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The quantum theory of the electromagnetic field uncovered
that classical forms of light were indeed produced by distinct
superpositions of nonclassical multiphoton wave packets.
This situation prevails for partially coherent light, the most
common kind of classical light. Here, for the first time, to our
knowledge, we demonstrate the extraction of the constituent
multiphoton quantum systems of a partially coherent light
field. We shift from the realm of classical optics to the domain
of quantum optics via a quantum representation of partially
coherent light using its complex-Gaussian statistical prop-
erties. Our formulation of the quantum Gaussian—Schell
model (GSM) unveils the possibility of performing photon-
number-resolving (PNR) detection to isolate the constituent
quantum multiphoton wave packets of a classical light field.
We experimentally verified the coherence properties of iso-
lated vacuum systems and wave packets with up to 16
photons. Our findings not only demonstrate the possibility
of observing quantum properties of classical macroscopic
objects but also establish a fundamental bridge between
the classical and quantum worlds. © 2024 Optica Publish-
ing Group

https://doi.org/10.1364/0OL.520444

The work performed by Allan Schell in 1961 shaped the field
of optical physics and specifically the classical theory of opti-
cal coherence [1,2]. His approach to describe spatial coherence
of classical light fields laid the foundations for the develop-
ment of optical technology ranging from imaging instruments
and spectroscopy to communication [3—7]. This model, now
known as the Gaussian—Schell model (GSM), enables describ-
ing classical coherence of optical wavefronts with different
polarization and spectral properties [4,6—11]. Interestingly, this
model also enables modeling of propagating light in complex
media [5,12,13]. In addition, these ideas have been extended
to nano-optical systems to describe photonic fields scattered by
sub-wavelength nanostructures [14—18]. Even though the GSM
originates from the classical theory of electromagnetic radiation,
its versatility has enabled describing classical degrees of free-
dom of quantum optical systems [6,19,20]. Specific examples
include the modeling of the polarization, spectral, and orbital
angular momentum properties of single and entangled photons
[6,19-22].

While the GSM fails to capture the intrinsic quantum proper-
ties of light, the quantum theory of electromagnetic radiation
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developed by Glauber and Sudarshan provides an elegant
description for the excitation mode of the optical field [22-24].
Further, it provides the formalism to describe the quantum sta-
tistical properties of the light field and its quantum properties
of coherence [25-27]. Indeed, these fundamental properties of
photons are widely used to classify diverse kinds of light such
as sunlight, laser radiation, and molecule fluorescence [25,28].
Notably, the most common type of light, classified under the
umbrella of partially coherent light, can also be described using
the classical theory of optical coherence [2,8]. As such, par-
tially coherent light beams are typically categorized as classical
macroscopic optical systems [29-31]. Indeed, there has been
interest in investigating the boundary between classical and
quantum physics through the coherence properties of partially
coherent optical beams [32-34]. However, no previous studies
have attempted to explore the constituent quantum multiphoton
subsystems of classical partially coherent light.

Here, we establish a direct link between classical and quantum
optics through the formulation of the quantum Gaussian—Schell
(QGS) model. Remarkably, this model unveils the possibility
of extracting the quantum multiphoton subsystems that con-
stitute a classical partially coherent light field [23,24,31]. For
the first time, we use photon-number-resolving (PNR) detection
to experimentally isolate the vacuum dynamics of a partially
coherent light beam [27,35]. Furthermore, we discuss the quan-
tum coherence properties of multiphoton wave packets extracted
from a classical light beam. We report experimental results for
wave packets with up to 16 photons. The QGS model makes
use of the complex-Gaussian statistical fluctuations inherent to
partially coherent light [36-38]. Indeed, our model explains
how the quantum statistical fluctuations of the electromagnetic
field give rise to the formation of macroscopic spatial correla-
tions of partially coherent light. Surprisingly, we find that the
quantum dynamics of the extracted multiphoton systems can
be contrary to those of the classical system hosting them. This
effect demonstrates the lack of a direct correspondence between
the classical and quantum worlds [39]. Thus, we believe that
the QGS model will have dramatic implications for quantum
technologies [40—43].

