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Abstract: Recent studies have demonstrated the superiority of cell-to-cell transmission over cell-
free virus infection, and highlighted the role of inflammatory cytokines in enhancing viral infection.
To investigate their impacts on viral infection dynamics, we have proposed an HIV infection model
incorporating general incidence rates, these infection modes, and two time delays. We derived the
basic reproduction number and showed that it governs the existence and local stability of steady
states. Through the construction of appropriate Lyapunov functionals and application of the LaSalle
invariance principle, we established the global asymptotic stability of both the infection-free and
infected steady states.
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1. Introduction

The death of CD4+ T cells following HIV infection is typically attributed to apoptosis, or
programmed cell death. However, a 2010 study suggested that most infected CD4+ T cells in lymphoid
tissue succumb to pyroptosis, another form of programmed cell death [1]. On one hand, when viruses
lead to productive infection of CD4+ T cells, caspase-3-mediated apoptosis leads to cell death. On
the other hand, when the infection is abortive, caspase-1-mediated pyroptosis results in cell death,
characterized by the release of inflammatory cytokines [2]. The occurrence of inflammation attracts
more CD4+ T cells to the infection site, which leads to more infecitons and pyroptosis in turn, forming
a vicious cycle and eventually severely destroying the immune system [3].
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In recent years, mathematical modeling has emerged as an effective and valuable tool for elucidating
the mechanisms underlying CD4+ T cell death [4, 5]. Viruses require time to enter target cells and
generate new viral particles, and time delays have long been utilized to investigate viral infection
dynamics [6-9]. By considering the influence of inflammatory cytokines released during pyroptosis
on cell death in viral infection [1], Jiang et al. introduced the following delay model:

? =5 — fx(0), v()v(t) — Bx(t)c(t) — dyx(1),
B = TS = 7). = T )+ B = Tl = )] = @+ dy)
(1.1)
d
fl(tt) = a1y(0) = declt),
d
‘:1(;) = ke "y(t = 15) = dyv(1).

Here, x(1), y(1), c(t), and v(¢) represent the concentrations of uninfected CD4+ T cells, infected CD4+ T
cells, inflammatory cytokines, and free virions at time ¢, respectively. The production rate of uninfected
CD4+ T cells is denoted by s. The death rate of infected cells due to pyroptosis is represented by «.
The parameters @, and k represent the rate of infected cells releasing inflammatory cytokines and the
production rate of viruses, respectively. The infection function, denoted by f(x(¢), v(¢))v(¢), describes
the infection of uninfected CD4+ T cells by free viruses, while Sx(¢)c(t) denotes cytokine-enhanced
viral infection. The survival probability of infected cells is given by ™™, where 1/§; represents
the average lifespan of infected cells. Similarly, the survival probability of immature viral particles
is expressed as e 2™, with 1/8, representing the average lifespan of immature viruses. This paper
investigated the global dynamics of model (1.1) using the method of Lyapunov functionals.

For quite some time, cell-free infection has been considered the primary mode of HIV transmission.
However, recent literature suggests that cell-to-cell transmission may offer certain advantages over cell-
free virus infection [10-12]. Inspired by this, we propose a delay model that incorporates both cell-
free infection and cell-to-cell transmission, along with cytokine-enhanced viral infection and general
incidence rates. The structure of this paper is as follows: Section 2 presents the model and its basic
properties. In Section 3, we calculate the basic reproduction number and examine the existence of
steady states. The global asymptotic stability of the steady states is given in Section 4. Finally, we
provide a brief summary.

2. The model and basic properties
Motivated by the above discussion and model (1.1), we formulate the following delay model

including both cell-free infection and cell-to-cell transmission, as well as cytokine-enhanced viral
infection and general incidence rates:
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dr

dif). = 5 = o(T(), V() = (T @), 1)) = (T (), C(1)) = drT(0),
d/
% = M [Q(T(t = 1), V(t = 7)) + W(T(t = 71), I(t = 7)) + f(T(t = 71), C(t = 71))]

— (@ +dpI(1), 2.1)

dc
% = al(t) — dcC(1),
d‘;_it) = ke 2 (t — 1)) — dy V(2),

where T'(¢), I(t), C(t), and V(¢) are the concentrations of uninfected CD4+ T cells, infected CD4+ T
cells, inflammatory cytokines, and free virions at time ¢, respectively. The general infection functions
o(T@®),V(), y(T(1),1(1)), and f(T(t), C(r)) represent the infection of uninfected CD4+ T cells by free
viruses, infected CD4+ T cells, and enhanced infection by inflammatory cytokines, respectively. The
parameters dr, d;, dc, and dy denote the natural mortality rates of uninfected CD4+ T cells, infected
CD4+ T cells, inflammatory cytokines, and viruses, respectively. The parameter 7, represents the time
between viruses entering cells and producing new viral particles, while 7, denotes the time it takes for
a newly produced virion to mature until it becomes infectious [13]. The biological meanings of the
remaining parameters remain consistent with those of model (1.1).

