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Abstract. In this paper, we investigate the complex dynamics of a predator-
prey model, specifically the Leslie-Gower model, with additive Allee e↵ect and
simplified Holling III functional response. The model has been analyzed for
various bifurcations, including the nilpotent cusp singularity of codimension 3,
Bogdanov-Takens bifurcation of codimension 3, and Hopf bifurcation of codi-
mension 2. Additionally, a codimension 2 cusp of limit cycles and the coexistent
acute angle region of three limit cycles have been identified. Notably, the isola
bifurcation of limit cycles, which indicates a new mechanism of sustained os-
cillation, has been observed for the first time in a Leslie-Gower predator-prey
model with additive Allee e↵ect. One-parameter and two-parameter bifurca-
tion diagrams and corresponding phase portraits have been presented to verify
the theoretical results. From a biological perspective, the additive Allee e↵ect
may result in system collapse, leading to the extinction of the predator pop-
ulation and survival of the prey. The finding of the isola bifurcation of limit
cycles is of significant interest, highlighting a novel mechanism of sustained
oscillation in this complex system.

1. Introduction. The predator-prey model as one of the typical ecosystems has
played a significant role in the theoretical studies of biology and mathematics.
Among them the Leslie-Gower predator-prey model taking the form

dx

dt
= rx(1� x

k
)� yp(x),

dy

dt
= sy(1� y

nx
),

was introduced by Leslie [33, 34] to describe a scenario in which both growth rates of
two species have upper limits, especially, the environment carrying capacity of the
predator population represented as nx is proportional to the size of prey population.
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Given this, investigators have achieved fruitful results in investigating the Leslie-
Gower predator-prey model [1, 2, 26, 29, 5, 42, 40, 50]. This paper deals with
a Leslie-Gower predator-prey system incorporating the following two aspects: (i)
the Allee e↵ect in the growth function for prey, and (ii) simplified Holling III type
functional response of predators.

Allee e↵ect, started from the pioneer work of the well-known ecologist W.C.
Allee [49], refers to any mechanism leading to a positive relationship between fit-
ness and population density of any species [36, 25] and corresponds to a density-
mediated reduction in the intrinsic growth rate of a population at low-density
[19]. It originates from multiple factors, such as mate finding, inbreeding de-
pression, foraging e�ciency, anti-predator behavior, and environment conditioning
etc. [44, 22, 23, 7, 8] and has attracted much attention in the last few decades
[26, 40, 46, 27, 30, 56, 11, 41] because of its crucial potential e↵ect on biological
control and population dynamics. To describe Allee e↵ect, diverse modeling meth-
ods have been considered, and the most typical form for a single population with
Allee e↵ect is performed as follows [15, 6]

dx

dt
= r(1� x

K
)(x�m)x,

here x(t) is the population density at time t, r and K represent the intrinsic growth
rate and the environmental carrying capacity, respectively. The term x � m is
deemed as Allee e↵ect term, further, 0 < m ⌧ K corresponds to strong Allee e↵ect,
which indicates that there exists an extinction threshold and the population will go
extinct if the initial size is below the threshold level [7, 46, 47], and �K < m  0
describes weak Allee e↵ect without such a threshold value, implying that the per
capita growth rate is still positive despite decreases under low population density
[47, 43].

Additive Allee e↵ect has become the focus of public concern in recent years
[1, 2, 19, 44, 11, 3, 48, 31, 54, 55, 37]. It was derived in [19, 44] with the following
form

dx

dt
= (r(1� x

K
)� m

x+ b
)x, (1)

here r,K occupy the same meaning as above, and the term m
x+b is known as additive

A↵ect e↵ect. When 0 < m < br, equation (1) describes the strong Allee e↵ect and
if m > br, it is said that the population is influenced by a weak Allee e↵ect. Aguirre
et al. [1] studied the existence of two limit cycles in a Leslie-Gower predator-prey
model with additive Allee e↵ect and simplified Holling IV functional response. Cai
et al. [11] developed a Leslie-Gower predator-prey model with additive Allee e↵ect
and Holling II functional response, and presented the existence and stability of
equilibria. Furthermore, they established the conditions for the existence of Hopf
bifurcation. Lai et al. [31] investigated the stability and bifurcation in a predator-
prey model combining the additive Allee e↵ect with fear e↵ect on prey species, and
analyzed saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.
Molla et al. [37] proposed a predator-prey model with Holling type II response
function, considering both variable prey refuge and additive Allee e↵ect in the prey.
They demonstrated that these two factors can lead to saddle-node bifurcation, Hopf
bifurcation, or Bogdanov-Takens bifurcation.

Note that, isolas are isolated closed curves of solution branches while each isola
always has two saddle-node bifurcation points, and the solution may be equilibrium,
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homoclinic cycle, heteroclinic cycle or limit cycle [4, 52, 17, 18]. This phenomenon
has received significant attention in biological and chemical systems [24, 39]. The
isola of equilibrium is relevant to the mushroom phenomenon [24], while the presence
of an isola center of limit cycle indicates a new mechanism for sustained oscillations.
Sandstede and Xu [39] derived the conditions that guarantee snaking or result in
diagrams that either consist entirely of isolas. Aougab et al. [4] researched snaking
branches of spatially localized stationary patterns that show localized rolls, which
consist of isolas or of intertwined s-shaped curves. They promoted the results con-
cerning orientable stable and unstable manifolds of rolls to the nonorientable case
and further, discussed topological barriers that prevent snaking, thus allowing only
isolas to occur. Xu et al. [52] firstly detected numerically isola bifurcation of peri-
odic orbits in HIV model, which means that there is a parameter interval with the
same oscillations.

The Leslie-Gower predator-prey model with Holling III functional response, but
without an additive Allee e↵ect, has received a lot of attention in recent decades
[29, 28, 14, 53, 16, 51, 12]. Researchers, such as Hsu and Huang [28], have explored
the global stability of the model and proposed the existence of one limit cycle.
Others, like Collings [14], have studied the global stability and bifurcation behavior
of a mite predator-prey system with a simplified Holling III functional response.
They have shown the existence of Hopf bifurcation and saddle-node bifurcation
of limit cycles and provided concrete stability regions, especially the bistability
region. Huang et al. [29] have analyzed a Leslie-type predator-prey model with
generalized Holling type III functional response and shown that the model can
undergo Hopf bifurcation and degenerate focus type Bogdanov-Takens bifurcation
of codimension 3 under suitable parameters, which illustrates the coexistence of two
limit cycles. However, the dynamics of the Leslie-Gower predator-prey model with
Holling III functional response and additive Allee e↵ect has not been characterized
yet. Inspired by the above results, in this paper, we will investigate a Leslie-Gower
predator-prey system with additive Allee e↵ect and simplified Holling III functional
response. The system is represented by the following set of equations

dx

dt
= (r(1� x

k
)� m

x+ b
)x� qx2y

x2 + a
,

dy

dt
= sy(1� y

nx
), (2)

where x(t) and y(t) denote the prey and predator populations at time t, respectively.
The intrinsic growth rates of the prey and predator populations are denoted by r
and s, respectively. The maximum rate of predation is represented by q, and a
represents the half-saturation constant. The environmental carrying capacity of the
prey is indicated by k, and the food quality that the prey provides for conversion
into predator births is represented by n. The term m

x+b represents the additive Allee
e↵ect, where m measures the degree of Allee e↵ect, and b denotes the population
size of the prey species at which fitness is half its maximum value. It is important
to note that the Allee e↵ect is considered weak if 0 < m < br, and strong if m > br.
The system is analyzed in the region ⌦1 = {(x, y)|x > 0, y � 0}, and all parameters
are assumed to be positive.

The article is organized as follows. Section 2 presents the asymptotic dynamics
near (0, 0), the existence and types of equilibria. Bifurcation analysis, including
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Bogdanov-Takens bifurcation of codimension 2 and 3, and Hopf bifurcation of codi-
mension 2, is presented in Section 3. In Section 4, we carry out numerical simula-
tions to verify our theoretical results. Biological interpretation is given in Section
5. Finally, we conclude this paper with conclusion and discussion.

2. The asymptotic dynamics near (0, 0) and the analysis of equilibria.

2.1. The asymptotic dynamics near (0, 0). Noting that system (2) is not well
defined at x = 0, it inspires us to think of that whether a blow-up transformation can
be used to investigate the asymptotic dynamics near (0, 0). Actually, our analysis
is as follows.

Lemma 2.1. The trajectories near (0, 0) of system (2) with initial values located

in the region ⌦1 = {(x, y)|x > 0, y � 0} will leave (0, 0) when m + b(s � r) < 0 or

when m+ b(s� r) > 0,m� br < 0, and will be attracted to (0, 0) when m� br > 0.

Proof. Firstly, making transformation dt = knx(x+b)(x2+a)d⌧ yields a polynomial
system equivalent to system (2) in the region ⌦1 taking the form

dx

d⌧
= nx2(x2 + a)(r(x+ b)(k � x)�mk)� knq(x+ b)x3y,

dy

d⌧
= ksy(x+ b)(x2 + a)(nx� y). (3)

It’s worthy noting that (0, 0) is an equilibrium of system (3) while the Jacobian
matrix of system (3) at (0, 0) is a null matrix. Taking the blow-up transformation
x = R cos ✓, y = R sin ✓, t = R⌧ , we can obtain that

dR

dt
= R(ka((br �m)n cos3 ✓ + bs sin2 ✓(n cos ✓ � sin ✓)) +O(R)),

d✓

dt
= ka sin ✓ cos ✓((m+ b(s� r))n cos ✓ � bs sin ✓) +O(R), (4)

where (R, ✓) 2 [0,+1)⇥ [0, ⇡
2
].

After a simple qualitative analysis, we know that when m+ b(s� r) < 0, system
(4) has two saddles (0, 0) and (0, ⇡

2
). When m+ b(s� r) > 0, system (4) has three

equilibria (0, 0), a saddle (0, ⇡
2
) and (0, arctan (m+b(s�r))n

bs ). Further, for m�br < 0,

(0, 0) is an unstable node and (0, arctan (m+b(s�r))n
bs ) is a saddle; for m � br > 0,

(0, 0) is a saddle and (0, arctan (m+b(s�r))n
bs ) is a stable node.

Hence, we can conclude that the trajectories near (0, 0) of system (2) with initial
values located in ⌦1 will leave (0, 0) when m + b(s � r) < 0 (see Figure 1 (a) (b))
or when m + b(s � r) > 0,m � br < 0 (see Figure 1 (c) (d)) and will be attracted
to (0, 0) when m� br > 0 (see Figure 1 (e) (f)).

2.2. The analysis of equilibria. In this subsection, we study the existence and
the type of equilibria in system (2). Firstly, we present the following result.

Lemma 2.2. The positive invariant set of system (2) is the rectangular region

⌦2 = {(x, y)|0 < x  k, 0  y  nk}.
Proof. By the first equation of system (2), we have dx

dt |x>k < 0. Thus, we only focus

on 0 < x  k. On the other hand, we can easily get dy
dt = sy(1� y

nx )  sy(1� y
nk )

for 0 < x  k, which leads to dy
dt |y>nk < 0. Therefore, all solutions of system (2)

will ultimately move towards the region ⌦2 = {(x, y)|0 < x  k, 0  y  nk} and
this ends the proof.
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(a) (b)

(d)

 (e)
（f）

Figure 1. (a) Two equilibria of system (4) when m+b(s�r) < 0.
(b) The trajectories near (0, 0) of system (2) when m+b(s�r) < 0.
(c) Three equilibria of system (4) when m+b(s�r) > 0,m�br < 0.
(d) The trajectories near (0, 0) of system (2) when m+ b(s� r) >
0,m� br < 0. (e) Three equilibria of system (4) when m� br > 0.
(f) The trajectories near (0, 0) of system (2) when m� br > 0.

For the boundary equilibria of system (2), by a simple qualitative analysis, we
have the following Theorem.

Lemma 2.3. System (2) has

(I) no boundary equilibrium if m > r(b+k)2

4k ;

(II) a unique boundary equilibrium B(k�b
2

, 0) if m = r(b+k)2

4k , which is a degenerate

equilibrium;

(III) two boundary equilibria B1(
1

2
(k � b +

q
r(b+k)2�4km

r ), 0) and B2(
1

2
(k � b �

q
r(b+k)2�4km

r ), 0) if m < r(b+k)2

4k .
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For the existence of positive equilibria E(x, y), a direct calculation indicates
y = nx and x being a positive root of

F (x) =
�x(a4x4 + a3x3 + a2x2 + a1x+ a0)

h(x)
, (5)

where a4 = r, a3 = knq + r(b� k), a2 = ar + k(bnq +m� br), a1 = ar(b� k), a0 =
ak(m � br) and h(x) = k(b + x)(a + x2). Then we can easily obtain that F 0(x) =

�nqx2
(3a+x2

)

(a+x2)2
� bm

(b+x)2 � 2rx
k + r and F 00(x) = 2anqx(x2�3a)

(a+x2)3
+ 2bm

(b+x)3 � 2r
k .

