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This paper develops a mathematical model to investigate the Human Immunodeficiency
Virus (HIV) infection dynamics. The model includes two transmission modes (cell-to-cell
and cell-free), two adaptive immune responses (cytotoxic T-lymphocyte (CTL) and anti-
body), a saturated CTL immune response, and latent HIV infection. The existence and
local stability of equilibria are fully characterized by four reproduction numbers. Through
sensitivity analyses, we assess the partial rank correlation coefficients of these reproduc-
tion numbers and identify that the infection rate via cell-to-cell transmission, the number
of new viruses produced by each infected cell during its life cycle, the clearance rate of
free virions, and immune parameters have the greatest impact on the reproduction num-
bers. Additionally, we compare the effects of immune stimulation and cell-to-cell spread
on the model’s dynamics. The findings highlight the significance of adaptive immune
responses in increasing the population of uninfected cells and reducing the numbers of
latent cells, infected cells, and viruses. Furthermore, cell-to-cell transmission is identified
as a facilitator of HIV transmission. The analytical and numerical results presented in
this study contribute to a better understanding of HIV dynamics and can potentially
aid in improving HIV management strategies.

Keywords: HIV infection; cell-to-cell transmission; adaptive immune response; latent
infection; local stability.
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1. Introduction

Acquired Immune Deficiency Syndrome (AIDS) is a disease caused by Human
Immunodeficiency Virus (HIV) infection that can suppress T-cells in the human
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body which have a function to fight against infections [1]. According to the data
released by the World Health Organization (WHO), more than 70 million people
have been infected with HIV since it was first detected in 1981 [2]. Among them
about 50% have died. As of 2022, AIDS is raging in almost every country on the
planet, posing a huge threat to the safety of people’s lives. Therefore, it is urgent
to use knowledge of infectious disease dynamics to establish mathematical models
to study HIV infection.

The fundamental model of HIV infection comprises uninfected cells, infected
cells, and free viral particles [3]. The immune response plays a vital role in recogniz-
ing and eliminating pathogens and infected cells during the process of viral infection.
As a result, more sophisticated models have been established to study the dynamic
relationships between the immune response and the invading pathogens [4-16]. As
an important branch of the immune system, CTL (cytotoxic T-lymphocyte) kills
infected target cells by secreting various cytokines such as tumor necrosis fac-
tor, interferon, etc. It can also inhibit HIV reproduction through certain chemical
chemokines. The CTL immune response was introduced in some of the early mod-
els [7, [8]. However, the stimulating effect of infected cells on immune cells is not a
simple linear relationship; when the concentration of infected cells becomes suffi-
ciently large a saturation state is reached. Thus it is of certain practical significance
to incorporate this saturation effect into modeling. An SEIARV model with asymp-
tomatic infection and saturation incidence rate is studied in [9]. In [10], Wang et al.
considered saturated CTL immune response of the form =22 where 1+qy indicates

1+qy
the inhibitory effect of infected cells on the CTL immune response. In addition to

the CTL immune response, neutralizing antibodies can bind specifically to viruses,
causing them to lose the ability to infect host cells [11]. Extensions to the basic
model were proposed by Wang and Zou [12] and Li and Xu [13], incorporating an
additional class to account for antibody immune response.

The previously mentioned models focused solely on cell-free infection. Neverthe-
less, it has been observed that direct cell-to-cell transmission of HIV, potentially
facilitated by virological synapses, is significantly more efficient compared to infec-
tion through free viral particles [14H16]. To gain insights into viral dynamics, math-
ematical models have been developed to incorporate cell-to-cell transmission. For
example, Elaiw and Alshamrani showed that the inclusion of cell-to-cell transmis-
sion decreases the concentration of healthy CD4" T-cells and increases the concen-
trations of infected cells and free HIV particles [17]. In [18], a mathematical model
with the two transmission modes for HIV-1 was proposed. It is found that if the
basic reproduction number is greater than one, the infection can persist and Hopf
bifurcation can occur at the positive equilibrium within certain ranges of parameter
values. In [19], Guo et al. proposed a model including two intracellular delays in
viral infection and production, in addition to the two transmission routes. They
evaluated the effects of various viral spread modes, intracellular time delays and
the immune responses on the infection dynamics.
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In HIV, the viral genome is able to integrate into resting CD4™ T-cells to pro-
duce a latent infection [20]. Latently infected CD4T T-cells have a prolonged lifespan
and remain unaffected by antiretroviral drugs or immune responses. However, they
can be triggered to release viruses upon stimulation by specific antigens [21]. In
order to provide a more comprehensive explanation of biological phenomena, latent
infection has also been incorporated into viral dynamics models. From a recently
developed latent HIV infection model with cell-to-cell infection, Agosto et al. con-
cluded that cell-to-cell infection could affect the establishment and persistence of
latent infection in the resting CD4" T-cells [22]. The results in [23] suggest that
although cell-to-cell transmission may have reduced susceptibility to HIV drugs,
HIV latency represents a major reason for HIV persistence in patients on suppres-
sive treatment. Therefore, the latent infection mechanism should be introduced into
HIV models of both cell-to-cell infection and cell-free transmission.

Upon HIV entry into the human body, the immune system triggers two dis-
tinct branches of adaptive immune responses to combat the viral infection: the
CTL immune response and the antibody immune response. Such adaptive immune
responses have been incorporated into many viral infection models with the cell-free
infection mode (see e.g. [5H9, [11] [12]). In particular, a saturated immune response
is also considered in [10]. Experimental evidence suggests that direct cell-to-cell
transmission of HIV is believed to be more efficient than infection by free virus par-
ticles [14} [15]. Furthermore, this mode of transmission may have implications for
the establishment and persistence of latent infection in resting CD4" T-cells [22].
In recent studies, two modes of transmission, latent infection and CTL immunity,
were taken into account in the modeling of HIV [2, [17]. But the antibody immune
response was ignored.

