying Nash manifold are
naturally isomorphic [14, Section 2.2].

2.2. Quasi-characters and the norm

Let F be a local field. We denote by j � j the number-theorist’s norm on F: Thus j � j is
the usual Euclidean norm if F D R, jzj D z Nz if F D C; and if F is nonarchimedean
with ring of integers OF and uniformizer$ then j$�1j is the cardinality q of the residue
field OF =$: For local fields F and quasi-characters � W F � ! C�; we let Re.�/ 2 R

be the unique real number such that �j � j� Re.�/ is a character (i.e. is unitary). Consider a
function f of quasi-characters. We say that it is holomorphic (resp. meromorphic) if for
all characters �; the function f .�j � js/ is holomorphic (resp. meromorphic) in s 2 C.

We also denote the usual norm on C by j � j: This creates the possibility of confusion
when we have chosen an identification F D C:When F is denoted by C;we use the stan-
dard norm, and when F is denoted simply F , we use the number-theorist’s norm. Thus,
for example, if X is a set and f W X ! C is a function, then jf .x/j D .f .x/f .x//1=2 for
x 2 X: This is a standard convention adopted to lighten notation.

2.3. Measures

For local fields F; if dx denotes a Haar measure on F; then d�x WD �.1/dx
jxj where �

is the usual local zeta function. We often regard dx as a measure on the open dense
subset F � � F . We fix once and for all a nontrivial additive character  W F ! C�. The
measure dx will always be normalized so that it is self-dual with respect to the Fourier
transform on �.F / defined by  .
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2.4. Asymptotic notation

Let g1 W X ! R�0 and g2 W X ! R�0 be functions defined on a set X: We write

g1.x/ �‹ g2.x/; g1.x/ D O‹.g2.x// (2.1)

if there is a constant C‹ > 0 depending on the set ‹ such that g1.x/ < C‹g2.x/ for all
x 2 X: We drop set symbols when denoting the set, e.g. we write Ca;b instead of C¹a;bº:
We will also say g2 dominates g1 in order to avoid repeating the phrase ªis bounded by a
constant times.º If F is archimedean and ‹ contains an element f of �.V .F // (or another
topological vector space of functions), (2.1) will in addition mean that the implied con-
stant can be chosen continuously as a function of f when the other elements in ‹ are fixed.

3. Braverman±Kazhdan spaces

3.1. Braverman±Kazhdan spaces

Let G be a split connected simple reductive group over a field F and let P be a maximal
parabolic subgroup with Levi decomposition P DMNP . By simple, we mean thatG has
no nontrivial normal proper smooth connected subgroups. Set

Xı
P WD P dernG:

We refer to Xı
P as a Braverman±Kazhdan space; it is also known as a pre-flag variety

since it is a Gm-torsor over the generalized flag variety P nG. This is a right M ab � G-
space, where the action is given on points in an F -algebra R by

Xı
P .R/ �M ab.R/ �G.R/ ! Xı

P .R/; .x;m; g/ 7! m�1xg: (3.1)

We point out that Braverman and Kazhdan work with G=P der instead.

3.2. Plücker embeddings

Fix a maximal split torus T � M and a Borel subgroup T � B � P; and let � D �G be
the corresponding set of simple roots. Then B \M is a Borel subgroup of M: Suppose
that ˇ 2 � is the simple root of .G; T / associated to P ; that is, �M D � � ¹ˇº is the
set of simple roots for the based root system of .M; M \ B/. Let !ˇ 2 X�.T /Q WD

X�.T /˝Z Q be the fundamental weight of T determined by the relation

h!ˇ ; ˛
_i D ı˛;ˇ for all ˛ 2 �;

where ı˛;ˇ is the Kronecker ı. It is not necessarily true that !ˇ 2 X�.T /. We let mˇ be
the least positive rational number such that mˇ!ˇ 2 X�.T / and define

!P WD mˇ!ˇ : (3.2)

In particular, !P is denoted ! in [21]. We claim that mˇ 2 Z. To see this, note that if ƒ
is the lattice in X�.T /Q spanned by the fundamental weights, one has

� 2 ƒ ” h�; ˛_i 2 Z
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for all simple roots ˛ 2 �: Since X�.T / � ƒ the claim now follows by pairing !P
with ˇ_:

We leave the proof of the following lemma to the reader:

Lemma 3.1. If T is a maximal torus of a .connected/ reductive F -group H; then

T \ H der is a maximal torus of H der. If T is split, then so are T \ H der and

T=T \H der:

Lemma 3.2. The torus M ab is split and isomorphic to Gm. The map M.F / ! M ab.F /

is surjective.

Proof. The first assertion follows from our assumption that G is a split, simple reductive
group and P is maximal, and Lemma 3.1.

For the second assertion, consider the maximal split torus T � M . The intersection
T \M der is a split torus by Lemma 3.1, and the restriction of the map M ! M ab to T is
the quotient map

T ! T=.T \M der/
�
�! M ab:

Since T \M der is a split torus, this map is surjective on F -points by Hilbert’s theorem 90
and we deduce the lemma.

Corollary 3.3. The map G.F / ! Xı
P .F / is surjective.

Proof. Consider the commutative diagram

G.F / Xı
P .F /

.P nG/.F /

q1

q3
q2

where the qi are the canonical quotient maps. The map q3 is surjective [6, Théorème 4.13].
For y 2 .P nG/.F /; choose g 2 G.F / such that q3.g/ D y. Set x D q1.g/. Since M ab

is a split torus by Lemma 3.2, q�1
2 .y/ is an M ab.F /-torsor. In other words,

q�1
2 .y/ D ¹tx W t 2 M ab.F /º D ¹q1.mg/ W m 2 M.F /º

since M.F / ! M ab.F / is surjective by Lemma 3.2. Thus q�1
2 .y/ is in the image of q1

for all y 2 .P nG/.F /:

Let VP be the right representation of G of highest weight �!P . We remind the reader
that for a right representation, the character of a highest weight vector is anti-dominant,
explaining why the highest weight is �!P . Fix a highest weight vector vP 2 VP .F /.

Lemma 3.4. The derived subgroup P der is the stabilizer of vP ; so that the map Pl WD

PlvP
W Xı

P ! VP induced by

G.R/ ! VP .R/; g 7! vPg;
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maps Xı
P isomorphically onto the orbit of vP under G. The map !P ; originally a char-

acter of T; extends to a character of M; and the induced map

!P W M ab ! Gm

is an isomorphism. For m 2 M ab.R/; one has

Pl.m�1g/ D !P .m/Pl.g/: (3.3)

Proof. It is well-known that P is the stabilizer of the line spanned by vP (this follows
from the discussion in [5, Section 24.4]), and thus this line is a one-dimensional represen-
tation of P: We deduce that �!P extends from T to a character of P; and P acts via the
character �!P on the line, and hence the stabilizer of vP contains P der.

Since P der D M derNP ; to prove that P der is the full stabilizer, it suffices to check that
!P W M ab ! Gm is an isomorphism. Upon choosing an isomorphismM ab Š Gm; we see
that !P is given on points by x 7! xn for some nonzero n 2 Z. Then !P =n 2 X�.T /.
By our choice of !P ; we deduce n D ˙1 and !P is an isomorphism. The equivariance
property (3.3) of Pl is now clear.

Consider the affine closure

XP WD Spec.F ŒXı
P �/ D Xı

P

aff
:

The schemeXP is of finite type over F and the natural mapXı
P ! XP is an open immer-

sion [8, Theorem 1.1.2]. We will actually not require any properties of XP in this paper,
but the fact that it has simple singularities provides good intuition for the Schwartz spaces
we define later. Therefore we recall the following theorem (see [50, Theorems 1 and 2]):

Theorem 3.5. The embedding Pl WXı
P !VP extends to a closed immersion Pl WXP !VP .

The closed subscheme XP �Xı
P is a point and it is mapped under Pl to 0.

Let P op be the parabolic subgroup opposite to P so that P \ P op D M . Let V _
P be

the representation of G dual to VP and let v�
P op 2 V _

P .F / be the lowest weight vector
of V _

P .F / dual to vP . We then have an embedding Plv�
P op

W Xı
P op ! V _

P induced by

G.R/ ! V _
P .R/; g 7! v�

P opg:

Let h�; �i be the canonical pairing of VP and V _
P . Consider the G-equivariant pairing

given on F -algebras R by

h�; �iP jP op W Xı
P .R/ �Xı

P op.R/ ! R; .x; x�/ 7! hPlvP
.x/;Plv�

P op
.x�/i: (3.4)

If we replace vP by any other highest weight vector v0
P ; then v0

P D tvP for some t 2 F �.
Thus the dual vector of v0

P is t�1v�
P op . It follows that h�; �iP jP op is independent of the

choice of vP .
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3.3. Relation to induced representations

We now assume F is a local field. The space �.Xı
P .F //; equipped with the M ab.F /-

action induced by (3.1), can be thought of as a universal (degenerate) principal series
representation.

For a quasi-character � W F � ! C�; let

I.�/ WD IP .�/ WD IndG.F /
P.F /

.� ı !P /; xI .�/ WD xIP op.�/ WD IndG.F /
P op.F /

.� ı !P / (3.5)

be the normalized inductions in the category of smooth representations. Let ıP be the
modular character of P: We define Mellin transforms

�.Xı
P .F // ! I.�/;

f 7! f�.�/ WD f�;P .�/ WD

Z

M ab.F /

ı
1=2
P .m/�.!P .m//f .m

�1�/ dm;

�.Xı
P op.F // ! xI .�/;

f 7! f op
� .�/ WD f

op
�;P op.�/ WD

Z

M ab.F /

ı
1=2
P op .m/�.!P .m//f .m

�1�/ dm: (3.6)

Here dm is the Haar measure on M ab.F / obtained from the isomorphism !P W M ab.F /

! F � and the Haar measure d�x on F � by our convention in Section 2.3. In the notation
xIP op.�/ and f op

�;P op ; the bar and the superscript ªopº indicate that we are inducing from
� ı !P instead of � ı !P op .

We use the same notation for extensions of the Mellin transform to larger subsets of
C1.Xı

P .F // and C1.Xı
P op.F //; when in general the integrals defining f�; f

op
� only

exist for Re.�/ in a proper subset of R; and in some cases will be extended to larger
complex domains by analytic continuation.

Let A < B be extended real numbers (we allow A D �1 and B D 1) and let

VA;B WD ¹s 2 C W A < Re.s/ < Bº: (3.7)

For quasi-characters � of F � and s 2 C, let �s WD �j � js : Assume F is archimedean. We
say that a section f .�/.s/ 2 I.�s/ is holomorphic (resp. meromorphic) in VA;B if for all
g 2 G.F / and (unitary) characters � of F �, the function

VA;B ! C; s 7! f .�/.s/.g/; (3.8)

is holomorphic (resp. meromorphic). In the nonarchimedean case, we say that a section
f .�/.s/ 2 I.�s/ is holomorphic (resp. meromorphic) if for all g 2 G.F / and characters
� of F �, (3.8) is in CŒq�s; qs� (resp. C.q�s; qs/).

4. Twisting by abelian 
-factors

For the remainder of the paper, F denotes a local field. As discussed in Section 5.3 below,
the definition of the Fourier transform FP jP op involves normalization operators �Š.�s/
which correspond, under the Mellin transform, to multiplication by 
.�s; ��;  / (see



Harmonic analysis on certain spherical varieties 13

Lemma 4.3). Here and below, 
.s; �;  / denotes the usual Tate 
 -factor attached to a
complex number s, a quasi-character � W F � ! C�, and the additive character  : The
operators �Š.�s/ were previously defined in [10] and an exposition is given in [43]. The
approach of [10] is inconvenient in the sense that each operator is only defined on an
inexplicit subspace of �.Xı

P .F // that is dense in L2.XP .F //. Thus as one composes
operators, one loses control of their domain and range. Moreover, the operators are only
defined in the nonarchimedean case in [10].

In this section we set up a general theory of the operators �Š.�s/ that is applicable
uniformly in the archimedean and nonarchimedean settings. We also explain how to con-
trol their domain and range. This is quite delicate. In particular, to construct the Fourier
transform, the normalizing operators �Š.�s/ have to be composed in a particular order.
This motivates the definition of a good ordering in Definition 4.9 below. Essentially the
situation is as follows: to compose the operators �Š.�s/; we require the domain of abso-
lute convergence of certain Tate integrals to overlap. This is only possible if we arrange
the operators in a particular order.

Remark 4.1. This difficulty was also encountered in the nonarchimedean setting in a
special case in [30]. They overcame it by packaging all the normalizing operators together
and relating them to transforms coming from prehomogeneous vector spaces. We do not
know if their method can be used to obtain an explicit formula for the Fourier transform,
or if it can be applied in the generality considered here.

For � 2 Z and s 2 C; we define a linear map

�Š.�s/ W �.Xı
P op.F // ! C1.Xı

P op.F // (4.1)

by

�Š.�s/.f /.x/ WD

Z

M ab.F /

 .!P .m//j!P .m/j
sC1ı�=2P op .m/ f .m

��x/
dm

�.1/
: (4.2)

This was denoted �Š.�s / in [10]. In loc. cit. a measure is incorporated into the distribution;
this is why our formula looks different.

We work with Xı
P op here to be consistent with our notation later on, when these oper-

ators are applied after the operator RP jP op of (5.2). Of course in the formula for (4.2)
we could write everything in terms of P or P op by taking appropriate inverses. We have
written it in the form above to remind the reader that f is a function on Xı

P op.F /; but
the normalizing factors � and s we will use in our case of primary interest are defined in
terms of P (see Section 4.1 below).

To extend the domain of definition of �Š.�s/; choose ˆ 2 �.F / such that ˆ.0/ D 1

and ŷ 2 C1
c .F /. Here ŷ .x/ WD

R
F
ˆ.y/ .xy/ dx is the Fourier transform of ˆ: For

continuous functions f W Xı
P op.F / ! C; we define the regularized integral

�Š.�s/
reg.f /.x/

WD lim
jbj!1

Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

sC1ı�=2P op .m/f .m
��x/

dm

�.1/
: (4.3)
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We say this integral is well-defined if
Z

M ab.F /

jˆj

�
!P .m/

b

�
j!P .m/j

Re.s/C1ı�=2P op .m/jf j.m��x/ dm (4.4)

is finite for jbj sufficiently large, and the limit in the definition of �Š.�s/reg.f /.x/ exists
and is independent of ˆ.

Lemma 4.2. If the integral defining �Š.�s/.f / is absolutely convergent, then

�Š.�s/
reg.f / D �Š.�s/.f /:

In particular, this equality holds whenever f 2 �.Xı
P op.F //.

To avoid more proliferation of notation, we will drop the ªregº from notation. Lemma
4.2 shows this is harmless, as it implies that the two integrals yield the same result when
both are well-defined.

Lemma 4.3. Assume that f 2 xI .�/ and Re.s/C 1 � �Re.�/ > 0. The function

�Š.�s/.f /.x/

is well-defined and equal to 
.�s; ��;  /f .x/.

Proof. Since Re.s/C 1� �Re.�/ > 0; (4.4) is finite for all b. By the functional equation
of Tate zeta functions, we have

Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

sC1���.!P .m//f .x/
dm

�.1/

D 
.�s; ��;  /f .x/

Z

F �

�Z

F

ˆ

�
t

b

�
 .t/ .yt/ dt

�
jyj�s��.y/

d�y

�.1/
:

Using our assumption that ˆ.0/ D 1; we have

lim
jbj!1

jbj

Z

F �

�Z

F

ˆ.t/ .bt.1 � y// dt

�
jyj�s��.y/

d�y

�.1/

D lim
jbj!1

jbj

Z

F �

ŷ .b.1 � y//jyj�s��.y/
d�y

�.1/

D lim
jbj!1

Z

F

ŷ .y/j1 � y=bj�s�1��.1 � y=b/ dy

D 1: (4.5)

Here for small jbj the integral may diverge, but since ŷ 2 C1
c .F /, the integral converges

for jbj sufficiently large.

Now consider a graded Gm-representation L D
L
i2I Li for some finite index set I .

We assume that each Li is 1-dimensional and that Gm acts via a character �i on Li . We
identify X�.Gm/ with Z by taking the identity character to 1; so we can speak of positive
or negative characters. We assume that each character �i is nonzero and assign to each Li
a real number si .
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We then have linear maps

�iŠ.�si / W �.Xı
P op.F // ! C1.Xı

P op.F // (4.6)

for each i 2 I . Following [10], we wish to compose these linear maps to give a single
transform

�L W �.Xı
P op.F // ! C1.Xı

P op.F //

associated to the Gm-module L and the data ¹.si ; �i / 2 R � Z W i 2 I º.
It is convenient (and perhaps necessary) to extend the work in [10] by elucidating the

domain and range of these operators. We proceed as in [21], which borrows from [29].
Let

aL.�/ WD
Y

i2I
L.�si ; �

�i /: (4.7)

We introduce extended real numbers A.L/; B.L/ as follows:

A.L/ WD

´
max ¹si=�i W i 2 I; �i > 0º if �i > 0 for some i ;

�1 otherwise;

B.L/ WD

´
min ¹si=�i W i 2 I; �i < 0º if �i < 0 for some i ;

1 otherwise:
(4.8)

Assume that A.L/ < B.L/.

Lemma 4.4. The function aL.�/ has no poles for A.L/ < Re.�/ < B.L/.

We now define the space

�L WD �L.XP op.F // < C1.Xı
P op.F //: (4.9)

When F is nonarchimedean, we define �L to be the space of smooth functions f W

Xı
P op.F / ! C that are finite under a maximal compact subgroup of G.F / and satisfy

the following additional condition: the integral defining f op
�s

is absolutely convergent for
A.L/ < Re.s/ < B.L/ and f op

�s
.x/=aL.�s/ lies in CŒq�s; qs� for each x 2 Xı

P op.F / and
all (unitary) characters � W F � ! C�.

When F is archimedean, we require a bit more notation. Let yKGm be the set of char-
acters of the maximal compact subgroup KGm of F �. Thus, setting

�.z/ WD
z

.zz/1=2
;

where we use the positive square root, we have

yKGm WD

²
�˛ W

˛ 2 ¹0; 1º if F is real
˛ 2 Z if F is complex

³
: (4.10)

For real numbers A < B; p 2 CŒs�; and meromorphic functions � W C ! C; we let

j�jA;B;p WD sup
s2VA;B

jp.s/�.s/j (4.11)
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where VA;B is defined as in (3.7). Consider the Lie algebra

mab ˚ g WD Lie.M ab.F / �G.F //: (4.12)

It acts on C1.Xı
P op.F // via the differential of the action (3.1) and hence we obtain an

action of U.mab ˚ g/; the universal enveloping algebra of .mab ˚ g/C (here we view
mab ˚ g as a real Lie algebra).

We let �L be the space of smooth functions f W Xı
P op.F / ! C such that for all

� 2 yKGm and all D 2 U.mab ˚ g/; the integral defining .D:f /op
�s
.x/ converges abso-

lutely for all A.L/ < Re.s/ < B.L/; and admits a meromorphic continuation to the plane
such that

(1) for all A < B;

(2) all polynomials p 2 CŒs� such that p.s/aL.�s/ has no poles in VA;B for all � 2 yKGm ;

(3) all compact subsets � � Xı
P op.F /;

(4) all D 2 U.mab ˚ g/;

one has
jf jA;B;p;�;D WD

X

�2 yKGm

sup
x2�

j.D:f /op
�s
.x/jA;B;p < 1: (4.13)

This collection of seminorms gives �L the structure of a Fréchet space by the same argu-
ment as in [19, Lemma 3.2].

In all cases, this definition allows us to recover analytic properties of f from its Mellin
transforms via Mellin inversion. More specifically, let yKGm be a set of representatives for
the characters of F � modulo the equivalence relation

�1 � �2 if and only if �1 D �2j � jit for some t 2 R.

The set of equivalence classes can be identified with the set of characters of the maximal
compact subgroup KGm < F �; which explains the notation. In the archimedean case
we always use the representatives given by (4.10). Let � 2 R>0 (depending on  ) be
chosen so that �dx is the standard Haar measure on F . Here the standard Haar measure
is the Lebesgue measure if F D R; twice the Lebesgue measure if F D C; and satisfies
�dx.OF / D jdj1=2 where d is a generator for the absolute different of OF when F is
nonarchimedean. We then let

IF WD

´ �
� �

logq ;
�

logq

�
if F is nonarchimedean;

R if F is archimedean,
(4.14)

and

cF WD

8
ˆ̂<
ˆ̂:

� log q if F is nonarchimedean;
�
2

if F D R;
�
2�

if F D C:

Suppose A.L/ < � < B.L/. Then aL.�s/ has no poles for any character � and any s with
Re.s/ D � .
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We fix now a maximal compact subgroup K < G.F / such that the Iwasawa decom-
position

P.F /K D G.F / (4.15)

holds. The following is a version of Mellin inversion (see [21, Lemma 4.3], [15, Theo-
rem 4.32], [4, (2.2)]):

Lemma 4.5. Let f 2 C1.Xı
P op.F // and assume for all � 2 yKGm the integral defining

f
op
�s

is absolutely convergent for Re.s/ D �: Suppose moreover that for all x 2 Xı
P op.F /

one has X

�2 yKGm

Z

�CiIF

jf op
�s
.x/j ds < 1:

Then for all x 2 Xı
P op.F / one has

f .x/ D
X

�2 yKGm

Z

�CiIF

f op
�s
.x/

cF ds

2�i
: (4.16)

Moreover, f isK-finite if and only if the sum over � has support in a finite set independent

of x:

Conversely, suppose that we are given continuous f .�/.s/ 2 xI .�s/ for all s with

Re.s/ D � and all � 2 yKGm and that

X

�2 yKGm

Z

�CiIF

jf .�/.s/.x/jds < 1

for all x 2 Xı
P op.F /: Assume moreover in the nonarchimedean case that f .�/

.sC 2�i
log q / D

f .�/.s/: Define

f .x/ WD
X

�2 yKGm

Z

�CiIF

f .�/.s/.x/
cF ds

2�i
:

If the integral defining f
op
�s

is absolutely convergent for all � 2 yKGm and s with Re.s/D �

then f
op
�s

D f .�/.s/:

The lemma implies in particular that (4.16) holds for f 2 �L and A.L/ < � < B.L/.
As an immediate consequence of Mellin inversion (4.16), we deduce the following

estimate for functions in �L:

Lemma 4.6. Assume " > 0 is chosen so thatA.L/C " < B.L/� "; and let��XP op.F /

be a compact subset. For each f 2 �L and .m; x/ 2 M ab.F / ��; one has an estimate

jf .mx/j ��;f;" ı
1=2
P op .m/min.j!P .m/j

A.L/C"; j!P .m/jB.L/�"/:

Here when A.L/D �1 we interpret A.L/C " as any negative real number A; and when

B.L/ D 1 we interpret B.L/ � " as any positive real number B: In these cases, the

implied constant depends on A and B:

We now use this to give a criterion for when the regularized integral is the usual
integral:
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Lemma 4.7. Assume � > 0 and let s 2 C. If

A.L/ <
Re.s/C 1

�
< B.L/;

then the integral defining �Š.�s/.f / is absolutely convergent for f 2 �L.

Proof. Substituting the bounds from Lemma 4.6, it suffices to observe that
Z

F �

jt jRe.s/C1 min.jt j��.A.L/C"/; jt j��.B.L/�"//d�t

is convergent for " > 0 sufficiently small. Here when A.L/ D �1 or B.L/ D 1; we
interpret A.L/C " and B.L/ � " as in Lemma 4.6.

For each i; let
zLi (4.17)

be L_
i , the one-dimensional vector space on which Gm acts via ��i . We assign the real

number �1 � si to zLi . If �1 < A.L/; choose Lk such that A.L/ D sk=�k ; and define

L0 WD zLk ˚
M

i¤k
Li :

Since we have assumed A.L/ < B.L/; we have

A.L0/ � A.L/ < B.L0/ � B.L/; (4.18)

so
.A.L/; B.L// \ .A.L0/; B.L0// D .A.L/; B.L0// ¤ ;: (4.19)

Using this observation, we prove the following proposition:

Proposition 4.8. For �1 < A.L/ < Re.�/ < B.L0/; there is a commutative diagram

�L �L0

xI .�/ xI .�/

�kŠ.�sk
/

.�/op
� .�/op

�

where the bottom arrow is multiplication by 
.�sk ; �
�k ;  / and the vertical arrows are

f 7! f
op
� . In particular, the regularized integral �kŠ.�sk / is well-defined on �L.

Proof. Let f 2 �L and x 2 Xı
P op.F /: By Lemma 4.6, for any " > 0 we have

Z

M ab.F /

jˆj

�
!P .m/

b

�
j!P .m/j

skC1ı�k=2
P op .m/jf j.m��kx/

dm

�.1/

�f;";x

Z

F �

jˆj

�
t

b

�
jt jskC1��k.A.L/C"/ d�t;

which is finite for any b when " is sufficiently small.
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We claim that

�kŠ.�sk /.f /.x/

D lim
jbj!1

Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

skC1ı�k=2
P op .m/f .m��kx/

dm

�.1/

converges and is equal to

h.x/ WD
X

�2 yKGm

Z

�CiIF


.�ks � sk ; �
�k ;  /f op

�s
.x/

cF ds

2�i
(4.20)

for
A.L/ < � < B.L0/:

Before proving the claim, it is convenient to study h.x/: By standard properties of the
Tate 
 -factor, we have


.�ks � sk ; �
�k ;  /f

op
�s

aL0.�s/
D
g.s; �;  /f

op
�s

aL.�s/
; (4.21)

where g.s; �;  / lies in CŒq�s; qs� in the nonarchimedean case and is holomorphic and
bounded in VA;B for all �1 < A < B < 1 by a constant independent of � when F
is archimedean. Thus the expression defining h.x/ is absolutely convergent for A.L/ <
� < B.L0/ since aL0.�s/ has no poles in this range (see (4.19)). Here when F is nonar-
chimedean, we have used the fact that functions in �L are finite under a maximal com-
pact subgroup of G.F / and hence the sum over � in (4.20) has finite support. In the
archimedean case we have used the fact that 
.�ks � sk ; �

�k ;  / is bounded by a poly-
nomial in s independent of � for A.L/ < Re.s/ < B.L0/ (see [21, proof of Lemma 3.3]).

Let A.L/ < � < B.L0/ and x 2 Xı
P op.F /. We claim the integral

Z

M ab.F /

ı
1=2
P op .m/j!P .m/j

� jhj.m�1x/ dm

D

Z

M ab.F /

ˇ̌
ˇ̌ X

�2 yKGm

Z

iIF

.�s/
�1.!P .m//
.�k� C �ks � sk ; �

�k ;  /f op
��Cs

.x/
cF ds

2�i

ˇ̌
ˇ̌ dm

(4.22)

is convergent. This implies in particular that hop
�s

is well-defined for A.L/ < � < B.L0/:
If F is nonarchimedean, it suffices to fix � 2 yKGm and show

Z

M ab.F /

ˇ̌
ˇ̌
Z

iIF

.�s/
�1.!P .m//
.�k� C �ks � sk ; �

�k ;  /f op
��Cs

.x/
cF ds

2�i

ˇ̌
ˇ̌ dm < 1:

Since � is a character, it suffices to show
X

n2Z

ˇ̌
ˇ̌
Z

iIF

qns
.�k� C �ks � sk ; �
�k ;  /f op

��Cs
.x/

cF ds

2�i

ˇ̌
ˇ̌ < 1: (4.23)

This is nothing but the `1-norm of the Fourier transform of the smooth function

R= 2�logqZ ! C; s 7! 
.�k� C �kis � sk ; �
�k ;  /f op

��Cis
.x/:
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Hence (4.23) is valid by a standard integration by parts argument. In the archimedean
case the proof that (4.22) converges is similar. One uses the fact that f 2 �L and that

.�ks � sk ; �

�k ;  / is bounded by a polynomial in s independent of � for A.L/ < Re.s/
< B.L0/ as mentioned above.

We conclude that hop
�s

D 
.�ks � sk ; �
�k ;  /f

op
�s

by Mellin inversion, specifically
the converse statement in Lemma 4.5. Using (4.21) (and its analogues with f and h
replaced by various derivatives in the archimedean setting) we also deduce that h 2 �L0 :

Thus we can conclude the commutativity of the diagram upon verifying our claim that
�kŠ.�sk /.f /.x/ is equal to h.x/:

Observe that the convergence in (4.5) is uniform in Re.s/;Re.�/; � in a compact set.
Therefore, we can reverse the proof of Lemma 4.3 and deduce that (4.20) is equal to the
limit as jbj ! 1 of

X

�2 yKGm

Z

�CiIF


.�ks � sk ; �
�k ;  /

�

�Z

F �

�Z

F

ˆ

�
t

b

�
 .t/ .yt/ dt

�
jyj�sk�s.y�k / d�y

�
f op
�s
.x/

cF ds

2�i

D
X

�2 yKGm

Z

�CiIF

�Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

skC1

� �s.!P .m/
��k /f op

�s
.x/

dm

�.1/

�
cF ds

2�i
: (4.24)

Moreover, the expression
X

�2 yKGm

Z

�CiIF

Z

M ab.F /

ˇ̌
ˇ̌ˆ

�
!P .m/

b

�
j!P .m/j

skC1�s.!P .m/��k /

ˇ̌
ˇ̌ ˇ̌
f op
�s
.x/

ˇ̌
dmds

is finite. Indeed, the inner integral is bounded independently of � and s since we have
assumed � < B.L0/ and X

�2 yKGm

Z

�CiIF

jf op
�s
.x/j ds

is finite by definition of �L since aL.�s/ has no poles for A.L/ < Re.s/ < B.L0/.
Therefore, we can rearrange the order of integration in (4.24) and arrive at

Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

skC1ı�k=2
P op .m/

�

� X

�2 yKGm

Z

�CiIF

f op
�s
.m��kx/

cF ds

2�i

�
dm

�.1/

D

Z

M ab.F /

ˆ

�
!P .m/

b

�
 .!P .m//j!P .m/j

skC1ı�k=2
P op .m/f .m��kx/

dm

�.1/
:

Here in the last step we have used Mellin inversion (Lemma 4.5), which is valid by def-
inition of �L because A.L/ < � < B.L0/. This completes the proof of our claim that
�kŠ.�sk /.f /.x/ is equal to h.x/:



Harmonic analysis on certain spherical varieties 21

Definition 4.9. Let L D
L
i2I Li and ¹.si ; �i /ºi2I be as above. Assume �i > 0 for

all i . A good ordering of ¹Liº is a bijection I �
�! ¹1; : : : ; kº for some k; such that after

identifying I with ¹1; : : : ; kº via the bijection one has

siC1
�iC1

�
si

�i
for 1 � i � k � 1: (4.25)

We also refer to a good ordering of ¹Liº as a good ordering of ¹.si ; �i /ºi2I . We
henceforth assume that �i > 0 for all i and ¹Liº is equipped with a good ordering (it is
easy to see it exists). In particular, we use the good ordering to identify I and ¹1; : : : ; kº:

For 0 � i � k; we define

L.i/ WD
� M

1�j�k�i
Lj

�
˚

� M

k�i<j�k

zLj

�
:

Note that L D L.0/; and set
zL WD L.k/:

Under assumption (4.25), for each 1 � i < k one has

A.L.i// D sk�i

�k�i
< B.L.i C 1// D min

k�.iC1/<j�k
1Csj
�j

� B.L.i// D min
k�i<j�k

1Csj
�j

and

.A.L/; B.L// D . sk
�k
;1/ and .A.zL/;B.zL// D

�
�1; min

1�j�k
1Csj
�j

�
:

In particular, for each 0 � i < k we have A.L.i// < B.L.i//; so Proposition 4.8 implies
the map

�.k�i/Š.�sk�i
/ W �L.i/ ! �L.iC1/

is well-defined. Thus we define

�L WD �1Š.�s1/ ı � � � ı �kŠ.�sk / W �L ! �zL (4.26)

as an iterated composition. Define

�L.�/ WD

kY

iD1

.�si ; �

�i ;  /: (4.27)

Corollary 4.10. One has a commutative diagram

�L �zL

xI .�/ xI .�/

�L

.�/op
� .�/op

�

where the bottom arrow is multiplication by �L.�/.
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Some care is needed in interpreting the commutativity of this diagram. Indeed, for
general elements of �L; the half-planes of absolute convergence of f op

� and �L.f /
op
�

may be disjoint. Thus, the identity �L.�/f
op
� D �L.f /

op
� (for f 2 �L) asserted by the

corollary must be understood in the sense of meromorphic continuation.

