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ABSTRACT The advent of quantum computing can potentially revolutionize how complex problems are
solved. This paper proposes a two-loop quantum-classical solution algorithm for generation scheduling
by infusing quantum computing, machine learning, and distributed optimization. The aim is to facilitate
employing noisy near-term quantum machines with a limited number of qubits to solve practical power
system optimization problems such as generation scheduling. The outer loop is a 3-block quantum
alternative direction method of multipliers (QADMM) algorithm that decomposes the generation scheduling
problem into three subproblems, including one quadratically unconstrained binary optimization (QUBO)
and two non-QUBOs. The inner loop is a trainable quantum approximate optimization algorithm (T-QAOA)
for solving QUBO on a quantum computer. The proposed T-QAOA translates interactions of quantum-
classical machines as sequential information and uses a recurrent neural network to estimate variational
parameters of the quantum circuit with a proper sampling technique. T-QAOA determines the QUBO
solution in a few quantum-learner iterations instead of hundreds of iterations needed for a quantum-classical
solver. The outer 3-block ADMM coordinates QUBO and non-QUBO solutions to obtain the solution
to the original problem. The conditions under which the proposed QADMM is guaranteed to converge
are discussed. Two mathematical and three generation scheduling cases are studied. Analyses performed
on quantum simulators and classical computers show the effectiveness of the proposed algorithm. The
advantages of T-QAOA are discussed and numerically compared with QAOA which uses a stochastic
gradient descent-based optimizer.

INDEX TERMS Quantum computing, variational quantum algorithm, machine learning, distributed
optimization, generation Scheduling.

I. INTRODUCTION

COMPUTIONAL challenges have always played a sig-
nificant role in the design and operation of com-

plex systems. Power system modernization poses complex-
ity and computational challenges that classical computers
and solvers may not meet [1]. Generation scheduling is a
fundamental problem in power systems, which determines
generating units’ status to provide the load while satisfying
operational constraints cost-effectively [2]. This problem is
mathematically set as a mixed-integer linear programming
(MILP) problem [3]. As the number of generating units and
the penetration of renewables and distributed resources in-
crease, generation scheduling complexity and computational
burden increase exponentially. Computationally efficient and

scalable approaches must be developed to deal with this
problem.

Quantum computing, a rapidly emerging technology, po-
tentially opens new opportunities in solving computation-
ally challenging problems that classical resources may not
be able to address [4]. Quantum computing uses quantum
mechanical laws to perform computation operations. Despite
significant progress in recent years, universal error-corrected
quantum computers have yet to be achieved. Currently, noisy
intermediate-scale quantum technology is available to imple-
ment quantum algorithms and recognize problems for which
quantum computing outperforms classical counterparts.

Solving combinatorial optimization is a research scope
that quantum speedup is expected. This is achieved us-
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ing methods such as quantum approximate optimization
algorithm (QAOA) [5], Grover algorithm [6], and varia-
tional quantum eigensolver [7]. The application of quantum
computing extends beyond solving combinatorial problems
[8], [9]. While quadratic unconstrained binary optimization
(QUBO) is a well-known class of combinatorial optimization
problems that can benefit from quantum computing, it also
offers potential advantages for solving a wide range of other
optimization problems such as the quantum interior point
method for linear programming and semi-definite program-
ming [10]. A QUBO problem can be transformed into an
Ising model using a Hamiltonian that includes the weighted
tensor product of Pauli-Z operators [11]. Limitations of
quantum computing algorithms and noisy intermediate-scale
quantum devices have initiated the development of hybrid
quantum-classical techniques to cope with large-scale prob-
lems. The aforementioned quantum algorithms, e.g., QAOA,
are designed based on gate-based quantum computers, which
are still in the early stage of development and unable to solve
large problems [12]. Also, a special-purpose design of quan-
tum computers to solve QUBOs has been developed recently
based on quantum annealing [13]. Such hybrid algorithms
aim to decompose a problem into one subproblem that can
be efficiently handled in a classical computer and another
subproblem that can be assigned to a quantum processing unit
(QPU). Hybrid quantum-classical algorithms can be found in
the literature for both general-purpose and special-purpose
problems.

To solve MILP problems, [14] and [15] have presented
hybrid techniques based on the Benders technique to de-
compose the original problem into a MILP master prob-
lem and a convex linear programming subproblem. In [14],
continuous variables are discretized to convert the master
problem into a QUBO. This discretization needs ancillary
qubits. In [15], a Benders cut selection scheme manages the
size of the master problem. The cut selection strategy is a
QUBO problem assigned to a QPU. Although Benders-based
algorithms guarantee convergence, they take many iterations.
A hybrid technique based on the multi-block alternating
direction method of multipliers (ADMM) [16] is presented in
[17] for MILP problems. The complicating binary variables
are relaxed to vary continuously. The problem is split into
a QUBO solvable by QPU and continuous blocks solvable
by classical solvers. A two-block and three-block version
of this method is adopted in [18] and [19], respectively, to
solve unit commitment. Although this approach is useful for
adjusting the complexity of binary subproblems by encoding
them through entangled states encoded within qubits, it might
not converge as the problem size increases. Surrogate La-
grangian relaxation is presented in [20] for a hybrid solution
of unit commitment. In addition to these algorithms, [21]–
[23] present similar ideas for solving specific problems using
quantum computing. The authors in [21] and [22] discretize
continuous variables into h parts to turn them into binary
variables. This method is not practical as for a problem with
n continuous variables, n(h+1) ancillary qubits are required.

In [23], heuristic methods extend the variational quantum
eigensolver for solving MILP problems. The main drawback
is the inability to guarantee convergence to the global or
local optimum. The proposed approach in [24] integrates
a classical heuristic algorithm with a quantum annealer to
achieve better-quality solutions in a shorter time frame than
traditional methods. Authors in [25] convert the combina-
torial optimal power flow problem into a QUBO problem,
which is amenable to quantum annealing. In [26], a quantum
teaching learning-based algorithm for optimal energy man-
agement of microgrids is proposed, which outperforms other
optimization algorithms in terms of convergence speed and
accuracy. We note that previous studies have mainly proposed
approaches for exploiting quantum computers. The computa-
tional process of quantum algorithms, such as QAOA, has not
been sufficiently investigated.

QAOA is a variational quantum algorithm for solving com-
binatorial optimization problems. It is a promising candidate
for demonstrating quantum advantage in the near future [23].
The main concept of QAOA is to alternately repeat the cost
Hamiltonian, in which its ground state encodes the problem
solution and mixing Hamiltonian. It relies on preparing a
parameterized quantum circuit on a quantum device and a
classical optimizer to find the best quantum circuit param-
eters. QAOA is introduced in [5] to solve combinatorial
optimization problems. The model and study are derived
from a MaxCut problem. Following that work, [27] has
studied QAOA’s ability to solve more complex problems.
The quality of the solution resulting from QAOA is affected
by the quality of variational parameters prepared in a clas-
sical optimizer. Therefore, developing effective variational
parameters optimization techniques is crucial to achieving
quantum advantages. Various approaches are proposed for
optimizing variational parameters, including gradient-based
[28] and gradient-free methods [29], [30]. Neural networks
and learning techniques have also been used to optimize
the variational parameters [30], [31]. Optimization-based
methods take many more iterations to achieve optimal results
as compared to learning-based methods [32]. Scalability is
also a key point that learning-based methods cannot address
easily.