Motivated by the aforementioned biological factors, we propose a comprehen-
sive model that incorporates the key elements mentioned above: two transmission
modes (cell-to-cell and cell-free), two types of adaptive immune responses (CTL
and antibody), a saturated CTL immune response and latent infection. The model
is described by the following system of ordinary differential equations:

dT
i ANT* =T) = BTV — BT1,
dL
T (1 TV + BoTI) — doL — agL,
dr
= = (L=n)(BTV + BT1) =81 + aoL — pZ1,
1
iz _ elz . 1)
dt  14al ’
av
yri NI —cV —qV A,
dA
% =aVA-— §1A
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Here T', L, I, Z, V, and A represent the concentrations of uninfected cells, latent
cells, infected cells, CTL effectors, free viruses, and antibodies at time ¢, respec-
tively. T™ is the equilibrium concentration of uninfected cells in the absence of
viral infection. The constant XT* is the generation rate of uninfected CD4™ T-
cells. Parameters 81 and (35 represent the infection rates via cell-free infection and
cell-to-cell transmission, respectively. Parameters A, , b, §;, and ¢ are the decay
rates of uninfected CD4™ T-cells, infected CD4% T-cells, CTL cells, antibodies, and
viruses, respectively. The parameter p is the rate at which infected cells are cleared
by CTL cells. The constant ¢ denotes the neutralization rate by antibody response.
The antibody response is assumed to be stimulated at a rate a by the virus. Viral
generation by productively infected CD4% T-cells leads to N new viruses by each
infected cell during its lifetime. The average lifespan of an infected cell is %. Thus
N§ is the viral production rate by an infected cell per unit time. Parameters dy and
ap represent the mortality of latently infected cells and the activation rate from the
latent to productive state, respectively. In the model, we assume that a fraction
(0 < < 1) of infected CD41 T-cells become latently infected and the remaining
fraction (1 —n) become productively infected. We further assume that the cellular
immune generation is ff—aZI,
cells on CTL immune response. The parameter e is the proliferation rate of immune
cells. It is easy to see that if e < b then Z(t) — 0 as t — oo. As a result, we always
assume that e > ba in the sequel.
The initial conditions for () are

0<T(0)<T* L0)>0, I(0)>0, Z(0)>0, V(0)>0, A®)>0.

where 1+ o represents the inhibitory effect of infected

(2)
By the fundamental theory of ordinary differential equations, we can obtain the
existence and uniqueness of solutions for ¢ > 0 [24]. It is also straightforward to
show that solutions are nonnegative. This can be verified by checking that the

derivatives are greater than or equal to zero on the boundary of Rﬁ, for instance,

if T' =0, then % = AT™ > 0. Moreover, define

p q
Fty=T+L+1+22+Lv A
O=T+L+1+-Z+V+-

A straightforward calculation yields

Z1 pb c 019
F'(t) = MT* —T) — dyL — pZI + -2 Z
(t) ( ) 0 P Jr1—|—aI e N alN

pb d1q

<A™ = AT —dyL f—Zf—Vf—A<)\T* I'F,
N aN
where T' = min{\, do, 2 N glj\‘}} Then limsup,_,, F(t) < 2L~. This implies that

the solutions of (1) are bounded. In fact, it is easy to see that

AT
Q{(T,L,I,Z,V,A)eRi:TgT*T+L+1+ Z+NV+—A r}

is attracting and positively invariant for system ().
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The objective of this study is to investigate the impact of various factors on
the dynamics of cell and viral loads. In Sec. 2l the basic reproduction number,
the immune reproduction numbers, and conditions on the existence of all kinds of
equilibria are provided. Then the local stability of the equilibria is established in
Sec.3. Sectionl4 is devoted to the sensitivity analysis for the reproduction numbers.
Section[5 provides numerical simulations, followed by brief discussion and conclusion

in Sec. [6.

2. Reproduction Numbers and Equilibria

It is evident that system (L) possesses a unique infection-free equilibrium, denoted
as By = (T, Lo, Io, Zo, Vo, Ao) = (T%,0,0,0,0,0). According to the method of next-
generation matrix proposed by van den Driessche and Watmough [25], we define
the matrices FF and V as

0 nB T np/ T dy+a 0 0
IF = 0 (1 — ?’])ﬂQT* (1 — T])ﬁlT* 5 V = —ag 5 O

The basic reproduction number, denoted as Ry, is defined as the spectral radius of
the next-generation operator FV~!. Note that

aonBT*  aonfT*N nBT™ n N6 T*N 0
(do + ap)d (do + ao)c 1) c
FV—1 = ao(l —n)BT*  ao(l1—n)B1/T*N (1 —n)BT* (1 —-n)5T*N
+ 0
(do + ap)d (do + ao)c 6 c
0 0 0
Thus
_ NnpT*  (1—=n)/T*N (1 —n)BT*  aonfT*
Ry = p(Fy—1) = 20
0 P( ) C(do + ao) C + 5 5(d0 + ao)

= Ro1 + Ropo,

_ aoNnpiT" A=—n)BT"N _ (A—m)BeT” agnfaT*
where Rg1 = g(d0+¢110) + o and Rps = Joel | 5(0dgfao)' Ry and Rgo
are contributions to Ry from the cell-free infection and cell-to-cell transmission,

respectively. We also define the immune reproduction numbers,
B
L+ e

Ry

1

R§ =

7(6;\%3516301 + Roa

- B1d1(e—ba)+B2ba’
1+ = 1)\a(efba) :
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which come from the coming discussion on the existence and stability of other kinds
of equilibria. The reproduction number of CTL immune response is denoted as Rf,
while the reproduction number of the antibody immune response is represented by
R$. In biology, RS represents the average number of CTL cells activated by infected
cells when virus infection is successful but the antibody immune response has not
been established, whereas R{ denotes the average number of antibodies activated
by the virus when viral infection is successful but the CTL immune response has not
been established. The value of R$ corresponds to the reproduction number of CTL
immune competition, which quantifies the average number of CTL cells activated
by infected cells when an established antibody immune response is present [26], [27].