Proof of Corollary 4.10. Suppose thatA.L.i// < Re.�/ < B.L.i C 1// and consider the
diagram in Proposition 4.8 in the special case L D L.i/. Using the string of inequalities
(4.18) we see that both vertical arrows in Proposition 4.8 are given by absolutely conver-
gent integrals. The diagram in Proposition 4.8 continues to commute for arbitrary Re.�/
if interpreted in the sense of meromorphic continuation. In other words, for all 0 � i < k

and arbitrary �; we have an identity of meromorphic functions


.�sk�i ; �
�k�i ;  /f op

� D �.k�i/Š.�sk�i
/.f /op

�

for f 2 �L.i/. The corollary follows.

4.1. Braverman and Kazhdan’s graded representation

We now recall the graded representationL identified by Braverman and Kazhdan, restrict-
ing our attention to the case of a fixed maximal parabolic P containing M and its oppo-
site P op. We use fraktur letters to denote Lie algebras and y� to denote the complex-
algebraic dual groups and dual Lie algebras. We have embeddings of Lie algebras

ynP ! yp ! yg:

Let ¹e;h;f º be a principal sl2-triple in ym; it defines an embedding sl2 ! ym. The adjoint
action of ym on ynP restricts to an action of sl2 on ynP ; and we let yneP denote the space of
highest weight vectors.

Recall our fixed isomorphism

!P W M ab �
�! Gm:

This induces a dual isomorphism

y!P W Gm
�
�! yM ab D Z. yM/; (4.28)

where Z. yM/ is the center of yM . Thus we obtain a Gm-action on yneP : Setting

L WD yneP D
M

i

Li ; (4.29)

we let �i be the Gm-character and si be 1
2

times the h-eigenvalue on the line Li .

Lemma 4.11. For each Li as above, si is nonnegative and �i is positive.

Proof. The si are all 1
2

times the h-eigenvalue of a highest weight vector of an sl2-
representation and hence are nonnegative. The �i are all positive by Lemma A.1.
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We define
�P WD �L W �L ! �zL and �P .�/ WD �L.�/ (4.30)

for the choice of L given in (4.29). Here �L.�/ is defined as in (4.26).

4.2. Switching to the opposite parabolic

In Corollary 6.6 we will switch betweenP andP op for self-associate parabolic subgroups.
This requires care regarding signs. We choose a principal sl2-triple ¹e;h;f º as above and
consider Lop D .ynP op/e . We claim that

Lop D
M

i2I
L

op
i ; (4.31)

where Gm and h act on Lop
i via �i and 2si ; respectively. Indeed, the sl2.C/ � Z. yM/-

representations ynP and ynP op are dual. Thus as representations of sl2.C/ they have the
same highest weights. Since the parameters � are defined using (4.28), we deduce the
claim from the observation that !P D !�1

P op .

4.3. The Lagrangian Grassmannian

As an example, let Sp2n denote the symplectic group on a 2n-dimensional vector space
and letP � Sp2n andM �P denote the Siegel parabolic and Levi subgroup, respectively.
Specifically, for Z-algebras R, set

Sp2n.R/ WD
°
g 2 GL2n.R/ W gt

�
In

�In

�
g D

�
In

�In

�±
;

M.R/ WD
®�
A
A�t

�
W A 2 GLn.R/

¯
;

N.R/ WD
°�

In Z
In

�
W Z 2 gln.R/;Z

t D Z
±
;

and P D MN . We have

!P W M.R/ ! R�;
�
m
m�t

�
7! detm;

yg D so2nC1; and ym D gln. Moreover, as a representation of ym;

ynP Š Vst ˚
V2

Vst;

where Vst is the standard representation of gln. We use the standard principal sl2-triple
in gln. Concretely it is the image of sl2 under Symn�1. The space yneP is just the direct
sum of the highest weight spaces of the sl2-representation

Symn�1.C2/˚
V2 Symn�1.C2/ Š Symn�1.C2/˚

b.n�2/=2cM

jD0
Sym2.n�2/�4j .C2/:
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Here we have used some well-known plethysms (see Lemma A.6 below). Then

.sr ; �r / D .nC 2r � 2bn=2c � 2; 2/ for 1 � r � bn=2c;

.sbn=2cC1; �bn=2cC1/ D
�
n�1
2
; 1

�
:

This is a good ordering.
We observe that

aI2n
.s; �/ D azL..�s/

�1/ and aw0
.s; �/ D aL.�s/ (4.32)

in the notation of [21, Section 3].

5. The Schwartz space of the affine closure of a Braverman±Kazhdan space

Throughout this section we assume that our simple group G is simply connected so that
we can apply the results of [10]. Braverman and Kazhdan originally defined operators
FP opjP via a series of integral operators on an inexplicit subspace of �.Xı

P op.F //; proved
that the operators extended to unitary operators on L2.XP op.F //; and then proposed the
following definition:

Definition 5.1. The BK-Schwartz space �BK.XP .F // is defined as the sum

�BK.XP .F // D �.Xı
P .F //C FP opjP .�.X

ı
P op.F ///:

Here the sum is taken in L2.XP .F //. We point out that FP opjP .�.Xı
P op.F /// means

that we apply the L2-extension of FP opjP to �.Xı
P op.F //. It is far from obvious that the

integral operators defining FP opjP converge when applied to elements of �.Xı
P op.F //. In

fact, this is not known in general; see Section 5.4 below.

Remark 5.2. Braverman and Kazhdan only state this definition in the nonarchimedean
case, but the extension to the archimedean case is natural and was suggested to the first
author by Kazhdan.

In [21] the first author and Liu refined Braverman and Kazhdan’s definition when
G D Sp2n and P is the Siegel parabolic, and gave explicit spaces of functions that are
mapped to each other under the Fourier transform. We do the same for Braverman±
Kazhdan spaces attached to simple groups G and maximal parabolic subgroups P < G

in this section. This goes beyond the work of Braverman and Kazhdan in that it allows us
to isolate an explicit subspace on which our formulae for the Fourier transforms given in
Section 6 are valid.

5.1. Measures redux

Thus far we have only made use of Haar measures dx and d�x on F and F � related as
in Section 2.3. In order to study the Schwartz space and the Fourier transform, we require
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right G.F /-invariant measures on Xı
P .F /; X

ı
P op.F /; and choices of Haar measures on

NP .F / andNP op.F /. First, we fix a Haar measure onM.F /. We giveM der.F / the unique
measure such that !P W M=M der.F /

�
�! F � is measure preserving.

Recall that we fixed a split maximal torus T � M and a Borel subgroup T � B � P

in Section 3.2. Let
‚ W g ! g

be the opposite involution attached to t (here we follow the conventions of [36, Sec-
tion 23.h]). Fix a Chevalley basis of the Lie algebra of G with respect to the Lie algebra
of T . For all roots ˛; this gives us vectors X˛ in the root space of ˛ that satisfy X�˛ D

�‚.X˛/ [36, Section 23.h], and provides us with isomorphisms

Ga ! N˛

where N˛ � G is the root subgroup of ˛. We use this to endow each N˛.F / with the
measure dx by transport of structure, which in turn gives rise to Haar measures onNP .F /
and NP op.F /. This is the same normalization as in [32]. The motivation for this choice of
measures is to make factorization of intertwining operators valid.

Now we normalize the right G.F /-invariant measures on Xı
P .F / and Xı

P op.F /. By
the Bruhat decomposition, one has an injection

M ab.F / �NP op.F / ! Xı
P .F /; .m; u/ 7! P der.F /mu;

with Zariski open and dense image (hence, of full measure). We can and do normalize the
right G.F /-invariant nonnegative Radon measure dx on Xı

P .F / so that

d.mu/ D
ıP op.m/dmdu

�.1/
: (5.1)

Similarly, we normalize the right G.F /-invariant nonnegative Radon measure dx on
Xı
P op.F / so that

d.mu/ D
ıP .m/dmdu

�.1/

for .m; u/ 2 M ab.F / �NP .F /.

5.2. The Schwartz space

For functions f 2 C1.Xı
P .F // and x D P op;der.F /g 2 Xı

P op.F /; we define the unnor-
malized intertwining operator

RP jP op.f /.x/ WD

Z

NP op .F /

f .P der.F /ug/ du D

Z

NP op .F /

f .ug/ du (5.2)

whenever this integral is absolutely convergent (or obtained via some regularization pro-
cedure). We refer to RP jP op as a Radon transform, as it is a generalization of the classical
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Radon transform [10, Section 2.9]. That this agrees with the operator defined by Braver-
man and Kazhdan is proved in [43, Section 5]. For example, we have maps

RP jP op W �.Xı
P .F // ! C1.Xı

P op.F //

and
RP jP op W I.�s/ ! xI .�s/

for Re.s/ sufficiently large that may be extended meromorphically to C [52, Sections
10.1.2, 10.1.6] [51, Theorem IV.1.1]. For notational convenience, we write

RP jP W C1.Xı
P .F // ! C1.Xı

P .F //

for the identity operator.
LetL be the graded Gm-representation associated to P in Section 4.1 and let ¹.si ;�i /º

be a good ordering of L. For quasi-characters � W F � ! C�; we set

aP jP .�/ WD azL.�
�1/ and aP jP op.�/ WD aL.�/: (5.3)

Bearing in mind the discussion in Section 4.2, the definition (5.3) implies

aP jP .�/ D aP opjP op.�/ and aP jP op.�/ D aP opjP .�/: (5.4)

Lemma 5.3. The function aP jP .�/ is holomorphic for Re.�/ � 0.

Proof. It suffices to show that si C 1 > 0 and �i > 0 for all Li . This follows from Lemma
4.11.

Fix now a character � and recall that �s D �j � js for s 2 C. A section f .�/.s/ of I.�s/
is good if it is meromorphic, and if for Q 2 ¹P;P opº the sections

g 7!
RP jQf .�/.s/.g/

aP jQ.�s/
(5.5)

of I.�s/ and xI .�s/ are holomorphic for all g 2 G.F /.

Definition 5.4. Assume F is nonarchimedean. The Schwartz space �.XP .F // is defined
to be the space of rightK-finite functions f 2 C1.Xı

P .F // such that for each g 2 G.F /

and each character � of F �; the integral (3.6) defining f�s
.g/ is absolutely convergent

for Re.s/ large enough and defines a good section.

For F archimedean, recall we have an action of U.mab ˚ g/ on C1.Xı
P .F // via the

differential of (3.1).

Definition 5.5. Assume F is archimedean. The Schwartz space �.XP .F // is defined to
be the space of functions f 2 C1.Xı

P .F // such that for allD 2 U.mab ˚ g/; g 2G.F /;

and each character � of F �; the integral (3.6) defining .D:f /�s
.g/ is absolutely conver-

gent for Re.s/ large enough, defines a good section, and satisfies the following condition:
For all real numbers A < B; Q 2 ¹P; P opº; any polynomial pP jQ 2 CŒs� such that
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pP jQ.s/aP jQ.�s/ has no poles for all .s; �/ 2 VA;B � yKGm ; and compact subsets � �

Xı
P .F / one has

jf jA;B;pP jQ;�;D WD
X

�2 yKGm

sup
g2�

jRP jQ.D:f /�s
.g/jA;B;pP jQ

< 1: (5.6)

To understand this definition, it is useful to point out that it is indeed possible to choose
pP jQ (independently of �) that satisfy the given assumptions. This follows directly from
the definition of the aP jQ.�s/. We also observe that the j � jA;B;pP jQ;�;D are seminorms
and they give �.XP .F // the structure of a Fréchet space by essentially the same argument
proving [19, Lemma 3.2].

Remark 5.6. Note that f op
�;P D f��1;P : Using this observation and the discussion in

Section 4.2 we see that �.XP .F // � �zL.XP .F //:

For any F; the action of M ab.F / � G.F / on Xı
P .F / induces a smooth action on

�.XP .F // (in either the archimedean or nonarchimedean setting). In the archimedean
setting, this action is continuous in the Fréchet topology of �.XP .F //.

In the special case of the Siegel parabolic subgroup of G D Sp2n; a slight variant of
this space was introduced in [19]. Their definition generalized and slightly modified the
K-finite Schwartz space �.X.F /;K/ introduced in [21]. To compare our definition with
the one given in [19], we use (4.32) and observe that we have not applied a Weyl element
to turn P op into a standard parabolic.

The elements of the Schwartz space are well-behaved analytically. They can be
bounded in an intuitive manner using the Plücker embedding. Let

Pl W XP ! VP

be the Plücker embedding defined by a choice of highest weight vector vP as in
Lemma 3.4. Choose a norm j � j on VP .F / that is invariant under K and let

j � j W Xı
P .F / ! R>0; x 7! jPl.x/jI

here,K is chosen as in (4.15). Replacing vP by tvP for t 2F � multiplies this norm by jt j.
Let r 2 Q>0 be such that

j!P jr D ıP :

Note that our assumption that G is simply connected implies that r 2 Z>0; indeed, we
compute this value in Proposition 6.2 below.

Lemma 5.7. Assume ˛ > 0 is sufficiently small. Let f 2 �.XP .F //. When F is nonar-

chimedean, f .x/ vanishes for jxj sufficiently large and

jf .x/j �˛ jxj�r=2C˛:

When F is archimedean, for all N 2 Z�0 one has

jf .x/j � �N;˛.f /jxj�r=2C˛ max.1; jxj/�N

where �N;˛ is a continuous seminorm on �.XP .F //.
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Proof. Write x D P der.F /mk withm 2M ab.F / and k 2 K. By definition of �.XP .F //

and Mellin inversion (4.16), we have

f .x/ D ı
1=2
P .m/

X

�2 yKGm

Z

�CiIF

�s.!P .m//f�s
.k/

cF ds

2�i
(5.7)

provided that there are no poles of aP jP .�s/ for Re.s/� � . Moreover, the sum and integral
converge absolutely. Therefore to prove the bounds for jxj � 1 in the archimedean case
and for all x in the nonarchimedean case it suffices to recall aP jP .�s/ has no poles for
Re.s/ � 0 by Lemma 5.3.

The support assertion in the nonarchimedean case follows as in [21, Lemma 5.1]. The
bound for jxj � 1 in the archimedean case follows as in [19, Lemma 3.5].

As Xı
P .F / is open and dense in XP .F /; we can and do extend the right G.F /-

invariant Radon measure on Xı
P .F / by zero to XP .F /.

Corollary 5.8. One has �.XP .F // < L
2.XP .F // \ L1.XP .F //.

Proof. This follows from Lemma 5.7 and the Iwasawa decomposition.

5.3. The Fourier transform

Braverman and Kazhdan [10] prove that the Fourier transform

FP jP op WD �P ı RP jP op (5.8)

is well-defined on a subspace of �.Xı
P .F // that is dense in L2.XP .F // and defines an

isometry
FP jP op W L2.XP .F // ! L2.XP op.F //: (5.9)

They also prove that
FP jP op ı FP opjP D Id: (5.10)

In this subsection we use the results of the previous subsections to refine FP jP op to an
isomorphism between �.XP .F // and �.XP op.F //.

Lemma 5.9. One has a commutative diagram

�.XP .F // �L

I.�/ xI .�/

RP jP op

.�/� .�/op
�

RP jP op

for Re.�/ sufficiently large.

Proof. For g 2 G.F / consider the integral
Z

NP op .F /

Z

M ab.F /

ı
1=2
P .m/j�j.!P .m//jf j.m�1ug/ dmdu: (5.11)
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The inner integral converges and defines an element of I.j�j/ for Re.�/ sufficiently large
by definition of �.XP .F //; and the outer integral converges for Re.�/ sufficiently large
[52, Lemma 10.1.2], [51, Theorem IV.1.1]. Thus by Fubini’s theorem, we have a commu-
tative diagram

�.XP .F // RP jP op.�.XP .F ///

I.�/ xI .�/

RP jP op

.�/� .�/op
�

RP jP op

for Re.�/ sufficiently large. We are left with proving that RP jP op.�.XP .F /// � �L: By
the definitions of �.XP .F // and �L it suffices to check that

RP jP op.�.XP .F // � C1.Xı
P .F //: (5.12)

Let f 2 �.XP .F //: By Fubini’s theorem and the argument above for almost every m
with respect to dm the integral

R
NP op .F /

f .m�1ug/ du converges. When F is nonar-
chimedean we can use the fact that f is K-finite and Lemma 4.5 to deduce that f is
fixed by a compact open subgroup of M ab.F /: This implies that

R
NP op .F /

f .ug/ du con-
verges absolutely. Since RP jP op is a G.F /-intertwining map this implies that RP jP op.f /

is smooth. Now assume thatF is archimedean. In this case we can view the integral (5.11),
as g varies, as valued in the Fréchet space C1.G.F // (with the usual Fréchet topology).
Using the Fubini theorem in this setting [46, Theorem 8], we deduce that for almost allm
with respect to dm,

R
NP op .F /

f .m�1ug/ du converges absolutely and defines a smooth

function of g: For such an m, we change variables u 7! mum�1 and replacing g by mg,
we deduce that RP jP op.f / is smooth.

To proceed, we recall the subspaces CQ < �.Xı
Q.F // for Q 2 ¹P; P opº considered

in [10, Proposition 4.2] that are used to proved the unitarity of the operator FQjQop on
L2.XQ.F //. In the following, we will use the notation in (3.5) and (3.6) to keep track of
the domain of our Mellin transforms.

Lemma 5.10. For each � 2 yKGm we can choose holomorphic functions hQ.�s/ that

lie in CŒq�s; qs� in the nonarchimedean case and are bounded in vertical strips in the

archimedean case such that

hQ.�s/RQjQop W IQ.�s/ ! xIQop.�s/ (5.13)

is holomorphic when evaluated on a holomorphic section f .�/.s/ 2 IQ.�s/ and an iso-

morphism for s outside a discrete countable subset of C.

Proof. Assume first that F is nonarchimedean. Then one can use the usual normaliz-
ing factors for intertwining operators [3, Section 2-4] to construct hQ.�s/ satisfying the
requirements in the lemma. If F is archimedean, loc. cit. implies the existence of a set
¹ai ; biº

n
iD1 of complex numbers such that

� nY

iD1

1

�.ais C bi /

�
RQjQop (5.14)
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is holomorphic when evaluated on a holomorphic section f .�/.s/ 2 IQ.�s/ and is an
isomorphism for s outside a discrete countable subset of C. The factors of � here are
archimedean L-functions of quasi-characters of F � up to irrelevant factors. To obtain
h.�s/ we take the product of reciprocals of �-functions and multiply by es

2
to make the

result rapidly decreasing in vertical strips.

We henceforth assume the hQ.�s/ are chosen as in Lemma 5.10. Let �.Xı
Q.F /; K/

be the space of K-finite functions in �.Xı
Q.F //, and let

CQ WD

8
<̂

:̂
f 2 �.Xı

Q.F /;K/ W

There exists an f 0 2 �.Xı
Q.F /;K/ such that

f�s ;Q D hQop..�s/
�1/hQ.�s/f 0

�s ;Q

for all characters � W F � ! C� and all s 2 C

9
>=
>;
:

For a subspace W � �.Xı
Q.F //, let W�s ;Q denote its image in I.�s/ under the Mellin

transform (3.6). We also use the notation �.XQ.F //�s ;Q for the image of �.XQ.F //

in I.�s/ under the Mellin transform, which must be understood in the following sense: For
Re.s/ sufficiently large these Mellin transforms are absolutely convergent by definition of
the Schwartz space. Again by definition of the Schwartz space the Mellin transforms are
defined by meromorphic continuation for s outside a countable subset of C independent
of � 2 yKGm :

Lemma 5.11. For f 2 CQ the functions RQjQop.f�s ;Q/ and RQopjQ.RQjQop.f�s ;Q//

are holomorphic for all � 2 yKGm : One has

CQ < �.XQ.F //:

For s outside a countable subset of C .independent of �/ one has

.CQ/�s ;Q D �.Xı
Q.F /;K/�s ;Q;

which is dense in �.XQ.F //�s ;Q in the usual Fréchet topology if F is archimedean and

equal to �.XQ.F //�s ;Q if F is nonarchimedean.

Proof. The first assertion is immediate from the definition of CQ: The inclusion CQ <

�.XQ.F // follows from the fact that aQjQop.�s/ and aQjQ.�s/ have no zeros. Since
hQop..�s/

�1/hQ.�s/ is nonzero outside a discrete countable subset of C, we have
.CQ/�s ;Q D �.Xı

Q.F /;K/�s ;Q outside a discrete countable subset of C. The union over

� 2 yKGm of these sets is again countable. Since �.Xı
Q.F /;K/�s ;Q is the space ofK-finite

vectors in I.�s/ (which is all of I.�s/ in the nonarchimedean case), the last assertion of
the lemma follows.

We remark that here the definition of CQ depends on the choice of hQ.�s/ and
hQop..�s/

�1/. Using Corollary 4.10, and a minor variant of the proof of Lemma 5.10
above, we fix a choice of hQ.�s/ and hQop..�s/

�1/ such that FP jP op.CP / < �.XP op.F //.
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Theorem 5.12. We have a well-defined isomorphism

FP jP op W �.XP .F // ! �.XP op.F //;

that is continuous with respect to the Fréchet topologies in the archimedean case. The

diagram

�.XP .F // �.XP op.F ///

I.�/ xI .�/

FP jP op

.�/� .�/op
�

�P .�/RP jP op

(5.15)

commutes.

As in Corollary 4.10, some care is required in interpreting the statement that the dia-
gram commutes. The Mellin transform .�/� converges absolutely for Re.�/ large and
the Mellin transform .�/

op
� converges absolutely for Re.�/ small. The factor �P .�/ is

meromorphic, and the operator RP jQ W I.�/ ! xI .�/; originally defined for Re.�/ large,
extends to an operator sending meromorphic sections to meromorphic sections. The defi-
nition of �.XP .F // is designed to control the poles of all of these objects in terms of the
functions aP jQ.�/.

Proof of Theorem 5.12. By Corollary 5.8,

�.XQ.F // < L
2.XQ.F // for Q 2 ¹P;P opº.

Combining this with (5.9) and (5.10), we see that to prove FP jP op is an isomorphism, it
suffices to check that

FP jP op.�.XP .F /// � �.XP op.F //: (5.16)

On the other hand, Corollary 4.10 and Lemma 5.9 imply that FP jP op.�.XP .F /// � �zL
and that if we replace �.XP op.F // by �zL in (5.15) we obtain a commutative diagram.
Thus proving (5.16) implies everything in the theorem besides the continuity assertion.

Since FP jP op.f / 2 �zL and aP jP .�/ D azL.�
�1/ for all quasi-characters �; by (5.4)

we deduce that for f 2 �.XP .F //,

FP jP op.f /�s ;P op.x/

aP opjP op.�s/
D

FP jP op.f /
op
.�s/�1;P op.x/

azL..�s/
�1/

2 CŒqs; q�s�

in the nonarchimedean case, and

jFP jP op.f /jA;B;pP opjP op ;�;D < 1

for all data as in Definition 5.5 in the archimedean case. Hence we are left with checking
that

RP opjP .FP jP op.f /�s ;P op/

aP opjP .�s/
2 CŒqs; q�s� (5.17)

in the nonarchimedean case and

jFP jP op.f /jA;B;pP opjP ;�;D < 1 (5.18)

in the archimedean case for all data as in Definition 5.5.
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For any f 2 CP and any � 2 yKGm , by Corollary 4.10, Lemma 5.9, (5.10), and our
choice of CP , we have the identities

�L..�s/
�1/RP opjP .RP jP op.f.�s/�1;P //

aP opjP .�s/
D

RP opjP .FP jP op.f /�s ;P op/

aP opjP .�s/

D
.RP opjPFP jP op.f //

op
�s ;P

aP opjP .�s/

D
.FP opjPFP jP op.f //

op
�s ;P

�Lop.�s/aP opjP .�s/

D
f

op
�s ;P

�Lop.�s/aLop.�s/
: (5.19)

Since f.�s/�1;P D f
op
�s ;P

, the first and last quantities in (5.19) depend only on the image
of f under the map to I..�s/�1/: Let �.XP .F /;K/ be the space of K-finite functions in
�.XP .F //I it is all of �.XP .F // when F is nonarchimedean. By Lemma 5.11, the equal-
ity of the first and last terms in (5.19) holds for all f 2 �.XP .F /; K/ and all � 2 yKGm

for s in a dense subset of C:

Since the first equality in the previous calculation is valid for all f 2 �.XP .F /; K/

by Corollary 4.10, we deduce that

RP opjP .FP jP op.f /�s ;P op/

aP opjP .�s/
D

f
op
�s ;P

�Lop.�s/aLop.�s/
(5.20)

for all f 2 �.XP .F /; K/ and � 2 yKGm , at least for all s in a dense subset of C: But
then (5.20) is valid as an identity of meromorphic functions for all s: As discussed in
Section 4.2, we have �Lop.�s/aLop.�s/ D �L.�s/aL.�s/. Moreover, with Li defined as
in (4.29),

�Li
.�s/aLi

.�s/ D 
.�si ; .�s/
�i ;  /L.�si ; .�s/

�i /

D ".�si ; .�s/
�i ;  /L.1C si ; .�s/

��i / D ".�si ; .�s/
�i ;  /azLi

.�s/:

Here ".�si ; .�s/�i ;  / denotes the usual Tate "-factor. Therefore,

g.s; �;  /
RP opjP .FP jP op.f /�s ;P op/

aP opjP .�s/
D
f.�s/�1;P

azL.�s/
D

f.�s/�1;P

aP jP ..�s/�1/
; (5.21)

where g.s; �;  / D
Q
i ".�si ; .�s/

�i ;  /:

In the remainder of the proof we use some basic facts on "-factors that are nicely
summarized in [45, Section 3.2]. Assume F is nonarchimedean. In this case g.s; �;  / is
equal to cqp.s/ for some polynomial p and some c 2 C�. Thus (5.21) and the fact that
f 2 �.XP .F /;K/ implies (5.17). Now assume that F is archimedean. Then

g.s; �;  / D
Y

i

�i;�r
.�s/

�i .a/

jaj1Csi
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where a and r depend only on  (which determines the normalization of the Haar mea-
sure) and �i;� is a fourth root of unity. By an analogue of [19, Lemma 3.6], (5.21)
and the fact that f 2 �.XP .F /; K/ implies (5.18), at least in the special case where
D is the identity operator. It also follows for general D once we note that RP jP op ı

R.m; g/ D ıP op.m/R.m; g/ ı RP jP op : Here we have used R to denote the right action of
M.F / �G.F / on C1.Xı

P .F // and C1.Xı
P op.F //:

To deduce (5.18) without the condition of K-finiteness, we point out that the same
argument proving [19, Proposition 3.7] implies that

FP jP op W �.XP .F /;K/ ! �.XP op.F /;K/

is continuous in the Fréchet topology. Since �.XP .F /; K/ is dense in �.XP .F // [53,
Section 4.4.3.1] it extends to a topological isomorphism

FP jP op W �.XP .F // ! �.XP op.F //:

This already implies the first assertion of the theorem, and additionally (5.18).

As usual, we say that a parabolic subgroup of a reductive group is self-associate if it
is conjugate to its opposite. Assume P is self-associate. Choose

w0 2 G.F / (5.22)

normalizing M such that w�1
0 Pw0 D P op: Then conjugation by w0 acts as inversion

on M ab.

Lemma 5.13. Let w be a representative for the long Weyl element of the Weyl group of T

in G: Then w0 2 M.F /w D wM.F /:

Proof. The normalizer of P in G is P and the normalizer of M in P is M . Therefore,
w0 2 P.F /w as w.w�1

0 Pw0/w
�1 D P . As w normalizes M , for w0 to normalize M ,

one must have w0 D mnw for some n 2 N.F / such that n�1Mn D M . This is only
possible when n is the identity.

We observe that w0Pw�1
0 D P op: Indeed, by Lemma 5.13 it suffices to check this in

the special case where w0 is the long Weyl element of T .F /; in which case w0 and w�1
0

differ by an element in T .F /:
In Section 5.1 we gave NP .F / and NP op.F / measures using a Chevalley basis. We

assume that w0 is chosen so that these measures correspond under

NP .F / ! NP op.F /; n 7! w�1
0 nw0: (5.23)

Lemma 5.14. One has an isomorphism

�w0
W �.XP op.F // ! �.XP .F //; f 7! .x 7! f .w�1

0 x//:

Proof. We have an isomorphism

�w0
W C1.Xı

P op.F // ! C1.Xı
P .F //; f 7! .x 7! f .w�1

0 x//:
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For f 2 �.XP op.F // and Q 2 ¹P;P opº; one has

RP jQ.�w0
.f /�s ;P /

aP jQ.�s/
D

RP jQ.�w0
.f�s ;P op//

aP jQ.�s/
D
�w0

ı RP opjQop.f�s ;P op/

aP opjQop.�s/
;

where we have used (5.4). Assume F is nonarchimedean. Then since f�s ;P op is a good
section, we deduce that �w0

.f /�s ;P is a good section. Thus the lemma follows from the
definition of the Schwartz space. A similar argument proves the lemma in the archimedean
case.

Thus when P is self-associate, we have an isomorphism

FXP
WD FXP ;w0

WD �w0
ı FP jP op W �.XP .F // ! �.XP .F //: (5.24)

By Theorem 5.12 and (4.32), we see that the Fourier transform FXP
agrees with the

Fourier transform used in [19±21] when XP is as in Section 4.3 and w0 is chosen as in
loc. cit.

For use in Section 6.2, we also consider how �w0
interacts with the operators �Š.�s/.

Suppose that L and L0; etc., are as in the discussion prior to Proposition 4.8. Recall Lop

and its associated data ¹.si ; �i /º from (4.31). Arguing as in the proof of Lemma 5.14, we
have an isomorphism

�w0
W �L.XP op.F // ! �Lop.XP .F //:

Lemma 5.15. We have a commutative diagram

�L.XP op.F // �L0.XP op.F //

�Lop.XP .F // �L0op.XP .F //

�kŠ.�sk
/

�w0
�w0

�kŠ.�sk
/

We caution the reader that the bottom row in the diagram is given by the same defini-
tion as (4.3), but the roles ofP andP op switched as we are applying the operator �kŠ.�sk /
to functions on XP .F /.

Proof of Lemma 5.15. Let f 2 �L.XP op.F //. Then by Proposition 4.8, �kŠ.�sk /.f / 2

�L0.XP op.F //; and for A.L/ < Re.�/ < B.L0/; traversing the top of the diagram and
applying a Mellin transform yields

�
�w0
.�kŠ.�sk /.f //

�op
�;P

D �w0

�
�kŠ.�sk /.f /

op
�;P op

�
D 
.�sk ; �

�k ;  /�w0
.f

op
�;P op/

D 
.�sk ; �
�k ;  /.�w0

.f //
op
�;P :

Noting that
A.Lop/ D A.L/ and B.Lop/ D B.L/;

we may apply Proposition 4.8 again to see that this equals
�
�kŠ.�sk /.�w0

.f //
�op
�;P
:
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This is the result of traversing the bottom of the diagram and applying a Mellin transform.
Thus applying Mellin inversion yields the lemma.

5.4. Containment of Schwartz spaces and relation between definitions

One can construct many functions in �.XP .F // using Mellin inversion. What is not as
clear is the following conjecture:

Conjecture 5.16. The Schwartz space �.Xı
P .F // of Xı

P .F / � XP .F / is contained in

�.XP .F //.

Theorem 5.17. When G is a symplectic group and P is the stabilizer of a maximal

isotropic subspace, Conjecture 5.16 is true.

Proof. This was proved in the nonarchimedean case in [21, Proposition 4.7] and in the
archimedean case in [19, Proposition 3.13].

More generally, one of the authors recently proved the following [27]:

Theorem 5.18. When F is nonarchimedean and G is not of type E or F , Conjecture

5.16 is true.