In this paper, we develop a trainable two-loop quantum-
classical optimization algorithm for generation scheduling.
Generation scheduling is decomposed into one QUBO and
two non-QUBO subproblems. The inner QAOA loop solves
QUBO on quantum computers. The iterative interactions be-
tween the quantum circuit and classical optimizer are trans-
lated as sequential time series-type information. A scalable
deep recurrent neural network plays the role of an optimizer
mimicking the iterative trace between QPU and a conven-
tional computer to determine the optimal quantum circuit
variational parameters. With a proper sampling technique,
the chosen learner optimizer provides the proposed trainable
QAOA (T-QAOA) with the flexibility to converge within a
pre-determined number of iterations instead of hundreds to
thousands of iterations that may take by the conventional
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QAOA. An outer 3-block quantum-ADMM (QADMM) loop
is designed to coordinate generation scheduling QUBO and
non-QUBO subproblems. The inner loop learner stays un-
changed at every outer QADMM iteration. The scalability
and convergence conditions of the proposed algorithm are
discussed. Numerical results on a real quantum computer and
quantum simulator show the effectiveness of the proposed
trainable two-loop algorithm.

The paper is organized as follows. Section II presents
generation scheduling and a preliminary discussion on quan-
tum computing. The generation scheduling decomposition
and the T-QAOA algorithm are proposed in Section III.
Numerical results are discussed in Section IV, and concluding
remarks are provided in Section V.
II. PRELIMINARIES
A. COMPACT GENERATION SCHEDULING
FORMULATION
Assume that pi,t denotes continuous variables (e.g., power
output), yi,t denotes discrete variables (e.g., on/off status) of
unit i at time t. Let I = {1, 2, ..., N} and T = {1, 2, ...T}
be the set of generating units and time periods. For brevity of
notation, we use (p, y) and (pi, yi) in the following equations
where (pi, yi) refers to vectors of unit i containing variables
(pi,t, yi,t), ∀t ∈ T , and (p, y) refers to vectors containing
variables (pi,t, yi,t), ∀i ∈ I and ∀t ∈ T . The generation
scheduling problem is as follows:

min
pi,t,yi,t

∑
i∈I

∑
t∈T

[f(pi,t) + g(yi,t)], (1a)

s.t.
Q(pi,t) = 0; ∀i ∈ I, ∀t ∈ T , (1b)

D(yi,t) = 0; ∀i ∈ I, ∀t ∈ T , (1c)

W (pi,t, yi,t) ≤ 0; ∀i ∈ I, ∀t ∈ T , (1d)

where pi,t ∈ R and yi,t ∈ {0, 1}. The objective function
(1a) represents the generation cost f and commitment cost
g. Equality (1b) is responsible for constraints associated
with continuous variables such as power balance. Generators
on/off logic equations are considered in (1c). Constraint (1d)
represents the power output limitations, transmission line
bounds, reserve requirements, and ramping rate, including
binary and continuous variables. To simplify notation, we
introduce a representation for the generation cost term f(pi,t)
and the commitment cost term g(yi,t) within the objective
function (1a) as follows:

F(p) =
∑
i∈I

fi(pi) =
∑
i∈I

∑
t∈T

bi · pi,t, (2a)

G(y) =
∑
i∈I

gi(yi) =
∑
i∈I

∑
t∈T

ci · yi,t, (2b)

where objective function (1a) is equal to F(p) + G(y). bi
is the fixed cost coefficient of unit i and ci represents the
standby cost of unit i, including no-load cost, startup cost,
and shutdown cost.

FIGURE 1. Schematic of the fixed and variational quantum circuits.

B. QUANTUM COMPUTING
Classical computers encode information in binary bits, which
are either 0s or 1s, and use integrated circuits that contain
millions of transistors. Quantum computers also operate data
as a series of qubits. Unlike regular bits, qubits can simulta-
neously be at both |0⟩ and |1⟩ states with a certain probability.
Therefore, one qubit can store 2 bits of information. This
quality results in a system’s exponential scaling advantage
regarding the number of required qubits [33]. In a processor
with n qubits, 2n bits of information can be stored. Qubits
contain two main properties called superposition and entan-
glement. Superposition refers to the quantum system’s ability
to be in multiple states simultaneously, and the correlation
between quantum particles is referred to as entanglement
[34], [35].

Quantum computers use quantum gates to execute calcu-
lations within quantum circuits, as logical circuits and logic
gates do in classical computers. Qubits, after initialization,
travel through quantum gates, experiencing a rotation, which
basically refreshes the probability of each state as |ψ⟩ =
U |ψ0⟩. A typical fixed quantum circuit is shown in Fig.
1(a). Where |ψ0⟩ is the initial state, U represents the equal
unitary operator of the circuit at the given angles, and |ψ⟩
is the output state. The measurement occurs at the end of
the circuit, as states with a higher probability appear more
frequently in the measurement. Quantum circuits designed
based on free parameters are known as variational quantum
circuits (VQC) [36], as in Fig. 1(b). The output of a VQC,
|ψβ⟩ = U(β)|ψ0⟩, is controlled by its variational parameters
β. By optimizing this parameter, VQC conducts different
tasks, e.g., solving QUBO problems [5] and system of linear
equations [37].

To perform optimization using quantum computers, we
should prepare the Hamiltonian of the Ising model or QUBO
corresponding to the objective function and constraints of
the considered optimization problem. The ground state of
a corresponding Ising Hamiltonian is the optimal solution
to a QUBO problem [38]. The Ising model or QUBO can
be represented by a graph G(V,E) where V and E refer
to the set of vertices and edges. Fig. 2 shows an example
of an undirected graph based on which the Hamiltonian
Ising model can be constructed. For a random graph G, the
Hamiltonian of the Ising model is as follows [11]:

H(s) =
∑
k∈V

hksk +
∑

(k,j)∈E

Jkjsksj , sk = ±1, (3)

where sk is the spin at vertex k ∈ V , Jkj pertains to the
interaction between qubits k and j, (k, j) ∈ E, and hk
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FIGURE 2. A sample graph of a Hamiltonian Ising model.

is the external magnetic field at vertex k ∈ V . From the
physical point of view, vertices are physical qubits, and edges
represent the potential locations of two-qubit gates. The left-
hand-side argument of the Hamiltonian typically represents
the state of the system, i.e., the spins’ configuration. In the
simplest Ising model, each spin can take one of two values,
-1 (spin down) or +1 (spin up). For a system of N spins, the
state of the system can be represented as a vector or array
s = (s1, s2, ..., sN ), where each si is the state of the ith spin
and is either -1 or +1. This vector s would be the left-hand-
side argument of the Ising model’s Hamiltonian.