We let C([—T, 0], Ri) be the Banach space of continuous functions mapping [—7, 0] into Rﬁ, and
¢ = (¢1(0), $2(0), p3(0), $4(0)) € C([-7,0],R?) [14]. Then the initial conditions for model (2.1) are
given by

T(0) = ¢1(0) > 0, 1(0) = ¢2(0) > 0, C(0) = ¢5(0) > 0, V(0) = ¢4(0) > 0,
T(0) = ¢1(0), 1(0) = $2(6), C(6) = ¢3(6), V() = ¢4(0), ¢i(6) = 0forb € [-7,0),
wherei = 1,2,3,4 and T = max{r, 7p}.
According to [15-18], we assume the following for the general incidence functions in model (2.1).
(A1) (T, V), (T, I), and f(T,C) are differentiable with 245V » o LD o o T o () for

TaT ToT Tar

T,1,C,V > 0,and 220 > o, 2D 5 0 209 5 0 for T > 0, 1,C,V > 0. Furthermore, ¢(T,0) =

¢(0, V) = (T, 0) = w(o )= f(T,0) = £(0,C) =0 forall T,1,C,V € R,.

a (T V) T Af(T.C) . :
(A2) %=, 257, and “52= are all continuous at point (i,O). Moreover,

0, ndaf;g;“ <0forall T,1,C,V > 0.
From assumption (A1), we know ¢(T,V) > 0, y(T,I) > 0, and f(T,C) > O for T,1,C,V € (0, ).

Under assumptions (A1) and (A2), we can obtain

(2.2)

62<p(T,V) <0, 621//(T[)
V2 or =

op(T,V Oo(T,0
%v < o(T,V) < ‘D;V )V forany T,V € R..
0 T,I oy(T,0
‘/'( ) <y(T,D) < ‘”;I )/ for any T,1 € R,, (2.3)
0 aof(T,0
f(C C< f(T,C) < f((')C )C forany 7, C € R,.
(A3) If (T4, I, C,, V,) is the positive steady state of model (2.1), then for 7,1,C,V > 0,
v < ﬂ 1 O<V < V*’
V* T‘P(T*, Vi)
T,o(T,V) Vv

S—<—, 0<V, <V,
To(T,,V,) Ve *
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i T,.y(T,I) <1 0<I<L.,
I, TTM]Y:*’I L) ;
1<M<_ 0<I, <I,
Tw(T*,I*) L’
T, f(T,C)
—s*—sl, 0<C<C,,
EE e
SMS—, 0<C, <C.
Tf(T,,Cy) C.

We can verify that the general functions satisfying assumptions (A1)—(A3) generalize many common

forms, such as % (Holling Type II functional response [19]), ; Jj ;va (Beddington-DeAngelis
functional response [20]), and % (Crowley-Martin functional response [21]), among others.

The following result shows that the solution (7'(¢), I(t), C(t), V(¢)) of model (2.1) with the initial
condition (2.2) remains non-negative and ultimately bounded.

Theorem 2.1. Let (T(2), 1(t), C(t), V(¢)) be a solution of model (2.1) with the initial condition (2.2). It
is positive and ultimately bounded for t > 0.

Proof. We first show that 7'(r) > O for all # > 0. Assume that there exists a #; > 0 such that 7(¢;) = 0
T(@) > 0, t € [0,t,). Thus, dT(”) < 0. From the first equation of model (2.1), we have de(;l) =s5>0,
which is a contradiction. ThlS 1mphes that T(r) > O for all > O.

Next, we prove that /() > O for all # > 0. Assume that there exists a t, > 0 such that I(z;) = 0,
I(t) > 0,1t €[0,1,). Thus, % < 0. From the second equation of model (2.1), we have

di(t)

e e (T (ty — 1), V(ta = 1) + (T (ty — 71), [(t2 — 71)) + f(T(t, — 1), C(t, — T1))].