Conjecture 5.16 implies �BK.XP .F // � �.XP .F //; where �BK.XP .F // is defined
as in Definition 5.1. It would be convenient if this containment were an equality. We pose
this as the following question:

Question 5.19. Is it true that �.XP .F // D �BK.XP .F //?

We discuss the relative benefits of the two definitions of the Schwartz space. Braver-
man and Kazhdan’s definition of �BK.XP .F // is beautifully succinct. However, it is
difficult to extract analytic information about elements of the Schwartz space from the
definition. The definition of �.XP .F // is more involved, but it seems to be the cor-
rect definition. For example, in the nonarchimedean case we certainly want the image
of �.XP .F // under various Mellin transforms to consist exactly of good sections, and we
have defined �.XP .F // so that this is true. Moreover, analytic information is relatively
straightforward to extract from the definition of �.XP .F //. In particular, the following is
an immediate consequence of Lemma 5.7:

Theorem 5.20. Assuming Conjecture 5.16, [10, Conjecture 5.6] is valid for maximal

parabolic subgroups of simple reductive groups. That is, when F is nonarchimedean the

support of any f 2 �BK.XP .F // is contained in a compact subset of XP .F /.

In the special case where XP is as in Section 4.3, this was already proven in [21]
up to identifying the Fourier transform of [21] with the Fourier transform of Braverman
and Kazhdan. The agreement of the two Fourier transforms is implied by Theorem 5.12
above.
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6. A formula for the Fourier transform on XP

In this section, we combine our analytic results with the geometric pairing between oppo-
site Braverman±Kazhdan spaces to give a formula for the Fourier transform. We then
work out several examples explicitly, connecting this result to known formulae in the lit-
erature. Our aim is to be explicit enough that the formula can be applied by readers who
are not experts in algebraic group theory.

6.1. Preliminary calculations

We continue to impose the notation from the previous sections; thus P � G is a maximal
parabolic subgroup in a simple, simply connected, split group G. Recall that !ˇ is the
fundamental weight attached to P as in (3.2). Since G is simply connected, !P D !ˇ
in the notation of (3.2). As above, VP is the associated highest weight representation. By
Lemma 3.4, !P may be extended to a character of P (trivial on P der) and defines an
isomorphism

!P D !ˇ W M ab �
�! Gm:

Recall the graded representation L D yneP of Section 4.1. We fix a good ordering

¹.si ; �i / W 1 � i � kº;

so
siC1
�iC1

�
si

�i
for 1 � i < k D dimL:

In particular, we have the highest datum .sk ; �k/.

Proposition 6.1. Any good ordering of L D yneP satisfies �k D 1:

Proof. Our proof is a case-by-case analysis. As this is a computation on the Langlands
dual group, we defer the details to Appendix A. In fact we compute all of the parameters
¹.si ; �i /º for all simple Cartan types. The results required to observe the current propo-
sition are Lemmas A.3 and A.7 and the tables at the end of Appendix A. We alert the
reader that we work entirely on the Langlands dual side in the appendix. One has to use
the following well-known computations of Langlands dual groups:

bSp2n D SO2nC1.C/; bSpin2n D PSO2n.C/; bSpin2nC1 D PSp2n.C/;

together with the fact that the dual group of a simply connected semisimple group is
adjoint.

Proposition 6.2. One has

ıP D j!P j2skC2:

Remark 6.3. The proof shows that the proposition is still valid if we weaken the assump-
tion that G is simply connected to the assumption that !ˇ 2 X�.T /.
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Proof of Proposition 6.2. Let ˆC denote the set of positive roots of our split maximal
torus T � M < G with respect to the Borel subgroup B and let ˆC

M � ˆC denote the
subset of roots of T in M: As above, � � ˆC denotes the set of simple roots defined
by ˆC. Then �M D � � ¹ˇº is a set of simple roots of T in M .

For t 2 T .F /; we have

ıP .t/ D
ˇ̌
t

P

2ˆC�ˆ

C
M


 ˇ̌
:

On the other hand, X�.M/ D Z!P ; so there is an integer r > 0 such that
X


2ˆC�ˆC
M


 D r!P :

We are to show that r D 2sk C 2.
Let ¹e; h; f º � ym be a principal sl2-triple. The copy of sl2 it spans acts on ynP by

the adjoint action. The root systems of M and yM are in Langlands duality. We use this to
identify

yt D X�. yT /˝Z C D X�.T /˝Z C: (6.1)

Under this identification, h 2 yt may be chosen so that it is sent to the sum of positive
coroots of yM [22, Section 2]:

2�_
M WD

X


2ˆC
yM


_ 2 X�. yT /;

which corresponds under the second equality of (6.1) to

2�M WD
X


2ˆC
M


 D 2
X

˛2�M

z!˛ 2 X�.T /; (6.2)

where z!˛ is the weight of the fundamental representation of M associated to ˛ 2 �M .
Thus

hC r!P D
X


2ˆC


 D 2
X

˛2�
!˛; (6.3)

where !˛ is the fundamental weight of G associated to ˛ 2 �. Note that in general
z!˛ ¤ !˛ for ˛ 2 �M since z!˛ 2 X�.T \M der/:

Consider now the h-eigenvalues on the space of highest weight vectors L D yneP . By
Proposition 6.1,

Lk D Cvk � ynP .1/
e;

where the 1 indicates the subspace on which Z. yM/ acts via 1. As mentioned in [34,
Section 5.2], the space ynP .1/ is the irreducible representation of yM with lowest weight
space corresponding to ˇ_; the coroot of ˇ.

By the definition of a good ordering, the h-eigenvalue 2sk is largest among all h-
eigenvalues occurring in the yM representation ynP .1/. It follows that vk is a highest weight
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vector for ynP .1/. Let

_
0 D ˇ_ C

X

˛2�M

c˛.

_
0 /˛

_

be the weight of vk . We claim that 2sk D
P
˛2�M

c˛.

_
0 /.

Since this is the largest h-eigenvalue in L; it follows that the lowest weight space
ynˇ_ < ynP .1/ is the lowest weight space for the irreducible sl2-representation containing
vk ; and thus has the eigenvalue

hh; ˇ_i D �2sk : (6.4)

Here h�; �i is the pairing on X�.T /˝ X�.T /. Therefore, since (6.2) implies hh; ˛_i D 2

for all ˛ 2 �M ;

2sk D hh; 
_
0 i D

X

˛2�M

c˛.

_
0 /hh; ˛

_i C hh; ˇ_i

D 2
X

˛2�M

c˛.

_
0 / � 2sk ;

proving the claim that 2sk D
P
˛2�M

c˛.

_
0 /.

Since !P D !ˇ ; we see that for any root 
_ occurring in ynP .1/; h!P ; 

_i D 1.

Evaluating both sides of (6.3) on 
_
0 thus implies

2sk C r D
D
2

X

˛2�
!˛; 


_
0

E
D 2C 2

X

˛2�M

c˛.

_
0 / D 2C 4sk :

We deduce that r D 2sk C 2; and the proposition follows.

6.2. The general formula

For integers n, let
Œn� W Gm ! Gm (6.5)

be the map x 7! xn. We define

�
aug
P WD �1Š.�s1/ ı � � � ı �.k�1/Š.�sk�1

/ and �
geo
P WD Œ1�Š.�sk /; (6.6)

where the ªaugº stands for ªaugmentedº, and consider the factorization

�P D �
aug
P ı �

geo
P :

Remark 6.4. In light of our formula for the Fourier transform below, it would be inter-
esting to illuminate the relationship between the operator �aug

P and the singularity of XP
at 0.

Set
F

geo
P jP op WD �

geo
P ı RP jP op W �.XP .F // ! �L.1/: (6.7)
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Theorem 6.5. For f 2 �.XP .F // and x� 2 Xı
P op.F /; we have FP jP op D �

aug
P ı F

geo
P jP op ,

where

F
geo
P jP op.f /.x

�/ D

Z

Xı
P
.F /

f .x/ .hx; x�iP jP op/dx:

Here h�; �iP jP op is as in (3.4) and the measure on Xı
P .F / is normalized as in Section 5.1.

Proof. For x� 2 Xı
P op.F /; we have

F
geo
P jP op.f /.x

�/

D
1

�.1/

Z

M ab.F /

 .!P .m//j!P .m/j
skC1ı1=2P op .m/RP jP op.f /.m�1x�/ dm

D
1

�.1/

Z

M ab.F /

 .!P .m//RP jP op.f /.m�1x�/ dm:

Here we have used Proposition 6.2. We note that there is no need to regularize the outer
integral: the absolute convergence of Œ1�Š.�sk / on RP jP op.�.XP .F /// follows from our
use of a good ordering and from Lemmas 4.7 and 5.9. If we write x� D P op;der.F /g;

RP jP op.f /.m�1 � x�/ D

Z

NP op .F /

f .um�1g/ du

D ıP .m/

Z

NP op .F /

f .m�1ug/ du: (6.8)

We have an injection

ˆg W M ab.F / �NP op.F / ! Xı
P .F /; .m; u/ 7! P der.F /m�1ug;

with dense image denoted by Xı
P;g.F /. Moreover, we have

d.m�1ug/ D
ıP op.m�1/dmdu

�.1/
D
ıP .m/dmdu

�.1/
(6.9)

by (5.1).
For x 2 Xı

P;g.F /; let

.m.x/; u.x// WD ˆ�1
g .x/:

By (6.8) and (6.9), we have

F
geo
P jP op.f /.x

�/ D

Z

Xı
P;g

.F /

 .!P .m.x///f .x/dx: (6.10)

Now for .m; u/ 2 M ab.F / �NP op.F / and g chosen as above (so P op;der.F /g D x�), we
have

hvPm
�1ug; v�

P opgi D hvPm
�1; v�

P opi D !P .m/I

here we have used (3.3). Thus (6.10) is

F
geo
P jP op.f /.x

�/ D

Z

Xı
P;g

.F /

 .hx; x�iP jP op/f .x/ dx D

Z

Xı
P
.F /

 .hx; x�iP jP op/f .x/ dx

since Xı
P;g.F / is open and of full measure in Xı

P .F /.
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Assume for the moment that P is self-associate. In this special case, fix a w0 2 G.F /

normalizing M such that w�1
0 Pw0 D P op and (5.23) is measure preserving. We saw in

(5.24) that this allows us to define a Fourier transform

FXP
WD FXP ;w0

WD �w0
ı FP jP op W �.XP .F // ! �.XP .F //: (6.11)

Corollary 6.6. Assume that P D w0P
opw�1

0 is self-associate. Then for f 2 �.XP .F //;

we have FXP
.f / D �

aug
P op ı F

geo
XP
.f /, where

F
geo
XP
.f /.x0/ D

Z

Xı
P
.F /

f .x/ .hx;w�1
0 x0iP jP op/dx

for x0 2 Xı
P .F /: Here the measure on Xı

P .F / is normalized as in Section 5.1.

Proof. By the discussion in Section 4.2, we have �w0
ı �

aug
P D �

aug
P op ı �w0

and it is clear
that

F
geo
XP

D �w0
ı F

geo
P jP op :

Remark 6.7. By Corollary 5.8, �.XP .F // < L
1.XP .F //. Thus the integrals in the def-

inition of F
geo
P jP op and F

geo
XP

converge absolutely.

6.3. Examples

In this subsection, we explicate the objects appearing in Theorem 6.5 in several cases of
interest. Only the example in Section 6.3.3 will be used later in the paper: it is used in
Section 8 to study FY :

6.3.1. Line bundles over Grassmannians. The maximal parabolic subgroups of SLn are
stabilizers of planes. Concretely, fix 1 � ` < n and let P be the stabilizer of the `-plane
¹en�`C1; : : : ; enº. Here we use the standard basis of F n; viewed as row vectors with a
right action of G. Then P nG is a classical Grassmannian, and Xı

P .F / can be viewed as

the space of `-planes W � F n together with an associated nonzero vector in
V`

W .
For F -algebras R; we have

P.R/ D
°�
m1

m2

� �
In�` w

I`

�
2 SLn.R/ W .m1; m2; w/ 2 GLn�`.R/ � GL`.R/ �Mn�`;`.R/

±
:

Then

P op.R/ D
°�
m1

m2

� �
In�`

wt I`

�
2 SLn.R/ W .m1; m2; w/ 2 GLn�`.R/ � GL`.R/ �Mn�`;`.R/

±
:

In this setting,

!P W M.F / ! F �;
�
m1

m2

�
7! det.m1/ D det.m2/

�1:
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Our representation VP is just
V`

Gn
a . We realize the dual as the space

Vn�`
Gn

a equipped
with the pairing

V`
Rn �

Vn�`
Rn ! R; .w1; w2/ 7! e_

1 ^ � � � ^ e_
n .w2 ^ w1/:

We choose the highest weight vector vP WD en�`C1 ^ � � � ^ en and dual lowest weight
vector v�

P op WD e1 ^ � � � ^ en�`. With these choices,

PlvP
. a b
c d
/ 7!

V`
.c d/;

where we are taking the (ordered) wedge product of the row vectors from top to bottom.
Similarly,

Plv�
P op
. a b
c d
/ 7!

Vn�`
.a b/;

where the wedge product is taken from top to bottom.

6.3.2. Orthogonal groups and the transform on the isotropic cone. Assume the charac-
teristic of F is not 2. Consider the split orthogonal group SOn for n > 4; defined with
respect to the matrix

Jn D

�
1

. .
.

1

�
:

Denote the corresponding pairing by h�; �i; and let

Qn.v/ WD 1
2
hv; vi:

Let T be the split maximal torus of diagonal matrices and let B be the Borel subgroup
of upper triangular matrices of SOn. There is a natural right action of SOn on Vn D Gn

a .
We let P < SOn be the parabolic subgroup fixing the line spanned by en D .0; : : : ; 0; 1/.
Then VP D Vn; and we choose the highest weight vector vP WD en:

Consider the split spin groupG D Spinn over SOn and let p WG ! SOn be the double
cover. Then zP WD p�1.P / is a maximal parabolic subgroup of G. Moreover, the repre-
sentation V zP of G descends to the representation Vn of SOn via p. It therefore follows
from Lemma 3.4 that p induces an isomorphism

p W Xı
zP D zP dernG

�
�! P dernSOn:

Let zM be a Levi subgroup of zP and M WD p. zM/. Since V zP descends to Vn; it also
follows from Lemma 3.4 that the map zM ab ! M ab induced by p is an isomorphism and
the diagram

zM �Xı
zP Xı

zP

M �Xı
P Xı

P

p p (6.12)

commutes. Here the horizontal arrows are the action maps. Thus we can and do work with
P dernG in place of zP dern zG below.
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The Plücker embedding
Plen

W XP ! Vn

maps XP isomorphically onto the affine scheme whose points in an F -algebra R are

C.R/ WD ¹v 2 Vn.R/ W Qn.v/ D 0º:

This is the isotropic cone of Qn.
We define the Schwartz space �.C.F // to be

.Pl�1en
/�.�.XP .F /// < C1.C.F / � ¹0º/:

The parabolicP is self-associate. Thus the Schwartz space comes equipped with a Fourier
transform

FC WD .Pl�1en
/� ı FXP ;w0

ı Pl�en
W �.C.F // ! �.C.F //:

Herew0 is chosen as in Lemma 6.8 below. There is a natural measure on C.F / as we now
explain. Let dvi be the standard 1-form on Ga; viewed as the i th coordinate of Vn D Gn

a :

Recall [17, Section III.1.2] that to give a measure on C.F /; we may choose any .n � 1/-
form !Qn

such that
dv1 ^ � � � ^ dvn D dQn ^ !Qn

(6.13)

and then consider the measure j!Qn
j. If we write

Qn.v1; : : : ; vn/ D

´
1
2
v2rC1 C

Pr
iD1 vivnC1�i if n D 2r C 1;

Pr
iD1 vivnC1�i if n D 2r;

with respect to the standard basis of F n; then on Gn�1
a � Gm we choose !Qn

D 1
vn
dv2 ^

� � � ^ dvn.

Lemma 6.8. We can choose w0 2 SOn.F / normalizing M such that w�1
0 Pw0 D P op

and such that for x; x0 2 Xı
P .F / one has

hx;w�1
0 x0iP jP op D hPlen

.x/;Plen
.x0/i:

Moreover, Pl�en
.j!Qn

j/ D cdx for some c 2 R>0:

Proof. We identify the dual of Vn with Vn itself via the form h�; �i. Then the vector dual
to en is e1. Let

w0 WD

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

Jn if n � 0 .mod 4/ or n � 1 .mod 4/;
�

J.n�1/=2

�1
J.n�1/=2

�
if n � 3 .mod 4/;

�
J.n�2/=2

I2

J.n�2/=2

�
if n � 2 .mod 4/:

Thusw0 2 SOn.F /, Plen
.g/D eng and Ple1

.w�1
0 g/D eng. This yields the first assertion.

For the second assertion, it suffices to observe that (6.13) implies that !Qn
is SOn-

invariant.
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Corollary 6.9. If the measure j!Qn
.v/j is normalized so that Pl�en

.j!Qn
j/D dx; then for

f 2 �.C.F // one has

FC .f /.v
0/D

Z

F �

 .t�1/jt j.n�4/=2
�Z

C.F /�¹0º
f .v/ .hv; tv0i

�
j!Qn

.v/j/
d�t

�.1/
(6.14)

if n > 4 is even, and

FC .f /.v
0/D

Z

F �

 .t�1/jt jn�3
�Z

C.F /�¹0º
f .v/ .hv; t2v0i

�
j!Qn

.v/j/
d�t

�.1/
(6.15)

if n > 3 is odd.

Proof. This is a consequence of Corollary 6.6 and Lemma 6.8 as we now explain. Using
(6.12), we are free to work with the action of M ab instead of zM ab in applying Corol-
lary 6.6.

For .t; g/ 2 R� � SOn�2.R/ write

m.t; g/ WD
� t

g

t�1

�
; t 2 R�; g 2 SOn�2.R/:

The character !P is given by !P .m.t; g// D t . Note that for x; x0 2 Xı
P .F / and � 2 Z;

hx;w�1
0 m.t; g/��x0iP jP op D !P .m.t; g//

�hx;w�1
0 x0iP jP op D t�hx;w�1

0 x0iP jP op :

Applying Lemma 6.8 now shows that if v D Plen
.x/ and v0 D Plen

.x0/; then

hx;w�1
0 m.t; g/��x0iP jP op D hv; t�v0i:

By Lemma A.7, we have �geo
Pop D Œ1�Š.�.n�4/=2/ for all n; and

�
aug
P op D

´
Œ1�Š.�0/ if n > 4 is even;

Œ2�Š.�0/ if n > 3 is odd:

The regularized operators are equal to the unregularized operators by Lemma 4.7.

When F is nonarchimedean with odd or zero characteristic, Corollary 6.9 implies
that when n is even FC agrees with the operator of [25, Theorem 4.1] (after replacing  
by  ). Gurevich and Kazhdan also treat nonsplit isotropic quadratic forms. When F D R

and n is even, a Fourier transform on L2.C.F /; j!Qj/ was investigated in [31] (they also
treated arbitrary isotropic quadratic forms in an even number of variables). It likely agrees
with FC when the form is split but we will not verify this.

6.3.3. The Lagrangian Grassmannian. Define Sp2n and P as in Section 4.3. We let Sp2n
act on V D G2n

a on the right. The representation VP may be realized as an irreducible
subrepresentation of

Vn
V; and we choose the highest weight vector to be

vP WD enC1 ^ � � � ^ e2n:
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Thus

PlvP

0
@

�
anC1

:::
a2n

1
A D anC1 ^ � � � ^ a2n (6.16)

is the (ordered) wedge product of the last n rows.
There is a perfect pairing

h�; �i W
Vn

G2n
a �

Vn
G2n

a !
V2n

G2n
a

�
�! Ga; (6.17)

where the first map is canonical and the second is obtained by specifying that e1 ^ � � � ^

e2n is sent to 1. We use this pairing to identify the dual of VP with VP . Thus

hx; x�iP jP op D hPlvP
.x/;Plv�

P op
.x�/i;

where v�
P op D .�1/ne1 ^ � � � ^ en is the lowest weight vector dual to vP .

The parabolic subgroup P is self-associate. More precisely, w�1
0 Pw0 D P op for

w0 D
�

�In

In

�
: (6.18)

Corollary 6.10. For f 2 �.XP .F //, FXP
.f / is

Œ2�Š.�n�2bn=2c/ ı Œ2�Š.�n�2bn=2cC2/ ı � � � ı Œ2�Š.�n�2/

ı

Z

Xı
P
.F /

f .x/ ..�1/nhPlvP
.x/;PlvP

.�/i/ dx:

Here Œ2�Š.�s/ is defined as in (4.2) but with P replaced with P op. See Lemma 5.15.

Proof. Since v�
P opw

�1
0 D .�1/nvP ; we have

hx;w�1
0 x0iP jP op D .�1/nhPlvP

.x/;PlvP
.x0/i:

Thus the result follows from Corollary 6.6 and the computation in Section 4.3.

Corollary 6.11. When n D 3; one has

FXP
.f /.x0/ D

Z

F �

 .t�1/jt j2
�Z

Xı
P
.F /

f .x/ .t2hPl.x/;Pl.x0/i/dx
�
d�t

�.1/
(6.19)

for all f 2 �.XP .F //. In particular, the integral over t is absolutely convergent.

Proof. Only the last claim is not clear from Corollary 6.10. By Lemma 4.7 the regularized
operator Œ2�Š.�1/ is equal to the unregularized operator in the case at hand as

A.L.1// D 1
2
; B.L.1// D 2; s1C1

�1
D 1:

This implies that the integral over t converges absolutely.
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7. Regularized integrals

In the remainder of the paper we apply the results of Section 6.3 in a specific case to
establish a formula for the Fourier transform on certain affine spherical varieties. For this,
it is convenient in several calculations to work with regularized integrals. We work in the
category of affine schemes because this is what we require; the techniques can probably
be generalized to analytic spaces or Nash manifolds.

Let F be a local field. For r 2 Z�1; let

h�; �i W F r � F r ! F

be a perfect pairing. Let

yf .t/ WD

Z

F r

 .ht; xi/f .x/ dx

be the associated Fourier transform with the Haar measure on F r normalized so that the
Fourier inversion formula

f .x/ D

Z

F r

 .ht; xi/ yf .t/ dt

is valid for f 2 �.F r /. For f 2 L1loc.F
r / and ˆ 2 C1

c .F
r / with ˆ.0/ D 1; we define

the regularized integral
Z �

F r

f .x/ dx WD lim
jBj!1

Z

F r

ˆ

�
x

B

�
f .x/ dx (7.1)

whenever the limit exists and is independent of ˆ. Here B 2 F � is embedded diagonally
in F r : If f 2 L1.F r /; we have

Z �

F r

f .x/ dx D

Z

F r

f .x/ dx:

Lemma 7.1. For f 2 L1.F r /; let

cyf �.y/ WD

Z �

F r

 .ht; yi/ yf .t/ dt:

Then
cyf �.y/ D f .y/ if y is a Lebesgue point of f . In particular,

cyf � D f a.e.,

and if f is continuous at y; then
cyf �.y/ D f .y/.

Proof. The first assertion can be proved following the argument of [55, Theorem 13.15].
For the second assertion, we need to show that almost every point is a Lebesgue point.
This is the Lebesgue differentiation theorem; a version that is general enough to treat both
the archimedean and the nonarchimedean case is given in [26, Section 3.4].
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Now let V D Gd
a ; where d > r . Let p1; : : : ; pr 2 F Œx1; : : : ; xd �. For each c D

.c1; : : : ; cr / 2 F r ; let

Yc WD Spec
�
F Œx1; : : : ; xd �=.p1 � c1; : : : ; pr � cr /

�
: (7.2)

We assume that Yc is geometrically integral for all c (hence a variety). In particular, the
smooth locus Y sm

c is dense in Yc for all c. Note that if Y sm
c .F / is nonempty, then it is

dense in Yc.F / in the Hausdorff topology by [40, Remark 3.5.76].
Let V.F / be equipped with the Haar measure dv D dv1 � � � dvd ; where the measure

dvi on Ga is defined as in Section 2.3. Let !Yc
be the differential form on Y sm

c satisfying

d.p1 � c1/ ^ � � � ^ d.pr � cr / ^ !Yc
D !V ; (7.3)

where !V is a top degree differential form on V with j!V j D dv; and let

d�c.y/ WD j!Yc
j (7.4)

be the corresponding positive Radon measure on Yc.F / (we extend by zero to obtain a
measure on all of Yc.F / from the given measure on Y sm

c .F /). The measure d�c.y/ does
not depend on the choice of !Yc

; but it does depend on the choice of p1; : : : ; pr . We let

d� WD d�0 and Y WD Y0: (7.5)

A nice reference for the definition of d�c.y/ in a more general context is [17, Sec-
tions III.1, B2.1] in the real and complex cases. For the nonarchimedean case we refer to
[28, Section 7.6].

Suppose Y sm.F / is nonempty. Hence Y sm.F / is dense in Y.F /. For f 2 �.Y sm.F //;

the integral
R
Y.F /

f .y/ d�.y/ is well-defined. Let us extend its domain of definition and
at the same time develop a useful formula for it. Let p.v/ WD .p1.v/; : : : ; pr .v//. Let
h�; �ist W F r � F r ! F be the standard pairing. For zf 2 L1.V .F //; we have

Z

V.F /

 .ht; p.v/ist/ zf .v/ dv D

Z

F r

 .ht; cist/

�Z

Yc.F /

zf .y/ d�c.y/

�
dc (7.6)

by the change of variables formula. On the left, the integral is absolutely convergent by
assumption; on the right, the inner integral over y is finite for almost every c and defines
a function of c that is in L1.F r /. With this in mind, for zf 2 L1.V .F // we define

Z reg

Y.F /

zf .y/ d�.y/ WD

Z �

F r

�Z

V.F /

 .ht; p.v/ist/ zf .v/ dv

�
dt (7.7)

provided it exists.

Remark 7.2. If t 7!
R
V.F /

 .ht; p.v/ist/ zf .v/ dv is in L1.F r /; then

Z reg

Y.F /

zf .y/ d�.y/ D

Z

F r

�Z

V.F /

 .ht; p.v/ist/ zf .v/ dv

�
dt:
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Lemma 7.3. Suppose pi are homogeneous polynomials all of degree k and any r � r

minor of the Jacobian of p D .p1; : : : ; pr / is a monomial. Assume further that for any set

S � ¹1; : : : ; dº of cardinality m; there is a nonzero r � r minor that is a monomial in vi ;

i 2 S .

If kr Cm � d; then for any zf 2 �.V .F // one has f WD zf jY sm.F / 2 L1.Y.F /; d�/

and Z reg

Y.F /

zf .y/ d�.y/ D

Z

Y.F /

f .y/ d�.y/:

Proof. Assume f 2 L1.Y.F /; d�/ until otherwise stated. We claim that 0 is a Lebesgue
point of the function

c 7!

Z

Yc.F /

zf .y/ d�c.y/: (7.8)

Hence the identity in the lemma holds by (7.6) and Lemma 7.1.
For each positive integer n; let

Wn �
°
v 2 V.F / W jvj WD max

1�i�d
jvi j < n

±

be the subset on which some r � r minor of the Jacobian of p has norm greater than n�1.
These are open, relatively compact subsets of V.F /. If zf is supported on Wn; then (7.8)
defines a continuous compactly supported function on F r and thus 0 is a Lebesgue point.

For general zf we wish to show

lim sup
jt j!0

jt j�kr
Z

jcj�jt jk

ˇ̌
ˇ̌
Z

Yc.F /

zf .y/ d�c.y/ �

Z

Y.F /

f .y/ d�.y/

ˇ̌
ˇ̌ dc D 0: (7.9)

Here
jcj WD max

1�i�r
jci j;

for c D .c1; : : : ; cr / 2 F r . Note that
S
nWn and

S
nWn \ Y sm.F / are of full measure

in V.F / and Y sm.F / respectively. Let ¹'nº be a smooth partition of unity of
S
n Wn

subordinate to ¹Wnº. Put zfn WD
Pn
mD1 zf 'm and fn WD zfnjY sm.F /. Then jvjN zfn ! jvjN zf

in L1.V .F // for any N 2 Z�0, and fn ! f in L1.Y.F /; d�/.
Now for each t 2 F �; we have

jt j�kr
Z

jcj�jt jk

ˇ̌
ˇ̌
Z

Yc.F /

zf .y/ d�c.y/ �

Z

Y.F /

f .y/ d�.y/

ˇ̌
ˇ̌ dc

� jt j�kr
Z

jcj�jt jk

ˇ̌
ˇ̌
Z

Yc.F /

zf .y/ d�c.y/ �

Z

Yc.F /

zfn.y/ d�c.y/

ˇ̌
ˇ̌ dc

C jt j�kr
Z

jcj�jt jk

ˇ̌
ˇ̌
Z

Yc.F /

zfn.y/ d�c.y/ �

Z

Y.F /

fn.y/ d�.y/

ˇ̌
ˇ̌ dc

C C

Z

Y.F /

jfn.y/ � f .y/j d�.y/
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for any n for some positive constant C . Since zfn is supported on Wn; taking lim sup over
jt j ! 0 on both sides shows that the limit superior in (7.9) is bounded by

lim sup
jt j!0

jt j�kr
Z

jcj�jt jk

ˇ̌
ˇ̌
Z

Yc.F /

zf .y/ d�c.y/ �

Z

Yc.F /

zfn.y/ d�c.y/

ˇ̌
ˇ̌ dc

C C

Z

Y.F /

jfn.y/ � f .y/j d�.y/:

Since the second term converges to 0 as n ! 1; the change of variables formula implies
that it suffices to show

lim sup
n!1

lim sup
jt j!0

jt j�kr
Z

jp.v/j�jt jk
j zf .v/ � zfn.v/j dv D 0: (7.10)

We have
Z

jp.v/j�jt jk
j zf .v/ � zfn.v/j dv D jt jd

Z

jp.v/j�1
j zf .tv/ � zfn.tv/j dv: (7.11)

By symmetry it suffices to bound the contribution of the domain jv1j � � � � � jvd j to the
integral. By assumption, there exists a subset J � ¹1; : : : ; dº of cardinality r such that
det . @pi

@vj
/1�i�r;j2J is a nonzero monomial in ¹v1; : : : ; vmº: Let

T W ¹1; : : : ; dº � J ! ¹1; : : : ; d � rº

be the increasing bijection. For v0 2 F d�r ; let

hn.v
0/ WD sup ¹j zf .v/ � zfn.v/j W v 2 F d ; vT�1.j / D v0

j for 1 � j � d � rº:

Choose the smallest 1 � ` � d � r such that T �1.`/ 2 ¹m; : : : ; m C rº � J . Then by
changing variables, the contribution of jv1j � � � � � jvd j to (7.11) is dominated by

jt jd
Z
hn.tv

0/jv0
`j

�r.k�1/ dv0;

where the integral is taken over jv0
1j � � � � � jv0

d�r j: Changing variables v0 7! t�1v0; we
arrive at

jt jrk
Z
hn.v

0/jv0
`j

�r.k�1/ dv0

� jt jrk
Z

F `

�
sup

w02F d�r�`

hn.w;w
0/

�
jw`j

d�`�r�r.k�1/ dw1 � � � dw`:

As ` � m; we have d � `� r � r.k � 1/ � d �m� rk � 0 by assumption, so the latter
integral is finite and converges to 0 as n ! 1. This implies (7.10).

We are left with proving that for any zf 2 �.V .F // one has zf jY sm.F / 2L1.Y.F /; d�/.
This follows from an analogue of the argument bounding (7.11).
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8. The Schwartz space and Fourier transform on Y

For the remainder of the paper, let F be a local field of characteristic zero. We refer to
[19,20] for more details on the constructions in this section. For 1 � i � 3; let Vi D G

di
a

where di is even and letQi be a nondegenerate quadratic form on Vi .F /. We assume that
di > 2 for each i ; this plays a role in some convergence arguments below (see the proof
of Theorem 9.1). Let V WD V1 � V2 � V3; and for an F -algebra R; let

Y.R/ WD ¹.v1; v2; v3/ 2 V.R/ W Q1.v1/ D Q2.v2/ D Q3.v3/º: (8.1)

The anisotropic locus
Y ani � Y (8.2)

is the open complement of the vanishing locus of Qi (which is independent of i ). We
assume Y sm.F / is nonempty, which implies Y ani.F / is nonempty and dense in Y.F / in
the Hausdorff topology by [40, Remark 3.5.76].

