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Abstract
In this paper, we study a predator–prey mite model
of Leslie type with generalized Holling IV functional
response. The model is shown to have very rich bifur-
cation dynamics, including subcritical and supercritical
Hopf bifurcations, degenerate Hopf bifurcation, focus-
type and cusp-type degenerate Bogdanov–Takens bifur-
cations of codimension 3, originating from a nilpotent
focus or cusp of codimension 3 that acts as the orga-
nizing center for the bifurcation set. Coexistence of
multiple steady states, multiple limit cycles, and homo-
clinic cycles is also found. Interestingly, the coexistence
of two limit cycles is guaranteed by investigating gen-
eralized Hopf bifurcation and degenerate homoclinic
bifurcation, and we also find that two generalized
Hopf bifurcation points are connected by a saddle-node
bifurcation curve of limit cycles, which indicates the
existence of global regime for two limit cycles. Our work
extends some results in the literature.
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1 INTRODUCTION

Tomitigate the loss of crops and fruits, many pest controlmeasures have been exploited.1–9 Chem-
ical or biologicalmeasures arewidely used in the control of pests. Pesticides are usually effective in
killing pests but they can induce pest resistance, pest resurgence, and pesticide residues as men-
tioned by Schmidt.9 Biological control has received more attention in recent years.2,8 Based on
a geographic analysis including North America, Europe, and Asia-Pacific, it is reported that the
global biological pest control market is expected to be around 29 billion US dollars by 2025 with
a compound annual growth rate of 5.7% in the given forecasting period.10 The biological control
has additional advantages in stopping the development of miticide resistance. Once established,
it is also sustainable and can provide long-term control.
The predaceous mite,Metaseiulus occidentalis Nesbitt, is a generalist predator found in North

America, Asia, and Oceania. Its prey, theMcDaniel spider mite, Tetranychus mcdameiiMcGregor
mainly found in North America, can reduce the apple or pear production, causing significant
yield loss. This type of mites is the predominant mite pest species ofWashington apples. Miticides
were often used to kill them. However, some insecticides, including Carbamate and pyrethroid
insecticides, are also highly toxic to mite predators, and thus should be avoided if possible. The
conservation of predator mites in apple orchards is critical to the control of these mites.3–5,9 A
further investigation of the biological control using mite predators would provide great benefit to
the increase of fruit production while decreasing the use of pesticides.
Studying the interactions between predators and their prey is one of the crucial research areas

in ecology. Many mathematical models have been developed, analyzed, and compared with field
data. Based on the model presented by May,11 Wollkind et al.1,12 proposed a predator–prey model
describing mite interactions in fruit trees in Washington State of the following form:

⎧
⎪
⎨
⎪⎩

!"!# = $"(1 − "& ) − '(("),!'!# = )'(1 − 'ℎ"), (1)

where "(#) and '(#) represent the densities of prey and predators at time #, respectively. Their
growth is assumed to obey the logistic rule, $ and ) are their respective intrinsic growth rates,
while the carrying capacities of the two are & and ℎ", respectively, where ℎ is a measure of the
quality of prey for the predators, which is referred to as the Leslie function proposed by Leslie.13
The function((") describes the update of the prey by predators. Itmay depend onmany factors,

such as the prey density, the physical state of the predators, and environmental conditions. Hence,
various types of functional response have been used.

(I) Lotka–Volterra type (Holling Type I) function:

((") = +2,", " ≤ 2,; ((") = +, " > 2,. (2)

This is the simplest functional response and + > 0 is a constant representing the maximal
growth rate of species. The parameter , > 0 is the half-saturation constant, that is, the den-
sity of prey at which the per capita predation rate is half of its maximum+. System (1) with
Holling Type I function ((") given by (2) is referred to as the Leslie–Grower predator–prey
model and its global stability has been studied in Refs. [14, 15].
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YANG et al. 1253

F IGURE 1 A comparison diagram
of generalized Holling Type III function
(4) and generalized Holling Type IV
function (5). Here we assume+ = 0.5, , = 25 as - = −6.25, 0, 5,
respectively.

(II) Michaelis–Menten (Holling Type II) function:

((") = +"" + , . (3)

Here, + > 0 is a constant standing for the maximal growth rate of species and , > 0 is
the half-saturation constant. System (1) with Holling Type II function ((") given by (3) is
referred to as the Holling–Tanner predator–prey model and has been extensively studied in
the literature, see Refs. [16–20]. For example, Sáez and González18 described the bifurcation
diagram of limit cycles that appear in the first realistic quadrant of the predator–preymodel,
and gave a qualitative description of the bifurcation curve when two limit cycles collapse on
a semistable limit cycle and disappear.

(III) Sigmoidal (generalized Holling Type III) function:

((") = +"2"2 + -" + , . (4)

Here, +,, > 0 are positive constants and , is the half-saturation constant. The parameter- > −2√, and the situation of - = 0 is the Holling Type III response function.21,22 The dif-
ference between - ≥ 0 and - < 0 of function (4) can be seen from Figure 1. This shows that
when the number of prey is below a certain threshold, predators no longer obtain food by
hunting prey because of learning behavior; when the number of prey is above this threshold,
predators continue hunting prey until a saturation level is reachedwhen - ≥ 0. When - < 0,
the predation increases to reach a peak, followed by a decline approaching+ as " increases.
Hence, ((") describes the circumstance where the prey can better protect themselves when
their density is high enough. Predator–prey system of Leslie type with generalized Holling
Type III functional response has been analyzed by many authors, see, for example, Refs. [14,
23–26]. Hsu and Huang14 studied the global stability of equilibria and the existence of limit
cycles.
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1254 YANG et al.

(IV) Monod–Haldane (generalized Holling Type IV) function:

((") = +""2 + -" + , . (5)

Here,+,, > 0 are constants and - > −2√,. This function can be used to describe the effect
of “inhibition” in microbial dynamics and “group defense” in population dynamics,22,27,28
proposed by Andrews.29 A comparison of the generalizedHolling Type III function and gen-
eralized Holling Type IV function is shown in Figure 1. With the Type IV function, it can be
shown that the prey can better protect themselves when their density is sufficiently high.
See more applications of the Type IV functional response.30–32

When - = 0, the function ((") = +""2+, is referred to as theHolling Type IV functional response.
System (1) with Holling Type IV has been extensively investigated.33–37 For example, Li and Xiao33
showed that the model undergoes the codimension 2 Bogdanov–Takens bifurcation and the sub-
critical Hopf bifurcation in two small neighborhoods of the two nonhyperbolic positive equilibria,
respectively. However, the parameter region of two-limit-cycle is not given. Huang et al.35 stud-
ied the degenerate focus type Bogdanov–Takens bifurcation of codimension 3. Note that they did
not consider degenerate cusp type Bogdanov–Takens bifurcation of codimension 3 and did not
present the global bifurcation diagram in detail. Dai andZhao36 analyzedHopf cyclicity and global
dynamics for a predator–prey system of Leslie type with simplified Holling Type IV functional
response. Ruan and Xiao22 used the functional response with - = 0 to study the global bifurcation
of a predator–prey system and showed the existence of codimension 2 Bagdanov–Takens bifurca-
tion and a focus of multiplicity at least 2. Xiao and Zhu38 studied a Gauss-type predator–prey
system with a Holling IV functional response, yielding the Hopf bifurcation with codimension 2
and the existence of two limit cycles. Rothe and Shafer39 studied a generalized Gauss type for the
interaction of two species with the function (5) and obtained a codimension 2 cusp singularity.
However, the global bifurcation diagram and transitions of bifurcation are not shown explicitly. It
is worth describing the whole global bifurcation diagram and identifying the transitions among
those different bifurcation regimes in details.
There are very few studies on system (1) with the generalized Holling Type IV function.28,30 A

model with temperature-dependent parameters for the mite interaction in apple trees was ana-
lyzed to determine how the type of functional response influences the bifurcation and stability
behavior in Collings.28 Recently, Atabaigi and Barati30 presented a geometric analysis of relax-
ation oscillations and canard cycles in a singularly perturbed predator–prey system of Holling
and Leslie types under the assumption $ ≪ ). However, the global bifurcation analysis of system
(1) with generalized Holling Type IV is still not complete.
In this paper, we focus on the local and global dynamics of the predator–prey mite system of

Leslie type (1) with generalized Holling IV functional response (5), given by

⎧
⎪
⎨
⎪⎩

!"!# = $"(1 − "& ) − +"'"2+/"+- ,!'!# = )'(1 − 'ℎ" ), (6)

where " > 0, ' ≥ 0, $,&,+, ), and ℎ are all positive parameters, - > 0 is the half-saturation con-
stant, and / > −2√- has the same explanation as before. For simplicity, we rescale ", ', # and
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YANG et al. 1255

parameters in (6) by letting

" = "& , ' = +'$&2 , # = $#, , = -&2 ,! = /& , 0 = )$ , 1 = )&ℎ+ .
Dropping the bars, we have the following reduced system:

⎧
⎪
⎨
⎪⎩

!"!# = "(1 − ") − "'"2+!"+, ,!'!# = '(0 − 1'" ), (7)

where ,, 0, 1 are positive and ! > −2√,. In this paper, we will study the global bifurcation
dynamics and the details of transition among different parameter regimes. In particular, the role
of “group defense” will be further revealed.
This paper is organized as follows. In the next section, we investigate the existence and

type of equilibria of system (7). Section 3 is devoted to the bifurcation analysis includ-
ing degenerate cusp-type Bogdanov–Takens bifurcation of codimensions 2 and 3, degener-
ate focus-type Bogdanov–Takens bifurcation of codimension 3, and Hopf bifurcation with
codimension 2. In Section 4, numerical simulations including the global bifurcation dia-
grams and phase portraits are given. The paper ends with conclusion and discussion in
Section 5.

2 THE EQUILIBRIA OF SYSTEM (7)

From the biological feasibility, we restrict system (7) inℝ+2 = {(", ') ∶ " > 0, ' ≥ 0}. By a straight-
forward analysis, we know that system (7) has only one boundary equilibrium 40(1, 0), which is a
hyperbolic saddle indicating that the prey population reaches its carrying capacity in the absence
of predators. Further, we have the following result.

Theorem 1. The positive invariant and boundedness region of system (7) is the rectangular regionΩ = {(", ')|0 < " < 1, 0 ≤ ' ≤ 01 }.
Proof. By the first equation of system (7), we have !"!# |"≥1 < 0. Thus, we only focus on 0 < " < 1.
On the other hand, we can easily get !'!# = '(0 − 1'" ) < '(0 − 1') for 0 < " < 1, which leads to!'!# |'> 01 < 0. Therefore, all solutions of system (7) will ultimately move toward the region Ω ={(", ')|0 < " < 1, 0 ≤ ' ≤ 01 } and this ends the proof. □
Based on the above analysis, it is sufficient to discuss positive equilibria of system (7) in the

rectangular region Ω. To do this, let
"(1 − ") − "'"2 + !" + , = 0, '(0 − 1'" ) = 0,
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1256 YANG et al.

which yields that

"3 − (1 − !)"2 + (, + 01 − !)" − , = 0. (8)

Assuming that "1,"2,"3 are the three roots of (8) and "1 < "2 < "3, then based on Vieta Theorem,
we have

"1 + "2 + "3 = 1 − !, "1"2 + "1"3 + "2"3 = , + 01 − !, "1"2"3 = ,. (9)

In view of , > 0, Equation (8) has at least one and at most three positive roots; that is, system (7)
has at least one and at most three positive equilibria 47("7 , 01 "7), 7 = 1, 2, 3. Let

8(") = "3 + ,2"2 + ,1" + ,0,
where ,2 = ! − 1,,1 = , + 01 − !,,0 = −,.
To investigate the existence of positive equilibria 47("7 , 01 "7)(7 = 1, 2, 3) of system (7) in the

rectangular region Ω = {(", ')|0 < " < 1, 0 ≤ ' ≤ 01 }, we only need to focus on the existence of
positive root "7(7 = 1, 2, 3) of 8(") = 0 in the interval (0,1). It is evident that

8′(") = 3"2 + 2,2" + ,1.
On the one hand, the Jacobianmatrix at any positive equilibrium4(", 01 ") of system (7) is given

by

:(4) = ⎛
⎜
⎜
⎜⎝

1 − 2" − (1−")(,−"2)"2+!"+, − ""2+!"+,021 −0
⎞
⎟
⎟
⎟⎠
.

Direct calculation shows that

det(:(4)) = 0""2 + !" + ,8′("),
tr(:(4)) = 1 − 2" − 0 − (1 − ")(, − "2)"2 + !" + , . (10)

From the first expression of (10), we know that the equilibrium is an elementary equilibrium, a
hyperbolic saddle, or a degenerate equilibrium if 8′(") > 0, < 0 or = 0, respectively.
On the other hand, denote

∆ = ,22 − 3,1.
Then, 8′(") = 0 has no real root if ∆ < 0, has one real root of multiplicity 2 if ∆ = 0, which is
denoted by "∗ = −,23 = 1−!3 , and has two real roots if ∆ > 0, which are marked as "̄1 and "̄2 as
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YANG et al. 1257

follows:

"̄1 = −,2 −√∆3 ,
"̄2 = −,2 +√∆3 . (11)

Therefore, we can investigate the existence of positive root of 8(") = 0 in the interval (0,1)
with three scenarios: ∆ < 0, ∆ = 0, and ∆ > 0. Let "7,7+1 be the coincidence point of "7 and"7+1(7 = 1, 2, 3), then the corresponding degenerate equilibria of system (7) are expressed as47,7+1("7,7+1, 01 "7,7+1)(7 = 1, 2, 3).
Scenario 1: ∆ < 0.
On this occasion, 8′(") = 0 has no real root and 8′(") > 0," ∈ (0, 1), which shows that 8(") is

a strictly monotone increasing function in the interval (0,1). Note that 8(0) = ,0 < 0 and 8(1) =01 > 0, thus 8(") = 0 has a unique positive root in the interval (0,1), denoted as "1 (or "3).
Scenario 2: ∆ = 0.
In this scenario, 8′(") = 0 has one real root of multiplicity 2, marked as "∗ = 1−!3 and 8′(") ≥0," ∈ (0, 1), which demonstrates that8(") ismonotonically increasing in the interval (0,1). Notice

again that 8(0) < 0,8(1) > 0 and 8("∗) = 2,32−9,1,2+27,027 , then we have the following:

(S2A) if 8("∗) ≠ 0, then 8(") = 0 has a unique positive root, denoted by "1 (or "3);
(S2B) if 8("∗) = 0, then 8(") = 0 has a unique positive root of multiplicity 3, denoted by "∗ =1−!3 .

Scenario 3: ∆ > 0.
In this situation, 8′(") = 0 has two real roots, which aremarked as "̄1 and "̄2. Obviously, "̄1 and"̄2 are the maximum and minimum value points of 8("), respectively. By analyzing the positions

of "̄1 and "̄2, we have the following:
(S3A) When "̄1 ≥ 1 or "̄2 ≤ 0, 8′(") > 0," ∈ (0, 1) and the distribution of positive roots of 8(") =0 in the interval (0,1) is the same as Scenario 1.
(S3B) When 0 < "̄1 < 1 ≤ "̄2, 8′(") first monotonically increases in (0, "̄1) and then monoton-

ically decreases in ("̄1, 1). Again note that 8(0) < 0 and 8(1) > 0, evidently we get that8(") = 0 has a unique root in the interval (0,1), which is denoted by "1.
(S3C) When 0 < "̄1 < "̄2 < 1, 8(") first monotonically increases in (0, "̄1), then monotonically

decreases in ("̄1, "̄2), and finally monotonically increases in ("̄2, 1). Again noting that8(0) < 0 and 8(1) > 0, then based on the signs of 8("̄1) and 8("̄2), we can get the
distribution of positive root of 8(") = 0 in the interval (0,1) as follows:
(I) If 8("̄1) > 0 and 8("̄2) < 0, then 8(") = 0 has three positive roots, denoted by "1 <"2 < "3;
(II) if 8("̄1) > 0 and 8("̄2) = 0, then 8(") = 0 has two positive roots, and one of them is

a positive root of multiplicity 2, denoted by "1 < "̄2 = "2,3;
(III) if 8("̄1) > 0 and 8("̄2) > 0, then 8(") = 0 has one positive root, denoted by "1;
(IV) if 8("̄1) = 0, then 8(") = 0 has two positive roots, and one of them is a positive root

of multiplicity 2, denoted by "̄1 = "1,2 < "3;
(V) if 8("̄1) < 0, then 8(") = 0 has a unique positive root, denoted by "3.
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1258 YANG et al.