Introduce the following notion and equation

F̄0(x) := F̄ (x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0. (6)

Because the denominator h(x) of F (x) is greater than zero, it is adequate to
analyze the positive roots of equation F̄0(x). According to Descartes’s rule of signs,
F̄0(x) has at most four positive roots, which are expressed by size as x1 < x2 < x3 <
x4. The corresponding equilibria of system (2) are marked as E1(x1, y1), E2(x2, y2),
E3(x3, y3) and E4(x4, y4), respectively. For the specific conditions of the existence
of positive equilibria in system (2), see Appendix A.

Now we turn to studying the type of positive equilibria in system (2). The
Jacobian matrix of system (2) restricted to any positive equilibrium E(x, nx) can
be reduced to

J(E) =

 
� 2anqx2

(a+x2)2
� bm

(b+x)2 � 2rx
k + r � qx2

a+x2

ns �s

!
.

It follows that

det(J(E)) = s(
nqx2(3a+ x2)

(a+ x2)2
+

bm

(b+ x)2
+ r(

2x

k
� 1)) = �sF 0(x),

tr(J(E)) = � 2anqx2

(a+ x2)2
� bm

(b+ x)2
� 2rx

k
+ r � s

.
= p(x),

p0(x) =
4anqx(x2 � a)

(a+ x2)3
+

2bm

(b+ x)3
� 2r

k
. (7)

Through a simple qualitative analysis, we get the type of positive equilibria in
system (2) as follows.

Theorem 2.4. Supposing that Ei(xi, yi)(i = 1, 2, 3, 4) are the simple positive equi-

libria of system (2), we have

(I) if F 0(xi) > 0, then Ei(xi, yi) is a saddle;

(II) if F 0(xi) < 0 and p(x) < 0, then Ei(xi, yi) is a stable node or focus;

(III) if F 0(xi) < 0 and p(x) > 0, then Ei(xi, yi) is an unstable node or focus.

Here F (x) and p(x) are defined by (5) and (7), respectively.

Remark 2.5. Assuming that Ei(xi, yi)(i = 1, 2, 3, 4) are the simple positive equilib-

ria of system (2), we have F 0(xi) = � F̄ (xi)

h(xi)
� xi(F̄

0
(xi)h(xi)�F̄ (xi)h

0
(xi))

h2(xi)
= �xiF̄

0
(xi)

h(xi)
.

It is evident that F 0(x1), F 0(x3) > 0 from the analysis in Appendix A, which implies
E1(x1, y1) and E3(x3, y3) are saddles.

Based on the analysis of Appendix A, we can see that under suitable conditions,
F̄0(x) may possess positive roots xi,i+1(i = 1, 2, 3) of multiplicity 2. This implies
that two equilibria Ei(xi, yi) and Ei+1(xi+1, yi+1)may coincide at Ei,i+1(xi,i+1, yi,i+1)
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for i = 1, 2, 3. Our attention will now shift to determining the type of these equi-
libria. For the sake of simplicity, we will express them uniformly as E⇤(x⇤, nx⇤). In
fact, we can arrive at the following conclusion.

Theorem 2.6. Suppose that F (x⇤) = F 0(x⇤) = 0 and F 00(x⇤) 6= 0, then we have

(I) if p(x⇤) 6= 0, then E⇤(x⇤, nx⇤) is a saddle-node;

(II) if p(x⇤) = 0 and p0(x⇤) 6= 0, then E⇤(x⇤, nx⇤) is a cusp of codimension 2;

(III) if p(x⇤) = p0(x⇤) = 0 and b 6= b±, then E⇤(x⇤, nx⇤) is a cusp of codimension 3,

where b± = �A±x⇤
(a+x⇤2

)
2
p
B

4(a3�2a2x⇤2�10ax⇤4+5x⇤6) and A = 8a3x⇤+11a2x⇤3�38ax⇤5+7x⇤7, B =

32a2 � 8ax⇤2 + 9x⇤4
.

Here F (x) and p(x) are defined by (5) and (7), respectively.

Proof. Firstly, we prove statement (I) of Theorem 2.6. It follows from F (x⇤) =

F 0(x⇤) = 0 that m = r(b+x⇤
)
2
(2ak�ax⇤

+x⇤3
)

k(2ab+3ax⇤+x⇤3) and q = r(a+x⇤2
)
2
(k�b�2x⇤

)

knx⇤(2ab+3ax⇤+x⇤3) . Substitut-

ing them to system (2) and making the transformation X = x�x⇤, Y = y�nx⇤ to
shift system (2) around E⇤(x⇤, nx⇤) to the normal form system around the origin,
we obtain (for convenience, in subsequent steps, we still denote X,Y and ⌧ by x, y
and t, respectively)

dx

dt
= â10x+ â01y + â20x

2 + â11xy + â30x
3 + â21x

2y + o(|x, y|3),

dy

dt
= b̂10x+ b̂01y + b̂20x

2 + b̂11xy + b̂02y
2 + b̂30x

3 + b̂21x
2y + b̂12xy

2

+o(|x, y|3), (8)

in which âij and b̂ij are given in Appendix B.

Making the linear transformation of variables X = b̂01x�â01y
â10+b̂01

, Y = â10x+â01y
â10+b̂01

,

system (8) is further transformed to

dx

dt
= ĉ20x

2 + ĉ11xy + ĉ02y
2 + ĉ30x

3 + ĉ21x
2y + ĉ12xy

2 + ĉ03y
3 + o(|x, y|3),

dy

dt
= d̂01y + d̂20x

2 + d̂11xy + d̂02y
2 + d̂30x

3 + d̂21x
2y + d̂12xy

2 + d̂03y
3

+o(|x, y|3), (9)

in which ĉij and d̂ij are given in Appendix B.

Note that d̂01 = p(x⇤) 6= 0, it leads to a center manifold

y = � d̂20

d̂01
x2 + o(x2),

occuring in a small neighborhood of the origin. System (9) restricted to this mani-
fold is expressed as

dx

dt
= ĉ20x

2 + o(x2), (10)

in which ĉ20 = ks(2ab+3ax⇤
+x⇤3

)

2C F 00(x⇤) with C = ab(2ks+ rx⇤) + ax⇤(�kr + 3ks+
2rx⇤) + x⇤3(br+ k(s� r) + 2rx⇤). In view of F 00(x⇤) 6= 0, we have that ĉ20 6= 0 and
(10) is topologically equivalent to

dx

dt
= ±x2 + o(x2).
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Hence, equilibrium E⇤(x⇤, nx⇤) is a saddle-node, which finishes the proof of state-
ment (I).

Next, we give the proof of statement (II). According to F (x⇤) = F 0(x⇤) = p(x⇤) = 0,

we can easily obtain that m = r(b+x⇤
)
2
(2ak�ax⇤

+x⇤3
)

k(2ab+3ax⇤+x⇤3) , q = r(a+x⇤2
)
2
(�b+k�2x⇤

)

knx⇤(2ab+3ax⇤+x⇤3) and

s = rx⇤
(a+x⇤2

)(�b+k�2x⇤
)

k(2ab+3ax⇤+x⇤3) , which are substituted to system (2). By the transforma-

tion X = x � x⇤, Y = y � nx⇤, we have (for convenience, in subsequent steps, we
still denote X,Y and ⌧ by x, y and t, respectively)

dx

dt
= a10x+ a01y + a20x

2 + a11xy + o(|x, y|2),

dy

dt
= b10x+ b01y + b20x

2 + b11xy + b02y
2 + o(|x, y|2),

where

a10 =
rx⇤(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
, a01 =

rx⇤(a+ x⇤2)(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
,

a20 = � r

k(a+ x⇤2)(b+ x⇤)(2ab+ 3ax⇤ + x⇤3)
(a2(b2 � b(k � 3x⇤) + x⇤(k

+x⇤)) + ax⇤2(5b2 � 5b(k � 3x⇤) + x⇤(10x⇤ � 3k)) + x⇤6),

a11 =
2ar(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
, b10 =

nrx⇤(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,

b01 =
rx⇤(a+ x⇤2)(b� k + 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
, b20 =

nr(a+ x⇤2)(b� k + 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,

b11 =
2r(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
, b02 =

r(a+ x⇤2)(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
.

Under the change of coordinates and time rescaling X = x, Y = � b10
a10

x+ y, dt =
1

a01
d⌧ , one has

dx

dt
= y + c20x

2 + c11xy + o(|x, y|2),

dy

dt
= d20x

2 + d11xy + d02y
2 + o(|x, y|2), (11)

where

c20 =
a11b10 + a10a20

a01a10
, c11 =

a11
a01

,

d20 =
a2
10
b20 + a10b10(b11 � a20) + b2

10
(b02 � a11)

a01a210
,

d11 =
a10b11 � b10(a11 � 2b02)

a01a10
, d02 =

b02
a01

.

Applying Lemma 3.1 in Perko [38] to system (11), we can get an equivalent
system given by

dx

dt
= y,

dy

dt
= e20x

2 + e11xy + o(|x, y|2),
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where

e20 = d20 = � kn2(2ab+ 3ax⇤ + x⇤3)

2rx⇤(a+ x⇤2)(b� k + 2x⇤)
F 00(x⇤),

e11 = d11 + 2c20 =
kn(2ab+ 3ax⇤ + x⇤3)

rx⇤(a+ x⇤2)(b� k + 2x⇤)
p0(x⇤).

Since F 00(x⇤) 6= 0 and p0(x⇤) 6= 0, E⇤(x⇤, nx⇤) is a cusp of codimension 2 and this
completes the proof of statement (II).

We now turn to the proof of the last statement. Solving F (x⇤) = F 0(x⇤) =
p(x⇤) = p0(x⇤) = 0 yields that k = � x⇤

2a(a�x⇤(2b+x⇤)) (�a2 + 4a(b + x⇤)(b + 2x⇤) +

x⇤4), s = � r
a2�4a(b+x⇤)(b+2x⇤)�x⇤4 (a + x⇤2)2,m = � 4ar(b+x⇤

)
3

a2�4a(b+x⇤)(b+2x⇤)�x⇤4 and q =
r(a+x⇤2

)
3

nx⇤2(�a2+4a(b+x⇤)(b+2x⇤)+x⇤4) . Same as (II), we let X = x � x⇤, Y = y � y⇤ and

obtain (for convenience, in subsequent steps, we still denote X,Y and ⌧ by x, y and
t, respectively)

dx

dt
= a⇤

10
x+ a⇤

01
y + a⇤

20
x2 + a⇤

11
xy + a⇤

30
x3 + a⇤

21
x2y + a⇤

40
x4 + a⇤

31
x3y

+o(|x, y|4),
dy

dt
= b⇤

10
x+ b⇤

01
y + b⇤

20
x2 + b⇤

11
xy + b⇤

02
y2 + b⇤

30
x3 + b⇤

21
x2y + b⇤

12
xy2 + b⇤

40
x4

+b⇤
31
x3y + b⇤

22
x2y2 + o(|x, y|4), (12)

where a⇤ij and b⇤ij are given in Appendix B.

Making the transformation X = x, Y = dx
dt , system (12) can be rewritten as

dx

dt
= y,

dy

dt
= c⇤

20
x2 + c⇤

02
y2 + c⇤

30
x3 + c⇤

21
x2y + c⇤

12
xy2 + c⇤

40
x4 + c⇤

31
x3y + c⇤

22
x2y2

+o(|x, y|4), (13)

where c⇤ij are given in Appendix B.
By introducing dt = (1� c⇤

02
x)d⌧ and X = x, Y = (1� c⇤

02
x)y, system (13) can

be converted into the form

dx

dt
= y,

dy

dt
= c⇤

20
x2 + (c⇤

30
� 2c⇤

02
c⇤
20
)x3 + c⇤

21
x2y + (c⇤

12
� c⇤2

02
)xy2 + (c⇤2

02
c⇤
20

� 2c⇤
02
c⇤
30

+c⇤
40
)x4 + (c⇤

31
� c⇤

02
c⇤
21
)x3y + (c⇤

22
� c⇤3

02
)x2y2 + o(|x, y|4). (14)

Since c⇤
20

= r(a+x⇤2
)
2F 00

(x⇤
)

2(�a2+4a(b+x⇤)(b+2x⇤)+x⇤4) 6= 0, by changes of variables and scaling

of time X = x, Y = yp
c⇤20

, ⌧ =
p
c⇤
20
t when c⇤

20
> 0 (X = �x, Y = � yp

�c⇤20
, ⌧ =

p
�c⇤

20
t when c⇤

20
< 0), system (14) can be further reexpressed as

dx

dt
= y,

dy

dt
= x2 ± c⇤

30
� 2c⇤

02
c⇤
20

c⇤
20

x3 +
c⇤2
02
c⇤
20

� 2c⇤
02
c⇤
30

+ c⇤
40

c⇤
20

x4 + y(
c⇤
21p
±c⇤

20

x2
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±c⇤
31

� c⇤
02
c⇤
21p

±c⇤
20

x3) + y2((c⇤
12

� c⇤2
02
)x± (c⇤

22
� c⇤3

02
)x2) + o(|x, y|4).(15)

By Proposition 5.3 in Lemontagne et al. [32], we can obtain an equivalent system
of model (15) as follows

dx

dt
= y,

dy

dt
= x2 + Fx3y + o(|x, y|4),

where

F =
c⇤
21
(c⇤

02
c⇤
20

� c⇤
30
) + c⇤

20
c⇤
31

(±c⇤
20
)

3
2

=
�8a2r3D

(±c⇤
20
)

3
2x⇤2(b+ x⇤)2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)3

,

with D = 2a3(b2 + 4bx⇤ + 2x⇤2)� a2x⇤2(b+ x⇤)(4b� 15x⇤)� 2ax⇤4(5b+ 2x⇤)(2b+
3x⇤)+x⇤6(2b+x⇤)(5b+x⇤). It is evident that D 6= 0 when b 6= b±, thus E⇤(x⇤, y⇤)
is a cusp of codimension 3. We have accomplished the proof of Theorem 2.6.