We assume that G D Sp6 and P is the Siegel parabolic as in Section 4.3, and set
X WD XP . We identify SL32 with the subgroup of Sp6 whose points in an F -algebra R are
given by

8
ˆ̂<
ˆ̂:

0
BB@

a1 b1

a2 b2

a3 b3

c1 d1

c2 d2

c3 d3

1
CCA 2 GL6.R/ W aidi � bici D 1 for 1 � i � 3

9
>>=
>>;
:

Thus we obtain an action of SL32 on Xı. Let


0 WD

0
@
0 0 0 �1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 0 0 0
0 0 0 �1 1 0
0 0 0 �1 0 1

1
A : (8.3)

Then
x0 WD P der.F /
0 (8.4)

is a representative for the unique SL32-orbit in Xı of maximal dimension. This follows
from the computation of the stabilizers of all orbits given in [20, Lemma 2.1]. By the
same lemma, the stabilizer of x0 is the group whose points in an F -algebra R are given
by

N0.R/ WD
®��

1 t1
1

�
;
�
1 t2
1

�
;
�
1 �t1�t2

1

��
W t1; t2 2 R

¯
: (8.5)

By upper semicontinuity of the dimension of stabilizers [37, Section 0.2] we deduce that
the orbit of x0 is the unique open SL32-orbit in Xı:

Let � be the Weil representation of SL32.F / on �.V .F // attached to our additive
character  and the quadratic forms Qi . Let �.X.F / � V.F // be the algebraic tensor
product �.X.F //˝ �.V .F // in the nonarchimedean case and the completed projective
tensor product in the archimedean case.
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There is a map
I W �.X.F / � V.F // ! C1.Y sm.F //

given on pure tensors by

I.f1 ˝ f2/ D

Z

N0.F /n SL3
2
.F /

f1.x0g/�.g/f2 d Pg: (8.6)

The integral is absolutely convergent for all f 2 �.X.F / � V.F // (see [20, Propositions
7.1, 8.2, 8.3]). By definition, the image of I is the Schwartz space �.Y.F //. The kernel
of I is closed in the archimedean case by [19, Lemma 5.1], and hence in this case we
equip �.Y.F // with the quotient Fréchet space structure.

By [19, Theorem 12.1], there is a unique C-linear isomorphism FY W �.Y.F // !

�.Y.F // such that the diagram

�.X.F / � V.F // �.X.F / � V.F //

�.Y.F // �.Y.F //

I

FX

I

FY

commutes; in the archimedean case, FY is continuous in the Fréchet topology on
�.Y.F //. In loc. cit., this is the only description of FY that is given. The definition of
I.f1 ˝ f2/ depends on the choice of measure d Pg; but from the description of FY given
above, it follows that FY does not depend on this choice.

The definition of FY is indirect; the goal of the rest of this paper is to give a direct
definition of FY ; at least on a subspace of �.Y.F //. Let

� WD Im
�
�.V .F // ! C1.Y sm.F //

�
; (8.7)

where the implicit map is restriction of functions. Then � D I.�.x0 SL32.F / � V.F /// <

�.Y.F // by [19, Lemma 5.3]. Moreover, �.Y.F // < Lp.Y.F /; d�/ for p � 2 and the
inclusion is continuous in the archimedean case by [19, Proposition 11.2]. Here the Radon
measure d� on Y.F / is defined as in Section 7 using the polynomials p1.v1; v2; v3/ D

Q1.v1/ �Q2.v2/ and p2.v1; v2; v3/ D Q2.v2/ �Q3.v3/.

9. A formula for FY

For ui ; vi 2 Vi .F /, let

hui ; vi ii WD 1
2
.Qi .ui C vi / �Qi .ui / �Qi .vi //:

For u D .u1; u2; u3/; v D .v1; v2; v3/ 2 V.F /; we write

Q.u/ WD Q1.u1/CQ2.u2/CQ3.u3/; hu; vi WD

3X

iD1
hui ; vi ii :
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For a D .a1; a2; a3/ 2 .F �/3; let

�Qi
.ai / WD .ai ; .�1/

di=2 det.h�; �ii //; �Q.a/ WD

3Y

iD1
�Qi

.ai /; (9.1)

where .�; �/ is the Hilbert symbol. Finally, let

Œa� WD a1a2a3; r.a/ WD
.a1a2 C a2a3 C a3a1/

2

Œa�
: (9.2)

For the convenience of the reader, we restate Theorem 1.2:

Theorem 9.1. Suppose as above that the characteristic of F is zero, di D dimVi > 2 for

all 1 � i � 3 and Y sm.F / ¤ ;. There is a c 2 C� depending on  ; F and the Qi such

that for all f 2 � .defined as in (8.7)/ and � 2 Y ani.F /; one has

FY .f /.�/ D c

Z

F �

 .z�1/
�Z

.F �/3
 .z2r.a//

�

�Z

Y.F /

 

��
�

a
; y

�
�
Q.�/Q.y/

9z2Œa�

�
f .y/ d�.y/

�
�Q.a/ d

�a

¹aºd=2�1

�
d�z:

Here the measure on Y.F / is defined as in Section 8 and

�

a
WD

�
�1

a1
;
�2

a2
;
�3

a3

�
; ¹aºd=2�1 WD

3Y

iD1
jai j

di=2�1:

Let 
.Qi / WD 
. ıQi / be the Weil index, defined as in [54, Section 24]. The constant
c 2 C� is 
.Q/k�j3j�.1/ ; where 
.Q/ D 
.Q1/
.Q2/
.Q3/ is the product of the Weil indices,
k is defined as in (9.34) and � is defined as in Remark 9.5 below; these are both ratios of
suitable invariant measures. When F is nonarchimedean and the matrix of each Qi with
respect to the standard basis of F di lies in GLdi

.OF / for each i , then � D 1.

9.1. Comment on norms

We pause to introduce some notation used throughout the rest of the paper. For n 2 Z>0,
unless otherwise stated, we equip F n with the box norm

jyj WD max
1�i�n

jyi j; y D .y1; : : : ; yn/ 2 F n: (9.3)

This includes vectors in Vi and V1 ˝ V2 ˝ V3. Let y 2 F n � ¹0º. If F is nonarchimedean,
let

ord.y/ WD min
1�i�n

ord.yi /;

where ord.yi / 2 Z [ ¹1º satisfies jyi j D q�ord.yi /. When F is nonarchimedean, we fix
a uniformizer $ and set

zy WD

´
$ord.y/ if F is nonarchimedean,

jyj
1

ŒF WR� if F is archimedean.
(9.4)

Thus jy=zyj D 1.
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For any integer m 2 Z, we denote

¹aºm WD

3Y

iD1
jai j

m and ¹aºd=2Cm WD

3Y

iD1
jai j

di=2Cm:

9.2. Proof of Theorem 9.1

To aid the reader, we present the proof modulo various technical analytic results that will
be proved later in this section and in Section 11. By Theorem 5.17 we have �.Xı.F // <
�.X.F //. We will use this fact without further mention below.

Let f 2 �.V .F // and for 0 < ı < 1, let

Kı WD
®�
1Cu v
w 1Cx

�
2 SL32.F / W j.u; v; w; x/j < ı

¯
: (9.5)

It is an open neighborhood of the identity in SL32.F /.

Lemma 9.2. Assume F is archimedean. We can choose a sequence of nascent delta-

functions 'n 2 C1
c .x0 SL32.F // indexed by n 2 Z>4 such that

lim
n!1

I.'n ˝ f / D f jY sm.F / (9.6)

with respect to the Fréchet topology on �.Y.F //. Moreover, we can assume supp.'n/ �

x0K1=n.

Proof. There is a map

zI W �.SL32.F / � V.F // ! �.V .F // ! � ;

where the left arrow is given on pure tensors by f1 ˝ f2 7!
R

SL3
2
.F /

f1.g/�.g/f2 dg and
the right is given by restriction of functions. The left arrow is continuous by continuity
of the Weil representation and surjective by the Dixmier±Malliavin lemma. The right
arrow is surjective with closed kernel and we endow � with the quotient topology (see
[14, Section 3] for more details about this topology). Thus zI is surjective and continuous.
We also have a continuous map

p W �.SL32.F // ! �.x0 SL32.F //

given by sending f1 to p.f1/.x0g/ WD
R
N0.F /

f1.ug/ du: We observe that

zI .f1 ˝ f2/ D I.p.f1/˝ f2/:

Choose z'n 2 C1
c .SL32.F // with support inK1=n such that limn!1 zI .z'n ˝ f /D f with

respect to the topology on � : Then 'n WD p.z'n/ satisfy (9.6) with respect to the topology
on � : It thus suffices to show that the inclusion � ,! �.Y.F // is continuous.

We have a commutative diagram

�.SL32.F / � V.F // �.x0 SL32.F / � V.F // �.X.F / � V.F //

� �.Y.F //

zI

p˝Id

I I
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The top horizontal arrows are continuous, and the maps zI and I are continuous and surjec-
tive. By the open mapping theorem, zI is open, and we deduce that the bottom horizontal
arrow is continuous.

Up to scaling by a positive real number, there is a unique right SL32.F /-invariant
measure d Pg on the open dense subset x0 SL32.F / � Xı.F /; and a unique (up to scaling)
right Sp6.F /-invariant measure dx on Xı.F /. On the other hand, dx is clearly right
SL32.F /-invariant. Thus the restriction of dx to the open full measure subset x0 SL32.F /
� Xı.F / (which we continue to denote by dx) satisfies

Cdx D d Pg (9.7)

for some C 2 R>0. Therefore, we have an isomorphism

Lp.Xı.F // �
�! Lp.N0.F /n SL32.F //; f 7! .g 7! f .x0g//;

for 0 < p < 1. We normalize the measures so that C D 1. Thus these isomorphisms are
isometries.

When F is nonarchimedean, we let

'n WD
1x0K1=n

d Pg.x0K1=n/
:

Since the Weil representation is smooth, there is an integer N depending on f such that
I.'n ˝ f / D f jY sm.F / for n > N � 4.

In all cases, we have

lim
n!1

I.FX .'n/˝ f / D lim
n!1

FY .I.'n ˝ f //

D FY .f jY sm.F //:

Indeed, in the archimedean case, this follows from the continuity of FY ; and in the nonar-
chimedean case, it follows from the observation that I.'n ˝ f / stabilizes as n ! 1.
Therefore, we are to compute

lim
n!1

I.FX .'n/˝ f /.�/ for � 2 Y ani.F /.

Extension by zero induces an injection �.x0 SL32.F //! �.Xı.F //: This is obvious if
F is nonarchimedean, and proved in [14, Theorem 3.23] if F is archimedean. Moreover,
�.Xı.F // < �.X.F // by Theorem 5.17. For .�; W; g/ 2 Y ani.F / � �.x0 SL32.F // �

SL32.F /, let
f�;W .x0g/ WD W.x0g/�.g/f .�/:

Note that f�;W 2 �.x0 SL32.F // < �.X.F //. In Section 9.6, we construct a directed set
of functions VB1;B2

2 �.x0 SL32.F // such that

jVB1;B2
j � 1 and lim

jB2j!1
lim

jB1j!1
VB1;B2

.x0g/ D 1; (9.8)
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where convergence is pointwise a.e. for g 2 N0.F /n SL32.F / with respect to d Pg: Thus by
the dominated convergence theorem and the Plancherel formula [19, Proposition 3.9],

I.FX .'n/˝ f /.�/ D lim
jB2j!1

lim
jB1j!1

Z

N0.F /n SL3
2
.F /

FX .'n/.x0g/f�;VB1;B2
.x0g/ d Pg

D lim
jB2j!1

lim
jB1j!1

Z

N0.F /n SL3
2
.F /

'n.x0g/FX .f�;VB1;B2
/.�x0g/ d Pg:

Let
� WD K1=4 (9.9)

be the closure of K1=4 in SL32.F /. For u 2 V.F / and v D .v1; v2/ 2 F 2, let

c.u; v/ WD v1Q1.u1/C v2Q2.u2/ � .v1 C v2/Q3.u3/ and dv D dv1dv2: (9.10)

We prove in Sections 9.6 and 9.7 the following:

Proposition 9.3. Fix � 2 Y ani.F /. For each B2, there is a constantM.B2/ > 0 such that

jFX .f�;VB1;B2
/.�x0g/j<M.B2/ for all g 2� and all jB1j sufficiently large. Moreover,

there is a constant M > 0 such that
ˇ̌
ˇ lim
jB1j!1

FX .f�;VB1;B2
/.�x0g/

ˇ̌
ˇ < M

for all B2. Furthermore,

lim
jB2j!1

lim
jB1j!1

FX .f�;VB1;B2
/.�x0g/

D

.Q/k

j3j�.1/

Z

F �

 .z�1/
�Z

.F �/3
 .z2r.a//

�

Z

F 2

�Z

V.F /

 

��
�

a
; u

�
�
Q.�/Q.u/

9z2Œa�
C c.u; v/

�
�.g/f .u/ du

�
dv

�Q.a/ d
�a

¹aºd=2�1

�
d�z

(9.11)

for all g 2 �, and the integral defines a continuous function of g 2 �.

Here k > 0 is as in (9.34), and the Haar measure du on V.F / is normalized to be
self-dual with respect to  and the pairing h�; �i.

Assume Proposition 9.3. Applying the bounded convergence theorem, the proof of
Theorem 9.1 will be complete once we prove the following:

Lemma 9.4. There is a constant � > 0 such that for f 2 �.V .F //; one has

Z

F 2

�Z

V.F /

 

��
�

a
; u

�
�
Q.�/Q.u/

9z2Œa�
C c.u; v/

�
f .u/ du

�
dv

D �

Z

Y.F /

 

��
�

a
; y

�
�
Q.�/Q.y/

9z2Œa�

�
f .y/ d�.y/:
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Proof. We use the results of Section 7. We must first check that the schemes Yc1;c2
for

.c1; c2/ 2 F 2 defined as in (7.2) are geometrically integral. We can check this over the
algebraic closure. Consider the quadratic form defined by p1.u1; u2; u3; z/ D Q1.u1/ �

Q3.u3/� c1z
2 and p2.u1; u2; u3; z/DQ2.u2/�Q3.u3/� c2z

2. Then Yc1;c2
is an open

subscheme of the projective variety Y 0 � P .V ˚ Ga/ cut out by p1 and p2. Therefore
Yc1;c2

is geometrically integral by [13, Lemma 1.11].
By Lemma 11.2, the integral over F 2 in the statement of the lemma is absolutely

convergent. Therefore Remark 7.2 implies that the top integral in the lemma is equal to

�

Z reg

Y.F /

 

��
�

a
; y

�
�
Q.�/Q.y/

9z2Œa�

�
f .y/ d�.y/

defined as in (7.7) for some � > 0. By changing variables, we may assume each Qi
is associated to a diagonal matrix. One checks that the hypotheses of Lemma 7.3 are
satisfied with m D 1C max.d1; d2; d3/ as di > 2 for all i , and we use it to deduce the
current lemma.

Remark 9.5. The constant � of the lemma is the positive real number such that ��1du
is the Haar measure on V.F / that is self-dual with respect to  and the standard pairing
on V.F /.

9.3. Finiteness of the integral

As a first step toward the proof of Theorem 9.1, in this subsection we prove that the
integral (9.11) is finite.

Let f 2 �.V .F // and � 2 Y ani.F /. Recall the notation z� WD .z�1; z�2; z�3/ 2 .F �/3 from
(9.4). For .a; b/ 2 .F �/3 � F; define

‰�.a; b; f / WD

Z

F 2

�Z

V.F /

 

��
a�

z�
; u

�
C
bŒa�Q.u/

9Œz��
C c.u; v/

�
f .u/ du

�

� �Q.az�/¹aºd=2�2 dv: (9.12)

We deduce from (11.3) below that the integral over F 2 is absolutely convergent. More-
over, ‰�.�; b; f / 2 L1.F 3; da/ for all b 2 F (see Corollary 9.8). After a change of
variables a 7! a�1z�; we have

Z

.F �/3
 .z2r.a//

Z

F 2

�Z

V.F /

 

��
�

a
; u

�
�
Q.�/Q.u/

9z2Œa�
C c.u; v/

�
f .u/ du

�
dv

�
�Q.a/ d

�a

¹aºd=2�1

D �.1/3
� 3Y

iD1
j�i j

1�di=2
� Z

.F �/3
 .z2r.a�1z�//‰�

�
a;�

Q.�/

z2
; f

�
da (9.13)

for z 2 F �. Here we have replaced d�a by �.1/3da

¹aº1 .
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Let

G.�/ WD

�
j�1 ˝ �2 ˝ �3j

jQ.�/j

�1=2
: (9.14)

This subsection is devoted to proving the following:

Proposition 9.6. Let .z; �/ 2 F � � Y ani.F /. For 1=2 > " > 0 sufficiently small, we have

ˇ̌
ˇ̌
Z

.F �/3
 .z2r.a�1z�//‰�

�
a;�

Q.�/

z2
; f

�
da

ˇ̌
ˇ̌

�";"0;N;f

´
.jzjG.�//min.d1;d2;d3/�2�2" if jzjG.�/ � N;

.jzjG.�//�"Cmin.j�1j; j�2j; j�3j/2"jQ.�/j�".jzjG.�//�"
0

if jzjG.�/ > N;

for some "0>0 depending on " andN 2 Z�1 depending only on f; ; ifF is archimedean,

then N D 1.

We deduce the following bound directly from Proposition 9.6, (9.13), and Lemma 9.4.

Corollary 9.7. Let � 2 Y ani.F /. For 1=2 > " > 0 sufficiently small, we have

Z

F �

ˇ̌
ˇ̌
Z

.F �/3
 .z2r.a//

�Z

Y.F /

 

��
�

a
;y

�
�
Q.�/Q.y/

9z2Œa�

�
f .y/d�.y/

�
�Q.a/ d

�a

¹aºd=2�1

ˇ̌
ˇ̌d�z

�";f

� 3Y

iD1
j�i j

1�di=2
�
.1C min.j�1j; j�2j; j�3j/

2"jQ.�/j�"/:

By the smoothness of the Weil representation, Corollary 9.7 implies the integral
in (9.11) defines a continuous function of g 2 �. When checking this point in the
archimedean case it is helpful to recall our conventions regarding asymptotic notation
explained in Section 2.4.

The proof of Proposition 9.6 will involve several reductions relying on results proved
in Section 11. Theorem 11.1 implies the following corollary:

Corollary 9.8. Suppose di D dim Vi > 2 for all 1 � i � 3. Let f 2 �.V .F //. Given

1=2 > " > 0 one has

Z

.F �/3
j‰�.a; b; f /j da �";f min

�
1;

ˇ̌
ˇ̌�1 ˝ �2 ˝ �3

b

ˇ̌
ˇ̌
�min.d1;d2;d3/=2�1�"

as a function of .b; �/ 2 F � Y ani.F /. Here by convention min.1; j �1˝�2˝�3

b
j/ D 1 if

b D 0:

By Corollary 9.8, for any N 2 Z�1 we have, for jzjG.�/ � N ,
Z

.F �/3

ˇ̌
ˇ̌‰�

�
a;�

Q.�/

z2
; f

�ˇ̌
ˇ̌ da �";f;N .jzjG.�//min.d1;d2;d3/�2�2": (9.15)
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Thus to prove Proposition 9.6, it suffices to bound the integral
ˇ̌
ˇ̌
Z

.F �/3
 .z2r.a�1z�//‰�

�
a;�

Q.�/

z2
; f

�
da

ˇ̌
ˇ̌ (9.16)

for N < jzjG.�/:

To proceed further, we need the following corollary of Theorem 11.17:

Corollary 9.9. Suppose j�1 ˝ �2 ˝ �3j > jbj > 0. If di > 2 for all i; given ˛ > 0; there

exists ˇ > 0 such that

Z

jaj�j �1˝�2˝�3
b

j˛
j‰�.a; b; f /j da �˛;ˇ;f

ˇ̌
ˇ̌�1 ˝ �2 ˝ �3

b

ˇ̌
ˇ̌
�ˇ
:

By Corollary 9.9 we have, for N < jzjG.�/;
Z

jaj�.jzjG.�//2˛

ˇ̌
ˇ̌‰�

�
a;�

Q.�/

z2
; f

�ˇ̌
ˇ̌ da �˛;ˇ;f .jzjG.�//

�2ˇ : (9.17)

Thus to bound (9.16) (and hence prove Proposition 9.6), it suffices to bound
ˇ̌
ˇ̌
Z

jaj�.jzjG.�//2˛

 .z2r.a�1z�//‰�

�
a;�

Q.�/

z2
; f

�
da

ˇ̌
ˇ̌ (9.18)

for N < jzjG.�/ and 1=6 > ˛ > 0 sufficiently small.
Over the domain jaj � .jzjG.�//2˛; we have

ˇ̌
ˇ̌ Œa�Q.�/Q.u/

9z2Œz��

ˇ̌
ˇ̌ � j9j�1.jzjG.�//6˛�2jQ.u/j: (9.19)

Assume F is nonarchimedean. Since f has compact support and jQ.u/j � juj2; we
can choose N sufficiently large (depending on f; ) such that

 

�
Œa�Q.�/Q.u/

9z2Œz��

�
D 1

provided u 2 supp.f /; jaj � .jzjG.�//2˛; and N < jzjG.�/. In particular, under these
assumptions,

‰�

�
a;�

Q.�/

z2
; f

�
D ‰�.a; 0; f /:

In the archimedean case, we choose N D 1. Observe that

@

@b
‰�.a; b; f / D c

Œa�

9Œz��
‰�.a; b;Qf /

for some c 2 F depending on  ; and Qf 2 �.V .F //: Thus the function

z‰�.b; z; f / WD

Z

jaj�.jzjG.�//2˛

 .z2r.a�1z�//‰�.a; b; f / da

is differentiable and Lipschitz in b by Corollary 9.8 and the Leibniz integral rule. Let
C 0;1.F / denote the Hölder space of Lipschitz continuous functions on F . We bound the
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Lipschitz constant by bounding the derivative in b using Corollary 9.8. This yields

k z‰�.�; z; f /kC0;1.F / WD sup
b1¤b22F

j z‰�.b1; z; f / � z‰�.b2; z; f /j

jb1 � b2j1=ŒF WR�

�f

�
.jzjG.�//6˛

j�1 ˝ �2 ˝ �3j

�1=ŒF WR�
:

We have ˇ̌
ˇ̌ z‰�

�
�
Q.�/

z2
; z; f

�
� z‰�.0; z; f /

ˇ̌
ˇ̌ �f .jzjG.�//

6˛�2
ŒF WR� (9.20)

for 1 < jzjG.�/. Thus in either the nonarchimedean or archimedean case to bound (9.18)
(and hence prove Proposition 9.6), it suffices to bound

ˇ̌
ˇ̌
Z

jaj�.jzjG.�//2˛

 .z2r.a�1z�//‰�.a; 0; f / da

ˇ̌
ˇ̌ (9.21)

for N < jzjG.�/ and 1=6 > ˛ > 0 sufficiently small.
Lastly, we require the following consequence of Theorem 11.4:

Corollary 9.10. For � 2 Y ani.F /; if di > 2 for all i; we have

j‰�.a; 0; f /j

�f ¹aºd=2�2 X

�2C3

max.1; ja�.1/j/
1�d�.1/=2 max.1; jaj/1�d�.2/=2�d�.3/=2 � 1:

Here S3 is the permutation group on ¹1; 2; 3º and C3 � S3 is the order-3 subgroup
generated by the permutation .123/. By Corollary 9.10 and a direct computation, for
1 < G.�/jzj we have

Z

jaj�.jzjG.�//2˛ ; ja�.1/j<.jzjG.�//�2˛

j‰�.a; 0; f /jda �f .jzjG.�//
�2˛.d�.1/=2�1/ (9.22)

for all � 2 C3. This combined with the following bound (9.21) completes the proof of
Proposition 9.6.

Lemma 9.11. For ˛ > 0 sufficiently small, there exist 1=2 > " > "0 > 0 such that

ˇ̌
ˇ̌
Z

.jzjG.�//�2˛�jai j�.jzjG.�//2˛

 .z2r.a�1z�//‰�.a; 0; f / da

ˇ̌
ˇ̌

�";"0;f

min.j�1j; j�2j; j�3j/2"

jQ.�/j"
.jzjG.�//2."

0�"/:

9.4. Proof of Lemma 9.11

Suppose F D R. We restrict the integral over the domain where all ai > 0 as an analogous
argument works for the other connected component of .R�/3. In particular, �Q.az�/ D 1.
We will apply the van der Corput lemma, and for this purpose we first prove the following:
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Lemma 9.12. Let g be a bounded continuous function on R3>0. For c > 1; we have

ˇ̌
ˇ̌
Z

c�1�ai �c
g.a/‰�.a; 0; f / da

ˇ̌
ˇ̌ �f sup

c�1<ai �c

ˇ̌
ˇ̌
Z a1

c�1

Z a2

c�1

Z a3

c�1

g.r/ dr

ˇ̌
ˇ̌:

Proof. First note that ‰�.a; 0; f / is smooth as a function of a by Lemma 11.2. By inte-
gration by parts over a1; we have

Z

c�1�ai �c
g.a/‰�.a; 0; f / da

D

Z

c�1�a3�c

Z

c�1�a2�c

�Z c

c�1

g.a1; a2; a3/ da1

�
‰�.c; a2; a3; 0; f / da2 da3

�

Z

c�1�ai �c

�Z a1

c�1

g.r1; a2; a3/ dr1

�
@a1
‰�.a1; a2; a3; 0; f / da1 da2 da3:

Applying integration by parts over a2 and a3 to these two integrals, we see the original
integral is bounded by

sup
c�1<ai �c

ˇ̌
ˇ̌
Z ai

c�1

Z a2

c�1

Z a3

c�1

g.r/ dr

ˇ̌
ˇ̌

times the sum of the following terms and analogues that can be treated at the same time
by symmetry:

j‰�.c; c; c; 0; f /j;

Z c

c�1

j@a3
‰�.c; c; a3; 0; f /j da3;

Z c

c�1

Z c

c�1

j@a2
@a3
‰�.c; a2; a3; 0; f /j da2 da3;

Z c

c�1

Z c

c�1

Z c

c�1

j@a1
@a2
@a3
‰�.a1; a2; a3; 0; f /j da1 da2 da3:

These are all bounded by a constant that is continuous in f by Corollary 9.10 and the fact
that the terms

Z c

c�1

¹aºd=2�2 X

�2C3

max.1; a�.1//
1�d�.1/=2 max.1; jaj/1�d�.2/=2�d�.3/=2 da3

ˇ̌
ˇ̌
a1Da2Dc

;

Z c

c�1

Z c

c�1

¹aºd=2�2 X

�2C3

max.1; a�.1//
1�d�.1/=2

� max.1; jaj/1�d�.2/=2�d�.3/=2 da2 da3

ˇ̌
ˇ̌
a1Dc

;

Z c

c�1

Z c

c�1

Z c

c�1

¹aºd=2�2 X

�2C3

max.1; a�.1//
1�d�.1/=2

� max.1; jaj/1�d�.2/=2�d�.3/=2 da1 da2 da3

are bounded by a constant independent of c.
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By Lemma 9.12, the integral in the statement of Lemma 9.11 is bounded in absolute
value by Of .1/ times

sup

ˇ̌
ˇ̌
Z r1

.jzjG.�//�2˛

Z r2

.jzjG.�//�2˛

Z r3

.jzjG.�//�2˛

 .z2r.a�1z�// da

ˇ̌
ˇ̌; (9.23)

where the supremum is taken over

¹ri W .jzjG.�//�2˛ � ri � .jzjG.�//2˛º:

Changing variables, this is equal to the supremum over the same set of

ˇ̌
ˇ̌
Z

Œ0;1�3
 

�
z2r

� z�

.r � .jzjG.�//�2˛/aC .jzjG.�//�2˛

��
da

ˇ̌
ˇ̌
3Y

iD1
.ri � .jzjG.�//�2˛/:

(9.24)
Here .r � .jzjG.�//�2˛/aC .jzjG.�//�2˛ is shorthand for the vector

..ri � .jzjG.�//�2˛/ai C .jzjG.�//�2˛/ 2 .R�/3:

Note that

r.a�1z�/ D
X

�2C3

� z��.2/z��.3/
z��.1/

a�.1/

a�.2/a�.3/
C
2z��.1/

a�.1/

�
: (9.25)

Therefore,

@a1
@2a2
@2a3

r

� z�

.r � .jzjG.�//�2˛/aC .jzjG.�//�2˛

�

D 4
z�2z�3
z�1

.r1 � .jzjG.�//�2˛/
3Y

iD2

.ri � .jzjG.�//�2˛/2

..ri � .jzjG.�//�2˛/ai C .jzjG.�//�2˛/3

� 4
z�2z�3
z�1

.r1 � .jzjG.�//�2˛/
3Y

iD2

.ri � .jzjG.�//�2˛/2

r3i
(9.26)

if a2; a3 � 1. Thus, by the van der Corput Lemma [11, Theorem 1.4], (9.24) is dominated
by

jzj�2"
�
4

z�2z�3
z�1

.r1 � .jzjG.�//�2˛/
3Y

iD2

.ri � .jzjG.�//�2˛/2

r3i

��" 3Y

iD1
.ri � .jzjG.�//�2˛/

(9.27)

for some 1=2 > " > 0. Hence, the supremum over ¹ri W .jzjG.�//�2˛ � ri � .jzjG.�//2˛º

of (9.24) is dominated by

jzj�2".jzjG.�//2˛.3C"/j�1j"j�2j�"j�3j�": (9.28)

Thus the same bound holds for (9.23), and we deduce the lemma by symmetry.
Suppose F D C. Taking a change of variables in z; u; v and replacing f by another

Schwartz function if necessary, we may assume .t/D R.2Re.t// WD e�4�i Re.t/. Write
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z D jzj1=2ei� . Using polar coordinates, we are to study
ˇ̌
ˇ̌
Z

0��i �2�

Z

.jzjG.�//�˛�si �.jzjG.�//˛
 .jzjei2�r.s�1e�i� z�//‰�.se

i� ; 0; f /Œs� ds d�

ˇ̌
ˇ̌

�

Z

0��i �2�

ˇ̌
ˇ̌
Z

.jzjG.�//�˛�si �.jzjG.�//˛
 .jzjei2�r.s�1e�i� z�//‰�.se

i� ; 0; f /Œs� ds

ˇ̌
ˇ̌ d�:

(9.29)

Now for a fixed � and �; we have

 .jzjei2�r.s�1e�i� z�//

D  R

�
2jzj

X

�2C3

� z��.2/z��.3/
z��.1/

s�.1/

s�.2/s�.3/
cos.2� C ��.1/ � ��.2/ � ��.3//

C
2z��.1/

s�.1/
cos.2� � ��.1//

��
:

We observe that Corollary 9.10 implies j‰�.se
i� ; 0; f /Œs�j �f 1. Hence arguing as in

Lemma 9.12, the absolute value of the inner integral over s in (9.29) is bounded by a con-
stant (continuous in f ) times the supremum over ¹ri W .jzjG.�//�˛ � ri � .jzjG.�//˛º

of
ˇ̌
ˇ̌
Z
 R

�
2jzj

X

�2C3

� z��.2/z��.3/
z��.1/

s�.1/

s�.2/s�.3/
cos.2� C ��.1/ � ��.2/ � ��.3//

C
2z��.1/

s�.1/
cos.2� � ��.1//

��
ds

ˇ̌
ˇ̌

where the integral is taken over .jzjG.�//�˛ � si � ri . Arguing as in the real case, the
supremum is bounded by

jzj�"jcos.2� C �1 � �2 � �3/j
�".jzjG.�//˛.3C"/j�1j"=2j�2j�"=2j�3j�"=2:

Using the fact that jcosj�".x/ is locally integrable for 1 > "; the desired bound follows by
symmetry. This completes the proof of Lemma 9.11 in the archimedean case.

