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This paper develops a mathematical model to investigate the Human Immunodeficiency
Virus (HIV) infection dynamics. The model includes two transmission modes (cell-to-cell
and cell-free), two adaptive immune responses (cytotoxic T-lymphocyte (CTL) and anti-
body), a saturated CTL immune response, and latent HIV infection. The existence and
local stability of equilibria are fully characterized by four reproduction numbers. Through
sensitivity analyses, we assess the partial rank correlation coefficients of these reproduc-
tion numbers and identify that the infection rate via cell-to-cell transmission, the number
of new viruses produced by each infected cell during its life cycle, the clearance rate of
free virions, and immune parameters have the greatest impact on the reproduction num-
bers. Additionally, we compare the effects of immune stimulation and cell-to-cell spread
on the model’s dynamics. The findings highlight the significance of adaptive immune
responses in increasing the population of uninfected cells and reducing the numbers of
latent cells, infected cells, and viruses. Furthermore, cell-to-cell transmission is identified
as a facilitator of HIV transmission. The analytical and numerical results presented in
this study contribute to a better understanding of HIV dynamics and can potentially
aid in improving HIV management strategies.

Keywords: HIV infection; cell-to-cell transmission; adaptive immune response; latent
infection; local stability.
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1. Introduction

Acquired Immune Deficiency Syndrome (AIDS) is a disease caused by Human
Immunodeficiency Virus (HIV) infection that can suppress T-cells in the human
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body which have a function to fight against infections [1]. According to the data
released by the World Health Organization (WHO), more than 70 million people
have been infected with HIV since it was first detected in 1981 [2]. Among them
about 50% have died. As of 2022, AIDS is raging in almost every country on the
planet, posing a huge threat to the safety of people’s lives. Therefore, it is urgent
to use knowledge of infectious disease dynamics to establish mathematical models
to study HIV infection.

The fundamental model of HIV infection comprises uninfected cells, infected
cells, and free viral particles [3]. The immune response plays a vital role in recogniz-
ing and eliminating pathogens and infected cells during the process of viral infection.
As a result, more sophisticated models have been established to study the dynamic
relationships between the immune response and the invading pathogens [4–6]. As
an important branch of the immune system, CTL (cytotoxic T-lymphocyte) kills
infected target cells by secreting various cytokines such as tumor necrosis fac-
tor, interferon, etc. It can also inhibit HIV reproduction through certain chemical
chemokines. The CTL immune response was introduced in some of the early mod-
els [7, 8]. However, the stimulating effect of infected cells on immune cells is not a
simple linear relationship; when the concentration of infected cells becomes suffi-
ciently large a saturation state is reached. Thus it is of certain practical significance
to incorporate this saturation effect into modeling. An SEIARV model with asymp-
tomatic infection and saturation incidence rate is studied in [9]. In [10], Wang et al.
considered saturated CTL immune response of the form cyz

1+qy , where 1+qy indicates
the inhibitory effect of infected cells on the CTL immune response. In addition to
the CTL immune response, neutralizing antibodies can bind specifically to viruses,
causing them to lose the ability to infect host cells [11]. Extensions to the basic
model were proposed by Wang and Zou [12] and Li and Xu [13], incorporating an
additional class to account for antibody immune response.

The previously mentioned models focused solely on cell-free infection. Neverthe-
less, it has been observed that direct cell-to-cell transmission of HIV, potentially
facilitated by virological synapses, is significantly more efficient compared to infec-
tion through free viral particles [14–16]. To gain insights into viral dynamics, math-
ematical models have been developed to incorporate cell-to-cell transmission. For
example, Elaiw and Alshamrani showed that the inclusion of cell-to-cell transmis-
sion decreases the concentration of healthy CD4+ T-cells and increases the concen-
trations of infected cells and free HIV particles [17]. In [18], a mathematical model
with the two transmission modes for HIV-1 was proposed. It is found that if the
basic reproduction number is greater than one, the infection can persist and Hopf
bifurcation can occur at the positive equilibrium within certain ranges of parameter
values. In [19], Guo et al. proposed a model including two intracellular delays in
viral infection and production, in addition to the two transmission routes. They
evaluated the effects of various viral spread modes, intracellular time delays and
the immune responses on the infection dynamics.
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In HIV, the viral genome is able to integrate into resting CD4+ T-cells to pro-
duce a latent infection [20]. Latently infected CD4+ T-cells have a prolonged lifespan
and remain unaffected by antiretroviral drugs or immune responses. However, they
can be triggered to release viruses upon stimulation by specific antigens [21]. In
order to provide a more comprehensive explanation of biological phenomena, latent
infection has also been incorporated into viral dynamics models. From a recently
developed latent HIV infection model with cell-to-cell infection, Agosto et al. con-
cluded that cell-to-cell infection could affect the establishment and persistence of
latent infection in the resting CD4+ T-cells [22]. The results in [23] suggest that
although cell-to-cell transmission may have reduced susceptibility to HIV drugs,
HIV latency represents a major reason for HIV persistence in patients on suppres-
sive treatment. Therefore, the latent infection mechanism should be introduced into
HIV models of both cell-to-cell infection and cell-free transmission.

