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Direct-acting antiviral agents (DAAs) have shown higher cure rates for treating hepatitis C 
virus (HCV) by directly interfering with different steps of the HCV life cycle. To optimize drug 
combinations and accurately quantify the antiviral effect of DAAs treatments, mathematical 
models should include the intracellular virus replication processes. In this study, we develop 
a two-strain multiscale age-structured model that includes intracellular viral RNA replication and 
extracellular viral infection. We prove the existence, positivity, and boundedness of the solution, 
and derive the conditions for the existence and stability of the three steady states (non-infection 
steady state, boundary steady state, and coexistence steady state). Under certain biologically 
reasonable assumptions, we obtain the approximate solutions of the viral load decline of the 
two virus strains (sensitive and drug-resistant virus strains) during treatment, and the long-term 
approximation is shown to be in good agreement with the solution of the original model. We also 
carry out numerical simulations using the long-term approximate solution, providing insights into 
the influence of antiviral effects on the viral load change of the two virus strains during treatment 
with DAAs.

1. Introduction

Hepatitis C virus (HCV) infection is a global epidemic infectious disease that poses a significant threat to human health. HCV is a 
flavivirus single-stranded positive strand RNA virus and primarily transmitted through blood. According to global health organization 
statistics, the prevalence of HCV infection is around 2.8%, with approximately 185 million individuals infected and 35, 000 new cases 
occurring annually [1]. Globally, an estimated 58 million people have chronic HCV infection, with about 1.5 million new infections 
occurring per year [2]. Chronic HCV infection is a leading cause of liver cirrhosis, hepatocellular carcinoma, end-stage liver failure, 
liver transplantation, and final liver failure. Achieving long-term sustained virological response (SVR) is critical in preventing disease 
progression, which refers to the absence of HCV RNA in the serum 24 weeks after treatment.

Currently, there is no vaccine available to prevent HCV infection. The standard treatment used to be a combination of pegylated 
interferon (PEG-IFN) and ribavirin (RBV). However, only about 50% of patients with HCV genotype 1 infection (the predominant 
genotype in North America and Europe) achieve SVR [3]. New treatment options focus on the use of direct-acting antiviral drugs 
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(DAAs), which target various stages of the HCV life cycle [4]. DAAs have several advantages, including high SVR rates, low recurrence 
rates, and few adverse reactions, making them a promising treatment option for HCV-related cirrhosis patients. However, HCV 
infection is prone to developing drug-resistant mutations within days or weeks of DAA monotherapy, leading to ineffective treatment. 
To combat this, multiple drugs with different modes of action are used to enhance antiviral activity and reduce the likelihood of drug 
resistance. Using multiple drugs is currently the standard strategy for antiviral treatment [5].

Mathematical models have been developed to study the dynamics of HCV infection under treatment [6–9]. Multiple drug treat-
ments have been shown to significantly improve the clinical efficacy of HCV, and mathematical models can accurately quantify the 
antiviral effect of such treatments, facilitating optimization efforts [10–12]. To more accurately describe and quantify the different 
antiviral effects of anti-HCV drugs, some researchers have proposed multiscale models, which study the replication process of intra-
cellular viruses and corresponding antiviral effects in different stages [10–12]. Age-structured models have been used to study the 
infection kinetics of various viruses in the host [10,13,14]. Such models are typically expressed using partial differential equations 
(PDEs). Accurately quantifying the antiviral effect from clinical data of multi-drug therapy is necessary, and multiscale models can 
study the dynamics of virus infection between cells, including the process of virus replication in cells, according to the drug’s poten-
tial mechanisms of action [15,16]. For example, Guedj et al. considered intracellular HCV replication/degradation and established an 
age-structured multiscale model of HCV infection [17]. Reinharz et al. proposed the HCV multiscale model based on this feature and 
estimated parameter values from clinical data under multi-drug treatment [15]. Zitzmann et al. developed an intracellular replication 
model involving HCV RNA secretion/release and viral assembly, and their study suggested that low levels of HCV RNA secretion may 
persist as long as intracellular RNA is available, possibly explaining the availability of plasma HCV RNA at the end of treatment, even 
in patients who eventually achieved sustained virologic response [18]. Many existing models in the literature regard infected cells 
as “black boxes” that produce new virus particles after infection, without considering other factors such as replication/degradation 
of virus RNA in infected cells. However, these intracellular processes may play a key role in studying HCV dynamics under DAAs 
treatment since they are direct targets of DAAs [10].

In this paper, we develop a two-strain multiscale model that includes intracellular viral RNA replication and extracellular viral 
infection to study the dynamics of HCV infection under DAAs treatment. We prove the existence, positivity, and boundedness of the 
solution of the model and calculate three steady states (the infection-free steady state, boundary steady state, and coexistence steady 
state) of the model, respectively. Under certain assumptions, we obtain analytical approximations of the viral load decline of the 
two virus strains (drug-sensitive virus and drug-resistant virus) after the start of treatment. We find that one of the approximations 
agrees well with the solution of the original model. Using the analytical long-term approximate solution, we carry out numerical 
simulations to investigate the influence of different antiviral effects of DAAs on the changes of the two strains of viruses during 
treatment.

2. Model formulation

The basic model for studying HCV infection dynamics under therapy is described by the following ordinary differential equations 
(ODEs) [19,20]:
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!" (#)
!#

= $− %& (#)" (#)− !" (#),

!'(#)
!#

= %& (#)" (#)− ('(#),

!& (#)
!#

= (1− ))*'(#)− +& (#),

(2.1)

where the variables " (#), '(#), and & (#) represent the density of uninfected cells, infected cells, and free virus particles at time #, 
respectively. The parameters $ and ! represent the production rate and natural mortality rate of target cells, respectively. The rate 
of virus infection is given by %& (#)" (#), and ( represents the rate of death of infected cells. The release rate of virus from infected 
cells is *, and + is the rate at which progeny virus particles are removed. During antiviral therapy, the amount of virus produced by 
infected cells decreases to (1 − ))*'(#), with efficacy ) where 0 < ) ≤ 1.

The model (2.1) does not include the process of intracellular viral replication, which means it ignores the multiscale character-
istics between intracellular and intercellular viral infections. To separately quantify the antiviral effects of drugs on different viral 
replication processes, an extra equation is required to study the dynamics of the intracellular virus. Otherwise, all the antiviral effects 
of drugs on the processes of viral translation, processing, replication, assembly, transportation, and release are reflected in a single 
parameter ).

The multiscale model has been proposed to more accurately describe the impact of different antiviral effects on the virus life 
cycle. In literature [11], an extra variable, ,, is added to the model to represent the number of viral RNA in an infected cell. The 
dynamics of viral RNA in cells are determined by RNA production and degradation, as well as the loss of virus particles assembled 
or secreted into plasma. The multiscale model including intracellular viral RNA replication and extracellular viral infection is given 
by
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(2.2)

where . represents the infection age of the infected cell, i.e., the time elapsed since HCV’s entry into the cell. '(., #) and 
,(., #) represent the density of infected cells and intracellular viral RNA with the infection age of . at the time of #, re-
spectively; The functions /(.), 0(.), 1(.) and ((.) associated with infection age . represent intracellular viral RNA pro-
duction, degradation, assembly/secretion rates, and mortality of infected cells, respectively. Assuming that cells are ini-
tially infected with a single virus, there is only one viral RNA in infected cells at the infection age of 0, denoted as 
,(0, #) = 1. The other parameters have the same biological meaning as the model (2.1). The model (2.2) was used to 
study the dynamics of HCV under DAAs treatment and obtain an approximate solution for the decline in viral load after 
treatment [11]. Other possible methods for incorporating intracellular viral dynamics into multiscale models were also dis-
cussed.

