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Abstract

In this paper, we study a predator-prey mite model
of Leslie type with generalized Holling IV functional
response. The model is shown to have very rich bifur-
cation dynamics, including subcritical and supercritical
Hopf bifurcations, degenerate Hopf bifurcation, focus-
type and cusp-type degenerate Bogdanov-Takens bifur-
cations of codimension 3, originating from a nilpotent
focus or cusp of codimension 3 that acts as the orga-
nizing center for the bifurcation set. Coexistence of
multiple steady states, multiple limit cycles, and homo-
clinic cycles is also found. Interestingly, the coexistence
of two limit cycles is guaranteed by investigating gen-
eralized Hopf bifurcation and degenerate homoclinic
bifurcation, and we also find that two generalized
Hopf bifurcation points are connected by a saddle-node
bifurcation curve of limit cycles, which indicates the
existence of global regime for two limit cycles. Our work
extends some results in the literature.

KEYWORDS

Bogdanov-Takens bifurcation, cusp of codimensions 2 and 3, focus
of codimension 3, Hopf bifurcation, predator-prey system, saddle-
node bifurcation of limit cycles

MSC CLASSIFICATION
37G05, 37G10, 37G15, 37N25

Stud Appl Math. 2024;152:1251-1304.

wileyonlinelibrary.com/journal/sapm 1251


https://orcid.org/0000-0002-1464-6078
mailto:Yancongx@cjlu.edu.cn
https://wileyonlinelibrary.com/journal/sapm
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsapm.12675&domain=pdf&date_stamp=2024-02-15

1252 | YANG ET AL.

1 | INTRODUCTION

To mitigate the loss of crops and fruits, many pest control measures have been exploited.'” Chem-
ical or biological measures are widely used in the control of pests. Pesticides are usually effective in
killing pests but they can induce pest resistance, pest resurgence, and pesticide residues as men-
tioned by Schmidt.’ Biological control has received more attention in recent years.>® Based on
a geographic analysis including North America, Europe, and Asia-Pacific, it is reported that the
global biological pest control market is expected to be around 29 billion US dollars by 2025 with
a compound annual growth rate of 5.7% in the given forecasting period.'’ The biological control
has additional advantages in stopping the development of miticide resistance. Once established,
it is also sustainable and can provide long-term control.

The predaceous mite, Metaseiulus occidentalis Nesbitt, is a generalist predator found in North
America, Asia, and Oceania. Its prey, the McDaniel spider mite, Tetranychus mcdameii McGregor
mainly found in North America, can reduce the apple or pear production, causing significant
yield loss. This type of mites is the predominant mite pest species of Washington apples. Miticides
were often used to kill them. However, some insecticides, including Carbamate and pyrethroid
insecticides, are also highly toxic to mite predators, and thus should be avoided if possible. The
conservation of predator mites in apple orchards is critical to the control of these mites.> >’ A
further investigation of the biological control using mite predators would provide great benefit to
the increase of fruit production while decreasing the use of pesticides.

Studying the interactions between predators and their prey is one of the crucial research areas
in ecology. Many mathematical models have been developed, analyzed, and compared with field
data. Based on the model presented by May,"! Wollkind et al.""'? proposed a predator-prey model
describing mite interactions in fruit trees in Washington State of the following form:

dx

— =rx(1 =) = yp(x),

dy _ Yy
dt _Sy(l hx)’

@

where x(t) and y(t) represent the densities of prey and predators at time ¢, respectively. Their
growth is assumed to obey the logistic rule, r and s are their respective intrinsic growth rates,
while the carrying capacities of the two are K and hx, respectively, where & is a measure of the
quality of prey for the predators, which is referred to as the Leslie function proposed by Leslie."

The function p(x) describes the update of the prey by predators. It may depend on many factors,
such as the prey density, the physical state of the predators, and environmental conditions. Hence,
various types of functional response have been used.

(I) Lotka—Volterra type (Holling Type I) function:
m
p(x) = 5-x, x <2a; p(x)=m, x>2a. 2)

This is the simplest functional response and m > 0 is a constant representing the maximal
growth rate of species. The parameter a > 0 is the half-saturation constant, that is, the den-
sity of prey at which the per capita predation rate is half of its maximum m. System (1) with
Holling Type I function p(x) given by (2) is referred to as the Leslie-Grower predator-prey
model and its global stability has been studied in Refs. [14, 15].
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FIGURE 1 A comparison diagram
of generalized Holling Type III function 08k J
(4) and generalized Holling Type IV
function (5). Here we assume 071 1
m=0.5,a=25asb =—-6.25,0,5, 06l |
respectively. '
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(II) Michaelis-Menten (Holling Type II) function:

(IIT)

mx
x+a

p(x) = 3)
Here, m > 0 is a constant standing for the maximal growth rate of species and a > 0 is
the half-saturation constant. System (1) with Holling Type II function p(x) given by (3) is
referred to as the Holling-Tanner predator-prey model and has been extensively studied in
the literature, see Refs. [16-20]. For example, Siez and Gonzélez!® described the bifurcation
diagram of limit cycles that appear in the first realistic quadrant of the predator—prey model,
and gave a qualitative description of the bifurcation curve when two limit cycles collapse on
a semistable limit cycle and disappear.

Sigmoidal (generalized Holling Type III) function:

mx>

xX2+bx+a

p(x) = “4)
Here, m, a > 0 are positive constants and a is the half-saturation constant. The parameter
b > —24/a and the situation of b = 0 is the Holling Type III response function.”* The dif-
ference between b > 0 and b < 0 of function (4) can be seen from Figure 1. This shows that
when the number of prey is below a certain threshold, predators no longer obtain food by
hunting prey because of learning behavior; when the number of prey is above this threshold,
predators continue hunting prey until a saturation level is reached when b > 0. When b < 0,
the predation increases to reach a peak, followed by a decline approaching m as x increases.
Hence, p(x) describes the circumstance where the prey can better protect themselves when
their density is high enough. Predator-prey system of Leslie type with generalized Holling
Type III functional response has been analyzed by many authors, see, for example, Refs. [14,
23-26]. Hsu and Huang'* studied the global stability of equilibria and the existence of limit
cycles.
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(IV) Monod-Haldane (generalized Holling Type IV) function:

mx

_ 5
x2+bx+a ®)

p(x) =

Here, m,a > 0 are constantsand b > —2 \/E. This function can be used to describe the effect
of “inhibition” in microbial dynamics and “group defense” in population dynamics,’>%"-*
proposed by Andrews.?’ A comparison of the generalized Holling Type III function and gen-
eralized Holling Type IV function is shown in Figure 1. With the Type IV function, it can be
shown that the prey can better protect themselves when their density is sufficiently high.

See more applications of the Type IV functional response.*’-3?
When b = 0, the function p(x) = % is referred to as the Holling Type IV functional response.
X

System (1) with Holling Type IV has been extensively investigated.**~3” For example, Li and Xiao™
showed that the model undergoes the codimension 2 Bogdanov-Takens bifurcation and the sub-
critical Hopf bifurcation in two small neighborhoods of the two nonhyperbolic positive equilibria,
respectively. However, the parameter region of two-limit-cycle is not given. Huang et al.*>> stud-
ied the degenerate focus type Bogdanov-Takens bifurcation of codimension 3. Note that they did
not consider degenerate cusp type Bogdanov-Takens bifurcation of codimension 3 and did not
present the global bifurcation diagram in detail. Dai and Zhao*® analyzed Hopf cyclicity and global
dynamics for a predator—prey system of Leslie type with simplified Holling Type IV functional
response. Ruan and Xiao”” used the functional response with b = 0 to study the global bifurcation
of a predator—prey system and showed the existence of codimension 2 Bagdanov-Takens bifurca-
tion and a focus of multiplicity at least 2. Xiao and Zhu*® studied a Gauss-type predator-prey
system with a Holling IV functional response, yielding the Hopf bifurcation with codimension 2
and the existence of two limit cycles. Rothe and Shafer®® studied a generalized Gauss type for the
interaction of two species with the function (5) and obtained a codimension 2 cusp singularity.
However, the global bifurcation diagram and transitions of bifurcation are not shown explicitly. It
is worth describing the whole global bifurcation diagram and identifying the transitions among
those different bifurcation regimes in details.

There are very few studies on system (1) with the generalized Holling Type IV function.
model with temperature-dependent parameters for the mite interaction in apple trees was ana-
lyzed to determine how the type of functional response influences the bifurcation and stability
behavior in Collings.”® Recently, Atabaigi and Barati*’ presented a geometric analysis of relax-
ation oscillations and canard cycles in a singularly perturbed predator-prey system of Holling
and Leslie types under the assumption r < s. However, the global bifurcation analysis of system
(1) with generalized Holling Type IV is still not complete.

In this paper, we focus on the local and global dynamics of the predator-prey mite system of
Leslie type (1) with generalized Holling IV functional response (5), given by

28,30 A

dx _ Xy __mxy

dt rx(1 K) x24cx+b’ (6)
2=y - )

dt hx”’

where x > 0,y >0, r,K,m,s, and h are all positive parameters, b > 0 is the half-saturation con-
stant, and ¢ > —2\/5 has the same explanation as before. For simplicity, we rescale x,y, t and
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parameters in (6) by letting

- X - my - b c s sK
X = I?,y— @,t—rt,a— E,d— I?,5— ;,ﬁ— E
Dropping the bars, we have the following reduced system:
(1 —x) = =2
e X1 —x) x2+dx+a’ (7)
dy _ By
X

where a,d, 8 are positive and d > —2\/5. In this paper, we will study the global bifurcation
dynamics and the details of transition among different parameter regimes. In particular, the role
of “group defense” will be further revealed.

This paper is organized as follows. In the next section, we investigate the existence and
type of equilibria of system (7). Section 3 is devoted to the bifurcation analysis includ-
ing degenerate cusp-type Bogdanov-Takens bifurcation of codimensions 2 and 3, degener-
ate focus-type Bogdanov-Takens bifurcation of codimension 3, and Hopf bifurcation with
codimension 2. In Section 4, numerical simulations including the global bifurcation dia-
grams and phase portraits are given. The paper ends with conclusion and discussion in
Section 5.

2 | THE EQUILIBRIA OF SYSTEM (7)

From the biological feasibility, we restrict system (7) in [R;r ={(x,y) : x > 0,y > 0}. By a straight-
forward analysis, we know that system (7) has only one boundary equilibrium E,(1, 0), which is a
hyperbolic saddle indicating that the prey population reaches its carrying capacity in the absence
of predators. Further, we have the following result.

Theorem 1. The positive invariant and boundedness region of system (7) is the rectangular region
Q=wam<x<L03ys%}

Proof. By the first equation of system (7), we have Z—T lx>1 < 0. Thus, we only focuson 0 < x < 1.

On the other hand, we can easily get % =y — %y) < y(6 — By) for 0 < x < 1, which leads to

% 2 < 0. Therefore, all solutions of system (7) will ultimately move toward the region Q =
B

{,M0<x<1,08y < g} and this ends the proof. O

Based on the above analysis, it is sufficient to discuss positive equilibria of system (7) in the
rectangular region Q. To do this, let

x(l—x)—L=0, y<5—‘8—y>=0,

x2+dx+a X
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which yields that

x3—(1—d)x2+(a+%—d)x—a=0. ®)

Assuming that x;, x,, x; are the three roots of (8) and x; < X, < X3, then based on Vieta Theorem,
we have

)
X1+X+x3=1—-d, X;X+X1X3+Xx3=a+ - —d, X1XX3 =a. 9)

B

In view of a > 0, Equation (8) has at least one and at most three positive roots; that is, system (7)
has at least one and at most three positive equilibria E;(x;, gxl-), i=1,2,3. Let

f(x) =x3+ a,x* + a;x + ay,

wherea, =d—-1,a; = a+ ,% —d,ay = —a.

To investigate the existence of positive equilibria E;(x;, gxi)(i =1,2,3) of system (7) in the
rectangular region Q = {(x,y)[0 < x <1,0<y < %}, we only need to focus on the existence of
positive root x;(i = 1,2, 3) of f(x) = 0 in the interval (0,1). It is evident that

f(x) = 3x? + 2a,x + a;.

On the one hand, the Jacobian matrix at any positive equilibrium E(x, gx) of system (7) is given
by

_ 2
1=2x - . 2):-)<(1a+x b - 2+:1C +
X xX+a X xX+a
J(E) = 5 .
— -5
B
Direct calculation shows that
ox
det(J(E)) = ————f'(x),
UEN = /')
(1-x)(a—x?)

tr(J(E))=1—-2x—6 — (10)

x2+dx+a
From the first expression of (10), we know that the equilibrium is an elementary equilibrium, a
hyperbolic saddle, or a degenerate equilibrium if f'(x) > 0, < 0 or = 0, respectively.

On the other hand, denote

A = a3 —3a.

Then, f’(x) = 0 has no real root if A < 0, has one real root of multiplicity 2 if A = 0, which is
denoted by x* = —% = %, and has two real roots if A > 0, which are marked as x; and X, as
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YANG ET AL. 1257

follows:
—a; — \/K
3 ’

- _—a2+\/Z
—

)21=

X = (11)
Therefore, we can investigate the existence of positive root of f(x) =0 in the interval (0,1)
with three scenarios: A <0, A=0, and A > 0. Let x;;,; be the coincidence point of x; and
x;.1( = 1,2,3), then the corresponding degenerate equilibria of system (7) are expressed as
5 .

Ei i1 (X4, Exi,i+1)(l =1,2,3).

Scenario 1: A < 0.

On this occasion, f/(x) = 0 has no real root and f’(x) > 0, x € (0, 1), which shows that f(x) is
a strictly monotone increasing function in the interval (0,1). Note that f(0) = ay < 0 and f(1) =
% > 0, thus f(x) = 0 has a unique positive root in the interval (0,1), denoted as x; (or x3).