As depicted in Fig. 1, we are interested in describing the
quantum properties of coherence of the multiphoton systems
that form partially coherent light. For the sake of generality,
we consider a partially coherent light field produced by a rotat-
ing ground glass [44,45]. This partially coherent field can be
modeled through the indistinguishable superposition of coherent
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and thermal light beams. The coherent component results from
the unaffected beam transmitted by the ground glass, whereas
the thermal contribution is produced by many diffusers on the
rotating ground glass that scatter the laser beam into many
independent wave packets [44,45]. The collective properties of
the resulting classical beam can be described by the following
cross-spectral density function (see Supplement 1):

W(sy,s,) = <E(7)(51)E(+)(52)>
= W (s)u(sy) + Vi(s))i(s)g(s) — s2),

for transverse-spatial positions s, and s,. Here, u(s;) denotes
the average electric field amplitude (E™(s;)) at point s;, 7i(s;) o«
Exp [—|s,v|2 / 0'0] represents the mean photon number at point
s;, and g(s, — 5,) o Exp [—|s; — 5,|*/o] is the normalized cor-
relation term between the two points, where o, and o, are
real, positive constants. The ensemble average (-) is calcu-
lated with respect to the complex random variables E™(s,),
representing the electric field [8,46]. As discussed below, the
inherent complex-Gaussian statistics of this beam enable the
precise determination of its quantum statistics. To obtain the
density matrix of the beam, we must first determine the prob-
ability density function for E®)(s,) and E®)(s,). This approach
enables us to express the ensemble average (-) in the form of
an integral, incorporating the statistical characteristics of the
electric field. The benefit of this method is the ability to com-
pute expectation values for more complex structures than simple
finite-degree polynomials of the electric field. For simplicity,
we denote EV(s)) = a, E¥(s,) = B, u(s;) = w;, i(s;) = ii;, and
glsi—s)=¢g

Notably, we capture the quantum statistical properties of our
field through the probability density of a real-Gaussian random
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Fig. 1. Multiphoton wave packet dynamics of partially coher-
ent light. This diagram illustrates the generation of a partially
coherent light field from a rotating ground glass [44]. The macro-
scopic classical system is formed by many scattered multiphoton
wave packets exhibiting distinct quantum dynamics [45]. For exam-
ple, we illustrate bunching between five-photon wave packets (red,
solid) and anti-bunching between five- and one-photon wave packets
(blue, dotted). We isolate these multiphoton systems by performing
projective measurements using photon-number-resolving detection
[27,35]. In our experiment, we use two detectors, one of which
is fixed at the center of the detection plane, whereas the other is
scanned through the wavefront of the scattered field. We conclude
our experiment by performing multiphoton correlations between
the two detectors. The outcomes of this experiment are described
by the quantum Gaussian—Schell model.
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four-vector r [47]. Here, the corresponding probability density
is :
P(r) = e 2T, 2
0= i (2)
where p = (r) is the mean of r = (Re[a], Im[], Re[B], Im[B]),
I;; = (rir;) — (r;){r;) is the covariance matrix of r, and | - | rep-
resents the determinant. The critical aspect of Eq. (2) is its
exponent, where the correlations between random variables are
manifested as products between them. Specifically, we calculate
the mean vector as g = (Re[y; ], Im[y, ], Re[ ], Im[u,]) and the
covariance matrix between the two positions as

Fll 0 gvfllflz 0
T= l 0 n, 0 gV, 3)
2 g\lfllle 0 flz 0 ’

0 gVum 0 7ty

Using Eq. (2) and our expressions for u and I', we can express
the statistics of partially coherent light through its probability
density function over coherent amplitudes & and :

_ 1 _ o — i |? _ 1B — wl’
(1 —gz)EXp[ n(l-g*) m(l-g%
Re [(@ — )" (B - ﬂz)]]

Vm(1-¢) |

The amplitudes « and 8 are centered around their respective
means, with spatial coherence properties described by g. As a
result, in the limit where g — 1, the covariance matrix becomes
degenerate (i.e., |[I'| — 0), and the probability density function
will instead become a probability distribution. Finally, when s,
and s, are significantly different (g — 0), the correlation term
vanishes, resulting in two separate Gaussian distributions.

