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ABSTRACT. In this paper, we investigate the complex dynamics of a predator-
prey model, specifically the Leslie-Gower model, with additive Allee effect and
simplified Holling IIT functional response. The model has been analyzed for
various bifurcations, including the nilpotent cusp singularity of codimension 3,
Bogdanov-Takens bifurcation of codimension 3, and Hopf bifurcation of codi-
mension 2. Additionally, a codimension 2 cusp of limit cycles and the coexistent
acute angle region of three limit cycles have been identified. Notably, the isola
bifurcation of limit cycles, which indicates a new mechanism of sustained os-
cillation, has been observed for the first time in a Leslie-Gower predator-prey
model with additive Allee effect. One-parameter and two-parameter bifurca-
tion diagrams and corresponding phase portraits have been presented to verify
the theoretical results. From a biological perspective, the additive Allee effect
may result in system collapse, leading to the extinction of the predator pop-
ulation and survival of the prey. The finding of the isola bifurcation of limit
cycles is of significant interest, highlighting a novel mechanism of sustained
oscillation in this complex system.

1. Introduction. The predator-prey model as one of the typical ecosystems has
played a significant role in the theoretical studies of biology and mathematics.
Among them the Leslie-Gower predator-prey model taking the form

dx T

a rr(l— E) —yp(x),
dy y

A j

7 sy( m),

was introduced by Leslie [33, 34] to describe a scenario in which both growth rates of
two species have upper limits, especially, the environment carrying capacity of the
predator population represented as nz is proportional to the size of prey population.
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Given this, investigators have achieved fruitful results in investigating the Leslie-
Gower predator-prey model [1, 2, 26, 29, 5, 42, 40, 50]. This paper deals with
a Leslie-Gower predator-prey system incorporating the following two aspects: (i)
the Allee effect in the growth function for prey, and (ii) simplified Holling IIT type
functional response of predators.

Allee effect, started from the pioneer work of the well-known ecologist W.C.
Allee [49], refers to any mechanism leading to a positive relationship between fit-
ness and population density of any species [36, 25] and corresponds to a density-
mediated reduction in the intrinsic growth rate of a population at low-density
[19]. Tt originates from multiple factors, such as mate finding, inbreeding de-
pression, foraging efficiency, anti-predator behavior, and environment conditioning
ete. [44, 22, 23, 7, 8] and has attracted much attention in the last few decades
[26, 40, 46, 27, 30, 56, 11, 41] because of its crucial potential effect on biological
control and population dynamics. To describe Allee effect, diverse modeling meth-
ods have been considered, and the most typical form for a single population with
Allee effect is performed as follows [15, 6]

(fl—f =r(l-— %)(m —m)x,

here z(t) is the population density at time ¢, r and K represent the intrinsic growth
rate and the environmental carrying capacity, respectively. The term x — m is
deemed as Allee effect term, further, 0 < m < K corresponds to strong Allee effect,
which indicates that there exists an extinction threshold and the population will go
extinct if the initial size is below the threshold level [7, 46, 47], and —K < m < 0
describes weak Allee effect without such a threshold value, implying that the per
capita growth rate is still positive despite decreases under low population density
[47, 43].

Additive Allee effect has become the focus of public concern in recent years
[1, 2, 19, 44, 11, 3, 48, 31, 54, 55, 37]. It was derived in [19, 44] with the following
form

dx x m
EZ(T( —g)—x+b)$v (1)

here 7, K occupy the same meaning as above, and the term -7 is known as additive
Affect effect. When 0 < m < br, equation (1) describes the strong Allee effect and
if m > br, it is said that the population is influenced by a weak Allee effect. Aguirre
et al. [1] studied the existence of two limit cycles in a Leslie-Gower predator-prey
model with additive Allee effect and simplified Holling IV functional response. Cai
et al. [11] developed a Leslie-Gower predator-prey model with additive Allee effect
and Holling II functional response, and presented the existence and stability of
equilibria. Furthermore, they established the conditions for the existence of Hopf
bifurcation. Lai et al. [31] investigated the stability and bifurcation in a predator-
prey model combining the additive Allee effect with fear effect on prey species, and
analyzed saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.
Molla et al. [37] proposed a predator-prey model with Holling type II response
function, considering both variable prey refuge and additive Allee effect in the prey.
They demonstrated that these two factors can lead to saddle-node bifurcation, Hopf
bifurcation, or Bogdanov-Takens bifurcation.

Note that, isolas are isolated closed curves of solution branches while each isola
always has two saddle-node bifurcation points, and the solution may be equilibrium,
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homoclinic cycle, heteroclinic cycle or limit cycle [4, 52, 17, 18]. This phenomenon
has received significant attention in biological and chemical systems [24, 39]. The
isola of equilibrium is relevant to the mushroom phenomenon [24], while the presence
of an isola center of limit cycle indicates a new mechanism for sustained oscillations.
Sandstede and Xu [39] derived the conditions that guarantee snaking or result in
diagrams that either consist entirely of isolas. Aougab et al. [4] researched snaking
branches of spatially localized stationary patterns that show localized rolls, which
consist of isolas or of intertwined s-shaped curves. They promoted the results con-
cerning orientable stable and unstable manifolds of rolls to the nonorientable case
and further, discussed topological barriers that prevent snaking, thus allowing only
isolas to occur. Xu et al. [52] firstly detected numerically isola bifurcation of peri-
odic orbits in HIV model, which means that there is a parameter interval with the
same oscillations.

The Leslie-Gower predator-prey model with Holling IIT functional response, but
without an additive Allee effect, has received a lot of attention in recent decades
[29, 28, 14, 53, 16, 51, 12]. Researchers, such as Hsu and Huang [28], have explored
the global stability of the model and proposed the existence of one limit cycle.
Others, like Collings [14], have studied the global stability and bifurcation behavior
of a mite predator-prey system with a simplified Holling III functional response.
They have shown the existence of Hopf bifurcation and saddle-node bifurcation
of limit cycles and provided concrete stability regions, especially the bistability
region. Huang et al. [29] have analyzed a Leslie-type predator-prey model with
generalized Holling type III functional response and shown that the model can
undergo Hopf bifurcation and degenerate focus type Bogdanov-Takens bifurcation
of codimension 3 under suitable parameters, which illustrates the coexistence of two
limit cycles. However, the dynamics of the Leslie-Gower predator-prey model with
Holling III functional response and additive Allee effect has not been characterized
yet. Inspired by the above results, in this paper, we will investigate a Leslie-Gower
predator-prey system with additive Allee effect and simplified Holling ITI functional
response. The system is represented by the following set of equations

e R P s

dt k' x+b z2+a’

dy Y

LA 1-— £ 2
V= sy(1- D), (2)

where z(t) and y(t) denote the prey and predator populations at time ¢, respectively.
The intrinsic growth rates of the prey and predator populations are denoted by r
and s, respectively. The maximum rate of predation is represented by ¢, and a
represents the half-saturation constant. The environmental carrying capacity of the
prey is indicated by k, and the food quality that the prey provides for conversion
into predator births is represented by n. The term 74 represents the additive Allee
effect, where m measures the degree of Allee effect, and b denotes the population
size of the prey species at which fitness is half its maximum value. It is important
to note that the Allee effect is considered weak if 0 < m < br, and strong if m > br.
The system is analyzed in the region Q; = {(z,y)|x > 0,y > 0}, and all parameters
are assumed to be positive.

The article is organized as follows. Section 2 presents the asymptotic dynamics
near (0,0), the existence and types of equilibria. Bifurcation analysis, including
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Bogdanov-Takens bifurcation of codimension 2 and 3, and Hopf bifurcation of codi-
mension 2, is presented in Section 3. In Section 4, we carry out numerical simula-
tions to verify our theoretical results. Biological interpretation is given in Section
5. Finally, we conclude this paper with conclusion and discussion.

2. The asymptotic dynamics near (0,0) and the analysis of equilibria.

2.1. The asymptotic dynamics near (0,0). Noting that system (2) is not well
defined at = = 0, it inspires us to think of that whether a blow-up transformation can
be used to investigate the asymptotic dynamics near (0,0). Actually, our analysis
is as follows.

Lemma 2.1. The trajectories near (0,0) of system (2) with initial values located
in the region Q1 = {(x,y)|x > 0,y > 0} will leave (0,0) when m +b(s —r) <0 or
when m+b(s —r) > 0,m —br <0, and will be attracted to (0,0) when m —br > 0.

Proof. Firstly, making transformation dt = knx(x+b)(2x%+a)dr yields a polynomial
system equivalent to system (2) in the region ; taking the form

Z—f = nz*(2* + a)(r(z + b)(k — x) — mk) — kng(x + b)z3y,
% = ksy(x +b)(2® + a)(nz — y). 3)

It’s worthy noting that (0,0) is an equilibrium of system (3) while the Jacobian
matrix of system (3) at (0,0) is a null matrix. Taking the blow-up transformation
x = Rcosf,y = Rsinf,t = Rr, we can obtain that

C;—If = R(ka((br — m)ncos® § + bssin® f(n cos — sin 0)) + O(R)),
% = kasinfcosO((m + b(s —r))ncosf — bssinf) + O(R), (4)

where (R, 0) € [0, +00) x [0, ].

After a simple qualitative analysis, we know that when m + b(s —r) < 0, system
(4) has two saddles (0,0) and (0, %). When m + b(s —r) > 0, system (4) has three
equilibria (0, 0), a saddle (0, ) and (0, arctan W) Further, for m—br <0,
(0,0) is an unstable node and (0, arctan W) is a saddle; for m — br > 0,

(0,0) is a saddle and (0, arctan W) is a stable node.

Hence, we can conclude that the trajectories near (0, 0) of system (2) with initial
values located in €23 will leave (0,0) when m + b(s —r) < 0 (see Figure 1 (a) (b))
or when m + b(s —r) > 0,m — br < 0 (see Figure 1 (c) (d)) and will be attracted
to (0,0) when m — br > 0 (see Figure 1 (e) (f)). O

2.2. The analysis of equilibria. In this subsection, we study the existence and
the type of equilibria in system (2). Firstly, we present the following result.

Lemma 2.2. The positive invariant set of system (2) is the rectangular region
Qo ={(z,9)|0 < x < k,0 <y < nk}.

Proof. By the first equation of system (2), we have %|w>k < 0. Thus, we only focus
on 0 < z < k. On the other hand, we can easily get % = sy(1 — L) < sy(1 — %)

x/ = nk
for 0 < & < k, which leads to %|y>nk < 0. Therefore, all solutions of system (2)
will ultimately move towards the region Qs = {(z,9)|0 < < k,0 <y < nk} and

this ends the proof. O
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(a)

(b)

FIGURE 1. (a) Two equilibria of system (4) when m+b(s—r) < 0.
(b) The trajectories near (0, 0) of system (2) when m+b(s—r) < 0.
(¢c) Three equilibria of system (4) when m+b(s—r) > 0,m—>br < 0.
(d) The trajectories near (0,0) of system (2) when m + b(s —r) >
0,m —br < 0. (e) Three equilibria of system (4) when m — br > 0.
(f) The trajectories near (0,0) of system (2) when m — br > 0.

For the boundary equilibria of system (2), by a simple qualitative analysis, we
have the following Theorem.

Lemma 2.3. System (2) has

(I) no boundary equilibrium if m > rbth)” .

ak v
(II) a unique boundary equilibrium B(X52,0) if m = %, which is a degenerate
equilibrium;

(I11) two boundary equilibria By(5(k — b+ w),()) and By(%(k — b —

/r(b+k)2—4km)’0) me < r(bz;gk)z.
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For the existence of positive equilibria E(z,y), a direct calculation indicates
y = nx and z being a positive root of

—z(agx* + azz® + asx? + ay1x + ag)

h(zx) ’ )

where a4y = r,a3 = knqg+r(b—k),as = ar + k(bng+m —br),a; = ar(b — k),a9 =
ak(m — br) and h(x) = k(b+ x)(a + 2%). Then we can easily obtain that F'(z) =
7nq:1:2(3a+:1:2) bm 2re + 7 and F”(I) _ 2anqz(z?—3a) 2bm 2r

(a+x2)2 ~ (b+=x)2 k
Introduce the following notion and equation

F(z) =

ata®® T Ota® &

Fo(z) := F(x) = aga® + azx® + ax2® + a1 + ag = 0. (6)

Because the denominator h(z) of F'(z) is greater than zero, it is adequate to
analyze the positive roots of equation Fy(z). According to Descartes’s rule of signs,
Fy(z) has at most four positive roots, which are expressed by size as 1 < 7o < r3 <
x4. The corresponding equilibria of system (2) are marked as Ey(x1,y1), E2(22,y2),
Es(x3,y3) and Ey(x4,y4), respectively. For the specific conditions of the existence
of positive equilibria in system (2), see Appendix A.

