DOI: 10.1142/S1793524523500791



# Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses

Zhiqi Zhang \*Yuming Chen \*Xia Wang \*A and Libin Rong \*School of Mathematics and Statistics

Xinyang Normal University, Xinyang, Henan 464000, P. R. China

†Department of Mathematics

Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada

†Department of Mathematics

University of Florida, Gainesville, FL 32611, USA

§xyxiawang @xynu.edu.cn; xywangxia@163.com

Received 24 November 2022 Revised 6 July 2023 Accepted 22 August 2023 Published 5 October 2023

This paper develops a mathematical model to investigate the Human Immunodeficiency Virus (HIV) infection dynamics. The model includes two transmission modes (cell-to-cell and cell-free), two adaptive immune responses (cytotoxic T-lymphocyte (CTL) and antibody), a saturated CTL immune response, and latent HIV infection. The existence and local stability of equilibria are fully characterized by four reproduction numbers. Through sensitivity analyses, we assess the partial rank correlation coefficients of these reproduction numbers and identify that the infection rate via cell-to-cell transmission, the number of new viruses produced by each infected cell during its life cycle, the clearance rate of free virions, and immune parameters have the greatest impact on the reproduction numbers. Additionally, we compare the effects of immune stimulation and cell-to-cell spread on the model's dynamics. The findings highlight the significance of adaptive immune responses in increasing the population of uninfected cells and reducing the numbers of latent cells, infected cells, and viruses. Furthermore, cell-to-cell transmission is identified as a facilitator of HIV transmission. The analytical and numerical results presented in this study contribute to a better understanding of HIV dynamics and can potentially aid in improving HIV management strategies.

 $\it Keywords$ : HIV infection; cell-to-cell transmission; adaptive immune response; latent infection; local stability.

Mathematics Subject Classification 2020: 34D20, 92D30

#### 1. Introduction

Acquired Immune Deficiency Syndrome (AIDS) is a disease caused by Human Immunodeficiency Virus (HIV) infection that can suppress T-cells in the human

<sup>§</sup>Corresponding author.

body which have a function to fight against infections [I]. According to the data released by the World Health Organization (WHO), more than 70 million people have been infected with HIV since it was first detected in 1981 [2]. Among them about 50% have died. As of 2022, AIDS is raging in almost every country on the planet, posing a huge threat to the safety of people's lives. Therefore, it is urgent to use knowledge of infectious disease dynamics to establish mathematical models to study HIV infection.

The fundamental model of HIV infection comprises uninfected cells, infected cells, and free viral particles 3. The immune response plays a vital role in recognizing and eliminating pathogens and infected cells during the process of viral infection. As a result, more sophisticated models have been established to study the dynamic relationships between the immune response and the invading pathogens 4-6. As an important branch of the immune system, CTL (cytotoxic T-lymphocyte) kills infected target cells by secreting various cytokines such as tumor necrosis factor, interferon, etc. It can also inhibit HIV reproduction through certain chemical chemokines. The CTL immune response was introduced in some of the early models [7], [8]. However, the stimulating effect of infected cells on immune cells is not a simple linear relationship; when the concentration of infected cells becomes sufficiently large a saturation state is reached. Thus it is of certain practical significance to incorporate this saturation effect into modeling. An SEIARV model with asymptomatic infection and saturation incidence rate is studied in [9]. In [10], Wang et al. considered saturated CTL immune response of the form  $\frac{cyz}{1+qy}$ , where 1+qy indicates the inhibitory effect of infected cells on the CTL immune response. In addition to the CTL immune response, neutralizing antibodies can bind specifically to viruses, causing them to lose the ability to infect host cells III. Extensions to the basic model were proposed by Wang and Zou 12 and Li and Xu 13, incorporating an additional class to account for antibody immune response.

The previously mentioned models focused solely on cell-free infection. Nevertheless, it has been observed that direct cell-to-cell transmission of HIV, potentially facilitated by virological synapses, is significantly more efficient compared to infection through free viral particles 14-16. To gain insights into viral dynamics, mathematical models have been developed to incorporate cell-to-cell transmission. For example, Elaiw and Alshamrani showed that the inclusion of cell-to-cell transmission decreases the concentration of healthy CD4+ T-cells and increases the concentrations of infected cells and free HIV particles 17. In 18, a mathematical model with the two transmission modes for HIV-1 was proposed. It is found that if the basic reproduction number is greater than one, the infection can persist and Hopf bifurcation can occur at the positive equilibrium within certain ranges of parameter values. In 19, Guo et al. proposed a model including two intracellular delays in viral infection and production, in addition to the two transmission routes. They evaluated the effects of various viral spread modes, intracellular time delays and the immune responses on the infection dynamics.

In HIV, the viral genome is able to integrate into resting CD4<sup>+</sup> T-cells to produce a latent infection [20]. Latently infected CD4<sup>+</sup> T-cells have a prolonged lifespan and remain unaffected by antiretroviral drugs or immune responses. However, they can be triggered to release viruses upon stimulation by specific antigens [21]. In order to provide a more comprehensive explanation of biological phenomena, latent infection has also been incorporated into viral dynamics models. From a recently developed latent HIV infection model with cell-to-cell infection, Agosto *et al.* concluded that cell-to-cell infection could affect the establishment and persistence of latent infection in the resting CD4<sup>+</sup> T-cells [22]. The results in [23] suggest that although cell-to-cell transmission may have reduced susceptibility to HIV drugs, HIV latency represents a major reason for HIV persistence in patients on suppressive treatment. Therefore, the latent infection mechanism should be introduced into HIV models of both cell-to-cell infection and cell-free transmission.

Upon HIV entry into the human body, the immune system triggers two distinct branches of adaptive immune responses to combat the viral infection: the CTL immune response and the antibody immune response. Such adaptive immune responses have been incorporated into many viral infection models with the cell-free infection mode (see e.g. [5-9, [1], [12]). In particular, a saturated immune response is also considered in [10]. Experimental evidence suggests that direct cell-to-cell transmission of HIV is believed to be more efficient than infection by free virus particles [14, [15]. Furthermore, this mode of transmission may have implications for the establishment and persistence of latent infection in resting CD4<sup>+</sup> T-cells [22]. In recent studies, two modes of transmission, latent infection and CTL immunity, were taken into account in the modeling of HIV [2, [17]]. But the antibody immune response was ignored.

Motivated by the aforementioned biological factors, we propose a comprehensive model that incorporates the key elements mentioned above: two transmission modes (cell-to-cell and cell-free), two types of adaptive immune responses (CTL and antibody), a saturated CTL immune response and latent infection. The model is described by the following system of ordinary differential equations:

the following system of ordinary differential equations:
$$\begin{cases}
\frac{dT}{dt} = \lambda(T^* - T) - \beta_1 TV - \beta_2 TI, \\
\frac{dL}{dt} = \eta(\beta_1 TV + \beta_2 TI) - d_0 L - a_0 L, \\
\frac{dI}{dt} = (1 - \eta)(\beta_1 TV + \beta_2 TI) - \delta I + a_0 L - \rho ZI, \\
\frac{dZ}{dt} = \frac{eIZ}{1 + \alpha I} - bZ, \\
\frac{dV}{dt} = N\delta I - cV - qVA, \\
\frac{dA}{dt} = aVA - \delta_1 A.
\end{cases} \tag{1}$$

Here T, L, I, Z, V, and A represent the concentrations of uninfected cells, latent cells, infected cells, CTL effectors, free viruses, and antibodies at time t, respectively.  $T^*$  is the equilibrium concentration of uninfected cells in the absence of viral infection. The constant  $\lambda T^*$  is the generation rate of uninfected CD4<sup>+</sup> Tcells. Parameters  $\beta_1$  and  $\beta_2$  represent the infection rates via cell-free infection and cell-to-cell transmission, respectively. Parameters  $\lambda$ ,  $\delta$ , b,  $\delta_1$ , and c are the decay rates of uninfected CD4<sup>+</sup> T-cells, infected CD4<sup>+</sup> T-cells, CTL cells, antibodies, and viruses, respectively. The parameter  $\rho$  is the rate at which infected cells are cleared by CTL cells. The constant q denotes the neutralization rate by antibody response. The antibody response is assumed to be stimulated at a rate a by the virus. Viral generation by productively infected  $CD4^+$  T-cells leads to N new viruses by each infected cell during its lifetime. The average lifespan of an infected cell is  $\frac{1}{\delta}$ . Thus  $N\delta$  is the viral production rate by an infected cell per unit time. Parameters  $d_0$  and  $a_0$  represent the mortality of latently infected cells and the activation rate from the latent to productive state, respectively. In the model, we assume that a fraction  $\eta$  $(0 < \eta < 1)$  of infected CD4<sup>+</sup> T-cells become latently infected and the remaining fraction  $(1-\eta)$  become productively infected. We further assume that the cellular immune generation is  $\frac{eIZ}{1+\alpha I}$ , where  $1+\alpha I$  represents the inhibitory effect of infected cells on CTL immune response. The parameter e is the proliferation rate of immune cells. It is easy to see that if  $e \le b\alpha$  then  $Z(t) \to 0$  as  $t \to \infty$ . As a result, we always assume that  $e > b\alpha$  in the sequel.

The initial conditions for  $( \square )$  are

$$0 \le T(0) \le T^*, \quad L(0) \ge 0, \quad I(0) \ge 0, \quad Z(0) \ge 0, \quad V(0) \ge 0, \quad A(0) \ge 0.$$
 (2)

By the fundamental theory of ordinary differential equations, we can obtain the existence and uniqueness of solutions for  $t \geq 0$  [24]. It is also straightforward to show that solutions are nonnegative. This can be verified by checking that the derivatives are greater than or equal to zero on the boundary of  $\mathbb{R}^6_+$ , for instance, if T=0, then  $\frac{dT}{dt}=\lambda T^*>0$ . Moreover, define

$$F(t) = T + L + I + \frac{\rho}{e}Z + \frac{1}{N}V + \frac{q}{aN}A.$$

A straightforward calculation yields

$$F'(t) = \lambda (T^* - T) - d_0 L - \rho Z I + \frac{\rho Z I}{1 + \alpha I} - \frac{\rho b}{e} Z - \frac{c}{N} V - \frac{\delta_1 q}{a N} A$$

$$\leq \lambda T^* - \lambda T - d_0 L - \frac{\rho b}{e} Z - \frac{c}{N} V - \frac{\delta_1 q}{a N} A \leq \lambda T^* - \Gamma F,$$

where  $\Gamma = \min\{\lambda, d_0, \frac{\rho b}{e}, \frac{c}{N}, \frac{\delta_1 q}{aN}\}$ . Then  $\limsup_{t\to\infty} F(t) \leq \frac{\lambda T^*}{\Gamma}$ . This implies that the solutions of  $\blacksquare$  are bounded. In fact, it is easy to see that

$$\Omega = \left\{ (T,L,I,Z,V,A) \in R_+^6: T \leq T^*, T+L+I+\frac{\rho}{e}Z+\frac{1}{N}V+\frac{q}{aN}A \leq \frac{\lambda T^*}{\Gamma} \right\}$$

is attracting and positively invariant for system (1).