Since t, — 11 < t, we get I(t, — 1) > 0. Furthermore, we have (7(t, — 71), I(t, — 71)) > 0. Hence,
% > 0, which is a contradiction. This implies that I(t) > O for all # > 0. Similarly, we can find a
t3 > O such that V(3) =0, V(¢) > 0, ¢ € [0, t3). Thus, % < 0. From the last equation of model (2.1),
we have dV(’3) = ke "2 [(t; — T,) > 0, which is a contradiction. This implies that V(f) > 0 for all ¢ > 0.

By the th1rd equation of model (2.1), we have
t

C(t) = C(0)e " 4+ f a [(€)e™9dg > 0.
0

To sum up, we have shown that 7(¢) > 0, I(t) > 0, C(t) > 0, and V(¢) > O for all # > 0.
From the positivity of the solution and the first equation of model (2.1), we obtain

dT(¢)

<s-drT(),

which yields that lim sup 7'(¥) < di
t—00 T

Denote

N(@) =T + 7t + 1)).
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It follows from the first two equations of model (2.1) that

de

dN(t
d—i) =s—drT(t) = (@ + d)e” " I(t + 7)) < s — uN(t),
where y = min{dy, @ + d;}. This yields lim sup N(7) < E. Thus, limsup I(f) < E6‘5”1.
t—0co t—o0 M
By the third equation of C(#) in model (2.1), we get
dC(t
O < g e _gec),
u

which yields lim sup C(¢) < %_zm. Similarly, by the last equation of V(#) in model (2.1), we get

t—o00
dv(t
® < ke 02 Lgmoim _ dyV(t),
dr p
which implies that lim sup V(f) < kse":T‘V"’”
t—o00
Therefore, T(¢), I(t), C(t), and V() are ultimately uniformly bounded. O

3. Existence and local stability of steady states

3.1. Existence of steady states

Model (2.1) always has an infection-free steady state Ey = (7, 0, 0,0), where Ty = di Inspired by
T
the method of [22], we define the new infection and transfer matrices F and V by

6—5171 aw(TO’ 0) 8—6171 af(To’ O) 6—6171 GQO(TO, O)

F = ol oC ov
- 0 0 0

0 0 0

and

V= —a dc 0

—ke™2™ 0 dy

The basic reproduction number R, is defined as the spectral radius of the next generation operator
FV-!, that is,

a+d; O 0]

Ry =p(FEV™) =R, + R, + R;, (3.1)
where

e 01T (To, 0) a,le—rS]Tl 0f(Ty,0) ke~ (0171+0272) 0p(Ty, 0)
Rz = R3 = :

R, = (3.2)

S a+d, 0l 7 de(a+d) oC 7 dy(a+d) OV
Let E, = (T4, 1., C4, V,) be an infected steady state of model (2.1), which satisfies
s — (P(T*, V*) - W(T*a I*) - f(T*, C*) - dTT* = Oa
e_lslTl ((p(T*, V*) + l/’(T*7I*) + f(T*’ C*)) - (a/ + dI)I* = 07 (3 3)

CL’]I* - dCC* = O,
ke, —d,V, = 0.
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Solving (3.3) gives
s—el(a+ d,)l*, C. - ozll*, v, = ke“iml*' (3.4)
dr de dy
It can be seen from the second equation of (3.3) that I, is a positive root of F(x) = 0, where
Fo) :‘P(S — 9 (o + d,)x’ ke“smx) N w(s — 9 (o + d,)x’ x) N f(s — 9 (o + d,)x’ ﬂ)
dr dy dr dr dc ] (3.5)
— (@ + d))x.

First, we assume Ry < 1. By (2.3) and (3.5), for any x > 0, we have

T*:

0¢(Ty,0) ke 2™ 9y(T,,0)  If(Ty,0) @, s )
F(x) < + + — — " a+d)|x
%) ( F1% dy ol aC  de ( D
=" (@ +d))(Ry — 1)x
<0.

Clearly, F(x) = 0 has no positive roots and hence there are no infected steady states when Ry < 1.
Second, we assume R > 1. It is clear that F(0) = 0 and

0p(To,0) ke ™™ 9y(T0,0) 3f(To.0)
ov dy ol oC d¢

0p(T, 0) ke=01m170272) . OU(Ty,0) e~o1m . Af(Ty,0) ajem 1)
oV dy(a+dp) ol  a+d 0C de(a+d)p)

=’ (@ + d))(Ry - 1)

>0.