Upon HIV entry into the human body, the immune system triggers two dis-
tinct branches of adaptive immune responses to combat the viral infection: the
CTL immune response and the antibody immune response. Such adaptive immune
responses have been incorporated into many viral infection models with the cell-free
infection mode (see e.g. [5–9, 11, 12]). In particular, a saturated immune response
is also considered in [10]. Experimental evidence suggests that direct cell-to-cell
transmission of HIV is believed to be more efficient than infection by free virus par-
ticles [14, 15]. Furthermore, this mode of transmission may have implications for
the establishment and persistence of latent infection in resting CD4+ T-cells [22].
In recent studies, two modes of transmission, latent infection and CTL immunity,
were taken into account in the modeling of HIV [2, 17]. But the antibody immune
response was ignored.

Motivated by the aforementioned biological factors, we propose a comprehen-
sive model that incorporates the key elements mentioned above: two transmission
modes (cell-to-cell and cell-free), two types of adaptive immune responses (CTL
and antibody), a saturated CTL immune response and latent infection. The model
is described by the following system of ordinary differential equations:






dT

dt
= λ(T ∗ − T )− β1TV − β2TI,

dL

dt
= η(β1TV + β2TI) − d0L − a0L,

dI

dt
= (1 − η)(β1TV + β2TI) − δI + a0L − ρZI,

dZ

dt
=

eIZ

1 + αI
− bZ,

dV

dt
= NδI − cV − qV A,

dA

dt
= aV A − δ1A.

(1)
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Here T , L, I, Z, V , and A represent the concentrations of uninfected cells, latent
cells, infected cells, CTL effectors, free viruses, and antibodies at time t, respec-
tively. T ∗ is the equilibrium concentration of uninfected cells in the absence of
viral infection. The constant λT ∗ is the generation rate of uninfected CD4+ T-
cells. Parameters β1 and β2 represent the infection rates via cell-free infection and
cell-to-cell transmission, respectively. Parameters λ, δ, b, δ1, and c are the decay
rates of uninfected CD4+ T-cells, infected CD4+ T-cells, CTL cells, antibodies, and
viruses, respectively. The parameter ρ is the rate at which infected cells are cleared
by CTL cells. The constant q denotes the neutralization rate by antibody response.
The antibody response is assumed to be stimulated at a rate a by the virus. Viral
generation by productively infected CD4+ T-cells leads to N new viruses by each
infected cell during its lifetime. The average lifespan of an infected cell is 1

δ . Thus
Nδ is the viral production rate by an infected cell per unit time. Parameters d0 and
a0 represent the mortality of latently infected cells and the activation rate from the
latent to productive state, respectively. In the model, we assume that a fraction η
(0 < η < 1) of infected CD4+ T-cells become latently infected and the remaining
fraction (1 − η) become productively infected. We further assume that the cellular
immune generation is eIZ

1+αI , where 1+αI represents the inhibitory effect of infected
cells on CTL immune response. The parameter e is the proliferation rate of immune
cells. It is easy to see that if e ≤ bα then Z(t) → 0 as t → ∞. As a result, we always
assume that e > bα in the sequel.

The initial conditions for (1) are

0 ≤ T (0) ≤ T ∗, L(0) ≥ 0, I(0) ≥ 0, Z(0) ≥ 0, V (0) ≥ 0, A(0) ≥ 0.