3. Bifurcation analysis.

3.1. Bogdanov-Takens bifurcation of codimension 2. In this subsection, we
study whether system (2) undergoes Bogdanov-Takens bifurcation of codimension
2 under small parameters perturbation if the bifurcation parameters are chosen
suitably. Actually, we have the following result.

Theorem 3.1. Suppose that F (x⇤) = F 0(x⇤) = p(x⇤) = 0, F 00(x⇤), p0(x⇤) 6= 0,
then E⇤(x⇤, nx⇤) is a cusp of codimension 2. If we choose m and a as bifurcation

parameters and assume that k 6= a(b+x⇤
)(b+3x⇤

)+x⇤4

ab , then system (2) undergoes

Bogdanov-Takens bifurcation of codimension 2. Here F (x) and p(x) are defined by

(5) and (7), respectively.

Proof. Choosing m and a as bifurcation parameters yields the following perturbed
system

dx

dt
= (r(1� x

k
)� (m+ �1)

x+ b
)x� qx2y

x2 + (a+ �2)
,

dy

dt
= sy(1� y

nx
), (16)

in which r, s, k,m, a, b, q, n > 0 and � = (�1, �2) ⇠ (0, 0). We only focus on the
dynamics of system (2) around the positive equilibrium E⇤(x⇤, nx⇤).

We can derive that m = r(b+x⇤
)
2
(2ak�ax⇤

+x⇤3
)

k(2ab+3ax⇤+x⇤3) , q = r(a+x⇤2
)
2
(�b+k�2x⇤

)

knx⇤(2ab+3ax⇤+x⇤3) and s =
rx⇤

(a+x⇤2
)(�b+k�2x⇤

)

k(2ab+3ax⇤+x⇤3) from F (x⇤) = F 0(x⇤) = p(x⇤) = 0. Using X = x � x⇤, Y =

y�nx⇤ to transform the positive equilibrium point E⇤(x⇤, nx⇤) of system (2) when
� = 0 into the origin and expanding the resulting system around the origin, we have
(for convenience, in every subsequent transformation, we rename X,Y, ⌧ by x, y, t,
respectively)

dx

dt
= ā00 + ā10x+ ā01y + ā20x

2 + ā11xy + o(|x, y|2),
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dy

dt
= b̄10x+ b̄01y + b̄20x

2 + b̄11xy + b̄02y
2 + o(|x, y|2), (17)

in which āij and b̄ij are given in Appendix C and we also note that ā00 = 0 when
� = 0.

Setting X = x, Y = dx
dt , we obtain

dx

dt
= y,

dy

dt
= c̄00 + c̄10x+ c̄01y + c̄20x

2 + c̄11xy + c̄02y
2 + P1(x, y, �1, �2), (18)

in which c̄ij are given in Appendix C and we also note that c̄00 = c̄10 = c̄01 = 0
when � = 0. P1(x, y, �1, �2) is a C1 function at least of third order with respect to
x, y, whose coe�cients depend smoothly on �1 and �2.

Next, introducing time rescaling dt = (1 � c̄02x)d⌧ and changes of variables
X = x, Y = (1� c̄02x)y, system (18) becomes

dx

dt
= y,

dy

dt
= d̄00 + d̄10x+ d̄01y + d̄20x

2 + d̄11xy + P2(x, y, �1, �2), (19)

in which d̄ij are given in Appendix C and note that d̄00 = d̄10 = d̄01 = 0 when
� = 0. P2(x, y, �1, �2) is a C1 function at least of third order with respect to x, y,
whose coe�cients depend smoothly on �1 and �2.

Transformation X = x+ d̄10

2d̄20
, Y = y brings the above model into an equivalent

model
dx

dt
= y,

dy

dt
= ē00 + ē01y + ē20x

2 + ē11xy + P3(x, y, �1, �2), (20)

in which ēij are given in Appendix C and note that ē00 = ē01 = 0 when � = 0.
P3(x, y, �1, �2) is a C1 function at least of third order with respect to x, y, whose
coe�cients depend smoothly on �1 and �2.

Set X = ē211
ē20

x, Y = ē311
ē220

y, ⌧ = ē20
ē11

t, it follows that

dx

dt
= y,

dy

dt
= '1 + '2y + x2 + xy + P4(x, y, �1, �2), (21)

in which P4(x, y, �1, �2) is a C1 function at least of third order with respect to x, y,
whose coe�cients depend smoothly on �1 and �2. Moreover,

'1 =
ē00ē411
ē3
20

, '2 =
ē01ē11
ē20

.

A direct calculation with the assistance of Mathematica leads to
���
@(�1,�2)

@(�1, �2)

���
�=0

=
ē5
11

ē4
20

|�=0 ·
r2x⇤3(a+ x⇤2)2(b� k + 2x⇤)2(a(b2 � bk + 4bx⇤ + 3x⇤2) + x⇤4)

k2(b+ x⇤)(2ab+ 3ax⇤ + x⇤3)2C
,

with C = �a2(b2�b(k�3x⇤)+3x⇤(x⇤�k))+ax⇤2(3b2�3bk+9bx⇤�kx⇤+6x⇤2)+x⇤6.
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Obviously,
���@(�1,�2)

@(�1,�2)

���
�=0

6= 0 when k 6= a(b+x⇤
)(b+3x⇤

)+x⇤4

ab . By the results of

Bogdanov [9, 10] and Takens [45], we know that system (2) undergoes Bogdanov-
Takens bifurcation of codimension 2 when (�1, �2) changes in a small neighborhood
of (0, 0). This proves the Theorem.

3.2. Bogdanov-Takens bifurcation of codimension 3. In this subsection, we
will illustrate that system (2) may undergo Bogdanov-Takens bifurcation of codi-
mension 3 under advisable parameters. Before the main result, we first state the
relevant definition and property. Please see the references [13] and [21] for more
details.

Definition 3.2. The bifurcation that results from unfolding the following normal
form of a cusp of codimension 3,

dx

dt
= y,

dy

dt
= x2 ± x3y, (22)

is called a cusp type degenerate Bogdanov-Takens bifurcation of codimension 3.

Proposition 3.3. A universal unfolding of the normal form (22) is expressed by

⇢
dx
dt = y,
dy
dt = ⇣1 + ⇣2y + ⇣3xy + x2 ± x3y +R(x, y, ⇢),

(23)

where ⇢ = (⇢1, ⇢2, ⇢3) ⇠ (0, 0, 0), D(⇣1,⇣2,⇣3)
D(⇢1,⇢2,⇢3)

6= 0 for small ⇢ and

R(x, y, ⇢) = y2O(|x, y|2) +O(|x, y|5) +O(⇢)(O(y2) +O(|x, y|3))
+O(⇢2)O(|x, y|). (24)

Our main result is as follows.

Theorem 3.4. Suppose that F (x⇤) = F 0(x⇤) = p(x⇤) = p0(x⇤) = 0, F 00(x⇤) 6= 0
and b 6= b±, in which b± are defined as shown in Theorem 2.6, then E⇤(x⇤, nx⇤)
is a cusp of codimension 3. If we choose m, a and n as bifurcation parameters and

assume that b 6= b⇤±
.
=

�3a2x⇤
+7ax⇤3�6x⇤5±

p
�x⇤2(a+x⇤2)2(a2+4ax⇤2�6x⇤4)

2(a2�2ax⇤2+5x⇤4) , then model

(2) undergoes Bogdanov-Takens bifurcation of codimension 3 in a small neighbor-

hood of E⇤(x⇤, nx⇤). Here F (x) and p(x) are defined by (5) and (7), respectively.

Proof. Selecting m, a and n as bifurcation parameters, we have the following system

dx

dt
= (r(1� x

k
)� (m+ 1)

x+ b
)x� qx2y

x2 + (a+ 2)
,

dy

dt
= sy(1� y

(n+ 3)x
), (25)

where  = (1,2,3) ⇠ (0, 0, 0).
By F (x⇤) = F 0(x⇤) = p(x⇤) = p0(x⇤) = 0, we know that k = �x⇤

2a(a�x⇤(2b+x⇤)) (�a2+

4a(b+ x⇤)(b+2x⇤) + x⇤4), s = �r(a+x⇤2
)
2

a2�4a(b+x⇤)(b+2x⇤)�x⇤4 , m = �4ar(b+x⇤
)
3

a2�4a(b+x⇤)(b+2x⇤)�x⇤4 ,

n = r(a+x⇤2
)
3

qx⇤2(�a2+4a(b+x⇤)(b+2x⇤)+x⇤4) . Next, we transform the positive equilibrium

E⇤(x⇤, nx⇤) of system (25) when  = 0 into the origin by setting X = x� x⇤, Y =
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y � nx⇤. By the Taylor expansion, system (25) continues as (for convenience, in
every subsequent transformation, we rename X,Y and ⌧ as x, y and t, respectively)

dx

dt
= ā⇤

00
+ ā⇤

10
x+ ā⇤

01
y + ā⇤

20
x2 + ā⇤

11
xy + ā⇤

30
x3 + ā⇤

21
x2y + ā⇤

40
x4 + ā⇤

31
x3y

+o(|x, y|4),
dy

dt
= b̄⇤

00
+ b̄⇤

10
x+ b̄⇤

01
y + b̄⇤

20
x2 + b̄⇤

11
xy + b̄⇤

02
y2 + b̄⇤

30
x3 + b̄⇤

21
x2y + b̄⇤

12
xy2

+b̄⇤
40
x4 + b̄⇤

31
x3y + b̄⇤

22
x2y2 + o(|x, y|4), (26)

where ā⇤ij and b̄⇤ij are given in Appendix C and it’s worth noting that ā⇤
00

= b̄⇤
00

= 0
when  = 0.

Letting

X = x, Y =
dx

dt
,

system (26) can be rewritten as follows

dx

dt
= y,

dy

dt
= c̄⇤

00
+ c̄⇤

10
x+ c̄⇤

01
y + c̄⇤

20
x2 + c̄⇤

11
xy + c̄⇤

02
y2 + c̄⇤

30
x3 + c̄⇤

21
x2y + c̄⇤

12
xy2

+c̄⇤
40
x4 + c̄⇤

31
x3y + c̄⇤

22
x2y2 + o(|x, y|4), (27)

where c⇤ij are given in Appendix C and we also note that c⇤
00

= c⇤
10

= c⇤
01

= c⇤
11

= 0
when  = 0.

To illustrate the existence of the Bogdanov-Takens bifurcation of codimension
3, we transform model (27) to the form of system (23) by following seven steps as
shown in Li et al. [35] as follows.