The objective of this study is to investigate the impact of various factors on the dynamics of cell and viral loads. In Sec. [2], the basic reproduction number, the immune reproduction numbers, and conditions on the existence of all kinds of equilibria are provided. Then the local stability of the equilibria is established in Sec. [3]. Section [4] is devoted to the sensitivity analysis for the reproduction numbers. Section [5] provides numerical simulations, followed by brief discussion and conclusion in Sec. [6]

## 2. Reproduction Numbers and Equilibria

It is evident that system (1) possesses a unique infection-free equilibrium, denoted as  $E_0 = (T_0, L_0, I_0, Z_0, V_0, A_0) = (T^*, 0, 0, 0, 0, 0)$ . According to the method of next-generation matrix proposed by van den Driessche and Watmough [25], we define the matrices  $\mathbb{F}$  and  $\mathbb{V}$  as

$$\mathbb{F} = \begin{pmatrix} 0 & \eta \beta_2 T^* & \eta \beta_1 T^* \\ 0 & (1-\eta)\beta_2 T^* & (1-\eta)\beta_1 T^* \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{V} = \begin{pmatrix} d_0 + a_0 & 0 & 0 \\ -a_0 & \delta & 0 \\ 0 & -N\delta & c \end{pmatrix}.$$

The basic reproduction number, denoted as  $R_0$ , is defined as the spectral radius of the next-generation operator  $\mathbb{FV}^{-1}$ . Note that

$$\mathbb{FV}^{-1} = \begin{pmatrix} \frac{a_0 \eta \beta_2 T^*}{(d_0 + a_0) \delta} + \frac{a_0 \eta \beta_1 T^* N}{(d_0 + a_0) c} & \frac{\eta \beta_2 T^*}{\delta} + \frac{\eta \beta_1 T^* N}{c} & 0\\ \frac{a_0 (1 - \eta) \beta_2 T^*}{(d_0 + a_0) \delta} + \frac{a_0 (1 - \eta) \beta_1 T^* N}{(d_0 + a_0) c} & \frac{(1 - \eta) \beta_2 T^*}{\delta} + \frac{(1 - \eta) \beta_1 T^* N}{c} & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Thus

$$R_0 = \rho(\mathbb{FV}^{-1}) = \frac{a_0 N \eta \beta_1 T^*}{c(d_0 + a_0)} + \frac{(1 - \eta)\beta_1 T^* N}{c} + \frac{(1 - \eta)\beta_2 T^*}{\delta} + \frac{a_0 \eta \beta_2 T^*}{\delta(d_0 + a_0)}$$

$$= R_{01} + R_{02}$$

where  $R_{01} = \frac{a_0 N \eta \beta_1 T^*}{c(d_0 + a_0)} + \frac{(1 - \eta)\beta_1 T^* N}{c}$  and  $R_{02} = \frac{(1 - \eta)\beta_2 T^*}{\delta} + \frac{a_0 \eta \beta_2 T^*}{\delta(d_0 + a_0)}$ .  $R_{01}$  and  $R_{02}$  are contributions to  $R_0$  from the cell-free infection and cell-to-cell transmission, respectively. We also define the immune reproduction numbers,

$$R_1^c = \frac{R_0}{1 + \frac{(\beta_1 N \delta + \beta_2 c)b}{\lambda c(e - b\alpha)}},$$

$$R_1^a = \frac{R_0}{1 + \frac{(\beta_1 N \delta + \beta_2 c)\delta_1}{\lambda N \delta a}},$$

$$R_2^c = \frac{\frac{(e - b\alpha)\delta_1 c}{N \delta ab} R_{01} + R_{02}}{1 + \frac{\beta_1 \delta_1 (e - b\alpha) + \beta_2 ba}{\lambda a(e - b\alpha)}},$$

which come from the coming discussion on the existence and stability of other kinds of equilibria. The reproduction number of CTL immune response is denoted as  $R_1^c$ , while the reproduction number of the antibody immune response is represented by  $R_1^a$ . In biology,  $R_1^c$  represents the average number of CTL cells activated by infected cells when virus infection is successful but the antibody immune response has not been established, whereas  $R_1^a$  denotes the average number of antibodies activated by the virus when viral infection is successful but the CTL immune response has not been established. The value of  $R_2^c$  corresponds to the reproduction number of CTL immune competition, which quantifies the average number of CTL cells activated by infected cells when an established antibody immune response is present [26, [27]].

After tedious calculations, we find that model (I) only has the following possible equilibria with the presence of infection.

(i) When  $R_0 > 1$ , system (1) has a unique CTL immune-free and antibody-free equilibrium  $E_1 = (T_1, L_1, I_1, 0, V_1, 0)$ , where

$$T_{1} = \frac{T^{*}}{R_{0}}, \quad L_{1} = \frac{\lambda \eta T^{*}}{d_{0} + a_{0}} \left( 1 - \frac{1}{R_{0}} \right),$$
$$I_{1} = \frac{\lambda c(R_{0} - 1)}{\beta_{1} N \delta + \beta_{2} c}, \quad V_{1} = \frac{\lambda N \delta(R_{0} - 1)}{\beta_{1} N \delta + \beta_{2} c}.$$

(ii) When  $R_1^c > 1$  (which implies  $R_0 > 1$ ), system (1) has a unique CTL immunepresent and antibody-free equilibrium  $E_2 = (T_2, L_2, I_2, Z_2, V_2, 0)$ , where

$$T_2 = \frac{\lambda c T^*(e - b\alpha)}{\lambda c (e - b\alpha) + (\beta_1 N \delta + \beta_2 c) b},$$

$$L_2 = \frac{\lambda \eta T^*(\beta_1 N \delta + \beta_2 c) b}{(d_0 + a_0) [\lambda c (e - b\alpha) + (\beta_1 N \delta + \beta_2 c) b]}, \quad I_2 = \frac{b}{e - b\alpha},$$

$$Z_2 = \frac{\delta}{\rho} (R_1^c - 1), \quad V_2 = \frac{N \delta b}{c (e - b\alpha)}.$$

In this scenario, the infection transitions into a chronic phase with a persistent CTL immune response. However, the viral loads remain at such low levels that they are unable to trigger the activation of the antibody immune response.

(iii) When  $R_1^a > 1$  (which implies  $R_0 > 1$ ), system (1) has a unique antibody-present and CTL immune-free equilibrium  $E_3 = (T_3, L_3, I_3, 0, V_3, A_3)$ , where

$$\begin{split} T_3 &= \frac{\lambda T^* N \delta a}{\lambda a N \delta + \beta_1 N \delta \delta_1 + \beta_2 \delta_1 (c + q A_3)}, \\ L_3 &= \frac{\lambda \eta T^* [\beta_1 N \delta \delta_1 + \beta_2 \delta_1 (c + q A_3)]}{(d_0 + a_0) [\lambda a N \delta + \beta_1 N \delta \delta_1 + \beta_2 \delta_1 (c + q A_3)]}, \\ I_3 &= \frac{(c + q A_3) \delta_1}{N a \delta}, \quad V_3 &= \frac{\delta_1}{a} \end{split}$$

and  $A_3$  is the unique positive root of the quadratic equation given below:

$$\beta_2 \delta_1 q^2 A_3^2 + q(2\beta_2 \delta_1 c + \lambda a N \delta + \beta_1 N \delta \delta_1 - \lambda N a \delta R_{02}) A_3$$
$$+ c \lambda N \delta a R_0 \left( \frac{1}{R_1^a} - 1 \right) = 0.$$

This equilibrium suggests that the establishment of the antibody immune response occurs when there is viral production, while the presence of infected cells is insufficient to trigger the CTL immune response.

(iv) When  $R_2^c > 1$  and  $R_1^a > R_1^c$  (which also imply  $R_0 > 1$ ), system (1) has a unique CTL and antibody immunity coexistence equilibrium  $E_4 = (T_4, L_4, I_4, Z_4, V_4, A_4)$ , where

$$T_{4} = \frac{\lambda a T^{*}(e - b\alpha)}{\lambda a (e - b\alpha) + \beta_{1} \delta_{1}(e - b\alpha) + \beta_{2} ba},$$

$$L_{4} = \frac{\lambda \eta T^{*}[\beta_{1} \delta_{1}(e - b\alpha) + \beta_{2} ba]}{(d_{0} + a_{0})[\lambda a (e - b\alpha) + \beta_{1} \delta_{1}(e - b\alpha) + \beta_{2} ba]}, \quad I_{4} = \frac{b}{e - b\alpha},$$

$$Z_{4} = \frac{\delta}{\rho} (R_{2}^{c} - 1), \quad V_{4} = \frac{\delta_{1}}{a}, \quad A_{4} = \frac{1}{q} \left[ \frac{N \delta ab}{(e - b\alpha) \delta_{1}} - c \right].$$

Biologically, even though both CTL and antibody immune responses are activated, the infection persists chronically.

The above are restated below as a result on the existence of equilibria.