A quadratic unconstrained binary optimization is an en-
ergy function that can be transformed into an Ising Hamil-
tonian ({±1}n) with a simple conversion of variables [39].
Consider the following QUBO with a binary variable xk,
linear cost term tk, and quadratic cost term qkj .

C(x) =
∑
k∈V

tkxk +
∑

(k,j)∈E

qkjxkxj , xk ∈ {0, 1}. (4)

To convert QUBO (4) into an Ising model, the relation
xk = (1 + sk)/2 is used [40]. This transformation is applied
to all binary variables that appear in the QUBO function.
In the case of existing soft constraints Q(x) = 0, a QUBO
problem can be retrieved by adding a quadratic penalty term
ρ||D(x)||2 to the objective function based on penalty method
[41], [42]. Inequality constraints such as W (x) ≤ 0 are con-
verted into equality constraints with the help of non-negative
integer slack variables as W (x) + ζ = 0. ζ takes a value
as large as −minxW (x). This slack variable is expressed as
ζ =

∑l
l=0 2

lIl, where l = log2 (−minxW (x)) represents
the number of required bits. Here, I refers to a set of ancillary
bits with a length of l. Eventually, the inequality constraints
can be treated like equality constraints. In a nutshell, the
total Ising Hamiltonian for an objective function C(x), with
equality and inequality constraintsD(x) = 0 andW (x) ≤ 0,
is as follows:

Hc = Hobj + ϱ1||D
(
1 + s

2

)
||2

+ ϱ2||(W
(
1 + s

2

)
+

l∑
l=0

2l
1 + s

2
||2,

(5)

where ϱ1 and ϱ2 are large positive coefficients. Hobj repre-
sents the Hamiltonian regarding the objective function C(x).
The set of binary bits I , which represents the slack variables,
also needs to be converted into the Ising model using the

FIGURE 3. Overview of the proposed algorithm.

relation Il = (1 + sl)/2. Once the QUBO problem has been
converted into the Ising Hamiltonians’ representation, it be-
comes amenable to the solution by QAOA. This transforma-
tion process allows us to leverage the quantum computation
capabilities of QAOA, making it possible to find solutions to
the problem, initially defined in the QUBO form, through the
corresponding Ising model representation.
III. 3-BLOCK QUANTUM ALTERNATING DIRECTION
METHOD OF MULTIPLIERS (QADMM)
A decomposition technique is developed to convert the gen-
eration scheduling problem (1) into three blocks. The first
block formulation is QUBO, which will be solved by T-
QAOA on a quantum computer. The other two blocks are
convex optimization problems that can be efficiently solved
using classical solvers. The three subproblems are coordi-
nated using 3B-ADMM. Fig. 3 shows a schematic of the
proposed solution algorithm.
A. DECOMPOSITION TECHNIQUE
Generation scheduling (1) includes continuous and binary
variables. We apply a reformulation to decompose this prob-
lem. Binary variables y are relaxed to vary continuously
as 0 ≤ y ≤ 1. Solving problem (1) with these relaxed
binary variables, however, does not yield accurate results as
the variables y may not be resolved to 0 or 1. Therefore, a
set of auxiliary binary variables z and continuous variables
r are defined. Three sets of constraints (6e), (6f), and (6g)
guarantee the binary nature of y. Optimization (1) is now
reformulated as (6).

min
p,y,r,z

F(p) + G(y), (6a)

s.t.
Q(p) = 0, (6b)

D(y) = 0, (6c)

W (p, y) ≤ 0, (6d)

A1 · y −A2 · z +A3 · r = 0 : λ, (6e)

r = 0, (6f)

D(z) = 0, (6g)

0 ≤ y ≤ 1, (6h)

where zi,t ∈ {0, 1}, ri,t ∈ R, and (z, r) refers to
(zi,t, ri,t), ∀i ∈ I and ∀t ∈ T . A1 = A2 = A3 are identity
matrices. The dual variable associated with constraint (6e) is
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denoted by λ, provided following a colon. Equation (6e) in-
dicates that relaxed variables y adopt binary values when the
associated auxiliary variables r are zero. Let p̂ = [pT , yT ]T

and F(p̂) = F(p) + G(y) + ιχ(p, y), where ιχ(p, y) is an
indicator function, and χ = {(p, y) ⊆ R|(6b)− (6d), (6h)}.
Variables of (6) are split into three sets as p̂ = {p, y}, z, and
r. With (6e) relaxed, the problem has a block decomposable
structure with respect to each set of variables p̂, z, and r.
This means that for a given set of other variables, a smaller
subproblem of (6) arises for each variable set. For instance,
if z and r are known, we can formulate an optimization
subproblem consisting only of variables p̂. We dualize (6e)
using augmented Lagrangian and relax the soft constraints
(6f)-(6g) by adding penalty terms to the objective function as
follows:

Lρ(p̂, z, r, λ) = F(p̂)

+
∑
i∈I

∑
t∈T

[σ
2
||ri,t||22 +

ω

2
||D(zi,t)||22

]
+
∑
i∈I

∑
t∈T

λT
[
A1 · y −A2 · z +A3 · r

]
+
∑
i∈I

∑
t∈T

[ρ
2
||A1 · y −A2 · z +A3 · r||22

]
.

(7)

where λ denotes dual variables, and σ, ω, and ρ are penalty
parameters. We then decompose (7) and solve subproblems
according to the procedure outlined in Algorithm 1.

Algorithm 1 QADMM algorithm

1: Initialize: m = 1, λ(0), ρ > (σ, ω) > 0, p̂(0), r(0), ϵ > 0.
2: for m = 1, 2, . . . , do
3: QUBO block update:
4: z(m) ← argmin

z
Lρ(p̂

(m−1), z, r(m−1), λ(m−1)).

5: Second block update:
6: r(m) ← argmin

r
Lρ(p̂

(m−1), z(m), r, λ(m−1)).

7: Third block update:
8: p̂(m) ← argmin

p̂
Lρ(p̂, z

(m), r(m), λ(m−1)).

9: Dual variable update:
10: λ(m) ← ρ(A1 · y(m) −A2 · z(m) +A3 · r(m)) + λ(m−1).
11: if ||A1 ·y(m)−A2 · z(m)+A3 · r(m)|| ≤ ϵ then Stop.
12: else
13: m← m+ 1.
14: end if
15: end for
16: Return (p̂, z, r).