The error-prone nature of HCV RNA polymerase results in a high mismatch rate of the HCV RNA genome and a rapid replication 
rate of the HCV virus. These factors contribute to the high mutation rate of HCV RNA, which leads to the emergence of drug-resistant 
viruses [21]. In this paper, we investigate the prevalence of HCV variants and the evolution of resistance during DAAs treatment. We 
assume that sensitive infected cells produce sensitive viral strains and mutant variants at a certain rate (assuming a single mutation 
generates a certain degree of resistance), and we establish a multiscale age-structured HCV model that includes two strains (sensitive 
and resistant viral strains) of intracellular viral RNA replication and extracellular viral infection, given by the following system of 
differential equations:
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(2.3)

We assume the following initial conditions
" (0) = "0 ∈ℝ+, &$(0) = &$0 ∈ℝ+, &2(0) = &20 ∈ℝ+, '$(⋅,0) = '$0 (.) ∈51

+(0,∞),
'2(⋅,0) = '20 (.) ∈51

+(0,∞), ,$(⋅,0) =,$0 (.) ∈51
+(0,∞), ,2(⋅,0) =,20 (.) ∈51

+(0,∞),
,̃2(⋅,0) = ,̃20 (.) ∈51

+(0,∞),

and boundary conditions

'$(0, #) = %$&$(#)" (#), '2(0, #) = %2&2(#)" (#), ,$(0, #) = 1, ,2(0, #) = 0, ,̃2(0, #) = 1,

where ℝ+ = [0, ∞) and 51
+(0, ∞) is the positive cone of the Banach space 51(0, ∞). &$(#) and &2(#) represent the density of sensitive 

and resistant strains of virus at time # that invade uninfected cells at rates of %$&$(#)" (#) and %2&2(#)" (#), respectively, to produce the 
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corresponding infected cells. '$(., #) and '2(., #) represent the density of sensitive and resistant infected cells with the infection age 
. at time #, respectively. ,$(., #) and ,̃2(., #) represent the density of intracellular drug-sensitive virus RNA and drug-resistant virus 
RNA at age . at time #, respectively, and ,2(., #) is the density of drug-resistant RNA produced by mutation of drug-sensitive infected 
cells at age . at time #. The functions /$(.) and /2(.) associated with the age of infection . represent the production of sensitive 
and resistant viral RNA, respectively. Considering a single mutation, we assume that virus RNA in drug-sensitive infected liver cells 
produces drug-resistant virus RNA with a probability 3 due to replication errors, which is about 10−4 − 10−5 per copied nucleotide. 
The other parameters have the same biological meaning as in model (2.2).

The multiscale model differs from the basic viral dynamic model (2.1) by distinguishing three antiviral effects of DAAs treat-
ment: inhibiting the production of intracellular viral RNA, reducing the assembly/secretion of viruses in plasma, and enhancing the 
degradation rate of viral RNA. We assume that )$ and )2 represent the drug efficacies of DAAs in inhibiting viral RNA production for 
drug-sensitive and drug-resistant virus RNA, respectively. Similarly, 7$ and 72 represent the drug efficacies of blocking the secretion 
of drug-sensitive virus and drug-resistant virus, respectively, and 0 represents the degradation rate of virus RNA of the two strains. 
We increase 0 by a factor 8 to improve the degradation rate, where 0 ≤ )9 ≤ 1, 0 ≤ 79 ≤ 1(9 = $, 2) and 8 ≥ 1 refer to the effectiveness 
of therapy on different processes in the virus life cycle. The complete model combines intracellular and extracellular virus dynamics 
of two strains during treatment, and is given by
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(2.4)

where # = 0 is the time at which treatment is initiated, '̄$(.) and '̄2(.) are the steady-state distributions of infected cells with drug-
sensitive and drug-resistant, respectively, before therapy. ,̄$(.), ,̃2(.) and ,̄2(.) are the steady-state distributions of intracellular 
drug-sensitive virus RNA, drug-resistant virus RNA and drug-resistant RNA produced by mutation of drug-sensitive infected cells, 
respectively, before therapy. The schematic diagram of the model (2.4) is shown in Fig. 1.

In order to study the dynamic properties of the model (2.3), it is assumed that the following holds:
(;1) ((⋅), /$(⋅), /2(⋅), 0(⋅), 1(⋅) ∈ 5∞

+ (0, ∞) are uniformly continuous and bounded, where 5∞
+ (0, ∞) is the positive cone of the 

Banach space 5∞(0, ∞). 1(.) cannot be a zero parameter. Otherwise, virus particles will not be produced.
(;2) Assuming '$(0, 0) = '$0(0) = %$&$0"0, '2(0, 0) = '20(0) = %2&20"0, ,$(0, 0) =,$0(0) = 1, ,2(0, 0) =,20(0) = 0, ,̃2(0, 0) = ,̃20(0) = 1.
The state space of model (2.3) is

<+ =ℝ+ ×51
+(0,∞) ×51

+(0,∞) ×51
+(0,∞) ×51

+(0,∞) ×51
+(0,∞) ×ℝ+ ×ℝ+.

Obviously, <+ is a nonnegative cone on the Banach space ℝ ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×ℝ ×ℝ.
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Fig. 1. Schematic diagram of model (2.4).

Denote

‖(" ,'$,'2,,$,,2, ,̃2,&$,&2)‖ = |" |+ ‖'$‖1 + ‖'2‖1 + ‖,$‖1 + ‖,2‖1 + ‖,̃2‖1 + |&$|+ |&2|,

where (" , '$, '2, ,$, ,2, ̃,2, &$, &2) ∈ℝ ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×51(0, ∞) ×ℝ ×ℝ. It follows from [22,23] that model 
(2.3) has a unique continuous solution in <+ if the initial value ("0, '$0, '20, ,$0, ,20, ̃,20, &$0, &20) ∈<+ satisfies (;2). It implies that a 
solution semiflow Φ ∶ℝ+ ×<+ →<+ given by

Φ(#, ("0,'$0,'20,,$0,,20, ,̃20,&$0,&20)) = (" (#),'$(⋅, #),'2(⋅, #),,$(⋅, #),,2(⋅, #), ,̃2(⋅, #),&$(#),&2(#)),

where # ∈ ℝ+ and (" (#), '$(., #), '2(., #), ,$(., #), ,2(., #), ̃,2(., #), &$(#), &2(#)), is the unique solution of (2.3) through the initial value 
("0, '$0, '20, ,$0, ,20, ̃,20, &$0, &20) ∈<+.
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Next, it follows from
!=3(#)
!#

≤ 3‖1‖∞ 2 + ‖/$‖∞ + ‖/2‖∞
32

$
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− +=3(#)

that lim
#→∞

sup=3(#) ≤ 3‖1‖∞$
+31

2+‖/$‖∞+‖/2‖∞
32

.
To sum up, the set

Ω =
{
(" ,'$,'2,,$,,2, ,̃2,&$,&2) ∈<+|" + ‖'$‖+ ‖'2‖ ≤ $

31
,

‖,$‖+ ‖,2‖+ ‖,̃2‖ ≤ 2 + ‖/$‖∞ + ‖/2‖∞
32

, &$ + &2 ≤ 3‖1‖∞$
+31

2 + ‖/$‖∞ + ‖/2‖∞
32

}

is positively invariant with respect to (2.3).

3. Model analysis

In this section, we study the steady states of model (2.3) and analyze their stability. Model (2.4) with treatment can be analyzed 
similarly.

Let

?(.) = @−∫ .
0 ((A)!A , B(.) = @−∫ .