Now we turn to studying the type of positive equilibria in system (2). The
Jacobian matrix of system (2) restricted to any positive equilibrium FE(z,nz) can
be reduced to

It follows that
ngz?(3a + z?) bm 2z

det(J(E)) = s( (a2 CFeE + T‘(? —1)) = —sF'(x),
anqax? m rT
tr(‘](E)):i(z_i_ig)g - (bi‘fl))2 72?+T75ip(1‘)7
, danqz(z? —a 2bm 2r
Pl(z) = (zjﬂ)ff ) brap & ™

Through a simple qualitative analysis, we get the type of positive equilibria in
system (2) as follows.

Theorem 2.4. Supposing that E;(z;,y;)(i = 1,2,3,4) are the simple positive equi-

libria of system (2), we have

(I) if F'(x;) > 0, then E;(x;,y;) is a saddle;

(IT) if F'(x;) <0 and p(x) < 0, then F;(x;,y;) is a stable node or focus;

(I11) if F'(x;) <0 and p(x) > 0, then E;(x;,y;) is an unstable node or focus.
Here F(x) and p(x) are defined by (5) and (7), respectively.

Remark 2.5. Assuming that F;(z;,y;)(i = 1,2, 3,4) are the simple positive equilib-

_F(x) _ wi(F(x)h(zi)—F(z)h'(z:) _ _xiF' (i)
h(z:) ED) h(z:) -

It is evident that F'(x1), F'(x3) > 0 from the analysis in Appendix A, which implies

E1(z1,y1) and E5(zs,ys) are saddles.

ria of system (2), we have F'(x;) =

_ Based on the analysis of Appendix A, we can see that under suitable conditions,
Fy(z) may possess positive roots x; ,41(¢ = 1,2,3) of multiplicity 2. This implies
that two equilibria E;(z;, y;) and Eit1(it1, yi+1) may coincide at F; j11(2; 541, Yi.i+1)
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for ¢ = 1,2,3. Our attention will now shift to determining the type of these equi-
libria. For the sake of simplicity, we will express them uniformly as E*(z*, nz*). In
fact, we can arrive at the following conclusion.

Theorem 2.6. Suppose that F(x*) = F'(x*) =0 and F"(z*) # 0, then we have
(1) if p(x*) # 0, then E*(z*,nx*) is a saddle-node;

(II) if p(x*) = 0 and p'(z*) # 0, then E*(z*,nx*) is a cusp of codimension 2;
(II1) if p(z*) = p'(z*) = 0 and b # by, then E*(z*,nx*) is a cusp of codimension 3,
where by = 4(a31‘§$fcig‘l_+1€;1)*24§z*6) and A = 8a3z* +11a%x*® —38ax*® +72*7, B =
32a? — 8az*? + 9x*4.

Here F(x) and p(x) are defined by (5) and (7), respectively.

Proof. Firstly, we prove statement (I) of Theorem 2.6. It follows from F(z*) =

P\ _ r(b4x*)%(2ak—az* +2*3) _ rladz*?)?(k—b—22") .
F'(z*) = 0 that m = FGab i 3ar 1270 and ¢ = T+ (GabT3an Ta3)" Substitut-

ing them to system (2) and making the transformation X = x —2*,Y = y — nz* to
shift system (2) around E*(z*,na*) to the normal form system around the origin,
we obtain (for convenience, in subsequent steps, we still denote X,Y and 7 by z,y
and ¢, respectively)

B rom + o1y + G202? + Ay + G307 + *y+ol|z,y|?)
at 10T T o1y + A20T a117Y T+ a30T 21Xy ~ Oo\|Z, Y| ),
d%{ = b10T + bo1y + b2oz? + b117Yy + booy® + b3ox® + bo1 2%y + biowy?

+o(|z,y|?), (8)

in which a;; and b;; are given in Appendix B.
Making the linear transformation of variables X = fw2=doy y — awztdoy
a10+bo1 a10+bo1

system (8) is further transformed to

dr . . R N . N .

P bo02” + e111Y + o2y” + E302° + e 7%y + E122y? + Cosy” + o(|z, y|3)v
dy 5 ; ; ; ; ; ;

i dory + doox® + di1zy + dooy® + dzoz® + da12®y + dizy® + dosy®

+o(|z,yl), (9)

in which ¢;; and (fij are given in Appendix B.
Note that do; = p(z*) # 0, it leads to a center manifold
d
y=—- A20.'172 + O(xz)a
do1

occuring in a small neighborhood of the origin. System (9) restricted to this mani-
fold is expressed as

dz

dt
in which ¢y = Re@ab4Bas™+a™) pn (00 ith € = ab(2ks + ra*) + ax*(—kr + 3ks +
2rx*) + x*3(br + k(s —r) + 2rz*). In view of F”(z*) # 0, we have that é9 # 0 and
(10) is topologically equivalent to

dz

9T _ | 2 2
g +z° + o(z?).

= éox”® + o(?), (10)
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Hence, equilibrium E*(z*, nz*) is a saddle-node, which finishes the proof of state-
ment (I).
Next, we give the proof of statement (I7). According to F(z*) = F'(z*) = p(z*) = 0,

r(b+z*)?(2ak—ax*+x*3) r(a+az*?)?(—b+k—2x")

k(2ab+3az*+x*3) » 4 = kna*(2ab+3az*+x*3) and

we can easily obtain that m =

ra” (a+z*?)(—b+k—2z")
k(2ab+3ax*+x*3)
tion X =z — 2*)Y = y — na*, we have (for convenience, in subsequent steps, we

still denote X,Y and 7 by z,y and ¢, respectively)

S =

, which are substituted to system (2). By the transforma-

dx 9 9
7 = @ + any + az0z” + annzy + o|z, y|?),
d
d%i = b1z + b1y + baox® + buizy + boay” + o(|z, y[?),
where
S re*(a+ x*?)(—b+ k — 22%) a re*(a + 2*?)(b — k + 2z*)
10 k(2ab+ 3az* +2*3) 7 °' T kn(2ab+ 3az* + x*3)
r 272 * x
. b —b(k—3 k
420 k(a+ x*2)(b + x*)(2ab + 3ax* +x*3)(a ( ( ") + a7
+2*)) 4+ ax*?(56* — 5b(k — 32*) + *(102* — 3k)) + *9),
— 2ar(b — k + 2x*) _ nra(a+z*?)(=b+ k — 22%)
" kn(2ab + 3az + 2%3) 0 k(2ab + 3az* + x*3) ’
b — re*(a+ x*?)(b — k + 2z%) _ nr(a+x*?)(b— k4 22*)
T T k(2ab + 3az* +2*3) 7 0T k(2ab + 3az* + 2*3)
b — 2r(a+x*?)(=b+ k — 2x*) b — r(a+z*2)(b — k + 22%)
e k(2ab + 3az* + x*3) 02— kn(2ab + 3ax* + x*3)
Under the change of coordinates and time rescaling X =z,Y = 7217(;1: +y,dt =

—L_dr, one has
ao1

dzr
oY + e207® + crizy + of |z, y[?),
B _y 2 ¢ dyzy + dooy® + o]z, y|?) 11)
a 20T 112Y 02Y oz, Yyl ), (
where
_a11b10 + aioaso oy = M1
- - 1—
ap10a10 aopi
don — G%Obm + a1ob1o(b11 — ag0) + b%o(boz —ai1)
20 — a 2 )
01479
a10b11 — bio(@11 — 2bo2) bo2
di = , dop = —.
ap1a10 ao1

Applying Lemma 3.1 in Perko [38] to system (11), we can get an equivalent
system given by

dr

dt - y7

d
dit/ = es02? + en1zy + oz, y[?),
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where

- kn?(2ab + 3ax* + x*3) F (),
2re*(a 4+ x*2)(b — k + 2x*)
kn(2ab + 3ax* +2*3)

rae*(a+ 2*2)(b — k + 22*)

Since F"'(z*) # 0 and p'(z*) # 0, E*(z*,nz*) is a cusp of codimension 2 and this
completes the proof of statement (I7).
We now turn to the proof of the last statement. Solving F(z*) = F'(z*) =
p(x*) = p/(x*) = 0 yields that k = —m(—a2 +4a(b+ 2*)(b + 22*) +
*4\ o — *2\2 0 dar(b+z*)® _
)7 $= _a274a(b+m*)r(b+2:v*)fx*4 (a + ) , M = _a274a(bi;*)(lf+2z*)fz*4 and q=
r(a+z*?)3
nz*2(—a?+4a(b+z*)(b+2x*)+z*t) "
obtain (for convenience, in subsequent steps, we still denote X,Y and 7 by z,y and
t, respectively)

eg0 = dog =

ein = di1 + 2c0 =

T

Same as (IT), we let X = x —z*)Y = y — y* and

dz
- ajoT + a5y + asgr® + ajiwy + azr’ + az 2’y + ajort + ak 2’y
+o(|z,y[*),
d .
ditJ = bl + bo1y + bsor® + b 1@y + booy” + bioa® + by 2’y + bloay® + bia
+b52%y + bya?y® + oz, y[*), (12)
where a}; and bj; are given in Appendix B.
Making the transformation X = z,Y = %, system (12) can be rewritten as
dx
E =Y,
dy

% 2 * 2 * 3 * .2 * 2 * 4 * .3 * 22
= CopZ" + CoalY” + C39T” + Co1TTY + C1oTY” + Cox + €31 XY + CpaZ7Y

+o(|z,ylh), (13)

dt

where cj; are given in Appendix B.
By introducing dt = (1 — ¢fpz)dT and X = z,Y = (1 — ¢fy2)y, system (13) can
be converted into the form

dx
at =Y,
% = C;()ir2 + (c50 — 2032030)553 + c§1x2y + (cla — ng)xy2 + (CE;%C;(] — 2cgy¢30
i)zt + (¢ — coacs) 2’y + (chy — cg3)2?y” + o( |2, y[*). (14)
Since ¢y = 3 (_az_:fl’;af ;)2)5) :_(;;3)+x*4) # 0, by changes of variables and scaling

of time X = z,Y = 4.7 = \/cit whencsy >0 (X = —2,Y = ——~Z_— 7=
/5 20 20 ( Ve

/—c5ot when ¢by < 0), system (14) can be further reexpressed as

dx

==y

dt ’

dy cio — 2¢oC5 ciachy — 2chyCho + Ci cs

@Y _ 24 G0 02%0 3 | 02¢0 02930 T €04 | 0 D1 42

3k >k
dt Coo €20 ich
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:|:C§1 — ChaC31 3 200 * ¥2y 0 4 (o %3y .2 4 (15
7@ 2°) +y7((cla — c2)T £ (c9 — cgz)x”) + o]z, y["). (15)
20

By Proposition 5.3 in Lemontagne et al. [32], we can obtain an equivalent system
of model (15) as follows

dx

a v

d

d%/ =2 + Fz?y + o(|z,y|*),

where

P c51 (5250 — Bo) + C30C5
- 3
(£c50)2
—8a%rD
(£c50) 22 2(b + 2%)2(—a2 + 4a(b + x*) (b + 2z*) + 2*4)3’

with D = 2a3(b? + 4bz* + 22*?) — a®2*2(b + 2*) (4b — 152*) — 2ax**(5b + 22*) (20 +
32*) +2*¢(2b+ 2*) (5b + x*). It is evident that D # 0 when b # by, thus E*(z*, y*)
is a cusp of codimension 3. We have accomplished the proof of Theorem 2.6. O

3. Bifurcation analysis.

3.1. Bogdanov-Takens bifurcation of codimension 2. In this subsection, we
study whether system (2) undergoes Bogdanov-Takens bifurcation of codimension
2 under small parameters perturbation if the bifurcation parameters are chosen
suitably. Actually, we have the following result.