F(0) = — " (@ + d))

=" (o + d)) (

N

This, combined with the intermediate value theorem and F (m

exists I, € (0, m) such that F (1) = 0. That is, model (2.1) has at least one infected steady state.

Next, we will show that infected steady states are unique. Otherwise, suppose that there exist two
infected steady states, say E1x = (T1x, [1x, Cix, Vix) and Ery = (Tax, Irx;s Cox, Vo). Without loss of
generality, we assume that I, > I;,. It follows from (3.4) that

s—e" " a+d)lL, s—e"(a+d)hy

) = —s < 0, implies that there

T, = > =T,,. 3.6
1x dT dT 2% ( )
I
Setting m = 12—*(> 1) and by (3.4), we have
1x
kel kel al;y, @ith, 1
V = = n = —V s C = = n = —C . (37)
1% dV dV m 2% 1x dC dC m 2%

It follows from (A1), (A2), (3.6), and (3.7) that we get

1 1 1 1
O(T1s, Vie) > @(Tor, Vi) = QD(Tz*, —Vz*) > <P(—T2*, —Vz*) > —@(Tr, Vou),
m m m m

1 1 1 1
(T, 1) > (T, 11i) = W(Tz*, —12*) > lﬁ(—Tz*, —12*) > —Y(Tay, o), (3.8)
m m m m

1 1 1 1
f(Tl*a Cl*) > f(TZ*, Cl*) = f(TZ*, _CZ*) > f(_TZ*’ _CZ*) > _f(TZ*» CZ*)-
m m m m
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It follows from the second equation of (3.3) and (3.8) that
O(T1x, Vix) + Y(T15, [ix) + [(T14, Ciy) s

L. =
= a + d[

1
_(SO(TZ*a VZ*) + w(TZ*, 12*) + f(T2*, CZ*))

> m 6—5171

a + d[

1

= _12*$
m

1
which is a contradiction to I, = —/I,,. This proves the uniqueness of the infected steady states.
m
We summarize our results on the existence of the steady states in the following theorem.
Theorem 3.1. (i) If Ry < 1, then model (2.1) has only the infection-free steady state E, = (i, 0,0, ()).

(ii) If Ry > 1, then besides the infection-free steady state Ey, model (2.1) has an infected steady state

5 T T . . ., .
E,=T,1,,C,,V,) = (% L., “C‘ll*, ]%) where I, is the unique positive root of F(x) =

defined by (3.5) in the interval (0, W)

3.2. Local stability of steady states
LetE =(T,1,C,V)bea steady state of model (2.1). Linearizing model (2.1) at E leads to

dr () 0p(T,V) oy(T.I)  Of(T,C) 0p(T, V)
dr (dT Yo tTar T ar )10 Ty VO
6 T,1 of(T,C
w< )1()- f(C e,
dI(r) dp(T, V) ow(T,I) Of(T,C) »
—_— = - dnl T(t— 1
” (@+d)I) + ( a7 + T2 + a7 (t—1e 3.9)
6‘10(7’ ‘_/) —01T 8(//(7, 7) 01T 6f(T, E) -01T
- @ _ 171 —[ — 171 - -~ 1 1
£ V(it—1))e + ol (t—T1y)e + 5C Ct—m1))e
dC
L0 = 0110 - deC)
e _ ke " I(t — 15) — dy V(2).
dr
The characteristic equation of (3.9) at Eis
ou(T, ) af(T,C) op(T, V)
A Sl
A+dr ol —ac av
_ 3!#(T I) af(T C) _ 390(T V) -
Af A - _A (A+81)1] _ —(A+61)11 (A+61)11 (A+01)1] — 0’
E( ) e A+a+ d[ 61 aC 6V
0 - A+dc 0
0 — ke~ (Ao 0 A+dy

where
_0p@.V) (T.D) 9fT.C)
- aT T or

AIMS Mathematics Volume 9, Issue 6, 16280-16296.
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Theorem 3.2. (i) If Ry < 1, the infection-free steady state E, of model (2.1) is locally asymptotically
stable. Otherwise, it is unstable if Ry > 1.
(i1) If Ry > 1, the infected steady state E, of model (2.1) is locally asymptotically stable.

Proof. (1) Note that

0p(To,0)  0y(To,0)  0f(To,0)
or or oT

0.