For the nonarchimedean case, we will apply the following van der Corput lemma:

Proposition 9.13. Let F be a nonarchimedean local field of characteristic zero. For any

nonzero multi-index ˇ 2 Zn�0; there exist "> 0; N 2 Z>0; that depend on ;n;ˇ; such that

for any formal power series f .x/ 2 F ŒŒx1; : : : ; xn�� that converges on O
n
F and satisfies

j@ˇf .x/j � 1 for all x 2 O
n
F ;

we have ˇ̌
ˇ̌
Z

O
n
F

 .yf .x// dx

ˇ̌
ˇ̌ � ;n;ˇ;F max.1; kf � f .0/k/N jyj�"

for all y 2 F . Here kf k is the supremum of the norms of the coefficients of f .

Proof. This is a consequence of [12, Propositions 3.3, 3.6] and their proofs.
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We now complete the proof of Lemma 9.11 in the nonarchimedean case. Choose
n 2 Z>0 such that .1C$n

OF /
3 < ker�Q. For r WD .r1; r2; r3/ 2 .F �/3 and ` 2 Z>0;

let

Br;` WD

3Y

iD1
.ri C$`

OF /:

Choosem� n> 0 such that .$mh�=z�;ui/D 1 for all � 2 Y ani.F / and u2 supp.f /. Let
` be any integer such that j$`j � j$mj.jzjG.�//�2˛ . Note that for jai j � .jzjG.�//�2˛

and u 2 $`
O
3
F ; we have ju=aj � j$mj � j$nj; and thus

�Q..aC u/z�/ D �Q.az� C uz�/ D �Q.az�/:

Then we can write
Z

.jzjG.�//�2˛�jai j�.jzjG.�//2˛

 .z2r.a�1z�//‰�.a; 0; f / da

D
X

r

‰�.r; 0; f /

Z

Br;`

 .z2r.a�1z�// da

D
X

r

‰�.r; 0; f /j$
`j3

Z

O
3
F

 .z2$�`r..aC r=$`/�1z�// da;

where r runs though a set of representatives of .jzjG.�//�2˛ � jri j � .jzjG.�//2˛ modulo
$`

O
3
F . In particular, jri j > j$`j for all i . Therefore, for a 2 O

3
F ,

1

ai C ri=$`
D

1X

nD0
.�1/n

�
$`

ri

�nC1
ani :

With notation as in Proposition 9.13, using (9.25) one has

kr..aC r=$`/�1z�/ � r..r=$`/�1z�/k

� max
�2S3

�
j��.2/j j��.3/j

j��.1/j

jr�.1/$
2`j

jr�.2/r
2
�.3/

j
;

j��.2/j j��.3/j

j��.1/j

j$`j2

jr�.2/r�.3/j
;

j��.1/j j$`j2

jr�.1/j2

�

�

�
max
�2C3

j��.2/j j��.3/j

j��.1/j

�
jr j

j$`j
�

�
max
�2C3

j��.2/j j��.3/j

j��.1/j

�
.jzjG.�//2˛

j$`j
:

Moreover, for all a 2 O
3
F ; we have

j@a1
@2a2
@2a3

r..aC r=$`/�1z�/j D j4j
j�2j j�3j

j�1j

j$`j6

jr2r3j3
� j4j

j�2j j�3j

j�1j
.jzjG.�//�12˛j$`j6:

Consequently, by symmetry and Proposition 9.13, we obtain
ˇ̌
ˇ̌
Z

O
3
F

 .z2$�`r..aC r=$`/�1z�// da

ˇ̌
ˇ̌

�

�
max
�2C3

j��.2/j j��.3/j

j��.1/j

��"
.jzjG.�//14˛NC12˛"

jzj2"j$`j7NC5" : (9.30)
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Now assume ` is chosen so that

j$`j � q�1j$mj.jzjG.�//�2˛:

Since j‰�.r; 0; f /j �f 1 by Corollary 9.10, using (9.30) we obtain

ˇ̌
ˇ̌X

r

‰�.r; 0; f /j$
`j3

Z

O
3
F

 .z2$�`r..aC r=$`/�1z�// da

ˇ̌
ˇ̌

�f jzj�2"
�

max
�2C3

j��.2/j j��.3/j

j��.1/j

��"
.jzjG.�//�6˛C14˛NC12˛"�2˛.�7N�5"/:

We thus obtain Lemma 9.11 in the nonarchimedean case by choosing ˛ small.

9.5. Preliminary truncation

Let f 2 �.V .F //. For � 2 Y ani.F / and W 2 �.x0 SL32.F //; recall

f�;W W x0 SL32.F / ! C; x0g 7! W.x0g/�.g/f .�/; (9.31)

and f�;W 2 �.x0 SL32.F // < �.X.F //: Our goal in this section is to prove the formula
(9.39) below for FX .f�;W /.�x0/.

Applying Corollary 6.11, for x 2 Xı.F / we find that FX .f�;W /.x/ equals
Z

F �

 .z�1/jzj2
�Z

N0.F /n SL3
2
.F /

 .z2Pl.x0g/ ^ Pl.x//W.x0g/�.g/f .�/ d Pg

�
d�z

�.1/
:

(9.32)

Here we have identified
V6

G6
a

�
�! Ga via e1 ^ � � � ^ e6 7! 1 (see (6.17)). The measure d Pg

is normalized so that it coincides with the measure dx in Corollary 6.11 restricted to
x0 SL32.F / (see (9.7)).

Since we are studying FX .f�;W / in a neighborhood of �x0 in �x0 SL32.F /; we need
only consider

x D �x0g
0

for g0 2 SL32.F / sufficiently close to 1. In this case, after a change of variables g 7! gg0

in (9.32), we have

FX .f�;W /.x/ D FX ..�.g
0/f /�;R.g0/W /.�x0/; (9.33)

whereR.g0/W.x0g/WDW.x0gg0/. This allows us to focus on computing FX .f�;W /.�x0/

as long as we are able to control its behavior as a function of W and f .
Letw WD

�
0 1

�1 0
�

2 SL2.F /; and denote again byw the image ofw under the diagonal
embedding SL2.F / ! SL32.F /. Let

� W F ! F 3

be the diagonal embedding. LetB2 � SL2 be the Borel subgroup of upper triangular matri-
ces and letN2 �B2 be its unipotent radical. By Bruhat decomposition, x0B32 .F /wN

3
2 .F /
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is open in SL32.F / with full measure. Therefore, there is a constant k > 0 (independent
of  ) such that

kja1a2a3j
2 dt d�a db0

D d P��
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
for t 2 F; a 2 .F �/3; b0 2 F 3: (9.34)

Therefore,

FX .f�;W /.�x0/ D
k

�.1/

Z

F �

 .z�1/jzj2

�

�Z

F�.F �/3�F 3

 
�
z2Pl

�
x0

�
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
^ Pl.�x0/

�

�W
�
x0

�
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
�

��
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��

� f .�/¹aº2 dt d�a db0

�
d�z: (9.35)

As we will always restrict W to the open Bruhat cell, we identify W with a smooth
function on F � .F �/3 � F by writing

W.t; a; b0/ WD W
�
x0

�
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
(9.36)

for .t; a; b0/ 2 F � .F �/3 � F 3.
By the formula for the Weil representation (see [20, Section 3.1] and the references

therein), one has

�
��
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
f .�/

D

.Q/�Q.a/

¹aºd=2
 .tQ.�//

Z

V.F /

 

��
�

a
; u

�
C

3X

iD1
biQi .u/

�
f .u/ du; (9.37)

where b0 D .b1; b2; b3/: Here the Haar measure du on V.F / is normalized to be self-dual
with respect to the pairing h�; �i and  . On the other hand, we have

Pl
�
x0

�
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

��
^ Pl.�x0/

D �Pl
�
x0

�
1 �.t/

1

� �
a�1

a

�
w

�
1 b0
1

�

�1
0

�
^ Pl.I6/

D �Pl
�
x0

�
�a�.t/ a�1��.t/ab0

�a �ab0

�

�1
0

�
^ e4 ^ e5 ^ e6;

where 
0 is defined as in (8.3). Under the identification

e1 ^ � � � ^ e6 7! 1;

this is

� det

�
t

P3
iD1 aibi �P3

iD1 a
�1
i

t.a1�a2/ t.a1�a3/

a2b2�a1b1 �a1�a2 �a1

a3b3�a1b1 �a1 �a1�a3

�
D �3ta1a2a3

3X

iD1
bi C r.a/;
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where r is defined as in (9.2). Combining this with (9.35)±(9.37), we obtain

FX .f�;W /.�x0/

D

.Q/k

�.1/

Z

F �

 .z�1/jzj2
�Z

F�.F ��F /3
 

�
3z2t Œa�

3X

iD1
bi � z2r.a/C tQ.�/

�

�

�Z

V.F /

 

��
�

a
; u

�
C

3X

iD1
biQi .ui /

�
f .u/ du

�
W.t; a; b0/

�Q.a/ d
�a

¹aºd=2�2 db0 dt

�
d�z:

Changing variables b0 D .b1; b2; b3/ 7! .b C v1; b C v2; b � v1 � v2/; this becomes


.Q/kj3j

�.1/

Z

F �

 .z�1/jzj2
�Z

F 2�.F �/3�F 2

 .9z2t Œa�b � z2r.a/C tQ.�//

�

�Z

V.F /

 

��
�

a
; u

�
C bQ.u/C c.u; v/

�
f .u/ du

�

�W.t; a;�.b/C v0/dv
�Q.a/ d

�a

¹aºd=2�2 db dt

�
d�z:

Here we have used the notation in (9.10) and

v0 WD .v1; v2;�v1 � v2/: (9.38)

Taking a change of variables b 7! b
9z2Œa�

; we arrive at


.Q/k

j3j�.1/

Z

F �

 .z�1/
�Z

F 2�.F �/3�F 2

 .tQ.�/C tb/ .z2r.a//

�

�Z

V.F /

 

��
�

a
; u

�
C
bQ.u/

9z2Œa�
C c.u; v/

�
f .u/ du

�

�W

�
t; a;�

�
b

9z2Œa�

�
C v0

�
dv
�Q.a/ d

�a

¹aºd=2�1 db dt

�
d�z: (9.39)

9.6. Choice of VB1;B2

Let F>1 be the set$Z<0 (resp. R>1) when F is nonarchimedean (resp. archimedean). In
this subsection, we specify our choice of VB1;B2

indexed by

¹.B1;B2/ 2 F 2>1 W j3B1j > jB2j
2º;

and derive formula (9.44) for FX .f�;VB1;B2
/.�x0g/. Then we explain how Proposition

9.3 follows from Proposition 9.15, which is stated below and proved in Section 9.7.
We point out that in the argument below, we only require j3B1j > jB2j

2 in the nonar-
chimedean case, but for uniformity we impose it in the archimedean case as well.

Recall from (9.9) that � WD K1=4 is the closure of K1=4 in SL32.F /. Suppose F is
archimedean. Choose functions H;J 2 �.F / satisfying the following conditions:
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(1) H.u/ D H.juj1=ŒF WR�/ and J.u/ D J.juj1=ŒF WR�/ for all u 2 F .

(2) H.0/ D 1 and yH , the Fourier transform of H , is compactly supported.

(3) The function J is nonnegative and bounded by 1, and

J.u/ D

´
1 if juj � 1;

0 if juj � 2:

(4) The function J satisfies the condition in Lemma 9.16 below.

For .u; B/ 2 F � F �, define HB.u/ WD H.u=B/ and JB.u/ D J.u=B/. Given
B1;B2 2 F>1; define VB1;B2

2 �.x0 SL32.F // using the coordinates (9.36) by

VB1;B2
.t; a; b0/ WD HB1

.t/

3Y

iD1
Jlog B2

.log jai j
1=ŒF WR�/JB2

.bi /:

For g D
�
m n
x y

�
2 �, we have

R.g/VB1;B2
.t; a; b0/

D HB1
.t � �g.a; b0//

3Y

iD1
Jlog B2

.log jai .mi C bixi /j
1=ŒF WR�/JB2

�
ni C biyi

mi C bixi

�

(9.40)

if mi C bixi ¤ 0 for all i , and R.g/VB1;B2
.t; a; b0/ D 0 otherwise. Here

�g.a; b0/ WD
1

3

3X

iD1

xi

a2i .mi C bixi /
:

The limit

R.g/V1;B2
.a; b0/ WD lim

jB1j!1
R.g/VB1;B2

.0; a; b0/

D

3Y

iD1
Jlog B2

.log jai .miCbixi /j
1

ŒF WR� /JB2

�
niCbiyi

miCbixi

�
(9.41)

converges pointwise.
Suppose F is nonarchimedean. For B1;B2 2 F>1 and g 2 SL32.F /, let

VB1;B2
.x0g/ WD

8
<̂

:̂

1 if x0g D x0
�
c�1 c�.u/

c

�
h;

where juj � jB1j; jB2j
�1 < jci j � jB2j; h 2 SL32.OF /;

0 otherwise.

The conditions on juj and jci j are independent of the choice of decomposition of x0g if
j3B1j > jB2j

2: More explicitly, one can check the following lemma:
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Lemma 9.14. Suppose F is nonarchimedean. Let c; c0 2 .F �/3 and u; u0 2 F: If

x0
�
c�1 c�.u/

c

�
h D x0

�
c0�1 c0�.u0/

c0

�
h0

for some h; h0 2 SL32.OF /; then jci j D jc0
i j for each i: If in addition j3B1j > jB2j

2 and

jB2j
�1 � jci j D jc0

i j � jB2j for each i , then juj � jB1j if and only if ju0j � jB1j:

Because of Lemma 9.14, we henceforth assume that j3B1j> jB2j
2:Clearly, VB1;B2

2

�.x0 SL32.F // is right SL32.OF /-invariant. Observe that for .t; ai ; bi / 2 F �F � �F , one
has

�
1 t
1

� �
a�1

i
ai

� �
1

�1
� �

1 bi
1

�
D

8
<
:

�
a�1

i
ai t
ai

� � �bi �1
1

��1
if bi 2 OF ;�

.aibi /
�1 aibi t�a�1

i

aibi

� � �1
b�1

i
�1

��1
if bi 62 OF :

Combining this with Lemma 9.14 and using coordinates as in (9.36), we have

VB1;B2
.t; a; b0/D 1B1OF

.t � �.a; b0//

3Y

iD1
.1B2OF

� 1
B

�1
2

OF
/.$ord.ai ;aibi //; (9.42)

where � W .F �/3 � F 3 ! F is given by

�.a; b0/ WD
1

3

3X

iD1
.a2i bi /

�11F�OF
.bi /:

Here we view 1F�OF
as a function valued in ¹0; 1º � F , and take the convention that

.a2i bi /
�11F�OF

.bi / D 0 if bi D 0: Consequently,

V1;B2
.a; b0/ WD lim

jB1j!1
VB1;B2

.0; a; b0/

D

3Y

iD1
.1B2OF

� 1
B

�1
2

OF
/.$ord.ai ;aibi //

where the convergence is pointwise. To unify the notation, we write H WD 1OF
, HB1

WD

1B1OF
, and for g 2 � we write

�g WD � and R.g/V1;B2
WD V1;B2

:

For F archimedean or nonarchimedean, we can rewrite (9.40) and (9.42) as

R.g/VB1;B2
.t; a; b0/ D HB1

.t � �g.a; b0//R.g/V1;B2
.a; b0/: (9.43)

For every g 2� the function R.g/V1;B2
converges pointwise a.e. to 1 as jB2j ! 1.

Moreover H.0/D 1. Thus (9.8) is satisfied.
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Let g 2 �. By (9.33), (9.39), and (9.43), we obtain

FX .f�;VB1;B2
/.�x0g/

D

.Q/k

j3j�.1/

Z

F �

 .z�1/
�Z

F 2�.F �/3�F 2

 .tQ.�/C tb/ .z2r.a//

�

�Z

V.F /

 

��
�

a
; u

�
C
bQ.u/

9z2Œa�
C c.u; v/

�
�.g/f .u/ du

�

�HB1

�
t � �g

�
a;�

�
b

9z2Œa�

�
C v0

��
R.g/V1;B2

�
a;�

�
b

9z2Œa�

�
C v0

�
dv

�
�Q.a/ d

�a

¹aºd=2�1 db dt

�
d�z:

Taking a change of variables t 7! t C �g
�
a;�

�
b
9Œa�

�
C v0� and b 7! b �Q.�/, we arrive

at


.Q/k

j3j�.1/

Z

F �

 .z�1/
�Z

F

yHB1
.b/ˆ�;g;B2

�
b �Q.�/

z2
; z; f

�
db

�
d�z; (9.44)

where yHB1
is the Fourier transform of HB1

, and we set

ˆ�;g;B2
.b; z; f /

WD

Z

.F �/3
 .z2r.a//

Z

F 2

�Z

V.F /

 

��
�

a
; u

�
C
bQ.u/

9Œa�
C c.u; v/

�
�.g/f .u/ du

�

�  

�
.z2b CQ.�//�g

�
a;�

�
b

9Œa�

�
C v0

��

�R.g/V1;B2

�
a;�

�
b

9Œa�

�
C v0

�
dv

�Q.a/ d
�a

¹aºd=2�1 :

We prove in Section 9.7 the following:

Proposition 9.15. There exist 1=2 > " > 0 and "0 > 0 such that for all g 2 � and b 2 F

with jQ.�/j=2 � jb �Q.�/j � 2jQ.�/j,
ˇ̌
ˇ̌ˆ�;g;B2

�
b �Q.�/

z2
; z; f

�ˇ̌
ˇ̌ �";"0;f;�;B2

min.1; jzj/min.d1;d2;d3/�2�2" max.1; jzj/�"
0

:

(9.45)

In particular, the bound is independent of b; g. Moreover, if b D 0, the implied constant

can be chosen so that it does not depend on B2:

We claim Proposition 9.15 implies Proposition 9.3. As yH is compactly supported, we
can chooseM 2 Z>0 such that for all jB1j>M , jQ.�/j=2� jb �Q.�/j � 2jQ.�/j for b
in the support of yHB1

. Then by (9.44) and (9.45), we have

jFX .f�;B1;B2
/.�x0g/j

�";"0;f;�;B2
k yHB1

k1

Z

F �

min.1; jzj/min.d1;d2;d3/�2�2" max.1; jzj/�"
0

d�z ��;�0 1



Harmonic analysis on certain spherical varieties 69

for all g 2 �. Here we use the fact that the L1-norm k yHB1
k1 D k yHk1 < 1 for all B1.

By Fourier inversion, yHB1
converges to the Dirac delta distribution as jB1j ! 1, and

thus by the dominated convergence theorem we have

lim
jB1j!1

FX .f�;B1;B2
/.�x0g/ D


.Q/k

j3j�.1/

Z

F �

 .z�1/ˆ�;g;B2

�
�Q.�/

z2
; z; f

�
d�z

Applying the bound in Proposition 9.15 for b D 0 and that R.g/V1;B2
converges to 1

a.e. for any g 2 �, (9.11) follows from the dominated convergence theorem and Theo-
rem 11.1. This proves Proposition 9.3.

We end this subsection with a lemma on the choice of J in the archimedean case. For
ease of notation, let

D WD ¹b 2 F W jQ.�/j=2 � jb �Q.�/j � 2jQ.�/jº � F 2 � F � � R>1;

and for .g; a;d/ D .g; a; b; v; z;B2/ 2 � � .F �/3 �D, let

T�.g; a;d/ WD R.g/V1;B2

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

�
: (9.46)

When F D C, write an D rne
p

�1�n in polar coordinates.

Lemma 9.16. The function J can be chosen so that the following conditions are satisfied.

Suppose F D R .resp. F D C/. In each variable an .resp. rn/, the preimage of zero for

each function

@ai
T�.g; a;d/; @ai

@aj
T�.g; a;d/; @a1

@a2
@a3
T�.g; a;d/

.resp. @riT�.g; re
p

�1� ;d/; @ri @rj T�.g; re
p

�1� ;d/; @r1@r2@r3T�.g; re
p

�1� ;d//
(9.47)

has finitely many connected components, and the number of connected components is

bounded by an absolute constant.

Proof. Assume firstF D R. We will make use of some standard facts on o-minimal geom-
etry. A nice reference is [48]. Consider the o-minimal structure Rexp [56] generated by the
exponential function (and algebraic functions). We can choose J 2 �.F / that is definable
and satisfies (1) and (3) above. An explicit construction is given in [47, Section 13.1].

Since the domain of T� is semialgebraic and log is definable, T� is definable and
smooth in a, and so are the derivatives in (9.47). Let Yi be the graph of the function

@ai
T� W � � .R�/3 �D ! R

Thus Yi is a definable set. It admits a decomposition into finitely many definable cells
[48, Chapter 3, (2.11)]. For each .g; a2; a3;d/, consider the fiber over .g; a2; a3;d; 0/ of
the projection map

Yi ! � � .R�/2 �D � R:
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The intersection of the fiber with each cell of Yi is either empty or connected. This follows
from [48, Exercise 7 of Chapter 3, (2.19)] and the definition of cells; see the proof of
Chapter 3, (2.9) in loc. cit. Hence the number of connected components of the fiber is
bounded by the number of cells, which is an absolute constant. This proves the assertion
for the function @ai

T�.g; a; d/ in the variable a1: The same argument can be applied to
the other functions and variables.

For F D C, T� is definable in the o-minimal structure Ran;exp [49], generated by the
exponential function and restricted real analytic functions. The rest of the arguments carry
over.

9.7. Proof of Proposition 9.15

Define, for .a; b; z; g/ 2 .F �/3 � F � F � ��,

‰�;g;B2
.a; b; z; f / WD

Z

F 2

�Z

V.F /

 

��
a�

z�
; u

�
C
bŒa�Q.u/

9Œz��
C c.u; v/

�
�.g/f .u/ du

�

�  

�
.z2b CQ.�//�g

� z�

a
;�

�
Œa�b

9Œz��

�
C v0

��

�R.g/V1;B2

� z�

a
;�

�
Œa�b

9Œz��

�
C v0

�
�Q.az�/¹aºd=2�2 dv:

Comparing with ‰�.a; b; �.g/f / defined in (9.12), the only difference between the two
functions is the introduction of the weight function

 

�
.z2b CQ.�//�g

� z�

a
; �

�
Œa�b

9Œz��

�
C v0

��
R.g/V1;B2

� z�

a
; �

�
Œa�b

9Œz��

�
C v0

�
: (9.48)

Changing variables a 7! a�1z� in the definition of ˆ�;g;B2
.b; z; f / we have

ˆ�;g;B2
.b; z; f / D �.1/3

3Y

iD1
j�i j

1�di=2

Z

.F �/3
 .z2r.a�1z�//‰�;g;B2

.a; b; z; f / da;

just as in (9.13). Thus the bound (9.45) would be implied by Proposition 9.6 except we
have introduced the weight function (9.48) and replaced �Q.�/

z2 by b�Q.�/
z2 : The remainder

of the proof of Proposition 9.15 amounts to modifying the proof of Proposition 9.6 to
prove (9.45).

Let us begin this process. We assume for the remainder of the proof that b 2 F is such
that jQ.�/j=2 � jb �Q.�/j � 2jQ.�/j. Put

G.b; �/ WD

�
j�1 ˝ �2 ˝ �3j

jb �Q.�/j

�1=2
D CbG.�/

for some .1=2/1=2 � Cb � 21=2, where G.�/ is defined in (9.14). As the absolute
value of (9.48) is bounded by 1, the bounds in (9.15), (9.17) are valid if we replace
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‰�.a;�Q.�/=z
2; �.g/f / and G.�/ by ‰�;g;B2

.a; b �Q.�/=z2; z; f / and G.b; �/, and
the implied constants can be taken to be independent of b; g;B2: One simply replaces
Corollaries 9.8 and 9.9 with Theorems 11.1 and 11.17, respectively. In fact, the only dif-
ference between the latter results and the former is that one absolute value sign is outside
(resp. inside) the integral over F 2 in the former (resp. latter). Thus to prove (9.45) we are
left with bounding the analogue of (9.18), namely

ˇ̌
ˇ̌
Z

jaj�.jzjG.b;�//2˛

 .z2r.a�1z�//‰�;g;B2

�
a;
b �Q.�/

z2
; z; f

�
da

ˇ̌
ˇ̌

for N < jzjG.b; �/ and 1=6 > ˛ > 0 sufficiently small. Here N 2 Z>0 is a constant to be
determined in the nonarchimedean case, and is 1 in the archimedean case. We therefore
assume for the remainder of the proof that jaj � .jzjG.b;�//2˛ andN < jzjG.b;�/, where
0 < ˛ < 1=6 and N 2 Z>0:

Let F be nonarchimedean. Define

‰0
�;g;B2

.a; b; f / D

Z

F 2

�Z

V.F /

 

��
a�

z�
; u

�
C c.u; v/

�
�.g/f .u/ du

�

�  

�
b�g

� z�

a
; v0

��
R.g/V1;B2

� z�

a
; v0

�
�Q.az�/¹aºd=2�2 dv:

As

jaj2
ˇ̌
ˇ̌ Œa�.b �Q.�//

9z2Œz��

ˇ̌
ˇ̌ � .jzjG.b; �//10˛�2; (9.49)

we can choose N large, independent of b; g;B2, such that

 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

�
� b�g

� z�

a
; v0

��
D 1:

Moreover, in view of (9.43), R.g/V1;B2
.z�=a; b0/ is invariant under b0 7! b0 C u0 for

u0 2 $O
3
F . Consequently,

‰�;g;B2

�
a;
b �Q.�/

z2
; z; f

�
D ‰0

�;g;B2
.a; b; f /

for N large by (9.49) and (9.19). The analogue of (9.22) with ‰�.a; 0; f / replaced by
‰0
�;g;B2

.a; b; f / is valid since j j D 1 and jR.g/V1;B2
j � 1: We simply replace Corol-

lary 9.10 by Theorem 11.4. Thus to complete the proof of (9.45) in the nonarchimedean
case, it suffices to show that the analogue of Lemma 9.11 holds, namely, for ˛ > 0 suffi-
ciently small, there exists "0 > 0 such that

ˇ̌
ˇ̌
Z

.jzjG.b;�//�2˛�jai j�.jzjG.b;�//2˛

 .z2r.a�1z�//‰0
�;g;B2

.a; b; f / da

ˇ̌
ˇ̌ �"0;f;� jzj�"

0

:

(9.50)
To deduce the bound (9.50), observe that for juj �� .jzjG.b; �//

�2˛ ,

 

�
b�g

� z�

aC u
; v0

�
� b�g

� z�

a
; v0

��
D 1:



J. R. Getz, C.-H. Hsu, S. Leslie 72

Note thatR.g/V1;B2
.z�=a; b0/ is also invariant under a 7! aC u for u 2$

Q3
iD1 aiOF :

Therefore, for m 2 Z>0 sufficiently large, depending on �; f; �Q, and any ` 2 Z>0 such
that j$`j � j$mj.jzjG.b; �//�2˛; the function ‰0

�;g;B2
.a; b; f / is invariant under a 7!

aC$`x for any x 2 O
3
F : Furthermore, since j j D 1 and jR.g/V1;B2

j � 1, we can use
Theorem 11.4 in place of Corollary 9.10 in the proof of Lemma 9.11 and argue as in that
proof to prove (9.50). We also observe that all of our bounds are independent of B2; even
if b ¤ 0; so the last assertion of Proposition 9.15 follows as well.

Suppose that F is archimedean. First consider the analogue of the bound (9.20) for
‰�;g;B2

�
a; b�Q.�/

z2 ; z; f
�
. Write

‰�;g;B2

�
a;
b �Q.�/

z2
; z; f

�

D

Z

F 2

T�.g; a;d/ 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

�
 

��
a�

z�
; u

�
C
Œa�.b �Q.�//Q.u/

9z2Œz��
C c.u; v/

�

�  

��
a�

z�
; u

�
C c.u; v/

��
f .u/ du

�
�Q.az�/

¹aº2�d=2 dv

C

Z

F 2

T�.g; a;d/ 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

 

��
a�

z�
; u

�
C c.u; v/

�
f .u/ du

�
�Q.az�/

¹aº2�d=2 dv: (9.51)

Here we use the notation (9.46). Let

z‰�;g;B2
.b; c; z; f / WD

Z

jaj�.jzjG.b;�//2˛

 .z2r.a�1z�//

�

Z

F 2

T�.g; a;d/ 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

 

��
a�

z�
; u

�
C
Œa�cQ.u/

9Œz��
C c.u; v/

�
f .u/

�Q.az�/

¹aº2�d=2 du
�
dv da:

By the same argument proving (9.20), with Theorem 11.1 replacing Corollary 9.8, we
deduce the following analogue of (9.20):
ˇ̌
ˇ̌ z‰�;g;B2

�
b;
b �Q.�/

z2
; z; f

�
� z‰�;g;B2

.b; 0; z; f /

ˇ̌
ˇ̌ �f .jzjG.b; �//

6˛�2
ŒF WR� �� jzj

6˛�2
ŒF WR� :

Here we have used the fact that j j D 1 and jR.g/V1;B2
j � 1. As in the nonarchimedean

case, the analogue of (9.22) with ‰�.a; 0; f / replaced by the second term of (9.51) is
valid; one applies Theorem 11.4 in place of Corollary 9.10.
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Therefore, we are left with showing that the analogue of the bound in Lemma 9.11
remains valid for the second term of (9.51). In other words, we need to show that for all
jzjG.b; �/ > 1 the quantity

ˇ̌
ˇ̌
Z

.jzjG.b;�//�2˛�jai j�.jzjG.b;�//2˛

 .z2r.a�1z�//

�

Z

F 2

T�.g; a;d/ 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

 

��
a�

z�
; u

�
C c.u; v/

�
f .u/ du

�
�Q.az�/

¹aº2�d=2 dv da

ˇ̌
ˇ̌ (9.52)

is bounded by a constant, depending on B2 if b¤ 0, times jzj�"
0
for some "0 >0. We show

that the argument proving Lemma 9.11 can be adapted to the current setting. Assume F is
real. We prove an analogue of Lemma 9.12, namely, for any bounded continuous function
h on R3>0 and .jzjG.b; �//2˛ � c > 1 one has

ˇ̌
ˇ̌
Z

c�1�ai �c
h.a/

Z

F 2

T�.g; a;d/ 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

�
 

��
a�

z�
; u

�
C c.u; v/

�
f .u/ du

�
�Q.az�/

¹aº2�d=2 dv da

ˇ̌
ˇ̌

�f;B2;� jzj6˛ sup
c�1<ai �c

ˇ̌
ˇ̌
Z a1

c�1

Z a2

c�1

Z a3

c�1

h.r/ dr

ˇ̌
ˇ̌: (9.53)

Combined with (9.28), this gives rise to the desired bound on (9.52) by choosing ˛ > 0
sufficiently small.

We prove (9.53) using integration by parts as in the proof of Lemma 9.12. We have
analogues of all of the terms appearing in that proof. They can all be bounded as before
using the fact that j j D 1 and jT� j � 1; replacing the use of Corollary 9.10 by Theo-
rem 11.4. We also have additional terms that can be bounded similarly as we now explain.
First, using (9.41), one checks that (for jaj � .jzjG.b; �//2˛) in the support of T�.g; a;d/
the quantities

ˇ̌
ˇ̌@ai

 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��ˇ̌
ˇ̌;

ˇ̌
ˇ̌@ai

@aj
 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��ˇ̌
ˇ̌;

ˇ̌
ˇ̌@a1

@a2
@a3
 

�
b�g

� z�

a
;�

�
Œa�.b �Q.�//

9z2Œz��

�
C v0

��ˇ̌
ˇ̌

(9.54)

are bounded by OB2
.1/. The additional terms that we have to bound involve the deriva-

tives in (9.54) and derivatives of T�.g; a;d/: One such term is
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Z c

c�1

Z

F 2

ˇ̌
ˇ̌T�.g; c; c; a3;d/@a3

 

�
b�g

� z�1

c
;

z�2

c
;

z�3

a3
; �

�
c2a3.b �Q.�//

9z2Œz��

�
C v0

��

�

�Z

V.F /

 

� 2X

jD1

�
c�j

z�j
;uj

�

j

C

�
a3�3

z�3
;u3

�

3

C c.u;v/

�
f .u/du

�ˇ̌
ˇ̌ da3 dv

c4�.d1Cd2/=2a
2�d3=2
3

;

This term is nonzero only if b ¤ 0 and is bounded by OB2;f .c/ times

sup
c�1�a3�c

Z

F 2

ˇ̌
ˇ̌
Z

V.F /

 

� 2X

jD1

�
c�j

z�j
; uj

�

j

C

�
a3�3

z�3
; u3

�

3

C c.u; v/

�
f .u/ du

�ˇ̌
ˇ̌

�
dv

c4�.d1Cd2/=2a
2�d3=2
3

by our bounds on (9.54), which is OB2;f .c/ by Theorem 11.4. This is a sufficient bound
for the purposes of proving (9.53), and all the terms not involving any derivative of
T�.g; a;d/ can be treated in the same manner.