Scenario 2: A = 0.
In this scenario, f’(x) = 0 has one real root of multiplicity 2, marked as x* = % and f'(x) >

0, x € (0,1), which demonstrates that f(x) is monotonically increasing in the interval (0,1). Notice
a3—9a;a,+27q,
5 102 0

again that f(0) < 0, f(1) > 0 and f(x*) = 2 g , then we have the following:
(S2A) if f(x*) # 0, then f(x) = 0 has a unique positive root, denoted by x; (or x3);
(S2B) if f(x*) =0, then f(x) = 0 has a unique positive root of multiplicity 3, denoted by x* =
1-d
3
Scenario 3: A > 0.
In this situation, f’(x) = 0 has two real roots, which are marked as %, and X,. Obviously, X; and
X, are the maximum and minimum value points of f(x), respectively. By analyzing the positions
of X; and X,, we have the following:

(S3A) Whenx; > 1orx, <0, f'(x) > 0,x € (0,1) and the distribution of positive roots of f(x) =
0 in the interval (0,1) is the same as Scenario 1.
(S3B) When 0 < x; <1 < X,, f’(x) first monotonically increases in (0, %;) and then monoton-
ically decreases in (¥;,1). Again note that f(0) < 0 and f(1) > 0, evidently we get that
f(x) = 0 has a unique root in the interval (0,1), which is denoted by x;.
(S3C) When 0 < X; < X, < 1, f(x) first monotonically increases in (0, X;), then monotonically
decreases in (¥;,X,), and finally monotonically increases in (X,,1). Again noting that
f(0) <0 and f(1) > 0, then based on the signs of f(x;) and f(X,), we can get the
distribution of positive root of f(x) = 0 in the interval (0,1) as follows:
(D If f(x;) > 0 and f(x,) <O, then f(x) = 0 has three positive roots, denoted by x; <
X, < X3;
(Im) if f(x;) > 0 and f(x,) = 0, then f(x) = 0 has two positive roots, and one of them is
a positive root of multiplicity 2, denoted by x; < X, = x;3;
(I11) if f(x1) > 0 and f(Xx,) > 0, then f(x) = 0 has one positive root, denoted by x;;
(Iv) if f(x;) = 0, then f(x) = 0 has two positive roots, and one of them is a positive root
of multiplicity 2, denoted by ¥; = x7 5, < x3;
(V) if f(x;) <0, then f(x) = 0 has a unique positive root, denoted by x;.
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(S3D) When %; <0< 1< X,, f'(x) <0,x €(0,1), that is, f(x) monotonically decreases in the
interval (0,1), which contradicts with f(0) < 0 and f(1) > 0.

(S3E) When x; <0 < X, < 1, f(x) is strictly monotonically decreasing in the interval (0, X,) and
monotonically increases in (X,,1). Then f(x) = 0 has a unique root in the interval (0,1),
marked as x3.

From above analysis, we can get the existence of positive equilibria of system (7) as follows.
Theorem 2. System (7) has

(I) aunique positive e uilibriumEl(xl,éxl) (orE (x3,§x )) if one of the following conditions are
quep q s 3 553 g
satisfied:
(i) A<O;
(i) A=0, f(x*) #0;
(lll) A>0,x1 210r22§0,0r0<)_61 <1S)22,'
(lV) A>0,0< X <Xy < l,f(xl) > 0, and f(xZ) >0 Orf(xl) <0;
(V) A>0andx; <0< %, <1
_ _ 3
(II) A degenerate positive equilibrium E*(x*, éx*) = (g, w) of multiplicity 3if A=0
g p q ; 3 a1 p
and f(x*) =0.
(III) Two positive equilibria and one of them is a degenerate equilibrium if one of the following
conditions is satisfied:
(i) an equilibrium E{(x;, gxl) and a degenerate equilibrium E,(%,, giz), where X, = x5 if
A>0,0< X <X, <1l and f(%)>0;
(ii) a degenerate equilibrium E,(x ,éa'c ) and an equilibrium E;(x ,éx ), where X, = Xy, i
8 q 1 54 q 3\X3: 5 X3 1 1,2
A > 0,0 < )_Cl < .)_CZ < 1, andf(xl) =0.
For the sake of convenience, we denote degenerate equilibria E,(X;, gil) (or E5(%,, %)‘cz)) as

§
E*(x*’ E,x*)
(IV) Three positive equilibria E;(x;, gx,-),i =1,2,3 if A>0,0<X% <X;<1,f(x)>0, and

f(xz) <.
Here, X, and %, are defined as (11), respectively.

Remark 1. When system (7) has three positive equilibria E;(x;, %xi),i =1, 2,3, that is, when the

condition (IV) in Theorem 2 is satisfied, then f’(x,) < 0. In view of the first expression of (10),
we obtain that E, is a saddle.

2.1 | Cusp of codimensions 2 and 3

In this subsection, we study the case (III) in Theorem 2 and explore conditions such that
Eq(x4, gxl) (or Ez(x3, gx3)) is a nonhyperbolic equilibrium with tr(J(E;)) = 0 and the degenerate

equilibrium E, (x,, %x*) satisfies tr(J(E,)) = 0.
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FIGURE 2 The phase portraits of Theorem 3. I: the coexistence of a stable weak focus with multiplicity 1,

1 216 . . 2 632 . 4 4 3 125 .
E,(=, —), and a cusp of codimension 2, E, (=, —),withd = —,a = —,§ = =, = —; II: the coexistence of
257 15625 s 57 3125 25" 628 5 72
a stable hyperbolic focus El(E’ E) and a cusp of codimension 3, E*(;, E)’ with
22 28 3 65
d =——,a=— 6 = - = —,
65° 325° 5’ B 18

Equations f(x,) = det(J(E,)) = 0 and tr(J(E,)) = 0 lead to

1
T d—x)d+2x)

a=x21-d-2x,), §=1-x,, B8 (12)

. 1-d —d
where 0 < x, < mln{lT, %}(—2\/5 <d<1) and x, # 17 Furthermore, x; +2x, =1—d,

tr(J(E;)) = 0, and (12) result in
d=d, =x?—-5x, +2.

Actually,d = 1 — 3x, can also be generated in thisway, whiled =1 — 3x,andx; + 2x, =1—-d =
3x, produce x; = x,. That is, x,, is a triple root of f(x) = 0, which is a contradiction to case (ii).

2_
Hence d # 1 — 3x,. On the other hand, letting d, = 2oy —Axe+l)

3 , we have the following theorem.
_x,

Theorem 3. Assume that the conditions (I1I) in Theorem 2 and (12) are satisfied, then system (7) has
two different positive equilibria: E,(x,, (1 — x,)*(d + 2x,)x,) and E;(x;, %xl) (or E3(x3, %x3)) =

A —d-2x,,(1—x2)(d+2x,)(1 —d—2x,)), where 0 < x; < Xx,, < X3 < 1. Furthermore,

(D whend = d;,
(i) E; (or E3) is a stable weak focus with multiplicity 1;
(i) E, is a cusp of codimension 2.
(II) Whend = d,,
(i) E, (or E3) is a stable hyperbolic focus (or node);
(ii) E, is a cusp of codimension 3.

The corresponding phase portraits are given in Figure 2.
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Proof. We first concentrate on the proof of part (I) (i). Setting dt = x(x* + dx + a)dr yields an
equivalent system of (7) (we still denote 7 by ¢t)

dx_ x2(x? + dx + a)(1 — x) — x2y,
@ (13)
d—): = (x? +dx + a)y(6x — By).

In view of x(x? + dx + a) > 0, the topological property of system (13) is the same as that of system
(7). Next, let

X
X

X=—, y=——, T=xt (14)

—
(e
=

—

Then we obtain a polynomial differential system equivalent to system (13) (we still denote T
by t)

Y _ 552 4= 2 \yx—
— = 5x; (x + X + xf)y(x y)
Setting
— 1 - d — a - 5x1 —=
m=—,d=—, a=—, f=-—=, § =6x2, 15
X1 X1 xf d B ! (15

and removing the bars, we get the following system:

dx _ LX2(x? +dx + a)(m — x) — Bx%y,
dt m3 (16)
% = 8§y(x? + dx + a)(x — y).

E(1,1) is an equilibrium of system (16) (corresponding to the equilibrium E; (x;, %) in system
(7)). We have

_(A+d+a)(m-1)
= — .

B
Substituting it into (16) generates the following system:

o 122 + dx + a)(m — x) + BEA 2,
m

o m 17)
2= 5y(x? +dx + a)(x — y),
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in which a,m,é > 0 and d > —2\/5. As d = d; in the original system (7), we get x; = —(xﬁ —
2

2
o . X5—5Xx.+2 X 1
3x, + 1). By the conditions in (12), we know thatd = - 2——,a = ————*—,m = —5 ,
Xi—3x,+1 X5—=3x,+1 X5—=3x,+1

and & = (1 — x,)(x2 — 3x, + 1)? in system (17).

Now we show that E; of system (7) (i.e., E(1, 1) of system (17)) is a stable weak focus with multi-
plicity 1. Setting X = x — 1,Y = y — 1 and substituting above d, a, m, and & into system (17) result
in a new system as follows (for convenience, in every subsequent transformation, we rename
X,Y,tasx,Yy,t, respectively):

[ = (2~ 3, 4 D= -2 + Q= )1 -2y~ 22— x.)
X (1 —x,)%x,x% + 22 — x,)(1 — x,)3xy + (5x* — 25x3 + 40x2
—23x, + x> + (2 — x,)(1 — x,)°x%y} + o(|x, y]3), "
< D = (e =3+ D=1 - xPx + (1 - )%y — (= X "
—(1=x)%1 =2x)xy + (1 —x,)%y* + (1 — x,)(x2 = 3x, + 1)x3
—(1=2x,)(1 — x)x%y + (1 — x,)*x,xy*} + o(|x, y[*).

L

7
Taking v = (1 — x,)2(x? —3x, + 1) and making the following scalings, x = —(2 — x,)(1 —
X )22 =3x, + DX, y= -1 —x,)°(x2 = 3x, + DX —vY, dt = %dr, system (18) becomes

dx

T =y+ f(x,y),
@& __

dt - x+g(x,Y),

where

F53) = =22 = x)(1 = x)7 (2 = 33, + 1P =22 - x,)(1 —x,)
X (x2 = 3x, + Dxy + (2 —x,)*(Q — x*)g(xi —3x,+1)°
X (5x2 — 11x, + 5)x3 + (2 — x,)?(1 — x,)°(x2 — 3x, + 1)>x2y
+o(|x, y1%),

g(x,y) = —(1 — x,)(x2 = 3x, + 1)(x2 — 8x2 + 14x, — 5)x* + (1 — x*)g
X (x2 = 3x, + 1)(4x2 —9x, + Dxy + (2 —x,)A — x,)?
X (X2 = 3x, + 1)*(4x] — 28x% + 74x3 — 88x2 + 45x, — 8)x>

7

= (1= %)’ = 3x, + DY? + 2 = x)(1 = x,)2(xF = 3x, +1)°
X (x2 — 8x2 4+ 12x, — 4)x%y + x,(2 — x,)(1 — x,)°(x2 — 3x, + 1)?x)?

+o(|x, y]?).
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40

Applying the formula in Perko,™ we get the first Lyapunov coefficient as follows:

1 1
01 { 1_6(fxxx + fxyy + gxxy + gyyy) - E(fxy(fxx + fyy) - gxy(gxx + gyy)

- fxxgxx + fyygyy) } |x-y—0

1 s
§(2 —x,)%(1 = x,)2(x2 = 3x, + 1)2(7x% — 25x3 + 27x2 — 15x, + 3).

1 1-d V5

Because 0 < x,, < min{;, T}(x* + %), we can assert that ==Y < X, < % when d = d;. Then,
we obtain g; < 0. This completes the proof of (I) (i).

Next we verity the part (I) (ii) that the equilibrium E,, of system (7) is a cusp of codimension
2 when d = d,. We translate E, to the origin by the transformation X = x —x,,Y =y - (1 —
x.)*(d + 2x,)x, and write the generated system in Taylor expressions as follows (for convenience,
in every subsequent transformation, we rename X, Y as x, y, respectively).

(dx
dar A= x)x = O—xdr2)” (d+2x* 1-x,

+o(|x, 1),

ro_ 1 _ 2, v
1)x +(1—x*)2(d+2x*)xy

L) , .
% =1-x)¥d+2x)x -1 —x,)y— a x*)x(‘Hzx*)x2 + 2(1x x*)xy

I S 5
(1—x*)(d+2x*)x*y + o(|x, y|*),

where a, §, 8 have been substituted by the conditions in (12). Making the following scalings of
coordinates

1
A—x)d+2x)

X=x’ Y=(]~_x>k)x_

we obtain
dx 1 1 1
L=t (—1 )xz— —xy +o(|x,y),
=X d+2x, 1—-x,
d_y—l_dﬂxZ_x +i 2+0(|x |2) a9)
dr d+2x, Y x*y Y1)
By Lemma 3.1 in Ref. [41], system (19) can be rewritten as
& y
a7
(20)
dy 1-d—3x, 5 ( 2 2 ) 2
dt d+2x, X+ 1—-x, + d+2x, xy+o(|x,y| )
When d =d;, we know that 3_—\/5 <x, <1, ﬂ,—l _ 2 + 2 <0 and there-
2 d+2x, 1—x, d+2x,

fore the positive equilibrium E, is a cusp of codimension 2 based on the results in
Perko.*’
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For (II) (i), we can get that 0 < x,, < % whend = d,. Substituting both d = d, and the conditions
in (12) into tr(J(E,)), we derive

tr(J(E,)) = ) (_34_)()1C ,_)z—x*)z <0

foro < x, < ; and consequently, the positive equilibrium Ej is a stable hyperbolic focus or node.
Finally, we turn to part (IT) (ii) that the equilibrium E. isacusp of codimension 3. In accordance
) = 0, that is, d = d,, the equilibrium E,(x,.,(1 —

d+2x

2(1—-x,)3x,

x,)2(d + 2x,)x,) = (x,, ———

the codimension of E, is exactly three. Transforming E,, into the originby X = x — x,,Y =y —

2(1—x,)3x,
3—x,

(for convenience, in every subsequent transformation, we rename X, Y, 7 as x, y, t, respectively)

) isacusp of codimension at least three. Next, we will show that

and expressing the resulting system (7) in power series around the origin, we can obtain

dx _ . _3x, 1.5 3—Xx, x2-2x,-1 3
dt 1= x)x 2(1—x*)2y >r + 2(1-x,)3 2(1—-x,)2x,
3—x, 2., X3 —2x2—x,—2 4 (3—x,)(x2—2x,—1) 3
+ 4(1—x*)3x*x Y 4(1-x,)3x2 4(1—x,)5x2 7y
+o(lx,y|"),
< (21)
dy _ 20-x)* o _20=x)t 5 20-x) 3, 5
dt 3—x, X (1 x*)y (3- x*)x XT+ Xy Xy 2(1—x*)2x*y
21— x,ﬁ.)4 _2-x,) 2 —X, _ 20-x,)* 4
God T T Xt 2<1 oY o]
2(1_x*) 3y 3—Xs 4
+ RSy - eyt (k).
Taking a change of coordinates as follows:
3—x 1 3—x x2—2x,—1
X:x,Yz(l_x*)x_—*y__xZ_i_ * * * 3