0 [1(A)+0(A)]!A ,

where ?(.) and B(.) represent the survival probability of an infected cell and an intracellular viral RNA for the infected age ., 
respectively. The densities of infected cells of two strains of age . in the stable state are

'̄$(.) = '$(0)?(.) = %$&̄$"̄ ?(.), '̄2(.) = '2(0)?(.) = %2&̄2"̄ ?(.), (3.1)
where &̄$ and &̄2 are the steady state viral loads with drug-sensitive and drug-resistant density, respectively. "̄ represents the density 
of target cells at the steady state. We assume that a cell is initially infected with a virus particle. Therefore, when an infected cell is 
at age . = 0, there is only one corresponding viral RNA, i.e., ,$(0) = 1, ,2(0) = 0, ,̃2(0) = 1. The steady states of virus RNA level of 
the two strains of age . are

,̄$(.) = B(.) + (1−3)
.

∫
0

/$(A)
B(.)
B(A)!A, ,̄2(.) =3

.

∫
0

/$(A)
B(.)
B(A)!A,

,̃2(.) = B(.) +
.

∫
0

/2(A)
B(.)
B(A)!A.

(3.2)

We substitute the steady states '̄$(.), '̄2(.) and ,̄$(.), ,̄2(.), ,̃2(.) in (3.1) and (3.2) into &$(#) and &2(#) in (2.3), and obtain
∞

∫
0

1(.),̄$(.)%$&̄$"̄ ?(.)!. = +&̄$,

∞

∫
0

1(.),̄2(.)%$&̄$"̄ ?(.)!.+
∞

∫
0

1(.),̃2(.)%2&̄2"̄ ?(.)!. = +&̄2.

Let C$ = ∫ ∞
0 1(.),̄$(.)?(.)!., C2 = ∫ ∞

0 1(.),̄2(.)?(.)!., C̃2 = ∫ ∞
0 1(.),̃2(.)?(.)!.. C$ represents the total number of virus particles 

(&$) produced by a drug-sensitive infected cell ('$) without mutation in its lifetime. C2 represents the total number of virus particles 
(&2) produced by a drug-sensitive infected cell ('$) with mutation in its lifetime and C̃2 represents the total number of virus particles 
(&2) produced by a drug-resistant infected cell ('2) in its lifetime. Based on the above discussion, it is easy to see that "̄ = +

%$C$
and

%$&̄$"̄C2 + %2&̄2"̄ C̃2 = +&̄2. (3.3)
From the first equation of model (2.3) and (3.3), we obtain the viral loads of the two strains in the steady state

&̄$ =
(%$C$ − %2C̃2)($%$C$ − !+)
%$+(%$C$ − %2C̃2 + %2C2)

, &̄2 =
($%$C$ − !+)C2

+(%$C$ − %2C̃2 + %2C2)
.

Obviously, &̄$ = %$C$−%2C̃2
%$C2

&̄2. Plugging the steady states "̄ , &̄$, and &̄2 into (3.1), we get

'̄$(.) =
(%$C$ − %2C̃2)($%$C$ − !+)
%$C$(%$C$ − %2C̃2 + %2C2)

?(.), '̄2(.) =
%2C2($%$C$ − !+)

%$C$(%$C$ − %2C̃2 + %2C2)
?(.).

Denote
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,1 =
%2$
!+

C̃2, ,2 =
%$$
!+

C$.

,1 is the basic reproduction number of the drug-resistant strain of model (2.3) and represents the number of next-generation viruses 
with drug resistance produced by infected cells in their life cycle. ,2 is the basic reproduction number of the drug-sensitive strain of 
model (2.3) and represents the number of next-generation viruses produced by drug-resistant infected cells in their life cycle.

The conditions for the existence of three steady states of model (2.2) are given below:
(i) The infection-free steady state is D0 = ($∕!, 0, 0, ,̄$(.), ,̄2(.), ̃,2(.), 0, 0).
(ii) If ,1 > 1, then there is the boundary steady state: D1 = ("̄1, 0, '̄21 , ,̄$(.), ,̄2(.), ̃,2(.), 0, &̄21 ), where "̄1 = +∕%2C̃2, '̄21 =

($%2C̃2 − !+)?(.)∕%2C̃2, &̄21 = ($%2C̃2 − !+)∕%2+.
(iii) If ,2 > 1 and ,2 >,1, then there is a coexistence steady state:
D2 = ("̄ , '̄$(.), '̄2(.), ,̄$(.), ,̄2(.), ̃,2(.), &̄$, &̄2).
We use the method of characteristic lines to find the complete solutions of ,$(., #), ,2(., #), ,̃2(., #), '$(., #), and '2(., #). Assuming 

that the characteristic curve is # −. = constant and they intersect the age axis by (.0, 0) and the time axis by (0, #0), where .0 ≥ 0, #0 ≥ 0.
When . ≥ #, the following describes the characteristic curve with parametric equation # = A, . = A+.0, where A is a free parameter. 

When A ∈ (0, #), .(A) ∈ (.0, .), #(A) ∈ (0, #), the variable follows the characteristic curves and we obtain
!,$(.(A), #(A))

!A
=

-,$
-#

!#
!A

+
-,$
-.

!.
!A

= (1−3)/$(.(A))− [1(.(A)) + 0(.(A))],$(.(A), #(A)). (3.4)

This is an ordinary differential equation. Using the constant variation method, we have

,$(., #) =,$(.0,0)@−∫ #
0 [1(.(A))+0(.(A))]!A

+ @−∫ #
0 [1(.(A))+0(.(A))]!A

#

∫
0

(1−3)/$(.(E))@−∫ E
0 [1(.(E))+0(.(E))]!A!E.

Noting that
#

∫
0

[1(.(A)) + 0(.(A))]!A =
.

∫
.0

[1(F) + 0(F)]!F

and

@−∫ #
0 [1(.(A))+0(.(A))]!A = @−∫ .

.0
[1(F)+0(F)]!F = B(.)

B(.0)
,

we obtain
#

∫
0

/$(.(E))@∫
E
0 [1(.(A))+0(.(A))]!A!E =

#

∫
0

/$(.(E))@
∫ .0+E
.0 [1(7)+0(7)]!7!E

=
.

∫
.0

/$(F)@
∫ F
.0
[1(7)+0(7)]!7!F

=
.

∫
.0

/$(F)
B(.0)
B(F) !F.

Therefore, when . ≥ #, we have

,$(., #) =,$(.0,0)
B(.)
B(.0)

+ B(.)
B(.0)

(1−3)
.

∫
.0

/$(F)
B(.0)
B(F) !F

=,$0 (.− #) B(.)
B(.− #) +

#

∫
0

B(.)
B(.− E) (1−3)/$(.− E)!E.

When . < #, the following describes the characteristic curve with parametric equation # = A, . = A − #0, where A is a free parameter. 
When A ∈ (#0, #), .(A) ∈ (0, .), #(A) ∈ (#0, #), the variable follows the characteristic curves and we obtain the same ordinary differential 
equation as (3.4), and use the ordinary differential variation method to obtain the following

,$(., #) =,$(0, #0)@
−∫ #

#0
[1(.(A))+0(.(A))]!A

+ @−∫ #
#0
[1(.(A))+0(.(A))]!A

#

∫
#0

(1−3)/$(.(E))@
−∫ E

#0
[1(.(A))+0(.(A))]!A!E.
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From

@−∫ #
#0
[1(.(A))+0(.(A))]!A = @−∫ .