Consider the terms involving derivatives of T�.g; a;d/, e.g.

Z

F 2

Z c

c�1

ˇ̌
ˇ̌@a3

T�.g; c; c; a3;d/

�

�Z

V.F /

 

� 2X

jD1

�
c�j

z�j
; uj

�

j

C

�
a3�3

z�3
; u3

�

3

C c.u; v/

�
f .u/ du

�ˇ̌
ˇ̌

�
da3 dv

c4�.d1Cd2/=2a
2�d3=2
3

; (9.55)

where 1 � c � .jzjG.b; �//2˛ . Here we have used the fact j j D 1 and the Fubini±Tonelli
theorem to switch the order of integrations over a3 and v. Note that as a function of
c�1 � a3 � c,

ˇ̌
ˇ̌
Z

V.F /

 

� 2X

jD1

�
c�j

z�j
; uj

�

j

C

�
a3�3

z�3
; u3

�

3

C c.u; v/

�
f .u/ du

ˇ̌
ˇ̌ 1

c4�.d1Cd2/=2a
2�d3=2
3

is Lipschitz continuous by Lemma 11.2 and hence absolutely continuous, so it is dif-
ferentiable a.e. and the derivative is integrable and satisfies the fundamental theorem of
calculus [55, Theorem 7.29]. Applying integration by parts [55, Theorem 7.32] to the
integral over a3, (9.55) is bounded by the sum of

Z

F 2

Z c

c�1

j@a3
T�.g; c; c; a3;d/j da3

ˇ̌
ˇ̌
Z

V.F /

 

� 3X

jD1

�
c�j

z�j
; uj

�

j

C c.u; v/

�
f .u/ du

ˇ̌
ˇ̌

�
dv

c6�.d1Cd2Cd3/=2
(9.56)
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and
Z

F 2

Z c

c�1

Z r

c�1

j@a3
T�.g; c; c; a3;d/j da3

� @r

ˇ̌
ˇ̌
Z

V.F /

 

� 2X

jD1

�
c�j

z�j
;uj

�

j

C

�
r�3

z�3
;u3

�

3

C c.u;v/

�
f .u/

du

r2�d3=2

ˇ̌
ˇ̌ dr dv

c4�.d1Cd2/=2
:

(9.57)

By Theorem 11.4, the first term (9.56) is bounded by Of .1/ times

sup
v1;v22F

Z c

c�1

j@a3
T�.g; c; c; a3;d/j da3:

By Lemma 9.16 and the fundamental theorem of calculus, the integral is dominated by 1
for all 1 � c � .jzjG.b; �//2˛ . On the other hand, by the second mean value theorem for
Lebesgue integrals [57, Theorem 1], (9.57) equals

Z

F 2

Z c

c�1

j@a3
T�.g; c; c; a3;d/j da3

�

Z c

e.g;d/

@r

ˇ̌
ˇ̌
Z

V.F /

 

� 2X

jD1

�
c�j

z�j
; uj

�

j

C

�
r�3

z�3
; u3

�

3

C c.u; v/

�
f .u/

du

r2�d3=2

ˇ̌
ˇ̌

�
dr dv

c4�.d1Cd2/=2
;

for some e.g;d/ 2 .c�1; c/. For the same reason as above, this is bounded byOf .1/. The
other terms can be treated similarly, yielding the bound (9.53).

The case F D C can be handled similarly using polar coordinates. As mentioned
above, this is enough to deduce (9.45). Now we observe that the only place in this argu-
ment where our bounds are not uniform in B2 is in the estimation of (9.54). These terms
vanish if b D 0: Thus we obtain uniformity of the bound when b D 0 as claimed.

10. The operator FY is unitary

In this section, we apply Theorem 9.1 to prove the following.

Theorem 10.1. Let F be a nonarchimedean local field of characteristic zero. Suppose

dim Vi > 2 for all 1 � i � 3 and Y sm.F / ¤ ;. The Fourier transform FY extends to a

unitary operator on L2.Y.F //. Moreover, for f1; f2 2 L2.Y.F //;
Z

Y.F /

FY .f1/.y/f2.y/ d�.y/ D

Z

Y.F /

f1.y/FY .f2/.y/ d�.y/: (10.1)

Recall the definition of � from (8.7). The following lemma is the only place in the
argument where we use the assumption that F is nonarchimedean:
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Lemma 10.2. Assume F is a nonarchimedean local field of characteristic zero. Given

f 2 � ; there exists a sequence of functions fi 2 � such that

lim
i!1

Z

Y.F /

fi .y/FY . xf /.y/ d�.y/ D

Z

Y.F /

FY .f /.y/FY . xf /.y/ d�.y/;

lim
i!1

Z

Y.F /

FY .fi /.y/ xf .y/ d�.y/ D

Z

Y.F /

f .y/ xf .y/ d�.y/:

Remark 10.3. We expect that the proof of this lemma could be adapted to the
archimedean case if one develops a theory of Sobolev spaces for X.F / together with
an analogue of Morrey’s inequality.

Proof of Lemma 10.2. We can and do assume FY .f / D I. zf1 ˝ zf2/ for some zf1 ˝ zf2 2

�.X.F //˝ �.V .F // (see (8.6)). Choose a compact open subgroup K of Sp6.OF / such
that zf1 is right K-invariant. Choose zfi1 2 C1

c .x0 SL32.F //
K such that zfi1 ! zf1 in

L2.X.F //. Put fi WD I. zfi1 ˝ ef2/. There is a constant c > 0 (depending only on ef2
and K) such that

jFY .f /.y/ � fi .y/j � ck zf1 � zfi1k2

3Y

jD1
jyj j�dj =2C2=3

for all y 2 Y ani.F /. Indeed, this is implicit in the proof of [19, Proposition 11.4]. Thus by
[19, Proposition 11.1] we have

jFY .f /.y/ � fi .y/j jFY . xf /.y/j �f;ˇ;K k zf1 � zfi1k2

3Y

jD1
jyj jˇ=3�dj C4=3 (10.2)

for 1=2 > ˇ > 0. Moreover, FY . xf / has support contained in a compact subset of Y.F /
[20, Proposition 7.1]. Thus applying (10.2) and (10.3) to be proved below, we obtain

Z

Y.F /

jFY .f /.y/ � fi .y/j jFY . xf /.y/j d�.y/ �f;K k zf1 � zfi1k2:

The first equality follows. Since FX is an isometry on L2.X.F //K ; the second equality
follows from the same argument.

Before giving the proof of Theorem 10.1, we prepare some estimates.

Lemma 10.4. Let F d be a vector space of dimension d and Q be a nondegenerate

quadratic form on F d . There exists ˛ > 0 such that for any 0 < t < 1;

Z

jvj�1; jQ.v/j�t
dv �˛ t

˛:

Proof. We can and do assume the matrix of Q is the diagonal matrix diag.c1; : : : ; cd /
where ci 2 F �.
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We first consider the archimedean case. Suppose F D R. We may assume some ci � 1.
Then the lemma is a consequence of [11, Theorem 1.3]. If F D C;we may assume each ci
equals 1. Thus in real coordinates, jQ.v/j is a homogeneous polynomial of degree 4 with
coefficients in Z�0. The assertion again follows from loc. cit.

Suppose F is nonarchimedean. We may also assume jci j � 1 for some i . Assume that
the conductor of the additive character  is OF . According to [12, Proposition 3.6],

ˇ̌
ˇ̌
Z

O
d
F

 .uQ.v// dv

ˇ̌
ˇ̌ � max.1; juj/�1=2

for u 2 F �. Consequently for n > 0 we have
Z

jvj�1;jQ.v/j�q�n

dv D
1

qndx.OF /

Z

$�nOF

�Z

O
d
F

 .uQ.v// dv

�
du

�
1

qn

Z

juj�qn

juj�1=2 du

�
1

qn=2
:

Lemma 10.5. For f 2 � ;

Z

Y ani.F /

jf .y/j

3Y

iD1
jyi j

�ei d�.y/ < 1 (10.3)

and Z

jQ.y/j�jy1j jy2j jy3j
jf .y/j jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/ < 1 (10.4)

for any ei < di � 4=3 and " > 0 sufficiently small .depending on ei /. Here the integral in

(10.4) is over y 2 Y ani.F / satisfying the given inequality.

Proof. Since f 2 � ; we have

jf .y/j � 1$�nV.OF /.y/ (10.5)

for some n if F is nonarchimedean, and

jf .y/j �N max.1; jyj/�N (10.6)

for any N 2 Z>0 if F is archimedean. Therefore (10.3) follows from the proof of [19,
Proposition 11.2].

In the following, we use the homogeneity property: for r 2 F �,

d�.ry/ D jr jd1Cd2Cd3�4 d�.y/:

All of the integrals with respect to the measure d�.y/ in the remainder of the proof will
be over subsets of Y ani.F / satisfying the inequalities given in the subscript.
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Assume that F is nonarchimedean. By (10.5), for some n > 0, (10.4) is dominated by

Z

jQ.y/j�jyj3; jyj�qn

jQ.y/j�"
3Y

iD1
jyi j

�ei d�.y/

�

Z

jQ.y/j�qnjyj3; jyj�1
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/

D

1X

jD0
q�j.�2"�4CP3

iD1.di �ei //

Z

jQ.y/j�qn�j ; 1�jyj<2
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/:

Here we could just write jyj D 1; but we have written 1 � jyj < 2 so that we can
use the same formula in both archimedean and nonarchimedean cases. Suppose F is
archimedean. By (10.6), we find that (10.4) is dominated by

1X

jD1

Z

jQ.y/j�jyj3; 2�j �jyj<2�j C1

jQ.y/j�"
3Y

iD1
jyi j

�ei d�.y/

C

1X

jD0

Z

jQ.y/j�jyj3; 2j �jyj<2j C1

jyj�N jQ.y/j�"
3Y

iD1
jyi j

�ei d�.y/

D

1X

jD1
2�j.�2"�4CP3

iD1.di �ei //

Z

jQ.y/j�2�j jyj3; 1�jyj<2
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/

C

1X

jD0
2j.�N�2"�4CP3

iD1.di �ei //

�

Z

jQ.y/j�2j jyj3; 1�jyj<2
jyj�N jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/

�

1X

jD1
2�j.�2"�4CP3

iD1.di �ei //

Z

jQ.y/j�2�j C3; 1�jyj<2
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/

C

1X

jD0
2j.�N�2"�4CP3

iD1.di �ei //

Z

jQ.y/j�2j C3; 1�jyj<2
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/:

Consider Z

jQ.y/j�cj ; 1�jyj<2
jQ.y/j�"

3Y

iD1
jyi j

�ei d�.y/; (10.7)

where

c D c.F / D

²
q if F is nonarchimedean,

2 if F is archimedean.

The integral (10.7) is nondecreasing as j ! 1 and is independent of j for j sufficiently
large since jQ.y/j � jyj2. Choose N > �4C

P3
iD1.di � ei / in the archimedean case.
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The manipulations above show that to prove (10.4) it suffices to show that we can choose
" > 0 that is sufficiently small in a sense depending on ei such that (10.7) is finite for a j
greater than a constant depending only on Q.

Observe that (10.7) is bounded by

j�1X

kD�1
c�"k

Z

ck<jQ.y/j�ckC1; 1�jyj<2

3Y

iD1
jyi j

�ei d�.y/: (10.8)

To proceed, we first obtain a bound on

Z

ck<jQ.y/j�ckC1; 1�jyj<2

3Y

iD1
jyi j

�ei d�.y/:

By symmetry, it suffices to bound

Z

ck<j3Q3.y3/j<ckC1

max.jy1j;jy2j/�jy3j; 1�jy3j<2

3Y

iD1
jyi j

�ei d�.y/: (10.9)

Arguing as in the proof of the finiteness of the integral in (11.0.7) of [19, Proposition
11.2], (10.9) is bounded by a constant depending on di ; ei times

Z

jv3j<2; j3Q3.v3/j�ckC1

dv3: (10.10)

By Lemma 10.4, (10.10) is O.c˛min.0;kC1// for some 1 > ˛ > 0. Take " < ˛=2. Then
(10.8) is dominated by

j�1X

kD�1
c�k˛=2c˛min.0;kC1/ < 1:

Proof of Theorem 10.1. Assume for the moment that (10.1) is valid for functions in � .
Let f 2 � and choose fi as in Lemma 10.2 for f . We recall from [19, Corollary 12.7]
that

FY ı FY .f / D f and FY .f / D FY . xf /:

Thus we obtain

kFY .f /k
2
2 D

Z

Y.F /

FY .f /.y/FY .f /.y/ d�.y/ D

Z

Y.F /

FY .f /.y/FY . xf /.y/ d�.y/

D lim
i!1

Z

Y.F /

fi .y/FY . xf /.y/ d�.y/ D lim
i!1

Z

Y.F /

FY .fi /.y/ xf .y/ d�.y/

D

Z

Y.F /

f .y/ xf .y/ d�.y/ D kf k22:

Since � contains C1
c .Y

sm.F //; which is dense in L2.Y.F //; the operator FY extends to
a unitary operator on L2.Y.F // and (10.1) is valid for all f1; f2 2 L2.Y.F //.
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It remains to prove the identity (10.1) for f1; f2 2 � . Recall that as Y sm.F / is non-
empty, Y ani.F / is dense in Y.F / in the Hausdorff topology. Using Theorem 9.1, we have

Z

Y.F /

FY .f1/.y/f2.y/ d�.y/

D c

Z

Y ani.F /

Z

F �

 .z�1/
�Z

.F �/3
 .z2r.a//

�

�Z

Y.F /

 

��
y

a
; �

�
�
Q.�/Q.y/

9z2Œa�

�
f1.�/f2.y/ d�.�/

�
�Q.a/ d

�a

¹aºd=2�1

�
d�z d�.y/:

(10.11)

By Corollary 9.7 and Lemma 10.5, the integral

Z

Y ani.F /

Z

F �

jf2.y/j

ˇ̌
ˇ̌
Z

.F �/3
 .z2r.a//

�Z

Y.F /

 

��
y

a
; �

�
�
Q.�/Q.y/

9z2Œa�

�
f1.�/ d�.�/

�

�
�Q.a/ d

�a

¹aºd=2�1

ˇ̌
ˇ̌ d�z d�.y/

is finite. By (9.13), Corollary 9.8, and Lemmas 9.4 and 10.5, so is the integral
Z

Y.F /

Z

.F �/3
jf2.y/j

ˇ̌
ˇ̌
Z

Y.F /

 

��
y

a
; �

�
�
Q.�/Q.y/

9z2Œa�

�
f1.�/ d�.�/

ˇ̌
ˇ̌ d�a

¹aºd=2�1 d�.y/:

Finally, by Lemma 10.5 we have
Z

Y.F /

Z

Y.F /

jf2.y/j jf1.�/j d�.�/ d�.y/ < 1:

Thus by the Fubini±Tonelli theorem, we can move the integral over y 2 Y.F / in (10.11)
to see that it is equal to

c

Z

F �

 .z�1/
�Z

.F �/3
 .z2r.a//

�

�Z

Y.F /�Y.F /
 

��
y;
�

a

�
�
Q.�/Q.y/

9z2Œa�

�
f1.�/f2.y/ d�.�/ d�.y/

�
�Q.a/ d

�a

¹aºd=2�1

�
d�z:

This is visibly symmetric in f1 and f2 and we deduce the theorem.

11. Analytic estimates

Let F be a local field of characteristic zero. In this section, we establish the estimates
used in Section 9. We follow the notation in Section 9. The Haar measure du on V.F / is
normalized to be self-dual with respect to  and the pairing h�; �i. The following theorem
is the main result:
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Theorem 11.1. Suppose dim Vi > 2 for all 1 � i � 3. Let f 2 �.V .F //. Given 1=2 >

" > 0; one has

Z

.F �/3�F 2

ˇ̌
ˇ̌
Z

V.F /

 

��
a�

z�
; u

�
C
bŒa�Q.u/

9Œz��
C c.u; v/

�
f .u/ du

ˇ̌
ˇ̌ dv d

�a

¹aº1�d=2

�";f min

�
1;

ˇ̌
ˇ̌�1 ˝ �2 ˝ �3

b

ˇ̌
ˇ̌
�min.d1;d2;d3/=2�1�"

(11.1)

for .b; �/ 2 F � Y ani.F /. Here by convention min
�
1;

ˇ̌
�1˝�2˝�3

b

ˇ̌�
D 1 if b D 0:

We bound the left-hand side as an iterated integral, first establishing a bound on the
inner integral in (11.3). We then treat the integral over F 2 Š N0.F / in Section 11.1 by
analyzing the bound in (11.3) term-by-term. Finally, we bound the integral over .F �/3 in
Section 11.2, proving the theorem.

We begin with a lemma that estimates the integral over V.F /.

Lemma 11.2. Let f 2 �.Vi .F //; � 2 Vi .F / and b 2 F . There are a pair of C-linear

maps

�.Vi .F // ! �.F � Vi .F //; f 7! ‰j;f ;

for 1 � j � 2; continuous in the archimedean case, such that

Z

Vi .F /

 .bQi .u/C h�; uii /f .u/ du

D

´
‰1;f .b; �/C‰2;f .1=b; �=b/jbj�di=2
.bQi / .Qi .�/=b/ if b ¤ 0;

‰1;f .0; �/ if b D 0:

Here 
.bQi / WD
. ı bQi / is the Weil index [54, Théorème 2]. It satisfies j
.bQi /j D1.

Proof. Let p1; p2 2 C1.F / be a partition of unity such that

p1.x/ D 1 for jxj � 1 and p2.x/ D 1 for jxj � 2:

For .x; y/ 2 F � Vi .F /; let

‰1;f .x; y/ WD p1.x/

Z

Vi .F /

 .xQi .u/C hy; uii /f .u/ du:

It is easy to check that ‰1;f 2 �.F � Vi .F //.
By Fourier inversion and [54, Théorème 2], for .x; y/ 2 F � � Vi .F / one has
Z

Vi .F /

 .xQi .u/C hy; uii /f .u/ du

D

.xQi /

jxjdi=2

Z

Vi .F /

 

�
Qi .y � u/

x

�
yf .u/ du

D

.xQi /

jxjdi=2

Z

Vi .F /

 

�
Qi .u/ � 2hy; uii CQi .y/

x

�
yf .u/ du:
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Here yf denotes the Fourier transform of f with respect to the pairing h�; �ii : Thus we can
set

‰2;f .x; y/ WD p2.x
�1/

Z

Vi .F /

 .�2hy; uii C xQi .u// yf .u/ du

if x ¤ 0 and ‰2;f .0; y/ WD
R
Vi .F /

 .�2hy; uii / yf .u/ du D f .�2y/:

It suffices to prove Theorem 11.1 when f D f1 ˝ f2 ˝ f3 is a pure tensor; we
henceforth assume this. To simplify matters, we introduce the space A.F n/ of rapidly

decreasing functions on F n as follows. If F is nonarchimedean, A.F n/ WD �.F n/. If F
is archimedean, let C.F n/ be the space of continuous complex-valued functions on F n:
For a multi-index ˛ D .˛1; : : : ; ˛n/ 2 Zn�0 and x D .x1; : : : ; xn/ 2 F n, define x˛ WDQn
iD1 x

˛i

i 2 F . Put

A.F n/ WD
°
f 2 C.F n/ W kf k˛ WD sup

x2F n

jf .x/j.x˛x˛/1=2 < 1 for all ˛ 2 Zn�0
±
:

Here the bar denotes complex conjugation, which is trivial if F is real. The seminorms
k�k˛ define a topology on A.F n/ under which the natural inclusions

�.F n/ ,! A.F n/ ,! Lp.F n/

for 0 < p � 1 and the linear operators

A.F n/ ! C; f 7!

Z

F n

x˛f .x/ dx;

are continuous for any ˛ 2 Zn�0:
Consider the map

A.Vi .F // ! A.F /; fi 7!

�
a 7! sup

0¤�i 2Vi .F /

ˇ̌
ˇ̌fi

�
a�i

z�i

�ˇ̌
ˇ̌
�
: (11.2)

It is continuous when F is archimedean. Thus by Lemma 11.2 one has

ˇ̌
ˇ̌
Z

V.F /

 

��
a�

z�
; u

�
C
bŒa�Q.u/

9Œz��
C c.u; v/

�
f .u/ du

ˇ̌
ˇ̌ � H

�
a;
bŒa�

3Œz��
; v1; v2

�
; (11.3)

where

H.a; c; v1; v2/ WD

�
ˆ1.v1 C c=3; a1/Cˆ0

1

�
.1; a1/

v1 C c=3

�
jv1 C c=3j�d1=2

�

�

�
ˆ2.v2 C c=3; a2/Cˆ0

2

�
.1; a2/

v2 C c=3

�
jv2 C c=3j�d2=2

�

�

�
ˆ3.�v1�v2Cc=3; a3/Cˆ

0
3

�
.1; a3/

�v1�v2Cc=3

�
j�v1�v2Cc=3j�d3=2

�
(11.4)

for some ˆi WD ˆ1;fi
; ˆ0

i WD ˆ2;fi
2 A.F 2/, which can be chosen continuously in fi 2

�.Vi .F // in the archimedean case.
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11.1. Estimation of the integral over N0.F /

We will expand the product inH.a;c;v1; v2/ and then integrate each of the corresponding
terms in (11.3).

Lemma 11.3. Suppose d; d1; d2 � 2. Let ˆ;ˆ1; ˆ2 2 A.F /.

(i) There exist ‰1 2 A.F /;‰2 2 A.F 2/ such that

ˇ̌
ˇ̌
Z

F

ˆ1

�
x

v

�
jvj�dˆ2.c � v/ dv

ˇ̌
ˇ̌ � ‰1

�
x

c

�
jcj�d C‰2.x; c/

for .x; c/ 2 F � F � with jxj � 1.

(ii) There exists ‰ 2 A.F 2/ such that

ˇ̌
ˇ̌
Z

F

ˆ1

�
x1

v

�
jvj�d1ˆ2

�
x2

c � v

�
jc � vj�d2 dv

ˇ̌
ˇ̌

� ‰

�
.x1; x2/

c

�
.jx1j

1�d1 jcj�d2 C jcj�d1 jx2j
1�d2/

C max.jcj; jx1j; jx2j/
1�d1�d2

for .x1; x2; c/ 2 .F �/3.

(iii) One has ˇ̌
ˇ̌
Z

F

max.jvj; jxj/�dˆ.c � v/ dv

ˇ̌
ˇ̌ � max.jcj; jxj/�d

for .x; c/ 2 F 2 with jxj � 1.

(iv) There exists ‰ 2 A.F / such that

ˇ̌
ˇ̌
Z

F

max.jvj; jx1j/
�d1ˆ

�
x2

c � v

�
jc � vj�d2 dv

ˇ̌
ˇ̌

� ‰

�
x2

c

��
max.jx1j; jcj/

�d1 jx2j
1�d2 C jx1j

�d1 jcj�d2 min.jx1j; jcj/
�

C max.jcj; jx2j/
1�d2 max.jcj; jx1j; jx2j/

�d1

for .x1; x2; c/ 2 .F �/3.

The implicit constants and rapidly decreasing functions ‰;‰1;‰2 may be chosen contin-

uously as a function of ˆ;ˆ1; ˆ2 2 A.F / in the archimedean case.

For the proof of the lemma, we consider the following extension of functions: Let ‰
be a continuous function defined on ¹x 2 F n W jxj � 1º. In the nonarchimedean case, if‰
is smooth of compact support, let ‰ext 2 A.F n/ be the function that extends ‰ by zero.
In the archimedean case, for 0 � t � 1 and x 2 F n of norm 1, ‰ext.tx/ WD t‰.x/. One
has

k‰extk˛ D sup
x2F n; jxj�1

jx˛‰.x/j:
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If this is finite for all ˛ 2 Zn�0 then we say ‰ is rapidly decreasing. In this case
‰ext 2 A.F n/: In either the nonarchimedean or archimedean case if ‰ is nonnegative
then so is ‰ext.

Proof of Lemma 11.3. We can and do assume every function under consideration is non-
negative.

For (i), take a change of variables v 7! cv. The integral becomes

jcj1�d
Z

F

ˆ1

�
x=c

v

�
jvj�dˆ2.c � cv/ dv:

The contribution of jvj � 1=4 is bounded by

jcj1�d
Z

jvj�1=4
ˆ1

�
x=c

v

�
jvj�ddv sup

3jcj�jwj�jcj=4
ˆ2.w/: (11.5)

For .x; c/ 2 F 2, put

‰0.c/ WD jcj sup
3jcj�jwj�jcj=4

ˆ2.w/; ‰0
2.x; c/ WD

r
sup

jxj�jrj
‰0.r/‰0.c/:

Note that if jx=cj � 1 and jxj � 1, then taking a change of variables v 7! vx=c in (11.5),
we see that it is bounded by

‰0.c/jxj�d
Z

F

ˆ1.v
�1/jvj�d dv �ˆ1

‰0
2.x; c/:

For y 2 F and jyj � 1, put

‰0
1.y/ WD

Z

jvj�1=4
ˆ1

�
y

v

�
jvj�ddv:

Then .‰0
1/ext 2 A.F /; ‰0

2 2 A.F 2/: Bounding the contribution of jx=cj � 1 in terms
of ‰0

1 and the contribution of jx=cj � 1 in terms of ‰0
2; we see that (11.5) is bounded by

a constant Cˆ1;ˆ2
times

jcj�d .‰0
1/ext

�
x

c

�
C‰0

2.x; c/:

The contribution of j1 � vj � 1=4 is bounded by jcj�d times

‰00
1

�
x

c

�
WD sup

3�jvj�1=4
ˆ1

�
x=c

v

�
jvj�dkˆ2k1:

Note that ‰00
1 2 A.F /. Finally, define

‰000
1 .y/ WD sup

yDx=c
jxj�1; jcj�1

Z

min.jvj;j1�vj/>1=4
ˆ1

�
x=c

v

�
jvj�dˆ2.c.1 � v// dv

for y 2 F; jyj � 1;

‰00
2.x; c/ WD jcj1�d

Z

min.jvj;j1�vj/>1=4
ˆ1

�
x=c

v

�
jvj�dˆ2.c.1 � v// dv

for .x; c/ 2 F 2; jcj � 1:
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Let ‰000
2 .x; c/ WD .‰00

2.x; �//ext.c/: Thus ‰000
2 2 A.F 2/: Taking ‰1 WD .‰0

1/ext C ‰00
1 C

.‰000
1 /ext and ‰2 WD ‰0

2 C‰000
2 proves (i).

For (ii), the contribution of jvj � jcj=2 is dominated by
Z

jvj�jcj=2
ˆ1

�
x1

v

�
jvj�d1dv sup

jwj�jcj=2
ˆ2

�
x2

c � w

�
jcj�d2

�

Z

jvj�2jx1=cj
ˆ1.v/jvjd1�2dv sup

jwj�jx2j=4jcj
ˆ2.w/jx1j

1�d1 jcj�d2 :

Here we have used the fact that if jwj � jcj=2 then jc � wj � 4jcj. Put

‰0.y1; y2/ WD

Z

jvj�2jy1j
ˆ1.v/jvjd1�2 dv sup

jwj�jy2j=4
ˆ2.w/:

It is a function in A.F 2/. We obtain an analogous bound ‰00..x1; x2/=c/jcj1�d1 jx2j
1�d2

in the jc � vj � jcj=2 range by symmetry. Take ‰ WD ‰0 C ‰00. Now we bound
the integral over the range jvj > jcj=2; jc � vj > jcj=2; giving bounds in terms of
jx1j; jx2j; and jcj so that we can take the minimum. Clearly, the integral is dominated
by kˆ1k1kˆ2k1jcj1�d1�d2 . It is also bounded by

kˆ2k1

Z

jvj>jcj=2; jc�vj>jcj=2
ˆ1

�
x1

v

�
jvj�d1 jc � vj�d2 dv

D kˆ2k1jx1j
1�d1�d2

Z

jvj>jyj=2;jy�vj>jyj=2
ˆ1

�
1

v

�
jvj�d1 jy � vj�d2 dv;

where y D c=x1. Note that jvj=jy � vj � 1 in the domain of integration. Therefore the
integral is dominated by

Z

F

ˆ1

�
1

v

�
jvj�d1�d2dv D

Z

F

ˆ1.v/jvjd1Cd2�2 dv:

Now (ii) follows by symmetry.
For (iii), if jcj � 2jxj; using max.jvj; jxj/ � jxj; we have

Z

F

max.jvj; jxj/�dˆ.c � v/ dv � jxj�dkˆk1:

If jcj > 2jxj; as jxj � 1 we have
Z

F

max.jvj; jxj/�dˆ.c � v/ dv

�

Z

jvj�jxj
jxj�dˆ.c � v/ dv C

Z

jc�vj�jcj=2
jvj�dˆ.c � v/ dv

C

Z

jvj�jxj;jc�vj>jcj=2
jvj�dˆ.c � v/ dv

� jxj1�d sup
jvj�jxj

ˆ.c � v/C jcj�dkˆk1 C jxj1�d sup
jvj�jcj=2

ˆ.v/

�ˆ jcj�d :

Since max.jcj; jxj/ � max.jcj; 2jxj/ � 2max.jcj; jxj/; this proves (iii).
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For (iv), consider the integral over jvj � jx1j. By the proof of (ii), the contribution of
jvj � jcj=2 is bounded by

‰0
�
x2

c

�
jx1j

1�d1 jcj�d2 ;

and the contribution of jc � vj � jcj=2 is bounded by

‰0
�
x2

c

�
jx2j

1�d2 max.jx1j; jcj/
�d1

for some ‰0 2 A.F / that can be chosen continuously in ˆ in the archimedean case. The
contribution of jvj � jx1j; jvj > jcj=2; jc � vj > jcj=2 is dominated by

max.jcj; jx1j; jx2j/
1�d1�d2 � max.jcj; jx2j/

1�d2 max.jcj; jx1j; jx2j/
�d1 :

Indeed, this follows from the same argument as in the last part of the proof of (ii).
Thus we are left with bounding

jx1j
�d1

Z

jvj�jx1j
ˆ

�
x2

c � v

�
jc � vj�d2 dv: (11.6)

If 2jx2j � jcj � 2jx1j; then (11.6) is bounded by

jx1j
1�d1 jx2j

�d2 sup
jvj�jx1j

ˆ

�
x2

c � v

�ˇ̌
ˇ̌ x2

c � v

ˇ̌
ˇ̌
d2

� jx1j
1�d1 jcj�d2‰00

�
x2

c

�
;

where

‰00.y/ WD sup
yDx2=c

2jx2j�jcj�2jx1j

sup
jvj�jx1j

ˆ

�
x2

c � v

�ˇ̌
ˇ̌ x2

c � v

ˇ̌
ˇ̌
d2

for y 2 F; jyj � 1=2:

We can extend this function to a function in A.F / by a minor variant of the construction
explained before the proof. For 2jx2j � 2jx1j � jcj; arguing as for 2jx2j � jcj � 2jx1j;

the expression (11.6) is bounded by

jx1j
�d1 jx2j

1�d2‰000
�
x2

x1

�
� jx2j

1�d2�d1 sup
jvj�1

‰000.v/jvjd1

for some ‰000 2 A.F /: If jcj � 2max.jx2j; jx1j/; then (11.6) is bounded by

jx1j
1�d1 sup

jvj�jx1j
ˆ

�
x2

c � v

�
jc � vj�d2

D jx1j
1�d1 jcj�d2 sup

jvj�jx1=cj
ˆ

�
x2=c

1 � v

�
j1 � vj�d2

� jx1j
1�d1 jcj�d2 sup

jvj;juj�1=2
ˆ

�
u

1 � v

�
j1 � vj�d2 �ˆ jx1j

1�d1 jcj�d2 :
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Suppose 2jx1j > max.jcj; 2jx2j/. We write (11.6) as jx1j
�d1 jx2j

1�d2 times
Z

jvj�jx1=x2j
ˆ

�
1

c=x2 � v

�
jc=x2 � vj�d2dv �

Z

F

ˆ.v/jvjd2�2dv:

Altogether, we have proven (iv).