Xy + X
20—-x02" 2 0% T 20— x)x,

3—x X3 —2x2—-x,-2 3—x,)(x2—2x, —
+ *3 x2y _ g * X S x4 ( *)( * : ) 3y + o(|x y|4)’
4(1 — x,)3x, 4(1 — x,)3x2 4(1 — x,)5x2
system (21) can be expressed by
dx _
a Y
dy _ 1-x, 5 1-2x, 5 2-X. 3 2x2-5x,-3 5 _ 2x2-2x,41_ 5
dt 2 X7 (l—x*)x*y l—x*x + 2(1—x*)2x*x Y (1—x,)2x2 Xy (22)
3-x, 4 3(-2xi-1) 3 IxI-13x044x,-2 5 4
0> " 202 XY T oo XY T oURII:

Making a time transformation

dt=1(1- 1_—2x*x dT,
(1 _x*)x*
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1264 YANG ET AL.

we can rewrite system (22) as follows:

dx 1-2x,
Ly (1- 2y,
dt (1—x*)x*
dy =( _1-2x, ) 1-x. o 1-2x, yz_ 2—x*x3
dt (1—x4)x, 2 (1—x,)xs 1-x,
1 (=3)@x,+1) 5 2x2-2x,+41__ 5 3-X. 4 (23)
20, =1)2x, (1—x,)2x2 2(1-x,)2
3(x3-2x2-1) 3 Tx3—13x24+4x,—2 5 o 4
—_— = Ity - = " "x o(|x .
a2 Y x) - +o(lx,y[%)
Further, setting
1-—2x,
X=xY=y|l- ——x),
(1 - x*)x*
system (23) continues as
dx _
dt - y’
dy _ 1=x, 5 xXi=x,+1 3 B=x)(42x) 5 2Bx2-3x,+1)
dt 2 X, (1—x,) 2(1—x,)%x, (1—x,)2x2
3x3—-9x24+3x,+1 4 (6—x,)(1+x,) 3 9x2—11x,+8 2.2 4
' X o(|x, .
2(1—x,)2x2 2(1—x,)2x2 2(1—x,)3x2 Yo+ (l yl )
. .. 1 . . .
Finally, noticing 0 < x,. < 3 and making the following scalings
1—x
X=xY=—2_ 7= “
1—x, 2
2
we have
fd_x _
a Y
d_y =2 _ 2(xﬁ—x*+1) 3 3xﬁ—9x§+3x*+1 4
e (1—x,)2x, (—x,)3x?
3 3—x,)(1+2x, 6—x,)(1+x, (24)
+y _ B=x,)( +5x )x2+ (6—x,)( +5x )x3
V2(1-x,)2x, V2(1-x,)2 x2
5 2(3x2-3x,+1) 9x2-11x,+8 5 4
— b X o(|x, .
L +y < (1—x*)2xf + 2(1_x>k)3x£ * (l yl )

Following Proposition 5.3 in Lemontagne et al.,*> an equivalent system of (24) is given by
dx _
PR
dy _ 2 3 4
2 = x4 Fxly +o(x,y|*),
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FIGURE 3 The phase portraits of Theorem 4. (I) a stable degenerate node E*(E %)
6 1331 112 04 .
d=—-—-,a= 31 ,0 = ﬁ = —5 ; (IT) a focus of codimension 3, E*(— 7—)w1th
5 33757 50625
6 1331 225
=—-,a=— = — ﬁ =
5 33757

where

3x3 —7x2 +3x, — 11
<0

\/5(1 - x*)gx*

for0 < x, < é This indicates that E,, is a cusp of codimension 3 and we complete the proof. []

2.2 | Focus of codimension 3
In this subsection, we study the scenario (IT) in Theorem 2. We have the following result.

Theorem 4. Suppose that the condition (II) in Theorem 2 is satisfied, then system (7) has a unique

1— d 1- d)(d+2)

degenerate positive equilibrium E*(x*, *) = ( ). Furthermore,

(D) when § # %, E* is a stable (or unstable) degenerate node if § > % (ord < dx2 )

(II) when 6 = d—:z, E* is a nilpotent focus of codimension 3.

The corresponding phase portraits are given in Figure 3.

. . . (1=dy®* & _ (2+d)*
Proof. By the condition (II) in Theorem 2, we can obtain that a = R e . Substituting
them into det(J(E*)) and tr(J(E*)) yields

d+2-36

det(J(E*)) =0, tr(J(E*)) = 3
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(I) For & # E, one can easily get tr(J(E*)) # 0, which indicates that the Jacobian matrix has
1- d (1-d)(2+d)?

o ) is a stable (or

only one zero eigenvalue. By Theorem 7.1 in Zhang et al.,’ E*(

unstable) degenerate node if § > T ( d < %)

Now we turn to the proof of (II). First, setting
. o ld o (1-d)(2+d)?
(1) X =X 3 ’ Y - y 81 ’
and by Taylor expansion, we obtain the following system (for convenience, in every subsequent
transformation, we rename X, Y as x, y, respectively):

(dx _dv2 y—x A S SR S
dt 3 (d+2)2 (d+2)3 (d+2)? (d—1)(d+2)3
ﬁx y +o(|x,y[*),
15 = G Sy e = My 4 ey
S Y T ey
| - % 3 ﬁxz},z +o(|x, y|),

where a, 8, 8 are replaced with expressions for d.
Second, we let

3 1 1
= ap s T aap 0 Y X~ 36(d+2)

(ii) x

>

and get the following system with a linear part in the Jordan canonical form:

dx 3 9(d+5) 2 9 3 81 2
—=y- Xy + ye - x> = X<y
dt 4(d+2)* 8(d—1)(d+2)5 8(d+2)8 16(d+2)?
4d+2)>3 4d+2)°>
27( (d-1)2 9)x 24 81( (d-1)2 3) 3 27 4 81(d—4) 3
32(d+2)10 Y 64(d+2)11 16(d+2)12 16(d—1)(d+2)13
81(2(d+2)*—27(d-1)?) X2y + 243(d+5)(4d3+9d%+33d+8)
32(d—1)3(d+2)14 64(d—1)3(d+2)15

729(4d*+29d3+87d% +155d+49) 4 4
+ o(]x,
256(d—1)3(d+2)16 (1, y1%),

4 ( 4d+23 >
d 1 9(d+1 3 27 (d-1)?
2 xy— —2dHD o x3 - X2y + xy?
dt 2(d+2)3 4(d-1)(d+2)* 4(d+2)7 8(d+2)8 16(d+2)°
_4d+2)3
27< @12 3> 3 R 274 3
32(d+2)10 8(d+2)11 8(d—1)(d+2)12 M
27(—2(d+2)*-27(d—1)?) x2p2 81(4d*+35d3+114d%+83d+88)
16(d—1)3(d+2)13 32(d—1)3(d+2)14

243(=4(d+2)*=3(d—1)2(d+5)) . y
128(d—1)3(d+2)15 + o(|x, y|?).
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Making the following transformations:

3(2d+1) XZ, y= 9(d+1) 9(d+5) )
4(d-1)(d+2)*

T 4d-1)(d+2)* 8(d—1)(d+2)5

5

(i) x = X —

we change the above system to

-

ij_}; = Y+ @l + @ X2y + alpxy? + aly + aloxt + al Xy + alyxy?
J +ai,xy? + aj,y* +o(|x, %),
% = b, xy + b} x> + b}, x*y + bi,xy* + b},y* + b x* + b} x>y
+b3,x%y? + bl xy? + bl y* + o(|x, y|Y),

in which

i} 9 . 9(5d*+5d+17)
B0 T T5@d+28 2T Ted=-1)d+2)°

27(d® +27d> +33d +47) _ 81(2d*—3d* - 36d - 71)

T T REo DT Y 8T T ad—ras ot
i 27(4d — 1) i} 27(14d? + 84d? — 21d + 31)
W REA-DE+22 BT T ead-Hd+2B
243(7d* + 39d* + 165d” + 83d + 30)
2= 128(d — 1)3(d + 2)14 :
243(14d* 4+ 109d + 453d* + 547d + 173)
G377 256(d — 1)3(d + 2)15 ’
. 2187(d* + 16d° + 66d> + 104d +29) 1
G4 =7 512(d — 1)3(d + 2)16 T Ty 28
b = 3 . 3(2d* — 4d +11)

C4d+27 T 8d-1Dd+2)8]
. 913> +33d*+57d+5) . 27(d+52Qd+1)
27 16(d—-1)2d+2)° % 32(d—1)2(d +2)10

x _ 9(5d — 2) _27(11d —23)
407 16(d — 1)(d +2)117 31 32(d —1)(d + 2)12°

. 27(53d* +250d° +219d” + 544d — 94)
2 64(d — 1)3(d + 2)13 ’

. 243(13d* + 88d° + 204d* + 284d + 59)
13— 128(d — 1)3(d +2)14 ’

" 243(11d? + 69d* + 225d + 127)
04 256(d — 1)3(d + 2)14

(25)

sduy) suonIpuoy pue sudL, 3y 938 *[20T/30/¢ 1] U Awiqry duIuQ AS[IA “BPLIOLT JO ANSIATUN £q GLoZ [ wdes/[ 1 11°01/10p/wo Kaja Kxeiqriouriuoy/:sdny woiy papeofumod % b0z ‘06S6L9% 1

2-SULIO) WO’ K31y ATeIqriaul|

asuo1] stowIo) aAnEaI) Aquardde oy Aq PALIGAGS ATk SAINIE YO 98N JO SA[AI I0j KIRIqIT AUIUQ AAIA UO (



1268 | YANG ET AL.

By straightforward computation, we have

v 3
by, b3, = 8(d + 2)10 70,
which indicates that there is a small neighborhood of (0,0) in which system (25) is locally
topologically equivalent to

dx _

a =Y

dy _ b* b* 3 b* * 2 b* b* a* 4 26
= = bxy + bypx” + (b + 3ay)xy + (by, — byyaz)x (26)

* * 1o« 1oy 1% 3 4
+(4ay, + b3, + §b11a21 + gbubu)x y +o(|x,y|%).

In addition, —2 < d < 1 leads to

o o L e o 9(d* + 43d — 53)
5b3y(b3; + byy) — 3y, (b — by a30) = 16(d — 1)(d + 2)15 70,

and

d—22
4(d +2)7

* o __ 3 %2 ko __

By Lemma 3.1 in Cai et al.,** we can conclude that the equilibrium (0,0) of system (26) is a

degenerate focus of codimension 3. Correspondingly, the unique degenerate positive equilibrium
1-d (1-d)(2+d)?

E*( 3 ’T) of system (7) is a degenerate Bogdanov-Takens singularity (focus case) of

codimension 3. O

3 | BIFURCATION ANALYSIS

Based on Theorem 3, system (7) may exhibit Bogdanov-Takens bifurcation of codimensions 2 and
3 around E,, with a certain range of parameter values. Because the analysis of degenerate cusp-
type Bogdanov-Takens bifurcation of codimension 3 in system (7) with d = 0 was not provided in
the studies of Huang et al.*> and Li and Xiao,* here we present the bifurcation results for the sake
of completeness. We will investigate the codimension of Bogdanov-Takens bifurcation including
two and three.

3.1 | Degenerate cusp-type Bogdanov-Takens bifurcation of
codimension 2

We first concentrate on the cusp type of Bogdanov-Takens bifurcation of codimension 2. We have
the following result.

Theorem 5. Assume that the conditions (II) in Theorem 2 and (12) are satisfied and d = d;,
then system (7) has a cusp E,(x,, (2 — x,)(1 — x,)3x,) of codimension 2 (i.e., Bogdanov-Takens
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bifurcation singularity). Choosing a and 6 as bifurcation parameters, system (7) undergoes
Bogdanov-Takens bifurcation of codimension 2 in a small neighborhood of the unique positive equi-
librium E, (x,., (2 — x,)(1 — x.)3x,). Therefore, there exist some parameter values such that system
(7) has an unstable limit cycle, and there exist some other parameter values such that system (7) has
an unstable homoclinic loop.

Proof. Taking a and § as bifurcation parameters, we have

d_x = x(l — x) —_ L’
dt x2+dx+a+ly (27)
dy _ By
E _y(5+/12_ _)7
b'd

1
C-x)(1-x,)2
ditions given in (12) and 4 = (14, 4,) ~ (0, 0). We focus on the phase portraits of system (27) when

x and y lie in a small neighborhood of the interior equilibrium E, (x,, y..).

We shift the equilibrium E, (x,, (2 — x,)(1 — x,)3x,) of system (27) when A = 0 to the origin.
LettingX = x — x,,Y = y — (2 — x,)(1 — x,.)*x,, and by the Taylor expansion, system (27) can be
represented by (for convenience, in every subsequent transformation, we rename X, Y, T as x, y, t,
respectively)

whered = x2 — 5x, +2,a = —x2(x2 —=3x, +1),6 =1 — x,, by d = d;, the con-

dx A~ ~ A~ A~ A ~

= = Qoo +aiox +doy + rx* + 811Xy + Ly(x, 9,41, 4,),

dy ~ ~ ~ ~ ~ o~ ~

= = boo +biox +bory + byoX? + b1y Xy + boyy? + Ly(x, 9,41, 42),

where L,(x, v, 41, 4,), L,(x, ¥, A1, A,) are C* function as least of third order with respect to x, y.
Their coefficients depend smoothly on 4; and 4,, and

~ ﬂ'l(l - x*)x*
o I e —x)
(2 - x*)x*(l - x>:<)3((2 - x*)(l - x*)xi - ll)
ayp = 5 — 2x* +1,
(Al + (2 - x*)x*(l - x*)2)

B S I o
~ (2 - x*)(l - x*)3x* ((2 - x*)(l - x*)3 42< - /11(2 - (2 - x*)x*))
Oy = o

” (2 — 2= x )1 - x,)2)

— — 2 —

a, = (2= x)A = X%, — 4 ) 500 =12 -x,)1 - x*)3x*,

C (+ @ = x)x( - x,)?)