**Lemma 2.1.** (i) When  $R_0 \leq 1$ , system (1) has only one equilibrium  $E_0$ .

- (ii) When  $R_0 > 1$ ,  $R_1^c \le 1$ ,  $R_1^a \le 1$  and either  $R_2^c \le 1$  or  $R_1^a \le R_1^c$ , system (II) only has the two boundary equilibria  $E_0$  and  $E_1$ .
- (iii) When  $R_1^c > 1$  and  $R_1^a \le 1$ , system (1) only has the three boundary equilibria  $E_0$ ,  $E_1$  and  $E_2$ .
- (iv) When  $R_1^a > 1$ ,  $R_1^c \le 1$  and  $R_2^c \le 1$ , system (II) only has the three boundary equilibria  $E_0$ ,  $E_1$  and  $E_3$ .
- (v) When  $R_1^c > 1$ ,  $R_1^a > 1$  and either  $R_2^c \le 1$  or  $R_1^a \le R_1^c$ , system (1) only has the boundary equilibria  $E_0$ ,  $E_1$ ,  $E_2$  and  $E_3$ .
- (vi) When  $R_1^a > R_1^c > 1$  and  $R_2^c > 1$ , besides the above four boundary equilibria, system (1) also has a unique interior equilibrium  $E_4$ .

## 3. Local Stability

#### 3.1. Local stability of the infection-free equilibrium $E_0$

**Theorem 3.1.** The infection-free equilibrium  $E_0$  is locally asymptotically stable when  $R_0 < 1$  and unstable when  $R_0 > 1$ .

**Proof.** The Jacobian matrix of system (1) at  $E_0$  is

$$J(E_0) = \begin{pmatrix} -\lambda & 0 & -\beta_2 T_0 & 0 & -\beta_1 T_0 & 0 \\ 0 & -d_0 - a_0 & \eta \beta_2 T_0 & 0 & \eta \beta_1 T_0 & 0 \\ 0 & a_0 & (1-\eta)\beta_2 T_0 - \delta & 0 & (1-\eta)\beta_1 T_0 & 0 \\ 0 & 0 & 0 & -b & 0 & 0 \\ 0 & 0 & N\delta & 0 & -c & 0 \\ 0 & 0 & 0 & 0 & 0 & -\delta_1 \end{pmatrix}.$$

The characteristic equation of  $J(E_0)$  is

$$[(x+d_0+a_0)(x+c)(x+\delta) - (x+d_0+a_0)(1-\eta)\beta_2 T_0(x+c) - (x+d_0+a_0)N\delta(1-\eta)\beta_1 T_0 - a_0\eta\beta_2 T_0(x+c) - a_0\eta\beta_1 T_0N\delta[(x+b)(x+\delta_1)(x+\lambda) = 0.$$
(3)

There are three negative eigenvalues  $x_1 = -\lambda$ ,  $x_2 = -\delta_1$  and  $x_3 = -b$ . First suppose  $R_0 < 1$ . We show that if  $x = a^* + ib^*$  is an eigenvalue, then the real part  $a^* < 0$ . By way of contradiction, suppose  $a^* \ge 0$ . We rewrite (3) as

$$1 = \frac{(1-\eta)\beta_2 T_0}{x+\delta} + \frac{N\delta(1-\eta)\beta_1 T_0}{(x+c)(x+\delta)} + \frac{a_0\eta\beta_2 T_0}{(x+\delta)(x+d_0+a_0)} + \frac{a_0\eta\beta_1 T_0 N\delta}{(x+d_0+a_0)(x+c)(x+\delta)}.$$
(4)

Then the modulus of the right-hand side of Eq. (4) satisfies

$$1 = \left| \frac{(1 - \eta)\beta_{2}T_{0}}{x + \delta} + \frac{N\delta(1 - \eta)\beta_{1}T_{0}}{(x + c)(x + \delta)} + \frac{a_{0}\eta\beta_{2}T_{0}}{(x + \delta)(x + d_{0} + a_{0})} \right|$$

$$+ \frac{a_{0}\eta\beta_{1}T_{0}N\delta}{(x + d_{0} + a_{0})(x + c)(x + \delta)}$$

$$\leq \left| \frac{(1 - \eta)\beta_{2}T_{0}}{x + \delta} \right| + \left| \frac{N\delta(1 - \eta)\beta_{1}T_{0}}{(x + c)(x + \delta)} \right| + \left| \frac{a_{0}\eta\beta_{2}T_{0}}{(x + \delta)(x + d_{0} + a_{0})} \right|$$

$$+ \left| \frac{a_{0}\eta\beta_{1}T_{0}N\delta}{(x + d_{0} + a_{0})(x + c)(x + \delta)} \right|$$

$$= \left| \frac{(1 - \eta)\beta_{2}T_{0}}{x + \delta} \right| + \left| \frac{N(1 - \eta)\beta_{1}T_{0}}{x + c} \right| \left| \frac{\delta}{x + \delta} \right| + \left| \frac{a_{0}\eta\beta_{2}T_{0}}{x + \delta} \right| \left| \frac{1}{x + d_{0} + a_{0}} \right|$$

$$+ \left| \frac{a_{0}\eta\beta_{1}T_{0}N}{x + d_{0} + a_{0}} \right| \left| \frac{1}{x + c} \right| \left| \frac{\delta}{x + \delta} \right|$$

$$\leq \frac{(1 - \eta)\beta_{2}T_{0}}{\delta} + \frac{N(1 - \eta)\beta_{1}T_{0}}{c} + \frac{a_{0}\eta\beta_{2}T_{0}}{\delta(d_{0} + a_{0})} + \frac{a_{0}\eta\beta_{1}T_{0}N}{(d_{0} + a_{0})c}$$

$$= R_{0}.$$

This leads to a contradiction with  $R_0 < 1$ . Hence if  $R_0 < 1$ , all roots of Eq. (3) have negative real parts, indicating that  $E_0$  is locally asymptotically stable. Now, let's assume that  $R_0 > 1$ . Note that the other three roots of (3) are the roots of F(x) = 0 with

$$F(x) = x^3 + t_1 x^2 + t_2 x + t_3,$$

where

$$t_{1} = \delta + c + d_{0} + a_{0} - (1 - \eta)\beta_{2}T_{0},$$

$$t_{2} = \delta c + d_{0}(\delta + c) + a_{0}(\delta + c) - (c + d_{0} + a_{0})(1 - \eta)\beta_{2}T_{0}$$

$$- N\delta(1 - \eta)\beta_{1}T_{0} - a_{0}\eta\beta_{2}T_{0},$$

$$t_{3} = d_{0}\delta c + a_{0}\delta c - c(d_{0} + a_{0})(1 - \eta)\beta_{2}T_{0} - (d_{0} + a_{0})N\delta(1 - \eta)\beta_{1}T_{0}$$

$$- a_{0}\eta\beta_{2}T_{0}c - a_{0}\eta\beta_{1}T_{0}N\delta.$$

It is clear that  $F(0) = t_3 = (d_0 + a_0)\delta c(1 - R_0) < 0$  and  $\lim_{x \to \infty} F(x) = \infty$ . Thus F(x) has at least one positive zero. Accordingly, the characteristic equation (3) has a positive eigenvalue and hence  $E_0$  is unstable.

# 3.2. Local stability of the immune-free equilibrium $E_1$

**Theorem 3.2.** Suppose  $R_0 > 1$ . Then the CTL immune-free and antibody-free equilibrium  $E_1$  is locally asymptotically stable if  $\max\{R_1^c, R_1^a\} < 1$  and is unstable if  $\max\{R_1^c, R_1^a\} > 1$ .

**Proof.** The characteristic equation at  $E_1$  is

$$(x + \lambda + \beta_1 V_1 + \beta_2 I_1)(x + d_0 + a_0)(x + \delta)(x + c)(x - aV_1 + \delta_1)$$

$$\times \left(x - \frac{eI_1}{1 + \alpha I_1} + b\right)$$

$$= (x + \lambda)(x - aV_1 + \delta_1) \left(x - \frac{eI_1}{1 + \alpha I_1} + b\right)$$

$$\times \left[(x + d_0 + a_0)(1 - \eta)\beta_2 T_1(x + c) + (1 - \eta)\beta_1 T_1 N \delta(x + d_0 + a_0) + a_0 \eta \beta_2 T_1(x + c) + a_0 \eta \beta_1 T_1 N \delta\right]. \tag{5}$$

There are two obvious eigenvalues:  $x_4 = aV_1 - \delta_1$  and  $x_5 = \frac{eI_1}{1 + \alpha I_1} - b$ . Recall

$$I_1 = \frac{\lambda c(R_0 - 1)}{\beta_1 N \delta + \beta_2 c}, \quad V_1 = \frac{\lambda N \delta(R_0 - 1)}{\beta_1 N \delta + \beta_2 c}.$$

If  $\max\{R_1^c, R_1^a\} > 1$ , then either  $R_1^c > 1$  or  $R_1^a > 1$ . If  $R_1^c > 1$ , then  $R_0 - 1 > \frac{(\beta_1 N \delta + \beta_2 c)b}{\lambda c(e - b \alpha)}$ . Thus  $I_1 > \frac{b}{e - b \alpha}$ , which gives  $x_5 > 0$ . If  $R_1^a > 1$  then  $R_0 - 1 > \frac{(\beta_1 N \delta + \beta_2 c)\delta_1}{\lambda N \delta a}$ . Thus  $V_1 > \frac{\delta_1}{a}$ , which implies  $x_4 > 0$ . Therefore, if  $\max\{R_1^c, R_1^a\} > 1$ 

then  $J(E_1)$  has a positive eigenvalue, which implies that  $E_1$  is unstable. Now assume  $\max\{R_1^c,R_1^a\}<1$ . Then similarly we have  $V_1<\frac{\delta_1}{a}$  and  $I_1<\frac{b}{e-b\alpha}$ . Therefore, the two real eigenvalues  $x_4$  and  $x_5$  are negative. Subsequently, we demonstrate that the remaining roots of Eq. (5) possess negative real parts. Otherwise, let us assume that there exists a root x of (5) with a nonnegative real part. Dividing both sides of (5) by  $(x+\lambda+\beta_1V_1+\beta_2I_1)(x+d_0+a_0)(x+\delta)(x+c)(x-aV_1+\delta_1)(x-\frac{eI_1}{1+\alpha I_1}+b)$  gives

$$1 = \frac{x+\lambda}{x+\lambda+\beta_1 V_1 + \beta_2 I_1} \times \left[ \frac{a_0 \eta \beta_2 T_1}{(x+d_0+a_0)(x+\delta)} + \frac{a_0 \eta \beta_1 T_1 N \delta}{(x+c)(x+d_0+a_0)(x+\delta)} + \frac{(1-\eta)\beta_2 T_1}{x+\delta} + \frac{(1-\eta)\beta_1 T_1 N \delta}{(x+c)(x+\delta)} \right].$$