0 [1(F)+0(F)]!F = B(.),

we have

#

∫
#0

/$(.(E))@
∫ E
#0
[1(.(A))+0(.(A))]!A!E =

#

∫
#0

/$(.(E))@
∫ E−#0
0 [1(7)+0(7)]!7!E

=
#

∫
#0

/$(E− #0)
B(E− #0)

!E =
#−#0

∫
0

/$(G)
B(G) !G =

.

∫
0

/$(G)
B(G) !G.

Thus, when . < #, we get

,$(., #) =,$(0, #− .)B(.) + B(.)
.

∫
0

(1−3)
/$(E)
B(E) !E

= B(.) +
.

∫
0

(1−3)B(.)
B(E) /$(E)!E.

The complete solution of ,$(., #) is as follows

,$(., #) =
⎧
⎪
⎨
⎪⎩

B(.) + ∫ .
0 (1−3) B(.)B(E) /$(E)!E, . < #,

,$0 (.− #) B(.)
B(.−#) + ∫ #

0
B(.)

B(.−E) (1−3)/$(.− E)!E, . ≥ #.
(3.5)

We use a similar method to obtain the complete solution of the other variables before treatment, given by

,2(., #) =
⎧
⎪
⎨
⎪⎩

∫ .
0 3B(.)

B(E) /$(E)!E, . < #,

,20 (.− #) B(.)
B(.−#) + ∫ #

0
B(.)

B(.−E)3/$(.− E)!E, . ≥ #,
(3.6)

,̃2(., #) =
⎧
⎪
⎨
⎪⎩

B(.) + ∫ .
0

B(.)
B(E) /2(E)!E, . < #,

,̃20 (.− #) B(.)
B(.−#) + ∫ #

0
B(.)

B(.−E)/2(.− E)!E, . ≥ #,
(3.7)

'$(., #) =
⎧
⎪
⎨
⎪⎩

%$&$(#− .)" (#− .)?(.), . < #,

'$0 (.− #) ?(.)
?(.−#) , . ≥ #,

(3.8)

and

'2(., #) =
⎧
⎪
⎨
⎪⎩

%2&2(#− .)" (#− .)?(.), . < #,

'20 (.− #) ?(.)
?(.−#) , . ≥ #.

(3.9)

Substituting the expressions of (3.5)-(3.9) into model (2.3), we obtain

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

!" (#)
!#

= $− !" (#)−H$(#)−H2(#),

!&$(#)
!#

=
#

∫
0

H$(#− .)I$(.)!.− +&$(#) + J$(#),

!&2(#)
!#

=
#

∫
0

H$(#− .)I2(.)!.+
#

∫
0

H2(#− .)I2̃(.)!.− +&2(#) + J$2(#) + J2(#),

(3.10)

where
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H$(#) = %$&$(#)" (#), H2(#) = %2&2(#)" (#), I$(.) = 1(.),̄$(.)?(.),

I2(.) = 1(.),̄2(.)?(.), I2̃(.) = 1(.),̃2(.)?(.),

J$(#) =
∞

∫
#

1(.)
⎡
⎢
⎢⎣
,$0 (.− #) B(.)

B(.− #) +
#

∫
0

B(.)
B(.− E) (1−3)/$(.− E)!E

⎤
⎥
⎥⎦
'$0 (.− #) ?(.)

?(.− #)!.,

J$2(#) =
∞

∫
#

1(.)
⎡
⎢
⎢⎣
,20 (.− #) B(.)

B(.− #) +
#

∫
0

B(.)
B(.− E)3/$(.− E)!E

⎤
⎥
⎥⎦
'$0 (.− #) ?(.)

?(.− #)!.,

J2(#) =
∞

∫
#

1(.)
⎡
⎢
⎢⎣
,̃20 (.− #) B(.)

B(.− #) +
#

∫
0

B(.)
B(.− E)/2(.− E)!E

⎤
⎥
⎥⎦
'20 (.− #) ?(.)

?(.− #)!..

It is clear that J$(#) → 0, J$2(#) → 0, and J2(#) → 0 as # →∞. We integrate the above equations in model (3.10) to obtain

" (#) ="0@−!# +
#

∫
0

[$−H$(E)−H2(E)]@−!(#−E)!E,

&$(#) =&$0@
−+# +

#

∫
0

⎡
⎢
⎢⎣

E

∫
0

H$(E− .)I$(.)!.+ J$(E)
⎤
⎥
⎥⎦
@−+(#−E)!E,

&2(#) =&20@
−+# +

#

∫
0

⎡
⎢
⎢⎣

E

∫
0

H$(E− .)I2(.)!.

+
E

∫
0

H2(E− .)I2̃(.)!.+ J$2(E) + J2(E)
⎤
⎥
⎥⎦
@−+(#−E)!E.

(3.11)

By changing the integration order of &$(#) and &2(#) in (3.11), we get
#

∫
0

@−+(#−E)
E

∫
0

H$(E− .)I$(.)!.!E =
#

∫
0

@−+(#−E)
E

∫
0

H$(G)I$(E− G)!G!E

=
#

∫
0

H$(G)
#

∫
G

@−+(#−E)I$(E− G)!E!G

=
#

∫
0

H$(G)@−+(#−G)
#−G

∫
0

@+7I$(7)!7!G

=
#

∫
0

H$(G)M$(#− G)!G,

where M$(#) = @−+# ∫ #
0 @

+7I$(7)!7.
Similarly, we have

#

∫
0

@−+(#−E)
E

∫
0

H$(E− .)I2(.)!.!E =
#

∫
0

H$(G)M2(#− G)!G,

#

∫
0

@−+(#−E)
E

∫
0

H2(E− .)I2̃(.)!.!E =
#

∫
0

H2(G)M2̃(#− G)!G,

where M2(#) = @−+# ∫ #
0 @

+7I2(7)!7, M2̃(#) = @−+# ∫ #
0 @

+7I2̃(7)!7. Thus, model (3.11) can be changed to

" (#) =
#

∫
0

[$− %$&$(E)" (E)− %2&2(E)" (E)]@−!(#−E)!E+ J1(#),

&$(#) =
#

∫
0

%$&$(E)" (E)M$(#− E)!E+ J2(#), (3.12)
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&2(#) =
#

∫
0

%$&$(E)" (E)M2(#− E)!E+
#

∫
0

%2&2(E)" (E)M2̃(#− E)!E+ J3(#),

where J1(#) = "0@−!#, J2(#) = &$0@
−+#+∫ #

0 J$(E)@−+(#−E)!E, J3(#) = &20@
−+#+∫ #

0 [J$2(E) +J2(E)]@−+(#−E)!E. The above-converted model (3.12)
can be expressed in a general form. Let N(#) = (" (#), &$(#), &2(#))T, where T represents the transposition of the vector. Model (3.12) can 
be rewritten as

N(#) =
#

∫
0

ℎ(#− E)P(N(E))!E+ Q (#), (3.13)

where

ℎ(#) =
⎛
⎜
⎜⎝

$@−!# −@−!# −@−!#
0 M$(#) 0
0 M2(#) M2̃(#)

⎞
⎟
⎟⎠
, P(#) =

⎛
⎜
⎜⎝

1
%$&$(#)" (#)
%2&2(#)" (#)

⎞
⎟
⎟⎠
, Q (#) =

⎛
⎜
⎜⎝

J1(#)
J2(#)
J3(#)

⎞
⎟
⎟⎠
.