The characteristic equation at the infection-free steady state Ej is
Agy () = (A +dp)h(2) = 0,

where

aw(To’ O) —(A+61)11
Ees—

ol
af(TO’ O) e—(/1+51)7'1 _ k(/l + dC)agD(TO’ 0) e—/l(T1+T2)—5171—(52T2.

—a(d+ dV)—(?C 3

hAD) =A+dy)A+a+d)A+dc) — (A +dy)(A+dc)

It is clear that the stability of E is determined by the roots of 4(1) = 0.
If Ry > 1, then h(0) = dydc(a + d;)(1 — Ry) < 0. Note that lim h(d) = +oco. By the intermediate

A—>+00

value theorem, we know that 4(1) = 0 admits one positive root, and hence E is unstable.

If Ry < 1, we claim that all roots of A(1) = 0 have negative real parts [23]. We will prove by
contradiction. If A, is a root with Re(4y) > 0, then from the expression of 4(1) we have

(T, 0) e+ (T, 0) @ e~ oronn

1 = +
‘ ol Ay+a+d 0C (y+a+d)Ay+de)
0p(Ty, 0) ke~ A0(T1+72)=017T1-6272
AV (A +dy) (A +a+d))
< 31,0(T0, O) e—(/10+61)ﬂ af(T(), O) a,le—(/lo+<51)r]
< ol Ay+a+d 0C (y+a+d)y+de)
0¢(Ty,0) ke~ 0(T1+72)=61T1-6272
‘ AV (Ao +dy)( Ao+ a+d))
ow(Ty,0) e~ (otdnT

S ‘

0f(Ty,0) a,le—(ﬂoﬂ?l)ﬁ d¢(Ty, 0) ke~ 0(T1+712)=01T1-627
ol @ +d ‘ aC  (a+dpdc ' ov dy(a + d))
<8¢(T0, 0) e 01m N 0f(Ty,0) @ e o . d¢(T, 0) ke d1T1-6212

-0l a+d oC (a+dpdc ov  dy(a+dp)

=R,

which leads to a contradiction. This proves the claim and hence E| is locally asymptotically stable if
Ry < 1.
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(i1) If Ry > 1, the characteristic equation at the infected steady state E, is

A+dr + A)A+dy)A+a+d)(A+de)
al//(T*’ I*)e—(/l+§1)-rl

=(A +dr)(A + dy)(A +dc) 3l
+a1(A+dp)A+ dv)—af(gz, C*)e_(“‘sm1 G-10)
+ k(A + dr)(A + dc)%e“(ﬁ”2)“5‘““5272,
where A, = 9T+, V) + 0T+ C) + 8@0((79";, ) > 0. We now prove that all roots of (3.10) have

negative real parts. If 4; is an eigenvalue with a nonnegative real part, we have

(T, I of(T,,C
(4 + dﬂ%e—uwmn (1 + dﬂ%e—(ﬂnﬂﬂ)ﬂ

1=
A +dr + A +a+d)) * A +dr + A +a+d)(A +de)

k(A + dT)a(’D(g;/’ V*)e—/ll(T1+T2)—5171—52T2

+
(/11 + dv)(/ll + dT + A*)(/ll +a+ d[)

a¢(] *,I*) _ 5f(1 *5 C*) _
Pl dr)———22 "X p~(li+61)7) ST xR = (i+o)T
(A1 +dr) N e 93C e

<
ST v dr A +a+d) | | +dr + Ao +a + d) +do)

a1 (A, +dr)

(3.11)

oo(T,,V
k(A +dﬂ%

(4 +dy)(A +dr + A4 +a+d))

e—/h (T1+712)=617T1-0272

aw(T*, 1*)6_(/11+51)7-1 a af(T*’ C*)e_(/11+51)7-1 ka(P(T*, V*)
ol + oC + )4
/11 +a + d] (/11 +a+ d])(/ll + dc) (/11 + dv)(/ll +a+ d])

e~ (T1+12)=61T1-0272

<6$(T*,I*) e 0im . af(T*’ C,) a,le—(51‘1'1 . Ggo(T*, V) ke~ 0171=0272
B ol a+d; oC dc(a/ +d;) oV dv(a’ +dp) ’

From (2.3) and (3.4), we have

W(T,,I,) e LT C) aje”m L Oe(Ty, V) ke~01m1—02T2
ol a+d; aC de(a + d[) aV dv(a’ + d[)
<l//(T*,I*)€_6]T1 + a f(T, C*)e_élﬂ + ko(T ., V*)e_61T1_62T2
(a + d[)I* dc(a + d])c* dv(a’ + d[)V*
_lr//(T*v I*)€_61T1 + STy, C*)e—51‘1'1 n o(Ty, V*)e_élﬁ
 (a+d)l, (a +d)I, (a +d)I,
=1,

which contradicts with (3.11). This completes the proof. O
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4. Global stability of steady states
Theorem 4.1. When R, < 1, the infection-free steady state Ey of model (2.1) is globally asymptotically
stable.