Denote the right-hand side by  $\Lambda_1$ . In view of  $T_1 = \frac{T^*}{R_0}$ , we have

$$\begin{split} |\Lambda_{1}| &= \left| \frac{(x+\lambda)a_{0}\eta\beta_{2}T_{1}}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+d_{0}+a_{0})(x+\delta)} \right. \\ &+ \frac{(x+\lambda)(1-\eta)\beta_{1}T_{1}N\delta}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+c)(x+\delta)} + \frac{(x+\lambda)(1-\eta)\beta_{2}T_{1}}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+\delta)} \\ &+ \frac{(x+\lambda)a_{0}\eta\beta_{1}T_{1}N\delta}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+c)(x+d_{0}+a_{0})(x+\delta)} \right| \\ &\leq \left| \frac{(x+\lambda)a_{0}\eta\beta_{2}T_{1}}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+d_{0}+a_{0})(x+\delta)} \right| \\ &+ \left| \frac{(x+\lambda)(1-\eta)\beta_{1}T_{1}N\delta}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+c)(x+\delta)} \right| + \left| \frac{(x+\lambda)(1-\eta)\beta_{2}T_{1}}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+c)(x+\delta)} \right| \\ &+ \left| \frac{(x+\lambda)a_{0}\eta\beta_{1}T_{1}N\delta}{(x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1})(x+c)(x+d_{0}+a_{0})(x+\delta)} \right| \\ &= \left| \frac{x+\lambda}{x+\lambda+\beta_{1}V_{1}+\beta_{2}I_{1}} \right| \times \left[ \left| \frac{a_{0}\eta\beta_{2}T_{1}}{x+d_{0}+a_{0}} \right| \left| \frac{1}{x+\delta} \right| + \left| \frac{(1-\eta)\beta_{1}T_{1}N}{x+c} \right| \left| \frac{\delta}{x+\delta} \right| \\ &+ \left| \frac{(1-\eta)\beta_{2}T_{1}}{x+\delta} \right| + \left| \frac{a_{0}\eta\beta_{1}T_{1}N}{x+d_{0}+a_{0}} \right| \left| \frac{\delta}{x+\delta} \right| \left| \frac{1}{x+c} \right| \\ &< \frac{a_{0}\eta\beta_{2}T_{1}}{(d_{0}+a_{0})\delta} + \frac{(1-\eta)\beta_{1}T_{1}N}{c} + \frac{(1-\eta)\beta_{2}T_{1}}{\delta} + \frac{a_{0}\eta\beta_{1}T_{1}N}{(d_{0}+a_{0})c} = \frac{R_{0}}{T^{*}}T_{1} \\ &= 1. \end{split}$$

This leads to a contradiction. Thus all roots of (5) have negative real parts. This proves that  $E_1$  is locally asymptotically stable when  $\max\{R_1^c, R_1^a\} < 1$ .

# 3.3. Local stability of the infected equilibrium $E_2$

**Theorem 3.3.** Suppose  $R_1^c > 1$ . Then the CTL immune-present and antibody-free equilibrium  $E_2$  is locally asymptotically stable when  $R_1^a < R_1^c$  and unstable when  $R_1^a > R_1^c$ .

**Proof.** The characteristic equation of  $J(E_2)$  can be rewritten as

$$(x - aV_2 + \delta_1)(x + \lambda + \beta_1 V_2 + \beta_2 I_2)(x + c)(x + d_0 + a_0)$$

$$\times \left[ (x + \delta + \rho Z_2)x + \frac{eZ_2\rho I_2}{(1 + \alpha I_2)^2} \right]$$

$$= (x - aV_2 + \delta_1)(x + \lambda)x[a_0\eta\beta_1 T_2N\delta + (x + d_0 + a_0)(1 - \eta)\beta_1 T_2N\delta + (x + c)a_0\eta\beta_2 T_2 + (x + c)(x + d_0 + a_0)(1 - \eta)\beta_2 T_2].$$

Therefore, there is an eigenvalue  $x_6 = aV_2 - \delta_1$  and the others satisfy

$$(x+c)(x+\lambda+\beta_1 V_2 + \beta_2 I_2)(x+d_0+a_0) \left[ (x+\delta+\rho Z_2)x + \frac{eZ_2\rho I_2}{(1+\alpha I_2)^2} \right]$$

$$= (x+\lambda)x[a_0\eta\beta_1 T_2N\delta + (x+d_0+a_0)(1-\eta)\beta_1 T_2N\delta + (x+c)a_0\eta\beta_2 T_2$$

$$+ (x+c)(x+d_0+a_0)(1-\eta)\beta_2 T_2]. \tag{6}$$

If  $R_1^a > R_1^c$  then from  $V_2 = \frac{N\delta b}{c(e-b\alpha)}$  we can obtain  $V_2 > \frac{\delta_1}{a}$  and hence  $x_6 > 0$ . This means that  $E_2$  is unstable if  $R_1^a > R_1^c$ . Now assume that  $R_1^a < R_1^c$ . Then similarly we can obtain  $V_2 < \frac{\delta_1}{a}$  so  $x_6$  is a negative eigenvalue. Now, we demonstrate that all the remaining eigenvalues possess negative real parts. By way of contradiction, suppose that  $x = a^* + ib^*$  is an eigenvalue with  $a^* \geq 0$ . We rewrite (6) as

$$1 = \frac{x + \lambda}{x + \lambda + \beta_1 V_2 + \beta_2 I_2} \left\{ \frac{a_0 \eta \beta_1 T_2 N \delta x}{(x + d_0 + a_0)(x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right]} + \frac{(1 - \eta) \beta_1 T_2 N \delta x}{(x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right]} + \frac{a_0 \eta \beta_2 T_2 x}{(x + d_0 + a_0) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right]} + \frac{(1 - \eta) \beta_2 T_2 x}{(x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2}} \right\}.$$

Denote the right-hand side by  $\Lambda_2$ . If  $a^*=b^*=0$ , then  $\Lambda_2=0$ , a contradiction to  $1=\Lambda_2$ . So we assume  $a^{*2}+b^{*2}>0$ . Using  $Z_2=\frac{\delta}{\rho}(R_1^c-1)=\frac{\delta}{\rho}(\frac{T_2}{T^*}R_0-1)$ ,

$$\begin{split} |\Lambda_2| &= \left| \frac{a_0 \eta \beta_1 T_2 N \delta x (x + \lambda)}{(x + d_0 + a_0)(x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \right. \\ &+ \frac{(1 - \eta) \beta_1 T_2 N \delta x (x + \lambda)}{(x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \\ &+ \frac{a_0 \eta \beta_2 T_2 x (x + \lambda)}{(x + d_0 + a_0) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \\ &+ \frac{(1 - \eta) \beta_2 T_2 x (x + \lambda)}{\left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \\ &\leq \left| \frac{a_0 \eta \beta_1 T_2 N \delta x (x + \lambda)}{(x + d_0 + a_0) (x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \right| \\ &+ \left| \frac{(1 - \eta) \beta_1 T_2 N \delta x (x + \lambda)}{(x + c) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \right| \\ &+ \left| \frac{a_0 \eta \beta_2 T_2 x (x + \lambda)}{(x + d_0 + a_0) \left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \right| \\ &+ \left| \frac{(1 - \eta) \beta_2 T_2 x (x + \lambda)}{\left[ (x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2} \right] (x + \lambda + \beta_1 V_2 + \beta_2 I_2)} \right| \\ &= \left| \frac{x + \lambda}{x + \lambda + \beta_1 V_2 + \beta_2 I_2} \right| \times \left| \frac{x}{(x + \delta + \rho Z_2) x + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2}} \right| \\ &\times \left\{ \left| \frac{a_0 \eta \beta_1 T_2 N \delta}{(x + d_0 + a_0) (x + c)} \right| + \left| \frac{(1 - \eta) \beta_1 T_2 N \delta}{x + c} \right| + \left| \frac{a_0 \eta \beta_2 T_2}{x + d_0 + a_0} \right| \\ &+ \left| (1 - \eta) \beta_2 T_2 \right| \right\} \\ &= \left| \frac{x + \lambda}{x + \lambda + \beta_1 V_2 + \beta_2 I_2} \right| \times \left| \frac{1}{x + \delta + \rho Z_2 + \frac{e Z_2 \rho I_2}{(1 + \alpha I_2)^2 x}} \right| \\ &\times \left\{ \left| \frac{a_0 \eta \beta_1 T_2 N \delta}{(x + d_0 + a_0) (x + c)} \right| + \left| \frac{(1 - \eta) \beta_1 T_2 N \delta}{x + c} \right| + \left| \frac{a_0 \eta \beta_2 T_2}{x + d_0 + a_0} \right| \\ &+ \left| (1 - \eta) \beta_2 T_2 \right| \right\} \end{aligned}$$

Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses

$$\leq \frac{1}{\delta + \rho Z_{2}} \times \left\{ \left| \frac{a_{0}\eta \beta_{1} T_{2} N \delta}{(x + d_{0} + a_{0})(x + c)} \right| + \left| \frac{(1 - \eta)\beta_{1} T_{2} N \delta}{x + c} \right| + \left| \frac{a_{0}\eta \beta_{2} T_{2}}{x + d_{0} + a_{0}} \right| + \left| (1 - \eta)\beta_{2} T_{2} \right| \right\}$$

$$\leq \frac{a_{0}\eta \beta_{1} T_{2} N \delta}{(d_{0} + a_{0})c(\delta + \rho Z_{2})} + \frac{(1 - \eta)\beta_{1} T_{2} N \delta}{c(\delta + \rho Z_{2})} + \frac{a_{0}\eta \beta_{2} T_{2}}{(d_{0} + a_{0})(\delta + \rho Z_{2})} + \frac{(1 - \eta)\beta_{2} T_{2}}{\delta + \rho Z_{2}}$$

$$= \left[ \frac{a_{0}\eta \beta_{1} T^{*} N}{(d_{0} + a_{0})c} + \frac{(1 - \eta)\beta_{1} T^{*} N}{c} + \frac{a_{0}\eta \beta_{2} T^{*}}{(d_{0} + a_{0})\delta} + \frac{(1 - \eta)\beta_{2} T^{*}}{\delta} \right] \frac{1}{R_{0}}$$

This leads to a contradiction. Thus  $E_2$  is locally asymptotically stable when  $R_1^a < R_1^c$ .