This forms a Volterra integral equation model equivalent to model (2.3), where ℎ(#) is a locally integrable function and P(#) and Q (#)
are continuous functions, i.e., ℎ ∈ 51

RS+([0, ∞); !3×3), P ∈ T(!3, !3), Q ∈ T([0, ∞); !3). It follows from Theorem 1.1 in Gripenberg et 
al. [24] that model (3.13) has a unique solution and the solution is continuously dependent on the initial conditions. All solutions of 
model (2.3) are non-negative under positive initial values. Model (3.10) is also equivalent to model (2.3). Assume that there exists a 
#0 > 0 such that &$(#0) = 0, " (#) > 0, &$(#) > 0 for 0 ≤ # < #0. Noting that H$(#) = %$&$(#)" (#) > 0 for 0 ≤ # < #0, and according to the &$(#)
formula of model (3.10), we get

!&$(#0)
!#

=
#0

∫
0

H$(#0 − .)I$(.)!.+ J$(#0) > 0.

Thus, &$(#) ≥ 0 for all # ≥ 0. Similarly, we conclude that " (#) ≥ 0, &2(#) ≥ 0 for all # ≥ 0 and for all positive initial data.
It follows from [24] that if any equilibrium of model (3.10) exists, it must be the constant solution of the limiting model related 

to (3.10), expressed by the following

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

!" (#)
!#

= $− !" (#)− %$&$(#)" (#)− %2&2(#)" (#),

!&$(#)
!#

=
∞

∫
0

%$&$(#− .)" (#− .)1(.)?(.),̄$(.)!.− +&$(#),

!&2(#)
!#

=
∞

∫
0

%$&$(#− .)" (#− .)1(.)?(.),̄2(.)!.

+
∞

∫
0

%2&2(#− .)" (#− .)1(.)?(.),̃2(.)!.− +&2(#),

(3.14)

where ,̄$(.), ,̄2(.), ,̃2(.) are given in (3.2). We have the following results on the infection-free steady state D∗
0 = ( "̄0, 0, 0) = ($∕!, 0, 0)

and infection steady state of the limiting model (3.14).
(i) If ,1 > 1, then the following boundary steady state exists:

D∗
1 = ( "̄1, 0, &̄21 ) =

(
+

%2C̃2
, 0, !

%2
(,1 − 1)

)
.

(ii) If ,2 > 1 and ,2 >,1, then the following coexistence steady state exists:

D∗
2 = ("̄ , &̄$, &̄2) =

(
+

%$C$
,

(%$C$ − %2C̃2)!
%$(%$C$ − %2C̃2 + %2C2)

(,2 − 1),
C2!

(%$C$ − %2C̃2 + %2C2)
(,2 − 1)

)
.

Next, we use the same method of finite ODE to study the infinite-dimensional model. This method has been used to study other 
age-structured models [25,26]. Fig. 2 shows the conditions under which the steady state of model (3.14) exists. We will use the 
equivalent model (3.14) of model (2.3) to study its stability. Linearizing the model (3.14) about the steady state D̃ = ("̃ , &̃$, &̃2), we 
get the corresponding characteristic equation

Δ(D̃) =

||||||||

−! − %$&̃$ − %2&̃2 − U −%$"̃ −%2"̃
%$&̃$>1 %$"̃ >1 − + − U 0

%$&̃$>2 + %2&̃2>3 %$"̃ >2 %2"̃ >3 − + − U

||||||||
= 0, (3.15)
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Fig. 2. Schematic diagram of the existence of the steady state of model (3.14) on the ,1 -,2 plane.

where >1 = ∫ ∞
0 1(.)?(.),̄$(.)@−U.d., >2 = ∫ ∞

0 1(.)?(.),̄2(.)@−U.d., >3 = ∫ ∞
0 1(.)?(.),̃2(.)@−U.d., and U denotes the eigenvalue of the 

linearized model.

Theorem 3.1. The infection-free steady state D∗
0 of model (3.14) is locally asymptotically stable if ,1 < 1 and ,2 < 1, and it is unstable 

when ,1 > 1 or ,2 > 1.

Proof. We substitute D̃ =D∗
0 into the above characteristic equation (3.15) to obtain the following characteristic polynomial

⎛
⎜
⎜⎝
%$"̄0

∞

∫
0

1(.)?(.),̄$(.)@−U.!.− + − U
⎞
⎟
⎟⎠
×
⎛
⎜
⎜⎝
%2"̄0

∞

∫
0

1(.)?(.),̃2(.)@−U.!.− + − U
⎞
⎟
⎟⎠

× (! + U) = 0.

(3.16)

The characteristic polynomial (3.16) has one negative solution −!. Other eigenvalues are determined by the following equations

U
+
+ 1 =

%$$
!+

∞

∫
0

1(.)?(.),̃2(.)@−U.!.=,1
∫ ∞
0 1(.)?(.),̃2(.)@−U.!.

C̃2
,

U
+
+ 1 =,2

∫ ∞
0 1(.)?(.),̄$(.)@−U.!.

C$
.

(3.17)

For all complex roots U with non-negative real parts, we have

|
∞

∫
0

1(.)?(.),̃2(.)@−U.!.| ≤
∞

∫
0

1(.)?(.),̃2(.)!. = C̃2

and

|
∞

∫
0

1(.)?(.),̄$(.)@−U.!.| ≤
∞

∫
0

1(.)?(.),̄$(.)!. =C$.

Thus, the modulus on the right side of equations (3.17) is less than 1 when ,1 < 1 and ,2 < 1. However, the left modulus of equations 
(3.17) is always greater than or equal to 1. By comparing the moduli of both sides of the equation, it is concluded that all solutions 
have negative real parts. This shows that the infection-free steady state D∗

0 of model (3.14) is locally asymptotically stable when 
,1 < 1 and ,2 < 1.

If ,1 > 1 or ,2 > 1, we define the functions as follows

Q1(U) =
U
+
+ 1−,1

∫ ∞
0 1(.)?(.),̃2(.)@−U.!.

C̃2
,

Q2(U) =
U
+
+ 1−,2

∫ ∞
0 1(.)?(.),̄$(.)@−U.!.

C$
.

It is clear that Q1(0) = 1 − ,1 < 0 and Q1(U) → ∞ as U → ∞. Similarly, Q2(0) = 1 − ,2 < 0 and Q2(U) → ∞ as U → ∞ when ,2 > 1. 
Therefore, there is at least one positive root such that Q1(U) = 0 or Q2(U) = 0. Thus, the infection-free steady state D∗

0 of model (3.14)is unstable when ,1 > 1 or ,2 > 1.
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Theorem 3.2. The boundary steady state D∗
1 of model (3.14) exists if and only if ,1 > 1. It is locally asymptotically stable when ,1 > ,2

and unstable when ,2 >,1.

Proof. The boundary steady state D∗
1 is brought into the characteristic equation (3.15) to obtain the following characteristic 

equation
⎛
⎜
⎜⎝
%$"̄1

∞

∫
0

1(.)?(.),̄$(.)@−U.!.− + − U
⎞
⎟
⎟⎠
×

⎡
⎢
⎢⎣
(−! − U)

⎛
⎜
⎜⎝
%2"̄1

∞

∫
0

1(.)?(.),̃2(.)@−U.!.− + − U
⎞
⎟
⎟⎠
+ %2&̄21 (+ + U)

⎤
⎥
⎥⎦
= 0.

The eigenvalues are determined by the following equation
U
+
+ 1 =

%$ ∫ ∞
0 1(.)?(.),̄$(.)@−U.!.

%2C̃2
, (3.18)

or

(! + U)
⎛
⎜
⎜⎝
+ + U− +

∫ ∞
0 1(.)?(.),̃2(.)@−U.!.