(S3D) When "̄1 ≤ 0 < 1 ≤ "̄2, 8′(") < 0," ∈ (0, 1), that is, 8(") monotonically decreases in the
interval (0,1), which contradicts with 8(0) < 0 and 8(1) > 0.

(S3E) When "̄1 ≤ 0 < "̄2 < 1, 8(") is strictly monotonically decreasing in the interval (0, "̄2) and
monotonically increases in ("̄2, 1). Then 8(") = 0 has a unique root in the interval (0,1),
marked as "3.

From above analysis, we can get the existence of positive equilibria of system (7) as follows.

Theorem 2. System (7) has

(I) a unique positive equilibrium41("1, 01 "1) (or43("3, 01 "3)) if one of the following conditions are
satisfied:
(i) ∆ < 0;
(ii) ∆ = 0,8("∗) ≠ 0;
(iii) ∆ > 0, "̄1 ≥ 1 or "̄2 ≤ 0, or 0 < "̄1 < 1 ≤ "̄2;
(iv) ∆ > 0, 0 < "̄1 < "̄2 < 1,8("̄1) > 0, and 8("̄2) > 0 or 8("̄1) < 0;
(v) ∆ > 0 and "̄1 ≤ 0 < "̄2 < 1.

(II) A degenerate positive equilibrium 4∗("∗, 01 "∗) = (1−!3 , (1−!)(!+2)381 ) of multiplicity 3 if ∆ = 0
and 8("∗) = 0.

(III) Two positive equilibria and one of them is a degenerate equilibrium if one of the following
conditions is satisfied:
(i) an equilibrium 41("1, 01 "1) and a degenerate equilibrium 4̄2("̄2, 01 "̄2), where "̄2 = "2,3 if∆ > 0, 0 < "̄1 < "̄2 < 1, and 8("̄1) > 0;
(ii) a degenerate equilibrium 4̄1("̄1, 01 "̄1) and an equilibrium 43("3, 01 "3), where "̄1 = "1,2 if∆ > 0, 0 < "̄1 < "̄2 < 1, and 8("̄1) = 0.
For the sake of convenience, we denote degenerate equilibria 4̄1("̄1, 01 "̄1) (or 4̄2("̄2, 01 "̄2)) as4∗("∗, 01 "∗).

(IV) Three positive equilibria 47("7 , 01 "7), 7 = 1, 2, 3 if ∆ > 0, 0 < "̄1 < "̄2 < 1,8("̄1) > 0, and8("̄2) < 0.
Here, "̄1 and "̄2 are defined as (11), respectively.

Remark 1. When system (7) has three positive equilibria 47("7 , 01 "7), 7 = 1, 2, 3, that is, when the
condition (?@) in Theorem 2 is satisfied, then 8′("2) < 0. In view of the first expression of (10),
we obtain that 42 is a saddle.
2.1 Cusp of codimensions 2 and 3

In this subsection, we study the case (III) in Theorem 2 and explore conditions such that41("1, 01 "1) (or 43("3, 01 "3)) is a nonhyperbolic equilibriumwith tr(:(41)) = 0 and the degenerate
equilibrium 4∗("∗, 01 "∗) satisfies tr(:(4∗)) = 0.
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YANG et al. 1259

F IGURE 2 The phase portraits of Theorem 3. I: the coexistence of a stable weak focus with multiplicity 1,41( 125 , 21615625 ), and a cusp of codimension 2, 4∗( 25 , 6323125 ), with ! = 425 , , = 4625 , 0 = 35 , 1 = 12572 ; II: the coexistence of
a stable hyperbolic focus 41( 713 , 3784225 ) and a cusp of codimension 3, 4∗( 25 , 1081625 ), with! = − 2265 , , = 28325 , 0 = 35 , 1 = 6518 .

Equations 8("∗) = det(:(4∗)) = 0 and tr(:(4∗)) = 0 lead to
, = "2∗(1 − ! − 2"∗), 0 = 1 − "∗, 1 = 1(1 − "∗)(! + 2"∗) , (12)

where 0 < "∗ < min{1−!2 , 12 }(−2√, < ! < 1) and "∗ ≠ 1−!3 . Furthermore, "1 + 2"∗ = 1 − !,
tr(:(41)) = 0, and (12) result in

! = !1 = "2∗ − 5"∗ + 2.
Actually, ! = 1 − 3"∗ can also be generated in thisway,while ! = 1 − 3"∗ and "1 + 2"∗ = 1 − ! =3"∗ produce "1 = "∗. That is, "∗ is a triple root of 8(") = 0, which is a contradiction to case (ii).
Hence ! ≠ 1 − 3"∗. On the other hand, letting !2 = 2("2∗−4"∗+1)3−"∗ , we have the following theorem.

Theorem 3. Assume that the conditions (???) in Theorem 2and (12) are satisfied, then system (7) has
two different positive equilibria: 4∗("∗, (1 − "∗)2(! + 2"∗)"∗) and 41("1, 01 "1) (or 43("3, 01 "3)) =(1 − ! − 2"∗, (1 − "2∗)(! + 2"∗)(1 − ! − 2"∗)), where 0 < "1 < "∗ < "3 < 1. Furthermore,
(I) when ! = !1,

(i) 41 (or 43) is a stable weak focus with multiplicity 1;
(ii) 4∗ is a cusp of codimension 2.

(II) When ! = !2,
(i) 41 (or 43) is a stable hyperbolic focus (or node);
(ii) 4∗ is a cusp of codimension 3.

The corresponding phase portraits are given in Figure 2.
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1260 YANG et al.

Proof. We first concentrate on the proof of part (I) (i). Setting !# = "("2 + !" + ,)!A yields an
equivalent system of (7) (we still denote A by #)

⎧
⎪
⎨
⎪⎩

!"!# = "2("2 + !" + ,)(1 − ") − "2',!'!# = ("2 + !" + ,)'(0" − 1'). (13)

In view of "("2 + !" + ,) > 0, the topological property of system (13) is the same as that of system
(7). Next, let

" = ""1 , ' = '0"11 , A = "1#. (14)

Then we obtain a polynomial differential system equivalent to system (13) (we still denote A
by #)

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = "31"2("2 + !"1 " + ,"21
)( 1"1 − ") − 0"11 "2',

!'!# = 0"21("2 + !"1 " + ,"21
)'(" − ').

Setting

+ = 1"1 , ! = !"1 , , = ,"21 , 1 = 0"11 , 0 = 0"21, (15)

and removing the bars, we get the following system:

⎧
⎪
⎨
⎪⎩

!"!# = 1+3 "2("2 + !" + ,)(+ − ") − 1"2',!'!# = 0'("2 + !" + ,)(" − '). (16)

4(1, 1) is an equilibrium of system (16) (corresponding to the equilibrium 41("1, 0"11 ) in system
(7)). We have

1 = (1 + ! + ,)(+ − 1)+3 .
Substituting it into (16) generates the following system:

⎧
⎪
⎨
⎪⎩

!"!# = 1+3 "2("2 + !" + ,)(+ − ") + (1+!+,)(1−+)+3 "2',!'!# = 0'("2 + !" + ,)(" − '), (17)
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YANG et al. 1261

in which ,,+, 0 > 0 and ! > −2√,. As ! = !1 in the original system (7), we get "1 = −("2∗ −3"∗ + 1). By the conditions in (12), we know that ! = −"2∗−5"∗+2"2∗−3"∗+1 , , = − "2∗"2∗−3"∗+1 ,+ = − 1"2∗−3"∗+1 ,
and 0 = (1 − "∗)("2∗ − 3"∗ + 1)2 in system (17).
Nowwe show that 41 of system (7) (i.e., 4̃(1, 1) of system (17)) is a stable weak focus withmulti-

plicity 1. SettingC = " − 1,D = ' − 1 and substituting above !,,,+, and 0 into system (17) result
in a new system as follows (for convenience, in every subsequent transformation, we renameC,D, A as ", ', #, respectively):

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

!"!# = ("2∗ − 3"∗ + 1){−(1 − "∗)3" + (2 − "∗)(1 − "∗)3' − 2(2 − "∗)× (1 − "∗)2"∗"2 + 2(2 − "∗)(1 − "∗)3"' + (5"4∗ − 25"3∗ + 40"2∗− 23"∗ + 4)"3 + (2 − "∗)(1 − "∗)3"2'} + F(|", '|3),!'!# = ("2∗ − 3"∗ + 1){−(1 − "∗)3" + (1 − "∗)3' − (1 − "∗)2"∗"2− (1 − "∗)2(1 − 2"∗)"' + (1 − "∗)3'2 + (1 − "∗)("2∗ − 3"∗ + 1)"3− (1 − 2"∗)(1 − "∗)"2' + (1 − "∗)2"∗"'2} + F(|", '|3).
(18)

Taking G = (1 − "∗) 72 ("2∗ − 3"∗ + 1) and making the following scalings, " = −(2 − "∗)(1 −"∗)3("2∗ − 3"∗ + 1)C, ' = −(1 − "∗)3("2∗ − 3"∗ + 1)C − GD, !# = 1G !A, system (18) becomes

⎧
⎪
⎨
⎪⎩

!"!# = ' + 8(", '),!'!# = −" + H(", '),
where

8(", ') = −2(2 − "∗)(1 − "∗) 32 ("2∗ − 3"∗ + 1)2"2 − 2(2 − "∗)(1 − "∗)3× ("2∗ − 3"∗ + 1)"' + (2 − "∗)2(1 − "∗) 52 ("2∗ − 3"∗ + 1)3× (5"2∗ − 11"∗ + 5)"3 + (2 − "∗)2(1 − "∗)6("2∗ − 3"∗ + 1)2"2'+ F(|", '|3),
H(", ') = −(1 − "∗)("2∗ − 3"∗ + 1)("3∗ − 8"2∗ + 14"∗ − 5)"2 + (1 − "∗) 32× ("2∗ − 3"∗ + 1)(4"2∗ − 9"∗ + 4)"' + (2 − "∗)(1 − "∗)2× ("2∗ − 3"∗ + 1)2(4"5∗ − 28"4∗ + 74"3∗ − 88"2∗ + 45"∗ − 8)"3

− (1 − "∗)3("2∗ − 3"∗ + 1)'2 + (2 − "∗)(1 − "∗) 72 ("2∗ − 3"∗ + 1)2× ("3∗ − 8"2∗ + 12"∗ − 4)"2' + "∗(2 − "∗)(1 − "∗)5("2∗ − 3"∗ + 1)2"'2+ F(|", '|3).
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1262 YANG et al.

Applying the formula in Perko,40 we get the first Lyapunov coefficient as follows:

I1 = { 116(8""" + 8"'' + H""' + H''') − 116(8"'(8"" + 8'') − H"'(H"" + H'')
−8""H"" + 8''H'')}|||"='=0

= 18(2 − "∗)2(1 − "∗) 52 ("2∗ − 3"∗ + 1)2(7"4∗ − 25"3∗ + 27"2∗ − 15"∗ + 3).
Because 0 < "∗ < min{12 , 1−!2 }("∗ ≠ 1−!3 ), we can assert that 3−√52 < "∗ < 12 when ! = !1. Then,
we obtain I1 < 0. This completes the proof of (I) (i).
Next we verity the part (I) (ii) that the equilibrium 4∗ of system (7) is a cusp of codimension

2 when ! = !1. We translate 4∗ to the origin by the transformation C = " − "∗,D = ' − (1 −"∗)2(! + 2"∗)"∗ andwrite the generated system in Taylor expressions as follows (for convenience,
in every subsequent transformation, we rename C,D as ", ', respectively).

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!"!# = (1 − "∗)" − 1(1−"∗)(!+2"∗)' + ( 1!+2"∗ − 11−"∗ − 1)"2 + 1(1−"∗)2(!+2"∗)"'+ F(|", '|2),!'!# = (1 − "∗)3(! + 2"∗)" − (1 − "∗)' − (1−"∗)3(!+2"∗)"∗ "2 + 2(1−"∗)"∗ "'− 1(1−"∗)(!+2"∗)"∗ '2 + F(|", '|2),
where ,, 0, 1 have been substituted by the conditions in (12). Making the following scalings of
coordinates

C = ", D = (1 − "∗)" − 1(1 − "∗)(! + 2"∗)',
we obtain

⎧
⎪
⎨
⎪⎩

!"!# = ' + (− 11−"∗ + 1!+2"∗
)"2 − 11−"∗ "' + F(|", '|2),!'!# = 1−!−3"∗!+2"∗ "2 − "' + 1"∗ '2 + F(|", '|2). (19)

By Lemma 3.1 in Ref. [41], system (19) can be rewritten as

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = 1−!−3"∗!+2"∗ "2 + (−1 − 21−"∗ + 2!+2"∗
)"' + F(|", '|2). (20)

When ! = !1, we know that 3−√52 < "∗ < 1, 1−!−3"∗!+2"∗ ,−1 − 21−"∗ + 2!+2"∗ < 0 and there-
fore the positive equilibrium 4∗ is a cusp of codimension 2 based on the results in
Perko.40
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YANG et al. 1263

For (II) (i), we can get that 0 < "∗ < 12 when! = !2. Substituting both! = !2 and the conditions
in (12) into tr(:(41)), we derive

tr(:(41)) = ("∗ − 4)(1 − "∗)2(3 − "∗)2 < 0
for 0 < "∗ < 12 and consequently, the positive equilibrium 41 is a stable hyperbolic focus or node.
Finally, we turn to part (II) (ii) that the equilibrium4∗ is a cusp of codimension 3. In accordance

with (20), we know that if (−1 − 21−"∗ + 2!+2"∗ ) = 0, that is, ! = !2, the equilibrium 4∗("∗, (1 −"∗)2(! + 2"∗)"∗) = ("∗, 2(1−"∗)3"∗3−"∗ ) is a cusp of codimension at least three. Next, we will show that
the codimension of 4∗ is exactly three. Transforming 4∗ into the origin by C = " − "∗,D = ' −2(1−"∗)3"∗3−"∗ and expressing the resulting system (7) in power series around the origin, we can obtain
(for convenience, in every subsequent transformation, we rename C,D, A as ", ', #, respectively)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

!"!# = (1 − "∗)" − 3−"∗2(1−"∗)2 ' − 12"2 + 3−"∗2(1−"∗)3 "' + "2∗−2"∗−12(1−"∗)2"∗ "3+ 3−"∗4(1−"∗)3"∗ "2' − "3∗−2"2∗−"∗−24(1−"∗)3"2∗ "4 + (3−"∗)("2∗−2"∗−1)4(1−"∗)5"2∗ "3'+ F(|", '|4),!'!# = 2(1−"∗)43−"∗ " − (1 − "∗)' − 2(1−"∗)4(3−"∗)"∗ "2 + 2(1−"∗)"∗ "' − 3−"∗2(1−"∗)2"∗ '2+ 2(1−"∗)4(3−"∗)"2∗ "3 − 2(1−"∗)"2∗ "2' + 3−"∗2(1−"∗)2"2∗ "'2 − 2(1−"∗)4(3−"∗)"3∗ "4+ 2(1−"∗)"3∗ "3' − 3−"∗2(1−"∗)2"3∗ "2'2 + F(|", '|4).
(21)

Taking a change of coordinates as follows:

C = ",D = (1 − "∗)" − 3 − "∗2(1 − "∗)2 ' − 12"2 + 3 − "∗2(1 − "∗)3 "' + "2∗ − 2"∗ − 12(1 − "∗)2"∗ "3
+ 3 − "∗4(1 − "∗)3"∗ "2' − "3∗ − 2"2∗ − "∗ − 24(1 − "∗)3"2∗ "4 + (3 − "∗)("2∗ − 2"∗ − 1)4(1 − "∗)5"2∗ "3' + F(|", '|4),

system (21) can be expressed by

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = ',!'!# = 1−"∗2 "2 + 1−2"∗(1−"∗)"∗ '2 − 2−"∗1−"∗ "3 + 2"2∗−5"∗−32(1−"∗)2"∗ "2' − 2"2∗−2"∗+1(1−"∗)2"2∗ "'2+ 3−"∗2(1−"∗)2 "4 − 3("3∗−2"2∗−1)2(1−"∗)3"2∗ "3' − 7"3∗−13"2∗+4"∗−22(1−"∗)3"3∗ "2'2 + F(|", '|4). (22)

Making a time transformation

!# = (1 − 1 − 2"∗(1 − "∗)"∗ "
)!A,
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1264 YANG et al.

we can rewrite system (22) as follows:

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

!"!# = '(1 − 1−2"∗(1−"∗)"∗ "),!'!# = (1 − 1−2"∗(1−"∗)"∗ "){ 1−"∗2 "2 + 1−2"∗(1−"∗)"∗ '2 − 2−"∗1−"∗ "3+ ("∗−3)(2"∗+1)2("∗−1)2"∗ "2' − 2"2∗−2"∗+1(1−"∗)2"2∗ "'2 + 3−"∗2(1−"∗)2 "4− 3("3∗−2"2∗−1)2(1−"∗)3"2∗ "3' − 7"3∗−13"2∗+4"∗−22(1−"∗)3 "2'2 + F(|", '|4)}.
(23)

Further, setting

C = ",D = '(1 − 1 − 2"∗(1 − "∗)"∗ "
),

system (23) continues as

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = ',!'!# = 1−"∗2 "2 − "2∗−"∗+1"∗(1−"∗)"3 − (3−"∗)(1+2"∗)2(1−"∗)2"∗ "2' − 2(3"2∗−3"∗+1)(1−"∗)2"2∗ "'2+ 3"3∗−9"2∗+3"∗+12(1−"∗)2"2∗ "4 + (6−"∗)(1+"∗)2(1−"∗)2"2∗ "3' + 9"2∗−11"∗+82(1−"∗)3"2∗ "2'2 + F(|", '|4).
Finally, noticing 0 < "∗ < 12 and making the following scalings

C = ",D = '√ 1−"∗2
, A = √1 − "∗2 #,

we have

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

!"!# = ',!'!# = "2 − 2("2∗−"∗+1)(1−"∗)2"∗ "3 + 3"3∗−9"2∗+3"∗+1(1−"∗)3"2∗ "4
+ '(− (3−"∗)(1+2"∗)

√2(1−"∗) 52 "∗ "2 + (6−"∗)(1+"∗)
√2(1−"∗) 52 "2∗ "3

)

+ '2(− 2(3"2∗−3"∗+1)(1−"∗)2"2∗ " + 9"2∗−11"∗+82(1−"∗)3"2∗ "2) + F(|", '|4).
(24)

Following Proposition 5.3 in Lemontagne et al.,42 an equivalent system of (24) is given by

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = "2 + J"3' + F(|", '|4),
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YANG et al. 1265

F IGURE 3 The phase portraits of Theorem 4. (I) a stable degenerate node 4∗( 1115 , 70450625 ) with! = − 65 , , = 13313375 , 0 = 13 , 1 = 112564 ; (II) a focus of codimension 3, 4∗( 1115 , 70450625 ) with! = − 65 , , = 13313375 , 0 = 415 , 1 = 22516 .

where

J = 3"3∗ − 7"2∗ + 3"∗ − 11
√2(1 − "∗) 92 "∗ < 0

for 0 < "∗ < 12 . This indicates that 4∗ is a cusp of codimension 3 and we complete the proof. □
2.2 Focus of codimension 3

In this subsection, we study the scenario (II) in Theorem 2. We have the following result.

Theorem 4. Suppose that the condition (??) in Theorem 2 is satisfied, then system (7) has a unique
degenerate positive equilibrium 4∗("∗, 01 "∗) = (1−!3 , (1−!)(!+2)381 ). Furthermore,
(I) when 0 ≠ !+23 , 4∗ is a stable (or unstable) degenerate node if 0 > !+23 (or 0 < !+23 );
(II) when 0 = !+23 , 4∗ is a nilpotent focus of codimension 3.
The corresponding phase portraits are given in Figure 3.

Proof. By the condition (II) in Theorem 2, we can obtain that , = (1−!)327 , 01 = (2+!)327 . Substituting
them into det(:(4∗)) and tr(:(4∗)) yields

det(:(4∗)) = 0, tr(:(4∗)) = ! + 2 − 303 .
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1266 YANG et al.

(I) For 0 ≠ !+23 , one can easily get tr(:(4∗)) ≠ 0, which indicates that the Jacobian matrix has
only one zero eigenvalue. By Theorem 7.1 in Zhang et al.,7 4∗( 1−!3 , (1−!)(2+!)381 ) is a stable (or
unstable) degenerate node if 0 > !+23 (or 0 < !+23 ).
Now we turn to the proof of (II). First, setting

(i) C = " − 1−!3 ,D = ' − (1−!)(2+!)381 ,

and by Taylor expansion, we obtain the following system (for convenience, in every subsequent
transformation, we rename C,D as ", ', respectively):

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

!"!# = !+23 " − 9(!+2)2 ' − "2 + 27(!+2)3 "' − 9(!+2)2 "3 − 81(!−1)(!+2)3"4+ 729(!−1)(!+2)5"3' + F(|", '|4),!'!# = (!+2)481 " − !+23 ' + (!+2)427(!−1)"2 − 2(!+2)!−1 "' + 27(!−1)(!+2)2 '2+ (!+2)49(!−1)2 "3 − 6(!+2)(!−1)2 "2' + 81(!−1)2(!+2)2 "'2 + (!+2)43(!−1)3 "4− 18(!+2)(!−1)3 "3' + 243(!−1)3(!+2)2 "2'2 + F(|", '|4),
where ,, 0, 1 are replaced with expressions for !.
Second, we let

(ii) " = 12(!+2)3C + 34(!+2)4D, ' = 154C − 136(!+2)D,
and get the following system with a linear part in the Jordan canonical form:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

!"!# = ' − 34(!+2)4 "' + 9(!+5)8(!−1)(!+2)5 '2 − 98(!+2)8 "3 − 8116(!+2)9 "2'
+ 27( 4(!+2)3(!−1)2 −9)32(!+2)10 "'2 + 81( 4(!+2)3(!−1)2 −3)64(!+2)11 '3 + 2716(!+2)12 "4 + 81(!−4)16(!−1)(!+2)13"3'+ 81(2(!+2)4−27(!−1)2)32(!−1)3(!+2)14 "2'2 + 243(!+5)(4!3+9!2+33!+8)64(!−1)3(!+2)15 "'3+ 729(4!4+29!3+87!2+155!+49)256(!−1)3(!+2)16 '4 + F(|", '|4),

!'!# = − 12(!+2)3 "' − 9(!+1)4(!−1)(!+2)4 '2 − 34(!+2)7 "3 − 278(!+2)8 "2' + 9(− 4(!+2)3(!−1)2 −9)16(!+2)9 "'2
+ 27(− 4(!+2)3(!−1)2 −3)32(!+2)10 '3 + 98(!+2)11 "4 + 27(!−4)8(!−1)(!+2)12"3'+ 27(−2(!+2)4−27(!−1)2)16(!−1)3(!+2)13 "2'2 − 81(4!4+35!3+114!2+83!+88)32(!−1)3(!+2)14 "'3+ 243(−4(!+2)4−3(!−1)2(!+5))128(!−1)3(!+2)15 '4 + F(|", '|4).
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YANG et al. 1267

Making the following transformations:

(iii) " = C − 3(2!+1)4(!−1)(!+2)4C2, ' = D − 9(!+1)4(!−1)(!+2)4CD − 9(!+5)8(!−1)(!+2)5D2,
we change the above system to

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!"!# = ' + ,∗30"3 + ,∗21"2' + ,∗12"'2 + ,∗03'3 + ,∗40"4 + ,∗31"3' + ,∗22"2'2+,∗13"'3 + ,∗04'4 + F(|", '|4),!'!# = -∗11"' + -∗30"3 + -∗21"2' + -∗12"'2 + -∗03'3 + -∗40"4 + -∗31"3'+ -∗22"2'2 + -∗13"'3 + -∗04'4 + F(|", '|4),
(25)

in which

,∗30 = − 98(! + 2)8 , ,∗21 = 9(5!2 + 5! + 17)16(! − 1)(! + 2)9 ,
,∗12 = −27(!3 + 27!2 + 33! + 47)32(! − 1)2(! + 2)10 , ,∗03 = 81(2!3 − 3!2 − 36! − 71)64(! − 1)2(! + 2)11 ,
,∗40 = 27(4! − 1)32(! − 1)(! + 2)12 , ,∗31 = 27(14!3 + 84!2 − 21! + 31)64(! − 1)2(! + 2)13 ,
,∗22 = −243(7!4 + 39!3 + 165!2 + 83! + 30)128(! − 1)3(! + 2)14 ,
,∗13 = −243(14!4 + 109!3 + 453!2 + 547! + 173)256(! − 1)3(! + 2)15 ,
,∗04 = −2187(!4 + 16!3 + 66!2 + 104! + 29)512(! − 1)3(! + 2)16 , -∗11 = − 12(! + 2)3 ,
-∗30 = − 34(! + 2)7 , -∗21 = 3(2!2 − 4! + 11)8(! − 1)(! + 2)8 ,
-∗12 = 9(13!3 + 33!2 + 57! + 5)16(! − 1)2(! + 2)9 , -∗03 = 27(! + 5)2(2! + 1)32(! − 1)2(! + 2)10 ,
-∗40 = 9(5! − 2)16(! − 1)(! + 2)11 , -∗31 = 27(11! − 23)32(! − 1)(! + 2)12 ,
-∗22 = 27(53!4 + 250!3 + 219!2 + 544! − 94)64(! − 1)3(! + 2)13 ,
-∗13 = 243(13!4 + 88!3 + 204!2 + 284! + 59)128(! − 1)3(! + 2)14 ,
-∗04 = 243(11!3 + 69!2 + 225! + 127)256(! − 1)3(! + 2)14 .
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1268 YANG et al.

By straightforward computation, we have

-∗11-∗30 = 38(! + 2)10 ≠ 0,
which indicates that there is a small neighborhood of (0,0) in which system (25) is locally
topologically equivalent to

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = ',!'!# = -∗11"' + -∗30"3 + (-∗21 + 3,∗30)"2' + (-∗40 − -∗11,∗30)"4+ (4,∗40 + -∗31 + 13-∗11,∗21 + 16-∗11-∗12)"3' + F(|", '|4). (26)

In addition, −2 < ! < 1 leads to
5-∗30(-∗21 + -∗30) − 3-∗11(-∗40 − -∗11,∗30) = 9(!2 + 43! − 53)16(! − 1)(! + 2)15 ≠ 0,

and

-∗30 = − 34(! + 2)7 < 0, -∗211 + 8-∗30 = ! − 224(! + 2)7 < 0.
By Lemma 3.1 in Cai et al.,43 we can conclude that the equilibrium (0,0) of system (26) is a
degenerate focus of codimension 3. Correspondingly, the unique degenerate positive equilibrium4∗( 1−!3 , (1−!)(2+!)381 ) of system (7) is a degenerate Bogdanov–Takens singularity (focus case) of
codimension 3. □
3 BIFURCATION ANALYSIS

Based on Theorem 3, system (7) may exhibit Bogdanov–Takens bifurcation of codimensions 2 and
3 around 4∗ with a certain range of parameter values. Because the analysis of degenerate cusp-
type Bogdanov–Takens bifurcation of codimension 3 in system (7) with ! = 0was not provided in
the studies of Huang et al.35 and Li and Xiao,33 here we present the bifurcation results for the sake
of completeness. We will investigate the codimension of Bogdanov–Takens bifurcation including
two and three.

3.1 Degenerate cusp-type Bogdanov–Takens bifurcation of
codimension 2

We first concentrate on the cusp type of Bogdanov–Takens bifurcation of codimension 2. We have
the following result.

Theorem 5. Assume that the conditions (III) in Theorem 2 and (12) are satisfied and ! = !1,
then system (7) has a cusp 4∗("∗, (2 − "∗)(1 − "∗)3"∗) of codimension 2 (i.e., Bogdanov–Takens
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YANG et al. 1269

bifurcation singularity). Choosing , and 0 as bifurcation parameters, system (7) undergoes
Bogdanov–Takens bifurcation of codimension 2 in a small neighborhood of the unique positive equi-
librium 4∗("∗, (2 − "∗)(1 − "∗)3"∗). Therefore, there exist some parameter values such that system
(7) has an unstable limit cycle, and there exist some other parameter values such that system (7) has
an unstable homoclinic loop.

Proof. Taking , and 0 as bifurcation parameters, we have
⎧
⎪
⎨
⎪⎩

!"!# = "(1 − ") − "'"2+!"+,+K1 ,!'!# = '(0 + K2 − 1'" ), (27)

where ! = "2∗ − 5"∗ + 2,, = −"2∗("2∗ − 3"∗ + 1), 0 = 1 − "∗, 1 = 1(2−"∗)(1−"∗)2 by ! = !1, the con-
ditions given in (12) and K = (K1, K2) ∼ (0, 0). We focus on the phase portraits of system (27) when" and ' lie in a small neighborhood of the interior equilibrium 4∗("∗, '∗).
We shift the equilibrium 4∗("∗, (2 − "∗)(1 − "∗)3"∗) of system (27) when K = 0 to the origin.

Letting C = " − "∗,D = ' − (2 − "∗)(1 − "∗)3"∗ and by the Taylor expansion, system (27) can be
represented by (for convenience, in every subsequent transformation, we renameC,D, A as ", ', #,
respectively)

⎧
⎪
⎨
⎪⎩

!"!# = ,̂00 + ,̂10" + ,̂01' + ,̂20"2 + ,̂11"' + N̂1(", ', K1, K2),!'!# = -̂00 + -̂10" + -̂01' + -̂20"2 + -̂11"' + -̂02'2 + N̂2(", ', K1, K2),
where N̂1(", ', K1, K2), N̂2(", ', K1, K2) are O∞ function as least of third order with respect to ", '.
Their coefficients depend smoothly on K1 and K2, and

,̂00 = K1(1 − "∗)"∗K1 + (2 − "∗)"∗(1 − "∗)2 ,
,̂10 = (2 − "∗)"∗(1 − "∗)3((2 − "∗)(1 − "∗)"2∗ − K1)(K1 + (2 − "∗)"∗(1 − "∗)2)2 − 2"∗ + 1,
,̂01 = "∗−K1 − (2 − "∗)"∗(1 − "∗)2 ,
,̂20 = (2 − "∗)(1 − "∗)3"∗((2 − "∗)(1 − "∗)3"2∗ − K1(2 − (2 − "∗)"∗))(−K1 − (2 − "∗)"∗(1 − "∗)2)3 − 1,
,̂11 = (2 − "∗)(1 − "∗)"2∗ − K1(K1 + (2 − "∗)"∗(1 − "∗)2)2 , -̂00 = K2(2 − "∗)(1 − "∗)3"∗,
-̂10 = (2 − "∗)(1 − "∗)4, -̂01 = K2 + "∗ − 1, -̂20 = − (2 − "∗)(1 − "∗)4"∗ ,
-̂11 = 2(1 − "∗)"∗ , -̂02 = − 1(2 − "∗)(1 − "∗)2"∗ .
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1270 YANG et al.