Recall the definition of H.a; c; v1; v2/ from (11.4). It depends on functions ˆi ; ˆ0
i

2 A.F 2/. In the rest of the section, all implicit constants and rapidly decreasing functions
can be and are chosen continuously as a function of ˆi ; ˆ0

i when F is archimedean.
Assume c ¤ 0. By taking a change of variables v2 7! v2 � v1 and then v1 7! v1 � c=3

and v2 7! v2 � 2c=3; one has
Z

F 2

H.a; c; v1; v2/dv D

Z

F

�
ˆ3.c � v2; a3/Cˆ0

3

�
.1; a3/

c � v2

�
jc � v2j

�d3=2

�

�

Z

F

�
ˆ1.v1; a1/Cˆ0

1

�
.1; a1/

v1

�
jv1j

�d1=2

�

�

�
ˆ2.v2 � v1; a2/Cˆ0

2

�
.1; a2/

v2 � v1

�
jv2 � v1j

�d2=2

�
dv:

(11.7)
Here the di are all even integers greater than 2. This is necessary so that we can invoke
Lemma 11.3 in the argument below.

This integral corresponds to the integral overN0.F /; hence the title of this subsection.
By Lemma 11.3 (i, ii) and the map (11.2), the integral over v1 in (11.7) is dominated by

‰0.v2; a1; a2/C‰1

�
.1; a1/

v2
; a2

�
jv2j

�d1=2 C‰2

�
.1; a2/

v2
; a1

�
jv2j

�d2=2

C‰3

�
.1; a1; a2/

v2

��
max.1; ja1j/

1�d1=2jv2j
�d2=2 C jv2j

�d1=2 max.1; ja2j/
1�d2=2

�

C max.1; jv2j; ja1j; ja2j/
1�d1=2�d2=2

for some ‰i 2 A.F 3/. Note that

‰0.v2; a1; a2/ � max.1; jv2j; ja1j; ja2j/
1�d1=2�d2=2:

Therefore, by symmetry in a1 and a2; to bound (11.7) it suffices to study the integral
Z

F

�
‰1

�
.1; a1/

v2
; a2

�
jv2j

�d1=2 C‰3

�
.1; a1; a2/

v2

�
max.1; ja1j/

1�d1=2jv2j
�d2=2

C max.1; jv2j; ja1j; ja2j/
1�d1=2�d2=2

�

�

�
ˆ3.c � v2; a3/Cˆ0

3

�
.1; a3/

c � v2

�
jc � v2j

�d3=2

�
dv2:

In the following discussion,

M1;M2;M
0
1;M

0
2;M4;M5 2 A.F 4/; M6 2 A.F 2/; and M3;M

0
4 2 A.F /

are suitable rapidly decreasing functions. By Lemma 11.3 (i), we have
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Z

F

‰1

�
.1; a1/

v2
; a2

�
jv2j

�d1=2ˆ3.c � v2; a3/ dv2

� M1

�
.1; a1/

c
; a2; a3

�
jcj�d1=2 CM 0

1.c; a/; (11.8)

and

max.1; ja1j/
1�d1=2

Z

F

‰3

�
.1; a1; a2/

v2

�
jv2j

�d2=2ˆ3.c � v2; a3/ dv2

� max.1; ja1j/
1�d1=2M2

�
.1; a1; a2/

c
; a3

�
jcj�d2=2 C max.1; ja1j/

1�d1=2M 0
2.c; a/:

(11.9)

By Lemma 11.3 (iii),

Z

F

max.1; jv2j; ja1j; ja2j/
1�d1=2�d2=2ˆ3.c � v2; a3/ dv2

� M3.a3/max.1; jcj; ja1j; ja2j/
1�d1=2�d2=2: (11.10)

By Lemma 11.3 (ii),

Z

F

‰1

�
.1; a1/

v2
; a2

�
jv2j

�d1=2ˆ0
3

�
.1; a3/

c � v2

�
jc � v2j

�d3=2dv2

� M4

�
.1; a1; a3/

c
; a2

��
max.1; ja1j/

1�d1=2jcj�d3=2 C jcj�d1=2 max.1; ja3j/
1�d3=2

�

CM 0
4.a2/max.1; jcj; ja1j; ja3j/

1�d1=2�d3=2; (11.11)

and

max.1; ja1j/
1�d1=2

Z

F

‰3

�
.1; a1; a2/

v2

�
jv2j

�d2=2ˆ0
3

�
.1; a3/

c � v2

�
jc � v2j

�d3=2 dv2

� max.1; ja1j/
1�d1=2M5

�
.1; a/

c

�

C
�
max.1; ja1j; ja2j/

1�d2=2jcj�d3=2 C jcj�d2=2 max.1; ja3j/
1�d3=2

�

C max.1; ja1j/
1�d1=2 max.1; jcj; jaj/1�d2=2�d3=2: (11.12)

By Lemma 11.3 (iv),

Z

F

max.1; jv2j; ja1j; ja2j/
1�d1=2�d2=2ˆ0

3

�
.1; a3/

c � v2

�
jc � v2j

�d3=2dv2

� M6

�
.1; a3/

c

��
max.1; jcj; ja1j; ja2j/

1�d1=2�d2=2 max.1; ja3j/
1�d3=2

C max.1; ja1j; ja2j/
1�d1=2�d2=2jcj�d3=2 min.max.1; ja1j; ja2j/; jcj/

�

C max.1; jcj; ja3j/
1�d3=2 max.1; jcj; jaj/1�d1=2�d2=2: (11.13)
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Note that both M 0
1.c; a/ and max.1; ja1j/1�d1=2M 0

2.c; a/ are dominated by

max.1; ja1j/
1�d1=2 max.1; jcj; jaj/1�d2=2�d3=2:

Therefore, by symmetry there are M 2 A.F 2/; M1� ; M2� ; M3� 2 A.F 4/ (indexed by
� 2 S3; the symmetric group on three letters) such that (11.7) is dominated by the sum of
the following terms:

X

�2S2

M1�

�
.1; a�.1//

c
; a�.2/; a3

�
jcj�d�.1/=2; (11.14)

M

�
.1; a3/

c

��
max.1; jcj; ja1j; ja2j/

1�d1=2�d2=2 max.1; ja3j/
1�d3=2

C max.1; ja1j; ja2j/
1�d1=2�d2=2jcj�d3=2 min.max.1; ja1j; ja2j/; jcj/

�
; (11.15)

X

�2S3

M2�

�
.1; a�.1/; a�.2//

c
; a�.3/

�
max.1; ja�.1/j/

1�d�.1/=2jcj�d�.2/=2; (11.16)

X

�2C3

M3�

�
.1; a/

c

�
max.1; ja�.1/j/

1�d�.1/=2 max.1; ja�.2/j/
1�d�.2/=2jcj�d�.3/=2;

(11.17)
X

�2C3

max.1; ja�.1/j/
1�d�.1/=2 max.1; jcj; jaj/1�d�.2/=2�d�.3/=2: (11.18)

The following table explains how the terms (11.14)±(11.18) are used to bound the
previous contributions:

The contribution of is dominated by

(11.8) (11.14), (11.18)
(11.9) (11.16), (11.18)
(11.10) (11.18)
(11.11) (11.16), (11.18)
(11.12) (11.17), (11.18)
(11.13) (11.15), (11.18)

The M and Mi� can all be chosen continuously as a function of the ˆi ; ˆ0
i in the

archimedean case.
Before continuing the proof of Theorem 11.1, we prove the following strengthening

of the theorem in the special case b D 0:

Theorem 11.4. For � 2
Q3
iD1.Vi .F / � ¹0º/; if di > 2 for all i; we have

Z

F 2

ˇ̌
ˇ̌
Z

V.F /

 .h�; ui C c.u; v//f .u/ du

ˇ̌
ˇ̌ dv

�f

X

�2C3

max.1; j��.1/j/
1�d�.1/=2 max.1; j�j/1�d�.2/=2�d�.3/=2 �

3Y

iD1
j�i j

2�di=2:
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Proof. Given Lemma 11.2 and our manipulations above, the integral to be bounded is
dominated by the limit as c ! 0 of the sum of (11.14)±(11.18) in the case ai D z�i . After
taking the limit as c ! 0 the only term that is nonzero is (11.18).

11.2. Estimate of the integral over .F �/3

In this subsection, we bound
Z

.F �/3

Z

F 2

H

�
a;
bŒa�

3Œz��
; v1; v2

�
dv ¹aºd=2�1 d�a (11.19)

using the bounds on the inner integral obtained in the previous section. Throughout this
subsection we assume di � 4 for 1� i � 3 and we fix 1=2 > " > 0. To avoid repetition, we
point out once and for all that in the archimedean case all implicit constants and rapidly
decreasing functions appearing in bounds in this section can be chosen continuously as a
function of whatever rapidly decreasing functions appear in the hypotheses of the bounds.

We start with a general bound that will be useful later.

Lemma 11.5. Suppose e1; e2 2 R>0. Let ˆ 2 A.F /. As a function of .r1; r2/ 2 .F �/2;
we have

Z

F �

ˇ̌
ˇ̌ˆ

�
r1

a

�ˇ̌
ˇ̌ max.1; jr2aj/�e1

d�a

jaje2�e1

�";ˆ

8
ˆ̂<
ˆ̂:

jr1j
e1�e2 max.1; jr1r2j/�e1 if e2 > e1;

jr2j
e2�e1 max.1; jr1r2j/�e2 if e2 < e1;

max.1; jr1r2j/�e2 min.1; jr1r2j/�" if e2 D e1:

Proof. We assume ˆ is nonnegative. Taking a change of variables a 7! a�1r1 in the
integral to be bounded, we obtain

jr1j
e1�e2

Z

F �

ˆ.a/max

�
1;

ˇ̌
ˇ̌r1r2
a

ˇ̌
ˇ̌
��e1

jaje2�e1 d�a:

Let r D r1r2. We write the integral above as

jr1j
e1�e2

Z

jaj�jrj
jr j�e1ˆ.a/jaje2 d�aC jr1j

e1�e2

Z

jaj�jrj
ˆ.a/jaje2�e1 d�a:

When e2 � e1 we observe that this is dominated by the bound claimed in the lemma. Now
suppose e2 < e1. Then after a change of variables a 7! ar , the integral above is

jr2j
e2�e1

Z

jaj�1
ˆ.ar/jaje2 d�aC jr2j

e2�e1

Z

jaj�1
ˆ.ar/jaje2�e1 d�a;

which is dominated by the bound asserted in the lemma.
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Lemma 11.6. For nonnegative M1 2 A.F 4/ and c 2 F �; one has

Z

.F �/3
M1

�
.1; a1/c

Œa�
; a2; a3

�ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d1=2

¹aºd=2�1 d�a �" J.c/jcj
min.d1;d2;d3/=2�1�"

for some J 2 A.F /.

Proof. A direct computation shows the integral over a1 is dominated by

jcjd1=2�1J 0
�

c

a2a3
; a2; a3

�
ja2j

.d2�d1/=2ja3j
.d3�d1/=2 (11.20)

for some J 0 2 A.F 3/. By symmetry, we may assume d2 � d3. Note that (11.20) is dom-
inated by

jcjd1=2�1J 00
�

c

a2a3
; a2; a3

�
ja2j

.d2�d1/=2�"ja3j.d3�d1/=2

for some J 00 2 A.F 2/: The integral of this function over a2 is dominated by

jcjd1=2�1J 000
�
c

a3
; a3

�
ja3j

.d3�d1/=2 �

´ ˇ̌
c
a3

ˇ̌.d2�d1/=2�"
if d1 � d2;

1 if d1 < d2:

for some J 000 2 A.F 2/: The integral over a3 of this expression is dominated by the bound
in the lemma.

Lemma 11.7. For nonnegative M2 2 A.F 4/ and c 2 F �; we have

Z

.F �/3
M2

�
.1; a1; a2/c

Œa�
; a3

�
max.1; ja1j/

1�d1=2

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d2=2

¹aºd=2�1 d�a

�" min.1; jcj/min.d1;d2;d3/=2�1�" max.1; jcj/�1:

Proof. Changing variables a2 7! a�1
1 a�1

3 a2 and then computing directly, we see that the
integral over a2 is dominated by

jcjd2=2�1ja3j.d3�d2/=2 max.1; ja1j/
�d1=2M 0

2

�
c

a1a3
; a3

�
ja1j

.d1�d2/=2

for some M 0
2 2 A.F 2/. By Lemma 11.5, the integral of this function over a1 is bounded

by a constant depending on " times

jcjd2=2�1ja3j.d3�d2/=2M 00
2 .a3/ �

´ ˇ̌
c
a3

ˇ̌.d1�d2/=2�"
max

�
1;

ˇ̌
c
a3

ˇ̌��d1=2C"
if d1 � d2;

max
�
1;

ˇ̌
c
a3

ˇ̌��d2=2 if d1 > d2

for someM 00
2 2 A.F /. Change variables a3 7! a�1

3 and apply Lemma 11.5 again to com-
plete the proof.
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Lemma 11.8. For nonnegative M3 2 A.F 4/ and c 2 F �; one has

Z

.F �/3
M3

�
.1; a/c

Œa�

�
max.1; ja1j/

1�d1=2 max.1; ja2j/
1�d2=2

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d3=2

¹aºd=2�1 d�a

�" min.1; jcj/min.d1;d2;d3/=2�1�":

Proof. By symmetry, we may assume d1 � d2. A direct computation shows the integral
over a3 is dominated by

jcjd3=2�1M 0
3

�
c

a1a2

�
ja1j

.d1�d3/=2ja2j
.d2�d3/=2 max.1; ja1j; ja2j/

�1

� max.1; ja1j/
1�d1=2 max.1; ja2j/

1�d2=2 (11.21)

for some M 0
3 2 A.F /. Since

max.1; ja1j; ja2j/
�1 � max.1; ja1j/

�1;

by Lemma 11.5 the integral over a1 is dominated by

jcjd3=2�1ja2jd2=2�d3=2 max.1; ja2j/
1�d2=2

�

8
<
:

ˇ̌
c
a2

ˇ̌d1=2�d3=2�"
max

�
1;

ˇ̌
c
a2

ˇ̌�"�d1=2 if d1 � d3;
ˇ̌
c
a2

ˇ̌�"
max

�
1;

ˇ̌
c
a2

ˇ̌�"�d3=2 if d1 � d3:
(11.22)

Choose � 2 ¹Id; .13/º such that d�.1/ � d�.3/. Then by (11.22) the integral in the lemma
is bounded by a constant depending on " times

Z

F �

jcjd�.1/=2�1�"ja2jd2=2�d�.1/=2C" max.1; ja2j/
1�d2=2 max

�
1;

ˇ̌
ˇ̌ c
a2

ˇ̌
ˇ̌
�"�d�.1/=2

d�a2:

Writing a for a2, for jcj � 1 this is

jcj�1
Z

jaj�1
jajd2=2 d�aC jcj�1

Z

1<jaj�jcj
jaj d�a

C jcjd�.1/=2�1�"
Z

jcj<jaj
jaj1�d�.1/=2C" d�a � 1:

For jcj < 1, this is

jcj�1
Z

jaj�jcj
jajd2=2 d�aC jcjd�.1/=2�1�"

Z

jcj<jaj�1
jajd2=2�d�.1/=2C" d�a

C jcjd�.1/=2�1�"
Z

1<jaj
jaj1�d�.1/=2C" d�a �" jcjmin.d1;d2;d3/=2�1�":

As a corollary of the proof we obtain:
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Corollary 11.9. Suppose jcj> 1. For nonnegativeM3 2 A.F 4/; given ˛ > 0; there exists

ˇ > 0 such that

Z

jaj�jcj˛
M3

�
.1; a/c

Œa�

�
max.1; ja1j/

1�d1=2 max.1; ja2j/
1�d2=2

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d3=2

¹aºd=2�1 d�a

�˛;ˇ jcj�ˇ ; (11.23)

Proof. We can and do assume 1=2 > ˛. Consider the contribution of ja1j � jcj˛ . In view
of (11.21), the integral over a3 is dominated by

jcjd3=2�1M 0
3

�
c

a1a2

�
ja1j

1�d3=2ja2j
.d2�d3/=2 max.ja1j; ja2j/

�1 max.1; ja2j/
1�d2=2:

When ja2j � jcj1�˛; this expression is dominated by

kM 0
3k1jcjd3=2�1ja1j1�d3=2ja2j

�d3=2:

Thus, the contribution of the range ja1j � jcj˛; ja2j � jcj1�˛ is dominated by jcj˛�1. To
bound the contribution of the range ja1j � jcj˛; ja2j < jcj1�˛ to (11.23), we argue as
above and then make a change of variables a1 7! a1

c
a2

. This yields a bound of

jcj�1
Z

jcj1�˛�ja2j;ja1j�ja2j jcj˛�1

M 0
3.a

�1
1 /ja1j

�d3=2ja2j
d2=2max.1; ja2j/

1�d2=2 d�a1 d�a2

� jcj�˛
Z

F

M 0
3.a1/ja1j

d3=2�1 da1:

The contribution of ja2j � jcj˛ admits the same bound by symmetry.
Now consider the contribution of ja3j � jcj˛ . It is dominated by jcj�˛ times

jcjd3=2

Z

.F �/2
M 0
3

�
c

a1a2

�

� max.1; ja1j/
1�d1=2 max.1; ja2j/

1�d2=2ja1j
d1=2�d3=2�1ja2jd2=2�d3=2�1 d�a1 d�a2

�M 0
3
;"0 jcj"

0

for some M 0
3 2 A.F / and 0 < "0 < ˛. Here the last inequality follows from an argument

similar to that in the proof of Lemma 11.8.

Lemma 11.10. For c 2 F �; we have

Z

.F �/3
max.1; ja1j/

1�d1=2 max

�
1;

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌; jaj

�1�d2=2�d3=2

¹aºd=2�1 d�a

�" min.1; jcj/min.d1;d2;d3/=2�1�": (11.24)

Proof. We start with an easy estimate:
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Sublemma 11.11. Suppose e1; e2 2 R>0. As a function of r 2 F �;

Z

F �

max.1; jaj/�e1 max.jaj; jr j/�e2 jaje1 d�a �"

8
ˆ̂<
ˆ̂:

jr j"�e2 if jr j � 1;

jr j�" if e1 � e2 and jr j � 1;

jr je1�e2 if e1 < e2 and jr j � 1:

Proof. If jr j � 1; then the integral is

jr j�e2

Z

jaj�1
jaje1 d�aC jr j�e2

Z

1�jaj�jrj
d�aC

Z

jrj�jaj
jaj�e2 d�a �" jr j"�e2 :

If jr j � 1; the integral is

jr j�e2

Z

jaj�jrj
jaje1 d�aC

Z

jrj�jaj�1
jaje1�e2 d�aC

Z

1�jaj
jaj�e2 d�a:

Applying Sublemma 11.11 to the integral over a1 with jr j D max.1;ja2j;ja3j/
max.1;

ja2a3j

jcj
/
; we see

the integral over a1 in (11.24) is dominated by ja2j
d2=2�1ja3jd3=2�1 times

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

max
�
1; ja2a3j

jcj
��"

max.1; ja2j; ja3j/1C"�d2=2�d3=2

if max.1;ja2j;ja3j/
max.1;

ja2a3j

jcj
/

� 1;

max
�
1; ja2a3j

jcj
�1C"�d2=2�d3=2 max.1; ja2j; ja3j/�"

if d1 � d2 C d3;
max.1;ja2j;ja3j/
max.1;

ja2a3j

jcj
/

� 1;

max
�
1; ja2a3j

jcj
�1�d1=2 max.1; ja2j; ja3j/d1=2�d2=2�d3=2

if d1 < d2 C d3;
max.1;ja2j;ja3j/
max.1;

ja2a3j

jcj
/

� 1:

We now bound the integral of this expression over a2; a3.
Consider the contribution of the domain ja2a3j � jcj; ja3j � max.1; ja2j/. The con-

tribution of jcj � ja2j is dominated by

jcj"
Z

jcj�ja2j
ja2j

d2=2�1�"
Z

ja3j�max.1;ja2j;ja2j�1jcj/
ja3j

�d2=2 d�a3 d�a2

� jcj"
Z

jcj�ja2j
ja2j

d2=2�1�" max.1; ja2j; ja2j
�1jcj/�d2=2 d�a2

D jcjd2=2�1
Z

1�ja2j
ja2j

d2=2�1�" max.ja2j jcj; ja2j
�1/�d2=2 d�a2:

Here we have made the change of variables a2 7! a2c. This term is

�"

²
jcjd2=2�1 if jcj � 1;

jcj�1=2C"=2 if jcj � 1:
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Consider the contribution of jcj � ja2j. If d1 � d2 C d3; it is

jcjd2=2Cd3=2�1�"
Z

jcj�ja2j
ja2j

"�d3=2

Z

ja3j�max.1;ja2j;ja2j�1jcj/
ja3j

�d2=2 d�a3 d�a2

� jcjd2=2�1
Z

1�ja2j
ja2j

"�d3=2 max.1; ja2j jcj/�d2=2 d�a2

�"

²
jcjd2=2�1 if jcj � 1;

jcj�1 if jcj � 1:

If d1 < d2 C d3; a similar argument yields a bound of jcjmin.d1;d2/=2�1�" if jcj � 1 and
jcj�1 if jcj � 1.

Over the domain ja2a3j � jcj; ja3j � max.1; ja2j/; the integral is

Z

ja2j�1jcj�ja3j�max.1;ja2j/
ja2j

d2=2�1ja3j"�d2=2 d�a3 d�a2

�"

Z

ja2j�1;jcj�ja2j2
ja2j

"�1 d�a2 C

Z

min.1;jcj/�ja2j
ja2j

d2=2�1 d�a2

� min.1; jcj/d2=2�1: (11.25)

By symmetry in a2; a3; we are left with bounding the integral over ja2j; ja3j � 1. If
d1 � d2 C d3 then over this domain, the integral is

Z

ja2j�1;ja3j�1
max

�
1;

ja2a3j

jcj

�1C"�d2=2�d3=2

ja2j
d2=2�1ja3jd3=2�1 d�a2 d�a3

D jcjd2=2Cd3=2�1�"
Z

ja2j�1;ja2j�1jcj�ja3j�1
ja2j

"�d3=2ja3j
"�d2=2 d�a2 d�a3

C

Z

ja2j�1;ja3j�min.ja2j�1jcj;1/
ja2j

d2=2�1ja3jd3=2�1 d�a2 d�a3

� jcjd3=2�1
Z

jcj�ja2j�1
ja2j

d2=2�d3=2 d�a2

C

Z

ja2j�1
ja2j

d2=2�d3=2 min.ja2j; jcj/
d3=2�1 d�a2

�"

´
jcjmin.d2;d3/=2�1�" if jcj � 1;

1 if jcj � 1:

The case d1 < d2 C d3 follows from a similar computation.

Corollary 11.12. Suppose jcj > 1. Given ˛ > 0; there exists ˇ > 0 such that

Z

jaj�jcj˛
max.1; ja1j/

1�d1=2 max

�
1;

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌; jaj

�1�d2=2�d3=2

¹aºd=2�1 d�a �˛;ˇ jcj�ˇ :

(11.26)
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Proof. We may assume ˛ < 1=2. In view of the proof of Lemma 11.10, it suffices to
bound the contributions of the domain ja2j

�1jcj � ja3j � jcj˛; ja2j � jcj˛; the domain
ja2j

�1jcj � ja3j � ja2j � jcj˛; and the domain ja1j � jcj˛ � max.ja2j; ja3j/.
Over the first domain, by (11.25), the integral to be bounded is dominated by

Z

ja2j�1jcj�ja3j�jcj˛ ;ja2j�jcj˛
ja2j

d2=2�1ja3j"�d2=2 d�a3 d�a2

� jcj˛."�d2=2/

Z

jcj˛�ja2j
ja2j

d2=2�1 d�a2 � jcj˛."�1/:

Over the second domain, the integral is dominated by
Z

ja3j�jcj˛
ja3j

"�d2=2 min.ja3j; jcj
1=2/d2=2�1 d�a3 � jcj˛."�1/:

Over the third domain, the integral is dominated by
Z

ja1j�jcj˛�max.ja2j;ja3j/
ja1j

1�d2=2�d3=2ja2j
d2=2�1ja3jd3=2�1 d�a � jcj�˛:

Lemma 11.13. Assume d3 � d1; d2. For c 2 F � and nonnegativeM 2 A.F 2/; we have

Z

.F �/3
M

�
.1; a3/c

Œa�

��
max

�
1;

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌; ja1j; ja2j

�1�d1=2�d2=2

max.1; ja3j/
1�d3=2

C max.1; ja1j; ja2j/
1�d1=2�d2=2

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d3=2

� min

�
max

�
1; ja1j; ja2j

�
;

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
��

¹aºd=2�1 d�a

�";M min.1; jcj/d3=2�1�" max.1; jcj/�1=2C"=2:

Proof. We first compute

Z

.F �/3
M

�
c

a1a2a3
;
c

a1a2

�
max

�
1;

ja1a2a3j

jcj
; ja1j; ja2j

�1�d1=2�d2=2

max.1; ja3j/
1�d3=2

� ja1j
d1=2�1ja2jd2=2�1ja3jd3=2�1 d�a3 d�a2 d�a1

D jcjd3=2�1
Z

.F �/3
M

�
a�1
3 ;

c

a1a2

�
max.1; jaj/1�d1=2�d2=2max

�
ja3j

�1;

ˇ̌
ˇ̌ c

a1a2

ˇ̌
ˇ̌
�1�d3=2

� ja1j
d1=2�d3=2ja2j

d2=2�d3=2 d�a3 d�a2 d�a1: (11.27)

We break down the integral into several domains.

Sublemma 11.14. Over the domain jcj � ja1a2j; ja3j � 1; (11.27) is dominated by

min.1; jcj/d3=2�1�" max.1; jcj/�1=2:
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Proof. Over this domain, (11.27) is dominated by

jcjd3=2�1
Z

jcj�ja1a2j
max.1; ja1j; ja2j/

1�d1=2�d2=2ja1j
d1=2�d3=2ja2j

d2=2�d3=2 d�a2 d�a1:

(11.28)

The contribution of ja1j; ja2j � 1 (which is zero unless jcj � 1) is O".jcjd3=2�1�"/. For
the rest, by symmetry it suffices to bound the integral over the domain ja1j � max.1; ja2j/.
This contribution is bounded by

jcjd3=2�1
Z

max.1;ja2j;jc=a2j/�ja1j
ja1j

1�d2=2�d3=2ja2j
d2=2�d3=2 d�a2 d�a1

� jcjd3=2�1
Z

F �

max.1; ja2j; jc=a2j/
1�d2=2�d3=2ja2j

d2=2�d3=2 d�a2

D jcjd3=2�1
Z

F �

max.ja2j; ja2j
2; jcj/1�d2=2�d3=2ja2j

d2�1 d�a2:

The contribution of the domain ja2j � 1 to the integral is bounded by

jcj�d2=2

Z

ja2j�min.1;jcj/
ja2j

d2�1 d�a2 C jcjd3=2�1
Z

min.1;jcj/<ja2j�1
ja2j

d2=2�d3=2 d�a2

�" max.1; jcj/�d2=2 min.1; jcj/d3=2�1�":

Over the domain ja2j � 1; the integral becomes

jcj�d2=2

Z

1�ja2j�jcj1=2

ja2j
d2�1 d�a2 C jcjd3=2�1

Z

max.jcj1=2;1/�ja2j
ja2j

1�d3 d�a2

� max.1; jcj/�1=2 min.1; jcj/d3=2�1:

Sublemma 11.15. Over the domain

jcj � ja1a2j; ja3j � 1; ja1a2j � ja3j jcj;

(11.27) is dominated by

min.1; jcj/min.d1;d2/=2�1�" max.1; jcj/�1=2C"=2:

Proof. Over this domain, (11.27) is dominated by

Z

jcj�ja1a2j�ja3j jcj
jaj1�d1=2�d2=2ja1j

d1=2�1ja2jd2=2�1 d�a3 d�a2 d�a1

D

Z

jcj�ja1a2j�ja3j jcj; ja3jDjaj
jaj1�d1=2�d2=2ja1j

d1=2�1ja2jd2=2�1 d�a3 d�a2 d�a1

C

2X

iD1

Z

jcj�ja1a2j�ja3j jcj; jai jDjaj
jaj1�d1=2�d2=2ja1j

d1=2�1ja2jd2=2�1 d�a3 d�a2 d�a1:

The first term is dominated by
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Z

jcj�ja1a2j
max.ja1j; ja2j; ja1a2j=jcj/

1�d1=2�d2=2ja1j
d1=2�1ja2jd2=2�1 d�a2 d�a1

D
X

�2S2

Z

ja�.1/j�max.ja�.2/j; jcj=ja�.2/j/;ja�.2/j�jcj
ja�.1/j

�d�.2/=2ja�.2/j
d�.2/=2�1 d�a2 d�a1

C jcjd1=2Cd2=2�1
Z

jcj�ja1j;jcj�ja2j; jcj�ja1j ja2j
ja1j

�d2=2ja2j
�d1=2 d�a2 d�a1

�
X

�2S2

Z

ja�.2/j�jcj
max.ja�.2/j

2; jcj/�d�.2/=2ja�.2/j
d�.2/�1 d�a�.2/

C jcjd1=2�1
Z

jcj�ja2j
max.1; ja2j/

�d2=2ja2j
d2=2�d1=2 d�a2

�" min.1; jcj/min.d1;d2/=2�1�" max.1; jcj/�1=2:

For the second term, by symmetry, we may assume i D 1. Then the integral is

Z

jcj�ja1a2j�ja3j jcj; ja2j�ja1j; ja3j�ja1j
ja1j

�d2=2ja2j
d2=2�1 d�a3 d�a2 d�a1

�

Z

jcj�ja1a2j�ja3j jcj; ja2j�ja1j; ja3j�ja1j
ja1j

�d2=2

�
ja1j

ja3j

�"
ja2j

d2=2�1 d�a3 d�a2 d�a1

�" jcj"
Z

jcj�ja1a2j; ja2j�ja1j; ja2j�jcj
ja1j

�d2=2ja2j
d2=2�1�" d�a2 d�a1

� jcj"
Z

ja2j�jcj
max.jcj; ja2j

2/�d2=2ja2j
d2�1�" d�a2

� min.1; jcj/d2=2�1 max.1; jcj/�1=2C"=2:

Sublemma 11.16. Over the domain jcj � ja1a2j; ja3j � 1; ja1a2j � ja3j jcj; (11.27) is

dominated by

min.1; jcj/d3=2�1�" max.1; jcj/�1=2:

Proof. Over this domain, (11.27) is dominated by

jcjd3=2�1
Z

ja3j jcj�ja1a2j;ja3j�1
jaj1�d1=2�d2=2ja3j

d3=2�1ja1jd1=2�d3=2

� ja2j
d2=2�d3=2 d�a3 d�a2 d�a1: (11.29)

We argue as above. Over ja3j D jaj; (11.29) is

jcjd3=2�1
Z

ja3j jcj�ja1a2j; ja3j�1; ja3jDjaj
ja3j

d3=2�d1=2�d2=2ja1j
d1=2�d3=2

� ja2j
d2=2�d3=2 d�a3 d�a2 d�a1

� jcjd3=2�1
Z

jcj�min.ja1j;ja2j;ja1a2j/
max.1; ja1j; ja2j/

d3=2�d1=2�d2=2ja1j
d1=2�d3=2

� ja2j
d2=2�d3=2 d�a2 d�a1:
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If ja1j; ja2j � 1; this is

jcjd3=2�1
Z

jcj�ja1a2j;ja1j�1;ja2j�1
ja1j

d1=2�d3=2ja2j
d2=2�d3=2 d�a2 d�a1 �" jcjd3=2�1�":

If ja1j � max.1; ja2j/; this is dominated by

jcjd3=2�1
Z

jcj�ja2j
max.1; ja2j/

�d2=2ja2j
d2=2�d3=2 d�a2

�" min.1; jcj/d3=2�1�" max.1; jcj/�1:

Over ja1j D jaj; (11.29) is

jcjd3=2�1
Z

ja3j jcj�ja1a2j;ja1j�ja3j�1;ja1j�ja2j
ja3j

d3=2�1ja1j1�d2=2�d3=2

� ja2j
d2=2�d3=2 d�a3 d�a2 d�a1

� jcjd3=2�1

�

Z

jcj�ja1a2j;max.1;ja2j/�ja1j
min.ja2j=jcj; 1/

d3=2�1ja1j�d2=2ja2j
d2=2�d3=2 d�a2 d�a1

�

Z

F �

min.ja2j; jcj/
d3=2�1 max.ja2j; ja2j

2; jcj/�d2=2ja2j
d2�d3=2 d�a2

�" min.1; jcj/d3=2�1�" max.1; jcj/�1=2:

The rest follows by symmetry.

