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A B S T R A C T

Hepatitis C virus (HCV) can establish infection via two distinct modes: virus-to-cell infection and
cell-to-cell transmission. These infections prompt the activation of two types of adaptive immune
responses: the cytotoxic T lymphocyte response and the antibody response. In this paper, we
study HCV dynamics by developing a multiscale model that incorporates both modes of infection
as well as the two types of immune responses. We derive both the basic reproduction number
of virus and four immune reproduction numbers for the model. We identify five equilibria,
the existence of which depends on the values of basic reproduction number of virus and
the immune reproduction numbers. We also establish the global asymptotic stability of the
equilibria by employing Lyapunov functions, which further underscores the profound impact of
the aforementioned reproduction numbers on the model’s overall stability.

1. Introduction

Hepatitis C is a condition characterized by liver inflammation due to the presence of the hepatitis C virus (HCV). This virus
can lead to both acute and chronic hepatitis, with outcomes ranging from mild illness to severe, lifelong conditions including
liver cirrhosis and cancer. According to the World Health Organization (WHO), in 2019 alone, approximately 290,000 people
succumbed to hepatitis C, primarily due to complications such as cirrhosis and hepatocellular carcinoma. Currently, there exists
no effective vaccine against hepatitis C. The virus is prevalent globally, with an estimated 58 million individuals living with chronic
HCV infection. Each year witnesses around 1.5 million new infections, and there are roughly 3.2 million adolescents and children
affected by chronic hepatitis C. The Eastern Mediterranean and the European regions bear the highest burden of this disease, with
approximately 12 million chronically infected in each region [1].

Mathematical modeling plays a crucial role in studying the transmission of infectious diseases, including HCV infection [2–6]. It
enables us to comprehend the dynamics of infection and offers novel theoretical strategies for disease prevention and treatment. In
the work by Rong et al. [7], a multiscale HCV model was developed, encompassing both intracellular viral RNA replication within
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infected cells and extracellular viral infection of cells, formulated as follows:
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= ⇤ * �T (t)V (t) * �T (t),
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I(a, t) = *�(a)I(a, t),

I(0, t) = �T (t)V (t), I(a, 0) = I0(a),
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R(a, t) + )
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R(a, t) = ↵(a) * (⇢(a) + �(a))R(a, t),

R(0, t) = 1,R(a, 0) = R0(a),
dV (t)
dt

=  
ÿ

0
⇢(a)R(a, t)I(a, t)da * cV (t),

(1.1)

where, the variable T (t) represents the number of uninfected hepatocytes at time t, while V (t) denotes the number of free viruses
at the same time point. Additionally, I(t, a) and R(t, a) represent the number of infected cells and intracellular viral RNA within an
infected cell at time t with age of infection a, respectively. The production rate of uninfected hepatocytes is assumed to be ⇤, while
they become infected by viruses at a rate of � and experience mortality at a rate of �. Parameters ↵(a), ⇢(a), and �(a) correspond to
intracellular viral RNA production, degradation, and assembly/secretion, respectively, and all of these parameters can depend on
age. Infected cells undergo cell death at a rate of �(a). Viruses are cleared at a rate of c.

Using the method of model aggregation and treating ↵(a), ⇢(a), �(a) and �(a) as constants, Kitagawa et al. [8] showed that the
combined ODE and PDE model (1.1) can be transformed into the following equivalent ODE model, which is easier for mathematical
analysis and data fitting.
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dT (t)
dt

= ⇤ * �T (t)V (t) * �T (t),
dN(t)
dt

= �T (t)V (t) * �N(t),
dH(t)
dt

= �T (t)V (t) + ↵N(t) * (� + ⇢ + �)H(t),
dV (t)
dt

= ⇢H(t) * cV (t).

(1.2)

The total number of infected cells and the cumulative amount of viral RNA within these cells are denoted as N(t) = î ÿ
0 I(a, t)da

and H(t) = î ÿ
0 R(a, t)I(a, t)da, respectively. The other parameters have the same biological meaning as described in model (1.1).

Kitagawa et al. [9] also used numerical simulations to verify the consistency between (1.2) and (1.1).
Infection with HCV can occur not only through direct cell-free infection but also through the transfer from infected cells

to neighboring uninfected cells via the formation of a virological synapse [10]. Direct cell-to-cell transfer is faster and more
efficient than cell-free infection, because it obviates rate-limiting early steps in the virus life cycle, such as virion attachment [10].
Understanding the kinetics of viral infection progression in the presence of immune responses is also crucial. After viruses enter
the human body, antibodies are stimulated by antigens and released from B cells to neutralize viral particles [5]. In addition to
the antibody immune response, Cytotoxic T Lymphocyte (CTL) immune response is also critical. CTLs play an important role in
defending against viral infections by targeting and attacking infected cells [11]. In this paper, we will develop a multiscale model,
based on (1.2), by considering both cell-free infection and cell-to-cell transmission, as well as the two types of adaptive immune
responses. The model is given by the following differential equation system
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dT (t)
dt