Step I. First of all, remove the y2-term from model (27) when  = 0 by letting

x = X + c̄⇤02
2
X2, y = Y + c̄⇤

02
XY . System (27) can be transformed into

dx

dt
= y,

dy

dt
= d̄⇤

00
+ d̄⇤

10
x+ d̄⇤

01
y + d̄⇤

20
x2 + d̄⇤

11
xy + d̄⇤

30
x3 + d̄⇤

21
x2y + d̄⇤

12
xy2

+d̄⇤
40
x4 + d̄⇤

31
x3y + d̄⇤

22
x2y2 + o(|x, y|4), (28)

where d̄⇤ij are given in Appendix C and it’s worth noting that d̄⇤
00

= d̄⇤
10

= d̄⇤
01

=

d̄⇤
11

= 0 when  = 0.
Step II. In this step, we remove the xy2-term in model (28) when  = 0. Making

variables transformation x = X + d̄⇤
12
6
X3, y = Y + d̄⇤

12
2
X2Y , we have

dx

dt
= y,

dy

dt
= ē⇤

00
+ ē⇤

10
x+ ē⇤

01
y + ē⇤

20
x2 + ē⇤

11
xy + ē⇤

30
x3 + ē⇤

21
x2y + ē⇤

40
x4

+ē⇤
31
x3y + ē⇤

22
x2y2 + o(|x, y|4), (29)

where ē⇤ij are given in Appendix C and it’s worth noting that ē⇤
00

= ē⇤
10

= ē⇤
01

=
ē⇤
11

= 0 when  = 0.
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Step III. We remove the x2y2-term in model (29) when  = 0. Let x = X +
ē⇤22
12

X4, y = Y + ē⇤22
3
X3Y , then system (29) becomes

dx

dt
= y,

dy

dt
= f̄⇤

00
+ f̄⇤

10
x+ f̄⇤

01
y + f̄⇤

20
x2 + f̄⇤

11
xy + f̄⇤

30
x3 + f̄⇤

21
x2y + f̄⇤

40
x4

+f̄⇤
31
x3y + o(|x, y|4), (30)

where f̄⇤
ij are given in Appendix C and it’s worth noting that f̄⇤

00
= f̄⇤

10
= f̄⇤

01
=

f̄⇤
11

= 0 when  = 0.
Step IV. Removing the x3 and x4-terms in model (30) when  = 0. We can easily

get that f̄⇤
20

= � ar2(a+x⇤2
)
3

x⇤(�a2+4a(b+x⇤)(b+2x⇤)+x⇤4)2 +O(), f̄⇤
20

6= 0 for small . With

x = X � f̄⇤
30

4f̄⇤
20

X2 +
15f̄⇤2

30
� 16f̄⇤

20
f̄⇤
40

80f̄⇤2
20

X3, y = Y,

dt = (1� f̄⇤
30

2f̄⇤
20

X +
45f̄⇤2

30
� 48f̄⇤

20
f̄⇤
40

80f̄⇤2
20

X2)d⌧,

it follows that

dx

dt
= y,

dy

dt
= ḡ⇤

00
+ ḡ⇤

10
x+ ḡ⇤

01
y + ḡ⇤

20
x2 + ḡ⇤

11
xy + ḡ⇤

30
x3 + ḡ⇤

21
x2y + ḡ⇤

40
x4

+ḡ⇤
31
x3y + o(|x, y|4), (31)

where ḡ⇤ij are given in Appendix C and it’s worth noting that ḡ⇤
00

= ḡ⇤
10

= ḡ⇤
01

=
ḡ⇤
11

= ḡ⇤
30

= ḡ⇤
40

= 0 when  = 0.
Step V. Removing the x2y-term in model (31) when  = 0. It’s easy to know

that ḡ⇤
20

= � ar2(a+x⇤2
)
3

x⇤(�a2+4a(b+x⇤)(b+2x⇤)+x⇤4)2 +O(), g⇤
20

6= 0 for small . Setting

x = X, y = Y +
ḡ⇤
21

3ḡ⇤
20

Y 2 +
ḡ⇤2
21

36ḡ⇤2
20

Y 3, d⌧ = (1 +
ḡ⇤
21

3ḡ⇤
20

Y +
ḡ⇤2
21

36ḡ⇤2
20

Y 2)dt,

we get an equivalent system to (31) as follows

dx

dt
= y,

dy

dt
= h̄⇤

00
+ h̄⇤

10
x+ h̄⇤

01
y + h̄⇤

20
x2 + h̄⇤

11
xy + h̄⇤

31
x3y +R1(x, y,), (32)

where h̄⇤
ij are given in Appendix C. It’s worth noting that h̄⇤

00
= h̄⇤

10
= h̄⇤

01
= h̄⇤

11
= 0

when  = 0 and R1(x, y,) possesses the property of (24).
Step VI. Changing ḡ⇤

20
and ḡ⇤

31
to 1 in model (32). A simple calculation shows

that h̄⇤
20

= ḡ⇤
20

6= 0 and h̄⇤
31

6= 0 for small . Transformations

x = h̄
⇤ 1

5
20

h̄
⇤� 2

5
31

X, y = h̄
⇤ 4

5
20

h̄
⇤� 3

5
31

Y, t = h̄
⇤� 3

5
20

h̄
⇤ 1

5
31
⌧,

bring the above system to

dx

dt
= y,

dy

dt
= j̄⇤

00
+ j̄⇤

10
x+ j̄⇤

01
y + j̄⇤

11
xy + x2 + x3y +R2(x, y,), (33)



COMPLEX DYNAMICS INDUCED BY ADDITIVE ALLEE EFFECT 15

where j̄⇤ij are given in Appendix C. It’s worth noting that j̄⇤
00

= j̄⇤
10

= j̄⇤
01

= j̄⇤
11

= 0
when  = 0 and R2(x, y,) possesses the property of (24).

Step VII. Finally, we remove the h̄⇤
10
-term in model (33) by introducing conver-

sion of coordinates

x = X � j̄⇤
10

2
, y = Y,

then model (33) can be expressed as follows

dx

dt
= y,

dy

dt
=  ̄1 +  ̄2y +  ̄3xy + x2 + x3y +R3(x, y,), (34)

where

 ̄1 = j̄⇤
00

� 1

4
j̄⇤2
10
,  ̄2 = j̄⇤

01
� j̄⇤3

10

8
� j̄⇤

11
j̄⇤
10

2
,  ̄3 = j̄⇤

11
+

3

4
j̄⇤2
10
.

It’s worth noting that  ̄1 =  ̄2 =  ̄3 = 0 when  = 0 and R3(x, y,) possesses the
property of (24). Moreover, with the help of Mathematica, we know that

���
@( ̄1,  ̄2,  ̄3)

@(1,2,3)

���
=0

= h̄
⇤ 4

5
31

h̄
⇤� 12

5
20

|=0 ·
4qr2x⇤4F

(a+ x⇤2)(b+ x⇤)3(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2
,

with F = a2(2b2+6bx⇤+5x⇤2)�2ax⇤2(2b2+7bx⇤+4x⇤2)+x⇤4(10b2+12bx⇤+3x⇤2).

Obviously,
���@( ̄1, ̄2, ̄3)

@(1,2,3)

���
=0

6= 0 when b 6= b⇤±. Furthermore, system (34) has

the same form as system (23). According to the conclusion of Li et al. [35], we
can conclude that model (34) is the universal unfolding of the Bogdanov-Takens
singularity (cusp case) of codimension 3. The remaining term R3(x, y,), satisfying
the property of (24), has no influence on the bifurcation phenomena. The dynamics
of system (2) in a small neighborhood of the positive equilibrium E⇤(x⇤, nx⇤), as
(m, a, n) varies near (m+ 1, a+ 2, n+ 3), are equivalent to those of system (34)
in a small neighborhood of (0, 0, 0), as ( ̄1,  ̄2,  ̄3) varies near (0, 0, 0). This ends
the proof.

3.3. Hopf bifurcation of codimension 2. From the analysis of Appendix A, we
see that Hopf bifurcation may occur at E2(x2, y2), E4(x4, y4) (we denote them as
E⇤(x⇤, nx⇤) for convenience) of system (2) because of det(J(E⇤)) = �sF 0(x⇤) > 0.
Actually, we have the following Theorem.

Theorem 3.5. Let E⇤(x⇤, nx⇤) be an equilibrium of system (2) accounting for either

E2(x2, y2) or E4(x4, y4) and suppose that F (x⇤) = p(x⇤) = 0, then we have

(I) if ⌘11 < 0, then E⇤(x⇤, nx⇤) is a stable weak focus with multiplicity one and one

stable limit cycle bifurcates from E⇤ by a supercritical Hopf bifurcation;

(II) if ⌘11 > 0, then E⇤(x⇤, nx⇤) is an unstable weak focus with multiplicity one and

one unstable limit cycle bifurcates from E⇤ by a subcritical Hopf bifurcation;

(III) if ⌘11 = 0, then E⇤(x⇤, nx⇤) is a weak focus with multiplicity at least two

and system (2) may exhibit a degenerate Hopf bifurcation of codimension at least 2,

where

⌘11 = bx9

⇤(br + k(s� r))(k(s� r) + 2rx⇤) + a4k(r + s)(8b2ks+ 2x2

⇤(3br + k(r

+3s)) + 3bx⇤(br � kr + 5ks)) + 2ax5

⇤(�6b3ks(br + k(s� r))� 2b2x⇤(5r
2
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⇥(b� k)2 + 2krs(11b� 6k) + 7k2s2)� x3

⇤(109b
2r2 + 52bkr(s� r) + 3k2

⇥(r � s)2)� b(60b2r2 + k2(10r � 9s)(r � s) + bkr(�70r + 83s))x2

⇤ � 2r

⇥(33br + 5k(�r + s))x4

⇤ � 8r2x5

⇤) + 2a2x3

⇤(4b
3ks(br � k(r + 2s)) + 4b2x⇤

⇥(3r2(b� k)2 + krs(3b� 2k)� 3k2s2) + x3

⇤(179b
2r2 + 2bkr(46s� 73r)

+k2(r � s)(11r � s)) + 4rx4

⇤(51br � 15kr + 11ks) + brx2

⇤(r(b� k)(72b�
25k) + 25ks(2b� k)) + 80r2x5

⇤) + 2a3(8b4k2s2 + 6b3ksx⇤(3br � 3kr + 5k

⇥s) + x4

⇤(81b
2r2 + 12bkr(17s� 3r)� k2(r2 + 22rs� 15s2)) + 2b2x2

⇤(3r
2

⇥(b� k)2 + 2krs(24b� 13k) + 27k2s2) + bx3

⇤(2r
2(b� k)(18b� k) + 9kr

⇥s(23b� 7k) + 49k2s2) + 2rx5

⇤(39br � 3kr + 35ks) + 24r2x6

⇤). (35)

Here F (x) and p(x) are defined by (5) and (7), respectively.

Proof. According to F (x⇤) = p(x⇤) = 0, we know that m = (b+x⇤)
2

k(a(b+2x⇤)�bx2
⇤)
(ak(r +

s) + x2
⇤(k(s � r) + 2rx⇤)) and q = (a+x2

⇤)
2
(b(ks+rx⇤)+x⇤(k(s�r)+2rx⇤))
knx2

⇤(bx
2
⇤�a(b+2x⇤))

, which are

substituted into system (2). Then by X = x � x⇤, Y = y � nx⇤ and the Taylor
expansion, system (2) can be rewritten as (for convenience, we rename X,Y as x, y,
respectively)

dx

dt
= ↵10x+ ↵01y + ↵20x

2 + ↵11xy + ↵30x
3 + ↵21x

2y + ↵40x
4 + ↵31x

3y

+o(|x, y|4),
dy

dt
= �10x+ �01y + �20x

2 + �11xy + �02y
2 + �30x

3 + �21x
2y + �12xy

2

+�40x
4 + �31x

3y + �22x
2y2 + o(|x, y|4), (36)

in which ↵ij and �ij are defined in Appendix D and note that �01 = �↵10.
A simple computation shows that ↵10�01 � ↵01�10 = �sF 0(x⇤) > 0. Let � =p
↵10�01 � ↵01�10 and make a transformation of x = �↵01X, y = ↵10X � �Y and

dt = 1

�d⌧ , then model (36) becomes (we still denote X,Y, ⌧ by x, y, t, respectively)

dx

dt
= y + �20x

2 + �11xy + �30x
3 + �21x

2y + �40x
4 + �31x

3y + o(|x, y|4),

dy

dt
= �x+ �20x

2 + �11xy + �02y
2 + �30x

3 + �21x
2y + �12xy

2 + �40x
4

+�31x
3y + �22x

2y2 + o(|x, y|4), (37)

in which �ij and �ij are defined in Appendix D.
Following the formula in Perko [38], we have the first Lyapunov coe�cient as

follows

⌘1 =
s(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤))2⌘11
8k4n2(b+ x⇤)2(bx2

⇤ � a(b+ 2x⇤))4�3
,

in which ⌘11 is defined as (35). Obviously, the sign of ⌘1 is the same as ⌘11 and thus
the proof is completed.

Based on the case (III) of Theorem 3.5, we can conclude that system (2) may
undergo degenerate Hopf bifurcation around E⇤(x⇤, y⇤) when l11 = 0, i.e., r =

r±⇤
.
= ks(A±(bx2

⇤�a(b+2x⇤))
p
C)

2x⇤B
, in which A,B and C are given in Appendix D. A
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complicated calculation with the assistance of Maple and Mathematica yields the
second Lyapunov coe�cients as follows:

⌘2 =
s2(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤))3⌘22
288k9n4x4

⇤(b+ x⇤)4(bx2
⇤ � a(b+ 2x⇤))9�7

,

in which ⌘22 is too long to be included here. More specifically, our conclusion is as
follows.

Theorem 3.6. Let E⇤(x⇤, nx⇤) be an equilibrium of system (2) accounting for either

E2(x2, y2) or E4(x4, y4) and suppose that F (x⇤) = p(x⇤) = 0 and r = r±⇤ , then we

have

(I) if ⌘22 < 0, then E⇤(x⇤, nx⇤) is a stable weak focus with multiplicity 2. System

(2) undergoes a degenerate Hopf bifurcation of codimension 2 and there can be up

to two limit cycles bifurcating from E⇤, the outermost being stable;

(II) if ⌘22 > 0, then E⇤(x⇤, nx⇤) is an unstable weak focus with multiplicity 2.

System (2) undergoes a degenerate Hopf bifurcation of codimension 2 and there can

be up to two limit cycles bifurcating from E⇤, the outermost being unstable;

(III) if ⌘22 = 0, then E⇤(x⇤, nx⇤) is a weak focus with multiplicity at least 3 and

system (2) may undergo a degenerate Hopf bifurcation of codimension at least 3.

Here F (x) and p(x) are defined by (5) and (7), respectively.