## 3.4. Local stability of the infected equilibrium $E_3$

**Theorem 3.4.** Suppose  $R_1^a > 1$ . Then the antibody-present and CTL immune-free equilibrium  $E_3$  is locally asymptotically stable when  $R_2^c < 1$  and unstable when  $R_2^c > 1$ .

**Proof.** The characteristic equation at  $E_3$  is

$$(x + \lambda + \beta_1 V_3 + \beta_2 I_3)(x + d_0 + a_0)[qV_3 a A_3 + x(x + c + qA_3)](x + \delta)$$

$$\times \left(x - \frac{eI_3}{1 + \alpha I_3} + b\right)$$

$$= (x + \lambda) \left(x - \frac{eI_3}{1 + \alpha I_3} + b\right) \{(x + d_0 + a_0)(1 - \eta)\beta_1 T_3 N \delta x + a_0 \eta \beta_2 T_3$$

$$\times [qV_3 a A_3 + x(x + c + qA_3)] + a_0 \eta \beta_1 T_3 N \delta x + (1 - \eta)\beta_2 T_3$$

$$\times [qV_3 a A_3 + x(x + c + qA_3)](x + d_0 + a_0)\}.$$

Thus there is an eigenvalue  $x_7 = \frac{eI_3}{1+\alpha I_3} - b = \frac{e\delta_1(c+qA_3)}{N\delta a + (c+qA_3)\delta_1\alpha} - b$  and the others satisfy

$$(x + \lambda + \beta_1 V_3 + \beta_2 I_3)(x + d_0 + a_0)[qV_3 a A_3 + x(x + c + qA_3)](x + \delta)$$

$$= (x + \lambda)\{(x + d_0 + a_0)(1 - \eta)\beta_1 T_3 N \delta x + a_0 \eta \beta_2 T_3[qV_3 a A_3 + x(x + c + qA_3)] + a_0 \eta \beta_1 T_3 N \delta x + (1 - \eta)\beta_2 T_3[qV_3 a A_3 + x(x + c + qA_3)](x + d_0 + a_0)\}.$$
(7)

With the help of system (1), we have

$$c + qA_3 = \frac{cR_0}{T^*} T_3 + \frac{(1 - \eta)\beta_2 T_3 q A_3}{\delta} + \frac{a_0 \eta \beta_2 T_3 q A_3}{(d_0 + a_0)\delta}$$

$$= \frac{T_3}{T^*} (cR_0 + R_{02} q A_3)$$

$$= \frac{\frac{T_3}{T^*} R_{01} c}{1 - \frac{T_3}{T^*} R_{02}}$$

$$= \frac{\lambda N \delta a R_{01} c}{\lambda N \delta a (1 - R_{02}) + \beta_1 N \delta \delta_1 + \beta_2 \delta_1 (c + q A_3)},$$

which yields that

$$c+qA_3=\frac{\lambda N\delta a(R_{02}-1)-\beta_1N\delta\delta_1}{+\sqrt{[\lambda N\delta a(1-R_{02})+\beta_1N\delta\delta_1]^2+4\beta_2\delta_1\lambda N\delta aR_{01}c}}{2\beta_2\delta_1}.$$

We can obtain  $c+qA_3>\frac{N\delta ab}{\delta_1(e-b\alpha)}$  if  $R_2^c=\frac{\frac{(e-b\alpha)\delta_1c}{N\delta ab}R_{01}+R_{02}}{1+\frac{\beta_1\delta_1(e-b\alpha)}{\lambda a(e-b\alpha)}}>1$ . Therefore,  $x_7>0$  if  $R_2^c>1$ , which means that  $E_3$  is unstable if  $R_2^c>1$ . Suppose  $R_2^c<1$ . Then  $x_7<0$ . We establish that the remaining roots of Eq. (7) exhibit negative real parts. Otherwise, suppose that (7) has a root  $x=a^*+ib^*$  with  $a^*\geq 0$ . Dividing both sides of (7) by  $(x+\lambda+\beta_1V_3+\beta_2I_3)(x+d_0+a_0)[qV_3aA_3+x(x+c+qA_3)](x+\delta)$  yields

$$1 = \frac{x+\lambda}{x+\lambda+\beta_1 V_3 + \beta_2 I_3} \left\{ \frac{(1-\eta)\beta_1 T_3 N \delta x}{[q V_3 a A_3 + x(x+c+q A_3)](x+\delta)} + \frac{(1-\eta)\beta_2 T_3}{x+\delta} + \frac{a_0 \eta \beta_1 T_3 N \delta x}{(x+d_0+a_0)[q V_3 a A_3 + x(x+c+q A_3)](x+\delta)} + \frac{a_0 \eta \beta_2 T_3}{(x+d_0+a_0)(x+\delta)} \right\}.$$

Denote the right-hand side by  $\Lambda_3$ . If  $a^* = b^* = 0$ , then according to  $c + qA_3 = \frac{T_3}{T^*} \frac{R_{01}c}{1 - \frac{T_3}{T^*}} R_{02} > 0$ , we can derive  $R_{02} < \frac{T^*}{T_3}$ . Therefore,

$$|\Lambda_{3}| = \frac{\lambda}{\lambda + \beta_{1}V_{3} + \beta_{2}I_{3}} \left[ \frac{(1 - \eta)\beta_{2}T_{3}}{\delta} + \frac{a_{0}\eta\beta_{2}T_{3}}{(d_{0} + a_{0})\delta} \right]$$

$$= \frac{\lambda}{\lambda + \beta_{1}V_{3} + \beta_{2}I_{3}} \frac{R_{02}T_{3}}{T^{*}}$$

$$= \frac{\lambda}{\frac{\lambda T^{*}}{T_{3}}} \frac{R_{02}T_{3}}{T^{*}}$$

$$= R_{02} \frac{T_{3}^{2}}{T^{*2}} < \frac{T_{3}}{T^{*}}$$

$$< 1.$$

This leads to a contradiction. Now assume  $a^{*2} + b^{*2} > 0$ . Then

$$\begin{split} |\Lambda_{3}| &\leq \left| \frac{x + \lambda}{x + \lambda + \beta_{1}V_{3} + \beta_{2}I_{3}} \right| \times \left\{ \left| \frac{(1 - \eta)\beta_{1}T_{3}N\delta x}{[qV_{3}aA_{3} + x(x + c + qA_{3})](x + \delta)} \right| \right. \\ &+ \left| \frac{(1 - \eta)\beta_{2}T_{3}}{x + \delta} \right| + \left| \frac{a_{0}\eta\beta_{1}T_{3}N\delta x}{(x + d_{0} + a_{0})[qV_{3}aA_{3} + x(x + c + qA_{3})](x + \delta)} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{3}}{(x + d_{0} + a_{0})(x + \delta)} \right| \right\} \\ &< \left[ \left| \frac{(1 - \eta)\beta_{1}T_{3}N\delta}{x + \delta} \right| + \left| \frac{a_{0}\eta\beta_{1}T_{3}N\delta}{(x + d_{0} + a_{0})(x + \delta)} \right| \right] \times \left| \frac{x}{qV_{3}aA_{3} + x(x + c + qA_{3})} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{3}}{(x + d_{0} + a_{0})(x + \delta)} \right| + \left| \frac{(1 - \eta)\beta_{2}T_{3}}{x + \delta} \right| \\ &= \left[ \left| \frac{(1 - \eta)\beta_{1}T_{3}N\delta}{x + \delta} \right| + \left| \frac{a_{0}\eta\beta_{1}T_{3}N\delta}{(x + d_{0} + a_{0})(x + \delta)} \right| \right] \times \left| \frac{1}{qV_{3}aA_{3}} + x + c + qA_{3} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{3}}{(x + d_{0} + a_{0})(x + \delta)} \right| + \left| \frac{(1 - \eta)\beta_{2}T_{3}}{x + \delta} \right| \\ &\leq \left| \frac{(1 - \eta)\beta_{1}T_{3}N\delta}{(x + d_{0} + a_{0})(x + \delta)} \right| + \left| \frac{1}{(x + d_{0} + a_{0})(x + \delta)} \right| \times \left| \frac{1}{c + qA_{3}} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{3}}{(x + d_{0} + a_{0})(x + \delta)} \right| + \left| \frac{(1 - \eta)\beta_{2}T_{3}}{(x + d_{0} + a_{0})(x + \delta)} \right| \times \left| \frac{1}{c + qA_{3}} \right| \\ &< \frac{(1 - \eta)\beta_{1}T_{3}N}{c + qA_{3}} + \frac{a_{0}\eta\beta_{2}T_{3}}{(d_{0} + a_{0})\delta} + \frac{a_{0}\eta\beta_{1}T_{3}N}{(d_{0} + a_{0})(c + qA_{3})} + \frac{(1 - \eta)\beta_{2}T_{3}}{\delta} \\ &= \frac{(1 - \eta)\beta_{1}T^{*}N}{cR_{0} + R_{02}qA_{3}} + \frac{a_{0}\eta\beta_{2}T^{*}T_{3}}{(d_{0} + a_{0})\delta T^{*}} + \frac{a_{0}\eta\beta_{1}T^{*}N}{(d_{0} + a_{0})(cR_{0} + R_{02}qA_{3})} \\ &+ \frac{(1 - \eta)\beta_{2}T^{*}T_{3}}{\delta T^{*}} \\ &= \frac{cR_{01}}{cR_{0} + R_{02}qA_{3}} + \frac{R_{02}T_{3}}{T^{*}} = \frac{cR_{01}}{cR_{0} + R_{02}qA_{2}} + \frac{(c + qA_{3})R_{02}}{cR_{0} + R_{02}qA_{2}} = 1. \end{aligned}$$

This also leads to a contradiction. Therefore,  $E_3$  is locally asymptotically stable when  $R_2^c < 1$ .