Now suppose ja1a2j � jcj. Then the integral (11.27) over a3 is dominated by a con-
stant depending on " times

jcjd3=2�1
Z

ja1a2j�jcj
J

�
c

a1a2

�
max.1; ja1j; ja2j/

"C1�d1=2�d2=2ja1j
d1=2�d3=2

� ja2j
d2=2�d3=2 d�a2 d�a1 (11.30)

for some J 2 A.F /. Over the domain ja1j; ja2j � 1; this integral is rapidly decreasing as
a function of c, and dominated by jcjd3=2�1�� for jcj � 1. For the rest, by symmetry it
suffices to bound the integral over the domain ja1j � max.1; ja2j/; which is

jcjd3=2�1
Z

max.1;ja2j/�ja1j�jc=a2j
J

�
c

a1a2

�
ja1j

1C"�d2=2�d3=2ja2j
d2=2�d3=2 d�a1 d�a2

D jcj"�d2=2

Z

max.ja2j;ja2j2/jcj�1�ja1j�1
J.a�1

1 /ja1j
1C"�d2=2�d3=2ja2j

d2�1�" d�a1 d�a2

�J jcj"�d2=2

Z

max.ja2j;ja2j2/�jcj
ja2j

d2�1�" d�a2

� max.1; jcj/�1=2C"=2 min.1; jcj/d2=2�1:
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This completes the proof of the bound for the first summand in the statement of Lem-
ma 11.13.

The second summand is bounded by

Z

.F �/3
M

�
c

a1a2a3
;
c

a1a2

�
max.1; ja1j; ja2j/

"C1�d1=2�d2=2

ˇ̌
ˇ̌ Œa�
c

ˇ̌
ˇ̌
�d3=2C1�"

� ¹aºd=2�1 d�a

D jcjd3=2�1
Z

.F �/3
M

�
a�1
3 ;

c

a1a2

�
max.1; ja1j; ja2j/

"C1�d1=2�d2=2

� ja1j
d1=2�d3=2ja2j

d2=2�d3=2ja3j
�" d�a

� jcjd3=2�1
Z

.F �/2
J 0

�
c

a1a2

�
max.1; ja1j; ja2j/

"C1�d1=2�d2=2

� ja1j
d1=2�d3=2ja2j

d2=2�d3=2 d�a2 d�a1

for some J 0 2 A.F /. Break down the integral into ja1a2j � jcj and ja1a2j � jcj, which
are (11.28) (up to ") and (11.30) respectively. In both cases, the integral is dominated by
max.1; jcj/�1=2C"=2 min.1; jcj/d3=2�1�".

Proof of Theorem 11.1. By symmetry, we may assume d1; d2 � d3; this assumption is
used to apply Lemma 11.13. We showed (11.7) was dominated by (11.14)±(11.18) with
c D bŒa�

3Œz�� in Section 11.1. To estimate the integrals over .F �/3 of the terms (11.14)±

(11.18), we apply Lemmas 11.6, 11.13, 11.7, 11.8, 11.10 (respectively) with c D 3Œz��=b.
Given our comments on the continuity of our bounds as a function of f at the beginning
of Section 11.2, the theorem follows.

Moreover, we have the following bound.

Theorem 11.17. Suppose j�1 ˝ �2 ˝ �3j > jbj. If di > 2 for all i; given ˛ > 0; there

exists ˇ > 0 such that

Z Z

F 2

ˇ̌
ˇ̌
Z

V.F /

 

��
a�

z�
; u

�
C
Œa�bQ.u/

9Œz��
C c.u; v/

�
f .u/ du

ˇ̌
ˇ̌ dv d

�a

¹aº1�d=2

�˛;ˇ;f

ˇ̌
ˇ̌�1 ˝ �2 ˝ �3

b

ˇ̌
ˇ̌
�ˇ
;

where the outer integral is over jaj �
ˇ̌
�1˝�2˝�3

b

ˇ̌˛
.

Proof. Replacing Lemmas 11.8 and 11.10 with Corollaries 11.9 and 11.12 in the proof of
Theorem 11.1 yields the bound.

Appendix A. Computation of normalizing factors

In this appendix we compute the normalizing factors ¹.si ; �i /º. The parameters depend
only on the action of the dual group yM acting on the dual Lie algebra ynP and our fixed
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isomorphism
!P W M ab �

�! Gm (A.1)

defined as in (3.2).
To avoid proliferation of duals, we work directly in the dual picture in this section.

Thus nowG denotes an adjoint simple group over C with maximal parabolic subgroup P
and Levi subgroupM; and we are studying the action ofM on nP ; the complex Lie alge-
bra of the unipotent radical NP of P: We define the parameters .si ; �i / as in Section 4.1
but with yM; ynP in that section replaced by M and nP ; respectively. We let T be a max-
imal torus in M; T � B � P a Borel subgroup, and � the corresponding set of simple
roots. We let ˇ be the simple root such that � � ¹ˇº is the set of simple roots of T \M

in M with respect to B \M . The dual of (A.1) is an isomorphism

' W Gm
�
�! Z.M/: (A.2)

For any representation W of M and any integer �; we write W.�/ for the subspace on
which Z.M/ D Gm acts via x 7! x�.

Lemma A.1. If � � 0; then nP .�/ D 0.

Proof. Let 
 be a positive root of .G;B; T /. Note that the root space .nP /
 is nonzero if
and only if writing 
 D

P
˛2� c˛˛ we have cˇ > 0. It follows from (3.2) that

h
; 'i D cˇ hˇ; 'i D cˇmˇ_ > 0:

We deduce the lemma.

In each of the cases given below, the isomorphism ' W Gm !Z.M/ will be the ªobvi-
ous oneº, so we will not record it. In fact, there are only two choices of isomorphism
Gm

�
�! Z.M/; and there is only one of them so that Lemma A.1 is true, so the reader can

easily check which isomorphism is '.
In the following computations, we interpret Sym0.C2/ as the trivial 1-dimensional

representation of sl2.

A.1. Projective general linear groups

The following is the classical Clebsch±Gordan rule [16, Exercise 11.11]:

Lemma A.2. We have an isomorphism of sl2-representations

Symn.C2/˝ Symm.C2/

Š SymnCm.C2/˚ SymnCm�2.C2/˚ � � � ˚ Symjn�mj.C2/:

Lemma A.3. Let P � PGLn be the parabolic stabilizing an `-plane. Then

®� jn�2`j
2

; 1
�
;
� jn�2`jC2

2
; 1

�
; : : : ;

�
n�2
2
; 1

�¯

is a good ordering for nP .
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Proof. It is not hard to see mder Š sln�` � sl` and nP is isomorphic as a representation
of m to Hom.Cn�`;C`/with the natural action. The induced representation of a principal
sl2-triple is

Symn�`�1.C2/_ ˝ Sym`�1.C2/ Š Symn�`�1.C2/˝ Sym`�1.C2/

Š Symn�2.C2/˚ Symn�4.C2/˚ � � � ˚ Symjn�2`j.C2/

by Lemma A.2. The lemma follows.

A.2. The classical groups

Let V be a complex vector space equipped with a nondegenerate �-symmetric form h�; �i;

that is,
hv;wi D �hw; vi

for v;w 2 V . We assume � 2 ¹1;�1º. For C-algebras R; let

GV .R/ WD ¹g 2 SLV .R/ W hgv; gwi D hv;wiº:

We refer to GV as a classical group. The corresponding Lie algebra is

gV D ¹X 2 sl.V / W hXv;wi C hv;Xwi D 0 for v;w 2 V º:

Let PGV be the associated projective group. Concretely,

PGV Š

´
PSOdimV if � D 1;

PSpdimV if � D �1:

We assume that PGV is simple and not isomorphic to a projective general linear group.
Thus dimV 62 ¹2; 4º if � D 1 and dimV ¤ 2 if � D �1. We also observe that PSO2rC1 D

SO2rC1.
The maximal parabolic subgroups of PGV are precisely the stabilizers of isotropic

subspaces. For a parabolic P D MNP ; we denote by WP the corresponding isotropic
subspace. We let W _

P be the linear dual of WP with respect to h�; �i. Then there exists a
subspace VP < V such that the pair .VP ; h�; �ijVP

/ is of the same symmetric type as V ,
and such that there is a direct sum decomposition V D WP ˚ VP ˚W _

P : Note that the
pair .WP ˚ W _

P ; h�; �ijWP ˚W _
P
/ is also nondegenerate and of the same symmetric type

as V . We have
m Š glWP

˚ gVP
:

We refer to ` WD dimWP as the linear rank of M or m.
The following lemma is well-known. See for instance [58, Theorems 8.6 and 12.6].

Lemma A.4. As a representation of m;

nP Š HomC.VP ; WP /˚ SymV .WP /;

where

SymV .WP / WD

´
Sym2.WP / if � D �1;

Alt2.WP / if � D 1:
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We have

nP .1/ Š HomC.VP ; WP / and nP .2/ Š SymV .WP / (A.3)

unless PGV is PSO2r or PSp2r and m Š glr ; in which case

nP D nP .1/ Š SymV .WP /: (A.4)

The following lemma explicates the principal sl2-subalgebra of gVP
.

Lemma A.5. As a representation of a principal sl2-subalgebra of gV ; the standard rep-

resentation V of gV is isomorphic to SymdimV�1.C2/ unless G Š PSO2r ; in which case

it is SymdimV�2.C2/˚ C.

Proof. The nth tensor power of the standard symplectic form on C2 is .�1/n-symmetric,
and the nth symmetric power of the standard representation C2 of sl2 is a subrepresen-
tation of the nth tensor power. Thus the principal sl2 ! slV may be chosen to factor
through the standard representation gV ! slV . This implies the lemma unless G Š

PSO2r . For this last case see [23, Section 7].

For the following lemma, see [16, Exercises 11.31 and 11.35]:

Lemma A.6. For any n � 1; we have the following equivalences of sl2-representations:

V2
.Symn.C2// Š Sym2.Symn�1.C2// D

b.n�1/=2cM

jD0
Sym2.n�1/�4j .C2/:

Let
p.V / WD dimV .mod 2/

be the parity of dim V; viewed as an element of the set ¹0; 1º. Note that if G Š PSO2r ,
linear ranks are either r or � r � 2.

Lemma A.7. Assume r > 1. Assume that either G is PSp2r and the linear rank ` of M

is not r , or G Š SO2rC1. For ` > 1; the parameters ¹.si ; �i /º are

®� j2rCp.V /�3`j
2

; 1
�
;
� j2rCp.V /�3`jC2

2
; 1

�
; : : : ;

�
2rCp.V /�`�2

2
; 1

�¯

t ¹.` � 1 � p.V / � 2j; 2/ W 0 � j � b.` � 1 � p.V //=2cº:

If ` D 1; the parameters are

®�
2r�2
2
; 1

�¯
if G Š SO2rC1 and

®�
2r�3
2
; 1

�
; .0; 2/

¯
if G Š PSp2r :

Suppose G Š PSO2r with r � 3 and ` � r � 2. If ` > 1; then the parameters are

®� j2r�1�3`j
2

; 1
�
;
� j2r�1�3`jC2

2
; 1

�
; : : : ;

�
2r�`�3

2
; 1

�¯
t

®�
`�1
2
; 1

�¯

t ¹.` � 2 � 2j; 2/ W 0 � j � b.` � 2/=2cº:
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If ` D 1; the parameters are ¹.0; 1/; .r � 2; 1/º. If ` D r and G is isomorphic to PSp2r
or PSO2r then the parameters ¹.si ; �i /º are

¹.r � 1 � 2j; 1/ W 0 � j � b.r � 1/=2cº if G Š PSp2r ;

¹.r � 2 � 2j; 1/ W 0 � j � b.r � 2/=2cº if G Š PSO2r and r � 3:

In all cases, every good ordering has the largest parameter .sk ; �k/ with �k D 1.

Proof. We use Lemmas A.2, A.5, and A.6 freely in the following. If G Š PSp2r or G Š

SO2rC1; then as a representation under a principal sl2-triple,

HomC.VP ; WP / Š Sym`�1.C2/˝ Sym2rCp.V /�2`�1.C2/

Š Sym2rCp.V /�`�2.C2/˚ Sym2rCp.V /�`�4.C2/˚ � � � ˚ Symj2rCp.V /�3`j.C2/:

This space is understood to be zero if r D ` and G Š PSp2r . If G Š PSO2r , then

HomC.VP ; WP / Š Sym`�1.C2/˝ .C ˚ Sym2r�2`�2.C2//

Š Sym`�1.C2/˚ Sym2r�`�3.C2/˚ � � � ˚ Symj2r�3`�1j.C2/:

If G Š PSp2r , we have

SymV .WP / Š Sym2.Sym`�1.C2// Š

b.`�1/=2cM

jD0
Sym2.`�1/�4j .C2/:

If G is PSO2r or SO2rC1; we have

SymV .WP / Š
V2
.Sym`�1.C2// Š

b.`�2/=2cM

jD0
Sym2.`�2/�4j .C2/:

Here by convention this space is zero if `D 1. The lemma now follows from Lemma A.4,
(A.3) and (A.4).

A.3. Exceptional cases

For exceptional types, we compute the decomposition of nP using LieART 2.0.2 (a Math-
ematica application) based on the tables of [35].

Assume G is adjoint of type E; F; or G. Let Pk D MkNk � G denote the maximal
parabolic associated to the kth node of the Dynkin diagram of G; using the Bourbaki
numbering. For a given parabolic subgroup, consider the grading

nPk
D

M

i�1
nPk

.i/;

associated to the action of Z.M/. The columns of the tables correspond to the graded
piece we consider.
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We list the resulting sl2-representations by the highest weight. For example, the rep-
resentation Symn.C2/ will be denoted n: In particular, under the assumption that G is
adjoint, the data .s; �/ associated to the representation n appearing in nPk

.i/ is .n=2; i/.

E6: Node i D 1 i D 2 i D 3

1 10; 4

2 9; 5; 3 0

3 7; 5; 3; 1 4

4 5; 3; 3; 1; 1 4; 2; 0 1

5 7; 5; 3; 1 4

6 10; 4

E7: Node i D 1 i D 2 i D 3 i D 4

1 15; 9; 5 0

2 12; 8; 6; 4; 0 6

3 9; 7; 5; 3; 1 8; 4; 0 1

4 6; 4; 4; 2; 2; 0 6; 4; 2; 2 4; 2 2

5 8; 6; 4; 4; 2; 0 6; 4; 2 4

6 11; 9; 5; 3 8; 0

7 16; 8; 0

E8: Node i D 1 i D 2 i D 3 i D 4 i D 5 i D 6

1 21; 15; 11; 9; 3 12; 0

2 15; 11; 9; 7; 5; 3 12; 8; 4; 0 7

3 11; 9; 7; 5; 3; 1 12; 8; 6; 4; 0 7; 5 6

4 7; 5; 5; 3; 3; 1 8; 6; 4; 4; 2; 0 7; 5; 3; 1 6; 4; 2 3; 1 4

5 9; 7; 5; 5; 3; 3; 1 8; 6; 4; 4; 2; 0 7; 5; 3; 1 6; 2 3

6 12; 10; 8; 6; 4; 2 10; 8; 6; 2 10; 4 2

7 17; 15; 9; 7; 1 16; 8; 0 1

8 27; 17; 9 0

F4: Node i D 1 i D 2 i D 3 i D 4

1 9; 3 0

2 5; 3; 1 4; 0 1

3 3; 1 4; 2; 0 1 2

4 6; 0 6

G2: Node i D 1 i D 2 i D 3

1 1 0 1

2 3 0

List of symbols

Xı
P

P dernG §3.1
ˇ simple root in � associated to P §3.2
!ˇ fundamental weight associated to ˇ §3.2
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!P weight in X�.T / attached to P (3.2)
XP affine completion of Xı

P
§3.2

vP highest weight vector in VP .F / §3.2
v�
P op lowest weight vector dual to vp in V _

P
.F / §3.2

Pl D PlvP
Plücker embedding Pl W XP ! GvP §3.2

VP right representation of G of highest weight �!P §3.2
h�; �iP jP op pairing on Xı

P
�Xı

P op (3.4)
.�/�;P ; .�/

op
�;P op Mellin transform along � (3.6)

IP .�/; xIP op.�/ normalized induction (3.5)
VA;B ¹s 2 C W A < Re.s/ < Bº (3.7)
j � jA;B;p sups2VA;B

jp.s/�.s/j (4.11)
yKGm set of (unitary) characters (4.10)

j � jA;B;pP jQ;�;D seminorm (5.6)
U.mab ˚ g/ universal enveloping algebra of .mab ˚ g/C §4
�Š.�s/ normalized operator attached to .s; �/ (4.2)
L graded representation L of Gm with attached data ¹.si ; �i /º §4
A.L/; B.L/ extended real numbers attached to L (4.8)
aL.�/

Q
i2I L.�si ; �

�i / (4.7)
aP jP .�/ azL.�

�1/ with L D yne
P

(5.3)
aP jP op.�/ aL.�/ with L D yne

P
(5.3)

�L Fréchet space attached to L §4
�.XP .F // Schwartz space on XP .F / Def. 5.5
¹e; h; f º principal sl2 triple in ym §4.1
yne
P

space of highest weight vectors in ynP for a principal sl2-triple (4.29)
�L normalized operator attached to L (4.26)

�L.�/
Qk
iD1 
.�si ; �

�i ;  / (4.27)
�P �L with L D yne

P
(4.30)

RP jP ;RP jP op Radon transform (5.2)
�w0

isomorphism �w0
W �.XP .F //

��! �.XP op.F // §5.3
FP jP op �P ı RP jP op (5.8)
w0 w0Pw

�1
0 D P op (5.22)

F
geo
P jP op �

geo
P

ı RP jP op (6.7)

FXP
�w0

ı FP jP op (6.11)
�

aug
P

�1Š.�s1/ ı � � � ı �.k�1/Š.�sk�1
/ (6.6)

�
geo
P

Œ1�Š.�sk / (6.6)
.Vi ;Qi / quadratic space of even dimension §8
.V;Q/ .

Q3
iD1 Vi ;

P3
iD1Qi / §8

�Q quadratic character attached to Q (9.1)

.Q/ Weil index of Q §9
X XP where G D Sp6 and P is the Siegel parabolic §8
x0 representative of the open SL32-orbit in X (8.4)
N0 stabilizer of x0 in SL32 (8.5)
Y ¹.y1; y2; y3/ 2 V W Q1.y1/ D Q2.y2/ D Q3.y3/º: (8.1)
Y ani anisotropic vectors in Y (8.2)
d�.y/ measure on Y §8
�.Y.F // Schwartz space of Y.F / §8
FY Fourier transform on �.Y.F // §8
� Im.�.V .F // ! C1.Y sm.F /// (8.7)
r rational function on .F�/3 (9.2)
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c.u; v/ v1Q1.u1/C v2Q2.u2/ � .v1 C v2/Q3.u3/ (9.10)
v0 .v1; v2;�v1 � v2/ (9.38)

Acknowledgments. The authors thank the anonymous referee for a remarkably thorough review
of the paper, corrections, and for comments that improved the exposition. They also thank Ary
Shaviv for answering questions on Schwartz spaces. The first author thanks Y. Choie, D. Kazhdan
and F. Shahidi for many useful conversations. Part of this paper was written while the first author
was on sabbatical at the Postech Mathematics Institute. He thanks the center, the Postech Math
Department and Y. Choie for their hospitality and excellent working conditions. He finally thanks
H. Hahn for her constant encouragement and help with editing and the structure of the paper. The
second author would like to thank MSRI, P. Habegger and H. Pasten for organizing the summer
school on Sparsity of Algebraic Points in 2021, during which he learned o-minimal geometry.

Funding. The first author is partially supported by NSF grant DMS 1901883, and received support
from D. Kazhdan ERC grant AdG 6699655 and Y. Choie’s NRF 2017R1A2B2001807 grant. The
third author was partially supported by an AMS-Simons Travel Award and by NSF grants DMS-
1902865 and DMS-2200852.

References

[1] Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash manifolds. Int. Math. Res. Notices
2008, art. 155, 37 pp. Zbl 1161.58002 MR 2418286

[2] Aizenbud, A., Gourevitch, D.: The de-Rham theorem and Shapiro lemma for Schwartz func-
tions on Nash manifolds. Israel J. Math. 177, 155±188 (2010) Zbl 1208.58002
MR 2684417

[3] Arthur, J.: Intertwining operators and residues. I. Weighted characters. J. Funct. Anal. 84,
19±84 (1989) Zbl 0679.22011 MR 999488

[4] Blomer, V., Brumley, F.: On the Ramanujan conjecture over number fields. Ann. of Math. (2)
174, 581±605 (2011) Zbl 1322.11039 MR 2811610

[5] Borel, A.: Linear algebraic groups. 2nd ed., Graduate Texts in Mathematics 126, Springer,
New York (1991) Zbl 0726.20030 MR 1102012

[6] Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55±150 (1965)
Zbl 0145.17402 MR 207712

[7] Bouthier, A., Ngô, B. C., Sakellaridis, Y.: On the formal arc space of a reductive monoid.
Amer. J. Math. 138, 81±108 (2016) Zbl 1346.14039 MR 3462881

[8] Braverman, A., Gaitsgory, D.: Geometric Eisenstein series. Invent. Math. 150, 287±384 (2002)
Zbl 1046.11048 MR 1933587

[9] Braverman, A., Kazhdan, D., Vologodsky, V.: 
 -functions of representations and lifting.
Geom. Funct. Anal., Special Volume, Part I, 237±278 (2000) Zbl 1004.11026 MR 1826255

[10] Braverman, A., Kazhdan, D.: Normalized intertwining operators and nilpotent elements in the
Langlands dual group. Moscow Math. J. 2, 533±553 (2002) Zbl 1022.22015 MR 1988971

[11] Carbery, A., Christ, M., Wright, J.: Multidimensional van der Corput and sublevel set esti-
mates. J. Amer. Math. Soc. 12, 981±1015 (1999) Zbl 0938.42008 MR 1683156

[12] Cluckers, R.: Analytic van der Corput lemma for p-adic and Fq..t// oscillatory integrals,
singular Fourier transforms, and restriction theorems. Expo. Math. 29, 371±386 (2011)
Zbl 1231.42011 MR 2861764

[13] Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and
Châtelet surfaces. I. J. Reine Angew. Math. 373, 37±107 (1987) Zbl 0622.14029
MR 870307



J. R. Getz, C.-H. Hsu, S. Leslie 108

[14] Elazar, B., Shaviv, A.: Schwartz functions on real algebraic varieties. Canad. J. Math. 70,
1008±1037 (2018) Zbl 1445.14078 MR 3831913

[15] Folland, G. B.: A course in abstract harmonic analysis. 2nd ed., Textbooks in Mathematics,
CRC Press, Boca Raton, FL (2016) Zbl 1342.43001 MR 3444405

[16] Fulton, W., Harris, J.: Representation theory. Graduate Texts in Mathematics 129, Springer,
New York (1991) Zbl 0744.22001 MR 1153249

[17] Gel’fand, I. M., Shilov, G. E.: Generalized functions. Vol. 3. AMS Chelsea Publishing, Prov-
idence, RI (2016) Zbl 1339.01008 MR 3468845

[18] Getz, J. R.: A summation formula for the Rankin±Selberg monoid and a nonabelian trace
formula. Amer. J. Math. 142, 1371±1407 (2020) Zbl 1457.11068 MR 4150648

[19] Getz, J. R., Hsu, C.-H.: The Fourier transform for triples of quadratic spaces.
arXiv:2009.11490 (2020)

[20] Getz, J. R., Liu, B.: A summation formula for triples of quadratic spaces. Adv. Math. 347,
150±191 (2019) Zbl 1443.11083 MR 3916514

[21] Getz, J. R., Liu, B.: A refined Poisson summation formula for certain Braverman±Kazhdan
spaces. Sci. China Math. 64, 1127±1156 (2021) Zbl 1465.11142 MR 4268887

[22] Gross, B. H.: On the motive of G and the principal homomorphism SL2 ! bG. Asian J. Math.
1, 208±213 (1997) Zbl 0942.20031 MR 1480995

[23] Gross, B. H.: On minuscule representations and the principal SL2. Represent. Theory 4, 225±
244 (2000) Zbl 0986.22011 MR 1795753

[24] Gurevich, N., Kazhdan, D.: Fourier transforms on the basic affine space of a quasi-split group.
arXiv:1912.07071 (2019)

[25] Gurevich, N., Kazhdan, D.: Fourier transform on a cone and the minimal representation of
even orthogonal group. arXiv:2304.13993 (2023)

[26] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T.: Sobolev spaces on metric mea-
sure spaces. New Mathematical Monographs 27, Cambridge University Press, Cambridge
(2015) Zbl 1332.46001 MR 3363168

[27] Hsu, C.-H.: Asymptotics of Schwartz functions: nonarchimedean. arXiv:2112.02403v2
(2023)

[28] Igusa, J.-i.: An introduction to the theory of local zeta functions. AMS/IP Studies in Advanced
Mathematics 14, American Mathematical Society, Providence, RI; International Press, Cam-
bridge, MA (2000) Zbl 0959.11047 MR 1743467

[29] Ikeda, T.: On the location of poles of the triple L-functions. Compos. Math. 83, 187±237
(1992) Zbl 0773.11035 MR 1174424

[30] Jiang, D., Luo, Z., Zhang, L.: Harmonic analysis and gamma functions on symplectic groups.
arXiv:2006.08126 (2020)

[31] Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indef-
inite orthogonal group O.p; q/. Mem. Amer. Math. Soc. 213, no. 1000, vi+132 pp. (2011)
Zbl 1225.22001 MR 2858535

[32] Langlands, R. P.: Euler products. Yale Mathematical Monographs 1, Yale University Press,
New Haven, CN (1971) Zbl 0231.20016 MR 0419366

[33] Li, W.-W.: Zeta integrals, Schwartz spaces and local functional equations. Lecture Notes in
Mathematics 2228, Springer, Cham (2018) Zbl 1425.11001 MR 3839636

[34] Manivel, L.: Prehomogeneous spaces and projective geometry. Rend. Sem. Mat. Univ. Politec.
Torino 71, 35±118 (2013) Zbl 1362.11099 MR 3345058

[35] Miller, S. D., Sahi, S.: Fourier coefficients of automorphic forms, character variety orbits, and
small representations. J. Number Theory 132, 3070±3108 (2012) Zbl 1272.11062
MR 2965210

[36] Milne, J. S.: Algebraic groups. Cambridge Studies in Advanced Mathematics 170, Cambridge
University Press, Cambridge (2017) Zbl 1390.14009 MR 3729270



Harmonic analysis on certain spherical varieties 109

[37] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory. 3rd ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2) 34, Springer, Berlin (1994) Zbl 0797.14004
MR 1304906

[38] Ngô, B. C.: On a certain sum of automorphic L-functions. In: Automorphic forms and related
geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemporary Mathematics 614,
American Mathematical Society, Providence, RI, 337±343 (2014) Zbl 1298.11041
MR 3220933

[39] Ngô, B. C.: Hankel transform, Langlands functoriality and functional equation of automorphic
L-functions. Jpn. J. Math. 15, 121±167 (2020) Zbl 1471.11158 MR 4068833

[40] Poonen, B.: Rational points on varieties. Graduate Studies in Mathematics 186, American
Mathematical Society, Providence, RI (2017) Zbl 1387.14004 MR 3729254

[41] Sakellaridis, Y.: Spherical varieties and integral representations ofL-functions. Algebra Num-
ber Theory 6, 611±667 (2012) Zbl 1253.11059 MR 2966713

[42] Sakellaridis, Y., Wang, J.: Intersection complexes and unramified L-factors. J. Amer. Math.
Soc. 35, 799±910 (2022) Zbl 1499.14076 MR 4433079

[43] Shahidi, F.: On generalized Fourier transforms for standardL-functions. In: Geometric aspects
of the trace formula, Simons Symposia, Springer, Cham, 351±404 (2018) Zbl 1441.11118
MR 3969881

[44] Shahidi, F., Sokurski, W.: On the resolution of reductive monoids and multiplicativity of

 -factors. J. Number Theory 240, 404±438 (2022) Zbl 1503.11084 MR 4458245

[45] Tate, J.: Number theoretic background. In: Automorphic forms, representations and
L-functions (Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics
33, American Mathematical Society, Providence, RI, 3±26 (1979) Zbl 0422.12007
MR 546607

[46] Thomas, G. E. F.: Integration of functions with values in locally convex Suslin spaces. Trans.
Amer. Math. Soc. 212, 61±81 (1975) Zbl 0312.28014 MR 385067

[47] Tu, L. W.: An introduction to manifolds. 2nd ed., Universitext, Springer, New York (2011)
Zbl 1200.58001 MR 2723362

[48] van den Dries, L.: Tame topology and o-minimal structures. London Mathematical Society
Lecture Note Series 248, Cambridge University Press, Cambridge (1998) Zbl 0953.03045
MR 1633348

[49] van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions.
Israel J. Math. 85, 19±56 (1994) Zbl 0823.03017 MR 1264338

[50] Vinberg, E. B., Popov, V. L.: On a class of quasihomogeneous affine varieties. Math. USSR
Izv. 6, 743±758 (1973) Zbl 0255.14016 MR 0313260

[51] Waldspurger, J.-L.: La formule de Plancherel pour les groupes p-adiques (d’après Harish-
Chandra). J. Inst. Math. Jussieu 2, 235±333 (2003) Zbl 1029.22016 MR 1989693

[52] Wallach, N. R.: Real reductive groups. II. Pure and Applied Mathematics 132, Academic
Press, Boston, MA (1992) Zbl 0785.22001 MR 1170566

[53] Warner, G.: Harmonic analysis on semi-simple Lie groups. I. Grundlehren der mathematischen
Wissenschaften 188, Springer, New York (1972) Zbl 0265.22020 MR 0498999

[54] Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143±211 (1964)
Zbl 0203.03305 MR 165033

[55] Wheeden, R. L., Zygmund, A.: Measure and integral. 2nd ed., Pure and Applied Mathematics
(Boca Raton), CRC Press, Boca Raton, FL (2015) Zbl 1326.26007 MR 3381284

[56] Wilkie, A. J.: Model completeness results for expansions of the ordered field of real numbers
by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc. 9, 1051±
1094 (1996) Zbl 0892.03013 MR 1398816

[57] Wituøa, R., Hetmaniok, E., Søota, D.: A stronger version of the second mean value theorem for
integrals. Comput. Math. Appl. 64, 1612±1615 (2012) Zbl 1268.26005 MR 2960787

[58] Wolf, J. A.: Unitary representations of maximal parabolic subgroups of the classical groups.
Mem. Amer. Math. Soc. 8, no. 180, iii+193 pp. (1976) Zbl 0344.22016 MR 444847