(2)

By the fundamental theory of ordinary differential equations, we can obtain the
existence and uniqueness of solutions for t ≥ 0 [24]. It is also straightforward to
show that solutions are nonnegative. This can be verified by checking that the
derivatives are greater than or equal to zero on the boundary of R6

+, for instance,
if T = 0, then dT

dt = λT ∗ > 0. Moreover, define

F (t) = T + L + I +
ρ

e
Z +

1
N

V +
q

aN
A.

A straightforward calculation yields

F ′(t) = λ(T ∗ − T ) − d0L − ρZI +
ρZI

1 + αI
− ρb

e
Z − c

N
V − δ1q

aN
A

≤ λT ∗ − λT − d0L − ρb

e
Z − c

N
V − δ1q

aN
A ≤ λT ∗ − ΓF,

where Γ = min{λ, d0,
ρb
e , c

N , δ1q
aN }. Then lim supt→∞ F (t) ≤ λT∗

Γ . This implies that
the solutions of (1) are bounded. In fact, it is easy to see that

Ω =
{

(T, L, I, Z, V, A) ∈ R6
+ : T ≤ T ∗, T + L + I +

ρ

e
Z +

1
N

V +
q

aN
A ≤ λT ∗

Γ

}

is attracting and positively invariant for system (1).
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The objective of this study is to investigate the impact of various factors on
the dynamics of cell and viral loads. In Sec. 2, the basic reproduction number,
the immune reproduction numbers, and conditions on the existence of all kinds of
equilibria are provided. Then the local stability of the equilibria is established in
Sec. 3. Section 4 is devoted to the sensitivity analysis for the reproduction numbers.
Section 5 provides numerical simulations, followed by brief discussion and conclusion
in Sec. 6.

2. Reproduction Numbers and Equilibria

It is evident that system (1) possesses a unique infection-free equilibrium, denoted
as E0 = (T0, L0, I0, Z0, V0, A0) = (T ∗, 0, 0, 0, 0, 0). According to the method of next-
generation matrix proposed by van den Driessche and Watmough [25], we define
the matrices F and V as

F =





0 ηβ2T ∗ ηβ1T ∗

0 (1 − η)β2T ∗ (1 − η)β1T ∗

0 0 0



 , V =




d0 + a0 0 0
−a0 δ 0
0 −Nδ c



.

The basic reproduction number, denoted as R0, is defined as the spectral radius of
the next-generation operator FV−1. Note that

FV−1 =





a0ηβ2T ∗

(d0 + a0)δ
+

a0ηβ1T ∗N

(d0 + a0)c
ηβ2T ∗

δ
+

ηβ1T ∗N

c
0

a0(1 − η)β2T ∗

(d0 + a0)δ
+

a0(1 − η)β1T ∗N

(d0 + a0)c
(1 − η)β2T ∗

δ
+

(1 − η)β1T ∗N

c
0

0 0 0




.

Thus

R0 = ρ(FV−1) =
a0Nηβ1T ∗

c(d0 + a0)
+

(1 − η)β1T ∗N

c
+

(1 − η)β2T ∗

δ
+

a0ηβ2T ∗

δ(d0 + a0)

= R01 + R02,

where R01 = a0Nηβ1T∗

c(d0+a0)
+ (1−η)β1T∗N

c and R02 = (1−η)β2T∗

δ + a0ηβ2T∗

δ(d0+a0)
. R01 and R02

are contributions to R0 from the cell-free infection and cell-to-cell transmission,
respectively. We also define the immune reproduction numbers,

Rc
1 =

R0

1 + (β1Nδ+β2c)b
λc(e−bα)

,

Ra
1 =

R0

1 + (β1Nδ+β2c)δ1
λNδa

,

Rc
2 =

(e−bα)δ1c
Nδab R01 + R02

1 + β1δ1(e−bα)+β2ba
λa(e−bα)

,
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which come from the coming discussion on the existence and stability of other kinds
of equilibria. The reproduction number of CTL immune response is denoted as Rc

1,
while the reproduction number of the antibody immune response is represented by
Ra

1 . In biology, Rc
1 represents the average number of CTL cells activated by infected

cells when virus infection is successful but the antibody immune response has not
been established, whereas Ra

1 denotes the average number of antibodies activated
by the virus when viral infection is successful but the CTL immune response has not
been established. The value of Rc

2 corresponds to the reproduction number of CTL
immune competition, which quantifies the average number of CTL cells activated
by infected cells when an established antibody immune response is present [26, 27].