Theorem 3.1. Suppose that F(xz*) = F'(z*) = p(a*) = 0, F"(z*),p'(z*) # 0,
then E*(x*,nx*) is a cusp of codimension 2. If we choose m and a as bifurcation
a(b+z*)(b+3z*)+a**

parameters and assume that k #* - , then system (2) undergoes
Bogdanov-Takens bifurcation of codimension 2. Here F(x) and p(x) are defined by
(5) and (7), respectively.

Proof. Choosing m and a as bifurcation parameters yields the following perturbed
system

dzx r, (m+4d) gy

_——= 1 —_ =) — —

dt (r( k) T+b o 22+ (a+83)’

dy Yy

= = gy(l — = 1
dt sy na:)’ (16)

in which r,s,k,m,a,b,q,n > 0 and § = (d1,02) ~ (0,0). We only focus on the
dynamics of system (2) around the positive equilibrium E*(z*, na™*).
r(b+z*)?(2ak—ax*+x*3) _ rlatz*?)2(—b+k—22%)

k(2ab+3az*+xz*3) 4 knz* (2ab+3ax*+x*3)
* *2 *

retfare L2 from F(at) = F'(*) = p(a®) = 0. Using X = 2 — 2",V =
y —na™* to transform the positive equilibrium point E*(x*,nz*) of system (2) when
6 = 0 into the origin and expanding the resulting system around the origin, we have
(for convenience, in every subsequent transformation, we rename X, Y, 7 by z,y,t,

respectively)

We can derive that m = and s =

dzx

prin doo + @10 + A1y + G207> + G117y + 0(|x,y|2)7



COMPLEX DYNAMICS INDUCED BY ADDITIVE ALLEE EFFECT 11

d

dt
in which a;; and Bij are given in Appendix C and we also note that agg = 0 when
6 =0.

2= bio® + bory + baox? + bryzy + boay® + o |z, y[*), (17)

Setting X =z,Y = dt, we obtain
dr
at Y,
d
dié = Coo + C107 + Co1Y + C207” + E1xy + Co2y® + Pi(,y,01,82), (18)

in which ¢;; are given in Appendix C and we also note that ¢opg = ¢i10 = €91 = 0
when § = 0. Pi(z,y,d1,02) is a C*° function at least of third order with respect to
x,1y, whose coefficients depend smoothly on §; and ds.

Next, introducing time rescaling dt = (1 — ¢poz)dr and changes of variables
X =12,Y = (1 — &)y, system (18) becomes
dr
dt - ya
d _ _ _ _ _
dit/ = doo + dio® + dory + doox® + diyzy + Pa(x,y,01,62), (19)

in which Jij are given in Appendix C and note that doy = dig = dop; = 0 when
0 =0. Py(z,y,0d1,02) is a C* function at least of third order with respect to x,y,
whose coefficients depend smoothly on d; and J5.

Transformation X =z + d“’ ,Y =y brings the above model into an equivalent
model
dr
E =Y,
dy _ _ - - 2 =
5 = foo t Eory + exo + enxy + P3(w,y,01,02), (20)

in which e;; are given in Appendix C and note that epp = €91 = 0 when § = 0.
Ps(z,y,01,02) is a C™ function at least of third order with respect to z,y, whose

coeflicients depend smoothly on §; and 5.
3

Set X = “x Y = ,ﬁly,T = f(l)t, it follows that

€20

do _
dt _y>

dy 2

E:(pl—’—@Qy—'—m +$Q+P4($ay>51752)7 (21)

in which Py(x, vy, d1,02) is a C°° function at least of third order with respect to x,y,
whose coefficients depend smoothly on §; and d5. Moreover,

€00€T €01€11
P1L=—""3 » 2= —— -
€20 €20
A direct calculation with the assistance of Mathematica leads to
¢17 ¢2) ‘
(01, 52) 5§=0
_ e?l o r2z*3(a + %)% (b — k + 22*)2(a(b? — bk + 4ba* + 32*?) + 2*4)
el = k2(b + x*)(2ab + 3ax* + 2*3)2C ’

with C' = —a?(b?—b(k—32*)+32* (z* —k))+az*?(3b* — 3bk+9bx* —ka* +62*2)+2*C.
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(o1, a(b+x™* z*)fa*d
8((‘1;17?;)) 5o # 0 when k # 20 )(b;;?’ e By the results of

Bogdanov [9, 10] and Takens [45], we know that system (2) undergoes Bogdanov-
Takens bifurcation of codimension 2 when (41, d2) changes in a small neighborhood
of (0,0). This proves the Theorem. O

Obviously,

3.2. Bogdanov-Takens bifurcation of codimension 3. In this subsection, we
will illustrate that system (2) may undergo Bogdanov-Takens bifurcation of codi-
mension 3 under advisable parameters. Before the main result, we first state the
relevant definition and property. Please see the references [13] and [21] for more
details.

Definition 3.2. The bifurcation that results from unfolding the following normal
form of a cusp of codimension 3,

dr _
dt =Y,

d

d—i =22 + 2%y, (22)

is called a cusp type degenerate Bogdanov-Takens bifurcation of codimension 3.

Proposition 3.3. A universal unfolding of the normal form (22) is expressed by

= Cl + CQy + C31'y + IQ + Idy + R(Ivyap)a

where p = (p1, p2, p3) ~ (0,0,0), % # 0 for small p and

R(z,y,p) = y*Olz,y*) + O(lz,yI”) + O(p)(O(y*) + O(|z, y[*))
+0(p*)O(|, ). (24)

Our main result is as follows.

Theorem 3.4. Suppose that F(x*) = F'(z*) = p(a*) = p'(z*) = 0, F"(2*) # 0
and b # by, in which by are defined as shown in Theorem 2.6, then E*(x*,nx*)
is a cusp of codimension 3. If we choose m,a and n as bifurcation parameters and

« - —3 2 47 *3_Gr*S 44/ —x*2 +2*2)2(g2+4aqr*2 —63*4
assume that b 7& b~ a“x ax wz(a2{2az*2(155*4)) (a ax z*4)
(2) undergoes Bogdanov-Takens bifurcation of codimension 3 in a small neighbor-

hood of E*(z*,nx*). Here F(z) and p(x) are defined by (5) and (7), respectively.

, then model

Proof. Selecting m, a and n as bifurcation parameters, we have the following system

dz x (m+ k1) g’y

B en-b- - ,

dt k x+0b 22+ (a+ ko)

dy Y

= =sy(l - ———— 25

R el (25)
where k = (K1, ke, k3) ~ (0,0,0).

By F(z*) = F'(z*) = p(z*) = p/(¢*) = 0, we know that k = QCL(Q_;—M(—QQ—F
4a(b *\(b 2* *4 _ *T(a+$*2)2 _ 74ar(b+m*)3
a(b+x")(b+22%) +2*%), s = aZ—Za(btz")(b12z7) -1 ' = @Z—da(bta™)(b+2z7)—z"1°

7'(a—|—w*2)3
qr*?2(—a?+4a(b+z*)(b+2x*)+x*) "
E*(z*,nx*) of system (25) when x = 0 into the origin by setting X =z —z*|Y =

n = Next, we transform the positive equilibrium
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y — na*. By the Taylor expansion, system (25) continues as (for convenience, in
every subsequent transformation, we rename X,Y and 7 as z,y and ¢, respectively)

dx
I gy + @i + agyy + azer’ + ajwy + azer’ + ay 2’y + agat + a2’y
+o(lz,y|),
dy - _ _ _ _ _ _ _ _
c% = bgo + Do + b1y + b3gr? + by + boy® + bea” + by 2%y + bioay?
+bigz? + b312%y + b3a%y? + o2, yl*), (26)
where a;; and B;‘j are given in Appendix C and it’s worth noting that aj, = bf, = 0
when xk = 0.
Letting
dz
X=z, Y=—,
’ dt

system (26) can be rewritten as follows

dr

dt - y7

dy —x% —x% —x —k 2 —k —k 2 —k 3 —k 2 —k 2
g~ Coo T CroT 1 CorlY o Coo®T T C11TY + Cooly” F C3pT” + Co1 7Y + CratY

+eior? + ey 2’y + Epa’y? + of|z,ylh), (27)

where ¢;; are given in Appendix C and we also note that ¢, = ¢}, = ¢y =¢j; =0
when xk = 0.

To illustrate the existence of the Bogdanov-Takens bifurcation of codimension
3, we transform model (27) to the form of system (23) by following seven steps as
shown in Li et al. [35] as follows.

Step 1. First of all, remove the y2-term from model (27) when x = 0 by letting
=X+ 2X?y=Y 4, XY. System (27) can be transformed into

dr

at Y,

dy T% T* T T3 T3 T3 T3 Tk
o doo + diox + doyy + diox® + di xy + diga® + ds 2Py + dipwy?

+djz’ + dj 2’y + dypa®y® + o(|z,ylY), (28)
where d;; are given in Appendix C and it’s worth noting that dg, = dio = di; =
dj; =0 when x = 0.

Step II. In this step, we remove the zy2-term in model (28) when x = 0. Making
variables transformation x = X + %X‘?’, y=Y + %XQY, we have

dx _

dt - ya

d7y —" s —% —* 2 —% — 3 —* 2 — 4
ar ~ oo T €10% + €91y + E3px” + €11 XY + €30T” + €91 T7Y + €407

+e5 2%y + e3,2°y” + o[z, y|*), (29)

where €7; are given in Appendix C and it’s worth noting that &5, = €j, = &3, =
€71 =0 when k = 0.
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Step II. We remove the z?y?-term in model (29) when £ = 0. Let x = X +
2 X%y =Y + 2 X3, then system (29) becomes

s _
dt - ya

dy £k rEs rEs rEs £* rEs % rEs
T foo + flox + fory + foox® + flizy + faoz® + fa2%y + fiox

s’y + |z, yl*), (30)
where ;*J are given in Appendix C and it’s worth noting that fi, = fiy = fi1 =
fi1 =0 when s = 0.

Step IV. Removing the x® and z*-terms in model (30) when x = 0. We can easily

— 2 *2\3 —
get that f5, = _x*(7a2+43;b+((:lcj‘_)w(b£2x*)+m*4)2 + O(k), f5o # 0 for small k. With

Fi e 15T 16

r=X £% ) X37 y:Ya
43 8039
fx A5 fx2 — AR fx f
dt = (1— f§2 X 130 ,*2f20f40X2)dr,
213 8034
it follows that
dzr _
dt - y7
@—**_i_** + gk + gk 2_;'_7* + g 3_’_7* 2+—* 4
a 900 T 9107 T Go1Y T g20L 911TY T g30T 921 T7Y T G40

+g5:2°y + o(|z, y|*), (31)

where g;; are given in Appendix C and it’s worth noting that g5, = g7y = 951 =
911 = 930 = 910 = 0 when £ = 0.
Step V. Removing the z2y-term in model (31) when £ = 0. It’s easy to know
*2\3
7z + O(K), 930 # 0 for small . Setting

ar?(a4a*?)
z*(—a?+4a(b+z*)(b+2z*)+z**

that g5, = —

G531 o, G5t 3 951 331 2
r=Xy=Y+ =Y+ =Y  dr = (1+ =Y + ==5Y7)dt,
3930 36755 3950 36755
we get an equivalent system to (31) as follows
dr
dt - ya
du - _ _ _ _ _
(% = hio + hiox + hoyy + hsga® + hiyey + b3, 2°y + Ri(2,y,5),  (32)

where Efj are given in Appendix C. It’s worth noting that hij, = h}, = hg; = hi; =0
when £ =0 and Ry (z,y, k) possesses the property of (24).