After tedious calculations, we find that model (L) only has the following possible
equilibria with the presence of infection.

(i) When Ry > 1, system (L) has a unique CTL immune-free and antibody-free
equilibrium Ey = (T3, L1, [1,0,V7,0), where

T AT 1
T\=—, Li=—"t—1(1-—),
' R ! do-l-ao( Ro)

- )\C(RO — 1) - )\N(S(RO - 1)

YUBING+ Bec’ ' BiING + fac

(i) When R§ > 1 (which implies Ry > 1), system (L) has a unique CTL immune-
present and antibody-free equilibrium Ey = (T%, Lo, I, Za, V4, 0), where

T — AcT*(e — ba)
> 7 Xele — ba) + (B1N6S + Bao)b’
L A T*(Bi NS + Bac)b L b
> 7 (do + ao)[Ae(e — ba) + (BiNS + Bac)b]” > e—ba’
. N6b
Zy = ;(Rl -1), V= le—ba)’

In this scenario, the infection transitions into a chronic phase with a persistent
CTL immune response. However, the viral loads remain at such low levels that
they are unable to trigger the activation of the antibody immune response.
(iii) When R§ > 1 (which implies Ry > 1), system (1) has a unique antibody-
present and CTL immune-free equilibrium E5 = (T3, Ls, I3,0, V3, A3), where

T — AXT*Néba
3 AalNG§ + B1NIO, + (8201 (C + qA3) ’
In— AnT™* [ﬁ1N561 + (201 (C + qu)]
3 (do + ao)[)\CLN(S + ﬂlN(S(Sl + ﬁ251 (C + qu)] ’
. (C + qA3)51 _ 01
Iy = Nad Ve a

2350079-6



Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses

and Ajz is the unique positive root of the quadratic equation given below:
B201q* A% + q(2B201¢ + MNaN§ + 1 N6 — ANadRo) As

1
+CAN60/R0 (R_‘ll — 1) =0.

This equilibrium suggests that the establishment of the antibody immune
response occurs when there is viral production, while the presence of infected
cells is insufficient to trigger the CTL immune response.

(iv) When R§ > 1 and R} > R{ (which also imply Ry > 1), system ()
has a unique CTL and antibody immunity coexistence equilibrium F; =
(T4,L4,I4,Z4,V4,A4), where

T, — AaT™*(e — ba)
47 Na(e — ba) + Bié1 (e — ba) + Baba’
L — )\nT*[ﬁl(Sl (e — bCY) + ﬁzba] I — b
: (do + ap)[Aa(e — ba) + B161(e — ba) + Baba)’ T e ba’
0, . 0y 1 Néab
Za = ;(RQ_U’ Va= a’ As = q [(eba)él C}

Biologically, even though both CTL and antibody immune responses are acti-
vated, the infection persists chronically.
The above are restated below as a result on the existence of equilibria.

Lemma 2.1. (i) When Ry < 1, system (1) has only one equilibrium Fy.

(ii) When Ry > 1, RS < 1, R} < 1 and either RS < 1 or R} < RS, system (1))
only has the two boundary equilibria Ey and Ej.

(iii) When RS > 1 and R} < 1, system (L) only has the three boundary equilibria
Eo, E1 and Eg.

(iv) When R$ > 1, R§ < 1 and RS < 1, system (Al) only has the three boundary
equilibria Ey, E1 and Fs.

(v) When Rf > 1, R} > 1 and either RS <1 or R} < RS, system (L) only has the
boundary equilibria Fo, F1, Fs and Fs.

(vi) When RY > R{ > 1 and RS > 1, besides the above four boundary equilibria,
system (L) also has a unique interior equilibrium Ey.

3. Local Stability
3.1. Local stability of the infection-free equilibrium Eg

Theorem 3.1. The infection-free equilibrium Eq is locally asymptotically stable
when Rg < 1 and unstable when Ry > 1.

2350079-7
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Proof. The Jacobian matrix of system (1) at Ej is

-A 0 —B2T0 0 —p1To 0
0 —do—ao nB2To 0 np1To 0
J(Ey) = 0 ao (I-=mBTo—6 0 (1-n)pTy 0
0 0 0 —b 0 0
0 0 N6 0 —c 0
0 0 0 0 0 —01

The characteristic equation of J(Ep) is
[(z+do+ao)(z+c)(x+68) — (x+do+ ao)(1 —n)B2To(z + ¢)
—(x+do+ao)No(1 —n)p1To — aonB2To(x + ¢)
—aonPiToN6|(z +b)(x + 61)(x + A) = 0. (3)

There are three negative eigenvalues 1 = —\, xo = —d; and x5 = —b. First suppose
Ry < 1. We show that if x = a™ + ib* is an eigenvalue, then the real part a* < 0.
By way of contradiction, suppose a* > 0. We rewrite (3) as

L= A=mBTo N6 —n)6:iTo aonB2To
x+0 (x+c)x+0) (x4 0)(z+do+ ao)
aonBiToNS

(x +do+ao)(z +c)(z+0)
Then the modulus of the right-hand side of Eq. (4) satisfies

1 ‘ (1—n)BTo  N6(1—n)BiTo aonB2To
x+0 (x+c)x+0)  (x+0)(z+do+ ao)
aonBiToN§ ’
(x 4+ do + ag)(z + ¢)(x + 9)
< ‘ (1 —n)BTo| , | No(L—n)biTo aonB2To
e G+ o+ | T o)+ do+a0)

aonB1ToNo '
(x +do + ap)(z + ¢)(x +9)

(T =n)BeTh N1 —n)BTo|| o aonB2To 1

= +
T+0 r+c T+0 r+6 ||z+do+ag
aonB1ToN 1 d
r+do+ag||lxz+el|lx+d

< (1 —n)BTo + N1 —n)BiTo = aompTy | anBiToN

- ) c (S(do + ao) (do + ag)c

= Ro.
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This leads to a contradiction with Ry < 1. Hence if Ry < 1, all roots of Eq. (8]
have negative real parts, indicating that Fy is locally asymptotically stable. Now,
let’s assume that Ry > 1. Note that the other three roots of (8) are the roots of
F(z) =0 with

F(x) = 2 + t12% + tox + t3,
where
t1 =30+ c+do+ao— (1 —n)BTo,
ty = 6c+do(6 +¢) +ap(d +c¢) — (c+do + aop)(1 —n)B2To
—N6(1 —n)p1To — aonBTo,
ts = dodc + apde — c(do + ag)(1 — n)BTo — (do + ao) N6(1 — )51 Ty
—aonp2Toc — agnBrToNo.