# 3.5. Local stability of the infected equilibrium $E_4$

**Theorem 3.5.** Suppose  $R_1^a > R_1^c$  and  $R_2^c > 1$ . Then the CTL and antibody immunity coexistence equilibrium  $E_4$  is locally asymptotically stable.

**Proof.** The characteristic equation at  $E_4$  is

$$(x + \lambda + \beta_1 V_4 + \beta_2 I_4)(x + d_0 + a_0)[qV_4 a A_4 + x(x + c + q A_4)]$$

$$\times \left[ (x + \delta + \rho Z_4)x + \frac{eZ_4 \rho I_4}{(1 + \alpha I_4)^2} \right]$$

$$= (x + \lambda)\{(x + d_0 + a_0)(1 - \eta)\beta_1 T_4 N \delta x^2 + a_0 \eta \beta_2 T_4 x [qV_4 a A_4 + x(x + c + q A_4)] + a_0 \eta \beta_1 T_4 N \delta x^2 + (1 - \eta)\beta_2 T_4 x [qV_4 a A_4 + x(x + c + q A_4)](x + d_0 + a_0)\}.$$
(8)

Let  $g = (x + \delta + \rho Z_4)x + \frac{eZ_4\rho I_4}{(1+\alpha I_4)^2}$ . We establish that all the roots of Eq. (8) exhibit negative real parts. If this were not the case, there would exist a root  $x = a^* + ib^*$  with a nonnegative real part. Dividing both sides of (1) by  $(x + \lambda + \beta_1 V_4 + \beta_2 I_4)(x + d_0 + a_0)[qV_4aA_4 + x(x + c + qA_4)]g$  gives us

$$1 = \frac{x+\lambda}{x+\lambda+\beta_1 V_4 + \beta_2 I_4} \times \left\{ \frac{a_0 \eta \beta_2 T_4 x}{(x+d_0+a_0)g} + \frac{(1-\eta)\beta_2 T_4 x}{g} + \frac{(1-\eta)\beta_1 T_4 N \delta x^2}{[qV_4 a A_4 + x(x+c+qA_4)]g} + \frac{a_0 \eta \beta_1 T_4 N \delta x^2}{(x+d_0+a_0)[qV_4 a A_4 + x(x+c+qA_4)]g} \right\}.$$

Let the right-hand side be  $\Lambda_4$ . If  $a^* = b^* = 0$ , then we have  $\Lambda_4 = 0$ , which leads to a contradiction. Now assume  $a^{*2} + b^{*2} > 0$ . Then we have

$$\begin{split} |\Lambda_{4}| &\leq \left| \frac{x+\lambda}{x+\lambda+\beta_{1}V_{4}+\beta_{2}I_{4}} \right| \times \left\{ \left| \frac{(1-\eta)\beta_{1}T_{4}N\delta x^{2}}{[qV_{4}aA_{4}+x(x+c+qA_{4})]g} \right| \right. \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{4}x}{(x+d_{0}+a_{0})g} \right| + \left| \frac{a_{0}\eta\beta_{1}T_{4}N\delta x^{2}}{(x+d_{0}+a_{0})[qV_{4}aA_{4}+x(x+c+qA_{4})]g} \right| \\ &+ \left| \frac{(1-\eta)\beta_{2}T_{4}x}{g} \right| \right\} \\ &\leq \left\{ \left[ \left| (1-\eta)\beta_{1}T_{4}N\delta \right| + \left| \frac{a_{0}\eta\beta_{1}T_{4}N\delta}{x+d_{0}+a_{0}} \right| \right] \times \left| \frac{x}{qV_{4}aA_{4}+x(x+c+qA_{4})} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{4}}{x+d_{0}+a_{0}} \right| + \left| (1-\eta)\beta_{2}T_{4} \right| \right\} \times \left| \frac{x}{(x+\delta+\rho Z_{4})x+\frac{eZ_{4}\rho I_{4}}{(1+\alpha I_{4})^{2}}} \right| \\ &= \left\{ \left[ \left| (1-\eta)\beta_{1}T_{4}N\delta \right| + \left| \frac{a_{0}\eta\beta_{1}T_{4}N\delta}{x+d_{0}+a_{0}} \right| \right] \times \left| \frac{1}{\frac{qV_{4}aA_{4}}{x}+x+c+qA_{4}} \right| \\ &+ \left| \frac{a_{0}\eta\beta_{2}T_{4}}{x+d_{0}+a_{0}} \right| + \left| (1-\eta)\beta_{2}T_{4} \right| \right\} \times \left| \frac{1}{x+\delta+\rho Z_{4}+\frac{eZ_{4}\rho I_{4}}{(1+\alpha I_{4})^{2}x}} \right| \end{split}$$

$$\begin{split} & \leq \left\{ \left[ |(1-\eta)\beta_1 T_4 N \delta| + \left| \frac{a_0 \eta \beta_1 T_4 N \delta}{x + d_0 + a_0} \right| \right] \times \frac{1}{c + q A_4} + \left| \frac{a_0 \eta \beta_2 T_4}{x + d_0 + a_0} \right| \right. \\ & + \left| (1-\eta)\beta_2 T_4 \right| \right\} \times \frac{1}{\delta + \rho Z_4} \\ & \leq \frac{(1-\eta)\beta_1 T_4 N \delta}{(c + q A_4)(\delta + \rho Z_4)} + \frac{a_0 \eta \beta_1 T_4 N \delta}{(d_0 + a_0)(\delta + \rho Z_4)(c + q A_4)} + \frac{a_0 \eta \beta_2 T_4}{(d_0 + a_0)(\delta + \rho Z_4)} \\ & + \frac{(1-\eta)\beta_2 T_4}{\delta + \rho Z_4} \\ & = \left[ \frac{a_0 \eta \beta_1 T^* N}{d_0 + a_0} + \frac{a_0 \eta \beta_2 T^* (c + q A_4)}{(d_0 + a_0)\delta} + (1-\eta)\beta_1 T^* N \right. \\ & + \frac{(1-\eta)\beta_2 T^* (c + q A_4)}{\delta} \right] \frac{1}{R_0 c + R_{02} q A_4} \\ & = 1. \end{split}$$

This again leads to a contradiction. Thus  $E_4$  is locally asymptotically stable.  $\Box$ 

## 4. Sensitivity Analysis

To assess the impact of parameters on the reproduction numbers, we perform a sensitivity analysis [28] on them. For this purpose, we employ the Latin hypercube sampling (LHS) method and the partial rank correlation coefficients (PRCCs) method. The used parameter values, taken from [2, 21, 29-32], are listed in Table [1].

To conduct the sensitivity analysis, we calculate the PRCCs between the four reproduction numbers and each parameter, as shown in Fig. 1. The sign of the PRCC denotes whether the input variable exhibits a positive or negative correlation with the output variable [33]. Additionally, the magnitude of the PRCC indicates the strength of the relationship between each input parameter and the output variable. Specifically, a PRCC value greater than 0.4 indicates a strong correlation, while a value between 0.2 and 0.4 suggests a moderate correlation. Conversely, a PRCC value below 0.2 indicates a weak correlation [19].

| Parameter      | Value                                                     | Parameter  | Value                                            |
|----------------|-----------------------------------------------------------|------------|--------------------------------------------------|
| $\overline{e}$ | $0.2 \; \rm day^{-1}$                                     | a          | $0.003 \ \mu \mathrm{L} \cdot \mathrm{day}^{-1}$ |
| N              | 2000 virions/cell                                         | b          | $0.1  \mathrm{day^{-1}}$                         |
| $\beta_1$      | $2.4 \times 10^{-8} \ \mu \text{L} \cdot \text{day}^{-1}$ | $\delta$   | $1  \mathrm{day}^{-1}$                           |
| $\beta_2$      | $1 \times 10^{-6} \ \mu \text{L} \cdot \text{day}^{-1}$   | $\eta$     | 0.05                                             |
| $\lambda$      | $0.01  \mathrm{day^{-1}}$                                 | c          | $23  day^{-1}$                                   |
| $a_0$          | $0.1  \mathrm{day^{-1}}$                                  | $\delta_1$ | $10  day^{-1}$                                   |
| $d_0$          | $0.001  \mathrm{day^{-1}}$                                | $\alpha$   | 0.01                                             |
| $T^*$          | $10^6 \text{ cells/mm}^3$                                 | ho         | $0.0024~\mu\mathrm{L}\cdot\mathrm{day}^{-1}$     |

Table 1. Parameter values.

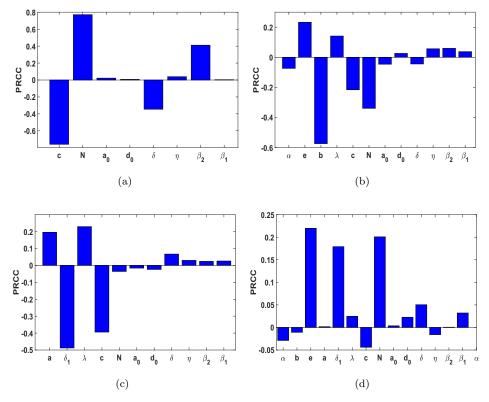


Fig. 1. The sensitivity analyses of the four reproduction numbers: (a)  $R_0$ , (b)  $R_1^c$ , (c)  $R_1^a$  and (d)  $R_2^c$ .

Based on these guidelines, we observe from Fig.  $\square$ (a) that the parameters with the most significant influence on  $R_0$  are c, N,  $\delta$ , and  $\beta_2$ . Similarly, for the reproduction number  $R_1^c$ , the influences of c, N, and e are similar, while e exhibits the highest significance, as depicted in Fig.  $\square$ (b). Figure  $\square$ (c) demonstrates that  $R_1^a$  is greatly correlated with  $\delta$ , e, and  $\delta$ . Similarly, by referring to Fig.  $\square$ (d), we can determine the relationships between  $R_2^c$  and each parameter.

#### 5. Numerical Simulations

Numerical simulations are performed in this section to illustrate and extend the theoretical results for model (1).