= ⇤ * �T (t) * �T (t)V (t) * kT (t)N(t),
dN(t)
dt

= �T (t)V (t) + kT (t)N(t) * �N(t) * �Z(t)N(t),
dH(t)
dt

= �T (t)V (t) + kT (t)N(t) + ↵N(t) * (� + ⇢ + �)H(t),
dV (t)
dt

= ⇢H(t) * cV (t) * qV (t)W (t),
dZ(t)
dt

= uN(t)Z(t) * bZ(t),
dW (t)
dt

= gV (t)W (t) * hW (t),

(1.3)

with initial condition (T (0),N(0),H(0),V (0),Z(0),W (0)) À R6
+. In the model, the variable Z(t) represents the quantity of CTL cells

at time t. The CTL cells are stimulated by the infection to increase at a rate of u and decrease at a rate of b. The parameter �

represents the rate at which infected cells are killed by the CTL response. The variable W (t) represents the level of antibodies at
time t. Antibodies are generated at rate of g due to the infection and decay at a rate of h, where q represents the rate at which virus
particles are neutralized by the antibodies. The parameter k is used to describe the cell-to-cell transmission.
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2. Preliminary results

There exists a unique infection-free equilibrium E0 = (T0, 0, 0, 0, 0, 0) for model (1.3), where T0 = ⇤_�. The basic reproduction
number of virus of model (1.3) is obtained by the next-generation matrix approach. We define matrices F and V as

F =
`
r
rp

kT0 0 �T0
kT0 0 �T0
0 0 0

a
s
sq

and V =
`
r
rp

� 0 0
*↵ � + ⇢ + � 0
0 *⇢ c

a
s
sq
,

which yield
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`
r
r
rp

kT0
�

+ ↵⇢�T0
�c(�+⇢+�)
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c(�+⇢+�)

�T0
c

kT0
�

+ ↵⇢�T0
�c(�+⇢+�)

⇢�T0
c(�+⇢+�)

�T0
c

0 0 0

a
s
s
sq
.

By calculating the spectral radius of the matrix FV*1, we derive the basic reproduction number of virus R0 as follows

R0 = ⇢(FV*1) =
kT0
�

+
⇢�(↵ + �)T0
c�(� + ⇢ + �) .

R0 represents the number of virions (or infected cells) released by one virion (or one infected cell) in its lifespan in a fully susceptible
environment for a within-host virus dynamic model [12]. To study the existence of all the equilibria, we also define the following
four threshold parameters

R0W = g⇤⇢(↵ + �)
hc�(� + ⇢ + �)

0
1 * 1

R0

1
, R0Z = ⇤u

b�

0
1 * 1

R0

1
,

R1W = gb⇢↵(gu� + hu� + kbg) + gu⇢⇤(hu� + kbg)
uhc(� + ⇢ + �)(gu� + hu� + kbg) ,

R1Z = u⇤(hu� + kbg)
�b(gu� + hu� + kbg) ,

where R0W is the reproduction number for the antibody immune response, representing the average number of activated antibodies
per successful virus infection without the CTL immune response. Similarly, R0Z is the reproduction number for the CTL immune
response, representing the average number of activated CTL immune cells per successful virus infection without the antibody
response. R1W and R1Z are the competitive reproduction numbers for the antibody and CTL immune responses, respectively. R1W
represents the average number of antibodies activated by virus when the body establishes the CTL immune response during successful
infection, while R1Z represents the average number of CTL immune cells activated by infected cells when the body establishes the
antibody immune response during successful infection.

Besides the infection-free equilibrium point E0, in order to obtain the other equilibria of model (1.3), we let all the derivatives
be zero and obtain the following four scenarios.

(i). When Z,W = 0 and T ,N ,H ,V ë 0, we can get the immune-free equilibrium

E1 = (T1,N1,H1,V1, 0, 0) =
0
T0
R0

,
⇤

�

0
1 * 1

R0

1
,

⇤(� + ↵)
�(� + ⇢ + �)

0
1 * 1

R0

1
,

⇤⇢(� + ↵)
c�(� + ⇢ + �)

0
1 * 1

R0

1
, 0, 0

1
.