Using the transformation C = ",D = ,̂00 + ,̂10" + ,̂01' + ,̂20"2 + ,̂11"' + N̂1(", ', K1, K2), we
obtain

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = /̂00 + /̂10" + /̂01' + /̂20"2 + /̂11"' + /̂02'2 + N̂3(", ', K1, K2),
where N̂3(", ', K1, K2) is O∞ function as least of third order with respect to ", '. The coefficients
depend smoothly on K1 and K2, and

/̂00 = ,̂200-̂02,̂01 − ,̂00-̂01 + ,̂01-̂00,
/̂10 = ,̂10(2,̂00-̂02,̂01 − -̂01) + ,̂11(-̂00 − ,̂200-̂02,̂201

) + ,̂01-̂10 − ,̂00-̂11,
/̂01 = −,̂00(,̂11 + 2-̂02),̂01 + ,̂10 + -̂01,
/̂20 = −,̂20-̂01 +

(2,̂00,̂20,̂201 + (,̂01,̂10 − ,̂00,̂11)2)-̂02,̂301 + ,̂11-̂10 − ,̂10-̂11
+ ,̂01-̂20,

/̂11 = − (,̂01,̂10 − ,̂00,̂11)(,̂11 + 2-̂02),̂201 + 2,̂20 + -̂11,
/̂02 = ,̂11 + -̂2,̂01 .

With a change of time !# = (1 − /̂02")!A, we get
⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = '(1 − /̂02"),!'!# = (1 − /̂02")(/̂00 + /̂10" + /̂01' + /̂20"2 + /̂11"' + /̂02'2+ N̂3(", ', K1, K2)). (28)

Letting C = ",D = '(1 − /̂02"), a new system equivalent to (28) can be derived as follows:

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = !̂00 + !̂10" + !̂01' + !̂20"2 + !̂11"' + N̂4(", ', K1, K2),
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YANG et al. 1271

where N̂4(", ', K1, K2) is O∞ function as least of third order with respect to ", ', and
!̂00 = /̂00, !̂10 = /̂10 − 2/̂00/̂02, !̂01 = /̂01,!̂20 = /̂00/̂202 − 2/̂10/̂02 + /̂20, !̂11 = /̂11 − /̂01/̂02.

Letting C = " + !̂102!̂20 ,D = ', we obtain
⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = Q̂00 + Q̂01' + Q̂20"2 + Q̂11"' + N̂5(", ', K1, K2),
where N̂5(", ', K1, K2) is O∞ function as least of third order with respect to ", ' with coefficients
smoothly dependent on K1 and K2, and

Q̂00 = !̂00 − !̂2104!̂20 , Q̂01 = !̂01 − !̂10!̂112!̂20 ,
Q̂20 = !̂20, Q̂11 = !̂11.

With C = Q̂211Q̂20 ",D = Q̂311Q̂220 ', A = Q̂20Q̂11 #, it produces that
⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = R̂1 + R̂2' + "2 + "' + N̂6(", ', K1, K2), (29)

where N̂6(", ', K1, K2) is O∞ function as least of third order with respect to ", ' and
R̂1 = Q̂00Q̂411Q̂320 , R̂2 = Q̂01Q̂11Q̂20 .

Finally, we expand R̂1 and R̂2 in terms of K1 and K2 as follows:R̂1 = +̂10K1 + +̂01K2 + +̂20K21 + +̂11K1K2 + +̂02K22 + F(|K1, K2|2),R̂2 = Ŝ10K1 + Ŝ01K2 + Ŝ20K21 + Ŝ11K1K2 + Ŝ02K22 + F(|K1, K2|2),
in which

+̂10 = ("∗ − 4)4("∗ − 2)2("∗ − 1)3 , +̂01 = − ("∗ − 4)4"∗("∗ − 2)("∗ − 1)2 ,
+̂20 = 2("∗ − 4)3(4"3∗ − 27"2∗ + 36"∗ − 4)("∗ − 2)3("∗ − 1)6"∗ ,
+̂11 = − ("∗ − 4)3(16"4∗ − 115"3∗ + 200"2∗ − 106"∗ + 32)("∗ − 2)2("∗ − 1)5"∗ ,
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1272 YANG et al.

+̂02 = ("∗ − 4)3(32"4∗ − 244"3∗ + 511"2∗ − 386"∗ + 120)4("∗ − 2)("∗ − 1)4 ,
Ŝ10 = − ("∗ − 4)(("∗ − 3)"∗ + 1)("∗ − 2)("∗ − 1)3"∗ ,
Ŝ01 = ("∗ − 4)("∗(2"∗ − 7) + 2)2("∗ − 1)2 ,
Ŝ20 = −12"5∗ + 129"4∗ − 478"3∗ + 741"2∗ − 484"∗ + 1162("∗ − 2)2("∗ − 1)6"2∗ ,
Ŝ11 = 12"6∗ − 133"5∗ + 519"4∗ − 882"3∗ + 708"2∗ − 295"∗ + 50("∗ − 2)("∗ − 1)5"2∗ ,
Ŝ02 = −6"6∗ + 68"5∗ − 275"4∗ + 492"3∗ − 419"2∗ + 179"∗ − 30("∗ − 1)4"∗ . □

In view of

|||
T(R̂1, R̂2)T(K1, K2) |||K=0 = − ("∗ − 4)5"∗2("∗ − 2)2("∗ − 1)5 < 0

for 3−√52 < "∗ < 12 , system (29) (i.e., (7)) undergoes Bogdanov–Takens bifurcation of codimension
2 when (K1, K2) changes in a small neighborhood of (0,0) based on the results of Bogdanov44 and
Takens.45
Furthermore, according to the results of Perko,40 the local representation of bifurcation curves

around (0,0) can be written by the following:

(i) The saddle-node bifurcation curve is

SN = {(R̂1, R̂2)|R̂1 = 0, R̂2 ≠ 0}.
(ii) The Hopf bifurcation curve is

H = {(R̂1, R̂2)|R̂2 = √−R̂1, R̂1 < 0}.
(iii) The homoclinic bifurcation curve is

HL = {(R̂1, R̂2)|R̂2 = 57√−R̂1, R̂1 < 0}.
3.2 Degenerate cusp-type Bogdanov–Takens bifurcation of
codimension 3

Next, we study the cusp-type Bogdanov–Takens bifurcation of codimension 3. For system (7), we
select ,, 0, and 1 as bifurcation parameters and have
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YANG et al. 1273

⎧
⎪
⎨
⎪⎩

!"!# = "(1 − ") − "'"2+!"+,+K1 ,!'!# = '(0 + K2 − (1+K3)'" ), (30)

in which ,, 0, 1 > 0, ! > −2√,, and K = (K1, K2, K3) ∼ (0, 0, 0). We aim at transforming (30) to a
universal unfolding of a cusp-type degenerate Bogdanov–Takens bifurcation of codimension 3 as

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = G1 + G2' + G3"' + "2 ± "3' +U(", ', V), (31)

where

U(", ', V) = '2W(|", '|2) + W(|", '|5) + W(V)(W('2) + W(|", '|3))+W(V2)W(|", '|) (32)

with a series of near-identity transformations and | T(G1,G2,G3)T(K1,K2,K3) |K=0 ≠ 0. This indicates that system
(30) (i.e., system (7)) undergoes a Bogdanov–Takens bifurcation of codimension 3. We have the
following theorem.

Theorem 6. Assume that the conditions (???) in Theorem 2 and (12) are satisfied and ! = !2,
then system (7) admits a cusp 4∗("∗, 2("∗−1)3"∗"∗−3 ) of codimension 3. If we take ,, 0, and 1 as bifur-
cation parameters, then system (7) undergoes Bogdanov–Takens bifurcation of codimension 3 in a
small neighborhood of4∗("∗, 2("∗−1)3"∗"∗−3 ). Therefore, system (7) exhibits the coexistence of an unstable
homoclinic loop and a stable limit cycle, coexistence of two limit cycles (the inner is stable and the
outer is unstable), and a semistable limit cycle for different sets of parameters.

Proof. In the first step, we transform the equilibrium 4∗("∗, 2("∗−1)3"∗"∗−3 ) of system (30) when K = 0
to the origin by the transformation C = " − "∗,D = ' − 2("∗−1)3"∗"∗−3 and expand the resulting sys-
tem in power series around the origin. System (30) continues as (again, in every subsequent
transformation we rename C,D, A as ", ', #, respectively)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!"!# = ,00 + ,10" + ,01' + ,20"2 + ,11"' + ,30"3 + ,21"2' + ,40"4+,31"3' + F(|", '|4),!'!# = -00 + -10" + -01' + -20"2 + -11"' + -02'2 + -30"3 + -21"2'+ -12"'2 + -40"4 + -31"3' + -22"2'2 + F(|", '|4),
(33)

in which

,00 = K1("∗ − 3)("∗ − 1)"∗2("∗ − 1)2"∗ − K1("∗ − 3) ,
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1274 YANG et al.

,10 = 2"∗("∗ − 1)3(2("∗ − 1)"2∗ − K1("∗ − 3))(K1("∗ − 3) − 2("∗ − 1)2"∗)2 − 2"∗ + 1,
,01 = ("∗ − 3)"∗2("∗ − 1)2"∗ − K1("∗ − 3) ,
,20 = 4("∗ − 1)6"3∗ − 2K1("∗ − 3)("∗ − 2)("∗ − 1)3"∗("∗ + 1)(2("∗ − 1)2"∗ − K1("∗ − 3))3 − 1,
,11 = ("∗ − 3)(2("∗ − 1)"2∗ − K1("∗ − 3))(K1("∗ − 3) − 2("∗ − 1)2"∗)2 ,
,30 = 1(K1("∗ − 3) − 2("∗ − 1)2"∗)4 {2("∗ − 1)3"∗(4("∗ − 1)3"2∗(("∗ − 2)"∗

− 1) − 4K1("∗ − 1)("3∗ − 3"2∗ + "∗ − 1)("∗ − 3) + K21("∗ − 3)3)},
,21 = ("∗ − 3)(2("∗ − 1)3"2∗ − K1("∗ − 3)("∗ − 2)("∗ + 1))(2("∗ − 1)2"∗ − K1("∗ − 3))3 ,
,40 = 1(2("∗ − 1)2"∗ − K1("∗ − 3))5 {8"3∗("∗(("∗ − 2)"∗ − 1) − 2)("∗ − 1)7

+ 2K1"∗(K1("2∗ − 4"∗ + 3)3("2∗ + "∗ − 4) − 4("∗ − 3)("∗ − 1)5× (("∗ − 1)"∗(("∗ − 1)"∗ − 5) − 2)},
,31 = 1(K1("∗ − 3) − 2("∗ − 1)2"∗)4 {("∗ − 3)(4("∗ − 1)3"2∗(("∗ − 2)"∗ − 1)

− 4K1("∗ − 1)("3∗ − 3"2∗ + "∗ − 1)("∗ − 3) + K21("∗ − 3)3)},
-00 = 2K2("∗ − 3)("∗ − 1)3"∗ − 4K3("∗ − 1)6"∗("∗ − 3)2 ,
-10 = 2("∗ − 1)4(2K3("∗ − 1)2 − "∗ + 3)("∗ − 3)2 ,
-01 = K2 − 4K3("∗ − 1)3"∗ − 3 + "∗ − 1,
-20 = 2("∗ − 1)4(−2K3("∗ − 1)2 + "∗ − 3)("∗ − 3)2"∗ ,
-11 = 2("∗ − 1)(2K3("∗ − 1)2 − "∗ + 3)("∗ − 3)"∗ , -02 = −K3 − "∗−32("∗−1)2"∗ ,
-30 = 2("∗ − 1)4(2K3("∗ − 1)2 − "∗ + 3)("∗ − 3)2"2∗ ,
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YANG et al. 1275

-21 = 2("2∗ − 2K3("∗ − 1)3 − 4"∗ + 3)("∗ − 3)"2∗ ,
-12 = K3 − "∗−32("∗−1)2"2∗ , -40 = 2("∗ − 1)4(−2K3("∗ − 1)2 + "∗ − 3)("∗ − 3)2"3∗ ,
-31 = 2("∗ − 1)(2K3("∗ − 1)2 − "∗ + 3)("∗ − 3)"3∗ , -22 = −K3 − "∗−32("∗−1)2"3∗ .

It should be noted that ,00 = -00 = 0 and system (33) is simplified as system (21) when K = 0.
Making the transformation

C = ",D = ,00 + ,10" + ,01' + ,20"2 + ,11"' + ,30"3 + ,21"2' + ,40"4+,31"3' + F(|", '|4),
we have !"!# = ',!'!# = /00 + /10" + /01' + /20"2 + /11"' + /02'2 + /30"3 + /21"2'+ /12"'2 + /40"4 + /31"3' + /22"2'2 + F(|", '|4), (34)

in which

/00 = ("∗ − 1)"∗(K2 − 2K3("∗ − 1)3"∗ − 3 ) + 12K1(2K3("∗ − 1)2 − "∗ + 3),
/10 = K1(2K3("∗ − 1)2 − "∗ + 3)"∗ − 1 + (2"∗ − 1)(K2("∗ − 3) − 2K3("∗ − 1)3)"∗ − 3 ,
/01 = K2 − 4K3("∗ − 1)3"∗ − 3 + 2"∗("∗ − 1)22("∗ − 1)2"∗ − K1("∗ − 3)

+ K1(2K3("∗ − 1)2 − "∗ + 3)("∗ − 1)"∗ − 1,
/20 = K2 + K1K3 + 12(−2K3("∗ − 1)3"∗ − 3 − "∗ + 1) − K1("∗ − 3)2("∗ − 1)2 ,
/11 = K1("∗ − 1)2"2∗(K1("∗ − 3) − 2("∗ − 1)2"∗)2

{K1(−("∗ − 4)"∗
× ("2∗ − 4"∗ + 3)2 − K1("∗ − 3)3) + 2("∗ − 3)"2∗(("∗ − 3)"∗ + 3)
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1276 YANG et al.

× ("∗ − 1)3 + 2K3(K1("∗ − 3)("∗ − 1) − 2("∗ − 1)3"∗)2},
/02 = 2("∗ − 1)2"∗ − K1("∗ − 3)("∗ − 3)"∗ ⎛

⎜
⎜⎝

("∗ − 3)(2("∗ − 1)"2∗ − K1("∗ − 3))(K1("∗ − 3) − 2("∗ − 1)2"∗)2
− K3 − "∗−32("∗−1)2"∗ ⎞

⎟
⎟⎠
,

/30 = 12("∗ − 3)("∗ − 1)"3∗(2("∗ − 1)2"∗ − K1("∗ − 3)) {(4("∗ − 2)
× ("∗ − 1)2"4∗ + K1("∗ − 3)(−2("∗ − 2)"3∗ − K1("∗ − 3)("∗ − 1)))× (2K3("∗ − 1)2 − "∗ + 3)},

/21 = 1("∗ − 3)("∗ − 1)2"3∗(2("∗ − 1)2"∗ − K1("∗ − 3))3 {−K31("∗ − 3)3
× ("∗ − 1)2(2K3("∗ − 1)2 − "∗ + 3)"∗("∗ + 6) + K41("∗ − 3)4× (2K3("∗ − 1)2 − "∗ + 3) + 4("∗ − 1)6"5∗(4K3("∗ − 1)4 + ("∗ − 3)2× (2"∗ + 1)) + 2K21("∗ − 3)2("∗ − 1)2"2∗(6K3("∗ − 1)4("∗ + 2)− ("∗ − 3)("∗("∗("∗ + 6) − 11) + 6)) − 2K1("∗ − 3)("∗ − 1)4×"3∗(4K3(3"∗ + 2)("∗ − 1)4 + ("∗ − 3)("∗("∗(2"∗ − 13) + 5) − 6))},

/12 = 2("∗ − 1)2"∗ − K1("∗ − 3)("∗ − 3)"2∗
⎧
⎪
⎨
⎪⎩

2("∗ − 3)"∗(2("∗ − 1)2"∗ − K1("∗ − 3))3 (2("∗ − 1)3
×"2∗ − K1("∗ − 3)("∗ − 2)("∗ + 1)) − 2("∗ − 1)2"∗ − K1("∗ − 3)(K1("∗ − 3) − 2("∗ − 1)2"∗)2
× (2("∗ − 1)"2∗ − K1("∗ − 3))⎛⎜⎜⎝ ("∗ − 3)(2("∗ − 1)"2∗ − K1("∗ − 3))(K1("∗ − 3) − 2("∗ − 1)2"∗)2
− K3 − "∗−32("∗−1)2"∗ ⎞