4. Numerical simulations. In this section, we will carry out numerical simula-
tions to verify the theoretical results by using AUTO07P [20]. The corresponding
parameter values are taken as follows:

r = 0.8, k = 6, q = 0.496, a = 0.65, s = 0.2, n = 1.2, m = 0.376, b = 0.2. (38)

4.1. m and a as the primary bifurcation parameters, respectively. We first
consider the parameterm as the primary bifurcation parameter, while fixing the rest
of parameter values as shown in (38). As a result, we observe one subcritical Hopf
bifurcation point HB(9.50285⇥ 10�1, 1.14034) at m = 3.76381⇥ 10�1, one saddle-
node bifurcation point SN(6.42520⇥ 10�1, 7.71024⇥ 10�1) at m = 4.07055⇥ 10�1,
a neutral saddle equilibrium NS(0.075554626, 0.090665552) at m = 0.21623993 and
one transcritical bifurcation point TC(3.32272 ⇥ 10�5, 3.98726 ⇥ 10�5) at m =
1.60026 ⇥ 10�1. Additionally, a family of unstable limit cycles approach a stable
homoclinic cycle, as shown in Figure 2.

We observe an S-shaped limit cycle bifurcation branch originating from the sub-
critical Hopf bifurcation point HB, which has two saddle-node bifurcation points:
SNC1(1.37206, 1.50088) at m = 3.75330⇥ 10�1 with a period of 3.72894⇥ 101 and
SNC2(2.10132, 2.01884) at m = 3.76744 ⇥ 10�1 with a period of 4.30703 ⇥ 101.
This indicates the coexistence of three limit cycles when 3.75330 ⇥ 10�1 < m <
3.76382 ⇥ 10�1, with the innermost and outermost cycles being unstable and the
middle one being stable, as shown in Figure 3.

It is easy to see that there are two positive equilibria for 1.60026 ⇥ 10�1 <
m < 4.07055 ⇥ 10�1, and only one boundary equilibrium for m > 4.07055 ⇥ 10�1.
Biologically, m serves as a threshold indicating the coexistence of predator and prey
when 1.60026⇥10�1 < m  4.07055⇥10�1. However, system (2) will collapse when
m > 4.07055⇥ 10�1 due to the extinction of the predator.

Secondly, we let

r = 0.65, k = 9, q = 0.25, a = 0.8, s = 0.03, n = 3.55, m = 0.2, b = 0.6, (39)
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Figure 2. One-parameter bifurcation diagram of system (2) with
respect to m. (a) m vs. x; (b) zoomed part in (a).

(a) (b)

Figure 3. (a) The coexistent three limit cycles of system (2) with
respect to m, where the outmost limit cycle (green) and the inner-
most limit cycle (red) are unstable, while the middle one is stable
(blue); (b) The corresponding time evolutions of three limit cycles.

and take the parameter a as the primary bifurcation parameter. We observe
two subcritical Hopf bifurcation points, denoted as HB1 and HB2, at (4.04595 ⇥
10�1, 1.43631) when a = 1.80821 ⇥ 10�1 and at (7.91722 ⇥ 10�1, 2.81061) when
a = 6.11852 ⇥ 10�1 respectively. Moreover, there is a saddle-node point SN at
(7.43039 ⇥ 10�6, 2.63779 ⇥ 10�5) when a = 0, and two saddle-node bifurcation
points of limit cycles, denoted as SNC1 and SNC2, at (6.72268, 6.59548) when
a = 8.32992 ⇥ 10�3 with period = 2.31219 ⇥ 102, and at (3.61649, 6.17642) when
a = 1.06304 with period = 7.24105 ⇥ 10 respectively. There are two intervals
8.32992⇥ 10�3 < a < 1.80821⇥ 10�1 and 6.11852⇥ 10�1 < a < 1.06304 where two
limit cycles coexist, as shown in Figure 4 (a) (b). We note that the populations of
predator and prey increase with the increasing half-saturation constant after some
sustained oscillations.

4.2. m and a as the primary bifurcation parameters. Moving on, by taking
m and a as primary bifurcation parameters and using the parameter values given
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Figure 4. One-parameter bifurcation diagram of system (2) with
respect to a, where HB1, HB2, SN, SNC1, SNC2 denote two sub-
critical Hopf bifurcation points, saddle-node point and two saddle-
node bifurcation points of limit cycles, respectively. (a) a vs x; (b)
zoomed part in (a).

in (38), we can obtain the bifurcation curves of saddle-node SN (blue), Hopf H
(red), homoclinic Hom (green) and saddle-node of limit cycles SNL (black), as
shown in Figure 5. Two Bogdanov-Takens (BT) bifurcation points BT1(9.42740⇥
10�1, 1.13129) withm = 5.42003⇥10�1, a = 1.75619 andBT2(2.11331⇥10�1, 2.53597
⇥10�1) with m = 2.35202⇥ 10�1, a = 8.82392⇥ 10�2, are observed. Additionally,
there are one generalized Hopf bifurcation point GH(9.73781⇥ 10�1, 1.16854) with
m = 3.70134 ⇥ 10�1, a = 6.42377 ⇥ 10�1, one cusp CP (4.59146 ⇥ 10�1, 5.50975 ⇥
10�1) with m = 1.16053 ⇥ 10�1, a = 1.21700 ⇥ 10�2 and a codimension-2 cusp
point of limit cycles CPL(1.78649, 1.80917) (with double one Floquet multipliers)
with m = 3.79566 ⇥ 10�1, a = 6.59945 ⇥ 10�1 and period = 4.04041 ⇥ 101. The
saddle-node bifurcation diagram of limit cycles is shown in Figure 5(a). There is
an acute angle parameter region for the coexistence of three limit cycles. The en-
tire bifurcation diagram is divided into eight regions: I-VIII and the corresponding
phase portraits for each region are described as follows.
I: two saddles, an unstable node and a stable focus.
II: two saddles, an unstable node and a homoclinic cycle that contains a stable limit
cycle enclosing an unstable focus.
III: two saddles, an unstable node and an unstable focus.
IV: a saddle and an unstable node.
V: two saddles, an unstable node and an unstable limit cycle that contains a stable
focus.
VI: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big stable limit cycle contains a small unstable limit cycle) enclosing a
stable hyperbolic positive equilibrium, bistability state.
VII: two saddles, an unstable node and three limit cycles (a big unstable limit cycle
contains a medium stable limit cycle enclosing a small unstable limit cycle) that
contains a stable focus, bistability state.
VIII: two saddles, an unstable node, and a big unstable limit cycle that contains a
small stable limit cycle enclosing an unstable focus.
Please see Figure 6 for more details.
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SNL

CPL

SNL

CPL

(a) (b)

(c)

Figure 5. Two-parameter bifurcation diagram in system (2) with
respect to m and a. (a) The saddle-node bifurcation curve of limit
cycles SNL, where CPL denotes the codimension-2 cusp of limit
cycles. (b) The locations of saddle-node bifurcation curve SN
(blue), saddle-node bifurcation curve of limit cycles SNL (black),
homoclinic bifurcation curve Hom (green) and Hopf bifurcation
curve H (red). (c) Zoomed bifurcation diagram of (b). Here
BT,GH and CPL represent the points of Bagdanov-Taken bifur-
cation point, generalized Hopf bifurcation point and cusp of limit
cycles, respectively.

4.3. m and n as the primary bifurcation parameters. Now, consideringm and
n as the primary bifurcation parameters, and the first set of parameter values in (38),
we can construct a two-parameter bifurcation diagram. This diagram includes the
saddle-node bifurcation curve SN (blue), the Hopf bifurcation curve H (red), the
homoclinic bifurcation curve Hom (green) and the saddle-node bifurcation curve of
limit cycles SNL (black). The diagram is shown in Figure 7 (a, b, c). Notably, there
are two BT bifurcation points: BT1(1.89611, 9.02782 ⇥ 10�1) with m = 7.27741 ⇥
10�1, n = 4.76124 ⇥ 10�1 and BT2(4.25581 ⇥ 10�1, 7.87462 ⇥ 10�1) with m =
3.39850 ⇥ 10�1, n = 1.85032, respectively. There are also two generalized Hopf
bifurcation points: GH1(9.89983 ⇥ 10�1, 1.17997) with m = 3.71936 ⇥ 10�1, n =
1.19191 and GH2(1.77236, 1.25389) with m = 5.38342⇥ 10�1, n = 7.07466⇥ 10�1,
respectively.
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I II

III IV

V VI

VII VIII

Figure 6. Phase portraits of regions: I-VIII in Figure 5.

Interestingly, the saddle-node bifurcation curve of limit cycles SNL connects the
two generalized Hopf bifurcation points GH1 and GH2. There is a codimension-
2 cusp of limit cycles CPL, which also indicates the existence of an acute angle
parameter region for the coexistence of three limit cycles. The whole bifurcation
diagram is divided into eight regions from I to VIII and the corresponding phase
portraits are depicted as follows.
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Figure 7. Two-parameter bifurcation diagram in system (2) with
respect to m and n. (a) The saddle-node bifurcation curve of
limit cycles SNL, where CPL denotes the codimension-2 cusp of
limit cycles. (b) The location of saddle-node bifurcation curve SN
(blue), saddle-node bifurcation curve of limit cycle SNL (black),
homoclinic bifurcation curve Hom (green) and Hopf bifurcation
curve H (red). (c) Zoomed bifurcation diagram of (b). Here
BT,GH and CPL represent the points of Bagdanov-Taken bifur-
cation point, generalized Hopf bifurcation point and cusp of limit
cycles, respectively.

I: two saddles, an unstable node and a stable focus.
II: two saddles, an unstable node and an unstable limit cycle that contains a stable
focus.
III: two saddles, an unstable node and a stable limit cycle that contains an unstable
focus.
IV: two saddles, an unstable node and an unstable focus.
V: a saddle and an unstable node.
VI: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big stable limit cycle contains a small unstable limit cycle) enclosing a
stable hyperbolic positive equilibrium, bistability state.
VII: two saddles, an unstable node and a homoclinic cycle that contains three limit
cycles (a big unstable limit cycle contains a medium stable limit cycle enclosing a
small unstable limit cycle) enclosing a stable focus, bistability state.
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VIII: two saddles, an unstable node and a homoclinic cycle that contains two limit
cycles (a big unstable limit cycle contains a small stable limit cycle) enclosing an
unstable focus.
Please see Figure 8 for more details.

I II

III IV

V VI

VII VIII

Figure 8. Phase portraits of regions: I-VIII in Figure 7.

4.4. a and n as the primary bifurcation parameters. If we consider a and
n as the primary bifurcation parameters and use the parameter values in (39), we
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can create a two-parameter bifurcation diagram that includes the Hopf bifurcation
curve H (red) and the saddle-node bifurcation curve of the limit cycle SNL (blue).
This diagram is shown in Figure 9 (a). There are three generalized Hopf (GH)
bifurcation points: GH1(2.93725 ⇥ 10�1, 1.00722) with a = 1.34530 ⇥ 10�5 and
n = 2.34217, GH2(4.21597, 5.17619) with a = 1.72751⇥ 10�1 and n = 1.22776, and
GH3(1.64766, 4.89813) with a = 1.84974 and n = 2.97279.

The saddle-node bifurcation curve of the limit cycles (SNL) bifurcating from the
generalized Hopf bifurcation point GH3 is evidently above the Hopf bifurcation
curve (H), suggesting that there may be an isola bifurcation curve of the limit
cycles. By setting n equal to 4, 4.05, 4.055 and 4.115, we can obtain four isolas of
the limit cycles [4, 52, 39], see Figure 9 (b, c) for details. Here the solid curve
and the dotted curve represent the branches of stable limit cycle and unstable limit
cycle, respectively.

(a) (b)

(c)

Figure 9. (a) Two-parameter bifurcation diagram with respect
to a and n including the locations of Hopf bifurcation curveH (red)
and saddle-node bifurcation curve of limit cycle SNL (blue). (b)
A family of isolas of limit cycle in system (2) with respect to a; (c)
Isolas about a and Period.

5. Biological interpretations. The inclusion of additive Allee e↵ect has led to
the emergence of rich dynamics including the codimension-2 cusp of limit cycles
and the isola of limit cycles. This e↵ect may cause the predator to go extinct
while the prey survives after a long period of sustained oscillation. From the phase
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portraits, it is observed that almost all bifurcation types occur near the boundary
equilibrium located close to the origin. Two mechanisms have been identified as
generators of these dynamics: one arises from the Hopf bifurcation point, while the
other originates from an isola center of limit cycle. It is possible for the populations
of predator and prey to increase as the half-saturation constant grows following
sustained oscillations.