Thus, model (1.3) has a unique immune-free equilibrium E1 if and only if R0 > 1.
(ii). When Z = 0 and T ,N ,H ,V ,W ë 0, the infection equilibrium with only antibody response E2 = (T2,N2,H2,V2, 0,W2)

satisfies

T2 =
�(c + qW2)(� + ⇢ + �)

⇢�(↵ + �) + k(c + qW2)(� + ⇢ + �) , N2 =
h(c + qW2)(� + ⇢ + �)

g⇢(↵ + �) , H2 =
h(c + qW2)

g⇢
, V2 =

h

g
,

where W2 is a positive root of F1(W ) with

F1(W ) =hk�q2(� + ⇢ + �)2W 2 + q(� + ⇢ + �)[2chk�(� + ⇢ + �) + ⇢(g�� + h�� * gk⇤)(↵ + �)]W
* ch�(� + ⇢ + �)[ck(� + ⇢ + �) + ⇢�(↵ + �)](R0W * 1).

Note that F1(0) = *ch�(� + ⇢ + �)[ck(� + ⇢ + �) + ⇢�(↵ + �)](R0W * 1). By the Existence Theorem of Roots, F1(W ) = 0 has a unique
positive root if and only if R0W > 1.

(iii). When W = 0 and T ,N ,H ,V ,Z ë 0, the infection equilibrium with only CTL response E3 = (T3,N3,H3,V3,Z3, 0) satisfies

T3 =
c(� + �Z3)(� + ⇢ + �)

⇢�(↵ + � + �Z3) + ck(� + ⇢ + �) , N3 =
b

u
, H3 =

b(↵ + � + �Z3)
u(� + ⇢ + �) , V3 =

b⇢(↵ + � + �Z3)
cu(� + ⇢ + �) ,

where Z3 is a positive root of F2(Z) with

F2(Z) =b⇢��2Z2 + [c(� + ⇢ + �)(u� + bk) + b⇢�(↵ + 2�) * u⇢�⇤]�Z
* b�[ck(� + ⇢ + �) + ⇢�(↵ + �)](R0Z * 1).

Because F2(0) = *b�[ck(� + ⇢ + �) + ⇢�(↵ + �)](R0Z * 1), we know that F2(Z) = 0 has a unique positive root if and only if R0Z > 1.



Applied Mathematics Letters 149 (2024) 108904

4

X. Wang et al.

(iv). When T ,N ,H ,V ,Z,W ë 0, we can get the infection equilibrium with both CTL and antibody responses E4 =
(T4,N4,H4,V4,Z4,W4) that satisfies

T4 =
(c + qW4)(� + �Z4)(� + ⇢ + �)

⇢�(↵ + � + �Z4) + k(c + qW4)(� + ⇢ + �) , N4 =
b

u
,

H4 =
b(↵ + � + �Z4)
u(� + ⇢ + �) , V4 =

h

g
,

Z4 =
�

�

4
u⇤(hu� + kbg)

�b(gu� + hu� + kbg) * 1
5
= �

�
(R1Z * 1),

W4 =
c

q

4
gb⇢↵(gu� + hu� + kbg) + gu⇢⇤(hu� + kbg)

uhc(� + ⇢ + �)(gu� + hu� + kbg) * 1
5
= c

q
(R1W * 1),

which means that model (1.3) has the infection equilibrium with CTL and antibody response E4 = (T4,N4,H4,V4,Z4, W4) when
R1Z > 1 and R1W > 1.

The conditions for the existence of these equilibria of model (1.3) are summarized in the following result.

Proposition 2.1.
(i) If R0 < 1, model (1.3) has a unique infection-free equilibrium E0.
(ii) If R0 > 1, besides E0, model (1.3) has a unique immune-free equilibrium E1 = (T1,N1,H1,V1, 0, 0).
(iii) If R0W > 1, besides E0 and E1, model (1.3) has a unique infection equilibrium with only antibody response E2 = (T2,N2,H2,V2,

0,W2).
(iv) If R0Z > 1, besides E0 and E1, model (1.3) has a unique infection equilibrium with only CTL response E3 = (T3,N3,H3,V3,Z3, 0).
(v) If R1Z > 1 and R1W > 1, besides E0, E1, E2 and E3, model (1.3) has an infection equilibrium with both CTL and antibody responses

E4 = (T4,N4,H4,V4,Z4,W4).

3. Global stability

To prove the global stability using the Lyapunov function, we employ the Volterra-type function g(x) = x*1* ln x, which satisfies
g(x) g 0 for x > 0 and g(x) = 0 if and only if x = 1 [13].

Theorem 3.1. If R0 f 1, then the infection-free equilibrium E0 of model (1.3) is globally asymptotically stable.