- . ey
bo = (2= x.)(A = x)%, By =45 +x, = 1,by = —%,

i)\ _ 2(1 - x*) ~ _ 1
e X e (2 - X*)(l - x*)zx* '
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Using the transformation X = x,Y = Gy + Q10X + Qo1 + Gr0x> + Q11 Xy + L1 (x, , 41, 1,), we

obtain

dx _

a Y

dy ~ ~ ~ ~ ~ PN ~

= = Coo *C0% +Cory + Co0X? + Cryxy + Cpy? + Ls(x, ¥, A1, Ao,

where L;(x, y, A1, ;) is C* function as least of third order with respect to x, y. The coefficients
depend smoothly on 4; and 1,, and

o Gybe o~
Coo = ——— — Goobo1 + To1bgo,
ao1

~ ~ P
A~ 2aybgy  ~ ~ [ dyobo> PPN
Cio = o\ ——— —bo1 | +@u| boo — —5— ) + Go1b1o — Goobr1s

2
ao1 ay;

aoo(an + 2boz) N
Cop = —————— + a0 + bo1,
Aoy

~

PP NN PPN PP NN
<2aooazoa01 + (@110 — Tgol11) )boz

Coo = —z0bo1 + pe
o1

+ Qo1 b2,

(@o1a10 — aooau)(au + 2boz> R
C1 = — P + 2a20 + bll’
A

a;; +b,

Co2 = ——=
o1

With a change of time dt = (1 — Cy,x)d7, we get

Letting X = x,Y = y(1 — Cypx), a new system equivalent to (28) can be derived as follows:

dx ~

o y(1 —Cppx),

dy _ ~ A~ A~ A~ ~ 2, A ~ .2
o (1 = Cp2x)(Coo + CroX + Co1y + CopX* + Ciy Xy + Coy

+T50x, 3, 44, 40).

dx

E =
dy -~ ~ ~ ~ ~ ~
i doo + diox + dory + daox? + dyyxy + Ly(x, v, 41, 42),

El

(28)
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where L,(x,y,1;,4,) is C* function as least of third order with respect to x, y, and
doo = oo, d1o = Cro — 2C00Co2> do1 = Co1»
T AR ~ A ~ T _a ~ A
dyo = CpoCy, — 2C10C02 + €205 di1 = €11 — C1Co2-
310

Letting X = x + —,Y =y, we obtain

dx

Y
dy ~ ~ A~ ~ ~
2 = Cooteony+ Ex? + €11xy + Ls(x,y,41,4,),

where Is(x, ¥, A1, 1,) is C* function as least of third order with respect to x, y with coefficients
smoothly dependent on 4; and 4,, and

dz dyod,
~ ~ 10 A~ ~ 10411
oo = doo — ——> eo1 = do1 — ——,
eAzo = dy, 611 =dy;.
. & G &, .
WithX = Hx,Y = 2y, = —={, it produces that
€20 €% en

& y

j; ~ (29)

E =M + M2y + x2 + Xy +L6(xayall’j'2)a

where Lg(x, y,1;,4,) is C® function as least of third order with respect to x, y and

€po€ 2016,

~ _ 11 ~ _ ep1é1n

Ml - ~3 ’ /"2 - é\
€5 20

Finally, we expand fi; and [, in terms of A, and A, as follows:
Hy = mydy + Mg d; + ”A’lzo/lf +mpd; + "7102/13 +0(|44,4,1%),
Py = fyody + g d; + ﬁzolf + A did, + ﬁozlg +0(|41,4,1%),

in which

(X* - 4)4 o~ (x* - 4)4x*

o = 22 — 1) O T T — (ks — 12

A~

2(x, — 4)3 (4x3 — 27x2 + 36x, — 4)
(x* - Z)S(x* - 1)6x*

A~

My =

’

(x, — 4)3(16x} — 115X + 200xZ — 106X, + 32)
He (x, — 2)2(x, — 1)x,

5
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(x, — 4)%(32x} — 244x; + 511x7 — 386x,, + 120)

o = a(x, = 2)(x, — 1) ’
~ _(x>:< - 4)(()(,'* - 3)X* + 1)

o = (x* - 2)()6* - 1)3X* ’

~ (x* - 4)(x*(2x* - 7) + 2)

o 200, -2

—12x; + 129x} — 478x3 + 741x% — 484x, + 116
n - )
” 2(x, — 2P2(x, — 1)°x2

12x8 — 133x2 + 519x% — 882x2 4 708x2 — 295x, + 50
nyg = s
! (x. = 2)(x, — 1)5x2

—6x8 + 68x> — 275x% + 492x3 — 419x2 4+ 179x, — 30

(x, — 1D*x, O
In view of
a(ﬁl’ ﬁZ) - _ (X* - 4)5)6* <0
3y, A) =0~ 2(x, — 22(x, — 1S
for e <Xx, < 1, system (29) (i.e., (7)) undergoes Bogdanov-Takens bifurcation of codimension

2 when (4, 1,) changes in a small neighborhood of (0,0) based on the results of Bogdanov** and
Takens.*

Furthermore, according to the results of Perko,*° the local representation of bifurcation curves
around (0,0) can be written by the following:

(i) The saddle-node bifurcation curve is
SN = {(f1, H) | = 0,4, # 0}.
(ii) The Hopf bifurcation curve is
H = {1, )i, = V—Hy, 4y <0}

(iii) The homoclinic bifurcation curve is
N oANs D A A
HL = {(zt1, m2) |l = Z V= < 0}.
3.2 | Degenerate cusp-type Bogdanov-Takens bifurcation of
codimension 3

Next, we study the cusp-type Bogdanov-Takens bifurcation of codimension 3. For system (7), we
select a, §, and 8 as bifurcation parameters and have
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d_x — x(l — x) — L’
dt x2+dx+a+; (30)
d +1
D= y(6 + 2, - I,
x

in which a,6,8 > 0,d > —2\/5, and 4 = (44, 4,,43) ~ (0,0, 0). We aim at transforming (30) to a
universal unfolding of a cusp-type degenerate Bogdanov-Takens bifurcation of codimension 3 as

dx

==y,
b (3D)
— =V VY Xy + x? + x3y + M(x,y,¢),

where

M(x,y,€) = y*0O(|x, y|*) + O(Ix, y|°) + O(e)(O(y*) + O(|x, 1))
+0(e)0(|x, y]) (32)

0(v1,v2,v3)
. (A1 A2.43) . .
(30) (i.e., system (7)) undergoes a Bogdanov-Takens bifurcation of codimension 3. We have the

following theorem.

with a series of near-identity transformations and | |1=0 # 0. This indicates that system

Theorem 6. Assume that the conditions (III) in Theorem 2 and (12) are satisfied and d = d,,
2(x,—1)3x,
)

then system (7) admits a cusp E,(x,, of codimension 3. If we take a, 6, and 3 as bifur-

cation parameters, then system (7) undergoes Bogdanov-Takens bifurcation of codimension 3 in a
2(x,—1)3x,
Xe—3
homoclinic loop and a stable limit cycle, coexistence of two limit cycles (the inner is stable and the

outer is unstable), and a semistable limit cycle for different sets of parameters.

small neighborhood of E..(x,,, ). Therefore, system (7) exhibits the coexistence of an unstable

_13
W) of system (30) when 4 = 0
Xy—

2(x.—1)%x,

Proof. In the first step, we transform the equilibrium E, (x,,

to the origin by the transformation X = x — x,,Y =y — and expand the resulting sys-

X

tem in power series around the origin. System (30) continues as (again, in every subsequent
transformation we rename X, Y, 7 as x, y, t, respectively)

rdx
dt

= 500 + alox + Emy + azoxz + auxy + 530x3 + aﬂxzy + E4ox4

+azx°y +o(|x,y|*),

1ar - _ _ _ _ _ _ _ (33)
d_)[) = bOO + b10X + b01y + b20x2 + bnxy + b02y2 + b30x3 + bzlxzy

+b1oxy? + bagx* + by X3y + by x?y? + o(|x, y|*),

in which

T = /11()(3* — 3)()(?* - l)x*
0= 2()6* - 1)2x* - Al(x* - 3)’
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Ao =

azo

an

azp

az

Q40

as;

2x,(x, — 1)3(2(x, — Dx2 = 44(x, — 3))
(A (x, — 3) = 2(x, — 1)2x,)°

(x* - 3)x>|<
Z(X* - 1)2X* - ﬂ'l(x* - 3)’

—2x, + 1,

4(X* - 1)6x: - 2/11()6* - 3)()(; - 2)(x>k - 1)3x*(x>:< + 1) ~1
@(x, = 1)2x, = Ay (x, = 3))’

k]

(= 3)(20x, — Dxg — A4(x, — 3))
(A (x, = 3) = 2(x, — 1)2x,)’
1
(e, = 3) = 2(x, — 1)2x,)

4{2(x* - 1)3x*(4(x* - 1)3x>%((x* - 2)x*

- 1) - 4/11(x* - 1)(X2 - 3X,% + X, — 1)(x>k - 3) + /1%()(; - 3)3)}:
(x>:< - 3)(2()6* - 1)3 i - /11()(?* - 3)(X* - 2)(X* + 1))
(20x, = 1)2x, = 4 (x, = 3))’

1
(z(x* - 1)2x* - Al(x* - 3))

k]

{8x2(x.((x, = 2)x, — 1) = 2)(x,, — 1)

+ 22 x,(A (X2 — 4x, + 3)3(x§ + X, —4) = 4(x, — 3)(x, — 1)°

X((x* - 1)x*((x* - 1)x* - 5) - 2)}’
1
(Al(x* - 3) - Z(X* - 1)2)(3*)

4{(x* - 3)(4()(3* - 1)3)(35(()(3* - Z)X* - 1)

=4, (x, = 1)(x3 = 3x3 4 x, — 1) (x, = 3) + A7(x, — 3)¥)},

2/12()‘:* B 3)(x* B 1)3x* — 413()‘:* — 1)6x*

(x, —3)? ’
20, — D*(2230x, — 1)* = x, + 3)
(x, —3)? ’
425(x, — 1)3
12 — L + x* — 1’

X —3

2(x, — D*(—223(x, — 1)? + x, — 3)

(x* - 3)2X* ’
2 Qy— 3
20x, — D(223(x, — 1)* — x,, + 3) 5o 37 o1y
(x* - 3)X* e X ’

20, — D*(223(x, — 1)* = x, + 3)

(x* - 3)2xi

)
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_ 2(xF = 223(x, — 1)* — 4x, + 3)

b - ’

4 (x, — 3)x2
Ny — 3 4 2

TR R 20, — DH(=2230x — 1)* + x, — 3)

12 xi s Y40 (x* _ 3)2_)(:3: 5
A — Xe—3

— 206, D240 -1 —x,.+3) — BT Ty

. (X, — 3)x3 T X

It should be noted that @y, = by, = 0 and system (33) is simplified as system (21) when A = 0.
Making the transformation

X =x,
Y = EOO + alox + Emy + azoxz + allxy + 530x3 + azlxzy + a4ox4

+ayx3y +o(|x,y[*),

we have
dx _
a
d_y — = = = 2,5 = v2an 3,4 2
dt = Cgop + C10X + Co1Y + CroX”° + C11 XY + CopY” + C30X + Ccy1 X%y
+Coxy? + Choxt + 3%y + Coox?y? + o(|x, %), (34)
in which

2&3(X* - 1)3

Coo = (x, — Dx,, (/12 - > + %/11(2/13(3% -1 —x, +3),

A (223(x — 1% = x, +3)  (2x, — 1) (A0x, — 3) = 243(x, — 1)%)

10 = x,—1 X, —3 ’
s 3 425(x, —1)3 2x,(x, —1)?
o Xe—3 z(x* - 1)2x* - Al(x* - 3)
ﬂ'l (2/13()(:* - 1)2 - X, + 3)
+ - 4

(x* - 1)x*
- 1/ 245(x, —1)3 A (x, —3)
C20—12+/‘11/13+§(—T—x* 1 —m,
_ A
C11 = ! {Al(_(x* —4)x,

(xy — 1224, (x, — 3) — 2(x, — 1)%x,)°

x (x2 = 4x, +3)" = 1, (x, — 3)%) + 2(x, — xA((x, — 3)x, +3)
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X (6, = 1P + 225(Max, = 308 = D =205, - %) |,

20, — 1)2x, — A, (x, — 3)| (s = 3)(2(x, — DxZ — 43 (x,. — 3))

Co2 =

(e = 3)x, (A (x, = 3) = 20x, — 1)2x,)°
Xe—3
37 212
_ - ,
T = ! (4(x, — 2)
P 2(x, -3 - DR, — D2x, — 44 —=3)
X (o, = D2t + Ay (x, = 3)(=20x, — 2)x2 = 4y (x, = 3)(x. = 1))
X (243(x, — 1)? = x, + 3)},
o = ! -A3(x, -3
(x* - 3)(x>k - 1)2xi(2(x* - 1)2x* - Al(x* - 3))
X (x, — 1)?(2230x, — 1)* — x, + 3)x,(x, + 6) + A/ (x,. — 3)*
X (243(x, — 1)* = X, + 3) +4(x, — DOx3(423(x, — D* + (x,, — 3)?
X (2%, + 1)) + 227 (x, = 3)%(x, — 1*x3(643(x, — D*(x, +2)
— (X, — 3)(x,. (. (x + 6) — 11) + 6)) — 24 (x,. — 3)(x,. — 1)*
X x3 (4433, + 2)(x, — D* + (x, — 3)(x.(x,(2x, — 13) + 5) — 6))},
212 — Z(X* - 1)2x* - llz(x* - 3) Z(X* - 3)x* - (Z(X* _ 1)3
(o, = 3)x;; Q(x, — 1)2x, — A1(x, — 3))
1)y, — _
X2 = 2y, = 30x, = 2)(x, + 1) = e T DX 20 =)
(/‘tl(x* - 3) - Z(X* - 1)2x*)
- - 2_) -
x (2(x, — Dx2 = A1 (x, — 3)) Cre = (2, ~ L% ~ Ayl 23))
(/11(3(5* - 3) - 2(x>k - 1)2)(,'*)
Xe—3 X:—3
37 Y12 37 Y-y
a X, X, ’
_ 1 . .
Caq0 = ={247(x, = 3)

20, = 3)0x, = D2x2(20x, — 1)2x, = 4(x, = 3))
X (x, = 1)(=223(x. — 1)? + X, — 3) + 423 (x,. — 3)3(x,, — D)*x?