The iteration index m, penalty factors, decision variables,
and stopping criteria are set in the initialization step. The
first block, called QUBO block, is an optimization problem
over the auxiliary variables z given p̂ and r. This block can
be assigned to a quantum computer. The second block is a
quadratic unconstrained optimization problem over auxiliary
variables r given p̂ and z. This problem is not computation-
ally expensive for classical computers as it is convex and
unconstrained. The third block, which is a relaxed version

of (1) with relaxed binary variables, is a quadratic problem
over variables p̂ given z and r. The third block represents
a problem significantly simpler to solve than the original
problem (1), primarily because it neither contains binary
variables nor non-convex constraints. If the third block prob-
lem is infeasible, it also implies that the original problem
(1) is infeasible, and Algorithm 1 stops. Since the QUBO
subproblem is a non-convex problem, ADMM is generally
heuristic. However, Algorithm 1 is guaranteed to converge to
a stationary point under some conditions for a large enough
ρ > max{σ, ω}.

The selection of parameters ρ, σ, and ω is generally
problem-dependent, and they must satisfy the condition ρ >
max{σ, ω}. It is crucial to choose these parameters care-
fully to strike a balance between fulfilling constraints and
optimizing the objective function. Each parameter affects
the weighting of the connected regularization terms within
the Lagrangian function. By assigning larger values to these
parameters, the solution will incur greater penalties for larger
constraint values, thus assisting in the enforcement of soft
constraints. However, using larger parameter values could
also make the iterative optimization process more challeng-
ing. To select these parameters, we aim to align the weights
of regularization terms in the Lagrangian function within a
similar range. This balance helps in ensuring that no single
term overly dominates the optimization process, which might
lead to an undesired solution.

1) Convergence of Mixed-Integer ADMM
The conditions under which Algorithm 1 is guaranteed to
converge to a stationary point of the augmented Lagrangian
Lρ (7) are [17], [43], [44]:

1) (Coercivity). The objective function F(p̂) + σ
2 ||r||

2
2 +

ω
2 ||B · z−H||

2
2 is coercive over the constraint A1 · y+

−A2 ·z+A3 ·r = 0: This condition holds since the term
σ
2 ||r||

2
2 is quadratic and all other generation scheduling

variables are bounded.
2) (Feasibility). Im(AT ) ⊆ Im(A3), where AT =

[A1, A2]: Since Im(A3) is the entire space, this con-
dition holds for any Im(AT ).

3) (Lipschitz subminimization paths). It is possible to
have a constant M > 0 at iteration m such that:

||ym−1 − ym|| ≤M ||A1y
m−1 −A1y

m||. (8)

This condition holds by settingM equal to 1. Note that
the same condition is true for variables z and r with
M = 1.

4) (Objective regularity). The objective F(p̂) + σ
2 ||r||

2
2

is a lower semi-continuous function: Since F(p̂) is a
sum of convex functions and an indicator function of
a convex set, it is restricted prox-regular [17]. Also
with a constant σ, σ

2 ||r||
2
2 is Lipschitz differentiable.

Therefore, this condition holds.
Also, this algorithm converges to the global optimum if
Lρ is Kurdyka–Łojasiewicz (KŁ) function [45], [46]. Func-
tion (7) satisfies this condition since it is a semi-algebraic
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function. Therefore, by using Algorithm 1, Lρ, which is a
soft-constrained version of the problem (1), will converge
to a stationary point for a large enough ρ > (σ, ω). The
algorithm assumes the non-QUBO and QUBO subproblems
to be solved optimally at any iteration, regardless of whether
a classical solver or the QAOA method is employed. Also,
interested readers in the above conditions under which prob-
lem (6) converges to a global optimum are referred to [17],
[43], [45], [46] for further details.

2) Discussion on multi-block ADMM

We note that fixing r to zero and skipping the second
block update turns out to be a two-block implementation of
ADMM. However, including variable r has two advantages.
First, to decompose the linear constraint (6c), a three-block
implementation is required, and the second block is an iden-
tity matrix whose image represents the entire space. It means
for any fixed y and z, there always exists an r such that
satisfies (6c), and the feasibility of the problem is guaranteed.
Second, constraint (6d) can be handled separately from (6c)
and return a convex and Lipschitz differentiable term that can
be included in the objective function as σ

2 ||r||
2
2. Numerical

evidence presented by [17] shows that, in some cases, a
two-block implementation of ADMM may converge more
quickly than its three-block counterpart. However, the 2-
block ADMM is prone to non-convergence and adheres to
the local optimality in large problems.

B. DISTRIBUTED COORDINATION
A power system comprises several subsystems with their
local computing processors. Power system problems need
solution algorithms that can deal with the growing com-
plexity of the system, protect entities’ privacy, and provide
a solution in a reasonable period of time [47]. Meanwhile,
near-term quantum computers cannot centrally handle large
problems due to their limited qubits. This section addresses
a distributed QADMM strategy adaptive to the practical
implementation of generation scheduling.

Consider a system equipped with a two-way communica-
tion infrastructure enabling data exchange between a system
coordinator and i subsystems. A local CPU and QPU are
embedded in each subsystem and can optimize, control,
and coordinate the operation cycle of their generation units.
The system coordinator also has a CPU to coordinate the
subsystems. Each subsystem tries to schedule its generation
to the system by solving its QUBO and non-QUBO optimiza-
tions, while the system coordinator coordinates the genera-
tion statuses to meet the system’s physical limitations. The
distributed coordination process can be outlined as follows:

Step 1: given (z(m−1), r(m−1), p̂(m−1)), system coordina-
tor updates the dual variable λ(m) and send it to subsystems.

Step 2: Solve the first, second, and third optimization
blocks. QUBO subproblems are solved using a QPU to find
z(m) and pass them to CPU for updating r(m) and p̂(m) by
solving second and third optimization blocks.

FIGURE 4. CPU and QPU information flow in distributed QADMM.

Step 3: Stop if termination criteria are satisfied, otherwise,
go to Step 1.

Generally, generation scheduling has decomposed over
units and yields binary and continuous subproblems coor-
dinated through adjusting Lagrangian multipliers iteratively.
The continuous subproblems are solved in a classical com-
puter using linear programming methods. The binary sub-
problems are mapped into Ising models by relaxing con-
straints, adding their penalty terms to the objective functions,
and converting them into QUBO. The derived QUBO sub-
problems optimize the units’ on/off decisions and are solved
on QPUs. The continuous subproblems optimize the units’
power generation level and are solved on CPUs.

C. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM
QAOA finds the solution to the previously developed QUBO
block by minimizing the expected value of its Hamiltonian.
This expectation function is derived from quantum states
that entangle all possible states in the same probability.
The optimal expected value of the Hamiltonian happens by
optimizing the rotation angles of quantum gates in a classical
solver.