⎟
⎟⎠
+ K3 − "∗−32("∗−1)2"∗

⎫
⎪
⎬
⎪⎭
,

/40 = 12("∗ − 3)("∗ − 1)2"3∗(2("∗ − 1)2"∗ − K1("∗ − 3))5 {2K61("∗ − 3)6
× ("∗ − 1)(−2K3("∗ − 1)2 + "∗ − 3) + 4K31("∗ − 3)3("∗ − 1)4"2∗× ("∗("∗(7("∗ − 2)"∗ + 26) + 7) − 8)(2K3("∗ − 1)2 − "∗ + 3) − K41
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YANG et al. 1277

× ("∗ − 3)4("∗ − 1)2"∗("2∗(13"∗(3"∗ − 8) + 101) − 12)× (2K3("∗ − 1)2 − "∗ + 3) + K51("∗ − 3)5("∗("∗("∗(15"∗ − 43)+ 42) − 10) − 2)(2K3("∗ − 1)2 − "∗ + 3) + 16("∗ − 1)9"6∗× (−K2((("∗ − 5)"∗ + 5)"2∗ + "∗ + 6) − 2("∗ − 3)2"2∗("∗ − 1)+ 2K3("∗("∗(3"∗ − 8) − 1) − 2)("∗ − 1)3) + 4K21("∗ − 3)2("∗ − 1)5×"3∗(4K3("∗("∗(6"2∗ − 20"∗ − 9) + 5) + 2)("∗ − 1)3 + ("∗ − 3)× (−K2("∗ − 3)"∗("2∗ + "∗ − 4) − "∗("∗("∗("∗(11"∗ − 49) + 27) + 9)+ 6) + 4)) + 16K1("∗ − 3)("∗ − 1)7"4∗(5("∗ − 3)2"3∗("∗ − 1) − 2K3× ("∗("∗("∗(6"∗ − 17) − 4) + 5) − 2)("∗ − 1)3 + K2("∗ − 3)× (("∗ − 1)"∗(("∗ − 1)"∗ − 5) − 2))},
/31 = 1("∗ − 3)("∗ − 1)2"3∗(2("∗ − 1)2"∗ − K1("∗ − 3))5 {K61("∗ − 3)6

× (−2K3("∗ − 1)2 + "∗ − 3) + K51("∗ − 3)5"∗("∗(10"∗ − 19) + 11)× (2K3("∗ − 1)2 − "∗ + 3) + 16("∗ − 1)9"6∗(3("∗ − 3)(("∗ − 2)"2∗ − 1)− 4K3("∗ − 1)3("∗ + 1)) + 4K21("∗ − 3)2("∗ − 1)5"3∗(("∗ − 3)("∗("∗× ("∗(31"∗ − 80) + 86) − 47) + 6) − 40K3("∗ − 1)3"∗(("∗ − 1)"∗ + 2))+ 8K1("∗ − 3)("∗ − 1)7"4∗(4K3("∗ − 1)3"∗(2"2∗ + "∗ + 7) − ("∗ − 3)× ("∗("∗("∗(13"∗ − 30) + 16) − 5) − 2)) + 2K31("∗ − 3)3("∗ − 1)3"3∗× (40K3("∗ − 1)3("∗(2"∗ − 3) + 3) − ("∗ − 3)("∗("∗(47"∗ − 128)+ 148) − 77)) + 2K41("∗ − 3)4("∗ − 1)2"2∗(("∗ − 3)("∗(21"∗ − 38) + 25)− 10K3("∗ − 1)2("∗(4"∗ − 7) + 5))},
/22 = (3 − "∗)(2("∗ − 1)2"∗ − K1("∗ − 3))32("∗ − 3)2("∗ − 1)2"4∗(K1("∗ − 3) − 2("∗ − 1)2"∗)6 {3K41("∗ − 3)4

× (2K3("∗ − 1)2 − "∗ + 3) + 8("∗ − 1)5"4∗(2K3("∗ − 1)3(5("∗ − 1)"∗+2) − ("∗ − 3)("∗("∗(7"∗ − 13) + 4) − 2)) + 12K1("∗ − 3)("∗ − 1)3×"3∗(("∗ − 3)("∗(3"∗(3"∗ − 7) + 16) − 6) − 2K3("∗ − 1)3("∗(7"∗ − 9)+ 4)) + 6K21("∗ − 3)2("∗ − 1)2"2∗(2K3("∗ − 1)2("∗(11"∗ − 17) + 8)− ("∗ − 3)("∗(13"∗ − 21) + 10)) + K31("∗ − 3)3(("∗ − 3)"∗(5"∗× (5"∗ − 9) + 22) − 2K3("∗ − 1)2"∗("∗(23"∗ − 41) + 20))}.
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1278 YANG et al.

Notice that /00 = /10 = /01 = /11 = 0 and system (34) can be simplified as system (22) when K = 0.
In what follows, we take transformations similar to the seven steps in Li et al.46 to transform

system (34) to system (31).

(I) Eliminating the '2-term from system (34) when K = 0. Using " = C + /02C22 , ' = D +/02CD, we have!"!# = ',!'!# = !00 + !10" + !01' + !20"2 + !11"' + !30"3 + !21"2' + !12"'2 + !40"4
+!31"3' + !22"2'2 + F(|", '|4), (35)

in which

!00 = /00, !10 = /10 − /00/02, !01 = /01, !20 = /20 + /00/202 − /10/022 ,
!11 = /11, !30 = /30 + 12(/10 − 2/00/02)/202, !21 = /21 + /02/112 ,
!12 = /12 + 2/202, !40 = /40 + /00/402 + 14(/02(/20 − 2/02/10) + 2/30)/02,
!31 = /31 + /02/21, !22 = /22 − /302 + 3/12/022 .

It is worth mentioning that !00 = !10 = !01 = !11 = 0 when K = 0.
(II) Taking "'2-term away from system (35) when K = 0. Using the scalings of coordinates " =C + !126 C3, ' = D + !122 C2D, we have

!"!# = ',!'!# = Q00 + Q10" + Q01' + Q20"2 + Q11"' + Q30"3 + Q21"2' + Q40"4 (36)

+ Q31"3' + Q22"2'2 + F(|", '|4),
in which

Q00 = !00, Q10 = !10, Q01 = !01, Q20 = !20 − !00!122 , Q11 = !11,
Q30 = !30 − !10!123 , Q21 = !21, Q40 = !40 + !00!2124 − !12!206 ,
Q31 = !31 + !11!126 , Q22 = !22.
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YANG et al. 1279

We have that Q00 = Q10 = Q01 = Q11 = 0 when K = 0.
(III) Removing the "2'2-term in system (36) when K = 0. Setting " = C + Q2212 C4, ' = D +Q223 C3D, system (36) can be expressed by

!"!# = ',!'!# = 800 + 810" + 801' + 820"2 + 811"' + 830"3 + 821"2' (37)

+840"4 + 831"3' + F(|", '|4),
in which

800 = Q00, 810 = Q10, 801 = Q01, 820 = Q20, 811 = Q11,
830 = Q30 − Q00Q223 , 821 = Q21, 840 = Q40 − Q10Q224 , 831 = Q31.

Again, 800 = 810 = 801 = 811 = 0 when K = 0.
(IV) Removing the "3 and "4-term in system (37) when K = 0. Notice that 820 = 12 (1 − "∗) +W(K),820 ≠ 0 for small K since 0 < "∗ < 12 . Making the following scalings " = C − 8304820C2 +

158230−16820840808220 C3, ' = D,!# = (1 − 8302820C + 458230−48820840808220 C2)!A, we have
!"!# = ',!'!# = H00 + H10" + H01' + H20"2 + H11"' + H30"3 + H21"2' + H40"4 (38)

+ H31"3' + F(|", '|4),
where

H00 = 800, H10 = 810 − 8008302820 , H01 = 801,
H20 = 820 + 98008230168220 − 3(5810830 + 4800840)20820 ,
H11 = 811 − 8018302820 , H30 = 810(358230 − 32820840)408220 ,
H21 = 821 − 3(20811820830 + 801(16820840 − 158230))

808220 ,
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1280 YANG et al.

H40 = 810830(16820840 − 158230)648320 ,
H31 = 831 + 7811823088220 − 5821830 + 48118405820 .

Again, H00 = H10 = H01 = H11 = H30 = H40 = 0 when K = 0.
(V) Taking the "2'-term away from system (38) when K = 0. Observing that H20 = 12 (1 − "∗) +W(K), H20 ≠ 0 for small K since 0 < "∗ < 12 and letting

" = C, ' = D + H213H20D2 + H22136H220D3,!A = ⎛
⎜
⎜⎝
1 + H213H20D + H22136H220D2⎞⎟

⎟⎠
!#,

we can rewrite system (38) as!"!# = ',!'!# = ℎ00 + ℎ10" + ℎ01' + ℎ20"2 + ℎ11"' + ℎ31"3' +U1(", ', K), (39)

in which

ℎ00 = H00, ℎ10 = H10, ℎ01 = H01 − H00H21H20 ,
ℎ20 = H20, ℎ11 = H11 − H10H21H20 , ℎ31 = H31 − H21H30H20 .

Here ℎ00 = ℎ10 = ℎ01 = ℎ11 = 0 when K = 0, andU1(", ', K) has the property of (32).
(VI) Changing ℎ20 and ℎ31 to 1 in system (39). Direct computation shows that ℎ20 = 1−"∗2 +W(K) > 0, ℎ31 = 3"3∗−7"2∗+3"∗−112("∗−1)4"∗ + W(K) < 0 for small K because of 0 < "∗ < 12 . Using the

following transformation:

" = ℎ 1520ℎ− 2531 C, ' = ℎ 4520ℎ− 3531 D, # = ℎ− 3520 ℎ 1531A,
system (39) continues as!"!# = ',!'!# = X00 + X10" + X01' + "2 + X11"' + "3' +U2(", ', K), (40)
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YANG et al. 1281

in which

X00 = ℎ00ℎ 4531ℎ− 7520 , X10 = ℎ10ℎ 2531ℎ− 6520 ,
X01 = ℎ01ℎ 1531ℎ− 3520 , X11 = ℎ11ℎ− 1531 ℎ− 2520 .

Here, X00 = X10 = X01 = X11 = 0 when K = 0, andU2(", ', K) has the property of (32).
(VII) Eliminating the X10-term in system (40). Ultimately, making the following transformations:

" = C − X102 , ' = D,
we can change (40) to

!"!# = ',!'!# = G1 + G2' + G3"' + "2 + "3' +U3(", ', K), (41)

in which

G1 = X00 − 14X210, G2 = X01 − X3108 − X11X102 , G3 = X11 + 34X210.
Here, G1 = G2 = G3 = 0 when K = 0 and U3(", ', K) has the property of (32). Taking into
consideration 0 < "∗ < 12 and carrying out a direct calculation with the assistance of
Mathematica, we have

|||||
T(G1, G2, G3)T(K1, K2, K3) |||||K=0 = −2 85 ("2∗ − 6"∗ + 11)(3"3∗ − 7"2∗ + 3"∗ − 11) 45

(1 − "∗) 285 " 45∗
≠ 0.

System (41) is exactly (31). According to the results in Dumortier et al.,47 Chow et al.,48
or Li et al.,46 we can derive that system (41) is the universal unfolding of Bogdanov–
Takens singularity (cusp case) of codimension 3. The remanent part U3(", ', K) satisfying
the property of (32) has no influence on the bifurcation phenomena. As (,, 0, 1) moves
around (, + K1, 0 + K2, 1 + K3), the dynamical behaviors of system (7) in a small neigh-
borhood of the positive equilibrium E∗("∗, 2("∗−1)3"∗"∗−3 ) are equivalent to system (41) in a
small neighborhood of (0, 0, 0) as (G1, G2, G3) moving around (0, 0, 0). This completes the
proof. □

For the normal form (41), we can obtain the Hopf bifurcation surface and homoclinic bifur-
cation surface in the (G1, G2, G3) parameter space by a similar method used for analyzing the
codimension 3 Bagdanov–Takens bifurcation in Yu and Zhang.49 Obviously, the two equilibria
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1282 YANG et al.

E± of (41) are
E±(±√−G1, 0), for G1 < 0.

The Jacobian matrix of system (41) at 4± is expressed by
:(4±) = [0 1±2√−G1 G2 ± G3√−G1 ∓ G1√−G1

],
which suggests that E+ is a saddle and E− is focus or node. It is clear that the plane

SN = {(G1, G2, G3)|G1 = 0},
excluding the origin in the parameter space is the saddle-node bifurcation surface.
Next, we focus onHopf bifurcation and generalizedHopf bifurcation fromwhichmultiple limit

cycles can occur. Following the procedure described in Yu and Zhang,49 we have the following
result.

Theorem 7. For system (41), Hopf bifurcation occurs from the equilibrium E− at any point on the
critical surface defined by

H = {(G1, G2, G3)|G2 − (G3 − G1)√−G1 = 0}.
The generalized Hopf bifurcation occurs from the equilibrium E− at any point on the critical line,
which is the intersection of the critical surfaceH and the generalized critical surface GH defined by

GH = {(G1, G2, G3)|G3 − 3G1 = 0}.
This yields two small-amplitude limit cycles. The inner limit cycle is stable and the outer is unstable.

Now we are committed to investigating the homoclinic bifurcation surface as well as the
degenerate homoclinic bifurcation points on the surface. We have the following theorem.

Theorem 8. For system (41), the homoclinic bifurcation can occur from the critical surface defined
by

HL = {(G1, G2, G3)|G2 − 57(G3 − 10355 G1)√−G1 = 0}, (42)

and the degenerate homoclinic bifurcation occurs from any point on the critical line, which is the
intersection of the critical surfaceHL and the degenerate critical surface DHL defined by

DHL = {(G1, G2, G3)|G2 + (G3 − G1)√−G1 = 0}. (43)

This leads to the occurrence of two limit cycles.
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YANG et al. 1283

3.3 Degenerate focus-type Bogdannov–Takens bifurcation of
codimension 3

According to Theorem 4, system (7) may undergo degenerate focus-type Bogdannov–Takens
bifurcation of codimension 3 under appropriate parameters. To this end, we take ,, 0, and 1 as
bifurcation parameters and consider the following unfolding system of system (7):

⎧
⎪
⎨
⎪⎩

!"!# = "(1 − ") − "'"2+!"+(,+$1) ,!'!# = '(0 + $2 − (1+$3)'" ), (44)

where , = (1−!)327 , 0 = !+23 , 1 = 9(!+2)2 , max{−2√,,−2} < ! < 1, and $ = ($1, $2, $3) ∼ (0, 0, 0).
The following is our main theorem.

Theorem 9. Suppose that the condition (??) in Theorem 2 is satisfied and 0 = !+23 , then system (7)

has a nilpotent focus of codimension 3, 4∗("∗, 01 "∗) = (1−!3 , (1−!)(!+2)381 ), where −2 < ! < 1. Fur-
thermore, when parameters (,, 1, 0) change in a small neighborhood of ( (1−!)327 , 9(!+2)2 , !+23 ), wheremax{−2√,,−2} < ! < 1, system (7) undergoes a degenerate focus-type Bogdanov–Takens bifurca-
tion of codimension 3 in a small neighborhood of4∗. Therefore, with certain parameter values, system
(7) admits one or two Hopf bifurcation surfaces, one or two homoclinic bifurcation surfaces, one
saddle-node loop bifurcation surface, and one or two saddle node bifurcation surfaces. Thus, system
(7) has three hyperbolic positive equilibria, two limit cycles, bistable states (one stable equilibrium
and one stable limit cycle or two stable equilibria), or tristability states (two stable equilibria and one
stable limit cycle) with appropriate parameter values.