Step VI. Changing ga, and g5; to 1 in model (32). A simple calculation shows
that hi, = g3y # 0 and hj; # 0 for small k. Transformations

Txtrx—2 Txd s 3 7x—3 %l
— 5 5 — 5 5 — 5
T=hogha1 ° X, y="hoihs °Y, t=hyy  hapT,

bring the above system to

dr

dt - y7

dy “x “x “x “x 2 3

— = Joo + J1oT + Jny + iy + a7 + 2%y + Ra(z, y, k), (33)

dt
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where j; are given in Appendix C. It’s worth noting that jg, = jio = jg1 = ji; =0
when k = 0 and Ra(z,y, k) possesses the property of (24).

Step VIIL. Finally, we remove the h%,-term in model (33) by introducing conver-
sion of coordinates

Jio
T ) ) ’
then model (33) can be expressed as follows
dv _
ar Y,
dy T 7 7 2 3
g =1t eyt sy +at o y + Rs(z,y, k), (34)

where
7 Tk 1_-* 7 Tk 3*3 j* 5* I Tk 37*
Y1 = Joo — 13187 Y2 = jor — % - 112107 Y3 =71 + 1113-
It’s worth noting that ¢; = 1o = 1b3 = 0 when x = 0 and R3(z,v, k) possesses the
property of (24). Moreover, with the help of Mathematica, we know that
’ 8(/&17 1;27 1;3)
a(K:l; R2, K3)
B E*%B*7%| dgria**F
TR0 IR0 G e 2) (b + 27)3(—a2 + da(b + ) (b + 227) + *4)2”
with F = a?(2b? 4 6bx* +52*2) — 2az*2(2b% + Tha* +4x*?) + 2*4(10b% + 12bz* + 32*?).
% # 0 when b # b%. Furthermore, system (34) has
b bl K:O
the same form as system (23). According to the conclusion of Li et al. [35], we
can conclude that model (34) is the universal unfolding of the Bogdanov-Takens
singularity (cusp case) of codimension 3. The remaining term R3(z,y, k), satisfying
the property of (24), has no influence on the bifurcation phenomena. The dynamics
of system (2) in a small neighborhood of the positive equilibrium E*(x*, na*), as
(m,a,n) varies near (m + K1, a+ k2,1 + K3), are equivalent to those of system (34)
in a small neighborhood of (0,0,0), as (1, 12,3) varies near (0,0,0). This ends
the proof. O

k=0

Obviously,

3.3. Hopf bifurcation of codimension 2. From the analysis of Appendix A, we
see that Hopf bifurcation may occur at FEo(za,y2), F4(24,ys4) (we denote them as
E. (x4, nz,) for convenience) of system (2) because of det(J(E,)) = —sF'(z.) > 0.
Actually, we have the following Theorem.

Theorem 3.5. Let E,.(x.,nx.) be an equilibrium of system (2) accounting for either
Es(x9,y2) or Eq(xg,ys) and suppose that F(x.) = p(xs) = 0, then we have

(1) if m1 <0, then E.(x.,nxz,) is a stable weak focus with multiplicity one and one
stable limit cycle bifurcates from E, by a supercritical Hopf bifurcation;

(IT) if m1 > 0, then E.(x.,nx.) is an unstable weak focus with multiplicity one and
one unstable limit cycle bifurcates from E, by a subcritical Hopf bifurcation;

(IIT) if ;1 = 0, then E.(x.,nx.) is a weak focus with multiplicity at least two
and system (2) may exhibit a degenerate Hopf bifurcation of codimension at least 2,
where

1 = bad(br + k(s — 1)) (k(s —r) + 2rz,) + a*k(r + 5)(8b%ks + 222 (3br + k(r
+35)) 4 3bx (br — kr 4 5ks)) 4 2ax° (—6b>ks(br + k(s — 1)) — 20z, (5>
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x (b — k)2 + 2krs(11b — 6k) + Tk?s?) — 22(109b%r* 4 52bkr(s — 1) 4 3k>

x(r — 8)%) — b(60b%r* 4+ k2(10r — 9s)(r — s) + bkr(—70r + 83s))2? — 2r

X (33br + 5k(—7r + 5))xt — 8r2a2) + 2a%23 (4b%ks(br — k(r + 2s)) + 4%,
x(3r2(b — k)? + krs(3b — 2k) — 3k%s?) 4+ 23 (17901 4 2bkr (465 — 73r)
+E*(r — 8)(11r — 8)) + dra’t (51br — 15kr + 11ks) + bra?(r(b — k)(72b —
25k) + 25ks(2b — k)) + 80r2z3) + 243 (8b*k*s% 4 6b° ks, (3br — 3kr 4 5k
x8) + x2(81b%r% + 12bkr(17s — 3r) — k*(r® 4 22rs — 155%)) + 2022 (3r2
x (b — k)2 + 2krs(24b — 13k) + 27k%s?) + ba3 (2r* (b — k)(18b — k) + 9kr
x5(23b — Tk) + 49k?s%) + 2ra>(39br — 3kr + 35ks) + 24r2x5). (35)

Here F(x) and p(x) are defined by (5) and (7), respectively.

Proof. According to F(z,) = p(z.) = 0, we know that m = W%%(ak(r +

242 —r TX 4
$) + a2(k(s — r) + 2rz.)) and g = R W)t (. )

substituted into system (2). Then by X = z — z,,Y = y — na, and the Taylor
expansion, system (2) can be rewritten as (for convenience, we rename X,Y as x,y,
respectively)

, which are

dz 2 3 2 4 3

P Q10T + o1y + 20" + 112y + @30T + a21T7Y + a0 + 3127y
+o(lz,y["),

dy

n Brox + Bory + Baox® + Brizy + Bo2y® + Boz” + B2’y + Prazy?
+B10z" + Ba12%y + By + o(|z, y[*), (36)

in which o;; and B;; are defined in Appendix D and note that 5p; = —aq0.
A simple computation shows that a19801 — ap1f10 = —sF'(z.) > 0. Let A =

va10Bo1 — ap1 P10 and make a transformation of x = —ag1 X,y = a10X — AY and
dt = %dT, then model (36) becomes (we still denote X,Y, 7 by x,y, t, respectively)

dx

Y + 0202% + 112y + 0302° + S012%y + a0zt + Sz312%y + o(|z, y|?),
d

di; = —2 + v202” + Y112y + V02> + V302> + V212%Y + Y122y + Ya02?

+7312%Y + Y2027y* + o(|z, y|*), (37)

in which d;; and +y;; are defined in Appendix D.
Following the formula in Perko [38], we have the first Lyapunov coefficient as
follows

s(b(ks + rz.) + z.(k(s — 1) + 2rz,)) g
BkAn2(b+ x.)2(bx2 — a(b + 22.))* A3

m =

in which 71 is defined as (35). Obviously, the sign of n; is the same as 71 and thus
the proof is completed. O

Based on the case (IIT) of Theorem 3.5, we can conclude that system (2) may

undergo degenerate Hopf bifurcation around FE,(z.,y.) when l;; = 0, ie., r =

rE = ks(Ai(bw?fQ—ma*(]f;Jr?w*))‘/E)’ in which A, B and C are given in Appendix D. A
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complicated calculation with the assistance of Maple and Mathematica yields the
second Lyapunov coefficients as follows:
_ 2(bks + ray) + xo(k(s — 1) + 2ra.))>n22

288k9nAxd (b + x4 )4 (bx2 — a(b + 21.))9 A7’
in which 72 is too long to be included here. More specifically, our conclusion is as
follows.

2

Theorem 3.6. Let E,(x.,nx,) be an equilibrium of system (2) accounting for either
Ey(z2,v2) or Ey(z4,ys) and suppose that F(z.) = p(z.) =0 and r = rE, then we
have

(I) if ne2 < 0, then Ei(x,,nx.) is a stable weak focus with multiplicity 2. System
(2) undergoes a degenerate Hopf bifurcation of codimension 2 and there can be up
to two limit cycles bifurcating from E,, the outermost being stable;

(IT) if maa > 0, then E.(x.,nx.) is an unstable weak focus with multiplicity 2.
System (2) undergoes a degenerate Hopf bifurcation of codimension 2 and there can
be up to two limit cycles bifurcating from E,, the outermost being unstable;

(III) if nog = 0, then E.(x,nx.) is a weak focus with multiplicity at least 3 and
system (2) may undergo a degenerate Hopf bifurcation of codimension at least 3.
Here F(z) and p(x) are defined by (5) and (7), respectively.

4. Numerical simulations. In this section, we will carry out numerical simula-
tions to verify the theoretical results by using AUTOO07P [20]. The corresponding
parameter values are taken as follows:

r=08, k=6, ¢=0.496, a =0.65, s=0.2, n=12, m=0.376, b=0.2. (38)

4.1. m and a as the primary bifurcation parameters, respectively. We first
consider the parameter m as the primary bifurcation parameter, while fixing the rest
of parameter values as shown in (38). As a result, we observe one subcritical Hopf
bifurcation point H B(9.50285 x 101, 1.14034) at m = 3.76381 x 10~!, one saddle-
node bifurcation point SN (6.42520 x 1071,7.71024 x 10~1) at m = 4.07055 x 1071,
a neutral saddle equilibrium N S(0.075554626, 0.090665552) at m = 0.21623993 and
one transcritical bifurcation point TC(3.32272 x 107°,3.98726 x 107°) at m =
1.60026 x 10~!'. Additionally, a family of unstable limit cycles approach a stable
homoclinic cycle, as shown in Figure 2.

We observe an S-shaped limit cycle bifurcation branch originating from the sub-
critical Hopf bifurcation point H B, which has two saddle-node bifurcation points:
SNC1(1.37206, 1.50088) at m = 3.75330 x 10~ with a period of 3.72894 x 10 and
SNC5(2.10132,2.01884) at m = 3.76744 x 107! with a period of 4.30703 x 10!.
This indicates the coexistence of three limit cycles when 3.75330 x 10~ < m <
3.76382 x 10~!, with the innermost and outermost cycles being unstable and the
middle one being stable, as shown in Figure 3.

It is easy to see that there are two positive equilibria for 1.60026 x 107! <
m < 4.07055 x 10~!, and only one boundary equilibrium for m > 4.07055 x 10~*.
Biologically, m serves as a threshold indicating the coexistence of predator and prey
when 1.60026 x 10! < m < 4.07055x 10~1. However, system (2) will collapse when
m > 4.07055 x 10~! due to the extinction of the predator.

Secondly, we let

r=065 k=9, ¢=025 a=08, s=0.03 n=355 m=02 b=06, (39)
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FIGURE 2. One-parameter bifurcation diagram of system (2) with
respect to m. (a) m vs. x; (b) zoomed part in (a).
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FIGURE 3. (a) The coexistent three limit cycles of system (2) with
respect to m, where the outmost limit cycle (green) and the inner-
most limit cycle (red) are unstable, while the middle one is stable
(blue); (b) The corresponding time evolutions of three limit cycles.

and take the parameter a as the primary bifurcation parameter. We observe
two subcritical Hopf bifurcation points, denoted as HB; and H By, at (4.04595 x
1071,1.43631) when a = 1.80821 x 10~ ! and at (7.91722 x 10~%,2.81061) when
a = 6.11852 x 10~ respectively. Moreover, there is a saddle-node point SN at
(7.43039 x 1075,2.63779 x 107°) when a = 0, and two saddle-node bifurcation
points of limit cycles, denoted as SNC; and SNCs, at (6.72268,6.59548) when
a = 8.32992 x 1073 with period = 2.31219 x 102, and at (3.61649,6.17642) when
a = 1.06304 with period = 7.24105 x 10 respectively. There are two intervals
8.32992 x 1073 < @ < 1.80821 x 10~ and 6.11852 x 10! < a < 1.06304 where two
limit cycles coexist, as shown in Figure 4 (a) (b). We note that the populations of
predator and prey increase with the increasing half-saturation constant after some
sustained oscillations.