It is clear that F'(0) = ¢35 = (do + a¢)dc(l — Rp) < 0 and lim,_, o F(z) = oo. Thus
F(z) has at least one positive zero. Accordingly, the characteristic equation (3) has
a positive eigenvalue and hence Ej is unstable. O

3.2. Local stability of the immune-free equilibrium F,

Theorem 3.2. Suppose Ry > 1. Then the CTL immune-free and antibody-free

equilibrium Ey is locally asymptotically stable if max{R$, R¢} < 1 and is unstable
if max{R$, R{} > 1.

Proof. The characteristic equation at F1 is

(@ + A+ 51Vi+ Bofi)(z + do + ao)(z + ) (z + ¢)(x — aVi + 61)

611
. b
% ("E T tal, )

el
=(x+ N)(z —aVi + 1) (:17 1+01411 +b>

x (@ + do + ao)(1 = n)B2T1(x + ) + (1 = n)BiTINS(x + do + ao)
+aonBeTi(z + ¢) + agnBiTLNY|. (5)

There are two obvious eigenvalues: x4 = aV; — §; and x5 = % —b. Recall

- )\C(RO — 1) Vi — /\Né(Ro — 1)
T BING+ e’ T BN+ fac
If max{R$, R{} > 1, then either R{ > 1 or RY > 1. If R{ > 1, then Rp — 1 >

%. Thus I; > —%—, which gives x5 > 0. If R¢ > 1 then Ry — 1 >

e—ba’
%. Thus Vi > &, which implies x4 > 0. Therefore, if max{R§, R{} > 1

1
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then J(FE7) has a positive eigenvalue, which implies that E; is unstable. Now assume
max{R$, R{} < 1. Then similarly we have V; < %1 and I; < —t—. Therefore, the
two real eigenvalues x4 and x5 are negative. Subsequently, we demonstrate that
the remaining roots of Eq. (B) possess negative real parts. Otherwise, let us assume
that there exists a root = of (B) with a nonnegative real part. Dividing both sides
of B) by (x+A+1Vi+G2l1)(x+do+ao)(z+6)(x+c)(z—aVy+61)(z— 1-i{x111 +0b)

gives

_ T+ A o { aonB211 aonBiTiN§
T+ AN+ 51V + Boly (x+do+ag)(x+9) (z+c)(x+do+ag)(x+9)

(1—n)BTy (11— n)ﬁlTlNé}
r+4 (x+c)(z+0) |

Denote the right-hand side by A;. In view of T} = %, we have

(x + N)aonB2T1

] = (x+ A+ 51Vi + Baodi)(z + do + ao)(x + 9)
(z+ M)A =n)BTING (z+ N1 =n)BT
(@ +A+Vi+Boli)(x+c)(x+6)  (x+ X+ 6uVi+ Belr)(x+0)

i (J? + )\)aonﬂlTlNé ‘
(@ + A+ 51Vi+ Bodi)(x + ¢)(x + do + ao)(x +0)

(z + N)agnBeT: ‘
(z+ A+ Vi + Bo11)(z + do + ao)(z + )

(@ + N (1 = n)BTiNS '
(z+ X+ Vi + Boly)(z + ¢)(z +0)

(@ + N1 —n)BT ’
(CL’ + A+ 5V + 62[1)(.%’ + (S)

(,T + )\)aonﬁlTlNé
(x+ A+ Vi + Bolh)(x + ¢)(z + do + ag)(x + )
_ T+ A « [ aonBeTy 1 (1-n)BTIN o
T+ N+ 1 Vi + B0 r+do+ag||lr+06 z+c z+6
(1 —=n)BT1 aonB1T1 N o 1
T+0 r+do+ag||lz+d||r+c
aonBely | (1 —n)BiTiN N (1 —n)pTy | ambTIN _ Ro
(do + a0)6 c ) (do + ao)C T+ !
=1.

This leads to a contradiction. Thus all roots of (5) have negative real parts. This
proves that Fj is locally asymptotically stable when max{R§, R{} < 1. O

2350079-10
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3.3. Local stability of the infected equilibrium FE,

Theorem 3.3. Suppose R{ > 1. Then the CTL immune-present and antibody-free

equilibrium Ea is locally asymptotically stable when R$ < R{ and unstable when
R > RY.

Proof. The characteristic equation of J(E3) can be rewritten as

(x —aVa +01)(x + A+ B1Va + Balo)(z + c)(x + do + ao)

BZQpIQ
1+ aly)?

(x —aVa + 1) (z + N)xlagnBiToN6 + (x + do + ao)(1 — n)S1 TN

X |(x+ 0+ pZa)x +

+ (z + ¢)agnB2Ta + (z + ¢)(x + do + ag) (1 — n) B2T3].
Therefore, there is an eigenvalue zg = aV2 — d; and the others satisfy

6Z2p[2
(1 + CYIQ)2

= (z + Nzfagnf1ToaNo + (x + do + ap)(1 — )31 Te NS + (z + c)aonB21>

(x+c)(x+ A+ L1Vo+ Bolo)(x +do+ ao) [(x+ 6+ pZa)x +

+(x+c)(z+do+ ag)(l —n)B2T5]. (6)

If R{ > R{ then from V5 = c(é\ﬂ’a) we can obtain V5 > % and hence xg > 0. This

means that Ey is unstable if R{ > Rf. Now assume that R{ < R{. Then similarly
we can obtain V5 < %1 so xg is a negative eigenvalue. Now, we demonstrate that
all the remaining eigenvalues possess negative real parts. By way of contradiction,

suppose that = a* 4 ib* is an eigenvalue with a* > 0. We rewrite (6) as

_ x + A aonﬁngN&T

TEANE BV + Bz | (@4 dy + ao)(w + ) (@ + 6+ pZa) + P28

(1 — ’I])ﬁlTQNdT

(x+c) [(w + 0+ pZa)x + (ffgp,gz}

+

agnfolsx (1 —n)BTrx

eZspla

+ +
(z + do + aop) [(:17 + 0+ pZo)x + £L2ph } (T 40+ pZa)x + (I+als)?