Proof. Making transformations (i), (ii), (iii) for system (44), which have been presented in the
proof of Theorem 4, we derive an equivalent system

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!"!# = ' + ,∗00($) + ,∗10($)" + ,∗01($)' + ,∗20($)"2 + ,∗11($)"' + ,∗02($)'2+,∗30($)"3 + ,∗21($)"2' + ,∗12($)"'2 + ,∗03($)'3 + F(|", '|3),!'!# = -∗00($) + -∗10($)" + -∗01($)' + -∗20($)"2 + -∗11($)"' + -∗02($)'2 + -∗30($)"3+ -∗21($)"2' + -∗12($)"'2 + -∗03($)'3 + F(|", '|3),
where ,∗7Z($) and -∗7Z($) are smooth functions satisfying ,∗00(0) = ,∗10(0) = ,∗01(0) = ,∗20(0) =,∗11(0) = ,∗02(0) = -∗00(0) = -∗10(0) = -∗01(0) = -∗20(0) = -∗02(0) = 0,,30(0)∗ = ,∗30,,∗21(0) =,∗21,,∗12(0) = ,∗12,,∗03(0) = ,∗03, -∗11(0) = -∗11, -∗30(0) = -∗30, -∗21(0) = -∗21, -∗12(0) = -∗12, -∗03(0) = -∗03,
and ,∗30,,∗21,,∗12,,∗03, -∗11, -∗30, -∗21, -∗12, -∗03 are given in system (25).
Using

" = C + -∗126 C3 + ,∗12 + -∗032 C2D + ,∗03CD2,
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1284 YANG et al.

' = D + -∗122 C2D + -∗03CD2,
we can simplify the third-order terms when $ = 0 and get (for convenience, in every subsequent
transformation, we rename C,D, A as ", ', #, respectively)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!"!# = ' + /∗00($) + /∗10($)" + /∗01($)' + /∗20($)"2 + /∗11($)"' + /∗02($)'2+ /∗30($)"3 + /∗21($)"2' + /∗12($)"'2 + /∗03($)'3 + F(|", '|3),!'!# = !∗00($) + !∗10($)" + !∗01($)' + !∗20($)"2 + !∗11($)"' + !∗02($)'2+!∗30($)"3 + !∗21($)"2' + !∗12($)"'2 + !∗03($)'3 + F(|", '|3).
(45)

Under the following near-identity transformation

C = ",D = ' + /∗00($) + /∗10($)" + /∗01($)' + /∗20($)"2 + /∗11($)"' + /∗02($)'2+ /∗30($)"3 + /∗21($)"2' + /∗12($)"'2 + /∗03($)'3 + F(|", '|3),
system (45) continues as

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = ',!'!# = Q∗00($) + Q∗10($)" + Q∗01($)' + Q∗20($)"2 + Q∗11($)"' + Q∗02($)'2+ Q∗30($)"3 + Q∗21($)"2' + Q∗12($)"'2 + Q∗03($)'3 + F(|", '|3), (46)

where Q∗7Z($) have complicated expressions of /∗7Z($) and !∗7Z($) and are omitted to save space.
Lastly, following the procedure in Xiao and Zhang,50 system (46) can be expressed by

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"!# = I∗($)G∗($)',!'!# = −Q∗30($)I∗($) [K1($) + K2($)G∗($)" − G∗3"3] + Q∗21($)'[K3($) + [∗($)G∗($)"+ G∗2($)"2] + '2\∗1 (", ', $) + F(|", '|3),
in which

K1($) = −Q∗00($)Q∗30($) + Q∗10($)Q∗20($)3Q∗230($) − Q∗320($)9Q∗330($) + Q∗320($)27Q∗330($) ,
K2($) = −Q∗10($)Q∗30($) + Q∗220($)3Q∗230($) ,
K3($) = −Q∗01($)Q∗21($) − Q∗11($)Q∗20($)3Q∗21Q∗30($) + Q∗21Q∗220($)9Q∗21Q∗230($) ,
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YANG et al. 1285

[($) = Q∗11($)Q∗21($) + 2Q∗20($)3Q∗30($) ,
\∗1 (", ', $) = I∗($)[Q∗02($) + Q∗12($)Q∗220($)9Q∗230($) + I∗($)Q∗03($)' + G∗($)Q∗12($)"].

By computation with Mathematica, one obtains that Q∗30(0) = − 34(!+2)7 < 0 and Q∗21(0) =− 3(4−!)(5−2!)8(1−!)(!+2)8 < 0. Thus, we can take
I∗($) = −Q∗30($)Q∗21($)G∗($), G∗($) =

√√√√−Q∗30($)Q∗221($) ,
in the small neighborhood of $ = (0, 0, 0). Eventually, taking a change of time A = −Q∗30($)Q∗21($) #, we get

⎧
⎪
⎨
⎪⎩

!"!# = ',!'!# = R∗1($) + R∗2($)" − "3 + '[R∗3($) + [∗1($)" + "2] + '2\∗2 (", ', $) + F(|", '|3), (47)

in which [∗1($) = Q∗21($)√−Q∗30($)Q∗30($) [∗($),\∗2 (", ', $) = −Q∗21($)Q∗30($)\∗1 (", ', $), and
R∗1($) = Q∗321 ($)Q∗30($)√−Q∗30($)K1($), R∗2($) = −Q∗221 ($)Q∗30($)K2($), R∗3($) = −Q∗321 ($)Q∗30($)K3($).

In view ofmax{−2√,,−2} < ! < 1, tedious calculation leads to
|||
T(R∗1($),R∗2($),R∗3($))T($1, $2, $3) |||$=0 ≠ 0 and [∗1(0) = √! + 23 < 2√2.

Based on the results inRefs. [25, 50], we know that system (47) is a standard family of Bogdanov–
Takens singularity of codimension 3 (focus case), which indicates that system (7) exhibits a
degenerate focus-type Bogdanov–Takens bifurcation of codimension 3 by choosing ,, 0, and 1
as bifurcation parameters in a small neighborhood of ( (1−!)327 , 9(!+2)2 , !+23 ). □
3.4 Hopf bifurcation

From the analysis Theorem 3 (I)(i), system (7) may undergo Hopf bifurcation around 41 (or 43).
This will be studied in detail in this subsection.
Performing the same process as (13) to (17), we obtain that

⎧
⎪
⎨
⎪⎩

!"!# = 1+3 "2("2 + !" + ,)(+ − ") + (1+!+,)(1−+)+3 "2',!'!# = 0'("2 + !" + ,)(" − '), (48)
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1286 YANG et al.

where the parameters satisfy that 0 < + < 1,,, 0 > 0,! > −2√, and transformation (14) guaran-
tees that the qualitative properties between system (48) and system (7) are the same. For simplicity,
we denote

0∗ = −, + !(+ − 2) + 2+ − 3+3(, + ! + 1) > 0.
We have the following theorem.

Theorem 10. Assume that 0 < + < 1,,, 0 > 0,! > −2√,. Then, Ẽ(1, 1) is a equilibrium of system
(48). Furthermore, if (, − 1)+ + ! + 2 > 0, then we have
(I) when 0 < 0∗, Ẽ(1, 1) is an unstable hyperbolic node or focus;
(II) when 0 > 0∗, Ẽ(1, 1) is a stable hyperbolic node or focus;
(III) when 0 = 0∗, Ẽ(1, 1) is a weak focus or center.
Proof. The Jacobian matrix of system (48) at Ẽ(1, 1) is

:(Ẽ(1, 1)) = ⎛
⎜
⎜⎝

−,+!(+−2)+2+−3+3 − (+−1)(,+!+1)+30(, + ! + 1) 0(−(, + ! + 1))⎞⎟⎟⎠.
The determinant and the trace of :(Ẽ(1, 1)) are

det(:(Ẽ)) = 0(, + ! + 1)((, − 1)+ + ! + 2)+3 ,
and

tr(:(Ẽ)) = −0+3(, + ! + 1) + , − !(+ − 2) − 2+ + 3+3 ,
respectively. Because of 0 < + < 1,,, 0 > 0,! > −2√,, and (, − 1)+ + ! + 2 > 0, one gets thatdet(:(Ẽ)) > 0, and tr(:(Ẽ)) = 0(> 0, < 0) if 0 = 0∗(0 < 0∗, 0 > 0∗). We complete the proof. □
In the subsequent work, we focus on the case 0 = 0∗ of Theorem 10. Denoting

I11 = (2+2 + (1+ + (0, (49)

where

(2 = 2,!2 + (, + 1)3! + 2,(3,2 − 2, + 3),(1 = −3,!3 − (6,2 + 15, + 1)!2 − (6,3 + 19,2 + 24, + 3)!−,(,3 + 15,2 + 3, + 21),(0 = !3 + (−,2 + 3, + 6)!2 + (−3,2 + 14, + 9)! + ,3 − 3,2 + 15, + 3,
we have the following theorems.
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YANG et al. 1287

Theorem 11. Suppose that 0 < + < 1, ,, 0 = 0∗ > 0,! > −2√,, and (, − 1)+ + ! + 2 > 0. Then
we have

(?) if I11 < 0, then 4̃(1, 1) is a stable weak focus with multiplicity 1 and one stable limit cycle
bifurcates from 4̃(1, 1) by a supercritical Hopf bifurcation;(??) if I11 > 0, then 4̃(1, 1) is an unstable weak focus with multiplicity 1 and one unstable limit
cycle bifurcates from 4̃(1, 1) by a subcritical Hopf bifurcation;(???) ifI11 = 0, then 4̃(1, 1) is aweak focuswithmultiplicity at least two and system (48)may exhibit
a degenerate Hopf bifurcation.

Proof. Introducing C = " − 1,D = ' − 1, and 0 = 0∗ into system (48), we derive an equivalent
system to (48) as follows (for convenience, in every subsequent transformation, we renameC,D, A
as ", ', #, respectively).

!"!# = -̃" − ]̃' + −2, + 2!+ − 5! + 5+ − 9+3 "2 − 2(+ − 1)(, + ! + 1)+3 "' +
−, + !(+ − 4) + 4+ − 10+3 "3 − (+ − 1)(, + ! + 1)+3 "2' + F(|", '|3),

!'!# = -̃" − -̃' + (! + 2)(−, + !(+ − 2) + 2+ − 3)+3(, + ! + 1) "2 − , − 1+3(, + ! + 1)
× (, − (! + 2)+ + 2! + 3)"' + , − (! + 2)+ + 2! + 3+3 '2
+ −, + !(+ − 2) + 2+ − 3+3(, + ! + 1) "3 + (! + 1)(−, + !(+ − 2) + 2+ − 3)+3(, + ! + 1) "2'
+ (! + 2)(, − (! + 2)+ + 2! + 3)+3(, + ! + 1) "'2 + F(|", '|3), (50)

in which -̃ = −,+!(+−2)+2+−3+3 > 0 on account of 0∗ > 0 and ]̃ = (+−1)(,+!+1)+3 .

Let ^ = √-̃]̃ − -̃2 and
" = ]̃C, ' = -̃C − ^D, !# = 1̂ !A. (51)

It follows from (50) that !"!# = ' + _(", '),!'!# = −" + `(", '),
in which

_(", ') = _20"2 + _11"' + _30"3 + _21"2' + F(|", '|3),`(", ') = `20"2 + `11"' + `02'2 + `30"3 + `21"2' + `12"'2 + F(|", '|3),
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1288 YANG et al.

and

_20 = − (+ − 1)(, + ! + 1)(! − + + 3)+3√(−, + !(+ − 2) + 2+ − 3)((, − 1)+ + ! + 2) ,
_11 = 2(+ − 1)(, + ! + 1)+3 ,
_30 = − (+ − 1)2(, + ! + 1)2(2! − 2+ + 7)+6√(−, + !(+ − 2) + 2+ − 3)((, − 1)+ + ! + 2) ,
_21 = (+ − 1)2(, + ! + 1)2+6 ,
`20 = 1+3((, − 1)+ + ! + 2) {+(,2 + 2(, − 8)! − 3!2 − 17) + 2,! + 5,

++2(−,(2! + 3) + 3! + 5) + 4!2 + 15! + 13},
`11 = 1+3

√−, + !(+ − 2) + 2+ − 3(, − 1)+ + ! + 2 (3(, − 1)+ − , + 2! + 5),
`02 = −, + !(+ − 2) + 2+ − 3+3 ,
`30 = + − 1+6((, − 1)+ + ! + 2) {21 + !(!(4! + 23) + 39) − 26+ + (3!(! + 3)

+ 7)+2 − !(!(3! + 22) + 43)+ + ,2(−(! + 6)+ + 2! ++2 + 7)+,(!(−(! + 1)+2 − 2(! + 8)+ + 5! + 23) − 16+ + 20)},
`21 = + − 1+6

√−, + !(+ − 2) + 2+ − 3(, − 1)+ + ! + 2 {,2(+ − 1) + 3,(! + 1)+ − ,!
+, + 2!(! − 2+ + 5) − 6+ + 10},

`12 = (! + 2)(+ − 1)(−, + !(+ − 2) + 2+ − 3)+6 .
In accordance with the formula in Perko40 and by Mathematica, the first Lyapunov coefficient

can be calculated by

I1 = (+ − 1)2I118+6((, − 1)+ + ! + 2)√(−, + !(+ − 2) + 2+ − 3)((, − 1)+ + ! + 2) ,
where I11 is expressed in (49). In view of (, − 1)+ + ! + 2 > 0, the sign of I1 is determined byI11 and thus the proof is finished. □
Following we further study the case (III) in Theorem 11 to determine the exact codimension

of Hopf Bifurcation around 4̃(1, 1). A complicated calculation with the assistant of Maple and

 14679590, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12675 by U
niversity O

f Florida, W
iley O

nline Library on [14/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



YANG et al. 1289

Mathematica yields the second Lyapunov coefficients as follows:

I2 = √(−, + !(+ − 2) + 2+ − 3)((, − 1)+ + ! + 2)288+12((, − 1)+ + ! + 2)4(, − (! + 2)+ + 2! + 3)2I22,
where I22 is given in the Appendix, then we have the following:
Theorem 12. Suppose that 0 < + < 1, ,, 0 = 0∗ > 0,! > −2√,, and (, − 1)+ + ! + 2 > 0 andI11 = 0, then
(?) ifI22 < 0, then 4̃(1, 1) is a stableweak focuswithmultiplicity 2, system (48) undergoes a degen-

erateHopf bifurcation of codimension 2 and there can be up to two limit cycles bifurcating from4̃, the outer one being stable;(??) if I22 > 0, then 4̃(1, 1) is an unstable weak focus with multiplicity 2, model (48) undergoes a
degenerateHopf bifurcation of codimension 2and there canbeup to two limit cycles bifurcating
from 4̃, the outer one being unstable;(???) if I22 = 0, then 4̃(1, 1) is a weak focus withmultiplicity at least 3 andmodel (48) may undergo
a degenerate Hopf bifurcation of codimension at least 3.

4 NUMERICAL ANALYSIS

In this section, we give some numerical simulations and phase portraits for system (7) by using
the ODE packages in AUTO07P.51 The main objective of this section is to illustrate the complex
dynamics under some primary parameters. We select the following set of parameters value for
system (7): , = 0.03, 0 = 0.5515528128088303, 1 = 1.9107764064044153,! = 0.05.
4.1 b as the primary bifurcation parameter

First, 1 is used as the primary bifurcation parameter. We have two subcritical
Hopf bifurcation points: cd1(1.36947 × 10−1, 4.79873 × 10−2) when 1 = 1.57403, andcd2(4.10619 × 10−1, 1.29156 × 10−1) when 1 = 1.75352. The first Lyapunov coefficients ofcd1 and cd2 are, respectively, 1.020204 × 101 and 8.618838; two saddle-node bifurcation points:̄e\1(3.57894 × 10−1, 1.13000 × 10−1) when 1 = 1.74689, ̄e\2(2.71488 × 10−1, 8.54400 × 10−2)
when 1 = 1.75257. If we continue one-parameter periodic orbit bifurcation curve, then we
have two saddle-node bifurcation points e\1(4.01146 × 10−1, 1.35392 × 10−1) with 1 = 1.51324,
period = 1.90645 × 101, and e\2(4.10647 × 10−1, 1.29165 × 10−1) with 1 = 1.76613, period =4.34988 × 101, respectively. The results are shown in Figure 4A,B, where the solid curve and the
dotted curve represent the stable and unstable equilibrium or limit cycle, respectively.
Within the context of an outbreakmodeled by a systemwithmultiple stable solutions, a charac-

teristic is commonly referred to as metastability in Wollkind et al.12 or subcritical instability, with
one such solution characterized by a low prey level and another by a high prey level. Outbreaks
are induced either by changing a control parameter or by perturbing the population so that the
populations move from the basin of attraction of low level solution through a threshold into the
basin of attraction of the high level solution. The stable states are the two positive equilibrium
points separated by a saddle point.