6. Conclusion and discussion. This paper explores the intricate dynamics of a
Leslie-Gower predator-prey model with additive Allee e↵ect by using the dynamical
systems approach. The study focuses on the existence and the type of boundary
and positive equilibria, as well as saddle-node bifurcation, Hopf bifurcation, ho-
moclinic bifurcation, saddle-node bifurcations of limit cycles and BT bifurcation
of codimension 3. The research reveals the coexistence of two and three limit cy-
cles, and highlights the significance of additive Allee e↵ect in causing more complex
dynamics, such as the codimension-3 BT bifurcation and codimension-2 cusp bifur-
cation of limit cycles. Of particular interest is the finding of isola bifurcation of limit
cycles, which is reported for the first time in a Leslie-Gower predator-prey model
through numerical analysis. The research establishes the existence of an acute angle
parameter region where three coexistent limit cycles can be observed, indicating a
codimension-2 cusp of limit cycles. Note that, the involvement of additive Allee ef-
fect may induce two kinds of oscillation mechanism for three coexistent limit cycles:
one is from a Hopf bifurcation point; the other is: two limit cycles are bifurcating
from a Hopf bifurcation point while the third one is from a homoclinic cycle men-
tioned in Aguirre et al. [2]. Numerical simulations and phase portraits are presented
to illustrate the transition of global dynamics. It is suggested that future research
should focus on analyzing the isola bifurcation of limit cycles, and identifying the
boundary between two-limit-cycle region and three-limit-cycle region.

Acknowledgments. The authors are very grateful to Professor Pablo Aguirre for
his helpful suggestions.

Appendix.

Appendix A. The Existence of Positive Equilibria in System (2). To in-
vestigate the existence of positive equilibria Ei(xi, yi)(i = 1, 2, 3, 4) of system (2) in
the rectangular region ⌦2 = {(x, y)|x 2 (0, k], y 2 [0, nk])}, we need to focus on the
existence of positive roots xi(i = 1, 2, 3, 4) of equation (6)

F̄0(x) := F̄ (x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0,

in the interval (0, k), where a4 = r, a3 = r(b � k) + knq, a2 = ar + k(bnq +m �
br), a1 = ar(b�k) and a0 = ak(m�br). To achieve this, we introduce the following
notions and equations

F̄1(x) := F̄ 0(x) = 4a4x
3 + 3a3x

2 + 2a2x+ a1 = 0,

F̄2(x) := F̄ 00(x) = 2(6a4x
2 + 3a3x+ a2) = 0.

Denote

�F̄2
= 9a2

3
� 24a2a4.
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Then F̄2(x) has no real root if�F̄2
< 0, has one real root of multiplicity 2 if�F̄2

= 0,
which is denoted by x̄1,2 = � 3a3

12a4
, and has two real roots if �F̄2

> 0, which are
marked as x̄1 and x̄2:

x̄1 =
�3a3 �

p
9a2

3
� 24a2a4

12a4
,

x̄2 =
�3a3 +

p
9a2

3
� 24a2a4

12a4
.

Consequently, we analyze the existence of positive roots of F̄0(x) in the interval (0, k]
in three scenarios: �F̄2

< 0, �F̄2
= 0 and �F̄2

> 0. Let xi,i+1 be the coincidence
point of xi and xi+1(i = 1, 2, 3), and xj,j+1,j+2 be the coincidence point of xj , xj+1

and xj+2(j = 1, 2), then corresponding equilibria of system (2) are expressed as
Ei,i+1(xi,i+1, yi,i+1)(i = 1, 2, 3) and Ej,j+1,j+2(xj,j+1,j+2, yj,j+1,j+2)(j = 1, 2), re-
spectively.

Scenario 1: �F̄2
< 0.

In this situation, F̄2(x) has no real root and F̄ 00(x) > 0 as x 2 (0, k], which demon-
strates that F̄ 0(x) monotonically increases in the interval (0, k]. It should be noticed
that F̄ 0(0) = a1 and F̄ 0(k) = r(a+ k2)(b+ k) + k2(nq(2b+ 3k) + 2m) > 0, then we
have
(I) if F̄ 0(0) = a1 � 0, then F̄ 0(x) > 0, x 2 (0, k], which indicates that F̄ (x)
is monotonically increasing in the interval (0, k]. Noting that F̄ (0) = a0 and
F̄ (k) = akm+ k3(nq(b+ k) +m) > 0, we have
(i) for F̄ (0) = a0 < 0, F̄0(x) has a unique positive root in the interval (0, k];
(ii) for a0 � 0, F̄0(x) has no positive root in the interval (0, k];
(II) if a1 < 0, then F̄1(x) has a unique root x̂1 2 (0, k], which indicates that F̄ (x)
monotonically decreases in (0, x̂1) and monotonically increases in (x̂1, k]. Again
noting that F̄ (0) = a0 and F̄ (k) > 0, we have
(i) for F̄ (0) = a0 > 0, F̄0(x) has two positive roots in the interval (0, k] if F̄ (x̂1) < 0,
has one positive root of multiplicity 2 if F̄ (x̂1) = 0, has no positive root if F̄ (x̂1) > 0;
(ii) for a0  0, F̄0(x) has a unique positive root in the interval (0, k].

Scenario 2: �F̄2
= 0.

On this occasion, F̄2(x) has one real root of multiplicity 2, which is denoted by
x̄1,2 = � a3

4a4
and F̄ 00(x) � 0, x 2 (0, k], which illustrates that F̄ 0(x) is monotoni-

cally increasing in the interval (0, k]. It is noteworthy that F̄ 0(0) = a1, F̄ 0(x̄1,2) =
a3
3�4a2a3a4+8a1a

2
4

8a2
4

and F̄ 0(k) > 0, then we have

(S2A) when x̄1,2  0 or x̄1,2 � k, we have F̄ 00(x) � 0, x 2 (0, k], which illustrates
that F̄ 0(x) is a monotonely increasing function in the interval (0, k]. Thus in this
situation, the distribution of positive roots of F̄0(x) in the interval (0, k] is the same
as Scenario 1;
(S2B) when 0 < x̄1,2 < k, according to the signs of F̄ 0(0) and F̄ 0(x̄1,2), we get
(I) if F̄ 0(0) = a1 � 0, then F̄ 0(x) > 0, x 2 (0, k] and hence the distribution of
positive roots of F̄0(x) in the interval (0, k] is the same as Scenario 1 (I);
(II) if a1 < 0 and F̄ 0(x̄1,2) 6= 0, F̄1(x) has a unique root in the interval (0, k], and the
distribution of positive roots of F̄0(x) in the interval (0, k] is the same as Scenario
1 (II);
(III) if a1 < 0 and F̄ 0(x̄1,2) = 0, then x̄1,2 is a positive root of multiplicity 3 of
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F̄1(x). It shows that F̄ (x) monotonically decreases in (0, x̄1,2) and monotonically
increases in (x̄1,2, k] and it should be mentioned that F̄ (0) = a0 and F̄ (k) > 0.
Therefore, we obtain that
(i) for F̄ (0) = a0 > 0, F̄0(x) has two positive roots in the interval (0, k] if F̄ (x̄1,2) <
0, has one positive root of multiplicity 4 if F̄ (x̄1,2) = 0, has no positive root if
F̄ (x̄1,2) > 0;
(ii) for a0  0, F̄0(x) has a unique positive root in the interval (0, k].

Scenario 3: �F̄2
> 0.

In this scenario, F̄2(x) has two real roots, which are marked as x̄1 and x̄2. Obvi-
ously, x̄1 and x̄2 are the maximum and minimum value points of F̄ 0(x), respectively.
By analyzing the positions of x̄1 and x̄2, we have
(S3A) when x̄1 � k or x̄2  0, then F̄ 00(x) � 0, x 2 (0, k] and the distribution of
positive roots of F̄0(x) in the interval (0, k] is the same as Scenario 1;
(S3B) when 0 < x̄1 < k  x̄2, F̄ 0(x) monotonically increases in (0, x̄1) and mono-
tonically decreases in (x̄1, k]. Again noting that F̄ 0(0) = a1, F̄ 0(k) > 0, we can
obtain that
(I) if F̄ 0(0) = a1 � 0, then F̄ 0(x) > 0, x 2 (0, k] and the distribution of positive
roots of F̄0(x) in the region (0, k] is the same as Scenario 1 (I);
(II) if a1 < 0, then F̄1(x) has a unique root in the interval (0, k]. Consequently, the
distribution of positive roots of F̄0(x) in the region (0, k] is the same as Scenario 1
(II);
(S3C) when 0 < x̄1 < x̄2 < k, F̄ 0(x) firstly monotonically increases in (0, x̄1),
then monotonically decreases in (x̄1, x̄2), and eventually monotonically increases in
(x̄2, k]. Based on the signs of F̄ 0(0), F̄ 0(x̄1) and F̄ 0(x̄2), we can obtain that
(I) if F̄ 0(0) = a1 � 0 and F̄ 0(x̄2) < 0, then F̄1(x) has two roots in the region (0, k],
which are denoted by x̂2 and x̂3. According to the signs of F̄ (0), F̄ (x̂2) and F̄ (x̂3),
the distribution of the positive roots of F̄0(x) in the interval (0, k] can be summa-
rized as follows
(i) for F̄ (0) = a0 � 0, F̄1(x) has two positive roots if F̄ (x̂3) < 0, denoted by
x3 < x4, has one positive root of multiplicity 2 if F̄ (x̂3) = 0, and has no positive
root if F̄ (x̂3) > 0;
(ii) for a0 < 0, see Table 1;

signs of F̄ (x̂2) and F̄ (x̂3) Existence of positive roots of F̄0(x) in the interval (0, k]

F̄ (x̂2) > 0

F̄ (x̂3) < 0 three positive roots, denoted by x2 < x3 < x4

F̄ (x̂3) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x2 < x̂3 = x3,4

F̄ (x̂3) > 0 one positive root, denoted by x2

F̄ (x̂2) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x̂2 = x2,3 < x4

F̄ (x̂2) < 0 a unique positive root, denoted by x4

Table 1. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3C) (I) (ii).

(II) if a1 � 0 and F̄ 0(x̄2) = 0, then x̄2 is a positive root of multiplicity 2 of equation
F̄1(x) and F̄ 0(x) � 0, x 2 (0, k]. We have that
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(i) for F̄ (0) = a0 � 0, F̄0(x) has no positive root;
(ii) for a0 < 0, F̄0(x) has a unique positive root in the interval (0, k] if F̄ (x̄2) 6= 0,
and has one positive root of multiplicity 3 if F̄ (x̄2) = 0;
(III) if a1 � 0 and F̄ 0(x̄2) > 0, then F̄ 0(x) > 0, x 2 (0, k]. Thus the distribution of
positive roots of F̄0(x) in the interval (0, k] is the same as Scenario 1 (I);
(IV) if a1 < 0 and F̄ 0(x̄1) < 0, then F̄1(x) has a unique positive root in the interval
(0, k]. Therefore the distribution of the positive roots of F̄0(x) in the interval (0, k]
is the same as Scenario 1 (II);
(V) if a1 < 0 and F̄ 0(x̄1) = 0, then F̄1(x) has two positive roots x̄1 and x̂2 in the
interval (0, k], in which x̄1 is a root of multiplicity 2. With the assistance of signs
of F̄ (0), F̄ (x̄1) and F̄ (x̂2), we have
(i) for F̄ (0) = a0 > 0, see Table 2;
(ii) for a0  0, F̄0(x) has a unique positive root in the interval (0, k], which is de-
noted by x4;

signs of F̄ (x̂2) and F̄ (x̄1) Existence of positive roots of F̄0(x) in the interval (0, k]

F̄ (x̂2) < 0

F̄ (x̄1) < 0 two positive roots, denoted by x1 < x4

F̄ (x̄1) = 0
two positive roots, one of them is a positive root
of multiplicity 3, denoted by x̄1 = x1,2,3 < x4

F̄ (x̄1) > 0 two positive roots, denoted by x3 < x4

F̄ (x̂2) = 0
one positive root of multiplicity 2,

denoted by x̂2 = x3,4

F̄ (x̂2) > 0 no positive root
Table 2. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3C) (V) (i).