QAOA acts on n qubits, i.e., 2n dimensional Hilbert space,
with each qubit representing the state of a binary variable.
The quantum process begins with initializing all qubits at
state |0⟩, and then making an equal superposition of all
computational basis states by applying a Hadamard gate,
1√
2

(
1 1
1 −1

)
, to each qubit as:

|+⟩n =
1√
2n

∑
z∈{0,1}n

|z⟩. (9)

Given the problem Hamiltonian Hc, QAOA applies a pa-
rameterized unitary operator U(Hc, γ), called cost Hamilto-
nian, depending on angle γ, and then makes a rotation of the
resulting state using U(HB , β), called mixing Hamiltonian,
depending on angle β.

|ψ(γ⃗, β⃗)⟩ = U(Hc, γp)U(HB , βp)...U(Hc, γ1)U(HB , β1)|+⟩n,
(10)

where these operators are formulated as:

U(Hc, γ) = e−iγHc =
∏

(k,j)∈edges

e−iγH(k,j)
c , (11)
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U(HB , β) = e−iβB =
N∏

k=1

e−iβXk , (12)

where variational parameters γ ∈ [0, 2π] and β ∈ [0, π],
or so-called angles [5], denote the evolution times of the
quantum circuit and are utilized to construct a parameterized
QAOA circuit. Xk refers to the Pauli-X operator, B =∑N

k=1Xk, and p represents the depth of the circuit, i.e.,
the number of layers for which parameterized U(Hc, γ) and
U(HB , β) are repeated. At every layer, the number of cost
Hamiltonian depicts edges, and the number of mixing Hamil-
tonian depicts the number of vertices of graph G. Given the
depth of the circuit, 2p angles, i.e., γ = [γ1, ..., γp] and
β = [β1, ..., βp], need to be tuned to make QAOA yield the
optimal result. In practice, a trade-off determines the number
of layers p between the obtained approximation ratio, the
parameter optimization complexity, and accumulated errors.
Ideally, increasing p enhances the QAOA solution quality, al-
though the complexity of optimizing QAOA parameters with
higher p limits its benefits. QAOA is generally implemented
in a quantum circuit as Fig. 5.

After preparing the state |ψ(γ⃗, β⃗)⟩, another important
component of QAOA is to calculate the expectation value of
Hc in the state of |ψ(γ⃗, β⃗)⟩. The expectation value is defined
as:

F (γ⃗, β⃗) = ⟨ψ(γ⃗, β⃗)|Hc|ψ(γ⃗, β⃗)⟩. (13)

QAOA minimizes the expectation value by updating the
quantum state |ψ(γ⃗, β⃗)⟩ using a classical computer such that
the expected function (13) is minimized to obtain the optimal
values of γ⃗ and β⃗ denoted as γ⃗∗ and β⃗∗.

(γ⃗∗, β⃗∗) = argmin
γ⃗,β⃗

F (γ⃗, β⃗) (14)

As shown in Fig. 5, variational parameters γ and β are
prepared in a classical computer and fed to the quantum cir-
cuit iteratively until convergence. Thus, the entire QADMM
process involves two loops, as shown in Fig. 3. The outer loop
performs ADMM and incorporates QAOA, and the inner
loop is a hybrid quantum-classical process. A good initial-
ization and optimization process will lead to fewer iterations
to find the optimal variational parameters. An overview of
the QAOA steps is provided in Algorithm 2. The optimal
variational parameter finding strategy introduced in (13)-(14)
is the approach presented by the original QAOA paper [5].
The QAOA algorithm 2 terminates when it fulfills a prede-
fined termination criterion. In a typical QAOA workflow, this
criterion is based on the results of the classical optimization
loop used to tune the quantum circuit parameters. Setting a
maximum iteration, convergence threshold, and time limit are
the most common termination criteria for Algorithm 2. After
termination, the best solution found during the iterations
is returned. Due to the probabilistic nature of QAOA and
quantum computing in general, the returned solution may not
be the absolute optimal solution, but rather a good approxi-
mation to it. Typically, different optimizers require hundreds

FIGURE 5. Quantum circuit diagram for QAOA.

to possibly thousands of quantum-classical iterations to reach
a comparable parameter landscape optimum. Also, the classi-
cal optimizer requires more time to obtain the results at every
iteration as the size of the expectation function (14) increases.
These are the major QAOA bottlenecks, which are resolved
in the next section.

Algorithm 2 QAOA steps
1: Initialize the quantum state by applying the Hadamard

operator.
2: Model the cost Hamiltonian using the QUBO function.
3: Model the mixing Hamiltonian.
4: Create the circuits.
5: Run and measure the final state.
6: Update the variational parameters γ and β.
7: Go to step 2.

D. QAOA CIRCUIT DESIGN
Designing a QAOA circuit, as demonstrated in Fig. 5, entails
several steps. Central to this process is the construction of
the cost Hamiltonian and the mixing Hamiltonian, which
significantly dictate the structure of the QAOA circuit. The
cost Hamiltonian encodes the problem that we want to solve,
and its eigenvalues correspond to the cost function we aim
to optimize. For a standard combinatorial optimization prob-
lem, after translating the problem into a QUBO or Ising
model, the coefficients and constants from this would form
the terms in the cost Hamiltonian. The mixing Hamiltonian
enables superpositions of states within the Hilbert space,
thereby facilitating a comprehensive exploration of the prob-
lem space. Here are general steps to design a QAOA circuit:

1) Problem formulation: Identify and formulate the com-
binatorial optimization problem as a QUBO or Ising
model.

2) Cost Hamiltonian U(Hc, γ): The cost Hamiltonian
encodes the optimization problem, and it typically
comprises a combination of Pauli-Z gates and identity
gates. This is because many optimization problems can
be expressed as a sum of multi-qubit Z terms when for-
mulated as an Ising model or QUBO problem. Depend-
ing on the problem, it might need to use controlled-Z
gates or more complex operations like multi-controlled
gates. To implement a term in the Hamiltonian like
sisj (representing a coupling between spins i and j in
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the Ising model), it could use a circuit consisting of a
Hadamard gate on qubit j, a controlled-Z gate using
qubits i and j, and another Hadamard gate on qubit j.

3) Mixing Hamiltonian U(HB , β): The mixing Hamil-
tonian drives transitions between different states in
the Hilbert space. This is typically implemented with
Pauli-X gates acting on each qubit to perform a bit-
flip operation. For more complex QAOA variations, the
mixing Hamiltonian can be composed of other gates
such as Y, or a combination of X and Y gates.

4) Prepare the initial state: This state is usually a simple,
quickly prepared state such as the uniform superposi-
tion of all computational basis states. This is achieved
by applying a Hadamard gate to each qubit initialized
to |0⟩ state.

5) Apply the QAOA circuit: This involves applying
U(Hc, γ) and U(HB , β) alternately for a total of p
layers.