(1+(¥12)2

Denote the right-hand side by As. If a* = b* = 0, then Ay = 0, a contradiction
to 1 = Ay. So we assume a*? + b*? > 0. Using Z, = %(Rf -1) = %(%ﬁ Ry — 1),

2350079-11



Z. Zhang et al.

we have
aonﬂngN&r(x + )\)

[As| =
(2 +do +a0)(w +0) [(w+6+ pZa)a + F28 ] (2 4+ A+ BiVa + o)

(1 — ’I])ﬁngN&f(fL’ + /\)
(x+c¢) [(x +6+ pZa)x + %} (z+ A+ B1Va + p2l2)

+

aoﬂﬂQTgI(x + )\)

+
(z + do + ao) {(:v + 0+ pZa)x + (fffféz’)g} (+ A+ 5iVa + Bola)

(1 — n)ﬁQTgx(fE + )\)

+
[(:1: + 0+ pZo)x + %} (x+ X+ 01Va + Ba1n)

aonﬂngN&r(x + )\)

<
(z +do + ao)(z +¢) {(:c + 0+ pZy)x + (ffzpf)z} (T + A+ 51Va + Bal2)

(1 — 77)61T2N6$(.’L’ + /\)

+
(x +c¢) {(x+5+pZ2)x+ (16%[%} (z+ A+ B1Va+ f2l2)

CL()T]ﬂQTQI(I + )\)
(z + do + ag) {(:v + 0+ pZy)x + (ffi’}gg} (+ A+ Vo + fal2)

(1 — n)ﬁngx(ﬂc + /\)
{(:c + 6+ pZa)x + (ffif}f)z} (T + A+ B1Va + Bal2)

T+ A
T4+ A+ 1Va+ Polo

X
(@ + 0+ pZa)z + (F125%

% { aonBiToN 6 (1 — n)ﬁlT2N5 aonBaTs
(x +do + ag)(x + ¢) z+c Z +do + a0
I -t}
_ T+ A y 1
R R
X { aon Tp N (1 —n)BTaNé aonBoTs
(l’+d0+a0)($+c) x+c :E+d0+a0

. n)ﬂszl}
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< " { aonPiIoN§ (1 =) ToN§ aognB2T>
0+ pZy (x +do+ ap)(z + ¢) x+c x+do+ag
+ (1 - n)ﬂszl}
agnBiTa N (1 —=n)p1ToN6 n aonB215 (1 =n)B2T>

(do + ag)c(d + pZz) c(0 + pZz) (do + ao)(d + pZ2) 6+ pZs

[aoﬂﬂlT*N (1=n)BT*N  amBeT*  (1-— 77)5271*} 1
do + CLO C (do + a0)5 1) RO

=1

This leads to a contradiction. Thus FEs is locally asymptotically stable when
R{ < RY. O

3.4. Local stability of the infected equilibrium Ej3

Theorem 3.4. Suppose R{ > 1. Then the antibody-present and CTL immune-
free equilibrium E3 is locally asymptotically stable when RS < 1 and unstable when
RS> 1.

Proof. The characteristic equation at Fj3 is

(x + X+ 51 Vs + Bols)(z + do + ao)[qVzaAs + z(z + ¢ + qAs3)](z + §)

6[3
- b
X(‘T 1+a13+)
I
(x+)\)<x s

x [qV3aAs + z(x + ¢ + qA3)] + aonBr T3 Nz + (1 — 1) 5213

T ol + b) {(x +do + ao)(1 —n)B1T3Néx + agnBT3

x [qVzaAs + x(x + ¢+ qAs)](x + do + ag) }-

Thus there is an eigenvalue z7 = 1j§’13 —b= % — b and the others
satisfy

(x + A+ B1Va + Bol3)(x + do + ao)[qVaaAs + x(x + ¢ + qA3)|(z + 6)
= (x+MN{(z + do + ao)(1 = 1)1 TNz + aonB2T3[qV3aAs + x(x + ¢ + qAs)]
+aonBiT3Nox + (1 —n)B2T3[qVzaAs + x(x + ¢ + qAs)|(x + do + ag)}-
(7)
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With the help of system (), we have
cRy (1 —n)B2T3qAs | aonB2T3qAs

Az = T
€t ats T+ st ) (do—l—@o)é
T
= T—i(CRo + Ro2qA3)
_ #Roic
1 — 73 Rog
)\N5QR01C

" AN6da(1 — Roz) + BLNo6; + Badi(c + qAs)’
which yields that

/\Néa(Rog — 1) — ﬁlN(g(Sl
+ \/[)\Néa(l — R()Q) + 51N551]2 + 45251)\N(§CLR01C

c+qAs =
23201
: Néab c (671\??)3101{01 +Ro2
We can obtain ¢+ qAs > Fie—ba) if R§ = m > 1. Therefore, 7 > 0
Na(e—ba)

if RS > 1, which means that E3 is unstable if RS > 1. Suppose R§ < 1. Then
x7 < 0. We establish that the remaining roots of Eq. (@) exhibit negative real
parts. Otherwise, suppose that () has a root x = a* + b* with a* > 0. Dividing
both sides of (@) by (x+ A+ 61 V5 + B2l3)(z+do+ao)[qVzaAs +x(z+c+qAsz)|(x+0)
yields