C̃2

⎞
⎟
⎟⎠
+ !(,1 − 1)(+ + U) = 0. (3.19)

We claim that when ,2 <,1 (i.e. %$C$ < %2C̃2), all roots of (3.18) have negative real parts. Otherwise, there exists U0 with Re(U0) ≥ 0. 
This shows that | ∫ ∞

0 1(.)?(.),̄$(.)@−U0.!.| ≤ ∫ ∞
0 1(.)?(.),̄$(.)!. =C$. Taking modulus of both sides of (3.18) gives

||||
U0
+

+ 1
|||| = %$

| ∫ ∞
0 1(.)?(.),̄$(.)@−U0.!.|

%2C̃2
≤ %$C$

%2C̃2
.

This is impossible because the left-hand side is greater than 1 and %$C$
%2C̃2

< 1, which leads to a contradiction.
Similarly, all the solutions of the equation (3.19) have negative real parts whenever D∗

1 exists, i.e., ,1 > 1. Supposing that U has 
a non-negative real part, there exists U1 with Re(U1) ≥ 0. The modulus of characteristic equation (3.19) can be rewritten as

||||1 +
!(,1 − 1)
! + U1

|||| =
|||||||

+ ∫ ∞
0 1(.)?(.),̃2(.)@−U1.!.

(+ + U1)C̃2

|||||||
≤ 1,

which leads to a contradiction. This proves the claim that all roots of characteristic equations have negative real parts when ,2 <,1
and ,1 > 1.

When ,2 >,1 (i.e., %$C$ > %2C̃2), we let

Q3(U) =
U
+
+ 1−

%$ ∫ ∞
0 1(.)?(.),̄$(.)@−U.!.

%2C̃2
.

It is clear that Q3(0) = 1 − %$C$
%2C̃2

< 0 and lim
U→∞

Q3(U) =∞. In this case, there exists a positive root for the equation Q3(U) = 0. Thus, the 
infection-free steady state is unstable when ,2 > ,1. On the basis of the above discussion, the boundary steady state D∗

1 is locally 
asymptotically stable when ,1 > 1 and ,2 <,1.

Remark. Prior to treatment, the basic reproduction number of the sensitive strain (,2) must exceed 1; otherwise, the infection would 
not be established. Furthermore, the basic reproduction number of the resistant strain (,1) is smaller than that of the sensitive strain 
due to what is referred to as “mutation-associated fitness loss” — in essence, the mutant virus demonstrates either reduced infection 
or reproduction capability in the absence of treatment. As a result, the coexistence steady state D∗

2 exists before treatment. Although it is challenging to prove the stability of D∗
2 under the conditions ,2 > 1 and ,2 >,1 before treatment, the existence of both strains 

is highly probable due to the mutation from the sensitive to the mutant strain. This is also in line with model outcomes that do not 
take intracellular dynamics into account and aligns with clinical observations (see [27,28] and the references cited therein).

4. Model approximation under therapy

During therapy, the rate of drug-sensitive viral RNA production /$(.) becomes (1 − )$)/$(.), /2(.) becomes (1 − )2)/2(.), the 
degradation rate of virus RNA 0(.) becomes 80(.), the secretion rate of drug-sensitive virus and drug-resistant virus 1(.) becomes 
(1 − 7$)1(.) and (1 − 72)1(.), respectively. The survival probability of an infected cell remains unchanged, i.e. ?(.) = @−∫ .

0 ((A)!A , but 
the survival probability of an infected cell with the infection age . under treatment becomes the following for the two strains

B#
$(.) = @−∫ .

0 [(1−7$)1(A)+80(A)]!A , B#
2(.) = @−∫ .

0 [(1−72)1(A)+80(A)]!A .
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Let ,#
1 and ,#

2 be the on-treatment reproduction number of the drug-resistant and drug-sensitive strain of model (2.4), respectively. From the calculation in last section, we know

,#
1 =

%2$
!+

C̃#
2 , ,#

2 =
%$$
!+

C#
$,

where

C̃#
2 =

∞

∫
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⎡
⎢
⎢⎣
B#
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.

∫
0
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2(.)
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⎥
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∫
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B#
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.

∫
0

/$(A)
B#
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B#
$(A)

!A
⎤
⎥
⎥⎦
?(.)!.

represent the viral burst size of the drug-resistant and drug-sensitive strain, respectively. Using the on-treatment reproduction num-
bers ,#

1 and ,#
2, we have similar results for the model with treatment as in Theorems 3.1 and 3.2.The above analysis provides asymptotic properties of the model under therapy. In order to study the viral load dynamics during 

therapy, we assume that the model (2.4) is at the coexistence steady state D∗
2 at # = 0 at the start of treatment (see the remark in last 

section). We also assume that ((.), /$(.), /2(.), 1(.), and 0(.) are all constants to obtain explicit approximations of the drug-sensitive 
and resistant viral loads during treatment. In this case, ?(.) = @−(., B(.) = @−(1+0).. It follows from (3.5)-(3.9) that we obtain the 
solutions of ,$(., #), ,2(., #), ,̃2(., #), '$(., #), and '2(., #) under therapy, given by

,$(., #) =
⎧
⎪
⎨
⎪⎩

(1−3);1
V1

+
(
1− (1−3);1

V1

)
@−V1., . < #,

(1−3);1
V1

+
(
,̄$(.− #)− (1−3);1

V1

)
@−V1#, . ≥ #,

(4.1)

,2(., #) =
⎧
⎪
⎨
⎪⎩

3;1
V2

(1− @−V2.), . < #,
3;1
V2

+
(
,̄2(.− #)− 3;1

V2

)
@−V2#, . ≥ #,

(4.2)

,̃2(., #) =
⎧
⎪
⎨
⎪⎩

;2
V2

+ (1− ;2
V2

)@−V2., . < #,
;2
V2

+
(
,̃2(.− #)− ;2

V2

)
@−V2#, . ≥ #,

(4.3)

'$(., #) =
{

%$&$(#− .)" (#− .)@−(., . < #,
'̄$(.− #)@−(#, . ≥ #, (4.4)

and

'2(., #) =
{

%2&2(#− .)" (#− .)@−(., . < #,
'̄2(.− #)@−(#, . ≥ #, (4.5)

where ;1 = (1 − )$)/$, V1 = (1 − 7$)1 + W0, ;2 = (1 − )2)/2, and V2 = (1 − 72)1 + W0. ,̄$(.), ,̄2(.), ,̃2(.), '̄$(.), and '̄2(.) are the 
pre-treatment steady state distributions of intracellular viral RNA and infected cells with drug-sensitive and drug-resistant virus, 
respectively. From (3.1) and (3.2), we obtain these steady states

'̄$(.) = %$&̄$"̄ @−(., '̄2(.) = %2&̄2"̄ @−(., ,̄$(.) = (1−3)
/$

1+ 0
+
(
1− (1−3)

/$
1+ 0

)
@−(1+0).,

,̄2(.) =3
/$

1+ 0
(1− @−(1+0).), ,̃2(.) =

/2
1+ 0

+
(
1−

/2
1+ 0

)
@−(1+0)..

(4.6)

It should be noted that for . > #, '$(., #) = '̄$(. − #)@−(# = %$&̄$"̄ @−(., '2(., #) = '̄2(. − #)@−(# = %2&̄2"̄ @−(.. Therefore, cells infected before 
the therapy was administered, i.e., for . > #, maintain their steady state age distribution even after therapy starts.