X (%, (0. (7(x, — 2)x, 4 26) + 7) — 8)(223(x, — 1)* — x,. + 3) — 4]
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C31 =

Cn =

X (x, — 3)*(x, — 1)%x, (x2(13x,(3x, — 8) + 101) — 12)

X (2430, — 1)* = X, + 3) + 250, — 3)° (. (x, (x,.(15x, — 43)

+42) = 10) — 2)(223(x, — 1)* = x, + 3) + 16(x, — 1)°x8

X (=22 (((% = 5)x + 5)X2 + x, + 6) — 2(x,, — 3)*x2(x, — 1)

+ 22300, (0, (3x, = 8) = 1) = 2)(x = 1)*) + 447(x,. — 3)*(x, — 1)°

X 3 (43 (. (X, (6x2 = 20x, — 9) +5) +2)(x,, — 1)* + (x,, — 3)

X (=20, = 3)x, (X3 + X, —4) — X, (2, (. (x.(11x, — 49) + 27) + 9)
+6) +4) + 161 (x, — 3)(x, — 1)7x3(50x, — 3)%x3(x, — 1) — 245

X (3, (%, (x,(6x, —17) — 4) + 5) — 2)(x, — 1)* + A,(x, — 3)

X ((xx - l)x*((x* - l)x* - 5) - 2))}5
1
(%, — 3)(x, — 12x3(2(x,, — 1)2x, — A1(x, — 3))

{2(x, - 3)°

X (=225(x, — 1)? + x, = 3) + A3 (x, — 3)°x,(x,(10x, — 19) + 11)
X (243(x, — 1)* = x, + 3) + 16(x, — 1)°x2(3(x, — 3)((x, —2)xZ — 1)
— 4230, — 1°(x, + 1)) + 4247 Cx, — 3)%(x, — 1x3(0xs — 3)(x,(x,
X (x,(31x, — 80) + 86) — 47) + 6) — 4015(x,, — 1)*x,.((x, — D)x, +2))
+82;(x, — 3)(x, — 1) x3(423(x, — 13, (2x2 + X, + 7) — (x, — 3)
X (x,(%, (2, (13X, — 30) + 16) — 5) — 2)) + 245 (x,, — 3)3(x, — 1)*x]
X (4025(x, — 1)3(x,.(2x, — 3) + 3) — (x, — 3)(x,.(x,.(47x, — 128)
+148) — 77)) + 227 (x,. — 3)*(x,, — 1)?x3((x, — 3)(x.,.(21x, — 38) + 25)
—1043(x, — 1*(x,(4x, = 7) + 5))},

(3 — x)(2x, — 2x, — Ay (x, —3))’
20x, = 3)2(x, = D2x(A (x, = 3) = 2(x, — 1)%x,)

5134 (x, = 3)*

X (2230, — 1)* = X, + 3) + 8(x, — 1)°x3(223(x,, — 1)3(5(x,. — D)x,
+2) — (x, = 3)(x.(x,(7x, — 13) +4) — 2)) + 124, (x,, — 3)(x,. — 1)°
X x3((x, — 3)(x,(3x,(3x, — 7) 4 16) — 6) — 245(x,. — 1)*(x,.(7x, — 9)
+4) + 627 (x, — 3)*(x, — 12 x2(22;5(x, — D*(x,(11x, —17) +8)

— (. — 3)(x,(13x, — 21) + 10)) + A3 (x,. — 3)*((x,, — 3)x.(5x.

X (5x, —9) + 22) — 225(x, — 1)*x,.(x,.(23x, — 41) + 20))}L.
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Notice thatcyy = ¢;9 = ¢o; = ¢;; = 0and system (34) can be simplified as system (22) when 1 = 0.
In what follows, we take transformations similar to the seven steps in Li et al.*® to transform
system (34) to system (31).

= 2
() Eliminating the y?-term from system (34) when 1 =0. Using x = X + %,y =Y+
XY, we have

dx
a Y,
Ccii_)t) = dgy + dyox + do1y + daox? + dy1xy + dagx® + dy X2y + dpxy? + dyox?
+d3 2y + dx?y? + o(lx, 1Y), (35)
in which
doo = Coo d1g = Cig — CooCoz: dor = Cor» dag = Cap + E00552 - 51026 2,

- - = = 1. - =2 = - Cplu
dy; =c¢q1, dyg =C30 + 5(010 - 2000002)002, dy =cy + 5

- — 2 = _ _ _4 1,- - _ — \—
dyp = 12 + 2C0p, dag = Cap + CooCoz + Z(Coz(czo — 2C02C10) + 2C30)C02

= - == = 3 3c1cp
d3; = C31 + CaCa15 dop = Cop — Cpp + 5 -

It is worth mentioning that Eoo = Elo = Em = 311 =0when 1 =0.
(IT) Taking xy>-term away from system (35) when A = 0. Using the scalings of coordinates x =

X + %X{y =Y+ d—;XZY, we have

dx _

dt - y’

d _ _ _ _ _ _ _ _

d_)t} =2y + €10X + €01y + €20X% + 211Xy + 230X> + €3, X%y + egox? (36)

+e31x%y + epnx?y? + o(lx, y[*),

in which
- - = i i = 300312 - =
€0 = doo, €19 = dig, €o1 = do1, €3 = dyy — , enp =diy,
dyod doodiy  dpad
— = 10012 — = = = 00412 12420
ey =d3o — 3 , €1 =dy, e40=d40+—4 -
dy1dy

€31 = d31 + , €0 = d22.
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We have that EOO = EIO = E()l = Ell =0whenAl =0. B
(II1) Removing the x%y?-term in system (36) when A = 0. Setting x = X + %ZX‘*,y =Y+

% X3Y, system (36) can be expressed by

in which

dx _
a7

dy =+ .7 I T 2.7 T 3T 42
E=f00+wa+f01y+f20x + 11Xy + f30X7 + [ x7y

'1'74())‘:4 + 731x3y + 0(|x’y|4),

fo() = EOO’ fl() = 510’ f01 = EOI’ fzo = EZO’ f11 = Ell’

. €0€22 - _ - 7 _ - €10€22 7 _ -
f30—e30_ 3 ’f21—621!f40—e40_ 4 ,f31—631.

Again, fo, = f10=fp = f1; =0when1=0. 3
(IV) Removing the x* and x*-term in system (37) when 4 = 0. Notice that f 20 = %(1 —-X,)+

(37

O(A),fzo # 0for small Asince 0 < x,, < % Making the following scalings x = X — Lo x2 4

—2 [ — — —2 [ —
—15f30_162f2°f4°X3,y =Y,dt=(1- ;_iX + 4—5f3°_4_if2°f4°X2)d1', we have

30720 20 80f 5
dx _
dt - y5
dy _ - = = 2., = = 3,% 2..= .4
ar -~ 8o t 810X + 80V t 850X" T 811 XY + 830X + 8 X7V + 840X
+§31x3y + o(|x,y|4),
where
— - = 700?30 — =
800 = o0 810 =Ff10 = —=—> 8 = forr
2f 50

5 7 97007; 3<5?10730 + 4700T40>
80=Ffot—= ~

El

16f,, 20f 5
R — 2 R
- _ 7 f01f30 - f10(35f30 B 32f20f40)
gu—fn_ — 25830 ) ’
2f % 401,

3 (20711?20730 + 701 (16?20?40 - 15??0) )

—2
8015

§21=f21_

s

20

(38)
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1280 YANG ET AL.
- — - — —2
— f10f30(16f20f40 - 15f30)
g40 = _3 ’
64f,,
_ 2 - — - —
- _ 7 Tfufso  Sfafao+4 114
8y =Syt — = .
850 520
Again, gy, = 19 = 8o = &11 = 830 = 849 = O Whend = 0.
(V) Taking the x%y-term away from system (38) when 1 = 0. Observing that 80 = %(1 —Xx,)+
O(4), g, # 0 for small A since 0 < x, < % and letting
g g g g
X=X,y=Y+—=-Y2+ —2-Yidr=|1+ =Y + —Y2|di,
382 3685 382 3685,
we can rewrite system (38) as
dx _
ar Y
dy _+ 7 7 20T T3y L N
U hoo + hyoXx + hory + hyox® + hyyxy + h3 x°y + My(x, y, ), (39)
in which
- _ = _ = _ 88
hoo = &y9» Ni0 = 819> Po1 = &y — Ul
820
-  _ = _ 8081 + _— 88
h'20 = 850> hll =811~ #, h31 =831 — 2—1 30-
gzo g20
Here Eoo =_ﬁ10 = E@ = Eu = 0when 1 = 0,and M,(x, y, 1) has the property of (32).
(VI) Changing h,y and h3; to 1 in system (39). Direct computation shows that h,, = L

xi—7x,.2<+3x* -

o) >0, ﬁﬂ =3 e L 0O(A) < 0 for small A because of 0 < x, < % Using the

following transformation:
1
—hn
X = hy,h

system (39) continues as

dx _
dt _ya

dy _+ . ¢ T 2.7 -y

— = koo + kiox + ko1y + x° + ki1xy + x°y + My(x, y,4), (40)

dt
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(VID)

in which
_ s _ _2__s
koo = hooh3 hyy s k1o = hiohy hyy s
_ _o_r o1 2
kop = hmh;lhz(f, ki = h11h315 hzos-

Here, Eoo = Em = Em = Eu = 0when 1 = 0, and M,(x, y, 1) has the property of (32).
Eliminating the ky-term in system (40). Ultimately, making the following transformations:

Elo
X 5 y 5

we can change (40) to

dx _

a

y - - > 24 3,4

I =V + VY +V3xy + X° + x°y + M3(x,y,4), (41)

in which
2 Ky knk 2

- T 1-2 _ = 10 11K10 = _ T 3
V1:koo—zk1o,7/2:k01—?— 5 ,V3:k11+zk10-

Here, v, = 7, = 3 = 0 when 1 = 0 and M;(x, y, 1) has the property of (32). Taking into
consideration 0 < x, < é and carrying out a direct calculation with the assistance of
Mathematica, we have

8 4
(V1. 7,,73) _ _25 (x2 —6x, +11)(3x3 — 7x2 + 3x, — 11) 3 0
30| S .
= 1—x,)5x;

System (41) is exactly (31). According to the results in Dumortier et al.,*’ Chow et al.,*®
or Li et al.,** we can derive that system (41) is the universal unfolding of Bogdanov-
Takens singularity (cusp case) of codimension 3. The remanent part M;(x, y, 1) satisfying
the property of (32) has no influence on the bifurcation phenomena. As (a, 6, 3) moves

around (a + 44,6 + A,, 8 + 43), the dynamical behaviors of system (7) in a small neigh-

—1%x, . .
W) are equivalent to system (41) in a
Xy—

small neighborhood of (0,0,0) as (v{,v,, v3) moving around (0, 0,0). This completes the
proof. L

borhood of the positive equilibrium E, (x,,

For the normal form (41), we can obtain the Hopf bifurcation surface and homoclinic bifur-
cation surface in the (vy,7,,73) parameter space by a similar method used for analyzing the
codimension 3 Bagdanov-Takens bifurcation in Yu and Zhang.** Obviously, the two equilibria
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E, of (41) are

E.(+1/—71,0), for v; <0.
The Jacobian matrix of system (41) at E, is expressed by

0 1
£2V/7, %27V w0V

which suggests that E, is a saddle and E_ is focus or node. It is clear that the plane

J(Ei) = l

SN = {(v1,v,,v3)|v; = 0},
excluding the origin in the parameter space is the saddle-node bifurcation surface.
Next, we focus on Hopf bifurcation and generalized Hopf bifurcation from which multiple limit
cycles can occur. Following the procedure described in Yu and Zhang,*” we have the following

result.

Theorem 7. For system (41), Hopf bifurcation occurs from the equilibrium E_ at any point on the
critical surface defined by

H= {(771,52,53)'52 - (53 —51) V —771 = 0}

The generalized Hopf bifurcation occurs from the equilibrium E_ at any point on the critical line,
which is the intersection of the critical surface H and the generalized critical surface GH defined by

GH = {(v1,v,,v3)|v3 — 3v; = 0}
This yields two small-amplitude limit cycles. The inner limit cycle is stable and the outer is unstable.

Now we are committed to investigating the homoclinic bifurcation surface as well as the
degenerate homoclinic bifurcation points on the surface. We have the following theorem.

Theorem 8. For system (41), the homoclinic bifurcation can occur from the critical surface defined

by
L = { G152, 5017 - 3(7 = 523 )51 =0} @)

and the degenerate homoclinic bifurcation occurs from any point on the critical line, which is the
intersection of the critical surface HL and the degenerate critical surface DHL defined by

DHL = {(v1, 75, v3)[vy + (3 —¥1)y/—v; = O} (43)

This leads to the occurrence of two limit cycles.
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3.3 | Degenerate focus-type Bogdannov-Takens bifurcation of
codimension 3

According to Theorem 4, system (7) may undergo degenerate focus-type Bogdannov-Takens
bifurcation of codimension 3 under appropriate parameters. To this end, we take a, d, and 8 as
bifurcation parameters and consider the following unfolding system of system (7):

dt x2+dx+(a+r1) (44)
2= y(6+r, - EO,
pe
where a = (l_d) = dﬁ , B= (d+2)2, max{—z\/a, —2}<d< 1, and r = (ry,r,13) ~ (0,0,0).

The following is our mam theorem.

Theorem 9. Suppose that the condition (IT) in Theorem 2 is satisfied and § = then system (7)
1- d (1-d)(d+2)3

o ), where —2<d < 1. Fur-

has a nilpotent focus of codimension 3, E*(x*, *) = (
(1-d)? 9 d+2
27 (d+2)?’
max{—2 \/5, —2} < d < 1, system (7) undergoes a degenerate focus-type Bogdanov—Takens bifurca-
tion of codimension 3 in a small neighborhood of E*. Therefore, with certain parameter values, system
(7) admits one or two Hopf bifurcation surfaces, one or two homoclinic bifurcation surfaces, one
saddle-node loop bifurcation surface, and one or two saddle node bifurcation surfaces. Thus, system
(7) has three hyperbolic positive equilibria, two limit cycles, bistable states (one stable equilibrium
and one stable limit cycle or two stable equilibria), or tristability states (two stable equilibria and one
stable limit cycle) with appropriate parameter values.

thermore, when parameters (a, 3,8) change in a small nelghborhood of ( ) where

Proof. Making transformations (i), (ii), (iii) for system (44), which have been presented in the
proof of Theorem 4, we derive an equivalent system

-

d
d—): =y +aj,(r) + al,(Nx + al (Ny + a; (Nx* + af, (Nxy + aj,()y?
+aj,(Nx® + i (NX?y + ai,(Nxy? + ai,(Ny* + o(|x, yI?),
<
d % * % % %
= = by () + by (1) + b (r)y + bl (1 + b (Nxy + b, (1y? + by ()
+ b3, (Nx?y + b},(1xy* + by, (1y* + o(|x, y|*),

where a,(r) and b/ (r) are smooth functions satisfying a;,(0) = a;,(0) = a;,(0) = a;,(0) =
ail(O)l = aSZ(O)I = 1350(0) = b}, (0) = *1(0) = b3,(0) = *2(0) =0, aso(O)* = a§0, ;'}(0) =

> 12(0)_ 12 03(03_ 03’*11(8) 11 30(0) b3g» b3,(0) = b3, b1,(0) = bi,, b3 (0) = by,
and a30, 21, 12, 03,b11,b§0,b21,b12,b areglvenlnsystem(zs)

Using

*

b¥ al, + b}
_ 12 -3 12 03 v2 2
X—X+?X +TXY+CIS3XY,
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%

b}
y=Y+ TX2Y+b* XY?,

we can simplify the third-order terms when r = 0 and get (for convenience, in every subsequent
transformation, we rename X, Y, 7 as X, y, t, respectively)

-

d " .
d—): =y +cyo(r) + cfy(rx + g, (ry + c;‘o(r)x2 + ¢l (Nxy + ¢, (r)y

2

| GO+ O+ (0xy £ ey + ol y ), (45)
d . .
d—f = dy (1) + d;j (Nx + dg, (Ny + d;,(Nx* + df (Nxy + dg, (r)y?