_ X + )\ { (1 — n)ﬁngNéx (1 — T])ﬁQTg
x4+ A+ 01 Va+ Bals | [qVsaAs + z(z + ¢+ gAs)](z + 9) T+90
n agnB1T3Nox n aonB213 }
(z +do+ ao)lqgVsads + x(x +c+ qAs)|(z+0) (z+do+ao)(z+6) [’

Denote the right-hand side by As. If a* = b* = 0, then according to ¢ + qA3 =

T
Tf?iRmC

> 0, we can derive Rgs < :;—3 Therefore,

1— T3 Roo
| As | = A (1 =n)BT3  aonBeTs
LT NFBVs + Pl 5 (do + ao)d
B A RT3
AN+ Va4 Bely T
A RT3
TONT* *
o T
T2 T
— Roo—3_ <« =2
02T*2 < T
< 1.
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This leads to a contradiction. Now assume a*? + b*? > 0. Then

A | < T4+ A x{‘ (1 =n)pT3Nox ‘
U N+ BV + Bl [qVsaAs + z(z + ¢ + qAs)](z + 6)
‘(1 —1n)f2T3 aonpI3Ndx ‘
z+9 (x4 do + ao)[qVzadAs + x(x + c + qA3)](x + )
aonB2T3 }
(x +do+ag)(z+9)
< |: (1 — 77)61T3N6 aonﬁngNé :| % X
x+0 (x +do + ao)(xz +9) qVsaAs + z(z + ¢ + qAs)
aon P13 (1 —n)BT3
(z + do + ao)(z +6) 49
_ { (1-n)1T3N6 aonPiI3N§ } 1
T+ 6 (z +do + ao)(z +9) Wsads 4 54 ¢+ A,
aon P13 ’ ‘ (1 —=mn)B2T3
(z +do + ao)(z +0) T+46
< ’(1 - n)ﬂlTBNCS‘ 1 agnBiT3N§ ’ " 1
r+0 c+qAs (x+do + ap)(xz +0) c+qAs
aon P13 (1 —n)BT3
(z + do + ao)(z +6) 49
< (1—n)BiTsN  aonBeT3 aonp1I3N (1 —n)BT3
C+C]A3 (do +a0)5 (do +CL0)(C+C]A3) 5
1 =n)BT*N  agnBT*Ts aonfT*N

"~ cRo+ Ro2qAs  (do + ao)dT*  (do + ao)(cRo + Ro2qAs)
(1 =n)BTTs3
0T
cRox RT3 cRo (c+qA3)Roa

+

"~ cRy + Ro2qAs T*  cRo+ RoaqAs = cRo + RoogAs

This also leads to a contradiction. Therefore, E3 is locally asymptotically stable
when RS < 1. O

3.5. Local stability of the infected equilibrium E,

Theorem 3.5. Suppose R{ > R{ and RS > 1. Then the CTL and antibody immu-
nity coexistence equilibrium Ey4 is locally asymptotically stable.
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Proof. The characteristic equation at Fj is

(x + X+ 51Va + Bols)(x + do + ao)[qViaAs + x(x + ¢+ qA4)]

eZyply
(1+ aly)?

= (2 + N{(z + do + ao)(1 — n)B1TuNSz* + agnBeTiz[qViads

X [(x+0+4 pZy)z+

+x(z + e+ qA)] + agnBi TuNox? + (1 — 1) B Tyz[¢Via A,

+a(z+c+ qAg)|(z + do + ao)}- (8)

Let g = (x4 +pZs)x+ (ff“apli‘sg . We establish that all the roots of Eq. (8) exhibit
negative real parts. If this were not the case, there would exist a root z = a* + b*
with a nonnegative real part. Dividing both sides of (8]) by (z+ A+ 81 Vy+ Boly)(z+

do + aop)[gVaaAs + z(x + ¢+ gA4)]g gives us

_ T+ A y { aonBeTyx N (1 —n)BaTyx
T+ A+ B1Va+ Boly (x +do+ao)g g

(1 —n)B1TuNox? aon P TyN 62> }
[qViaAs + z(z + c+ qAd)lg (x4 do + ao)lgVaads + z(z + ¢+ qAs)lg |

Let the right-hand side be A4. If a* = b* = 0, then we have A4 = 0, which leads to
a contradiction. Now assume a*2 + b*2 > 0. Then we have

A | < T+ A " { (1 —n)B1TyNéx?
ST A BV + Baoly [qViaAs + z(z + c+ qAd)]g
agnfolyx

aonﬁlT4N§x2
(x + do + ap)[qgVaaAs + x(z + ¢+ qAs)]g

(x+do+ag)g
n ’ (1 —n)BTyx

}

g

< { [|(1 — ) TuNG| + zOZ%OTfZi ] ‘qV4aA4 + x(g:Cz: +c+qAs)
% +1(1 - ”)ﬁzT“'} “Netot ijI + e

= { {I(l —n)B1T4NG| + zOZ%OTijii } x QVaods | :z:l+ ¢+ qAy
% +|(1_")62T4|} ) ‘x+5+pz4l+%
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aonPrTyN
X + do + aq

aonB2Ty
X + do + apn

< { [|(1 —n)BiTyNG| +

} 1
c+ qAy
1-—- T.  rm——
=il x
(1 —n)B1TyNs aonpiTyNé aonB2Ty
(c+qA)(6 + pZs)  (do+ao)(d + pZs)(c+qAs)  (do+ ao)(0 + pZa)

(1 —n)BT}y
0+ pZy

_ [aoﬂﬂlT*N ao?’]ﬂQT* (C + qA4)
do + aq (do + a0)5

n (1 =n)BT(c + qA4) 1
1) Roc+ Rp2qAy

+

+ (1 =n)pT*N

=1.