 14679590, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12675 by U
niversity O

f Florida, W
iley O

nline Library on [14/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1290 YANG et al.

(A) (B)

F IGURE 4 One-parameter bifurcation diagram of system (7) for 1, wherecd1 andcd2 denote the
subcritical Hopf bifurcation points, e\1 and e\2 denote the saddle-node bifurcation point (red) of limit cycle.

We now consider the implications of the bifurcation diagram in Figure 4A,B with respect to
the global behavior of system (7). Four important values of 1 are indicated on the horizontal axis.
The first two are the values 12 and 13 for the occurrence of Hopf bifurcation as described above,
and the remaining two are 11 = 1.511324 and 14 = 1.76613 for the occurrence of saddle-node
bifurcation point of limit cycle as the parameter values vary. The lowest value for which there is
a periodic solution corresponds to the limit point mentioned above. These four values divide the
interval into five subintervals. Within each subinterval, the system possesses the same qualitative
global behavior. We note that, for this reason, Figure 4 only shows those values of 1 given by 1.4 <1 < 1.92. For 1 < 11 and 1 > 14, the behavior is qualitatively equivalent to that for 1.4 < 1 < 11
and 14 < 1 < 1.92, respectively.
Given any fixed value of 1, the global behavior of system (7) can be deduced by examining the

intersection of the bifurcation diagramwith a vertical line through that value of 1. Thus, we must
consider all branches of the diagram above with the value of 1 under consideration. We canmake
the following conclusions concerning the global behavior. For 0 < 1 < 11, system (7) possesses a
globally stable equilibriumpoint exhibiting lowpopulation levels. For 1 > 14 the systempossesses
a globally stable equilibrium point exhibiting relatively high population levels. For 11 < 1 < 14,
the system possesses an unstable equilibrium point surrounded in the phase plane by a globally
stable limit cycle. The amplitude of the prey oscillations increases as 1 increases, as shown in
Figure 4A.
Since the dynamics between 11 and 12 are similar to that between 13 and 14, we only need to

consider the behavior exhibited by system (7) in the interval 11 < 1 < 12. Referring to the vertical
line in Figure 4 at 11 = 1.511324, the point labeled [ corresponds to a stable fixed point, while d
corresponds to an unstable small limit cycle and O corresponds to a stable large limit cycle. Thus,
for 1 in this interval, system (7) has multiple solutions consisting of a stable equilibrium point
surrounded in the phase plane by an unstable limit cycle, which in turn is surrounded by a stable
large limit cycle, with the unstable small limit cycle acting as the separatrix between the basin
of attraction of the equilibrium point and that of the stable limit cycle. Thus, populations lying
inside the unstable limit cycle will tend to the fixed point while populations outside this region
will tend to the stable limit cycle.
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YANG et al. 1291

(A) (B)

(C)

F IGURE 5 Plots of the dimensional variables " and ' illustrate population densities at (A) 1 = 1.45, the
initial value is (0.48,0.16); (B) 1 = 1.55, the initial value is (0.739365,0.012422); (C) 1 = 1.85, the initial value is
(0.66,0.24).

We find that the consequence of this interval ofmetastability is due to the presence of hysteresis
behavior as 1 varies. If we assume populations are initially at a steady-state solution and only vary
the parameter 1, the behavior exhibited for 11 < 1 < 12 will depend on where 1 is initially. When1 is initially less than 11 and increases to fall in the interval (11, 12), the populations will start
at a globally stable equilibrium point and remain until 1 exceeds 12, at which the system will
spontaneously jump to the branch of stable oscillations causing the populations to spiral out to
the limit cycle. When 1 is initially greater than 12 and decreases, populations will initially be
oscillating as determined by the globally stable limit cycle. As 1 decreases to below 12 (into the
interval of metastability), these populations will be within the basin of attraction of the limit cycle
and continue to oscillate until 1 decreases below 11, at which the systemwill spontaneously jump
to the branch of stable fixed point solutions causing the oscillations to diminish as the populations
spiral in toward the fixed point. As will be discussed below, both the metastability and hysteresis
behaviormay result in a population outbreak. Thus, if the population undergoing an outbreak is a
pest species, the economical and ecological consequence can be severe.We canmake the following
conclusions concerning the global behavior. For 0 < 1 < 11, system (7) possesses a globally stable
equilibrium exhibiting a relatively low level. For 1 > 14, the system possesses a globally stable
equilibrium exhibiting a relatively high level. See the results with 1 = 1.45 in Figure 5A, and with
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1292 YANG et al.

(A) (B)

F IGURE 6 Two-parameter bifurcation diagram with 1 vs. , of system (7) where e\,c,cF+, e\f/ denote
the saddle-node bifurcation curve (blue), Hopf bifurcation curve (red), homclinic bifurcation curve (green), and
saddle-node curve (black) of limit cycles, respectively. (A) The whole bifurcation diagram for 1 vs. ,. (B) The first
zoomed bifurcation diagram and 12 regions for 1 vs. ,.
1 = 1.55 in Figure 5B. For 11 < 1 < 12, the system possesses an unstable equilibrium surrounded
by a globally stable limit cycle.

4.2 g and b as the primary bifurcation parameters

In this subsection, we use , and 1 as the primary bifurcation parameters. Then, we obtain
two-parameter bifurcation diagrams including Hopf bifurcation curve (red), saddle-node bifur-
cation curve (blue), homoclinic bifurcation curve (green), and saddle-node bifurcation curve
(black) of limit cycles. There are one codimension 2 Bagdanov–Takens bifurcation pointdh(4.48447 × 10−1, 1.29178 × 10−1) as 1 = 1.06798 × 10−2,, = 1.91475, one codimension 2 cusp
bifurcation point Oi(3.16667 × 10−1, 1.01042 × 10−1) as 1 = 3.17546 × 10−2,, = 1.72858, two
generalized Hopf bifurcation points: jc1(3.82518 × 10−1, 1.27262 × 10−1) as 1 = 4.06517 ×10−2,, = 1.65784, jc2(2.03103 × 101, 7.79707 × 10−2) as 1 = 4.64371 × 10−2,, = 1.43672. The
secondLyapunov coefficients ofjc1 andjc2 are, respectively,−2.199578 × 102 and−4.465886 ×102; Interestingly, there is only one global saddle-node bifurcation curve of limit cycle, which
is connecting the two generalized Hopf bifurcation points jc1 and jc2, rather than distinct
saddle-node bifurcation curves of limit cycles emanating from jc1 and jc2, respectively. The
limit cycles emanating from the upper Hopf bifurcation branch are approaching the homoclinic
cycle, however, the limit cycle curve with two saddle-nodes emanating from the Hopf bifurca-
tion branch below will persist until the saddle-node point of limit cycle disappears. This has been
illustrated in Figure 6A,B.
The whole bifurcation plane in Figure 6A, which is zoomed three times for clarity, shown in

Figures 6B and Figure 7A,B, are divided into 12 regions. The corresponding phase portraits are
given respectively in Figure 8. More specifically, we have region I∶ , = 0.0458086, 1 = 1.49797,
a stable limit cycle contains an unstable hyperbolic positive equilibrium; II∶ , = 0.0224992, 1 =1.61114, a big stable limit cycle contains a little unstable limit cycle enclosing a stable hyper-
bolic positive equilibrium, bistability states; III∶ , = 0.0194589, 1 = 1.48903, a stable hyperbolic
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YANG et al. 1293

(A) (B)

F IGURE 7 Zoomed two-parameter bifurcation diagram of system (7) where e\,c,cF+, e\f/ denote the
saddle-node bifurcation curve (blue), Hopf bifurcation curve (red), homclinic bifurcation curve (green), and
saddle-node curve (black) of limit cycles, respectively. (A) The second zoomed bifurcation diagram in Figure 6B
for 1 vs. ,. (B) The third zoomed bifurcation diagram in Figure 7A for 1 vs. ,.
positive equilibrium; IV∶ , = 0.0108446, 1 = 1.96406, an unstable limit cycle contains a stable
hyperbolic positive equilibrium, moreover, there exists a saddle point and a stable hyperbolic
positive equilibrium, bistability states; V∶ , = 0.0185468, 1 = 1.91789, three hyperbolic positive
equilibria (a saddle point, a stable focus, and an unstable focus) coexist; VI∶ , = 0.0250827, 1 =1.80629, a stable limit cycle contains three hyperbolic positive equilibria (a saddle point, a sta-
ble focus, and an unstable focus), bistability states; VII∶ , = 0.0147907, 1 = 1.89027, a big stable
limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic positive equilibrium,
moreover, there exists a saddle point and a stable hyperbolic positive equilibrium, tristability
states; VIII∶ , = 0.0312342, 1 = 1.74765, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, bistability states; IX∶ , = 0.0287306, 1 =1.76738, a big stable limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic
positive equilibrium, moreover, there exists a saddle point and an unstable hyperbolic positive
equilibrium, bistability states; X∶ , = 0.0301742, 1 = 1.74711, a big stable limit cycle contains
three hyperbolic positive equilibria (a saddle point, a stable focus, and twounstable focuses), bista-
bility states; XI∶ , = 0.0164697, 1 = 1.86736, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, moreover, there exists a saddle point and
a stable hyperbolic positive equilibrium, tristability states; XII∶ , = 0.0164818, 1 = 1.86696, a big
stable limit cycle contains a little unstable limit cycle enclosing a stable hyperbolic positive equi-
librium, moreover, there exists a saddle point and an unstable hyperbolic positive equilibrium,
bistability states.
From the first generalized Hopf bifurcation point jc1, the subcritical Hopf bifurcation point

will be changed to the supercritical Hopf bifurcation point. There exists an interval for the param-
eter 1 betweenjc1 andjc2, where there is a saddle-node bifurcation point of limit cycle branch,
that is, a stable limit cycle and an unstable limit cycle will coexist until they coalesce and persist.
In particular, there is a whole saddle-node bifurcation curve of limit cycles rather than two dis-
tinct branches mentioned in Huang et al.35 On the Hopf bifurcation curve, the left parts of jc1
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1294 YANG et al.

F IGURE 8 Phase portraits of regions I–XII shown in Figures 6 and 7.

and jc2 are subcritical Hopf bifurcation curves and the right of them is a supercritical Hopf
bifurcation curve, see Figure 6A,B.

4.3 k as the primary bifurcation parameter

Setting ! as the primary bifurcation parameter, we obtain the one-parameter bifurcation dia-
gram. There are two subcritical Hopf bifurcation points cd1(1.19773 × 10−1, 3.45728 × 10−2)
as ! = 1.05728 × 10−2 and cd2(4.34712 × 10−1, 1.25481 × 10−1) as ! = 2.14803 × 10−2. The first
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YANG et al. 1295

(A) (B)

F IGURE 9 One-parameter bifurcation diagram of system (7). (A) L2-norm vs. !. (B) L2-norm vs. 0. Here,cd1 andcd2, e\1 and e\2, hO denote the Hopf bifurcation points and saddle-node bifurcation points of limit
cycles, transcritical bifurcation point, respectively.

Lyapunov coefficients of cd1 and cd2 are, respectively, 1.540364 × 101 and 2.188749 × 101;
two saddle-node bifurcation points ̄e\1(4.23305 × 10−1, 1.22188 × 10−1) as ! = 2.13200 × 10−2
and ̄e\2(2.09782 × 10−1, 6.05545 × 10−2) as ! = 4.26926 × 10−2. From the first Hopf bifurcation
point cd1, we have two saddle-node points of limit cycle e\1(5.10376 × 10−1, 1.41684 × 10−1)
as ! = −1.30903 × 10−2,(Q$7F! = 2.62507 × 101 and e\2(6.86965 × 10−1, 1.82966 × 10−1) as ! =2.70666 × 10−2,(Q$7F! = 6.10625 × 101 (see Figure 9A). Note that themetastability phenomenon
is also found for the parameter !. In another word, the density of mite population will increase
from the carrying capacity as ! increases. Thus, the mite population may undergo outbreak.
Next, we set , = 0.03,! = 0.05, 1 = 1.9107764064044153 and take 0 as the primary bifurca-

tion parameter. We have two subcritical Hopf bifurcation points cd1(3.82285 × 10−1, 1.20613 ×10−1) as 0 = 6.02858 × 10−1, cd2(1.64561 × 10−1, 5.45611 × 10−2) as 0 = 6.33529 × 10−1, two
saddle-node bifurcation points ̄e\1(3.57892 × 10−1, 1.12999 × 10−1) as 0 = 6.03299 × 10−1 and̄e\2(2.71488 × 10−1, 8.54400 × 10−2) as 0 = 6.01340 × 10−1, one transcritical bifurcation pointhO(1, 0) as 0 = 0. The first Lyapunov coefficients of cd1 and cd2 are, respectively, 1.64117 ×101 and 5.289654 × 101; To continue from cd2, we have two saddle-node points of limit
cycles: e\1(3.30296 × 10−1, 1.07073 × 10−1) as 0 = 6.37431 × 10−1, period = 2.18099 × 101 ande\2(5.42326 × 10−1, 1.65980 × 10−1) as 0 = 5.99983 × 10−1, period = 5.45319 × 101. The limit
cycles bifurcation form cd1 and cd2 are approaching distinct homoclinic cycles. Also note that
the antimetastability is found for the parameter 0. Thus, the mite population may decrease as the
parameter 0 increases (Figure 9B).
4.4 l and k as the two primary bifurcation parameters

If we take 0 and ! as the two primary bifurcation parameters, then we have saddle-
node bifurcation curve (blue), Hopf bifurcation curve (black), saddle-node bifurcation curve
(red) of limit cycles. There are two cusp points Oi1(3.10723 × 10−1, 1.01755 × 10−1) as 0 =6.25735 × 10−1,! = 6.78302 × 10−2, Oi2(1.73206 × 10−1, 1.01407 × 10−6) as 0 = 1.11868 × 10−5,
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1296 YANG et al.

(A) (B)

F IGURE 1 0 Two-parameter (0 vs. !) bifurcation diagram of system (7). (A) 0 vs. !. (B) Zoomed bifurcation
curve of 0 vs. ! with eight regions. Here, e\,c, e\f/ denote the saddle-node bifurcation curve (blue), Hopf
bifurcation curve (black), saddle-node bifurcation curve of limit cycles (red).

! = −3.46403 × 10−1, two generalized Hopf bifurcation points jc1(3.24564 × 10−1, 1.11814 ×10−1) as 0 = 6.58274 × 10−1,! = 9.30543 × 10−2, jc2(1.90789 × 10−1, 6.79109 × 10−2) as 0 =6.80137 × 10−1,! = 9.18396 × 10−2, one Bagdanov–Takens bifurcation point dh(1.73183 ×10−1, 2.94846 × 10−8) as 0 = 3.25311 × 10−7,! = −3.46410 × 10−1. The second Lyapunov coeffi-
cients of jc1 and jc2 are, respectively, −9.99813 × 102 and −7.502971 × 102; The saddle-node
bifurcation curve of limit cycles is also connecting jc1 and jc2. This result is shown in
Figure 10A,B.
The phase plane in Figure 10 is divided into eight regions and the corresponding phase

portraits in those regions are shown in Figure 11. The following provides the details. I∶ 0 =0.648891,! = 0.0750986, a stable limit cycle contains an unstable hyperbolic positive equilibrium;
II∶ 0 = 0.590287,! = 0.0848714, a stable hyperbolic positive equilibrium; III∶ 0 = 0.432085,! =−0.0791325, three hyperbolic positive equilibria (a saddle point, a stable focus, and an unsta-
ble focus) coexist; IV∶ 0 = 0.470348,! = −0.0853784, a big stable limit cycle contains a little
unstable limit cycle enclosing a stable hyperbolic positive equilibrium, bistability states; V∶ 0 =0.362312,! = −0.153302, an unstable limit cycle contains a stable hyperbolic positive equilib-
rium, moreover, there exist a saddle point and a stable hyperbolic positive equilibrium, bistability
states; VI∶ 0 = 0.402356,! = −0.132842, a big stable limit cycle contains a little unstable limit
cycle enclosing a stable hyperbolic positive equilibrium, moreover, there exist a saddle point and
a stable hyperbolic positive equilibrium, tristability states; VII∶ 0 = 0.48071,! = −0.0542003, a
big stable limit cycle contains three hyperbolic positive equilibria (a saddle point, a stable focus,
and an unstable focus), bistability states; VIII∶ 0 = 0.598531,! = −0.0249369, a stable hyperbolic
positive equilibrium.
Combining the global bifurcation diagrams from Figure 6 to Figure 11, we can obtain the

monostability, bistability, and tristability for equilibria and the number of limit cycle. These are
summarized in Table 1.