Proof. We define a Lyapunov function as follows:

Loy =I(r) + G IDRe oy @ dDRs o oy f W(T(s), I(s))ds

a1 Ry ke_észRO

+e0m f @(T(s), V(s)ds + e~ f f(T(s),C(s))ds+(“+Rﬂ f I(s)ds.

0

Calculating the derivative of L,(#) with respect to ¢ along the solution of model (2.1) obtains

dL
% =e " @(T(t—11), V(t —71)) + Y(T(t — 1), [(t — 1)) + f(T(t — 1), C(t — 11))]
(@ +dpin + IR 1) — decy) + CEIDRS iy 1y
1Ry ke 62T2R0

—dy V() + e YT (1), 1(1) + e T (T (1), V(1)) + €' f(T (1), C(1))
YT = T 0= 7)) — (T~ 1), V(= 7))
(Q’ + dI)R3

— e AT -11),Ct—1))) + R—O(I(t) —1(t —12))
=M p(T(0), V(D) + YT (0, 1(0) + &7 f(T(1), C(1)) - %C@

- MVU) — (a+dpI(t) + wl(t) + Mm)

ke észRO RO
_ 6im _ (a+ d])dv€51T1+52T2R3 V()
=T, V) (1 kRo o(T(0), V(t)))
s, _(@+dpe’ R, (1)
+ e w(T(t), I(t)) (1 RO l,b(T(l), I(t)))
51 _(a+ d)dce® "R, C(1)
+e (T (D), C(0) (1 o R, 7T, C(r)))'
It follows from (A1), (A2), (3.1), and (3.2) that
dLi(t) _ s (@ +d)dye TRy | _la+dpe R,
P <e"Me(T(1), V(t))[l 30T 0) ]+e Y(T (@), 1(1)]1 90(To.0)
kR()— RO
oV ol
5111 (@ +d)dce’ "R,
+e f(T(t)’ C(t)) [1 VR af(TO, O) ]
Ro——57
1
o0 (1 _ lTo) [e(T (1), V(1)) + Y(T (1), I(2)) + f£(T(), C(2))].
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dLy(1) : dL;(1)

Thus, <0if Ry < 1 and = 0 if and only if I(r) = C(t) = V(¢) = 0, which implies

that 7(r) = Ty. By the LaSalle invariance principle, we see that {Ej} is the largest invariant set in
dLy(t

{ dlt( ) = O}. Hence, the infection-free steady state Ej is globally asymptotically stable. O

Theorem 4.2. When Ry > 1 and (A1)—(A3) are satisfied, the infected steady state E, of model (2.1) is
globally asymptotically stable.

Proof. Let G(x) = x — 1 — Inx for x € (0, ). Clearly, G(x) > 0 and G(x) = 0 if and only if x = 1. We
consider a Lyapunov function L, () = Ly (t) + Ly (f) + Ly3(¢) + Loy(f), where
T() 5 1(7) J(Tx,Cy) [C(D))  o(Tx, Vi) (V)
L, (1) =T,.G , Loo(t) =" LG —=|, Lx(t) = G G ,
21(1) =T ( T ) (1) = " (I ) 23(1) de C. + dy V.

* *

o(T(s), V(s)) U(T(s),1(s))
Ly(t) =p(T, V. )f (W)d + (T, h)f (—I*))ds

T C 1
A C*)f (f(f((TS) C(i))) #L V*)f ((S))

In the following, we respectively compute the derivatives of L,,(¢) (n = 1,2, 3,4) with respect to ¢
along the solution of model (2.1).
First, from

S=@(Ty, Vo) + YTy, L)+ f(Ty,Cy) + drT,

we can get

dLy (1) (1 T,

a T(t))(S—SO(T(’) V(D) = y(T(0), 1(1)) = f(T(®),C()) — drT (1))

T(1)
+ (T (D), [(1)) = (T, 1)) + (F(T(0), C(t)) f(Tx, C)I

— (0T, Vi) + (T, I,) + f(T, C*))