This again leads to a contradiction. Thus E4 is locally asymptotically stable. O

4. Sensitivity Analysis

To assess the impact of parameters on the reproduction numbers, we perform a
sensitivity analysis [28] on them. For this purpose, we employ the Latin hyper-
cube sampling (LHS) method and the partial rank correlation coefficients (PRCCs)
method. The used parameter values, taken from [2, 21}, 29H32], are listed in Table [L.

To conduct the sensitivity analysis, we calculate the PRCCs between the four
reproduction numbers and each parameter, as shown in Fig. The sign of the
PRCC denotes whether the input variable exhibits a positive or negative correlation
with the output variable [33]. Additionally, the magnitude of the PRCC indicates
the strength of the relationship between each input parameter and the output
variable. Specifically, a PRCC value greater than 0.4 indicates a strong correlation,
while a value between 0.2 and 0.4 suggests a moderate correlation. Conversely, a
PRCC value below 0.2 indicates a weak correlation [19].

Table 1. Parameter values.

Parameter Value Parameter Value

e 0.2 day—! a 0.003 uL - day—!
N 2000 virions/cell b 0.1 day~?!

51 2.4 x 1078 uL - day—! 5 1 day—?!

Ba 1x 1076 pyL - day—?! N 0.05

A 0.01 day—! c 23 day !

ag 0.1 day—? 1 10 day—1

do 0.001 day—1! a 0.01

T* 108 cells/mm? p 0.0024 uL - day !
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PRCC

abea61)\cNa0d06qﬁ2ﬂ1a
(c) (d)

Fig. 1.  The sensitivity analyses of the four reproduction numbers: (a) Rg, (b) R, (c) R{ and
(d) Rs.

Based on these guidelines, we observe from Fig.[I(a) that the parameters with
the most significant influence on Ry are ¢, N, §, and (5. Similarly, for the repro-
duction number RS, the influences of ¢, IV, and e are similar, while b exhibits the
highest significance, as depicted in Fig. [[(b). Figure [c) demonstrates that R
is greatly correlated with §, ¢, and A. Similarly, by referring to Fig. [L(d), we can
determine the relationships between R§ and each parameter.

5. Numerical Simulations

Numerical simulations are performed in this section to illustrate and extend the
theoretical results for model (L).

5.1. Local stability

First, we choose N = 800, n = 0.4, e = 0.000011, a = 0.00002, o« = 0.0001,
g = 0.1, and the remaining parameters are the same as those in Table[Il In this case,
Ry =1.69, R =0.19, and R{ = 0.79. By Theorem .2, the CTL immune-free and
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Fig. 2. Solutions of system (L) converge to the CTL immune-free and antibody-free equilibrium
when Rp > 1 and max{R{, R¢} < 1. Initial condition is: (7°(0), L(0), 1(0), Z(0), V(0), A(0)) =
(109, 20, 30, 30, 50, 30).

antibody-free equilibrium E; = (547135, 17904, 4501, 0, 156748, 0) is locally asymp-
totically stable. See Fig. [2.

Next, we choose e = 0.2, b = 0.8, a = 0.00002, ¢ = 0.1, and the remaining
parameters are the same as those in Table [L. In this case, Ry = 2.74, R = 2.73,
and R$ = 0.68. By Theorem [3.3] the CTL immune-present and antibody-free equi-
librium Es = (998765, 6,4, 867,362, 0) is locally asymptotically stable. See Fig. [8l

We now change e, b, a, and é; to e = 0.0003, b = 0.1, a = 0.001, and 6; = 1.
The other values are the same as those for Fig. Bl We obtain that Ry = 2.74, R =
2.69, and RS = 0.97. By Theorem [B.4] the antibody-present and CTL immune-free
equilibrium E3 = (952425, 235,475, 0,999,9280) is locally asymptotically stable.
See Fig. [l
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Fig. 3. Solutions of system (1) converge to the CTL immune-present and antibody-free equi-
librium when R§ > 1 and R} < RY. Initial condition is: (T°(0), L(0), I(0), Z(0), V(0), A(0)) =
(109, 20, 30, 30, 50, 30).

Furthermore, with e = 0.2, b = 0.8, a = 0.004, and the other parameter values
being the same as those for Fig. [l we have Ry = 2.74, R§ = 2.25, R{ = 2.68,
and R} = 2.74. By Theorem B.5 the CTL and antibody immunity coexistence
equilibrium E4 = (999002,4,4,598,249,91) is locally asymptotically stable. See
Fig. B

5.2. Effect of e and a on the dynamics of system (1))

By conducting the sensitivity analysis (as shown in Fig. [[), we can qualitatively
discern the positive and negative effects of parameters on the four reproduction
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Fig. 4. Solutions of system (L) converge to the antibody-present and CTL immune-free equi-
librium when R{ > 1 and R§ < 1. Initial condition is: (7°(0), L(0), I1(0), Z(0),V(0), A(0)) =
(109, 20, 30, 30, 50, 30).

numbers, as well as quantitatively evaluate the magnitude of these effects. Nev-
ertheless, the influence of sensitive parameters on the dynamic behavior of the
population remains uncertain. To address this, we will examine the influence of
the sensitive parameters e and a on the dynamics of system (L) through numerical
simulations.

First, we observe that though the activation of CTL immune response alone
may not be sufficient to eradicate the virus, the size of uninfected cells increases
with enhanced CTL activity. Additionally, as the parameter e increases, the levels
of latent cells, infected cells, and viruses reach lower stabilized levels (see Fig. []).
On the other hand, neutralizing antibodies specifically bind to viruses, leading to
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Fig. 5. Solutions of system (L) converge to the CTL and antibody immune coexistence equi-
librium when R§ > 1 and R} > RY§. Initial condition is: (T°(0), L(0), I(0), Z(0), V(0), A(0)) =
(109, 20, 30, 30, 50, 30).

a significant reduction in the viral population as the parameter a increases (see
Fig. [[). These findings indicate that both CTL immunity and antibody immunity
play crucial roles in increasing the population of uninfected cells and decreasing the
numbers of latent cells, infected cells, and viruses.