#### 5.1. Local stability

First, we choose N=800,  $\eta=0.4$ , e=0.000011, a=0.00002,  $\alpha=0.0001$ , q=0.1, and the remaining parameters are the same as those in Table 11 In this case,  $R_0=1.69$ ,  $R_1^c=0.19$ , and  $R_1^a=0.79$ . By Theorem 3.2 the CTL immune-free and

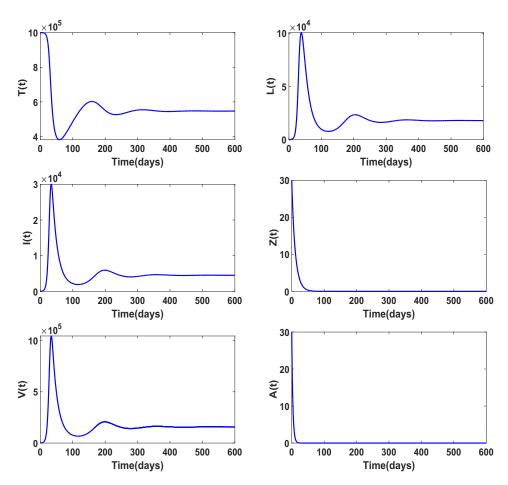


Fig. 2. Solutions of system (1) converge to the CTL immune-free and antibody-free equilibrium when  $R_0 > 1$  and  $\max\{R_1^c, R_1^a\} < 1$ . Initial condition is:  $(T(0), L(0), I(0), Z(0), V(0), A(0)) = (10^6, 20, 30, 30, 50, 30)$ .

antibody-free equilibrium  $E_1 = (547135, 17904, 4501, 0, 156748, 0)$  is locally asymptotically stable. See Fig.  $\boxed{2}$ 

Next, we choose e = 0.2, b = 0.8, a = 0.00002, q = 0.1, and the remaining parameters are the same as those in Table 1. In this case,  $R_0 = 2.74$ ,  $R_1^c = 2.73$ , and  $R_1^a = 0.68$ . By Theorem 3.3 the CTL immune-present and antibody-free equilibrium  $E_2 = (998765, 6, 4, 867, 362, 0)$  is locally asymptotically stable. See Fig. 3.

We now change e, b, a, and  $\delta_1$  to e=0.0003, b=0.1, a=0.001, and  $\delta_1=1$ . The other values are the same as those for Fig.  $\blacksquare$  We obtain that  $R_0=2.74$ ,  $R_1^a=2.69$ , and  $R_2^c=0.97$ . By Theorem  $\blacksquare$ .4, the antibody-present and CTL immune-free equilibrium  $E_3=(952425,235,475,0,999,9280)$  is locally asymptotically stable. See Fig.  $\blacksquare$ 

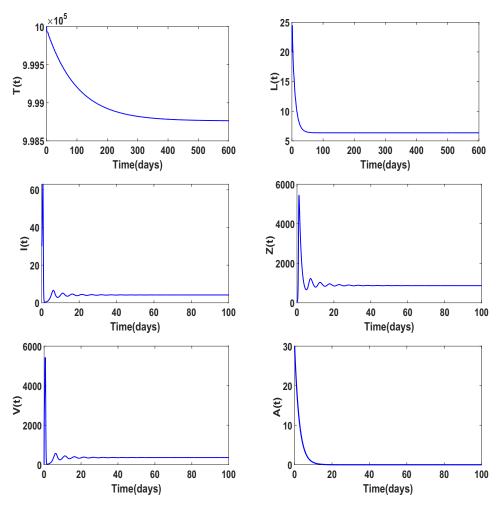


Fig. 3. Solutions of system (L) converge to the CTL immune-present and antibody-free equilibrium when  $R_1^c > 1$  and  $R_1^a < R_1^c$ . Initial condition is:  $(T(0), L(0), I(0), Z(0), V(0), A(0)) = (10^6, 20, 30, 30, 50, 30)$ .

Furthermore, with e=0.2, b=0.8, a=0.004, and the other parameter values being the same as those for Fig. 4 we have  $R_0=2.74$ ,  $R_2^c=2.25$ ,  $R_1^c=2.68$ , and  $R_1^a=2.74$ . By Theorem 3.5, the CTL and antibody immunity coexistence equilibrium  $E_4=(999002,4,4,598,249,91)$  is locally asymptotically stable. See Fig. 5

# 5.2. Effect of e and a on the dynamics of system (1)

By conducting the sensitivity analysis (as shown in Fig.  $\square$ ), we can qualitatively discern the positive and negative effects of parameters on the four reproduction

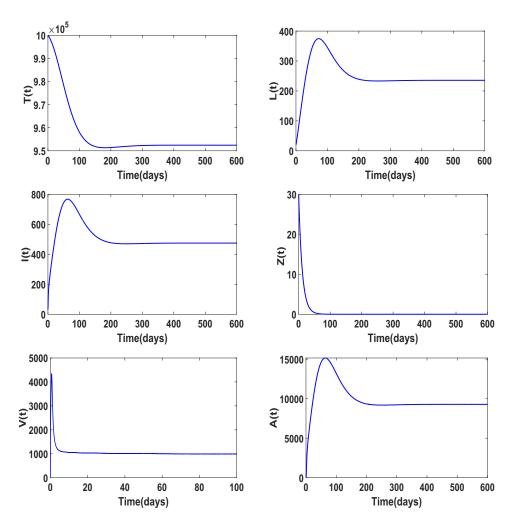


Fig. 4. Solutions of system (1) converge to the antibody-present and CTL immune-free equilibrium when  $R_1^a > 1$  and  $R_2^c < 1$ . Initial condition is:  $(T(0), L(0), I(0), Z(0), V(0), A(0)) = (10^6, 20, 30, 30, 50, 30)$ .

numbers, as well as quantitatively evaluate the magnitude of these effects. Nevertheless, the influence of sensitive parameters on the dynamic behavior of the population remains uncertain. To address this, we will examine the influence of the sensitive parameters e and a on the dynamics of system  $(\!\!\!\text{L}\!\!\!\text{L}\!\!\!\text{L})$  through numerical simulations.

First, we observe that though the activation of CTL immune response alone may not be sufficient to eradicate the virus, the size of uninfected cells increases with enhanced CTL activity. Additionally, as the parameter e increases, the levels of latent cells, infected cells, and viruses reach lower stabilized levels (see Fig.  $\square$ ). On the other hand, neutralizing antibodies specifically bind to viruses, leading to

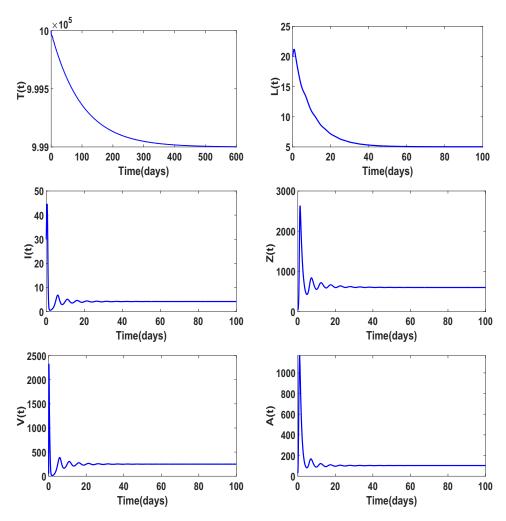


Fig. 5. Solutions of system (1) converge to the CTL and antibody immune coexistence equilibrium when  $R_2^c > 1$  and  $R_1^a > R_1^c$ . Initial condition is:  $(T(0), L(0), I(0), Z(0), V(0), A(0)) = (10^6, 20, 30, 30, 50, 30)$ .

a significant reduction in the viral population as the parameter a increases (see Fig.  $\boxed{\mathbf{n}}$ ). These findings indicate that both CTL immunity and antibody immunity play crucial roles in increasing the population of uninfected cells and decreasing the numbers of latent cells, infected cells, and viruses.

Moreover, Fig. 6 illustrates the competitive nature of adaptive immune responses, where the antibody immune response diminishes to zero when the CTL immune response is at a high level. This suggests that there is a competitive relationship between the two immune responses, with the CTL immune response exerting a stronger influence. Consequently, the CTL immune response is indispensable in shaping the dynamics of viral infection.

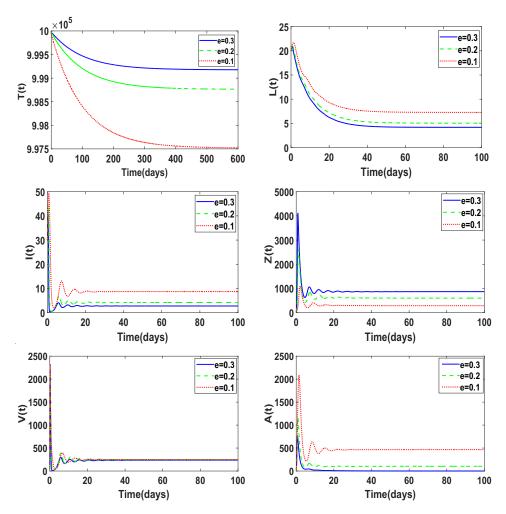


Fig. 6. The effect of e on the dynamics of the model with the same values for the other parameters and initial condition as those for Fig. 5

Overall, these results shed light on the intricate interactions between the immune responses and the viral dynamics, emphasizing the significance of both CTL and antibody immunities in controlling the infection.

# 5.3. Effect of $\beta_2$ on viruses and infected cells

To examine the impact of cell-to-cell transmission, numerical simulations are conducted to assess its contribution throughout the infection process. Initially, we set  $\beta_2$  to zero to compare HIV infection in the absence of cell-to-cell transmission with infection involving both transmission routes ( $\beta_2 = 0$  and  $\beta_2 = 1 \times 10^{-6}$ ). The results clearly indicate that cell-to-cell transmission plays a favorable role in HIV transmission (refer to Fig. 8).