4.2. m and a as the primary bifurcation parameters. Moving on, by taking
m and a as primary bifurcation parameters and using the parameter values given
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(b)

SNC,

FIGURE 4. One-parameter bifurcation diagram of system (2) with
respect to a, where HB1, HBy, SN,SNC¢, SNC5 denote two sub-
critical Hopf bifurcation points, saddle-node point and two saddle-
node bifurcation points of limit cycles, respectively. (a) a vs x; (b)
zoomed part in (a).

in (38), we can obtain the bifurcation curves of saddle-node SN (blue), Hopf H
(red), homoclinic Hom (green) and saddle-node of limit cycles SNL (black), as
shown in Figure 5. Two Bogdanov-Takens (BT) bifurcation points BT} (9.42740 x
1071,1.13129) with m = 5.42003x 107!, a = 1.75619 and BT5(2.11331x1071,2.53597
x1071) with m = 2.35202 x 107!, a = 8.82392 x 102, are observed. Additionally,
there are one generalized Hopf bifurcation point GH (9.73781 x 1071, 1.16854) with
m = 3.70134 x 1071, a = 6.42377 x 10~ %, one cusp CP(4.59146 x 101, 5.50975 x
10~1) with m = 1.16053 x 10~!,a = 1.21700 x 10~2 and a codimension-2 cusp
point of limit cycles CPL(1.78649,1.80917) (with double one Floquet multipliers)
with m = 3.79566 x 107!, a = 6.59945 x 10~! and period = 4.04041 x 10'. The
saddle-node bifurcation diagram of limit cycles is shown in Figure 5(a). There is
an acute angle parameter region for the coexistence of three limit cycles. The en-
tire bifurcation diagram is divided into eight regions: I-VIII and the corresponding
phase portraits for each region are described as follows.

I: two saddles, an unstable node and a stable focus.

II: two saddles, an unstable node and a homoclinic cycle that contains a stable limit
cycle enclosing an unstable focus.

III: two saddles, an unstable node and an unstable focus.

IV: a saddle and an unstable node.

V: two saddles, an unstable node and an unstable limit cycle that contains a stable
focus.

VI: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big stable limit cycle contains a small unstable limit cycle) enclosing a
stable hyperbolic positive equilibrium, bistability state.

VII: two saddles, an unstable node and three limit cycles (a big unstable limit cycle
contains a medium stable limit cycle enclosing a small unstable limit cycle) that
contains a stable focus, bistability state.

VIII: two saddles, an unstable node, and a big unstable limit cycle that contains a
small stable limit cycle enclosing an unstable focus.

Please see Figure 6 for more details.
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4.3. m and n as the primary bifurcation parameters. Now, considering m and
n as the primary bifurcation parameters, and the first set of parameter values in (38),
we can construct a two-parameter bifurcation diagram. This diagram includes the
saddle-node bifurcation curve SN (blue), the Hopf bifurcation curve H (red), the
homoclinic bifurcation curve Hom (green) and the saddle-node bifurcation curve of
limit cycles SN L (black). The diagram is shown in Figure 7 (a, b, ¢). Notably, there
are two BT bifurcation points: BT}(1.89611,9.02782 x 10~ 1) with m = 7.27741 x
1071, n = 4.76124 x 107! and BT»(4.25581 x 1071,7.87462 x 10~!) with m =
3.39850 x 107!, n = 1.85032, respectively. There are also two generalized Hopf
bifurcation points: GH;(9.89983 x 10~1,1.17997) with m = 3.71936 x 10~ !,n =
1.19191 and G H»(1.77236,1.25389) with m = 5.38342 x 10}, n = 7.07466 x 1071,
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(@) (b)

BTz/

: 015 020 025 030 035 040 045 050 055
m

0.66 CPL

0.365 0.370 0.375 0.380
m

FIGURE 5. Two-parameter bifurcation diagram in system (2) with
respect to m and a. (a) The saddle-node bifurcation curve of limit
cycles SNL, where CPL denotes the codimension-2 cusp of limit
cycles. (b) The locations of saddle-node bifurcation curve SN
(blue), saddle-node bifurcation curve of limit cycles SNL (black),
homoclinic bifurcation curve Hom (green) and Hopf bifurcation
curve H (red). (c) Zoomed bifurcation diagram of (b). Here
BT,GH and CPL represent the points of Bagdanov-Taken bifur-
cation point, generalized Hopf bifurcation point and cusp of limit
cycles, respectively.

respectively.
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FIGURE 6. Phase portraits of regions: I-VIII in Figure 5.

Interestingly, the saddle-node bifurcation curve of limit cycles SN L connects the
two generalized Hopf bifurcation points GH; and GHy. There is a codimension-
2 cusp of limit cycles CPL, which also indicates the existence of an acute angle
parameter region for the coexistence of three limit cycles. The whole bifurcation
diagram is divided into eight regions from I to VIII and the corresponding phase
portraits are depicted as follows.



22 YUE YANG, FANWEI MENG, YANCONG XU AND LIBIN RONG

(b)

BT,
~—
o
0.40 0.45 0.50 00_300 0.392 0.484 0.576 0.668 0.760
m m

0.372 0.374 0.376 0.378 0.380 0.382 0.384
m

FIGURE 7. Two-parameter bifurcation diagram in system (2) with
respect to m and n. (a) The saddle-node bifurcation curve of
limit cycles SN L, where C'PL denotes the codimension-2 cusp of
limit cycles. (b) The location of saddle-node bifurcation curve SN
(blue), saddle-node bifurcation curve of limit cycle SNL (black),
homoclinic bifurcation curve Hom (green) and Hopf bifurcation
curve H (red). (c) Zoomed bifurcation diagram of (b). Here
BT,GH and CPL represent the points of Bagdanov-Taken bifur-
cation point, generalized Hopf bifurcation point and cusp of limit
cycles, respectively.

I: two saddles, an unstable node and a stable focus.

IT: two saddles, an unstable node and an unstable limit cycle that contains a stable
focus.

IIT: two saddles, an unstable node and a stable limit cycle that contains an unstable
focus.

IV: two saddles, an unstable node and an unstable focus.

V: a saddle and an unstable node.

VI: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big stable limit cycle contains a small unstable limit cycle) enclosing a
stable hyperbolic positive equilibrium, bistability state.

VII: two saddles, an unstable node and a homoclinic cycle that contains three limit
cycles (a big unstable limit cycle contains a medium stable limit cycle enclosing a
small unstable limit cycle) enclosing a stable focus, bistability state.
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VIII: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big unstable limit cycle contains a small stable limit cycle) enclosing an
unstable focus.

Please see Figure 8 for more details.

mn v

Vil Vi

F1cURE 8. Phase portraits of regions: I-VIII in Figure 7.

4.4. a and n as the primary bifurcation parameters. If we consider a and
n as the primary bifurcation parameters and use the parameter values in (39), we
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can create a two-parameter bifurcation diagram that includes the Hopf bifurcation
curve H (red) and the saddle-node bifurcation curve of the limit cycle SN L (blue).
This diagram is shown in Figure 9 (a). There are three generalized Hopf (GH)
bifurcation points: GH;(2.93725 x 1071,1.00722) with a = 1.34530 x 10~° and
n = 2.34217, GH»(4.21597,5.17619) with a = 1.72751 x 10! and n = 1.22776, and
GH5(1.64766,4.89813) with a = 1.84974 and n = 2.97279.

The saddle-node bifurcation curve of the limit cycles (SNL) bifurcating from the
generalized Hopf bifurcation point GHs is evidently above the Hopf bifurcation
curve (H), suggesting that there may be an isola bifurcation curve of the limit
cycles. By setting n equal to 4,4.05,4.055 and 4.115, we can obtain four isolas of
the limit cycles [4, 52, 39], see Figure 9 (b, ¢) for details. Here the solid curve
and the dotted curve represent the branches of stable limit cycle and unstable limit
cycle, respectively.

(a) (b)

4.0 SNL

GH4q 5.0)

1 GH2 35 L \\ _____ \' - L L
0.0 05 1.0 15 20 25 3.0 0.10 015 020 025 030 035 0.40
a a

135
130
125
8120
&
o 115
110
105

100

FIGURE 9. (a) Two-parameter bifurcation diagram with respect
to a and n including the locations of Hopf bifurcation curve H (red)
and saddle-node bifurcation curve of limit cycle SNL (blue). (b)
A family of isolas of limit cycle in system (2) with respect to a; (c)
Isolas about a and Period.

5. Biological interpretations. The inclusion of additive Allee effect has led to
the emergence of rich dynamics including the codimension-2 cusp of limit cycles
and the isola of limit cycles. This effect may cause the predator to go extinct
while the prey survives after a long period of sustained oscillation. From the phase
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portraits, it is observed that almost all bifurcation types occur near the boundary
equilibrium located close to the origin. Two mechanisms have been identified as
generators of these dynamics: one arises from the Hopf bifurcation point, while the
other originates from an isola center of limit cycle. It is possible for the populations
of predator and prey to increase as the half-saturation constant grows following
sustained oscillations.

6. Conclusion and discussion. This paper explores the intricate dynamics of a
Leslie-Gower predator-prey model with additive Allee effect by using the dynamical
systems approach. The study focuses on the existence and the type of boundary
and positive equilibria, as well as saddle-node bifurcation, Hopf bifurcation, ho-
moclinic bifurcation, saddle-node bifurcations of limit cycles and BT bifurcation
of codimension 3. The research reveals the coexistence of two and three limit cy-
cles, and highlights the significance of additive Allee effect in causing more complex
dynamics, such as the codimension-3 BT bifurcation and codimension-2 cusp bifur-
cation of limit cycles. Of particular interest is the finding of isola bifurcation of limit
cycles, which is reported for the first time in a Leslie-Gower predator-prey model
through numerical analysis. The research establishes the existence of an acute angle
parameter region where three coexistent limit cycles can be observed, indicating a
codimension-2 cusp of limit cycles. Note that, the involvement of additive Allee ef-
fect may induce two kinds of oscillation mechanism for three coexistent limit cycles:
one is from a Hopf bifurcation point; the other is: two limit cycles are bifurcating
from a Hopf bifurcation point while the third one is from a homoclinic cycle men-
tioned in Aguirre et al. [2]. Numerical simulations and phase portraits are presented
to illustrate the transition of global dynamics. It is suggested that future research
should focus on analyzing the isola bifurcation of limit cycles, and identifying the
boundary between two-limit-cycle region and three-limit-cycle region.

Acknowledgments. The authors are very grateful to Professor Pablo Aguirre for
his helpful suggestions.

Appendix.

Appendix A. The Existence of Positive Equilibria in System (2). To in-
vestigate the existence of positive equilibria F;(x;, y;)( = 1,2, 3,4) of system (2) in
the rectangular region Qo = {(z, y)|z € (0,k],y € [0,nk])}, we need to focus on the
existence of positive roots x;(i = 1,2, 3,4) of equation (6)
Fo(x) := F(x) = ag2® + azx® + aga® + ayz + ag = 0,

in the interval (0,%), where ay = r, a3 = r(b — k) + kng, as = ar + k(bng + m —
br), a; = ar(b—k) and ag = ak(m —br). To achieve this, we introduce the following
notions and equations

Fl(gﬂ) =F x) = 4a4x3 + 3a3x2 + 2a0x +ay =0,
Fy(x) := F"'(x) = 2(6a42? + 3azz + az) = 0.

Denote

Ap2 = 9(1% — 24asa4.
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Then F5(z) has no real root if Ap, < 0, has one real root of multiplicity 2 if Ag, =0,

which is denoted by Z;2 = — 132‘234, and has two real roots if Ag, > 0, which are
marked as z; and Zs:
_ —3az — \/9a§ — 24asay4
xr1 = s
12&4
_ *3@3 + \V 9a§ - 24a2a4
T = .
].20,4

Consequently, we analyze the existence of positive roots of Fy(z) in the interval (0, k]
in three scenarios: Ap, < 0, Ap, =0 and Ag, > 0. Let x; ;41 be the coincidence
point of z; and x;41(¢ = 1,2, 3), and «; j 41 j+2 be the coincidence point of z;, ;41
and zj12(j = 1,2), then corresponding equilibria of system (2) are expressed as
Eiir1 (@i, Yiarn) (i = 1,2,3) and Ej i gy (25541542, Yji+15+2) (0 = 1,2), re-
spectively.

Scenario 1: Ap, < 0.