+d;‘0(r)x3 + d;‘l(r)x yv+d 2(r)xy +d¥ 3(r)y +o(|x, y|?).

L

Under the following near-identity transformation

X =x,
Y =y +cp(r) + ¢ (nx + ¢y (r)y + C;O(r)x2 + i, (Nxy + cE‘)‘z(;’)y2

+ i (% + ¢5 (Nx%y + ¢, (Nxy? + ¢, (y? + o(|x, yI?),
system (45) continues as

dx

E=y,
d
2 = a5 (1) + €f(r)x + 5, (P)y + 3, (DX2 + €5, (Nxy + €5, (MY (46)

+e5,(Nx® + e (NxPy + e, (Nxy* + 5, (Ny* + o(|x, y?),

where el.*.(r) have complicated expressions of cl.*j (r)and d;".(r) and are omitted to save space.
Lastly, following the procedure in Xiao and Zhang,*® system (46) can be expressed by

dx _ o)
dt vE(r)?’
L = ) + A (% = 9] + € (A0 + AT ()

+v*2()x*] + y°Ny(x, ,1) + o(|x, y %),

in which

eg‘o(r)+efo(r)e§0(r) e5(r) .\ e (r)

1) = —
1) e3(r) 3e32(r) 9e33(r) 27e*3(r)
ej,(r) e
Aa(r) = 30
21) e;:o(r) * 3e*2(r)
A5(r) = e ey (Meg(r) €150

e>2kl (l") 3e>2kl ef;o(r) 9@21930 (r)
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ey, (r) Ze;"o(r)

Alr) = e, (r) 3e§0(r) ’

ei‘z(r)e;g(r)

Ni(x,y,r) = a*(r)es,(r) + %2(r)

+ 0" (Neg,(Ny + v*(r)e},(r)x].

By computation with Mathematica, one obtains that e (0) =
_3(4—d)(5-2d)
8(1—-d)(d+2)8

4(d+2)7 <0 and €5,(0) =

< 0. Thus, we can take

e3o(r)
0*(r) = =2V (n), v () =
e5,(r)
in the small neighborhood of r = (0, 0, 0). Eventually, taking a change of time 7 = : * Er;t we get
21

dx _
g)[) y! | (47)
- = M)+ 15)x = % + y[us(r) + AT()x + x°] + y2N; (x, y,1) + o(1x, y 1),

in which A%(r) = IR X —————A*(r),N;(x,y,r) =

1(x,y,r), and
e5o()
W)= —AD 4, @) = — ) =~
N N a w3

In view of max{—2 \/E, —2} < d < 1, tedious calculation leads to

| Oy (), p5 (1), p3(r))

. d+2
0 and A7(0) =4/ — <2V2.
5(71, r2, r3) = ;é an 1( ) 3 \/_

r=0

Based on the results in Refs. [25, 50], we know that system (47) is a standard family of Bogdanov-
Takens singularity of codimension 3 (focus case), which indicates that system (7) exhibits a

degenerate focus-type Bogdanov-Takens bifurcation of codimension 3 by choosing a,d, and
(1-d* 9 ﬂ) O
27 7 (d+2)?’

as bifurcation parameters in a small neighborhood of (

3.4 | Hopfbifurcation

From the analysis Theorem 3 (I)(i), system (7) may undergo Hopf bifurcation around E; (or E3).
This will be studied in detail in this subsection.
Performing the same process as (13) to (17), we obtain that

ax _ %xz(x2 +dx+a)(m—x)+
m

dt m3 (48)

% = 6y(x* +dx + a)(x — y),

(1+d+a)(1-m) x2
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where the parameters satisfy that0 < m < 1,a,6 > 0,d > —2\/5 and transformation (14) guaran-
tees that the qualitative properties between system (48) and system (7) are the same. For simplicity,
we denote

—a+dim—-2)+2m-—3

S, = > 0.
m3(a+d+1)

We have the following theorem.

Theorem 10. Assumethat0 <m < 1,a,6 > 0,d > —2\/5. Then, E(l, 1) is a equilibrium of system
(48). Furthermore, if (a — 1)m + d + 2 > 0, then we have

(I) when § < §8,, E(1,1) is an unstable hyperbolic node or focus;
(II) when & > 8., E(1,1) is a stable hyperbolic node or focus;
(III) when & = &,, E(1,1) is a weak focus or center.

Proof. The Jacobian matrix of system (48) at E(1, 1) is

—a+d(m—2)+2m-—3 _ (m-1)(a+d+1)

J(EQ,1) = m3 m3 .
Sla+d+1) 6(—(a+d+1)

The determinant and the trace of J(E(1,1)) are

S(a+d+1D(a—1m+d+2)

det(J(E)) = 3

and

_5m3(a+d+1)+a—d(m—2)—2m+3

r((E) = —

s

respectively. Because of 0 < m < 1,a,6 > 0,d > —2\/5, and (a — 1)m + d + 2 > 0, one gets that
det(J(E)) > 0, and tr(J(E)) = 0(> 0,< 0)if § = 5,(8 < 8,,8 > §.). We complete the proof.  []

In the subsequent work, we focus on the case § = §,, of Theorem 10. Denoting
011 = pom? + pim + py, (49)
where

p> = 2ad® + (a + 1)*d + 2a(3a® — 2a + 3),
p1 = —3ad® — (6a* + 15a + 1)d* — (6a* + 19a” + 24a + 3)d
—a(a® +15a% + 3a +21),

po =d* + (—a*+3a+6)d* + (—3a® + 14a + 9)d + a® — 3a® + 15a + 3,

we have the following theorems.

sduy) suonIpuoy pue sudL, 3y 938 *[20T/30/¢ 1] U Awiqry duIuQ AS[IA “BPLIOLT JO ANSIATUN £q GLoZ [ wdes/[ 1 11°01/10p/wo Kaja Kxeiqriouriuoy/:sdny woiy papeofumod % b0z ‘06S6L9% 1

2-SULIO) WO’ K31y ATeIqriaul|

asuo1] stowIo) aAnEaI) Aquardde oy Aq PALIGAGS ATk SAINIE YO 98N JO SA[AI I0j KIRIqIT AUIUQ AAIA UO (



YANG ET AL. | 1287

Theorem 11. Supposethat0 < m < 1,a,6 =6, > 0,d > —2v/a,and(a —1)m +d + 2 > 0. Then
we have

(I) if o011 <0, then E(1,1) is a stable weak focus with multiplicity 1 and one stable limit cycle
bifurcates from E(1,1) by a supercritical Hopf bifurcation;
(IT) if oy; > O, then E(1,1) is an unstable weak focus with multiplicity 1 and one unstable limit
cycle bifurcates from E(1,1) by a subcritical Hopf bifurcation;
(III) ifoy; = 0, then E(1,1) is a weak focus with multiplicity at least two and system (48) may exhibit
a degenerate Hopf bifurcation.

Proof. Introducing X =x—1,Y =y —1, and § =, into system (48), we derive an equivalent
system to (48) as follows (for convenience, in every subsequent transformation, we rename X,Y, 7
as x, y, t, respectively).

dx ~ _  —2a+2dm-5d+5m-9 , 2m-1)(a+d+1)
— =bx—-qy+ X — xy +
—a+dim—4)+4m—10 m—1)a+d+1
( 3) x3_( )( - )x2y+o(|x,y|3),
m m
dy ~ = d+2)(—a+dim—-2)+2m-3) , a-—1
= —bx—b _
dr ~ 0T ma+d+ 1) matd+ 1)
><(a—(d+2)m+2d+3)xy+a_(d-i_zlir;l-i_zd+3y2
—a+d(m—2)+2m—3x3_|_(d+1)(—a+d(m—2)+2m—3)x2
m3(a+d+1) m3(a+d+1) y
d+2)a—([@d+2)m+2d+3) , 3
+ + , , 50
miatd+ D) xy“ +o(|x, yI°) (50)
in which b = %ﬁ”zm% > 0 on accountof §, > 0and g = (m_l)r(nﬂ.
Let w = /bg — b2 and
X =3X, y=bX — Y, dt=$d‘c. (51)

It follows from (50) that

dx

Frin y+u(x,y),
dy

qU —x +v(x,y),

in which

u(x,y) = tpx? + Uy Xy + uzpx? + uy x%y + o(|x, y|*),

U(X, ) = UyoX? + 011Xy + VgaY? + U3px> + Uy X%y + v1axY* + o(|x, y[*),
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and

Uy =

Uz = —

Uy =

U1 =

Vo2 =

Uy =

Uy =

In accordance with the formula in Perko

m-1)(a+d+1)(d—m+3)
m3\(—a+dm—2)+2m—3)(a—Dm+d+2)

2m—-1)(a+d+1)
m3 ’
m-1%(a+d+1)>Q2d-2m+7)
mé\/(—a+d(m—2)+2m—3)((@a— Dm+d+2)

(m—-1%(a+d+1)>
mbé
1
m3((a—1)m+d+2)

>

{m(a® + 2(a — 8)d — 3d*> — 17) + 2ad + 5a

+m?(—a(2d + 3) + 3d + 5) + 4d? + 15d + 13},

1 —a+dim—-2)+2m-—-3

— 3(a—1)m— 2d +5),
m3 (a@a=1)m+d+2 Bla-Dm-a+2d+5)

—a+d(m—2)+2m—3
m3

E}

m-—1
mé((a—1)m+d+2)

{21 + d(d(4d + 23) + 39) — 26m + (3d(d + 3)

+7)m? — d(d(3d + 22) + 43)m + a*(—(d + 6)m + 2d + m*> + 7)

+a(d(—(d + 1)m? — 2(d + 8)m + 5d + 23) — 16m + 20)},

{a’(m —1) + 3a(d + )m — ad

m—1 [—a+d(im—-2)+2m -3
mbo (a—1m+d+2
+a+2d(d—-2m+ 5)—6m + 10},

d+2)(m—-1)(—a+d(m—2)+2m—3)
mo ’

0 and by Mathematica, the first Lyapunov coefficient

can be calculated by

g

(m —1)*0y;

' 8mo((a — 1)m+d+2)\/(—a+d(m—2)+2m—3)((a— 1)m+d+2),

where o1 is expressed in (49). In view of (a — 1)m + d + 2 > 0, the sign of g, is determined by
o017 and thus the proof is finished. O

Following we further study the case (III) in Theorem 11 to determine the exact codimension
of Hopf Bifurcation around E(1,1). A complicated calculation with the assistant of Maple and
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Mathematica yields the second Lyapunov coefficients as follows:

V(=a+d(m—2)+2m-3)(a—Dm+d +2)

%2 = 388mi2((a — Dm + d + 2)*(a — (d + 2)m + 2d + 32 %

where 05, is given in the Appendix, then we have the following:

Theorem 12. Suppose that0 <m < 1,a,6 =38, > 0,d > —2\/5, and (a—1)m+d+2>0and
011 = 0, then

(I) ifoy, < 0, then E(1, 1) is a stable weak focus with multiplicity 2, system (48) undergoes a degen-
erate Hopf bifurcation of codimension 2 and there can be up to two limit cycles bifurcating from
E, the outer one being stable;

(II) if o5 > 0, then E(1,1) is an unstable weak focus with multiplicity 2, model (48) undergoes a
degenerate Hopf bifurcation of codimension 2 and there can be up to two limit cycles bifurcating
from E, the outer one being unstable;

(IIT) if oy, = 0, then E(1, 1) is a weak focus with multiplicity at least 3 and model (48) may undergo
a degenerate Hopf bifurcation of codimension at least 3.

4 | NUMERICAL ANALYSIS

In this section, we give some numerical simulations and phase portraits for system (7) by using
the ODE packages in AUTOO07P.>! The main objective of this section is to illustrate the complex
dynamics under some primary parameters. We select the following set of parameters value for
system (7): a = 0.03,5 = 0.5515528128088303, § = 1.9107764064044153,d = 0.05.

4.1 | g asthe primary bifurcation parameter

First, § is used as the primary bifurcation parameter. We have two subcritical
Hopf bifurcation points: HB;(1.36947 X 107%,4.79873 x 1072) when B = 1.57403, and
HB,(4.10619 X 1071,1.29156 X 10~!) when B = 1.75352. The first Lyapunov coefficients of
HB; and HB, are, respectively, 1.020204 x 10! and 8.618838; two saddle-node bifurcation points:
SN,(3.57894 x 1071,1.13000 x 10~!) when B = 1.74689, SN,(2.71488 x 107!, 8.54400 x 1072)
when f = 1.75257. If we continue one-parameter periodic orbit bifurcation curve, then we
have two saddle-node bifurcation points SN;(4.01146 x 1071, 1.35392 x 10~1) with § = 1.51324,
period = 1.90645 X 10!, and SN,(4.10647 x 1071,1.29165 x 10~!) with 8 = 1.76613, period =
4.34988 x 101, respectively. The results are shown in Figure 4A,B, where the solid curve and the
dotted curve represent the stable and unstable equilibrium or limit cycle, respectively.

Within the context of an outbreak modeled by a system with multiple stable solutions, a charac-
teristic is commonly referred to as metastability in Wollkind et al.'? or subcritical instability, with
one such solution characterized by a low prey level and another by a high prey level. Outbreaks
are induced either by changing a control parameter or by perturbing the population so that the
populations move from the basin of attraction of low level solution through a threshold into the
basin of attraction of the high level solution. The stable states are the two positive equilibrium
points separated by a saddle point.
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FIGURE 4 One-parameter bifurcation diagram of system (7) for 8, where HB; and HB, denote the
subcritical Hopf bifurcation points, SN; and SN, denote the saddle-node bifurcation point (red) of limit cycle.

We now consider the implications of the bifurcation diagram in Figure 4A,B with respect to
the global behavior of system (7). Four important values of § are indicated on the horizontal axis.
The first two are the values 8, and (35 for the occurrence of Hopf bifurcation as described above,
and the remaining two are 8; = 1.511324 and 4 = 1.76613 for the occurrence of saddle-node
bifurcation point of limit cycle as the parameter values vary. The lowest value for which there is
a periodic solution corresponds to the limit point mentioned above. These four values divide the
interval into five subintervals. Within each subinterval, the system possesses the same qualitative
global behavior. We note that, for this reason, Figure 4 only shows those values of 8 given by 1.4 <
B < 1.92. For B < 31 and 8 > B4, the behavior is qualitatively equivalent to that for 1.4 < 8 < 3;
and 4 < 8 < 1.92, respectively.