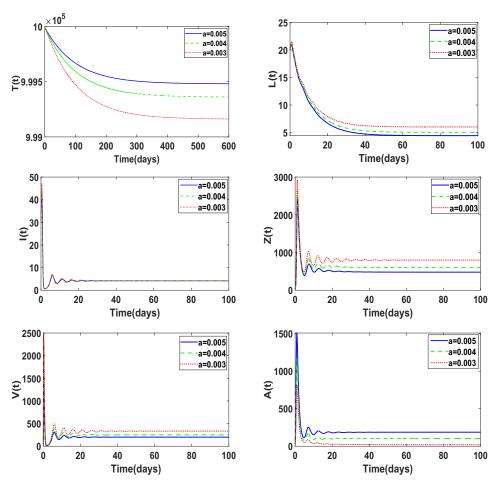


Fig. 7. The effect of a on the dynamics of the model with the same values for the other parameters and initial condition as those for Fig.  $\Box$ 

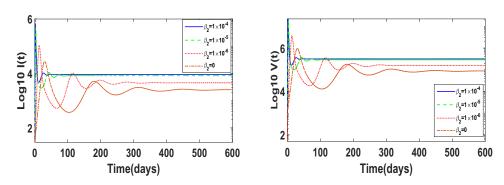


Fig. 8. The effect of  $\beta_2$  on the dynamics of the model with the same values for the other parameters and initial condition as those for Fig.  $\square$ 

Subsequently, we increased  $\beta_2$  to examine the variations in peak levels of infected cells and viruses, as well as the time required to reach these peak levels ( $\beta_2 = 1 \times 10^{-6}$ ,  $\beta_2 = 1 \times 10^{-5}$ , and  $\beta_2 = 1 \times 10^{-4}$ ). Our findings reveal that as  $\beta_2$  increases, infected cells and viruses reach their peak levels more rapidly. Moreover, the peak levels themselves also become higher with increasing  $\beta_2$ . This finding underscores the significance of considering cell-to-cell transmission in the study of HIV infection dynamics, emphasizing its importance and suggesting that it should not be overlooked.

#### 6. Discussion and Conclusion

Several previous HIV infection models have primarily focused on the cell-free infection mode, often neglecting latent infection [5]. [6]. Furthermore, the consideration of adaptive immune responses has predominantly focused on either CTLs or antibodies, with few studies exploring the coexistence of both immune responses [2]. [17]. The novelty of this research lies in the construction of a mathematical model that encompasses two distinct modes of infection, two types of immune responses, and latent infection. The model also incorporates a saturated CTL immune response, thereby introducing additional intricacies to the analysis.

The mathematical model presented in this study has been rigorously analyzed, ensuring that the solutions are nonnegative and bounded. We show that this model has five possible equilibria: infection-free equilibrium  $E_0$ , CTL immune-free and antibody-free equilibrium  $E_1$ , CTL immune-present and antibody-free equilibrium  $E_2$ , antibody-present and CTL immune-free equilibrium  $E_3$ , and CTL and antibody immune coexistence equilibrium  $E_4$ . In addition, the existence of these equilibria is determined by four threshold parameters, which are the basic reproduction number  $R_0$  and the immune reproduction numbers  $R_1^c$ ,  $R_1^a$ , and  $R_2^c$ . They also characterize the local characteristics of the model.

As we know, the basic reproductive number of the system plays a key role in predicting whether the infection will persist. By the explicit expression of  $R_0$ , it consists of the contributions of the two transmission routes. Figure  $\mathbb{I}(a)$  shows that  $\beta_2$  has a strong positive correlation with  $R_0$ . And Fig.  $\mathbb{S}$  shows that cell-to-cell transmission is beneficial for HIV transmission and the time to reach the peak level of virus is shorter. Therefore, it is crucial to consider the transmission of the virus through the cell-to-cell route as a fundamental factor in the study of HIV infection.

Antiretroviral drugs have the ability to inhibit infection, resulting in a reduction in the values of  $\beta_1$  and  $\beta_2$ , which can potentially lower the basic reproduction number to below 1. Immune therapy, on the other hand, can enhance the activation of both CTL and antibody responses, leading to an increase in the values of e and e, respectively. While the activation of immune responses may not have a direct impact on the basic reproduction number e0, it can indirectly decrease its value by enhancing the clearance of infected cells and viruses (as depicted in Fig.  $\Pi$ (a)). Moreover, this can also influence other immune-related reproduction numbers and

contribute to the stability of the corresponding equilibria (as shown in Figs.  $\square(b)$ – $\square(d)$ ). The impact of CTL stimulation on reducing the concentration of infected cells and increasing the level of uninfected cells is more pronounced, as observed in Figs. 6 and 7 Similarly, a higher rate of antibody immunity generation can significantly decrease the number of viruses. Notably, the last graph in Fig. 6 suggests a competitive relationship between CTL and antibody immune responses.

In this paper, our focus was primarily on analyzing the local dynamics of Eq. (I). Exploring the global dynamics poses a very challenging task, which we consider as a future work. Additionally, there are several extensions that can be made to the model. For instance, incorporating time delays that account for the integration of viral DNA into host cell DNA and incorporating logistic growth dynamics in the viral infection process can provide a more realistic description of the dynamic evolution of viruses and normal cells [19, 34, 35]. This paper only considers the immune response caused by the virus and does not take into account the effects of drug treatment on infected individuals. The model can also consider the impact of treatment strategies, e.g. combined antiretroviral treatment strategies, optimal control strategies while calculating the associated costs using optimal control theory [36].

## Acknowledgments

Xia Wang is supported partially by the National Natural Science Foundation of China (No. 12171413), Natural Science Foundation of Henan Province (222300420016) and the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (21IRTSTHN014). Libin Rong is supported by the National Science Foundation Grants DMS-1950254 and DMS-2324692.

# **ORCID**

Zhiqi Zhang https://orcid.org/0009-0007-8654-1017 Yuming Chen https://orcid.org/0000-0002-2896-5627 Xia Wang https://orcid.org/0000-0002-1583-4118 Libin Rong https://orcid.org/0000-0002-1464-6078

#### References

- [1] U. Habibah, Y. L. Pradana and W. Villadystian, Mathematical model of HIV/AIDS with two different stages of infection subpopulation and its stability analysis, *Eng. Lett.* **29**(1) (2020) EL\_29\_1\_01.
- [2] T. Guo and Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission, *Math. Biosci. Eng.* 16(6) (2019) 6822–6841.
- [3] A. S. Perelson *et al.*, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, *Science* **271**(5255) (1996) 1582–1586.
- [4] A. M. Elaiw et al., Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages, Int. J. Biomath. 16(01) (2023) 2250066.

- [5] J. Ren, R. Xu and L. Li, Global stability of an HIV infection model with saturated CTL immune response and intracellular delay, Math. Biosci. Eng. 18(1) (2021) 57–68.
- [6] L. Zhang and L. Wang, Stability analysis for an HIV infection model with immune response and cure rate, IOP Conf. Ser., Mater. Sci. Eng. 392(6) (2018) 062191.
- [7] C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response, *Commun. Nonlinear Sci. Numer. Simul.* 19(1) (2014) 121–127.
- [8] Z. Yuan, Z. Ma and X. Tang, Global stability of a delayed HIV infection model with nonlinear incidence rate, *Nonlinear Dyn.* 68(1) (2012) 207–214.
- [9] X. Wang, Z. Q. Zhang and C. P. Jia, A SEIARV model with asymptomatic infection and saturation rates, J. Xinyang Normal Univ. (Nat. Sci. Ed.) 36(1) (2023) 16–21.
- [10] H. L. Wang et al., Stability analysis of a delayed HIV infection system with saturated CTL-immune response, J. Biomath. 27(02) (2012) 274–282.
- [11] G. J. Nabel, Close to the edge: neutralizing the HIV-1 envelope, Science 308(5730) (2005) 1878–1879.
- [12] S. Wang and D. Zou, Global stability of in-host viral models with humoral immunity and intracellular delays, Appl. Math. Model. 36(3) (2012) 1313–1322.
- [13] L. Li and R. Xu, Global dynamics of an age-structured in-host viral infection model with humoral immunity, Adv. Differ. Equ. 2016(1) (2016) 6.
- [14] D. Mazurov et al., Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors, PLoS Pathog. 6(2) (2010) e1000788.
- [15] H. Shu, Y. Chen and L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dyn. Differ. Equ. 30(4) (2018) 1817–1836.
- [16] Q. Ge, X. Wang and L. Rong, A delayed reaction-diffusion viral infection model with nonlinear incidences and cell-to-cell transmission, *Int. J. Biomath.* 14(08) (2021) 2150100.
- [17] A. M. Elaiw and N. H. Alshamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ. 2020(1) (2020) 355.
- [18] X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl. 426(1) (2015) 563-584.
- [19] T. Guo, Z. Qiu and L. Rong, Analysis of an HIV model with immune responses and cell-to-cell transmission, Bull. Malays. Math. Sci. Soc. 43 (2020) 581–607.
- [20] J. Carter and V. A. Saunders, Virology: Principles and Applications (John Wiley & Sons Inc., 2007).
- [21] X. Wang et al., Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyn. 11(Sup2) (2016) 455–483.
- [22] L. M. Agosto et al., HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact, Cell. Rep. 24(8) (2018) 2088–2100.
- [23] X. Wang and L. Rong, HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission, Appl. Math. Lett. 94 (2019) 44–51.
- [24] J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics (John Wiley & Sons, Inc., 1969).
- [25] P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, *Math. Biosci.* 180(1–2) (2002) 29–48.
- [26] K. Hattaf and N. Yousfi, A class of delayed viral infection models with general incidence rate and adaptive immune response, Int. J. Dyn. Control 4(3) (2016) 254–265.

- [27] J. Wang et al., Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput. 241 (2014) 298–316.
- [28] L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol. 69(6) (2007) 2027–2060.
- [29] L. Rong, A. S. Perelson and R. Antia, Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol. 5(10) (2009) e1000533.
- [30] R. V. Culshaw, S. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol. 48(5) (2004) 545–562.
- [31] P. Aavani and L. J. S. Allen, The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection, Appl. Math. Model. 75 (2019) 210–222.
- [32] J. Lin, R. Xu and X. Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput. 315 (2017) 516–530.
- [33] Y. Wang et al., Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol. 67(4) (2013) 901–934.
- [34] Z. K. Guo, H. F. Huo and H. Xiang, Hopf bifurcation of an age-structured HIV infection model with logistic target-cell growth, J. Biol. Dyn. 13(1) (2019) 362–384.
- [35] Y. Li et al., Global dynamics of a delayed HIV-1 infection model with CTL immune response, Discrete Dyn. Nat. Soc. 2011 (2011) 1095–1114.
- [36] B. J. Nath et al., Optimal control of combined antiretroviral therapies in an HIV infection model with cure rate and fusion effect, Int. J. Biomath. 16(01) (2023) 2250062.