Parameters γ and β are optimized using classical computa-
tional resources to find the set of parameters that minimizes
the expectation value of the cost Hamiltonian. This is an iter-
ative process where the parameters are adjusted, the QAOA
circuit is run (either on a quantum computer or simulator),
the expectation value of the Hamiltonian is calculated, and
the process repeats with new parameters. These steps provide
a basic guide to designing a QAOA circuit. The specifics of
the problem formulation and Hamiltonian definition depend
on the problem to solve.

E. TRAINABLE-QAOA (T-QAOA)
We aim to train a learner to play the role of an optimizer
for QAOA to update the variational parameters. The ex-
pected value F (γ⃗, β⃗) of problem Hamiltonian is used as the
cost function with respect to parameterized state |ψ(γ⃗, β⃗)⟩
evolved from the QAOA circuit. To choose an optimizer
architecture, the QAOA cost function and parameters evalua-
tions are translated over several quantum-classical iterations
as a sequential learning problem. Recurrent neural networks
(RNNs) are a type of neural network commonly used to
process such sequential information [48]. RNNs are networks
that take an input vector, create an output vector, and possibly
store some information in memory for later use. A particular
type of RNN framework that is used for the problem at hand
is long-short-term memory (LSTM) which has outperformed
other RNN architectures in many applications [49].

Fig. 6 shows the structure of the proposed T-QAOA. At an
iteration ν, variational parameters (γ, β)ν−1, the estimated
cost function zν−1, and the hidden state of the classical net-
work hν−1 are fed to LSTM from the prior step. LSTM has
its trainable hyperparameters ϕ and employs a generalized
mapping as:

hν+1, (γ, β)ν+1 = LSTMϕ(hν , (γ, β)ν , zν), (15)

which suggests new variational parameters and a new internal
hidden state. After training the weights ϕ, the new set of

generated variational parameters is sent to QPU for evalua-
tion. This loop continues upon convergence. To generate the
first query, we arbitrarily fix the variational parameters to a
dummy value (γ, β)0 = (0, 0), implement the QAOA circuit,
and set the cost function to the obtained z0.

It is important to select an appropriate loss function during
training to measure the LSTM performance on the training
dataset. We use another loss function L(ϕ) as:

L(ϕ) = w.zν(ϕ) (16)

which is called "cumulative regret" and is the summation of
loss function history at all iterations uniformly averaged over
the horizon. w are coefficients that weigh the progression of
the recurrence loop. We set a higher weight for the last steps
as they contain more important information. This way, during
the first steps of optimization, LSTM is freer to explore a
larger section of parameter space, whereas, towards the end,
it is restricted to choosing an optimal solution. The LSTM
optimizer is trained to run for a fixed number of iterations.
However, it is possible to allow it to optimize for more
iterations than it was initially trained, but later iterations may
have weak performance.

The merit of the proposed LSTM optimizer over other
learning-based approaches is its scalability, which our prob-
lem desperately needs. Since QADMM is sequential, it re-
turns the same QUBO problem at every iteration with only
some coefficients updated. It means the QPU faces a slightly
different QUBO problem at every ADMM iteration, such that
the QAOA circuit remains the same, but the cost Hamiltonian
changes, and the parameters of the gates in the circuit will
need to be adjusted accordingly. As such, the optimizer
should be scalable so that a single set of training data will
cover the entire process. Moreover, every standard optimizer
follows a step-by-step path to update the variational pa-
rameters iteratively. Applying a learner only to predict the
optimal variational parameters might yield a warm starting
point for variational parameters. LSTM-based learners can
be trained to find the paths every standard optimizer might
take to reach the optimal values in a few iterations. Therefore,
even if their results are not optimal, since they interact with
the quantum circuit through predicting process, they provide
more efficient starting points for other optimizers that execute
local searches.

Another challenge is preparing a dataset to train a learning-
based optimizer for large-scale systems. As established in
[50], for an LSTM-based optimizer, the training dataset can
be driven from the same system with fewer ranges of qubits.
Therefore, for a power system with thousands of units, we
can train an LSTM optimizer using the dataset driven from
a subset of the given system. In addition, the power system
topology is prone to change over time by adding or removing
lines. In this case, a trained LSTM optimizer is expected to
work based on the previous dataset, as it is not sensitive to
a slight change in the grid topology. To generate the training
dataset, given Hc and the fixed number of required qubits,
we sample random values of coefficients Jkj and hk using

8 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

FIGURE 6. Unrolled trainable QAOA diagram.

independent Gaussian distributions with zero mean and unit
variance. Then, the Ising model circuit is constructed using
(10) for the sampled Hamiltonian.

F. DISCUSSION ON T-QAOA SOLUTION QUALITY
Using a learner such as LSTM to update the variational
parameters in each iteration of the QAOA algorithm, instead
of solving an optimization problem directly, introduces a
different approach to optimizing the parameters. In this case,
LSTM would learn to predict the optimal parameters based
on the given inputs and the desired objective. The quality of
the solution obtained using this approach depends on several
factors, including the effectiveness of the LSTM model, the
amount and quality of training data, and the complexity of
the problem being solved. The LSTM model would need to
be trained on a suitable dataset that includes inputs (e.g.,
problem instances) and corresponding outputs (e.g., optimal
parameter values) to learn the relationship between the inputs
and desired parameter values. The quality of the solution
obtained using the LSTM approach would depend on the
accuracy and generalization capabilities of the trained model.
It’s important to note that this approach may have limitations.
The performance of LSTM or any other machine learning
model is subject to factors such as the availability and repre-
sentativeness of training data, the complexity of the problem,
and the suitability of the model architecture. Additionally,
the LSTM-based approach may not guarantee optimal solu-
tions but rather approximate solutions based on the learned
predictions. The solution quality achieved using an LSTM-
based approach within the QAOA algorithm would require
thorough evaluation, including comparisons with other op-
timization methods, benchmarking against known problem
instances, and sensitivity analysis.
IV. SIMULATION
Two illustrative mathematical examples and three generation
scheduling problems are used to validate the performance of
QADMM and the LSTM optimizer. A study of the variational
parameters will also be conducted. In the first example,
we use a typical MILP problem to show the convergence
and correctness of QADMM. In the second example, we
use a QUBO problem to study the effect of variational
parameters and validate the LSTM optimizer performance by
comparing it with a standard optimization technique based
on stochastic gradient descent (SGD). Also, the performance
of QADMM and LSTM optimizer are evaluated on a 3-

FIGURE 7. QADMM residual for illustrative example 1.