Given any fixed value of 3, the global behavior of system (7) can be deduced by examining the
intersection of the bifurcation diagram with a vertical line through that value of 5. Thus, we must
consider all branches of the diagram above with the value of 8 under consideration. We can make
the following conclusions concerning the global behavior. For 0 < § < 31, system (7) possesses a
globally stable equilibrium point exhibiting low population levels. For f > 8, the system possesses
a globally stable equilibrium point exhibiting relatively high population levels. For §; < 8 < 4,
the system possesses an unstable equilibrium point surrounded in the phase plane by a globally
stable limit cycle. The amplitude of the prey oscillations increases as 3 increases, as shown in
Figure 4A.

Since the dynamics between 8; and (3, are similar to that between 85 and (3, we only need to
consider the behavior exhibited by system (7) in the interval 3; < 8 < (3,. Referring to the vertical
line in Figure 4 at 8; = 1.511324, the point labeled A corresponds to a stable fixed point, while B
corresponds to an unstable small limit cycle and C corresponds to a stable large limit cycle. Thus,
for 8 in this interval, system (7) has multiple solutions consisting of a stable equilibrium point
surrounded in the phase plane by an unstable limit cycle, which in turn is surrounded by a stable
large limit cycle, with the unstable small limit cycle acting as the separatrix between the basin
of attraction of the equilibrium point and that of the stable limit cycle. Thus, populations lying
inside the unstable limit cycle will tend to the fixed point while populations outside this region
will tend to the stable limit cycle.
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FIGURE 5 Plots of the dimensional variables x and y illustrate population densities at (A) § = 1.45, the
initial value is (0.48,0.16); (B) 8 = 1.55, the initial value is (0.739365,0.012422); (C) 8 = 1.85, the initial value is
(0.66,0.24).

We find that the consequence of this interval of metastability is due to the presence of hysteresis
behavior as 3 varies. If we assume populations are initially at a steady-state solution and only vary
the parameter (3, the behavior exhibited for §; < 8 < 8, will depend on where § is initially. When
B is initially less than 8; and increases to fall in the interval (5;, 3,), the populations will start
at a globally stable equilibrium point and remain until 8 exceeds (3,, at which the system will
spontaneously jump to the branch of stable oscillations causing the populations to spiral out to
the limit cycle. When f is initially greater than 8, and decreases, populations will initially be
oscillating as determined by the globally stable limit cycle. As 8 decreases to below 3, (into the
interval of metastability), these populations will be within the basin of attraction of the limit cycle
and continue to oscillate until § decreases below 31, at which the system will spontaneously jump
to the branch of stable fixed point solutions causing the oscillations to diminish as the populations
spiral in toward the fixed point. As will be discussed below, both the metastability and hysteresis
behavior may result in a population outbreak. Thus, if the population undergoing an outbreak is a
pest species, the economical and ecological consequence can be severe. We can make the following
conclusions concerning the global behavior. For 0 < § < 81, system (7) possesses a globally stable
equilibrium exhibiting a relatively low level. For 8 > (3, the system possesses a globally stable
equilibrium exhibiting a relatively high level. See the results with 8 = 1.45 in Figure 5A, and with
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FIGURE 6 Two-parameter bifurcation diagram with 8 vs. a of system (7) where SN, H, Hom, SN;, denote
the saddle-node bifurcation curve (blue), Hopf bifurcation curve (red), homclinic bifurcation curve (green), and
saddle-node curve (black) of limit cycles, respectively. (A) The whole bifurcation diagram for § vs. a. (B) The first
zoomed bifurcation diagram and 12 regions for 8 vs. a.

B = 1.55in Figure 5B. For 8; < 8 < f3,, the system possesses an unstable equilibrium surrounded
by a globally stable limit cycle.

4.2 | aand g as the primary bifurcation parameters

In this subsection, we use a and f as the primary bifurcation parameters. Then, we obtain
two-parameter bifurcation diagrams including Hopf bifurcation curve (red), saddle-node bifur-
cation curve (blue), homoclinic bifurcation curve (green), and saddle-node bifurcation curve
(black) of limit cycles. There are one codimension 2 Bagdanov-Takens bifurcation point
BT(4.48447 x 1071,1.29178 x 10~1) as § = 1.06798 x 1072, a = 1.91475, one codimension 2 cusp
bifurcation point CP(3.16667 x 1071,1.01042 x 10~1) as 8 = 3.17546 X 1072, a = 1.72858, two
generalized Hopf bifurcation points: GH;(3.82518 x 1071,1.27262 x 107!) as 8 = 4.06517 x
1072, a = 1.65784, GH,(2.03103 x 10',7.79707 X 10~2) as f = 4.64371 x 1072, a = 1.43672. The
second Lyapunov coefficients of GH, and GH, are, respectively, —2.199578 x 10? and —4.465886 X
10%; Interestingly, there is only one global saddle-node bifurcation curve of limit cycle, which
is connecting the two generalized Hopf bifurcation points GH; and GH,, rather than distinct
saddle-node bifurcation curves of limit cycles emanating from GH; and GH,, respectively. The
limit cycles emanating from the upper Hopf bifurcation branch are approaching the homoclinic
cycle, however, the limit cycle curve with two saddle-nodes emanating from the Hopf bifurca-
tion branch below will persist until the saddle-node point of limit cycle disappears. This has been
illustrated in Figure 6A,B.

The whole bifurcation plane in Figure 6A, which is zoomed three times for clarity, shown in
Figures 6B and Figure 7A,B, are divided into 12 regions. The corresponding phase portraits are
given respectively in Figure 8. More specifically, we have region I: a = 0.0458086, 8 = 1.49797,
a stable limit cycle contains an unstable hyperbolic positive equilibrium; II: a = 0.0224992, 8 =
1.61114, a big stable limit cycle contains a little unstable limit cycle enclosing a stable hyper-
bolic positive equilibrium, bistability states; III: a = 0.0194589, 8 = 1.48903, a stable hyperbolic
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FIGURE 7 Zoomed two-parameter bifurcation diagram of system (7) where SN, H, Hom, SN,. denote the
saddle-node bifurcation curve (blue), Hopf bifurcation curve (red), homclinic bifurcation curve (green), and
saddle-node curve (black) of limit cycles, respectively. (A) The second zoomed bifurcation diagram in Figure 6B
for 8 vs. a. (B) The third zoomed bifurcation diagram in Figure 7A for § vs. a.

positive equilibrium; IV: a = 0.0108446, 8 = 1.96406, an unstable limit cycle contains a stable
hyperbolic positive equilibrium, moreover, there exists a saddle point and a stable hyperbolic
positive equilibrium, bistability states; V: a = 0.0185468, 3 = 1.91789, three hyperbolic positive
equilibria (a saddle point, a stable focus, and an unstable focus) coexist; VI: a = 0.0250827, 3 =
1.80629, a stable limit cycle contains three hyperbolic positive equilibria (a saddle point, a sta-
ble focus, and an unstable focus), bistability states; VII: a = 0.0147907, 5 = 1.89027, a big stable
limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic positive equilibrium,
moreover, there exists a saddle point and a stable hyperbolic positive equilibrium, tristability
states; VIII: a = 0.0312342, 8 = 1.74765, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, bistability states; IX: a = 0.0287306, 8 =
1.76738, a big stable limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic
positive equilibrium, moreover, there exists a saddle point and an unstable hyperbolic positive
equilibrium, bistability states; X: a = 0.0301742, 8 = 1.74711, a big stable limit cycle contains
three hyperbolic positive equilibria (a saddle point, a stable focus, and two unstable focuses), bista-
bility states; XI: a = 0.0164697, 8 = 1.86736, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, moreover, there exists a saddle point and
a stable hyperbolic positive equilibrium, tristability states; XII: a = 0.0164818, 5 = 1.86696, a big
stable limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic positive equi-
librium, moreover, there exists a saddle point and an unstable hyperbolic positive equilibrium,
bistability states.

From the first generalized Hopf bifurcation point GHy, the subcritical Hopf bifurcation point
will be changed to the supercritical Hopf bifurcation point. There exists an interval for the param-
eter § between GH; and GH,, where there is a saddle-node bifurcation point of limit cycle branch,
that is, a stable limit cycle and an unstable limit cycle will coexist until they coalesce and persist.
In particular, there is a whole saddle-node bifurcation curve of limit cycles rather than two dis-
tinct branches mentioned in Huang et al.*> On the Hopf bifurcation curve, the left parts of GH,;
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FIGURE 8 Phase portraits of regions I-XII shown in Figures 6 and 7.

and GH, are subcritical Hopf bifurcation curves and the right of them is a supercritical Hopf
bifurcation curve, see Figure 6A,B.

4.3 | d asthe primary bifurcation parameter
Setting d as the primary bifurcation parameter, we obtain the one-parameter bifurcation dia-

gram. There are two subcritical Hopf bifurcation points HB;(1.19773 x 107}, 3.45728 x 1072)
as d = 1.05728 X 1072 and HB,(4.34712 x 1071,1.25481 x 107!) as d = 2.14803 x 10~2. The first
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FIGURE 9 One-parameter bifurcation diagram of system (7). (A) L2-norm vs. d. (B) L2-norm vs. 8. Here,
HB, and HB,, SN, and SN,, TC denote the Hopf bifurcation points and saddle-node bifurcation points of limit
cycles, transcritical bifurcation point, respectively.

Lyapunov coefficients of HB; and HB, are, respectively, 1.540364 x 10! and 2.188749 x 10';
two saddle-node bifurcation points SN;(4.23305 x 1071,1.22188 x 10~!) as d = 2.13200 x 102
and SN,(2.09782 x 1071, 6.05545 x 1072) as d = 4.26926 X 10~2. From the first Hopf bifurcation
point HB;, we have two saddle-node points of limit cycle SN;(5.10376 x 107!, 1.41684 x 10~})
asd = —1.30903 x 1072, period = 2.62507 x 10" and SN,(6.86965 x 1071,1.82966 x 10~1) asd =
2.70666 X 1072, period = 6.10625 x 10" (see Figure 9A). Note that the metastability phenomenon
is also found for the parameter d. In another word, the density of mite population will increase
from the carrying capacity as d increases. Thus, the mite population may undergo outbreak.

Next, we set a = 0.03,d = 0.05, 8 = 1.9107764064044153 and take § as the primary bifurca-
tion parameter. We have two subcritical Hopf bifurcation points HB;(3.82285 x 107!, 1.20613 X
1071) as § = 6.02858 X 107!, HB,(1.64561 x 1071, 5.45611 X 1072) as & = 6.33529 X 1071, two
saddle-node bifurcation points SN;(3.57892 x 1071,1.12999 x 10~!) as § = 6.03299 x 10~! and
SN,(2.71488 x 107 1,8.54400 x 1072) as & = 6.01340 X 10~!, one transcritical bifurcation point
TC(1,0) as & = 0. The first Lyapunov coefficients of HB; and HB, are, respectively, 1.64117 X
10' and 5.289654 x 10'; To continue from HB,, we have two saddle-node points of limit
cycles: SN;(3.30296 x 1071,1.07073 x 1071) as § = 6.37431 x 107!, period = 2.18099 x 10! and
SN,(5.42326 X 1071,1.65980 X 107!) as & = 5.99983 x 10~!, period = 5.45319 x 10!. The limit
cycles bifurcation form HB; and HB, are approaching distinct homoclinic cycles. Also note that
the antimetastability is found for the parameter §. Thus, the mite population may decrease as the
parameter § increases (Figure 9B).

4.4 | ¢ andd as the two primary bifurcation parameters

If we take 6 and d as the two primary bifurcation parameters, then we have saddle-
node bifurcation curve (blue), Hopf bifurcation curve (black), saddle-node bifurcation curve
(red) of limit cycles. There are two cusp points CP;(3.10723 X 1071,1.01755x 107!) as 6 =
6.25735x 1071, d = 6.78302 X 1072, CP,(1.73206 X 10~!,1.01407 X 107%) as § = 1.11868 x 107>,
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FIGURE 10 Two-parameter (8 vs. d) bifurcation diagram of system (7). (A) & vs. d. (B) Zoomed bifurcation
curve of § vs. d with eight regions. Here, SN, H, SN, denote the saddle-node bifurcation curve (blue), Hopf
bifurcation curve (black), saddle-node bifurcation curve of limit cycles (red).

d = —3.46403 x 107!, two generalized Hopf bifurcation points GH;(3.24564 x 107!,1.11814 X
1071) as § = 6.58274 x 1071, d = 9.30543 X 1072, GH,(1.90789 x 1071,6.79109 x 1072) as & =
6.80137 X 1071, d = 9.18396 X 1072, one Bagdanov-Takens bifurcation point BT(1.73183 X
1071,2.94846 x 10~%) as § = 3.25311 x 1077, d = —3.46410 x 10~!. The second Lyapunov coeffi-
cients of GH; and GH, are, respectively, —9.99813 x 10? and —7.502971 x 10?; The saddle-node
bifurcation curve of limit cycles is also connecting GH; and GH,. This result is shown in
Figure 10A,B.

The phase plane in Figure 10 is divided into eight regions and the corresponding phase
portraits in those regions are shown in Figure 11. The following provides the details. I: § =
0.648891,d = 0.0750986, a stable limit cycle contains an unstable hyperbolic positive equilibrium;
IT: 6 = 0.590287,d = 0.0848714, a stable hyperbolic positive equilibrium; III: § = 0.432085,d =
—0.0791325, three hyperbolic positive equilibria (a saddle point, a stable focus, and an unsta-
ble focus) coexist; IV: § = 0.470348,d = —0.0853784, a big stable limit cycle contains a little
unstable limit cycle enclosing a stable hyperbolic positive equilibrium, bistability states; V: § =
0.362312,d = —0.153302, an unstable limit cycle contains a stable hyperbolic positive equilib-
rium, moreover, there exist a saddle point and a stable hyperbolic positive equilibrium, bistability
states; VI: § = 0.402356,d = —0.132842, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, moreover, there exist a saddle point and
a stable hyperbolic positive equilibrium, tristability states; VII: § = 0.48071,d = —0.0542003, a
big stable limit cycle contains three hyperbolic positive equilibria (a saddle point, a stable focus,
and an unstable focus), bistability states; VIII: § = 0.598531,d = —0.0249369, a stable hyperbolic
positive equilibrium.