(VI) if a1 < 0, F̄ 0(x̄1) > 0 and F̄ 0(x̄2) > 0, F̄1(x) has a unique positive root in the
interval (0, k]. Then we can get the distribution of positive roots of F̄0(x) in the
interval (0, k] is the same as Scenario 1 (II);
(VII) if a1 < 0, F̄ 0(x̄1) > 0 and F̄ 0(x̄2) = 0, then F̄1(x) has two roots x̂2 and x̄2 in
the interval (0, k], in which x̄2 is a root of multiplicity 2. Thus we have
(i) for F̄ (0) = a0 > 0, see Table 3;
(ii) for a0  0, F̄0(x) has a unique positive root in the interval (0, k] if F̄ (x̄2) > 0,
which is denoted by x3, has one positive root of multiplicity 3 if F̄ (x̄2) = 0, and
has a unique positive root in the interval (0, k] if F̄ (x̄2) < 0, which is denoted by x4;

(VIII) if a1 < 0, F̄ 0(x̄1) > 0 and F̄ 0(x̄2) < 0, F̄1(x) has three positive roots in
the region (0, k], which are marked as x̂2 < x̂3 < x̂4. It means that F̄ (x) firstly
monotonically decreases in (0, x̂2), then monotonically increases in (x̂2, x̂3), mono-
tonically decreases in (x̂3, x̂4), and lastly monotonically increases in (x̂4, k]. Based
on the signs of F̄ (0), F̄ (x̂2), F̄ (x̂3) and F̄ (x̂4), the distribution of the positive roots
of F̄0(x) in the interval (0, k] is concluded as follows
(i) for F̄ (0) = a0 > 0, see Table 4;
(ii) for a0  0, see Table 5;

(S3D) when x̄1  0 < k  x̄2, then F̄ 00(x)  0, x 2 (0, k], which suggests that
F̄ 0(x) is a monotonically decreasing function in the interval (0, k]. With F̄ 0(k) > 0,
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signs of F̄ (x̂2) and F̄ (x̄2) Existence of positive roots of F̄0(x) in the interval (0, k]

F̄ (x̂2) < 0

F̄ (x̄2) > 0 two positive roots, denoted by x1 < x2

F̄ (x̄2) = 0
two positive roots, one of them is a positive root
of multiplicity 3, denoted by x1 < x̄2 = x2,3,4

F̄ (x̄2) < 0 two positive roots, denoted by x1 < x4

F̄ (x̂2) = 0
one positive root of multiplicity 2,

denoted by x̂2 = x1,2

F̄ (x̂2) > 0 no positive root
Table 3. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3C) (VII) (i).

signs of F̄ (x̂2), F̄ (x̂3) and F̄ (x̂4)
Existence of positive roots of F̄0(x)

in the interval (0, k]

F̄ (x̂2) < 0

F̄ (x̂3) > 0

F̄ (x̂4) < 0
four positive roots, denoted by

x1 < x2 < x3 < x4

F̄ (x̂4) = 0
three positive roots, one of them is a positive

root of multiplicity 2, denoted
by x1 < x2 < x̂4 = x3,4

F̄ (x̂4) > 0 two positive roots, denoted by x1 < x2

F̄ (x̂3) = 0
three positive roots, one of them is a positive

root of multiplicity 2, denoted
by x1 < x̂3 = x2,3 < x4

F̄ (x̂3) < 0 two positive roots, denoted by x1 < x4

F̄ (x̂2) = 0

F̄ (x̂4) < 0
three positive roots, one of them is a positive

root of multiplicity 2, denoted
by x̂2 = x1,2 < x3 < x4

F̄ (x̄4) = 0
two positive roots of multiplicity 2,
denoted by x̂2 = x1,2 < x̂4 = x3,4

F̄ (x̂4) > 0
one positive root of multiplicity 2,

denoted by x̂2 = x1,2

F̄ (x̂2) > 0

F̄ (x̂4) < 0 two positive roots, denoted by x3 < x4

F̄ (x̂4) = 0
one positive root of multiplicity 2,

denoted by x̂4 = x3,4

F̄ (x̂4) > 0 no positive root
Table 4. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3C) (VIII) (i).

we have F̄ 0(x) > 0, x 2 (0, k] and the distribution of positive roots of F̄0(x) in the
interval (0, k] is the same as Scenario 1 (I);
(S3E) when x̄1  0 < x̄2 < k, F̄2(x) has a unique positive root x̄2. By this
time F̄ 0(x) monotonically decreases in (0, x̄2) and monotonically increases in (x̄2, k].
Judging the signs of F̄ 0(0) and F̄ 0(x̄2), we have that
(I) if F̄ 0(0) = a1 > 0 and F̄ 0(x̄2) > 0, then F̄ 0(x) > 0, x 2 (0, k] and the distribution
of positive roots of F̄0(x) in the interval (0, k] is the same as Scenario 1 (I);
(II) if a1 > 0 and F̄ 0(x̄2) = 0, then x̄2 is a positive root of multiplicity 2 of F̄1(x).
Further, according to the signs of F̄ (0) and F̄ (x̄2), we can easily get
(i) for F̄ (0) = a0 � 0, F̄0(x) has no positive root;
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signs of F̄ (x̂3) and F̄ (x̂4) Existence of positive roots of F̄0(x) in the interval (0, k]

F̄ (x̂3) > 0

F̄ (x̂4) < 0 three positive roots, denoted by x2 < x3 < x4

F̄ (x̂4) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x2 < x̂4 = x3,4

F̄ (x̂4) > 0 a unique positive root, denoted by x2

F̄ (x̂3) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x̂3 = x2,3 < x4

F̄ (x̂3) < 0 a unique positive root, denoted by x4

Table 5. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3C) (VIII) (ii).

(ii) for a0 < 0 and F̄ 0(x̄2) 6= 0, F̄0(x) has a unique positive root in the interval
(0, k);
(iii) for a0 < 0 and F̄ 0(x̄2) = 0, F̄0(x) has one positive root of multiplicity 3;
(III) if a1 > 0 and F̄ 0(x̄2) < 0, then F̄1(x) has two positive roots in the interval
(0, k], which are denoted by x̂5 and x̂6. Thus we have
(i) for F̄ (0) = a0 � 0, F̄0(x) has two positive roots in the interval (0, k] if F̄ (x̂6) < 0,
has one positive root of multiplicity 2 if F̄ (x̂6) = 0, and has no positive root if
F̄ (x̂6) > 0;
(ii) for a0 < 0, see Table 6;
(IV) if a1  0, then F̄1(x) has a unique positive root in the interval (0, k] and the
distribution of positive roots of F̄0(x) in the interval (0, k] is the same as Scenario
1 (II).

signs of F̄ (x̂5) and F̄ (x̂6) Existence of positive roots of F̄0(x) in the interval (0, k]

F̄ (x̂5) > 0

F̄ (x̂6) < 0 three positive roots, denoted by x2 < x3 < x4

F̄ (x̂6) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x2 < x̂6 = x3,4

F̄ (x̂6) > 0 a unique positive root, denoted by x2

F̄ (x̂5) = 0
two positive roots, one of them is a positive root

of multiplicity 2, denoted by x̂5 = x2,3 < x4

F̄ (x̂5) < 0 a unique positive root, denoted by x4

Table 6. The distribution of positive roots of F̄0(x) in the interval
(0, k] in (S3E) (III) (ii).

Appendix B. Coe�cients in the proof of Theorem 2.6.

â10 =
rx⇤(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
, â01 =

rx⇤(a+ x⇤2)(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
,

â20 = � r

k(a+ x⇤2)(b+ x⇤)(2ab+ 3ax⇤ + x⇤3)
(a2(b2 � b(k � 3x⇤) + x⇤(k + x⇤))

+ax⇤2(5b2 � 5b(k � 3x⇤) + x⇤(10x⇤ � 3k)) + x⇤6),

â11 =
2ar(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
,

â30 =
r

k(2ab+ 3ax⇤ + x⇤3)
(
4ax⇤(x⇤2 � a)(b� k + 2x⇤)

(a+ x⇤2)2
� b(2ak � ax⇤ + x⇤3)

(b+ x⇤)2
),
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â21 =
ar(a� 3x⇤2)(b� k + 2x⇤)

knx⇤(a+ x⇤2)(2ab+ 3ax⇤ + x⇤3)
, b̂10 = ns, b̂01 = �s, b̂20 = �ns

x⇤ ,

b̂11 =
2s

x⇤ , b̂02 = � s

nx⇤ , b̂30 =
ns

x⇤2 , b̂21 = � 2s

x⇤2 , b̂12 =
s

nx⇤2 ;

ĉ20 =
â10(â01b̂11 � â11b̂01)� â2

10
b̂02 + â01(â20b̂01 � â01b̂20)

â01(â10 + b̂01)
,

ĉ11 =
�2â2

01
b̂20 + â01b̂01(2â20 � b̂11) + â11b̂201 + â10(â01b̂11 � b̂01(â11 � 2b̂02))

â01(â10 + b̂01)
,

ĉ02 =
�â2

01
b̂20 + â01b̂01(â20 � b̂11) + b̂2

01
(â11 � b̂02)

â01(â10 + b̂01)
,

ĉ30 =
â10(â01b̂21 � â21b̂01)� â2

10
b̂12 + â01(â30b̂01 � â01b̂30)

â01(â10 + b̂01)
,

ĉ21 =
1

â01(â10 + b̂01)
(�3â2

01
b̂30 + â01b̂01(3â30 � b̂21) + â21b̂

2

01
� â2

10
b̂12 + 2â10

⇥(b̂01(b̂12 � â21) + â01b̂21)),

ĉ12 =
1

â01(â10 + b̂01)
(�3â2

01
b̂30 + â01b̂01(3â30 � 2b̂21) + b̂2

01
(2â21 � b̂12) + â10

⇥(â01b̂21 � b̂01(â21 � 2b̂12))),

ĉ03 =
�â2

01
b̂30 + â01b̂01(â30 � b̂21) + b̂2

01
(â21 � b̂12)

â01(â10 + b̂01)
,

d̂01 =
â10(â10 + b̂01) + â01b̂10 + b̂2

01

â10 + b̂01
= p(x⇤),

d̂20 =
â2
01
b̂20 + â10â01(â20 � b̂11) + â2

10
(b̂02 � â11)

â01(â10 + b̂01)
,

d̂11 =
â10(b̂01(â11 � 2b̂02) + â01(2â20 � b̂11)) + â01(2â01b̂20 + b̂01b̂11)� â2

10
â11

â01(â10 + b̂01)
,

d̂02 =
â2
01
b̂20 + â01(â10â20 + b̂01b̂11) + b̂01(â10â11 + b̂01b̂02)

â01(â10 + b̂01)
,

d̂30 =
â2
01
b̂30 + â10â01(â30 � b̂21) + â2

10
(b̂12 � â21)

â01(â10 + b̂01)
,

d̂21 =
1

â01(â10 + b̂01)
(â2

10
(b̂12 � 2â21) + â10(b̂01(â21 � 2b̂12) + â01(3â30 � 2b̂21))

+â01(3â01b̂30 + b̂01b̂21)),

d̂12 =
1

â01(â10 + b̂01)
(3â2

01
b̂30 + 2â01b̂01b̂21 + â10(2b̂01(â21 � b̂12) + â01(3â30 �

b̂21))� â2
10
â21 + b̂2

01
b̂12),

d̂03 =
â2
01
b̂30 + â01(â10â30 + b̂01b̂21) + b̂01(â10â21 + b̂01b̂12)

â01(â10 + b̂01)
.
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a⇤
10

= � r(a+ x⇤2)2

a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4 ,

a⇤
01

=
r(a+ x⇤2)2

n(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
,

a⇤
20

=
ar(a+ x⇤2)

x⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

a⇤
11

= � 2ar(a+ x⇤2)

nx⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

a⇤
30

=
4arx⇤(a� x⇤(2b+ x⇤))

(a+ x⇤2)(b+ x⇤)(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

a⇤
21

= � ar(a� 3x⇤2)

nx⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

a⇤
40

=
ar

�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4 (
4x⇤(x⇤2 � 3a)

(a+ x⇤2)2
+

4b

(b+ x⇤)2
+

1

x⇤ ),

a⇤
31

=
4ar(a� x⇤2)

nx⇤(a+ x⇤2)(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

b⇤
10

= � nr(a+ x⇤2)2

a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4 ,

b⇤
01

=
r(a+ x⇤2)2

a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4 ,

b⇤
20

=
nr(a+ x⇤2)2

x⇤(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
,

b⇤
11

=
2r(a+ x⇤2)2

x⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

b⇤
02

=
r(a+ x⇤2)2

nx⇤(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
,

b⇤
30

=
nr(a+ x⇤2)2

x⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

b⇤
21

=
2r(a+ x⇤2)2

x⇤2(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
,

b⇤
12

=
r(a+ x⇤2)2

nx⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

b⇤
40

=
nr(a+ x⇤2)2

x⇤3(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
,

b⇤
31

=
2r(a+ x⇤2)2

x⇤3(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

b⇤
22

=
r(a+ x⇤2)2

nx⇤3(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)
;

c⇤
20

=
a⇤2
10
b⇤
02

a⇤
01

� a⇤
10
b⇤
11

� a⇤
20
b⇤
01

+ a⇤
11
b⇤
10

+ a⇤
01
b⇤
20
, c⇤

02
=

a⇤
11

+ b⇤
02

a⇤
01

,

c⇤
30

= �a⇤
30
b⇤
01

+ a⇤
21
b⇤
10

� a⇤
20
b⇤
11

+ a⇤
11
b⇤
20

+ a⇤
01
b⇤
30

+
a⇤2
10
(a⇤

01
b⇤
12

� a⇤
11
b⇤
02
)

a⇤2
01

+ a⇤
10



COMPLEX DYNAMICS INDUCED BY ADDITIVE ALLEE EFFECT 33

⇥(
2a⇤

20
b⇤
02

a⇤
01

� b⇤
21
),

c⇤
21

=
1

a⇤2
01

(a⇤
10
(2a⇤

11
b⇤
02

� 2a⇤
01
(a⇤

21
+ b⇤

12
) + a⇤2

11
) + a⇤

01
(a⇤

01
(3a⇤

30
+ b⇤

21
)� a⇤

20
(a⇤

11

+2b⇤
02
))),

c⇤
12

=
1

a⇤2
01

(a⇤
01
(2a⇤

21
+ b⇤

12
)� a⇤

11
(a⇤

11
+ b⇤

02
)),

c⇤
40

= �a⇤
40
b⇤
01

+ a⇤
31
b⇤
10

� a⇤
30
b⇤
11

+ a⇤
21
b⇤
20

� a⇤
20
b⇤
21

+ a⇤
11
b⇤
30

� a⇤
10
b⇤
31

+ a⇤
01
b⇤
40

+
a⇤2
10
a⇤2
11
b⇤
02

a⇤3
01

� a⇤
10
(a⇤

10
a⇤
21
b⇤
02

+ a⇤
11
(2a⇤

20
b⇤
02

+ a⇤
10
b⇤
12
))

a⇤2
01

+
1

a⇤
01

(a⇤2
10
b⇤
22

+ 2

⇥a⇤
30
a⇤
10
b⇤
02

+ 2a⇤
20
a⇤
10
b⇤
12

+ a⇤2
20
b⇤
02
),

c⇤
31

=
1

a⇤3
01

(�a⇤
10
(2a⇤2

11
b⇤
02

� a⇤
01
a⇤
11
(3a⇤

21
+ 2b⇤

12
) + a⇤

01
(a⇤

01
(3a⇤

31
+ 2b⇤

22
)� 2a⇤

21
b⇤
02
)

+a⇤3
11
) + a⇤

01
(a⇤

11
(2a⇤

20
b⇤
02

� a⇤
01
a⇤
30
) + a⇤

01
(�2a⇤

30
b⇤
02

� 2a⇤
20
(a⇤

21
+ b⇤

12
) +

a⇤
01
(4a⇤

40
+ b⇤

31
)) + a⇤

20
a⇤2
11
)),

c⇤
22

=
a⇤2
11
b⇤
02

� a⇤
01
a⇤
11
(3a⇤

21
+ b⇤

12
) + a⇤

01
(a⇤

01
(3a⇤

31
+ b⇤

22
)� a⇤

21
b⇤
02
) + a⇤3

11

a⇤3
01

.