Proof. We define a Lyapunov function L0(t)

L0(t) = T0g

0
T (t)
T0

1
+
0
1 *

�⇢T0
c(� + ⇢ + �)

1
N(t) +

�⇢T0
c(� + ⇢ + �)H(t)

+
�T0
c

V (t) +
0
�

u
*

��⇢T0
cu(� + ⇢ + �)

1
Z(t) +

q�T0
cg

W (t).
(3.1)

When R0 = kT0
�

+ ⇢�(↵+�)T0
c�(�+⇢+�) f 1, we have ⇢�T0

c(�+⇢+�) < 1. Using T0 = ⇤_� and calculating the derivative of L0(t) along the solution of
(1.3), we get

dL0(t)
dt

=
0
1 *

T0
T (t)

1
(⇤ * �T (t) * �T (t)V (t) * kT (t)N(t))

+
0
1 *

�⇢T0
c(� + ⇢ + �)

1
(�T (t)V (t) + kT (t)N(t) * �N(t) * �Z(t)N(t))

+
�⇢T0

c(� + ⇢ + �) (�T (t)V (t) + kT (t)N(t) + ↵N(t) * (� + ⇢ + �)H(t))

+
�T0
c

(⇢H(t) * cV (t) * qV (t)W (t))

+
0
�

u
*

��⇢T0
cu(� + ⇢ + �)

1
(uN(t)Z(t) * bZ(t)) +

q�T0
cg

(gV (t)W (t) * hW (t))

=⇤
0
2 *

T0
T (t) *

T (t)
T0

1
+
0
kT0 +

↵⇢�T0
c(� + ⇢ + �) * � +

⇢��T0
c(� + ⇢ + �)

1
N(t)

+
0

�⇢T0
c(� + ⇢ + �) * 1

1
�b

u
Z(t) *

hq�T0
cg

W (t)

=⇤
0
2 *

T0
T (t) *

T (t)
T0

1
* (1 * R0)�N(t) *

0
1 *

�⇢T0
c(� + ⇢ + �)

1
�b

u
Z(t) *

hq�T0
cg

W (t).

Clearly, if R0 f 1, then dL0(t)
dt

f 0 and dL0(t)
dt

= 0 if and only if T (t) = T0, N(t) = 0, Z(t) = 0 and W (t) = 0. It is easy to verify that the
largest invariant of { dL0(t)

dt
= 0} is the singleton {E0}. Therefore, by LaSalle’s Invariance Principle, the infection-free equilibrium E0

is globally asymptotically stable when R0 f 1. Biologically, in this scenario, the virus is predicted to be cleared.
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Theorem 3.2. If R0 > 1,R0W < 1 and R0Z < 1, then the immune-free equilibrium E1 of model (1.3) is globally asymptotically stable.

Theorem 3.3. If R0W > 1 > R1Z , then the infection equilibrium E2 with only antibody response of model (1.3) is globally asymptotically
stable.

Theorem 3.4. If R0Z > 1 > R1W , then the infection equilibrium E3 with only CTL response of model (1.3) is globally asymptotically
stable.

Theorem 3.5. If R1W > 1 and R1Z > 1, then the infection equilibrium E4 with CTL and antibody response of model (1.3) is globally
asymptotically stable.

The proofs of Theorems 3.2 to 3.5 are given in the online supplementary material.

4. Conclusion

In this paper, we developed a comprehensive multiscale model for HCV infection by incorporating both virus-to-cell and cell-
to-cell transmission modes, as well as CTL and antibody immune responses. The model was shown to generate very rich dynamics,
which may provide insights into HCV infection and control.

We have identified key threshold parameters, including the basic reproduction number of virus (R0) and various immune
response reproduction numbers, shedding light on distinct infection outcomes. When R0 f 1, the infection-free equilibrium (E0)
demonstrates global asymptotic stability, indicating successful viral clearance. Conversely, R0 > 1 leads to chronic infection.
Conditions characterized by R0 > 1, R0W < 1, and R0Z < 1 result in the global asymptotic stability of the immune-free equilibrium
(E1), signifying unsuccessful establishment of both CTL and antibody immune responses.

Our model further illustrates diverse outcomes under varying immune response scenarios. For instance, when R0W > 1 > R1Z ,
the infection equilibrium (E2) with only antibody response achieves global asymptotic stability, indicating successful activation of
the antibody response in the absence of CTL response. Conversely, when R0Z > 1 > R1W , the infection equilibrium (E3) with only
CTL response attains global asymptotic stability, reflecting activated CTL immune response without concurrent activation of the
antibodies.

The last scenario where R1W > 1 and R1Z > 1 leads to the global asymptotic stability of the infection equilibrium (E4), signifying
sustained infection along with activation of both CTL and antibody immune responses. This robust immune response results in a
substantial reduction in infected cells, intracellular viral RNA, and free virus. Our findings also underscore the efficiency of direct
cell-to-cell transmission in addition to virus-to-cell transmission.

Our modeling results provide valuable insights into the dynamics of HCV infection. They underscore the critical role of both
modes of transmission and the immune responses in shaping the course of infection. The model highlights the impact of immune
responses on reducing viral load and controlling infection. These findings enhance our understanding of HCV infection dynamics
and also hold implications for the development of effective therapeutic strategies against this widespread and impactful virus.

Data availability

No data was used for the research described in the article.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.aml.2023.108904.
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