Remarkably, transitioning from the classical to the quantum
description of our optical beam is now a straightforward process.
This is because each instance of E®(s;) in the classical ensemble
corresponds to a coherent excitation [48]. Thus, the density
matrix of our beam, in terms of the excitation basis, can be
written as

P(a, B)
4
+2g

. 1

O R e

lo — @’ + 18 - ) _ lo =B+ i — [’
(7, +71,)(1 + g) (1-g>) (7, + 1)

X |acg, Bsg){acy, Bsgl,

X Exp [—

®)
where ¢, = cos(0) =i, /() + y), 5o = sin(0) = /i, /(71 + 712),
fr = ey, and fi, = wosy'. Note that the two modes refer to
two spatially separate detectors. Additionally, the superscript D
stands for “detector perspective,” which indicates that the infor-
mation about the detectors’ configuration is entirely contained in
the density matrix Op (see Supplement 1). It is worth noticing
that Eq. (5) provides a suitable description to model the projec-
tion of a classical macroscopic light beam into its constituent
multiphoton wave packets. These projections are experimentally
implemented using photon-number-resolving detection [27,35].
Further, Eq. (5) enables describing the spatial correlation prop-
erties of isolated multiphoton subsystems. Interestingly, when
My = o = 0, our beam reduces to the well-known GSM beam,
which is characterized by photon statistics that always follow a
thermal distribution [8,48].
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The above description of a QGS model source, while useful
for understanding stationary instances of our beam, does not
contain enough information to determine its evolution. This will
require knowledge of our beam’s underlying mode structure.
Fortunately, we can utilize Eq. (5), together with the spatial
mode structure of our light beam, to write its total quantum state
as a functional integral (see Supplement 1):

oos = [ X law) el (6)

Here, S stands for “state perspective,” indicating that the infor-
mation about the detectors’ configuration is entirely contained
in the detection operators and that the density matrix 53, only
contains information about the beam itself. We further note that
|ay)s is a coherent state characterized by a coherent amplitude
@, and a mode structure given by a = / dsX(s)a(s). Additionally,
the functional integral is over the random mode structure Z(s).
Thus, we can use the following rule:

/ a5 /() = / dx P(Z)f(Z), @)

where T = (Re[Z(s))], Im[Z(s))], . . . , Re[Z(s,)], Im[Z(s,)]) is a
finite-dimensional vector of length 2n, f(X) is a function of the
X(s;), and P(X) is Eq. (2) adapted to the variables present in X.
One can show that the statistical behavior of Eq. (6) is identical
to that of Eq. (5), given appropriate choices of @, u and I
Moreover, Eq. (6) has the additional benefit of a mode struc-
ture, which is necessary in determining the state’s dynamical
evolution through optical systems. Now, while the realization
of the QGS model given by Eq. (6) often proves to be more
beneficial, Eq. (5) remains valuable for its simplicity and as an
important link between the classical GSM and the QGS model.
Indeed, without the representation given in Eq. (5), we would
lack the basis on which to claim that Eq. (6) represents the
unique quantization of a partially coherent beam.

Now, we are in a position to explore how the underlying
distribution of multiphoton wave packets in the QGS model gives
rise to the macroscopic properties of coherence in Eq. (1). To do
this, we compute the correlation properties between multiphoton
wave packets at the spatial locations s, and s,. We can rewrite
Eq. (5) in the Fock state basis as 535 = X, /=0 Pamia |72, 1)k, 1],
which allows us to define a multiphoton wave packet correlation
function 2 (N, M) as follows (see Supplement 1 for explicit
computation):

~2) _ PNvNM
PN, M) = — — . (8)
(ZmzomeNm) (anopnMnM)

Here, pxuke = Tr [ﬁZGSﬁNMKL] is the probability associated with
the Fock-projection operator [N, M)(K, L|. Given that the prob-
ability of observing a specific multiphoton wave packet is
proportional to its number of occurrences, g2 (N, M) effectively
becomes the standard coherence function [22]. Specifically,
89(N, M) characterizes the coherence of N-photon wave pack-
ets at the s,-detector with M-photon wave packets at the
s,-detector. Thus, the coherence function g®(N,M) is cru-
cial for demonstrating the underlying nonclassical multiphoton
coherence in partially coherent light sources, which can be crit-
ical for various applications in quantum information sciences
[14-19,28,41,42,49].