We first approximate the viral load during therapy by assuming that the infected cells of the two strains keep their stable state 
distribution before treatment, which implies that '$(., #) = '̄$(.) = %$&̄$"̄ @−(., '2(., #) = '̄2(.) = %2&̄2"̄ @−(.. This is equivalent to assuming 
that the new infection (i.e. . < #) occurs at rate %$&̄$"̄ and %2&̄2"̄ instead of %$&$(# − .)" (# − .) and %2&2(# − .)" (# − .) after treatment 
starts. This assumption is reasonable only in a short period of time after the start of treatment, because the new infection rate will 
decrease in the presence of effective treatment. According to this assumption, &$(#) and &2(#) of (2.4) can be written as

!&$(#)
!#

= (1− 7$)
∞

∫
0

1,$(., #)'̄$(.)!.− +&$(#),

!&2(#)
!#

= (1− 72)
∞

∫
0

1,2(., #)'̄$(.)!.+ (1− 72)
∞

∫
0

1,̃2(., #)'̄2(.)!.− +&2(#).

(4.7)
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It follows from (4.1) that we divide the integral of the first equation into two parts as follows
∞

∫
0

,$(., #)'̄$(.)!. =
#

∫
0

,$(., #)'̄$(.)!.+
∞

∫
#
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Next, we calculate two integrals separately, given by
#
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((1+0+() . We add the above two integrals and obtain
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Taking (4.8) into the first equation of (4.7), we have
d&$(#)
d# = (1− 7$)

1+
C$
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((V1 + () +
(C$

1
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− +&$(#).

The solution of &$(#) is obtained by the constant variation method
&$(#)
&$0
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+ 1
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]
,

(4.9)

where &$0 = &̄$ is the baseline with drug sensitive viral load before treatment begins. The rate of the new infection is assumed to be 
%$&̄$"̄ within a short period of time after the start of treatment. We call (4.9) the short-term approximation of drug sensitive viral 
decline during treatment.

Alternatively, we can approximate the viral load change by ignoring all new infections after treatment starts. As a result of (4.4), 
'$(., #) = 0 for . < #, and '$(., #) = '̄$(. − #)@−(# = %$&̄$"̄ @−(. for . ≥ #. Therefore, the equation of &$(#) in (4.7) can be rewritten as

!&$(#)
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#

1,$(., #)'$(., #)!.− +&$(#).

Calculating the integral, we have
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Solving for &$(#), we obtain
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&$0

=@−+# + (1− 7$)
+1
C$

[ (1−3);1
V1((( − +) (@

−+# − @−(#)

+ 1
V1 + ( − +

(C$
1

−
(1−3);1

V1(

)
(@−+# − @−(V1+()#)

]
.

(4.10)

Under this approximation, we ignore all new infections during treatment (i.e. when . < #, '$(., #) = 0). This assumption is reasonable, 
particularly after a long-term effective therapy, which can greatly suppress the production of drug-sensitive viruses. We call (4.10) a 
long-term approximation of the decrease of drug-sensitive viruses after treatment.

In the following, we perform similar approximations for the resistant strain. We start with the short-term approximation. We get 
the following integrals from (4.2) and (4.3)
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We calculate the integrals
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Plugging (4.11) into &2(#) of (4.7), we have
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and the solution of &2(#) is obtained by the constant variation method
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(4.12)

where &$0 = &̄$, &20 = &̄2 are the baseline with drug-sensitive and drug-resistant viral load before treatment begins, respectively. The 
rate of new infection is assumed to be %2&̄2"̄ and %$&̄$"̄ within a short period of time after the start of treatment. We call (4.12) the 
short-term approximation of drug resistance viral decline during treatment.

Similarly, we will obtain the long-term approximation of the resistant viral load. We ignore all new infections after treatment 
starts. From (4.5), we have '2(., #) = 0, '$(., #) = 0 for . < #, and '2(., #) = '̄2(. − #)@−(# = %2&̄2"̄ @−(., '$(., #) = '̄$(. − #)@−(# = %$&̄$"̄ @−(. for 
. ≥ #.

The &2(#) equation for model (2.4) is rewritten as
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Fig. 3. Comparison of the multiscale model with their approximate solutions. Panels (a) and (b) show the graphs of drug-sensitive and drug-resistant viruses under 
drug treatment, respectively. The black dotted line and the blue-green solid line represent the numerical solutions of &$ and &2 from the PDE model. The red dotted 
line and red purple solid line represent short-term approximations for the two strains. The green dotted line and blue dotted line represent long-term approximations 
for the two strains. The values of the model parameters are shown in Table 1.

Solving for &2(#), we obtain
&2(#)
&20

=@−+# + (1− 72)
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(4.13)

The formula (4.13) is referred to as the long-term approximation for the decrease of drug-resistant viruses during treatment.
We compare the solution of the multiscale PDE model (2.4) with approximations for drug-sensitive and drug-resistant virus strains 

using numerical simulation. Fig. 3 shows that the short-term approximations for drug-sensitive (4.9) (red dotted line in Fig. 3(a)) and 
drug-resistant (4.12) (purple solid line in Fig. 3(b)) virus strains are consistent with the PDE model solution (2.4) (black dotted line 
in Fig. 3(a) and blue-green solid line in Fig. 3(b)) in the early stage of treatment. However, the short-term approximations quickly 
approach the steady state, which is higher than the PDE model solution (2.4). The long-term approximations for drug-sensitive (4.10)
(green dotted line in Fig. 3(a)) and drug-resistant (4.13) (blue dotted line in Fig. 3(b)) virus strains provide good approximations to 
the PDE model solution (2.4) (Fig. 3).

5. Effect of drug therapy on multiscale model dynamics

The last section shows that the long-term approximate equations (4.10) and (4.13) for the two strains are in agreement with the 
solution of the multiscale PDE model (2.4). In this section, we use the long-term approximation to study the influence of DAAs on 
the viral load change of drug-sensitive and drug-resistant viruses during treatment.

To investigate the change of drug-sensitive viral load during treatment, we reorganize the long-term approximation (4.10) as 
follows:

&$(#)
&$0

= T1@−+# +T2@−(V1+()# +T3@−(#,
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,
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(1−3);1
V1((+ − () .
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Table 1
Parameter values in numerical simulation.
Parameter Description Values References
$ Recruitment rate of uninfected cells 1.30 × 105 cells mL−1 day−1 [16]
! Death rate of uninfected cells 0.01 day−1 [16]
%$ Infection rate of target cells 5 × 10−8 mL day−1virions−1 [29]

by drug-sensitive virus
%2 Infection rate of target cells 4.99 × 10−8 mL day−1virions−1 [29]

by drug-resistant virus
( Death rate of infected cells 0.14 day−1 [29]
1 Assembly/secretion rate of viral RNA 8.18 day−1 [29]
8 Drug effect of enhancing RNA degradation 4.94 [29]
0 Degradation rate of viral RNA 1 day−1 [29]
+ Clearance rate of free virus 22.3 day−1 [16]
3 Mutation rate from sensitive 10−5 per copied nucleotide [30]

strain to resistant strain
)$ Drug effect of inhibiting 0.992 [29]

drug-sensitive viral RNA production
)2 Drug effect of inhibiting 0.99 [30]

drug-resistant viral RNA production
7$ Drug effect of blocking assembly/ 0.56 [29]

secretion of drug-sensitive viral RNA
72 Drug effect of blocking assembly/ 0.55 [30]

secretion of drug-resistant viral RNA
/$ Production rate of intracellular 40 virions cell−1 [29]

drug-sensitive viral RNA
/2 Production rate of intracellular 38 virions cell−1 [30]

drug-resistant viral RNA

The approximation contains three exponential terms, namely @−+#, @−(V1+()#, and @−(#, where V1 = (1 − 7$)1 + W0. The first term 
represents the elimination of drug-sensitive viruses, the second term represents the export and degradation of intracellular drug-
sensitive virus RNA, and the elimination of infected cells, while the third term represents the death of infected cells. After the start of 
treatment, the decrease in the three viral loads depends not only on the exponents but also on the coefficients before the exponential 
terms.