In this situation, F»(z) has no real root and F”(x) > 0 as = € (0, k], which demon-
strates that F”(x) monotonically increases in the interval (0, k. It should be noticed
that F’(0) = a; and F'(k) = r(a + k?)(b + k) + k*(ng(2b + 3k) + 2m) > 0, then we
have

(I) if F'(0) = a; > 0, then F'(z) > 0,z € (0,k], which indicates that F(z)
is monotonically increasing in the interval (0,k]. Noting that F(0) = ao and
F(k) = akm + k3(ng(b+ k) +m) > 0, we have

(i) for F(0) = ap < 0, Fy(z) has a unique positive root in the interval (0, k];

(ii) for ag > 0, Fy(x) has no positive root in the interval (0, kJ;

(IT) if a; < 0, then F(x) has a unique root #; € (0, k], which indicates that F(z)
monotonically decreases in (0,Z;) and monotonically increases in (#1,k]. Again
noting that F(0) = ag and F(k) > 0, we have

(i) for F(0) = ag > 0, Fy(x) has two positive roots in the interval (0, k] if F'(21) < 0,
has one positive root of multiplicity 2 if F(#1) = 0, has no positive root if F'(Z1) > 0;
(ii) for ag < 0, Fy(x) has a unique positive root in the interval (0, k].

Scenario 2: Ap, = 0.

On this occasion, Fy(x) has one real root of multiplicity 2, which is denoted by
Tio = 74‘%34 and F”(z) > 0,z € (0,k], which illustrates that F’(z) is monotoni-
cally increasing in the interval (0,k]. It is noteworthy that F’(0) = ay, F'(Z12) =

%W and F'(k) > 0, then we have
(S2A) when #15 < 0 or 12 > k, we have F”(z) > 0,2 € (0,k], which illustrates
that F’(z) is a monotonely increasing function in the interval (0,%]. Thus in this
situation, the distribution of positive roots of Fy(z) in the interval (0, k] is the same
as Scenario 1;

(S2B) when 0 < Z; 5 < k, according to the signs of F’(0) and F'(Z;2), we get

(I) if F'(0) = a; > 0, then F'(x) > 0,z € (0,k] and hence the distribution of
positive roots of Fy(z) in the interval (0, k] is the same as Scenario 1 (I);

(IT) if a; < 0 and F’(Z12) # 0, F1(x) has a unique root in the interval (0, k], and the
distribution of positive roots of Fy(z) in the interval (0, k] is the same as Scenario
1 (ID);

(1) if a3 < 0 and F'(Z12) = 0, then 1 is a positive root of multiplicity 3 of
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Fy(z). It shows that F(z) monotonically decreases in (0,77 2) and monotonically
increases in (Z1.2,k] and it should be mentioned that F(0) = ag and F(k) > 0.
Therefore, we obtain that

(i) for F(0) = ag > 0, Fy(z) has two positive roots in the interval (0, k] if F/(Z12) <
0, has one positive root of multiplicity 4 if F(Z;2) = 0, has no positive root if
F((El,g) > 0,

ii) for ag < 0, Fy(x) has a unique positive root in the interval (0, k].

Scenario 3: Ap, > 0.

In this scenario, Fj (z) has two real roots, which are marked as z; and Zs. Obvi-
ously, #; and Zo are the maximum and minimum value points of F’(x), respectively.
By analyzing the positions of Z; and Z,, we have

(S3A) when 7, > k or 3 < 0, then F'(z) > 0,z € (0,k] and the distribution of
positive roots of F(z) in the interval (0, k] is the same as Scenario 1;

(S3B) when 0 < Z; < k < Z, F’(z) monotonically increases in (0,#;) and mono-
tonically decreases in (Z1,k]. Again noting that F’(0) = ay, F'(k) > 0, we can
obtain that

(I) if F'(0) = a; > 0, then F'(x) > 0,z € (0,k] and the distribution of positive
roots of Fy(z) in the region (0, k] is the same as Scenario 1 (I);

(IT) if a1 < 0, then Fy(z) has a unique root in the interval (0, k]. Consequently, the
distribution of positive roots of Fy(z) in the region (0, k] is the same as Scenario 1
(I1);

(S3C) when 0 < #; < Zp < k, F'(x) firstly monotonically increases in (0, Z;),
then monotonically decreases in (Z1,Z2), and eventually monotonically increases in
(Z2, k). Based on the signs of F'(0), F’(z1) and F'(Z3), we can obtain that

(I) if £7(0) = a1 > 0 and F'(Z3) < 0, then Fy(z) has two roots in the region (0, k],

which are denoted by @5 and Z3. According to the signs of F(0), F(&2) and F(#3),
the distribution of the positive roots of Fy(z) in the interval (0, k] can be summa-
rized as follows

(i) for F(0) = ag > 0, Fi(x) has two positive roots if F(23) < 0, denoted by
r3 < x4, has one positive root of multiplicity 2 if F'(23) = 0, and has no positive
root if F(#3) > 0;

(ii) for ag < 0, see Table 1;

signs of F(Z3) and F(&3)|Existence of positive roots of Fy(x) in the interval (0, k]
F(i3) <0 three positive roots, denoted by xo < x3 < x4
_ _ two positive roots, one of them is a positive root
F(i2) > 0] F(i3) =0 ofpmultiplicity 2, denoted by x5 <pa§3 =T34
F(z3) >0 one positive root, denoted by s
F(@) 0 two positi've'r(')ots7 one of them is a positive root
of multiplicity 2, denoted by &9 = 223 < 24
F(z2) <0 a unique positive root, denoted by x4

TaBLE 1. The distribution of positive roots of Fy(x) in the interval
(0, k] in (S3C) (I) (ii).

(IT) if a; > 0 and F'(Z2) = 0, then Zy is a positive root of multiplicity 2 of equation
Fi(z) and F'(z) > 0,z € (0, k]. We have that
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(i) for F(0) = ap > 0, Fy(z) has no positive root;

(ii) for ag < 0, Fy(x) has a unique positive root in the interval (0, k] if F(z2) # 0,
and has one positive root of multiplicity 3 if F(Z3) = 0;

(1) if a1 > 0 and F’(Z3) > 0, then F'(z) > 0,z € (0,k]. Thus the distribution of
positive roots of Fy(z) in the interval (0, k] is the same as Scenario 1 (I);

(IV) if a; < 0 and F’(z1) < 0, then Fy(z) has a unique positive root in the interval
(0, k]. Therefore the distribution of the positive roots of Fy(x) in the interval (0, k]
is the same as Scenario 1 (II);

(V) if a; < 0 and F’'(Z1) = 0, then Fj(z) has two positive roots Z; and & in the
interval (0, k], in which Z; is a root of multiplicity 2. With the assistance of signs
of F(0), F(Z1) and F(i&2), we have

(i) for F(0) = ag > 0, see Table 2;

(ii) for ag < 0, Fy(z) has a unique positive root in the interval (0, k], which is de-
noted by x4;

signs of F'(Z3) and F(z;)|Existence of positive roots of Fy(x) in the interval (0, k]
F(z1) <0 two positive roots, denoted by x7 < x4
— = two positive roots, one of them is a positive root
F#) <0 F(z1)=0 of multiplicity 3, denoted by 1 = z1,2,3 < 4
F(z1) >0 two positive roots, denoted by x5 < x4
N one positive root of multiplicity 2,
F = .
(2) =0 denoted by &2 = 34
F(#3) >0 no positive root

TABLE 2. The distribution of positive roots of Fy(x) in the interval
(0,k] in (S3C) (V) (i).

(VI) if a1 < 0, F'(Z;) > 0 and F'(Z3) > 0, Fy(z) has a unique positive root in the
interval (0,k]. Then we can get the distribution of positive roots of Fy(z) in the
interval (0, k] is the same as Scenario 1 (II);

(VIT) if a1 < 0, F'(Z1) > 0 and F'(Z3) = 0, then F(x) has two roots &2 and Zs in
the interval (0, k], in which Zs is a root of multiplicity 2. Thus we have

(i) for F(0) = ag > 0, see Table 3;

(ii) for ag < 0, Fy(x) has a unique positive root in the interval (0, k] if F(z2) > 0,
which is denoted by z3, has one positive root of multiplicity 3 if F(z5) = 0, and
has a unique positive root in the interval (0, k] if F(Z3) < 0, which is denoted by z4;

(VIOI) if a; < 0,F'(Z1) > 0 and F'(Z2) < 0, Fi(z) has three positive roots in
the region (0, k], which are marked as #; < #3 < #4. It means that F(x) firstly
monotonically decreases in (0, Z2), then monotonically increases in (22, Z3), mono-
tonically decreases in (&3, Z4), and lastly monotonically increases in (&4, k]. Based
on the signs of F(0), F(22), F(3) and F(&4), the distribution of the positive roots
of Fy(z) in the interval (0, k] is concluded as follows

(i) for F(0) = ag > 0, see Table 4;

(ii) for ag < 0, see Table 5;

(S3D) when z; < 0 < k < Zy, then F”(x) < 0,z € (0,k], which suggests that
F'(z) is a monotonically decreasing function in the interval (0, k]. With F’(k) > 0,
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signs of F(Z3) and F(Z2)|Existence of positive roots of Fy(x) in the interval (0, k]
F(z3) >0 two positive roots, denoted by x1 < x4

Fds) <0| F(z) =0 two positive roots, one of them is a positive root

(

of multiplicity 3, denoted by z1 < T2 = 234
F(z9) <0 two positive roots, denoted by x1 < x4
one positive root of multiplicity 2,
0 N

denoted by T2 = 12
F(z3) >0 no positive root
TABLE 3. The distribution of positive roots of Fy(x) in the interval
(0, %] in (S3C) (VII) (i).

. — N Ea = Existence of positive roots of Fy(x
signs of F'(i3), F(23) and F(Z4) in the interval (0, ] ()
Fd4) <0 four positive roots, denoted by
1 < To < T3 < Ty
Fés) >0 - three positive roots, one of them is a positive
3 F(24)=0 root of multiplicity 2, denoted
_ by 21 <22 < T4 =234
F(#) <0 F(z4) >0 two positive roots, denoted by x1 < x4
- three positive roots, one of them is a positive
F(&3)=0 root of multiplicity 2, denoted
by T < T3 = T2 3 < T4
F(z3) <0 two positive roots, denoted by x; < x4
- three positive roots, one of them is a positive
F(i4) <0 root of multiplicity 2, denoted
_ by£2:x172<x3<x4
F(i2)=0 F(z4) =0 two positive roots of multiplicity 2,
denoted by & = 212 < &4 = 234
= one positive root of multiplicity 2,
F N
(74) >0 denoted by 23 = 712
F(z4) <0 two positive roots, denoted by x3 < x4
= = one positive root of multiplicity 2,
F F = .
(#2) >0 (74) =0 denoted by 24 = 3.4
F(24) >0 no positive root

TABLE 4. The distribution of positive roots of Fyy(z) in the interval
(0, k] in (S3C) (VIII) (i).

we have F’(z) > 0,2 € (0,k] and the distribution of positive roots of Fy(z) in the
interval (0, k] is the same as Scenario 1 (I);

(S3E) when Z; < 0 < Z2 < k, Fy(x) has a unique positive root Zo. By this
time F’(z) monotonically decreases in (0, ) and monotonically increases in (Zz, k.
Judging the signs of F’(0) and F’(z3), we have that

(I) if F'(0) = a1 > 0 and F'(Z3) > 0, then F'(x) > 0,2 € (0, k] and the distribution
of positive roots of Fy(x) in the interval (0, k] is the same as Scenario 1 (I);

(IT) if a1 > 0 and F’(Z2) = 0, then Z5 is a positive root of multiplicity 2 of F(x).
Further, according to the signs of F(0) and F(Z2), we can easily get

(i) for F(0) = ap > 0, Fy(z) has no positive root;
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signs of F'(Z3) and F(&4)|Existence of positive roots of Fy(x) in the interval (0, k]

F(i4) <0 three positive roots, denoted by x2 < x3 < x4
= . = . two positive roots, one of them is a positive root
F F = T N

(#3) >0 (#4) =0 of multiplicity 2, denoted by xo < 24 = 234

F(z4) >0 a unique positive root, denoted by x4

two positive roots, one of them is a positive root
0 e N
of multiplicity 2, denoted by &3 = x23 < x4
F(z3) <0 a unique positive root, denoted by x4
TABLE 5. The distribution of positive roots of Fy(x) in the interval
(0, %] in (S3C) (VIII) (ii).