Moreover, Fig. [6 illustrates the competitive nature of adaptive immune res-
ponses, where the antibody immune response diminishes to zero when the CTL
immune response is at a high level. This suggests that there is a competitive rela-
tionship between the two immune responses, with the CTL immune response exert-
ing a stronger influence. Consequently, the CTL immune response is indispensable
in shaping the dynamics of viral infection.

2350079-22



Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses

5
L 2 ‘
—e=03 A —e=03
204 - e=02]]
R N e e | N 001
999 150 ]
£ it
Fooss  \ | 10t
9.98} S ] 5t ST
9.975 : T 0 : : : :
0 100 200 300 400 500 600 0 20 40 60 80 100
Time(days) Time(days)
50 : 5000 : : : ‘
—e=03 —e=0.3
40 -~ -e=0.2 4000 -~ e=0.2
......... e=0.1 e @201

Time(days) Time(days)
2500 : : : 2500 : : ‘
—e=0.3 —e=0.3
2000 - e=02 2000 -~ e=02
.......... e=0.1 weenen@=(),]
o150 1 15001
> 1000 T Co00f
500
0 20 40 60 80 100 0 20 40 60 80 100

Time(days) Time(days)

Fig. 6. The effect of e on the dynamics of the model with the same values for the other parameters
and initial condition as those for Fig. [5

Overall, these results shed light on the intricate interactions between the immune
responses and the viral dynamics, emphasizing the significance of both CTL and
antibody immunities in controlling the infection.

5.3. Effect of B2 on viruses and infected cells

To examine the impact of cell-to-cell transmission, numerical simulations are con-
ducted to assess its contribution throughout the infection process. Initially, we set
(B2 to zero to compare HIV infection in the absence of cell-to-cell transmission with
infection involving both transmission routes (B2 = 0 and B = 1 x 107°). The
results clearly indicate that cell-to-cell transmission plays a favorable role in HIV
transmission (refer to Fig. [8).
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Fig. 7. The effect of a on the dynamics of the model with the same values for the other parameters
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Fig. 8. The effect of 82 on the dynamics of the model with the same values for the other param-
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Subsequently, we increased 3 to examine the variations in peak levels of infected
cells and viruses, as well as the time required to reach these peak levels (82 =
1 x107% By =1 x 1075 and B2 = 1 x 107%). Our findings reveal that as (3
increases, infected cells and viruses reach their peak levels more rapidly. Moreover,
the peak levels themselves also become higher with increasing (. This finding
underscores the significance of considering cell-to-cell transmission in the study of
HIV infection dynamics, emphasizing its importance and suggesting that it should
not be overlooked.

6. Discussion and Conclusion

Several previous HIV infection models have primarily focused on the cell-free infec-
tion mode, often neglecting latent infection [5, [6]. Furthermore, the consideration
of adaptive immune responses has predominantly focused on either CTLs or anti-
bodies, with few studies exploring the coexistence of both immune responses [2} [17].
The novelty of this research lies in the construction of a mathematical model that
encompasses two distinct modes of infection, two types of immune responses, and
latent infection. The model also incorporates a saturated CTL immune response,
thereby introducing additional intricacies to the analysis.

The mathematical model presented in this study has been rigorously analyzed,
ensuring that the solutions are nonnegative and bounded. We show that this model
has five possible equilibria: infection-free equilibrium FEy, CTL immune-free and
antibody-free equilibrium F7, CTL immune-present and antibody-free equilibrium
FE5, antibody-present and CTL immune-free equilibrium E3, and CTL and antibody
immune coexistence equilibrium Fy4. In addition, the existence of these equilibria is
determined by four threshold parameters, which are the basic reproduction number
Ry and the immune reproduction numbers Rf, R{, and RS. They also characterize
the local characteristics of the model.

As we know, the basic reproductive number of the system plays a key role in
predicting whether the infection will persist. By the explicit expression of Ry, it
consists of the contributions of the two transmission routes. Figure[Il(a) shows that
(2 has a strong positive correlation with Ry. And Fig. B shows that cell-to-cell
transmission is beneficial for HIV transmission and the time to reach the peak level
of virus is shorter. Therefore, it is crucial to consider the transmission of the virus
through the cell-to-cell route as a fundamental factor in the study of HIV infection.

Antiretroviral drugs have the ability to inhibit infection, resulting in a reduc-
tion in the values of 31 and (32, which can potentially lower the basic reproduction
number to below 1. Immune therapy, on the other hand, can enhance the activation
of both CTL and antibody responses, leading to an increase in the values of e and
a, respectively. While the activation of immune responses may not have a direct
impact on the basic reproduction number Ry, it can indirectly decrease its value
by enhancing the clearance of infected cells and viruses (as depicted in Fig. [I(a)).
Moreover, this can also influence other immune-related reproduction numbers and
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contribute to the stability of the corresponding equilibria (as shown in Figs. [L(b)—-
[[(d)). The impact of CTL stimulation on reducing the concentration of infected
cells and increasing the level of uninfected cells is more pronounced, as observed in
Figs. 6 and [0 Similarly, a higher rate of antibody immunity generation can signifi-
cantly decrease the number of viruses. Notably, the last graph in Fig. [6] suggests a
competitive relationship between CTL and antibody immune responses.

In this paper, our focus was primarily on analyzing the local dynamics of Eq. ().
Exploring the global dynamics poses a very challenging task, which we consider as
a future work. Additionally, there are several extensions that can be made to the
model. For instance, incorporating time delays that account for the integration of
viral DNA into host cell DNA and incorporating logistic growth dynamics in the
viral infection process can provide a more realistic description of the dynamic evolu-
tion of viruses and normal cells [19] 34} [35]. This paper only considers the immune
response caused by the virus and does not take into account the effects of drug
treatment on infected individuals. The model can also consider the impact of treat-
ment strategies, e.g. combined antiretroviral treatment strategies, optimal control
strategies while calculating the associated costs using optimal control theory [36].
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