We now verify the nonclassical properties of coherence of
the constituent multiphoton subsystems of a partially coherent
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Fig. 2. Classical and quantum coherence of multiphoton wave
packets. We present the experimental results of the process depicted
in Fig. 1. Specifically, one detector was fixed at the center of the
source, and the position of the second is given on the horizontal
axis. On the vertical axis, we plot log,g® (N, M) for some of the
constituent multiphoton wave packets of the partially coherent light
beam. We present these results for various choices of N, M rang-
ing from subsystems with 0—16 photons. Additionally, the classical
log,g® for the partially coherent light beam is shown in black. The
theoretical fitting of this data was accomplished using Eq. (8), which
describes the coherence properties of the extracted multiphoton
subsystems. Interestingly, wave packets whose g® have a positive
logarithm exhibit classical properties of coherence, while those with
a negative logarithm of §® show quantum coherence properties.
This kind of multiphoton subsystems cannot be described through
the classical formulation of the Gaussian—Schell model [4—18].

light field. Our technique for generating partially coherent light
is depicted in Fig. 1 (see Supplement 1 for additional details).
Specifically, we experimentally generate a partially coherent
light beam with a degree of second-order coherence g®(0)
of 1.70 £ 0.01. This beam is passed through a beam splitter
that produces two light fields that are measured by two PNR
detectors [21]. The first detector remains fixed at the center of
the beam, whereas the second detector is moved along a trans-
verse spatial axis. We report the correlation measurements for
various choices of multiphoton wave packets in Fig. 2. While
the trace of the classical partially coherent beam shows bunch-
ing properties, its constituent quantum multiphoton subsystems
can exhibit very different dynamics. Surprisingly, the spatially
separated multiphoton subsystems with a vastly different num-
ber of particles exhibit antibunching, which is produced by the
quantum nature of the light field [22,50]. However, the spatially
separated multiphoton subsystems with a similar number of par-
ticles show bunching effects like the classical hosting system.
Interestingly, a similar behavior is observed for the correlation
of the vacuum-fluctuation component of the field. Notably, the
quantum Gaussian—Schell model introduced in this Letter cap-
tures all the complex multiphoton dynamics hosted by partially
coherent light. Furthermore, these results demonstrate that there
is not a direct correspondence between the coherence properties
of the classical partially coherent light field and its constituent
multiphoton wave packets [39]. In addition, these measurements


https://doi.org/10.6084/m9.figshare.26311549
https://doi.org/10.6084/m9.figshare.26311549
https://doi.org/10.6084/m9.figshare.26311549

Letter

show the possibility of extracting quantum multiphoton systems
from classical light fields.

It is also worth mentioning the potential applications of
the QGS model in studying multiple scattered light [51].
Specifically, there has been much interest in the effects of ran-
dom propagation through complex media on quantum sources
[52,53]. We believe that the field-theoretic average over coher-
ent states given in Egs. (6) and (7) could provide an avenue
for studying the effects of partial coherence on more compli-
cated quantum systems. This approach has potential to greatly
simplify our understanding of these effects and has greater impli-
cations for nanophotonics [43] and quantum imaging [54], given
the scattering is sufficiently random that complex-Gaussian
statistics are valid.

Our demonstration of the quantum Gaussian—Schell model
establishes a direct relationship between the classical and
quantum worlds [29-34]. This is achieved by extracting the
constituent multiphoton quantum subsystems of a classical par-
tially coherent light field. As a result of our predictions, we
have for the first time experimentally isolated the vacuum and
multiphoton dynamics of this kind of light field by imple-
menting photon-number-resolving detection [27,35]. Our theory
unveils surprising quantum coherence properties of multipho-
ton wave packets, which have been observed in subsystems
with up to 16 photons. This uncovers the possibility of observ-
ing quantum properties within macroscopic classical objects.
Furthermore, the quantum Gaussian—Schell model, leveraging
complex-Gaussian statistical properties, elucidates the forma-
tion of macroscopic spatial correlations in partially coherent
light [36-38]. It also reveals surprising differences between the
quantum dynamics of the constituent multiphoton wave pack-
ets and their hosting classical system. Consequently, we believe
that our work has profound implications for quantum imaging
[19,28,41], quantum nanophotonics [14-18,49], and the prepa-
ration of multiparticle systems for quantum information science
[16,41,42].
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