unit, 3-hour generation scheduling example. The results of
QADMM are compared with the classical implementation
of 3-block ADMM, and the LSTM optimizer performance
is compared with SGD. To test the model’s scalability, a
24-hour generation scheduling problem for 10- and 100-
unit systems is solved, and the proposed LSTM optimizer
is used to optimize the variational parameters. A noise-
free quantum simulator (statevector) is used in combination
with IBM’s Qiskit [51], Terra, and IBMQ providers. Neural
network training and inference are conducted in Keras and
TensorFlow [52].
A. ILLUSTRATIVE MATHEMATICAL EXAMPLES
1) Example 1
We examine an example of QADMM’s performance under
simple setups. Consider the following problem [17]:

min
x∈χ,y∈R

x1 + x2 + x3 + 5(y − 2)2, (17a)

s.t.
x1 + x2 = 1, (17b)

x1 + x2 + x3 ≥ 1, (17c)

x1 + x2 + x3 + y ≤ 3, (17d)

The steps in Algorithm 1 are followed to solve (17). We
initialize penalty factors as ρ = 1001, σ = 1000, and
ω = 900 [17]. According to the QADMM direction, we
decompose the problem into a QUBO subproblem solved
by a quantum computer and a continuous and quadratic un-
constrained subproblem solved by a classical computer. Fig.
6 shows the reduction of the constraint’s residual, defined
as r′ = ||Iy − Iz + Ir|| in Algorithm 1. The algorithm
converges after 19 iterations and yields the optimal solution
as x = [1, 0, 0] and y = 2 with an optimality gap of zero.

2) Example 2
We examine how QAOA solves a simple QUBO problem.
Then we apply the trained LSTM optimizer to facilitate
the process and evaluate its performance. This is a MaxCut
problem on a triangular graph with two edges weighing five
and one weighing 1 (see Fig. 8). The objective function
is the sum of weights for edges connecting nods between
the two subsets, i.e., C(x) =

∑n
k,j=1 Jkjxk(1 − xj) and

x ∈ {0, 1}. To solve this problem on a quantum computer,
we need to translate it into an Ising Hamiltonian form,
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FIGURE 8. Graph of illustrative example 2.

Hc =
∑

(k,j)∈E
1
2Jkj(1 − sksj) and s ∈ {±1} by taking

the relation xk → (1 + sk)/2. We apply the steps explained
in Algorithm 2. We create U(Hc, γ) and U(HB , β) from
the Ising Hamiltonian and build a one-layer circuit with
two variational parameters as in Fig. 9, which includes the
following steps:

1) Applying Hadamard gates to initial state |q2q1q0⟩ =
|000⟩. This step prepares the initial state, i.e., an equal
superposition of all possible states.

|ψ0⟩ =
1√
23

(|000⟩+ |001⟩+ ...+ |111⟩). (18a)

2) The controlled-phase gate is applied to the state |ψ0⟩.
In this gate, a specific phase is introduced to the target
qubit when the control qubit(s) are in the |1⟩ state. To
illustrate the effect of the controlled-phase gate in the
first 2-qubit that includes two controlled-NOT gates
and one controlled-phase gate, we derive the resulting
state |ψ′

1⟩ as follows:

|ψ
′

1⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · ((1 0
0 1

)
⊗
(
1 0
0 e−iγ

))

·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 e−iγ 0 0
0 0 e−iγ 0
0 0 0 1

 .

(18b)
In (18b), a phase shift of−γ is applied to the two-qubit
system. As per the first step of the algorithm, the state
|ψ′

1⟩ is subjected to a Hadamard gate and the resulting
|ψ1⟩ state can be derived using a two-qubit circuit as
outlined below:

|ψ1⟩ =
1

2


1 0 0 0
0 e−iγ 0 0
0 0 e−iγ 0
0 0 0 1

 ·

1
1
1
1


=

1

2
(|00⟩+ e−iγ |01⟩+ e−iγ |10⟩+ |11⟩).

(18c)

In a similar way, considering a three-qubit quantum
circuit depicted in Fig. 9, the state |ψ1⟩ is formulated
as:

|ψ1⟩ =
1√
23

(|000⟩+ e−iγ |001⟩+ e−3iγ |010⟩

+ ...+ e−iγ |110⟩+ |111⟩).
(19)

FIGURE 9. QAOA circuit of illustrative example 2.

FIGURE 10. LSTM vs. SGD cost function of illustrative example 2.

3) A layer of Rx gates is implemented. Specifically,
each qubit undergoes a rotation through Rx(β) =(

cos(β) −i sin(β)
−i sin(β) cos(β)

)
before the measurement is

taken. This results in a −β rotation being applied to
the state |ψ1⟩.

The measurement of the final state regarding the set of (γ, β)
happens after applying the above steps. To address data
passing between classical and quantum processors, we build
a custom model of an LSTM network. The LSTM optimizer
is trained for five iterations, i.e., the CPU and QPU exchange
information five times. We set w = 1

5 (0.1, 0.2, 0.4, 0.6, 0.8),
giving higher priority to the latter steps in the loop. One
hundred data are randomly generated using Gaussian distri-
bution with zero mean and unit variance given the problem’s
objective function and the number of required qubits. The
trained LSTM optimizer performance is compared with SGD
in Figs. 10 and 11. The variational parameters for both the
LSTM optimizer and SGD are initialized to (0, 0). LSTM
terminates in fewer iterations than SGD. Fig. 10 illustrates
the evolution of the cost function over iterative refinements
of the variational parameters as proposed by the respective
optimizers. Fig. 11 illustrates the path suggested by LSTM
and SGD in the space of the parameters. Given the periodic
nature of variational parameters, Fig. 11 shows more than
one optimal solution. The LSTM optimizer yields the point
(γ, β) = (−0.31, 0.62) in 5 iterations, and the SGD yields
(γ, β) = (1.26, 0.62) in 60 iterations. γ provided by SGD
is π

2 ahead of the one provided by LSTM optimizer. In the
dataset used to train the LSTM, there are samples that (γ, β)
converge to four different optimal points. LSTM optimizer
learns the periodic behavior and offers the closest optimal
point.

In gradient descent, the algorithm starts at an initial point
in the parameter space (in our case, variational parameters
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FIGURE 11. Example 2 expectation function contour plot.

are initialized to (0, 0)) and iteratively updates parameters
to move in the direction of the steepest descent of the cost
function. However, due to the stochastic nature of quantum
computing, it is possible to observe non-monotonic behav-
ior in the optimization process. This implies that the cost
function might initially increase before starting to decrease
toward the optimal value as we observe in Fig. 11. There are
several reasons why this can happen:

• Noisy measurements: Quantum computations are sus-
ceptible to various kinds of errors and noise which
might impact the measurement outcomes, leading to
fluctuations in the cost function.

• Choice of optimizer: Different optimizers have different
behaviors. For instance, some might allow for larger
steps in the parameter space which could initially lead
away from the minimum.

• Non-convex cost function: The cost functions in quan-
tum computing problems, including QAOA, are usually
non-convex, meaning they can have many local minima.
The optimizer might temporarily get stuck in a less
optimal minimum before eventually finding the global
minimum.