T,
= (1 - )(—dT(T(t) —T,)) = [(e(T®),V(®) = (T, Vi)

0
+ ol
T()
Cdr o, GO VW) | T, V(1)
B T(r)(m) A V*)( oo vy I go(T*,vn)
Tl (mT(r), @), T, I(r»)
W(To1,) W(Ta 1)
FT(@),C1) FT(@),C1)
-fT,,CoH|l————~-1-In——"—==
IO CO\rr, e ! f(T*,C*))
T, T, T, T,
-o(T,,V, —1—-1In T,.,1, 1-1
ALV 7 <>) 4 )(To “m))
T, T,
AT =1 T(t))
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oty )(wmr), V@) . TueTo, v<r)>)
e N T OR(T, V) T(Oe(T5, Vy)
Tou(T(0), 1(1) Tou(T(0), 1)
+W*’I*)( TouT, Ly 0 T(rw(n,m)
T, f(T(1), C(1) T, f(T(1), C()
T C*)( TOfTnC M TWAT,.Co )

Second, from
1
I—(<p(T*, Vi) +W(Te, L) + f(T4,Cy)) = ™ (@ + d)),
*

we have

dlo (1) 1 I
dr 1(?)

1
#FT( =70, C = 10) = (T, Vi) + W(T o L) + (T, a))l(—”))

=p(T(t=7), Vet =1) + (Tt = 71), It —71) + f(T(t —71),C(t = 7))

1
- (SO(T*, V*) + l/’(T*’ I*) + f(T*’ C*))I(_t)

*

) (QD(T(I —7), V(t = 71) + (T (1 = 70), [(t = 71))

(T V) (I*SD(T(f -711), V(t—11)) - LT —11),V(t— Tl)))
1T, V) 1T, V)
T (wmr ST =T LT =T, I n)))
IOW(T,. 1) IO (T, 1)
Lf(T(—-11),C(t-11)) L f(T({t—-11),C(t—11))
- f(T,,C, -1-1
J(T5- €0 ( () f(T,,Cy) T I0A(T,.C )
Lo(T(t — 1), V(t - 1)) LTt —11). It - 1)
—e Vo T vy e I T
Lf(T(t—11),C(t = 11))
T/ GO T Cy

By a1, = dcC, and ke 21, = dyV,, the derivative of Ly;(f) satisfies

dLy(1) _ (T, Cy) (L
dt  de

1
c. %) (a11(r) = dcC(D))

N so(T;,VV*) ( vi _ % ) (ke (1 — 1) — dy V(D)
=f(T*,C*)(1 - g(t))(? - CC“)) + (T, v*>(1 - VV(:))(’“I—*W _ ‘;U))
o0 G0

+ (T, V*)(I(tl_*TQ) - ‘;(f) - V*‘I/((tt)_lf) + 1)
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C.I(1) 1 C.1(?)

con. Mol
+ f(T*’C*) ? - 1 - ln II(_l)) - SD(Tah V*)(

V() V()
—1-In
Ve Ve

)—f(T*,C*)( C. -1-1In C.

V-7 wa—m)

=—f(Tx,C))

C(@) C(1) )

VoL "o,

I(t — 15) I(t — 1))
—1-In .

- SD(T*’ Vo)

) + (T, Vy) (

Last, we have

dlr(n)
s =p(Ty, V) (G (

ST, vu») G (go(T(t ) V- n))))
SD(T*, V) ©(Ty,Vy)
W(T (1), m») G (W(r ) (- n))))
V(T L) VTl
FT ), c<r>>) (f(T(t _).Cli - n))))
T..COlG|——————|-G
A )( ( F(T..CY) F(T,.Cy)

1(?) I(t — 15)
ool o)

+ ¢(T*,I*)(G(

To sum up, we have obtained

dL, (1) :szl(f) N dLy (1) N dLy3(7) N dL,4(2)
dr dr dr dr dr

d T,
== ——(T() = T2)* = (@(Ts, Vi) + Y(Ts, L) + (T, C*))G( )

T(1) T(t)
Tyo(T(1), V(1)) T (T(0), 1 (t)))
T()e(Tx, Vi)