Combining the global bifurcation diagrams from Figure 6 to Figure 11, we can obtain the
monostability, bistability, and tristability for equilibria and the number of limit cycle. These are
summarized in Table 1.

Remark 2. Note that, here we find two generalized Hopf bifurcation points are connected by one
saddle-node bifurcation curve of limit cycles, but it is different from that in Xu et al.,>> where
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FIGURE 11 Phase portraits of regions I-VIII shown in Figure 10B.

TABLE 1 The classification of stability and the number of equilibria of system (7).

Stability Equilibria
Monostability Single equilibrium
One equilibrium and one limit cycle
Three equilibria
Three equilibria and one limit cycle
Bistability One equilibrium and two limit cycles
Three equilibria and one limit cycle
Three equilibria and two limit cycles

Tristability Three equilibria and two limit cycles

Regions

Figure 8 III; Figure 11 II, VIII
Figure 8I; Figure 111

Figure 8V; Figure 11 III

Figure 8X

Figure 8 II, VIII; Figure 11 IV
Figure 8 IV, VI; Figure 11V, VII
Figure 8 IX, XII

Figure 8 VII, XI; Figure 11 VI

the curve is on the top of Hopf bifurcation curve, so that the isola of limit cycles could be found.
Further, it is also different from the scenario in Refs. [20, 32], where there exists a condimension
2 cusp of limit cycles indicating the coexistence of three limit cycles, which bifurcate from one

Hopf bifurcation point.
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Remark 3. Compared with the dynamics of Leslie type predator—prey system (1) with simplified
Holling IV functional response (5) at d = 0 in Huang et al.,* in this paper we obtain some novel
results for system (7) as follows:

(i) there are one or two Hopf bifurcation surfaces rather than only one;
(ii) there is one saddle-node loop bifurcation surface rather than only two;
(iii) there is one or two saddle-node bifurcation surface rather than only two.

Remark 4. As d increases, the whole bifurcation diagram of system (7) including the location of
the intersection point of Hopf bifurcation curve, Hopf bifurcation curve, homoclinic bifurcation
curve, and saddle-node bifurcation curve, bifurcation point will be moved to the left bottom of
the plane.

5 | CONCLUSION AND DISCUSSION

In this paper, we conducted a detailed bifurcation analysis of a predator-prey mite model with
generalized Holling Type IV functional response, which can be used to describe the interac-
tion between the predator M. occidentalis and the prey phytophagous spider mite Tetranychus
mcdanieli on fruit trees. The euryphagous nature is crucial for the predator to survive in nature.
It has a common characteristic of species, leading to the coexistence of two species. The simple
model was shown to exhibit very complex dynamics. By using the bifurcation analysis, we have
found that there are up to three equilibrium states (see Table 1). All the possible scenarios of the
associated bifurcation and dynamical behaviors are investigated.

Collings*® studied a predator-prey mite model of Leslie type with Holling Type IV function
and considered the role of temperature in the growth of mites. On top of the existence of a stable
low population density equilibrium, population cycles or population outbreaks in response to
perturbations were shown with different sets of parameter values. Li and Xiao* investigated the
model (7) with d = 0, showing the existence of codimension 2 cusp bifurcation and codimension 2
Bagdanov-Takens bifurcation without considering codimension 3 cusp bifurcation. Huang et al. >
showed that for the model (7) with d = 0 and a simplified Holling Type IV functional response,
there exists a degenerate Bogdanov-Takens singularity (focus type) of codimension 3 for some
parameter values. Bistability (one stable equilibrium and one stable limit cycles) and tristability
(two stable equilibria and one stable limit cycle) can emerge with certain parameter values. In this
paper, the predator-prey mite model (7) with a generalized Holling type IV functional response
is investigated in details using dynamical system approach. We found a degenerate Bogdanov-
Takens singularity (focus type) of codimension 3 and a degenerate Bogdanov-Takens singularity
(cusp type) of codimension 3 for some parameter values. Meanwhile, the complete bifurcation
diagrams and their dynamics are studied analytically and illustrated numerically.

Of note, we find that there exist one or two Hopf bifurcation curves, one saddle node bifur-
cation curve of limit cycle, one or two saddle-node bifurcation curves for model (7). Therefore,
model (7) may have three hyperbolic positive equilibria, two limit cycles, bistability (one stable
equilibrium and one stable limit cycle, or two stable equilibria), or tristability (two stable equilib-
ria and one stable limit cycles). Huang et al.*> did not present the whole bifurcation diagram, and
mentioned that there are one Hopf bifurcation curve, two saddle node bifurcation curve of limit
cycles. Actually, the saddle node bifurcation curve of limit cycles is connecting with two gener-
alized Hopf bifurcation points. We evaluated the role of parameter d, which describes the effect
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of “inhibition” in microbial dynamics and “group defense” in population dynamics as Freedman
and Wolkowicz?” mentioned. We find that it does not change the bifurcation structure but moves
the location of bifurcation diagram to the left bottom as the parameter d increases.

Different phase portraits of model (7) are obtained by numerical simulations. We showed that
model (7) can have: (i) a stable limit cycle contains an unstable hyperbolic positive equilibrium
(monostability); (ii) a stable limit cycle enclosing three positive equilibria and a homoclinic cycle
(bistability); (iii) a big limit cycle containing a small limit cycle and three hyperbolic positive equi-
libria (tristability), and so forth. Therefore, our results provide the whole bifurcation dynamics of
model (7) both analytically and numerically. In addition, we found that the most significant con-
sequence of the metastability and hysteresis exhibited by system (7) is that these results can be
used to describe the outbreaks of mites.

We conclude this study by noting that the dynamics of this generalist predator-prey mite model
are very rich. Three parameters are used to analyze the dynamical behavior. The codimension 3
Bagdanov-Taken bifurcation serves as an organizing center for the complex dynamics of the mite
model. Furthermore, it will be very interesting to study the existence of isola bifurcation of limit
cycles in Xu et al.’”»™ It exists for model (7) if the generalized Holling IV functional response (5) is
replaced by Holling II functional response (3) and the intrinsic rates of mites are replaced by the
functions depending on temperature mentioned in Collings and Wollkind.>* This is left for future
investigation.
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APPENDIX: REPRESENTATION OF o,

where

t():

[2:

0y = —(ty + tym + tym? + t3m> + tym* + tsm> + tem® + t;m” + tgm® + tom?),

a’(—5d — 10) + a®(—157d® — 1265d? — 3335d — 2864) + a>(—1278d* — 11564d> —
38326d? — 54535d — 27802) + a*(—3419d° — 33643d* — 127899d> — 231257d? —
194202d — 57858) + a*(—1265d° — 5682d° + 23626d* + 212261d> + 553903d> +
635839d + 275634) + a%(9922d” + 149699d°® + 951992d° + 3313998d* + 6829825d>
+ 8341406d? + 5593467d + 1588596) + a(17424d® + 272297d” + 1843401d° +
7060798d> + 16733611d* + 25117387d> + 23302731d? + 12201261d + 2754450) +
8976d° + 150206d® + 1107969d” + 4723857d° + 12813377d> + 22894374d* +

26886435d> + 19948008d2 + 8444646d + 1542942,

= a8(5d + 5) + a’ (—163d* — 929d — 1366) + a®(—964d* — 4609d* — 5319d + 996) + a’

% (2235d* + 34341d3 + 155267d* + 275610d + 167759) + a*(26246d° + 298379

x d* 4+ 1297651d3 + 2698434d? + 2676907d + 1007837) + a(65618d° + 761821d°> +
3561642d* + 8532773d> + 10944995d? + 7011741d + 1696452) + a?(54784d” + 608890
x d® + 2655113d° + 5461934d* + 4228003d> — 2632009d> — 6534035d — 3095898) + a
X (—12426d3 — 338465d7 — 3224458d° — 15780023d> — 45232886d* — 79289920d> —
83862671d? — 49204734d — 12293373) — 28776d° — 531685d® — 4281537d” — 19749174
xd® — 57535282d° — 109764684d* — 136988820d> — 107619372d> — 48118590d —

9274860,

5a° + a8(—65d — 83) + a” (—25d? + 2599d + 6362) + a®(6117d* + 49093d? + 115235
x d + 75673) + a°(31391d* + 231968d> + 572089d? + 511616d + 101938) + a*(43919
x d° +232110d* + 55923d® — 1560052d? — 2992165d — 1611895) + a3(—44294d°® —
907971d> — 6036748d* — 18819793d> — 30233192d? — 24137815d — 7535086) + a>

X (—146861d” — 2135708d°® — 12542249d° — 38629876d* — 67060115d> — 64644386d>
—30888125d — 5070033) + a(—63507d® — 741436d7 — 3013448d° — 2829990d° +
16117128d* + 61445629d° + 94230012d? + 70252528d + 20938509) + 36336d° +
774836d® + 7026651d” + 35868254d° + 114168041d°> + 235710477d* + 316115759d>

+265547469d? + 126580320d + 25992690,
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t3:

t6=

—61a’ + a¥(—243d — 306) + a” (1781d> + 3386d — 4662) + a(8287d* + 2470d> —
92792d — 103513) + a>(—13969d* — 262478d> — 1077609d? — 1518843d — 657396) + a*
(=109360d> — 1131354d* — 4079215d> — 6300683d> — 3902017d — 587817) + a>

% (—126931d° — 960784d> — 1533008d* + 4733740d> + 19000615d? + 22793878d +
9352650) 4+ a?(66842d” + 1689136d°® + 13851870d° + 54884543d* + 118877653d> +
143563104d? + 90180588d + 22686513) + a(119238d® + 1965982d” + 13127393d° +
46147265d° + 91422061d* + 98155724d> + 43535897d? — 8169045d — 10313571) —
22512d° — 593276d3 — 6322932d” — 36769918d° — 130578395d° — 296411157d* —

432562927d3 — 392598951d? — 201338112d — 44419005,

158a° + a®(1724d + 2804) + a’ (4965d* + 14268d + 16362) + a(—5584d> — 25656d>
+18358d + 54699) + a°(—36863d* — 124717d> + 178037d? + 753221d + 474072) + a*

% (14430d° + 586443d* + 3595825d°> + 8241624d? + 8003120d + 2793603) + a3(157524d°
+2003302d° + 9117448d* + 18733077d> + 16811688d? + 3611916d — 1971590) + a?

% (80000d” + 433095d° — 2291296d° — 24245227d* — 78456218d> — 122912365d>
—95103888d — 29087351) + a(—83964d® — 1838277d” — 15538928d°® — 68557689d°
—175407670d* — 267888188d°> — 237486390d? — 109711261d — 19220730) + 6816d°
+247960d® + 3313101d” + 22885745d° + 93315421d°> + 237732461d* + 383278157d3

+380181825d? + 211611134d + 50495349,

= —104a° + a®(—1529d — 2987) + a’ (—8316d? — 28863d — 28914) + a®(—14901d> —

66136d% — 130599d — 91631) + a>(18270d* + 137059d> + 208384d? + 16201d — 50887)
+a*(62130d° + 333568d* + 10314d> — 2150665d> — 3592848d — 1786848) + a3(—29434
x d° — 880515d° — 6297726d* — 19003755d> — 27807472d> — 19246903d — 4858452) + a?
% (—93268d7 — 1349742d° — 6826211d°> — 14381383d* — 6885800d°> + 20351230d>
+32152131d + 13922929) + a(26778d® + 871117d” + 9477090d°® + 50820716d°
+154158001d* + 277544238d> + 293503352d? + 167751957d + 39701973) — 804d”°
—51461d3 — 980091d” — 8638694d°® — 42237563d° — 124187554d* — 225362939d3

— 247429065d? — 150756139d — 39116631,

43a° + a®(531d + 1125) + a”(3471d? + 14053d + 16282) + a®(12889d> + 76385d>

+161345d + 112616) + a>(12519d* + 91188d> + 289149d? + 380297d + 145624) + a*
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X (=30573d> — 283124d* — 806101d> — 898130d> — 283938d + 112078) + a3(—32832d°
—169081d°> + 512108d* 4 4511927d3 4+ 10146086d> + 9690277d + 3399598) + a*(34179
x d” +799974d° + 6125073d> + 22121447d* + 42433723d> + 43652232d? + 21804947d
+3709672) + a(—3219d3 — 208464d’ — 3156026d° — 21121157d° — 76014844d*
—158206991d> — 191043974d? — 124380259d — 33763131) + 3744d® + 147063d’
+1891684d°® + 11836146d° + 41648252d* + 86951029d> + 107114829d? + 72042443d

+ 20419917,

—5a° + a8(—109d — 262) + a’ (—473d* — 2134d — 3062) + a®(—2659d> — 21206d>
—55636d — 46416) + a°(—9175d* — 97742d> — 346651d> — 488216d — 225548) + a*

X (—1544d° — 19670d* — 94613d3 — 150483d? — 46032d + 21556) + a3(16915d°
+232156d°> 4 1083908d* + 2450992d> + 2901613d? + 1683480d + 365882) + a*(—4302d’
—206812d° — 2237626d> — 10506592d* — 25906733d> — 35210044d? — 25027570d
—7280260) + a(19838d” + 526767d° + 4768214d°> + 21051615d* + 51263124d>
+70600139d? + 51694486d + 15679533) — 8928d” — 218570d° — 1928652d> — 8511446d*

—20977649d> — 29439519d? — 22055549d — 6863802,

= a8(10d + 28) + a”(61d* + 245d + 340) + a%(—9d> — 93d? + 1621d + 3472) + a(1387d*

+19917d3 + 86947d? + 144225d + 77844) + a*(3139d° + 48554d* + 245820d> + 534299
x d? + 518329d + 188176) + a3(—2277d° — 59664d°> — 435482d* — 1513592d> — 2771469
X d? — 2570545d — 956756) + a*(20540d° + 356968d°> + 2182070d* + 6585745d>
+10689649d? + 8977655d + 3076016) + a(—32719d® — 506090d> — 2957605d* —
8707405d> — 13884131d? — 11492197d — 3886164) + 9840d° 4+ 155295d° + 932956d*

+2820084d> + 4602657d? + 3887665d + 1337940,

a’(—5d* — 28d — 36) + a®(5d* + 89d* + 194d — 8) + a3(19d* + 172d> — 71d? — 1432
x d — 1068) + a*(—432d°> — 8583d* — 52345d3 — 137727d? — 164474d — 74296) + a3
X (4562d° + 49592d* + 222850d> + 498593d? + 546276d + 234692) + a*(—16418d° —
155554d* — 600723d> — 1171601d? — 1146098d — 448888) + a(16100d> + 153269d* +
584546d> + 1114107d? + 1059856d + 402828) — 3852d°> — 39143d* — 156105d°> —

306585d? — 297494d — 114504.
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