When plotting the viral load change on the logarithmic scale with base 10, the duration of the virus decline in the first stage is 
denoted as X1. It is the time when the two curves log10(T1@−+#) and log10(T2@−(V1+()#) intersect, and is given as follows:

X1 =
ln(T1

T2
)

+ − (V1 + () .

Similarly, we obtain the duration of virus decline in the second stage, which is defined as X2 :

X2 =
ln(T2

T3
)

V1
.

If 7$ tends to 1, then T1 ≫ T2, and the drug-sensitive virus decreases significantly at the rate of slope proportional to + (i.e. 
− log10 @ × +) in the first stage. If )$ tends to 1, then ;1 = (1 − )$)/$ approaches 0. Hence, we obtain T2 ≫T3, and drug-sensitive virus 
showed an obvious decreasing trend with slope proportional to V1 + ( (i.e. − log10 @ × (V1 + ()). We can confirm these theoretical 
analyses in Fig. 4. From the figure, we can conclude that hindering the assembly and secretion of drug-sensitive virus in plasma 
(7$ = 0.99) and inhibiting the production of intracellular drug-sensitive virus RNA ()$ = 0.99) lead to a significant decrease in drug-
sensitive virus load in three stages, with slopes proportional to +, (1 − 7$)1 + W0 + (, and (, respectively (blue solid line).

When )$ decreases, the drug-sensitive virus decreases continuously with slope proportional to + in the first stage and disappears 
in the second stage with slope proportional to (1 − 7$)1 + W0 + ( (green dotted line and blue-green dotted line). When 7$ = 0.01, 
the decline with slope proportional to + of drug-sensitive virus in the first stage is invisible (red dashed). These results can explain 
why the estimated value of viral clearance rate + is significantly higher in DAA-based treatment for HCV compared to traditional 
interferon-based treatment, as reported in [17].

Next, we study the effect of drug treatment on the decrease of drug-resistant viral load. Similarly, equation (4.13) can be rewritten 
as

&2(#)
&20

= T4@−+# +T5@−(V2+()# +T6@−(#,

where
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Fig. 4. Effect of treatment on the change of drug-sensitive viral load. The long-term approximation of drug-sensitive viral load simulates different combinations of 
drug efficacies 7$ and )$ . Other parameter values are the same in Table 1.
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)
,

where V2 = (1 − 72)1 + W0, ;2 = (1 − )2)/2, and ;1 = (1 − )$)/$. There are also three exponential terms in this approximation, and the 
explanation is similar to the above so it is not repeated here. Different from the expression of drug-sensitive viral load, the coefficients 
of drug-resistant viral load are not only related to )2 , but also to )$.

The duration of the first and second stages of decline for drug-resistant viruses are denoted by X3 and X4, respectively, and are 
calculated as follows:

X3 =
ln
(
T4
T5

)

+ − (V2 + () , X4 =
ln
(
T5
T6

)

V2
.

When 72 tends to 1, the drug-resistant virus load decreases significantly in the first stage with a slope proportional to +, as T4 ≫T5. 
If )$ and )2 tend to 1, ;1 = (1 − )$)/$ and ;2 = (1 − )2)/2 are very small. In this case, T5 ≫T6 and the drug-resistant virus shows a 
decrease with a slope proportional to V2 + (. Numerical simulations (Fig. 5) confirm these theoretical analyses. When the treatment 
blocks the assembly/secretion of drug-resistant virus in plasma (72 = 0.99) and inhibits the RNA production of both viruses in cells 
()$ = 0.99, )2 = 0.99), the viral load of drug-resistant virus decreases in three stages (blue dotted line), with slopes proportional to 
+, (1 − 72)1 + W0 + (, and (. If 72 = 0.01, the first-stage decline of drug-resistant virus with slope proportional to + becomes invisible 
(blue-green dotted line).

Fig. 5 shows that the green dot-dotted line coincides with the blue dotted line, and )2 is different, but inhibiting the production 
of intracellular drug-resistant virus RNA still has a curative effect. This suggests that the curative effect of 72 is more effective than 
that of )2 in this case. The comparison between the blue-green dotted line and the red-purple solid line illustrates this phenomenon. 
Moreover, when these two drug efficacies are the same, the influence of 72 is stronger on viral load reduction. The comparison 
between the blue-green dotted line and the red dotted line shows that the drug efficacy )$ has little effect on the reduction of 
drug-resistant virus load, while the comparison between the blue-green dotted line and the red-purple solid line shows that )2 has a 
greater effect than )$. In general, these three drug efficacies can have different effects on the reduction of drug-resistant virus load.

6. Conclusion and discussion

In studying the effect of DAAs in treating patients, treatment analysis is facilitated by considering multiscale models of intracel-
lular viral dynamics, as these drugs directly interfere with specific steps of the HCV life cycle. Specific targeted antiviral therapy for 
HCV is considered an attractive strategy, with the goal of achieving lower viral load, shorter treatment duration, and better drug 
resistance. Due to the high replication rate of HCV and the fallibility of viral RNA polymerase, a large number of viral mutations are 
produced, making the emergence of drug-resistant variants a major obstacle to such treatment. During treatment, variants that are 
resistant to the specific drugs used are selected, and these drug-resistant viruses have an adaptive advantage over sensitive viruses 
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Fig. 5. Effect of treatment on the change of drug-resistant viral load. The long-term approximation of drug-resistant virus load simulates different combinations of 
drug efficacies )$ , )2 , and 72 . Other parameter values are the same in Table 1.

under drug pressure, allowing them to rapidly evolve and dominate the virus population, particularly during monotherapy. To study 
the dynamic behavior of HCV before and after treatment, this paper proposes a multiscale model that includes the age structure of 
infection and two strains of viruses.

We have calculated three steady states of the model prior to treatment and analyzed the conditions for the existence of steady 
states and their stability. Specifically, we have found that when the basic reproductive numbers ,1 and ,2 are both less than 1, the 
infection-free steady-state is locally asymptotically stable. Here, ,1 and ,2 represent the basic reproductive numbers of the resistant 
and sensitive strains, respectively. Moreover, we have found that the boundary steady state exists if and only if ,1 is greater than 1, 
which means that only the steady state of drug-resistant virus exists. Additionally, we have shown that if ,1 is greater than ,2 and 
,1 is greater than 1, the boundary steady state is locally asymptotically stable.

Furthermore, we have obtained approximations of the solutions of the multiscale model under certain assumptions. Specifically, 
we have used the approximate assumption that there is no new infection during treatment, which is referred to as the long-term 
approximation, and found that it is consistent with the solution of the multiscale model. Using these two long-term approximations, 
we have studied the effect of drug treatment on the dynamics of the two strains.

Multiscale models provide a clear explanation of the potential effects of DAAs on the production and degradation of intracellular 
sensitive and resistant viral RNA, as well as on the assembly and secretion of viruses to the circulation. The results indicate that if 
treatment can effectively block viral secretion, then the initial reduction in viral load reflects the clearance of viruses in plasma. If 
intracellular RNA production is also significantly inhibited during treatment, a visible second-phase viral decline will occur, reflecting 
the loss rate of the HCV replication complex and the mortality rate of infected cells. The third phase reflects the mortality rate of 
infected cells. To treat drug-resistant viruses, more optimal drug combinations can be identified, such as enhancing the drug effect 
that blocks the secretion of drug-resistant viruses, as its antiviral effect is superior to that of the other two efficacies, which helps 
reduce the viral load of drug-resistant viruses and achieve the desired treatment outcome.
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