(ii) for ag < 0 and F'(Z2) # 0, Fo(z) has a unique positive root in the interval
(0, k);
(iii) for ag < 0 and F’(Z2) = 0, Fp(x) has one positive root of multiplicity 3;

(IT1) if a; > 0 and F'(Z3) < 0, then F(z) has two positive roots in the interval
(0, k], which are denoted by &5 and 2. Thus we have

(i) for F(0) = ag > 0, Fy(x) has two positive roots in the interval (0, k] if F'(2¢) < 0,
as one positive root of multiplicity 2 if F|(#s) = 0, and has no positive root if
F("fg) > O,

(ii) for ag < 0, see Table 6;

(IV) if a; < 0, then Fy(x) has a unique positive root in the interval (0, %] and the
distribution of positive roots of Fy(x) in the interval (0, k] is the same as Scenario
1 (10).

signs of F(&5) and F(&¢)|Existence of positive roots of Fy(x) in the interval (0, k]
F(i6) <0 three positive roots, denoted by xo < 23 < x4
= = two positive roots, one of them is a positive root
F(i5) > 0] F(g) =0 ofpmultiplicity 2, denoted by x4 <p:%6 =T34
F(ig) >0 a unique positive root, denoted by x5
Flds) = 0 two positive roots, one of them is a positive root
of multiplicity 2, denoted by &5 = z23 < 24
F(i5) <0 a unique positive root, denoted by x4

TABLE 6. The distribution of positive roots of Fy(x) in the interval
(0,k] in (S3E) (III) (ii).

Appendix B. Coefficients in the proof of Theorem 2.6.
_rz*(a+2*?)(—b+ k — 2z%) re*(a+ 2*2) (b — k + 22*)

k(2ab + 3ax* + x*3) kn(2ab + 3ax* + x*3)
P~ — r 2012 _ * * *
420 = k(a4 x*2)(b + x*)(2ab + 3ax* + x*3) (a°(6" = blk = 327) + &7 (k +27))
+az*?(5b* — 5b(k — 3z*) + * (102" — 3k)) + 2*%),

2ar(b — k + 2z*)

, Aol =

’

= kn(2ab + 3ax* + z*3)’
G — T (4aa:*(x*2—a)(b—k—|—2x*) _ b(2ak — ax” +x*3))
%7 k(2ab + 3az* + 2*3) (a + x*2)2 (b+ x*)?2 ’
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— 3072)(b— k + 22 ) A .
ar(a — 3a7°)( +227) , big=ms, by = —s, by = —E7
knz*(a + x*2)(2ab + 3az* + x*3) x*
28~ S A ns o« 2s - S
— bo=——1, bso=—35, ba=——3, b2=—3;
x nw T T nw

aro(aorbin — ai1bor) — a3obos + dor (aaobor — o1bao)
o1 (@10 + bor)
—2a3bog + ao1bor (2a20 — bi1) + G113y + a10(aorbir — bo1(ar1 — 2bo2))
a1 (a0 + bor)
—a31bao + agrbor (@20 — bi1) + b3y (11 — boo)
a1 (a0 + bor)
d10(@o1ba1 — aibor) — adybis + don (asobor — do1bso)

dor (@10 + bo1)

)

)

)

)

1
o1 (@10 + bo1)
><(501(512 —agy) + &01521)),
1
o1 (@10 + bor)
X (@01ba1 — Dot (@21 — 2b12))),
—1b3o + Go1bo1 (az0 — bor) + b3y (ao1 — b12)
ao1 (@10 + bo1)
a10(aio + bot) + aorbo + b3,
1o + 501
a21b20 + @10d01 (a0 — 1) + a3 (boo — a11)
ao1 (@10 + bor)
a10(bo1 (@11 — 2bos) + do1 (220 — b11)) + o1 (2a01b20 + bor1br1) — a39a11
do1 (@10 + o)
a2, bao + do1(@10820 + borb11) + bo1 (@10G11 + bo1bo2)
ao1(ao + 801)
a3, b3o + @10do1 (a0 — bar) + a3 (bra — Ga1)
ao1 (@10 + bor)

(a2 (b1a — 2d21) + a10(bo1 (a21 — 2b12) + do1(3az0 — 2b91))

(—3a2,b30 + G01bo1 (330 — ba1) + 2102, — a2gb1a + 2a10

(—3a2,b30 + G01bo1 (330 — 2091) + b2, (2421 — bra) + d10

)

= p(z"),

)

)

)

)

1
do1 (@10 + bo1)

+a01 (3d01b30 + bo1ba1)),
1

o1 (a10 + bo1)
ba1)) — a3gagr + b31012),

(3a2,b30 + 2a01b01ba1 + a10(2b01 (d21 — b12) + do1(3az0 —

_ a2, b0 + ao1 (10830 + borbar) + bo (G10421 + 501512)

o1 (10 + b01)
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Ao
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Q2o
"
a
*
a3p
"
Ao
%
Qy0
*
azy
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10
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*
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11
*
b02
*
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*
b21
*

12
*
b40
*
b31
*
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*
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r(a + 2*%)?
a? —4a(b+ z*)(b+ 2z*) — x*4’
r(a+ 2*%)?
n(a? — da(b+ x*)(b + 2x*) — z*4)’
ar(a + 2*2)
z*(—a? + 4a(b + %) (b + 22*) + z*4)’
2ar(a + x*?)
nx*(—a? + 4a(b + z*)(b + 22*) + z*4)’
darz*(a — z*(2b + x*))

(a+2*2)(b+ x*)(—a? + 4a(b + z*)(b + 22*) + z*4)’

ar(a — 3x*?)

" na2(—a? + 4a(b + %) (b + 22%) + 2*4)’

ar da* (2*? — 3a) 4b 1

+a

—a2 +4a(b+ z*) (b + 22*) + x*4 ( (a + x*2)2 (b+ 2*)2 + E)’
dar(a — x*2)
nx*(a + x*2)(—a? + 4a(b + z*) (b + 2x*) + x*4)’
nr(a + z*%)?
~a? —4da(b+ ) (b+ 2z*) —
r(a + z*2)?
a? — 4a(b+ x*) (b + 2x*) — a*4’
nr(a + x*2)?
z*(a? — 4a(b+ z*) (b + 2x*) — xz*4)’
2r(a + x*?)?
z*(—a? + da(b + x*)(b + 22*) + z*4)’
r(a + z*%)?
na*(a? — 4a(b+ z*)(b + 2x*) — x*4)’
nr(a + x*?)?
z*2(—a? 4+ da(b + x*)(b + 2z*) + z*4)’
2r(a + x*?)?
z*2(a? — 4a(b+ z*) (b + 2x*) — x*4)’
r(a + z*2)?
na*2(—a? + da(b + 2*)(b + 2z*) + 2*4)’
nr(a + 2*2)?
x*3(a? — 4a(b + x*)(b + 2x*) — x*4)’
2r(a + x*2)?
x*3(—a? + da(b + x*)(b + 22*) + 2*4)’
r(a + z*2)? )
na*3(a? — 4a(b + x*)(b + 22*) — z*1)’
«27 x x «
002 atybi, — asobl + ahibi + e chy = T2,
ao1 ao1
—azobyy + az,b1 — agebly + ajibyg + agibie + aTg(aélei; : )

Qo1

*
10
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2a54b5
X (TR ),

ES
Qo1

>k 1 * * * * * * * * * * * * *
Cy = F(alo(%uboz — 2ag, (a3, + biy) + ait) + agy (agy (3aky + b3y) — asg(ar,

01
E3
+2bg2))),
1
% _ * * * * * *
€12 = 53 (ag1(2a3; + bia) — ajy(ai; + bge)),
ol
* k7 k7% k7% * 7k k7K k7 k7% k7%
ca0 = —ayobyy +az bip — azpbiy + az,b30 — azeba + aj bsy — ajpbsy + agibyg
*2 %27 % * * * Pk * * L% * L%
a1paiibie  alp(aioasibgy + aiy(2a50b5, + aigbly)) n 1 (@32b5, + 2
a3 a2 ar a10922
01 01 01
* * 7% * * 1% *27 %
Xazoaiobos + 2a50a10b1s + a3pbg2),
1
* * *27 % * % * * * * * * % 1k
€31= 3 (—aio(2ai7boy — agrajy(3as; + 2b15) + agy (agy (3az; + 2b35) — 2a3,b5,)
01

+ai?) + agy(afy (2a30bgy — abyabe) + agy (—2a50b5y — 2a50 (a3, + biy) +
agy (4ajy + b31)) + aspail)),
. Gi1bhe — abiaf;(3ad; +bis) + aby(afy (33, + bsy) — a3,b5,) + ai?

Ca2 = *3
ap1

Appendix C. Coefficients in the proof of Theorem 3.1 and Theorem 3.4.
Sora*(a+ 2*2)(=b + k — 2z*) & )
k(2ab + 3az* 4+ x*3)(a + d2 + x*2) b+ a*”’
ra*(—=b+ k — 2z*)

agg = JJ*(

a = dad *2 62 *2
410 k;(Qab+3ax*+x*3)(a+52+x*2)2( ada(a+a7) + 8330 +a7) + (a
bdy
*2\3\ _
o)) -

ra*(a+2*2)%(b — k + 22%)

o1 = kn(2ab + 3ax* + z*3)(a + 62 + x*2)’
o r(2ak — ax* + x*3) _ rz*(2ak —az” + x*3)
207 k(2ab + 3az* + 2*3) k(b + 2*)(2ab + 3az* + 2*3)
r(a+62)(a+ 2*?)%(a + 0y — 32*2)(b — k + 2z7) 01
k(2ab 4 3ax* + x*3)(a + d3 + 2*2)3 (b+ x*)?
oa* r
(4273 K
Gay = 2r(a+ d2)(a + 2*2)%(b — k + 22%)
kn(2ab + 3ax* + 2*3)(a + 62 + 2*2)2’
By = nrz*(a + 2*?)(=b+ k — 22*)
k(2ab + 3ax* 4+ x*3) ’
b ra*(a+ 2*2) (b — k + 22*)
oL k(2ab + 3az* + x*3) '
By = nr(a+ 2*2) (b — k + 22*)
k(2ab + 3az* + x*3)
- 2r(a+ x*?)(—=b+ k — 2x*)
b = ;

k(2ab + 3ax* + x*3)
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C20

C11
doo
dog
€00
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Q20
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a1

azp

*
Qo1

Qy0
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r(a+a2*?)(b—k+22*)
kn(2ab + 3ax* + x*3) ’

apobo2 5
00(——— — bo1),
ao1
— 72 7 — 7
a11agobo2 _ + _ 2agobo2 - _ T
————— — Ggob11 + a10(— — bo1) + ao1bio,
Gapq ap1
ago(a1n +2b2) =
————— 4+ a10 + bo1,
ao1

22 -9 7 = o o T

- - - - agnai1b 2a00a10011b
_ _ _ ~ 00411002 00210011002

—a20bo1 + @11b10 — @10b11 + @o1b20 + 3 -

—
01 apy
72 —_ —_ 7
(@3 + 2a00a20)bo2
+ — ;
ap1
(@o1@10 — Gooa11) (@11 + 2bo2) _ = a1 + bo2
=- — + 2az0 + b11, Co2 = ———;
apy ap1
€00, dio = €10 — 2Cp0Co2, do1 = Cou,
_ 9 _ _ - _ _
Co0Cha — 2C10Co2 + C20, d11 = C11 — Co1Co2;
- d? - dyod: - -
10 — 10011 _ _
doo — —=—, €1 = do1 — —=—, €20 = dao, €11 = d11.
1

*( 2 —4
(b+x*)(_a2+4a(b+x*)(b+2$*)—|—$*4)(a—|—/§2+x*2)(l€1$ (a a

x(b+z*)(b+2z*) — 2*)(a + Ky + 2*?) + korz*(a + %)% (b + z*)),
1 (7 blil
(b+x*)?