Appendix C. Coe�cients in the proof of Theorem 3.1 and Theorem 3.4.

ā00 = x⇤(
�2rx⇤(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)(a+ �2 + x⇤2)
� �1

b+ x⇤ ),

ā10 =
rx⇤(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)(a+ �2 + x⇤2)2
(4a�2(a+ x⇤2) + �2

2
(3a+ x⇤2) + (a

+x⇤2)3)� b�1
(b+ x⇤)2

,

ā01 =
rx⇤(a+ x⇤2)2(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)(a+ �2 + x⇤2)
,

ā20 =
r(2ak � ax⇤ + x⇤3)

k(2ab+ 3ax⇤ + x⇤3)
� rx⇤(2ak � ax⇤ + x⇤3)

k(b+ x⇤)(2ab+ 3ax⇤ + x⇤3)

+
r(a+ �2)(a+ x⇤2)2(a+ �2 � 3x⇤2)(b� k + 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)(a+ �2 + x⇤2)3
+

�1
(b+ x⇤)2

� �1x⇤

(b+ x⇤)3
� r

k
,

ā11 =
2r(a+ �2)(a+ x⇤2)2(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)(a+ �2 + x⇤2)2
,

b̄10 =
nrx⇤(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,

b̄01 =
rx⇤(a+ x⇤2)(b� k + 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,

b̄20 =
nr(a+ x⇤2)(b� k + 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,

b̄11 =
2r(a+ x⇤2)(�b+ k � 2x⇤)

k(2ab+ 3ax⇤ + x⇤3)
,
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b̄02 =
r(a+ x⇤2)(b� k + 2x⇤)

kn(2ab+ 3ax⇤ + x⇤3)
;

c̄00 = ā00(
ā00b̄02
ā01

� b̄01),

c̄10 = � ā11ā200b̄02
ā2
01

� ā00b̄11 + ā10(
2ā00b̄02
ā01

� b̄01) + ā01b̄10,

c̄01 = � ā00(ā11 + 2b̄2)

ā01
+ ā10 + b̄01,

c̄20 = �ā20b̄01 + ā11b̄10 � ā10b̄11 + ā01b̄20 +
ā2
00
ā2
11
b̄02

ā3
01

� 2ā00ā10ā11b̄02
ā2
01

+
(ā2

10
+ 2ā00ā20)b̄02

ā01
,

c̄11 = � (ā01ā10 � ā00ā11)(ā11 + 2b̄02)

ā2
01

+ 2ā20 + b̄11, c̄02 =
ā11 + b̄02

ā01
;

d̄00 = c̄00, d̄10 = c̄10 � 2c̄00c̄02, d̄01 = c̄01,

d̄20 = c̄00c̄
2

02
� 2c̄10c̄02 + c̄20, d̄11 = c̄11 � c̄01c̄02;

ē00 = d̄00 �
d̄2
10

4d̄20
, ē01 = d̄01 �

d̄10d̄11
2d̄20

, ē20 = d̄20, ē11 = d̄11.

ā⇤
00

=
1

(b+ x⇤)(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(a+ 2 + x⇤2)
(1x

⇤(a2 � 4a

⇥(b+ x⇤)(b+ 2x⇤)� x⇤4)(a+ 2 + x⇤2) + 2rx
⇤(a+ x⇤2)2(b+ x⇤)),

ā⇤
10

=
1

�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4 (�
b1

(b+ x⇤)2
(�a2 + 4a(b+ x⇤)(b+ 2x⇤)

+x⇤4)� 2r

(a+ 2 + x⇤2)2
(a+ 2)(a+ x⇤2)3 + r(3a+ x⇤2)(a+ x⇤2)),

ā⇤
01

= � qx⇤2

a+ 2 + x⇤2 ,

ā⇤
20

=
b1

(b+ x⇤)3
+

1

x⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(a+ 2 + x⇤2)3
(r(2

⇥(4a2 � 5ax⇤2 + 3x⇤4)(a+ x⇤2)2 + 2
2
(5a2 � 8ax⇤2 � x⇤4)(a+ x⇤2) +

2a3
2
(a� x⇤2) + a(a+ x⇤2)4)),

ā⇤
11

= � 2qx⇤(a+ 2)

(a+ 2 + x⇤2)2
,

ā⇤
30

= � 4r

(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)(a+ 2 + x⇤2)4
(a+ 2)(a+ x⇤2)3(a

+2 � x⇤2) +
x⇤

(b+ x⇤)4
(1 �

4ar

a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4 (b+ x⇤)3)

� 1

(b+ x⇤)3
(1 �

4ar

a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4 (b+ x⇤)3),

ā⇤
21

= �q(a+ 2)(a+ 2 � 3x⇤2)

(a+ 2 + x⇤2)3
,

ā⇤
40

=
r(a+ 2)(a+ x⇤2)3(a2 + 22(a� 5x⇤2)� 10ax⇤2 + 2

2
+ 5x⇤4)

x⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(a+ 2 + x⇤2)5
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+
b1

(b+ x⇤)5
+

4abr

(b+ x⇤)2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)
,

ā⇤
31

= �4qx⇤(a+ 2)(�a� 2 + x⇤2)

(a+ 2 + x⇤2)4
,

b̄⇤
00

= (�3r2x⇤(a+ x⇤2)5)/(r(a+ x⇤2)3(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)� 3

⇥qx⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2),

b̄⇤
10

= (r3(a+ x⇤2)8)/(qx⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
01

= (r(a+ x⇤2)2(r(a+ x⇤2)3 � 3qx
⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)))/

(r(a+ x⇤2)3(a2 � 4a(b+ x⇤)(b+ 2x⇤)� x⇤4)� 3qx
⇤2(�a2 + 4a(b+ x⇤)

⇥(b+ 2x⇤) + x⇤4)2),

b̄⇤
20

= (�r3(a+ x⇤2)8)/(qx⇤3(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
11

= (2r2(a+ x⇤2)5)/(x⇤(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(3qx
⇤2(�a2 + 4a

⇥(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
02

= (�qrx⇤(a+ x⇤2)2)/(3qx
⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+

x⇤2)3),

b̄⇤
30

= (r3(a+ x⇤2)8)/(qx⇤4(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
21

= �(2r2(a+ x⇤2)5)/(x⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
12

= (qr(a+ x⇤2)2)(3qx
⇤2(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3),

b̄⇤
40

= �(r3(a+ x⇤2)8)/(qx⇤5(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)2(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
31

= (2r2(a+ x⇤2)5)/(x⇤3(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4)(3qx
⇤2(�a2 +

4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + r(a+ x⇤2)3)),

b̄⇤
22

= (�qr(a+ x⇤2)2)/(3qx
⇤3(�a2 + 4a(b+ x⇤)(b+ 2x⇤) + x⇤4) + rx⇤(a

+x⇤2)3);

c̄⇤
00

=
ā⇤2
00
b̄⇤
02

ā⇤
01

� ā⇤
00
b̄⇤
01

+ ā⇤
01
b̄⇤
00
,

c̄⇤
10

=
ā⇤2
00
b̄⇤
12

ā⇤
01

� ā⇤
00
b̄⇤
11

+ ā⇤
10
(
2ā⇤

00
b̄⇤
02

ā⇤
01

� b̄⇤
01
) + ā⇤

11
(b̄⇤

00
� ā⇤2

00
b̄⇤
02

ā⇤2
01

) + ā⇤
01
b̄⇤
10
,

c̄⇤
01

= � ā⇤
00
(ā⇤

11
+ 2b̄⇤

02
)

ā⇤
01

+ ā⇤
10

+ b̄⇤
01
,

c̄⇤
20

=
ā⇤2
00
ā⇤2
11
b̄⇤
02

ā⇤3
01

+ ā⇤
11
b̄⇤
10

+ ā⇤
21
b̄⇤
00

� ā⇤
20
b̄⇤
01

� ā⇤
10
b̄⇤
11

+ ā⇤
01
b̄⇤
20

� ā⇤
00
b̄⇤
21

+
1

ā⇤
01

⇥(ā⇤2
00
b̄⇤
22

+ 2ā⇤
20
ā⇤
00
b̄⇤
02

+ 2ā⇤
10
ā⇤
00
b̄⇤
12

+ ā⇤2
10
b̄⇤
02
)� ā⇤

00

ā⇤2
01

(2ā⇤
10
ā⇤
11
b̄⇤
02

+ ā⇤
00

⇥(ā⇤
21
b̄⇤
02

+ ā⇤
11
b̄⇤
12
)),
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c̄⇤
11

=
ā⇤
00
ā⇤
11
(ā⇤

11
+ 2b̄⇤

02
)� ā⇤

01
(ā⇤

10
(ā⇤

11
+ 2b̄⇤

02
) + 2ā⇤

00
(ā⇤

21
+ b̄⇤

12
))

ā⇤2
01

+ 2ā⇤
20

+ b̄⇤
11
,

c̄⇤
02

=
ā⇤
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ā⇤
11
b̄⇤
12
)) +

1

ā⇤
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+ ā⇤
00
b̄⇤
22
) + 2ā⇤
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00
(ā⇤
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+ ā⇤
31
b̄⇤
10

� ā⇤
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ā⇤4
11
b̄⇤
02
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(3ā⇤

21
b̄⇤
02

+ ā⇤
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(ā⇤

40
b̄⇤
02

+ ā⇤
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(ā⇤

31
b̄⇤
02

+ ā⇤
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(2ā⇤

20
b̄⇤
02

+ ā⇤
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� ā⇤
01
ā⇤
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(ā⇤

01
(3ā⇤
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= ē⇤

11
,

f̄⇤
30

= ē⇤
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Appendix D. Coe�cients in the proof of Theorem 3.5.

↵10 = s, ↵01 =
a+ x2

⇤
kn(a(b+ 2x⇤)� bx2

⇤)
(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤)),

↵20 = �1

k
(

a(a� 3x2
⇤)

x⇤(a+ x2
⇤)(bx

2
⇤ � a(b+ 2x⇤))

(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤))

+
b

(b+ x⇤)(bx2
⇤ � a(b+ 2x⇤))

(ak(r + s) + x2

⇤(k(s� r) + 2rx⇤)) + r),

↵11 = � 2a

knx⇤(bx2
⇤ � a(b+ 2x⇤))

(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤)),

↵30 =
1

k(a+ x2
⇤)

2(b+ x⇤)2(bx2
⇤ � a(b+ 2x⇤))

(4a(a� x2

⇤)(b+ x⇤)
2(b(ks+ rx⇤)

+x⇤(k(s� r) + 2rx⇤)) + b(a+ x2

⇤)
2(ak(r + s) + x2

⇤(k(s� r) + 2rx⇤))),

↵21 = �a(a� 3x2
⇤)(b(ks+ rx⇤) + x⇤(k(s� r) + 2rx⇤))

knx2
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⇤)(bx
2
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,

↵40 =
1
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⇤)
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3
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x3
⇤
, �31 =

2s

x3
⇤
, �22 = � s
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⇤(23b� 3k) + 25bx2
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⇤(5k � 33b)� 8x4
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2 � 7448bk + 312k2) + 16bx3

⇤(1479b
2 � 811bk + 84k2) + 48b2x2

⇤

⇥(287b2 � 242bk + 43k2) + 4x5
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