T(OY(Ty, 1)
T, f(T(1),C(1)
+ f(T, C*)G( T T2.Co) ) +o(T(t—71),V(t—11)
+ YT —7), It —71) + f(T(—711),C(t —71))
Ji
—(@(Tx, Vi) + Y(T, L) + f(T, C*))?
Lo(T(t—711),V(t—11))
I(Oe(Ty, Vy)
Ly(T(t —11),I(t — 71))
IOY(T,, 1)
L f(T(t—1),C(t - 1))
- f(T,,C,)H)G
AR ( 10 /(T.Cy)
Lio(T(t—71),V(t —11))
It)e(Ts, V)

+ (T, V*)G( ) + (T, I*)G(

C,l(1)
C(t)l*)
C@
)

— (T, V*)G( )_f(T*’ C*)G(

- lﬁ(T*, I*)G( ) _f(T*, C*)G(

)+ f(T*,C*)G(II(t))

V*I(l' - T2)
- (T4, V)G (W)
Ly(T(t—711),1(t— 1)) V()
O A R V*)G( V. )
L f(T(t—11),Ct—11)) I(t))

— f(Tx,Cy)In 10 f(T,,Cy) + (T4, V)G (r

- SD(T*a V*) ln

— (T, L) In
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o(T(—711),V(t—11))
—-o(T,, V)G
# ) ( (T, V) )

W(T(I—Tl),l(f—ﬁ)))

—y(T\, 1,)G
. : ( W(Ts, L)

J(T(@ -1y, C(I—Tl)))
f(T+,C))

d T,
=- _T(T(t) - T*)z —(@p(T, Vi) + (T, L) + f(T, C*))G( )

T(t) T()
T, f(T(0), C(1)) T o(T(0), V(1))
T,,V.)G
T f(T», Co) ) t el V) ( TOW(TL, V) )
T (T (@), 1(1)) 1)
TOWT 1) ) e LG (1_)
LT —11),V(t—11))
—o(T,, V)G
#lle V) ( 105, Vy) )
Loy(T(t—11),1(t —711))
- f(T,,C,)H)G
1OW(Ta 1) ) S G (
Lf(T(—-11),C(t—11))
10/ (T.C)
VIt —15)
V(t)l,

—f(T*,C*)G(

+f(T*,C*)G(

+ lﬁ(T*,I*)G(

(T, u)G( C(”)

C.

_f(T*’C*)G( ) _f(T*’C*)G(

V()
) — (T, V*)G( v )

C,I(1) )
CnHl,

*

— (T, V*)G(

It follows from the monotonicity of G(x) and (A3) that

T,o(T(Q), V(D)
T(O)p(Tx, Vi)
Ty (T(1), 1(1))
TOY(Tx, L)

T, f(T(Q),CQ))
T®)f(Ts, Cy)

o(T,, v»G( V(”) ,

) < o(T, V*)G( v

) < w(T*,IuG(@),

C(t))
C.o)

Y(T, I*)G(

f(T*’ C*)G( ) < f(T*9 C*)G(

Thus, we have

dL,(®) _ _ dr

T,
(T(1) = T = (@(Tx, Vi) + (T, L) + f (T, Cs)) G( )

ad = T® T(1)
Lio(T(t—71),V(t —11))
#l V*)G( 102 Vs) )
Lop(T(t — 7)), 1(2 - Tl)))
IOY(Ty, 1)
Lf(T(—1),C(t - Tl)))
IO f(Ty,Cy)
C,I(v)
C()l,

- lﬁ(T*, I*)G(

- f(T*a C*)G(

—f(T*,C*)G(

) _ (T, V*)G(M),

V(I
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dL,(t dL,(t
Clearly, 20 _ ¢ ana 329 _ §if and only if T(¢) = Ty, I(t) = I,, C(t) = C4, and V(©) = V,. Itis
dL,(t
easy to see that {E£,} is the largest invariant set in 21 = 0. Therefore, by the LaSalle invariance
principle, the infected steady state E, is globally asymptotically stable. m|

5. Conclusions

This paper proposed a delay model incorporating general incidence rates and two modes of viral
transmission. Pyroptosis-enhanced viral infection was also included in the model. We derived the basic
reproduction number and established the existence and local stability of steady states. By applying the
LaSalle invariance principle and Lyapunov functional methods, we demonstrated the global asymptotic
stability of both the infection-free and infected steady states. This model enhances our understanding
of the impact of cell-to-cell transmission and inflammatory cytokines on viral infection dynamics.
Additionally, considering that the death rate of infected cells is dependent on the time of infection,
future work may focus on establishing an age-structured model to further explore the influence of
infection age on viral dynamics.
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