Remark 2. Note that, here we find two generalized Hopf bifurcation points are connected by one
saddle-node bifurcation curve of limit cycles, but it is different from that in Xu et al.,52 where
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YANG et al. 1297

F IGURE 1 1 Phase portraits of regions I–VIII shown in Figure 10B.

TABLE 1 The classification of stability and the number of equilibria of system (7).
Stability Equilibria Regions
Monostability Single equilibrium Figure 8 III; Figure 11 II, VIII

One equilibrium and one limit cycle Figure 8I; Figure 11I
Three equilibria Figure 8V; Figure 11 III
Three equilibria and one limit cycle Figure 8X

Bistability One equilibrium and two limit cycles Figure 8 II, VIII; Figure 11 IV
Three equilibria and one limit cycle Figure 8 IV, VI; Figure 11V, VII
Three equilibria and two limit cycles Figure 8 IX, XII

Tristability Three equilibria and two limit cycles Figure 8 VII, XI; Figure 11 VI

the curve is on the top of Hopf bifurcation curve, so that the isola of limit cycles could be found.
Further, it is also different from the scenario in Refs. [20, 32], where there exists a condimension
2 cusp of limit cycles indicating the coexistence of three limit cycles, which bifurcate from one
Hopf bifurcation point.
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1298 YANG et al.

Remark 3. Compared with the dynamics of Leslie type predator–prey system (1) with simplified
Holling IV functional response (5) at ! = 0 in Huang et al.,35 in this paper we obtain some novel
results for system (7) as follows:

(i) there are one or two Hopf bifurcation surfaces rather than only one;
(ii) there is one saddle-node loop bifurcation surface rather than only two;
(iii) there is one or two saddle-node bifurcation surface rather than only two.

Remark 4. As ! increases, the whole bifurcation diagram of system (7) including the location of
the intersection point of Hopf bifurcation curve, Hopf bifurcation curve, homoclinic bifurcation
curve, and saddle-node bifurcation curve, bifurcation point will be moved to the left bottom of
the plane.

5 CONCLUSION AND DISCUSSION

In this paper, we conducted a detailed bifurcation analysis of a predator–prey mite model with
generalized Holling Type IV functional response, which can be used to describe the interac-
tion between the predator M. occidentalis and the prey phytophagous spider mite Tetranychus
mcdanieli on fruit trees. The euryphagous nature is crucial for the predator to survive in nature.
It has a common characteristic of species, leading to the coexistence of two species. The simple
model was shown to exhibit very complex dynamics. By using the bifurcation analysis, we have
found that there are up to three equilibrium states (see Table 1). All the possible scenarios of the
associated bifurcation and dynamical behaviors are investigated.
Collings28 studied a predator–prey mite model of Leslie type with Holling Type IV function

and considered the role of temperature in the growth of mites. On top of the existence of a stable
low population density equilibrium, population cycles or population outbreaks in response to
perturbations were shown with different sets of parameter values. Li and Xiao33 investigated the
model (7) with ! = 0, showing the existence of codimension 2 cusp bifurcation and codimension 2
Bagdanov–Takens bifurcationwithout considering codimension 3 cusp bifurcation. Huang et al.35
showed that for the model (7) with ! = 0 and a simplified Holling Type IV functional response,
there exists a degenerate Bogdanov–Takens singularity (focus type) of codimension 3 for some
parameter values. Bistability (one stable equilibrium and one stable limit cycles) and tristability
(two stable equilibria and one stable limit cycle) can emergewith certain parameter values. In this
paper, the predator–prey mite model (7) with a generalized Holling type IV functional response
is investigated in details using dynamical system approach. We found a degenerate Bogdanov–
Takens singularity (focus type) of codimension 3 and a degenerate Bogdanov–Takens singularity
(cusp type) of codimension 3 for some parameter values. Meanwhile, the complete bifurcation
diagrams and their dynamics are studied analytically and illustrated numerically.
Of note, we find that there exist one or two Hopf bifurcation curves, one saddle node bifur-

cation curve of limit cycle, one or two saddle-node bifurcation curves for model (7). Therefore,
model (7) may have three hyperbolic positive equilibria, two limit cycles, bistability (one stable
equilibrium and one stable limit cycle, or two stable equilibria), or tristability (two stable equilib-
ria and one stable limit cycles). Huang et al.35 did not present the whole bifurcation diagram, and
mentioned that there are one Hopf bifurcation curve, two saddle node bifurcation curve of limit
cycles. Actually, the saddle node bifurcation curve of limit cycles is connecting with two gener-
alized Hopf bifurcation points. We evaluated the role of parameter !, which describes the effect
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YANG et al. 1299

of “inhibition” in microbial dynamics and “group defense” in population dynamics as Freedman
andWolkowicz27 mentioned. We find that it does not change the bifurcation structure but moves
the location of bifurcation diagram to the left bottom as the parameter ! increases.
Different phase portraits of model (7) are obtained by numerical simulations. We showed that

model (7) can have: (i) a stable limit cycle contains an unstable hyperbolic positive equilibrium
(monostability); (ii) a stable limit cycle enclosing three positive equilibria and a homoclinic cycle
(bistability); (iii) a big limit cycle containing a small limit cycle and three hyperbolic positive equi-
libria (tristability), and so forth. Therefore, our results provide the whole bifurcation dynamics of
model (7) both analytically and numerically. In addition, we found that the most significant con-
sequence of the metastability and hysteresis exhibited by system (7) is that these results can be
used to describe the outbreaks of mites.
We conclude this study by noting that the dynamics of this generalist predator–preymitemodel

are very rich. Three parameters are used to analyze the dynamical behavior. The codimension 3
Bagdanov–Taken bifurcation serves as an organizing center for the complex dynamics of the mite
model. Furthermore, it will be very interesting to study the existence of isola bifurcation of limit
cycles in Xu et al.52,53 It exists for model (7) if the generalized Holling IV functional response (5) is
replaced by Holling II functional response (3) and the intrinsic rates of mites are replaced by the
functions depending on temperature mentioned in Collings andWollkind.54 This is left for future
investigation.
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APPENDIX: REPRESENTATION OF mnn
I22 = −(#0 + #1+ + #2+2 + #3+3 + #4+4 + #5+5 + #6+6 + #7+7 + #8+8 + #9+9),

where#0 = ,7(−5! − 10) + ,6(−157!3 − 1265!2 − 3335! − 2864) + ,5(−1278!4 − 11564!3 −38326!2 − 54535! − 27802) + ,4(−3419!5 − 33643!4 − 127899!3 − 231257!2 −194202! − 57858) + ,3(−1265!6 − 5682!5 + 23626!4 + 212261!3 + 553903!2 +635839! + 275634) + ,2(9922!7 + 149699!6 + 951992!5 + 3313998!4 + 6829825!3+ 8341406!2 + 5593467! + 1588596) + ,(17424!8 + 272297!7 + 1843401!6 +7060798!5 + 16733611!4 + 25117387!3 + 23302731!2 + 12201261! + 2754450) +8976!9 + 150206!8 + 1107969!7 + 4723857!6 + 12813377!5 + 22894374!4 +26886435!3 + 19948008!2 + 8444646! + 1542942,
#1 = ,8(5! + 5) + ,7(−163!2 − 929! − 1366) + ,6(−964!3 − 4609!2 − 5319! + 996) + ,5× (2235!4 + 34341!3 + 155267!2 + 275610! + 167759) + ,4(26246!5 + 298379×!4 + 1297651!3 + 2698434!2 + 2676907! + 1007837) + ,3(65618!6 + 761821!5 +3561642!4 + 8532773!3 + 10944995!2 + 7011741! + 1696452) + ,2(54784!7 + 608890×!6 + 2655113!5 + 5461934!4 + 4228003!3 − 2632009!2 − 6534035! − 3095898) + ,× (−12426!8 − 338465!7 − 3224458!6 − 15780023!5 − 45232886!4 − 79289920!3 −83862671!2 − 49204734! − 12293373) − 28776!9 − 531685!8 − 4281537!7 − 19749174×!6 − 57535282!5 − 109764684!4 − 136988820!3 − 107619372!2 − 48118590! −9274860,
#2 = 5,9 + ,8(−65! − 83) + ,7(−25!2 + 2599! + 6362) + ,6(6117!3 + 49093!2 + 115235×! + 75673) + ,5(31391!4 + 231968!3 + 572089!2 + 511616! + 101938) + ,4(43919×!5 + 232110!4 + 55923!3 − 1560052!2 − 2992165! − 1611895) + ,3(−44294!6 −907971!5 − 6036748!4 − 18819793!3 − 30233192!2 − 24137815! − 7535086) + ,2× (−146861!7 − 2135708!6 − 12542249!5 − 38629876!4 − 67060115!3 − 64644386!2−30888125! − 5070033) + ,(−63507!8 − 741436!7 − 3013448!6 − 2829990!5 +16117128!4 + 61445629!3 + 94230012!2 + 70252528! + 20938509) + 36336!9 +774836!8 + 7026651!7 + 35868254!6 + 114168041!5 + 235710477!4 + 316115759!3+ 265547469!2 + 126580320! + 25992690,
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#3 = −61,9 + ,8(−243! − 306) + ,7(1781!2 + 3386! − 4662) + ,6(8287!3 + 2470!2 −92792! − 103513) + ,5(−13969!4 − 262478!3 − 1077609!2 − 1518843! − 657396) + ,4(−109360!5 − 1131354!4 − 4079215!3 − 6300683!2 − 3902017! − 587817) + ,3× (−126931!6 − 960784!5 − 1533008!4 + 4733740!3 + 19000615!2 + 22793878! +9352650) + ,2(66842!7 + 1689136!6 + 13851870!5 + 54884543!4 + 118877653!3 +143563104!2 + 90180588! + 22686513) + ,(119238!8 + 1965982!7 + 13127393!6 +46147265!5 + 91422061!4 + 98155724!3 + 43535897!2 − 8169045! − 10313571) −22512!9 − 593276!8 − 6322932!7 − 36769918!6 − 130578395!5 − 296411157!4 −432562927!3 − 392598951!2 − 201338112! − 44419005,
#4 = 158,9 + ,8(1724! + 2804) + ,7(4965!2 + 14268! + 16362) + ,6(−5584!3 − 25656!2+ 18358! + 54699) + ,5(−36863!4 − 124717!3 + 178037!2 + 753221! + 474072) + ,4× (14430!5 + 586443!4 + 3595825!3 + 8241624!2 + 8003120! + 2793603) + ,3(157524!6+ 2003302!5 + 9117448!4 + 18733077!3 + 16811688!2 + 3611916! − 1971590) + ,2× (80000!7 + 433095!6 − 2291296!5 − 24245227!4 − 78456218!3 − 122912365!2− 95103888! − 29087351) + ,(−83964!8 − 1838277!7 − 15538928!6 − 68557689!5− 175407670!4 − 267888188!3 − 237486390!2 − 109711261! − 19220730) + 6816!9+ 247960!8 + 3313101!7 + 22885745!6 + 93315421!5 + 237732461!4 + 383278157!3+ 380181825!2 + 211611134! + 50495349,
#5 = −104,9 + ,8(−1529! − 2987) + ,7(−8316!2 − 28863! − 28914) + ,6(−14901!3 −66136!2 − 130599! − 91631) + ,5(18270!4 + 137059!3 + 208384!2 + 16201! − 50887)+,4(62130!5 + 333568!4 + 10314!3 − 2150665!2 − 3592848! − 1786848) + ,3(−29434×!6 − 880515!5 − 6297726!4 − 19003755!3 − 27807472!2 − 19246903! − 4858452) + ,2× (−93268!7 − 1349742!6 − 6826211!5 − 14381383!4 − 6885800!3 + 20351230!2+ 32152131! + 13922929) + ,(26778!8 + 871117!7 + 9477090!6 + 50820716!5+ 154158001!4 + 277544238!3 + 293503352!2 + 167751957! + 39701973) − 804!9− 51461!8 − 980091!7 − 8638694!6 − 42237563!5 − 124187554!4 − 225362939!3− 247429065!2 − 150756139! − 39116631,
#6 = 43,9 + ,8(531! + 1125) + ,7(3471!2 + 14053! + 16282) + ,6(12889!3 + 76385!2+ 161345! + 112616) + ,5(12519!4 + 91188!3 + 289149!2 + 380297! + 145624) + ,4
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× (−30573!5 − 283124!4 − 806101!3 − 898130!2 − 283938! + 112078) + ,3(−32832!6− 169081!5 + 512108!4 + 4511927!3 + 10146086!2 + 9690277! + 3399598) + ,2(34179×!7 + 799974!6 + 6125073!5 + 22121447!4 + 42433723!3 + 43652232!2 + 21804947!+3709672) + ,(−3219!8 − 208464!7 − 3156026!6 − 21121157!5 − 76014844!4− 158206991!3 − 191043974!2 − 124380259! − 33763131) + 3744!8 + 147063!7+ 1891684!6 + 11836146!5 + 41648252!4 + 86951029!3 + 107114829!2 + 72042443!+20419917,
#7 = −5,9 + ,8(−109! − 262) + ,7(−473!2 − 2134! − 3062) + ,6(−2659!3 − 21206!2− 55636! − 46416) + ,5(−9175!4 − 97742!3 − 346651!2 − 488216! − 225548) + ,4× (−1544!5 − 19670!4 − 94613!3 − 150483!2 − 46032! + 21556) + ,3(16915!6+ 232156!5 + 1083908!4 + 2450992!3 + 2901613!2 + 1683480! + 365882) + ,2(−4302!7− 206812!6 − 2237626!5 − 10506592!4 − 25906733!3 − 35210044!2 − 25027570!− 7280260) + ,(19838!7 + 526767!6 + 4768214!5 + 21051615!4 + 51263124!3+ 70600139!2 + 51694486! + 15679533) − 8928!7 − 218570!6 − 1928652!5 − 8511446!4− 20977649!3 − 29439519!2 − 22055549! − 6863802,
#8 = ,8(10! + 28) + ,7(61!2 + 245! + 340) + ,6(−9!3 − 93!2 + 1621! + 3472) + ,5(1387!4+ 19917!3 + 86947!2 + 144225! + 77844) + ,4(3139!5 + 48554!4 + 245820!3 + 534299×!2 + 518329! + 188176) + ,3(−2277!6 − 59664!5 − 435482!4 − 1513592!3 − 2771469×!2 − 2570545! − 956756) + ,2(20540!6 + 356968!5 + 2182070!4 + 6585745!3+ 10689649!2 + 8977655! + 3076016) + ,(−32719!6 − 506090!5 − 2957605!4 −8707405!3 − 13884131!2 − 11492197! − 3886164) + 9840!6 + 155295!5 + 932956!4+ 2820084!3 + 4602657!2 + 3887665! + 1337940,
#9 = ,7(−5!2 − 28! − 36) + ,6(5!3 + 89!2 + 194! − 8) + ,5(19!4 + 172!3 − 71!2 − 1432×! − 1068) + ,4(−432!5 − 8583!4 − 52345!3 − 137727!2 − 164474! − 74296) + ,3× (4562!5 + 49592!4 + 222850!3 + 498593!2 + 546276! + 234692) + ,2(−16418!5 −155554!4 − 600723!3 − 1171601!2 − 1146098! − 448888) + ,(16100!5 + 153269!4 +584546!3 + 1114107!2 + 1059856! + 402828) − 3852!5 − 39143!4 − 156105!3 −306585!2 − 297494! − 114504.
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