(—a® + 4a(b+ %) (b + 22*)

2r
+$*4) — m(a + /QQ)(CL + 1'*2)3 + T(3Cl + x*z)(a + Jf*2)),
2
qZC*Z
a+ ko + x*2’
b:‘il 1

(b+ x*)3 + x*(—a? + 4a(b + x*) (b + 22*) + *)(a + ko + ©*2)3 (r(r2

x (4a* — 5az*? + 3z**)(a + 2*?)? + K3(5a* — 8ax*? — 2**)(a + ™) +
2ak3(a — 2*%) + a(a + 2*?)%)),

2qx*(a + K2)
(a+ Ko + x*2)2’

_ 4r (a—i—/@ )(a+x*2)3(a
(a2 — 4a(b+ 2*)(b+ 22*) — 2*4)(a + Ko + 2*2)4 2
) dar
X2 _ 13
+ho — )+(b+$*)4(m a2—4a(b+x*)(b+2x*)7x*4(b+x )%)
1 dar
- — b *\3
(b+],‘*)3 (K:l a2—4a(b+$*)(b+2x*)_x*4( +z ) )a

q(a + K2)(a + Ky — 32*2)
a (a+ ko +2*2)3
r(a+ k2)(a+ 2*?)3(a® + 2k2(a — 52*2) — 10az*? + k3 + 5a*4)

x*(—a? + 4a(b+ z*) (b + 2x*) + ) (a + kg + *2)5

)
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L bk1 . 4abr
(b+2%)°  (b+2*)2(—a® + 4a(b + x*)(b + 22*) + x*4)’
4qx*(a + ko) (—a — kg + 2*2)
(a + ko + 2724
bio = (—rzriz*(a+2*3)5)/(r(a + 2%)3(a® — 4a(b+ 2*) (b + 22%) — ™) — k3
xqr*?(—a® + 4a(b + ) (b + 22*) + 2*4)?),
bio = (r¥(a +2*%)%)/(qz*?(—a® + da(b + z*) (b + 22%) + 2**)? (k3qz** (—a® +
4a(b 4 %) (b + 22%) + 2*) + r(a + 2*%)3)),
by = (rla+ )2 (r(a + %)% — k3qr*?(—a® + 4a(b + 2*)(b + 22*) + **)))/
(r(a + 2*%)3(a® — 4a(b+ 2*) (b + 22%) — 2*) — K3qr*?(—a® + 4a(b + z*)
x (b4 22%) + z*4)?),
Bo = (—r%(a + 272)%)/(gz™(—a® + dald + 2*) (b + 27) + 2" (g™~ +
da(b+x*)(b+ 22%) + ™) + r(a + 2*%)3)),
by, = (2r%(a +2*?)%)/(z*(—a® + 4a(b + z*) (b + 22*) + ™) (k3qz™*(—a® + 4a
x(b+2*) (b4 22*) + 2*) 4+ r(a + 2*?)?)),
biy = (—qra*(a+ 2*?)?)/(k3qx**(—a® + 4a(b + %) (b + 22*) + 2**) + r(a +
x*2)3)’
Bo = (r5(a+ 2°2)%) /(g2 (—a® + 4a(b + 2°) (b + 207) + 242 (g (—a? +
da(b+ x*)(b+ 22%) + ™) + r(a + 2*?)?)),
by, = —(2r%(a + 2*?)%) /(z*?(—a® + da(b + z*) (b + 22%) 4+ ™) (k3qz*?* (—a® +
4a(b+ z*) (b + 22%) + ™) + r(a + 2*%)3)),
biy = (qr(a + 2**)%)(k3qx**(—a® + 4a(b+ %) (b + 22*) + 2**) + r(a + 2*%)3),
bio = —(r’(a + &)%) /(qz**(—=a® + 4a(b + z*) (b + 22*) + &™) (r3q2*?(—a® +
4a(b + 2*) (b + 22*) + 2**) + r(a + 2*%)3)),
by = (2r2(a + 2**)°) /(™3 (—a® 4 4a(b + x*) (b + 22*) + 2**) (k3qz*? (—a® +
da(b+ x*)(b+ 22%) + ) + r(a + 2*?)?)),

ag; = —

)

z 2\2 3, 2 4
b5y = (—qr(a+ x*%)%)/(ksqz™ (—a* + 4a(b + ™) (b + 22") + =) + ra*(a
2\3
+27%)%);
o aooboz G B 4 G b
Coo = — QoY1 T Ag1900>
a;
01
a*2b* - 2a%.b - a*2bt -
% __ 00Y12 —k Tk — % 0002 * 00702 = *
Cip = — apobiy + afo (22 — bjy) + ay, (b — —=2) + apy b,
ag Qo1 Qo1
—%x (=% 7%
o _ago(afy +2bgy) P
Cor =~ T ap 015
Qo1
%27
az2a?bt - - - - - - 1
—x__ “oo*11v02 * —x Tk —x Tk —x Tk —x Tk —k Tk
€20 = = .3 + ay bip + as1b50 — ax0bg1 — @ioby1 + Ag1b3p — Agebsy + =
01 01

=%k
_ _ _ _ a _
— %27 % —k =k >k —% =% % — %27 % 00 —k —% Tk —%
x (@pobag + 2a30a00bo2 + 2a10G00bTa + @15002) — 752 (2a79ai1boe + ago
01
—% 7% —% 7%
x(@31b92 + @j1bi2)),
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ajodry (ay, + 2b%,) — agy (@io(ay, + 2b%,) + 2ak, (a3, + biy))

— % T %
—) +2a20 +b11,
Qo1
— % 7%
ayy + gy
—x )
Qo1
— %2 %3 7%
a00a11b02 — B* — % B* s 5* s E* —x I;* — % B* — %
— =1 T G11099 T Q31099 — G30001 + Q21019 — Gpb11 — A1021 + g
Qg1
- = 1 = - 1
* —x Tk —x —% —x —x " * —k —x ok
xbyg — Agob31 + =5 (@00a1:1 (2(@10aT1 + agoasy)boe + @ooa11b72)) + =
o1 Aoy
- - - - - 1
— %27k —k =% I —k 7k —k (=% % —k Tk —x —%2
x(@ypbie + 2a10(@50boy + agobse) + 2ag0(a30boe + @50b72)) — 4(—1*2’(‘111‘110

01
xbpa + 2a00a10(a31bg2 + @11672) + Ao (@ao (@31 002 + @31012) + @11 (2a3
xboa + @gb32))),

1 — k2 (=% (=% 7% —% (=% 7% — % — % 7% —%
ﬁ(—%%(azo(au + 2bgo) + 2a7o(as; + bia) + ago(3as; +2b3,)) + ag,

01
Xﬁ(@’fo@yfl(dfl + ?532) + agy (a5, (3aj; + 2b5,) + 2a,b75)) — agoar (@, +
2bga)) + 350%0 + b51, )
agy (2a3; + biy) — ajq(aj; + bg2)

agt ’

= —ajobg; + a5,biy — @Yy + @5,b50 — Gsbs, + aj by — ajobs, + ap, b

=42 kA Tk FK =x2

aopa11b6e CL00a11(27* @115y + 5o (385, B0 + @115%)) + 1 (@25
—%5 —+ 10011902 T Agol20210p2 T 411012 —% a10922
Qo1 Qo1 Qo1

+2a50a10bos + @50b00 + 2a80 (@hoboy + @30b1a) + 2a30(@rebTs + agobss)) +
dTg(angﬁBSz + 2a50a10at, (23, by, + a5,biy) + Ggo (@t (2a50bgs + go

01

7 —k —x [(—% T —k Tk —% —%27 1 — —k Tk — %
xbsy) + 2a50at, (@305 + @31 b19) + Goas:bG)) — ﬁ(aiﬁ(aélbm +agy

01

xbiy) + 2ao(ahe (% boy + @5,012) + @31 (@50bos + Goobsa)) + oo (2a], a5
X by + 2a50(a31 b2 + @11b12) + o (31075 + @51035))),

1 _ _ B
ﬁ(*ﬁéi’(dé‘,e(ﬁh + 2b%y) + 2a30 (a3, + biy) + ajo(3ah, + 203,)) + a4}

01
x (@11 (2a30bge + @10(3a@5; + 2072) + 2a50(2a3, + b35)) + 2(@1@31 052 + ago
x (5,059 + 5, (@3; + bYa))) + G30ats) — @3,a0, (@5ear (al; + 2b5,) + 2ag,
x(2a3, (@3, + bly) + i1 biy)) + agoats (aj; + 2b5y)) + 4aj, + bs;,

— %27 % —% =% — % 7% —% (=% — % 7% —% Ik —%3
ay1bhe — ag1a7;(3a3; + biy) + ag (g, (3a3; + b35) — as,b5.) + ajy

s |
_ _ _ ¢t e
= 580» To = ETO - 5305527 d31 = 581» d§0 = 530583 - % + 530»
- - ChoCY
Ciy, dip = 5(8{0 — 2G50Cha)Coh + Cagr 3y = % + €51,

- 1
—*2 —k * =k =x4 —k =%k —k %k —k | =k —%
2¢05 + Cias diyg = CooCo2 + 1(002(020 — 2€05C70) + 2C30)Cha + Cho»
%k
_v3 | 3C12Ch2

—k  —k —% NE —% P I — %
Co2Ca1 + C51, doy = —C5 + 9 + ¢392, €go = dog, €109 = dip;
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_ _ J* (Z* _ _ J* (Z* _
581 = d31v E;O = d§0 - 002 127 é?l = dTp 530 = d§0 - 103 12a 531 = dzp
1., - dids - dr, dx - -
€10 = ngodg - L2 4 dy, e = 116 2+ ds), ey = dsy,
Joo = €0 fio = &0 fo1 = €01 foo = &, [i1 = €11
I — 550532 £* — r* —% éTOé;Z r* —%
f30=¢5 — 3 Ja1 = €31, fio = €30 — R J31 = €31,
—% i —x s fékoféko — r*
Goo = foo» 910 = fio — 2f* s Jo1 = fors
o 0 o o
= 95030 . 3(5f70.f30 + 450 fi0) G = Fr - Jo1/30
20 = T 20 = 11 = J11 T
16f33 203, ’ 2f5
g _ T35 — 32750 fi)
v 0
Lo me 3(201 30 f30 + f1 (16 f30 fi0 — 15£35))
g1 = fo1 — 80JF*2 ’
Gl = flof30(16./50f 30 — 15f35) G = 7f1*1f§‘§ . Sfo1fs0 +4fi i
64 f55 8153 5/3
- 7 T _ 900951 7 w7 _ 910951
héo = o0s Pio = Gio» ho1 = 01 — = hao = G20, M1 =911 — ——
920 920
7% —x giklggo Tk 7% 7*%7*_% T 7% 7*%7*_2
h3y = g31 — 5 iJoo = hoohist hog 5 Jio = highst hag 7,
20

—x—1

Jor = R hg Ry © iy = Riyhag S hiy ®
Jo1 = No1li31 Ngg ~s J11 = Ny1flog " Mgp = -

Appendix D. Coefficients in the proof of Theorem 3.5.

a+ 22
Q10 =8, Qo1 = Fn(alb +J2rw:) mypey (b(ks + 1) + xu(k(s — 1) + 2rz.)),
a0 = _%(x*(a + :EQC;((Zx_Q szzb +2z,)) (blks 7o) . (ks = r) +2re.))
b
Tl F a2 —alo T 2en) T ea(kls =r)+2ra)) +7)
2a
a1 = (b —a(b + 200)) (b(ks + ra.) + xo(k(s — r) + 2rz,)),
1 2 2
00 = L 2T (b T a)2(6aE —a(b + 2 @ T @) (b2 ) (blks + 7
2, (k(s — 1) + 2rx,)) 4+ bla + 22)%(ak(r + s) + 22 (k(s — r) + 2rz.))),
S _afa— 322)(b(ks + ra.) + o (k(s — 1) + 2rz.))
2 kna?(a+ x2)(bx2 — a(b+ 2x,)) ’
1
M0 = T 20§ P —a(h ) (a(a® — 10az? + 52%) (b + z.)*
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