• Initial parameters: The choice of initial parameters can
influence the path that the optimization takes. If we start
at (0, 0), we might initially move in a direction that
increases the cost function before eventually finding the
correct path toward the minimum.

B. QADMM GENERATION SCHEDULING
This section verifies the correctness and effectiveness of
the proposed QADMM and LSTM optimizer as applied to
generation scheduling problems. QADMM is compared with
the classical 3-block ADMM and the LSTM optimizer with
the SGD optimization approach. We consider three scenarios
for each case study:

• S1: Algorithm 1 is applied to problem (1), and the
QUBO block is solved using a classical solver (Gurobi).

• S2: Algorithm 1 is applied to problem (1), the QUBO
block is solved using Algorithm 2, and QAOA classical
optimizer is SGD.

TABLE 1. Data of 3-Unit Generations

Unit Pmin Pmax Rd Rup cf csu csd b
1 50MW 350MW 300 200 5 20 0.5 0.1
2 80MW 300MW 150 100 7 18 0.3 0.125
3 40MW 140MW 100 100 6 5 1 0.15

• S3: Algorithm 1 is applied to problem (1), the QUBO
block is solved using Algorithm 2, and QAOA classical
optimizer is LSTM (the proposed algorithm).

Note that Algorithm 1’s initializations are the same for all
three scenarios.

1) 3-unit 3-hour generation scheduling
The system includes three units supplying a demand of 160
MW, 500 MW, and 400 MW at three consecutive hours.
There are three subproblems for the problem decomposed
over generating units. Each subproblem contains nine binary
variables: units on/off, start-up, and shut-down status at time
t (3× 3 = 9). The units’ characteristics are given in Table I.
An LSTM optimizer is trained for eight iterations with 800
observations and tested with 200 observations. The optimal
status of units and the cost for each scenario are provided
in Table II. The optimal on/off status and the operation cost
obtained are the same for all scenarios. Fig. 12 portrays the
reduction of the constraint residual for all scenarios at every
ADMM iteration. The ADMM convergence performance is
similar in all three cases. However, there are instances where
both S2 and S3 diverged from S1. This could be related to the
suboptimal solution of QUBOs after certain outer iterations,
and another could be a variation in the configurations of
the classical solvers that may induce such discrepancy. We
note that perfect optimization or prediction of variational
parameters is not a mandatory condition for the QAOA
circuit to reach the optimal QUBO solution. Also, as problem
size increases, sensitivity to optimal variational parameters
also grows. In the context of this example, given its relatively
small scale with 9 binary variables and efficient training of
the LSTM, both the LSTM and SGD methods are capable of
effectively approximating the optimal variational parameters.
The residual approaches to the stopping criterion after 25
iterations. In S2 and S3, at every outer ADMM iteration,
a hybrid quantum-classical interaction is conducted to find
the optimal QAOA variational parameters. Though starting
from the same initial point, the LSTM optimizer is trained to
terminate after 8 interactions, while the SGD optimizer needs
86 iterations on average to converge. Fig. 13 shows the step-
by-step moving toward an optimal point in S2 and S3 in the
last ADMM iteration, which takes 65 iterations for SGD to
converge.

2) Large-scale generation scheduling
A study of the performance of QADMM and the LSTM
optimizer in large-scale generation scheduling problems is
conducted. The number of considered units is 10 and 100,
and the time horizon has been extended to 24 hours. In every
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TABLE 2. Generation Scheduling Results and Operation Cost of S1-S3 ($)

Unit t1 t2 t3 Cost S1 Cost S2 Cost S3
1 on on on 121 121 121
2 on 37.9 37.8 37.8
3 on on 54 54 54
Total - - - 212.9 212.8 212.8

FIGURE 12. QADMM residual for 3-unit generation scheduling problem.

case, we have the same number of subproblems equal to the
number of generating units. Each subproblem contains 72
binary variables: units on/off, start-up, and shut-down status
at time t (3 × 24 = 72). Two LSTM optimizers are trained
for ten iterations with 800 observations and tested with 200
observations. The first LSTM is trained using a 72-qubit
quantum circuit and a Gaussian distribution of coefficients
for the Ising model. The second learner is trained using
quantum circuits with a number of qubits in the range of [40,
50] and the same Gaussian distribution of coefficients. Table
III shows the optimal on/off status of 5 selected generating
units of the 100-unit case. The on/off status obtained by
QADMM is the same as those of the classical central solution
determined by Gurobi. Fig. 14 represents the reduction of
the constraints residual for both 10-unit and 100-unit cases.
As the system scales, QADMM maintains its convergence
capabilities. Scaling up the system results in more subprob-
lems and slower convergence. The 10-unit system converged
after 77 iterations, and the 100-unit system converged after
126 iterations. A comparison between the SGD and LSTM
optimizers is given in Fig. 15 for subproblem 1 in the last
ADMM iteration. Both approaches started from the same
initial point. LSTM optimizers terminate after ten iterations,

FIGURE 13. Contour plot of expectation function for 3-unit system.

FIGURE 14. QADMM residual for 10- and 100-unit generation scheduling
problems.

FIGURE 15. Contour plot of expectation function for 100-unit system.

while the SGD optimizer continues 84 iterations on average
to converge. Furthermore, classical optimization takes more
time to solve the problem as the dimension of expectation
value (13) increases. A comparison between LSTM1, a well-
trained optimizer, and LSTM2, a randomly-trained optimizer,
is shown in Fig. 15. Though, from different paths, both
optimizers obtain the optimal results after ten iterations.

V. CONCLUSION
This paper presents a scalable two-loop quantum-classical
algorithm to solve the generation scheduling problem within
the quantum computing framework. A three-block decom-
position breaks generation scheduling into a QUBO and
two non-QUBOs. A trainable QAOA solves the QUBO, and
3B-ADMM coordinates computation operations of quantum
computer to solve the QUBO and conventional computer to
solve non-QUBOs.

Simulation results on two mathematical and three gen-
eration scheduling problems show that T-QAOA terminates
within a predetermined number of iterations, much fewer
than that of the traditional QAOA. For instance, for a MaxCut
problem, T-QAOA converges after five iterations, while the
traditional QAOA with stochastic gradient descent converges
after 60 iterations. For generation scheduling with 100 gen-
erators, T-QAOA takes ten iterations to find the optimal
results obtained after 84 iterations of the traditional QAOA.
Also, 3B-ADMM coordinates conventional and quantum
computers computation operations to achieve optimal results
of the original generation scheduling problem. The overall
QADMM convergence residual is in the range of 10−6,
which is promising.
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TABLE 3. On/Off Schedule of 5 Selected Units of the 100-Unit Problem

Unit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24
1 on on on on on on on on on on on on on on on on on on on on on on on on
10 on on on on on on on on on on
45 on on on on on on on on on on on on on on on
81 on on on on on on on on on on on on on on on on on on on on on on on
90 on on on on on on on on on on on
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