After tedious calculations, we find that model (1) only has the following possible
equilibria with the presence of infection.

(i) When R0 > 1, system (1) has a unique CTL immune-free and antibody-free
equilibrium E1 = (T1, L1, I1, 0, V1, 0), where

T1 =
T ∗

R0
, L1 =

ληT ∗

d0 + a0

(
1 − 1

R0

)
,

I1 =
λc(R0 − 1)
β1Nδ + β2c

, V1 =
λNδ(R0 − 1)
β1Nδ + β2c

.

(ii) When Rc
1 > 1 (which implies R0 > 1), system (1) has a unique CTL immune-

present and antibody-free equilibrium E2 = (T2, L2, I2, Z2, V2, 0), where

T2 =
λcT ∗(e − bα)

λc(e − bα) + (β1Nδ + β2c)b
,

L2 =
ληT ∗(β1Nδ + β2c)b

(d0 + a0)[λc(e − bα) + (β1Nδ + β2c)b]
, I2 =

b

e − bα
,

Z2 =
δ

ρ
(Rc

1 − 1), V2 =
Nδb

c(e − bα)
.

In this scenario, the infection transitions into a chronic phase with a persistent
CTL immune response. However, the viral loads remain at such low levels that
they are unable to trigger the activation of the antibody immune response.

(iii) When Ra
1 > 1 (which implies R0 > 1), system (1) has a unique antibody-

present and CTL immune-free equilibrium E3 = (T3, L3, I3, 0, V3, A3), where

T3 =
λT ∗Nδa

λaNδ + β1Nδδ1 + β2δ1(c + qA3)
,

L3 =
ληT ∗[β1Nδδ1 + β2δ1(c + qA3)]

(d0 + a0)[λaNδ + β1Nδδ1 + β2δ1(c + qA3)]
,

I3 =
(c + qA3)δ1

Naδ
, V3 =

δ1

a
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and A3 is the unique positive root of the quadratic equation given below:

β2δ1q
2A2

3 + q(2β2δ1c + λaNδ + β1Nδδ1 − λNaδR02)A3

+ cλNδaR0

(
1

Ra
1

− 1
)

= 0.

This equilibrium suggests that the establishment of the antibody immune
response occurs when there is viral production, while the presence of infected
cells is insufficient to trigger the CTL immune response.

(iv) When Rc
2 > 1 and Ra

1 > Rc
1 (which also imply R0 > 1), system (1)

has a unique CTL and antibody immunity coexistence equilibrium E4 =
(T4, L4, I4, Z4, V4, A4), where

T4 =
λaT ∗(e − bα)

λa(e − bα) + β1δ1(e − bα) + β2ba
,

L4 =
ληT ∗[β1δ1(e − bα) + β2ba]

(d0 + a0)[λa(e − bα) + β1δ1(e − bα) + β2ba]
, I4 =

b

e − bα
,

Z4 =
δ

ρ
(Rc

2 − 1), V4 =
δ1

a
, A4 =

1
q

[
Nδab

(e − bα)δ1
− c

]
.

Biologically, even though both CTL and antibody immune responses are acti-
vated, the infection persists chronically.

The above are restated below as a result on the existence of equilibria.

Lemma 2.1. (i) When R0 ≤ 1, system (1) has only one equilibrium E0.

(ii) When R0 > 1, Rc
1 ≤ 1, Ra

1 ≤ 1 and either Rc
2 ≤ 1 or Ra

1 ≤ Rc
1, system (1)

only has the two boundary equilibria E0 and E1.
(iii) When Rc

1 > 1 and Ra
1 ≤ 1, system (1) only has the three boundary equilibria

E0, E1 and E2.
(iv) When Ra

1 > 1, Rc
1 ≤ 1 and Rc

2 ≤ 1, system (1) only has the three boundary
equilibria E0, E1 and E3.

(v) When Rc
1 > 1, Ra

1 > 1 and either Rc
2 ≤ 1 or Ra

1 ≤ Rc
1, system (1) only has the

boundary equilibria E0, E1, E2 and E3.
(vi) When Ra

1 > Rc
1 > 1 and Rc

2 > 1, besides the above four boundary equilibria,
system (1) also has a unique interior equilibrium E4.

3. Local Stability

3.1. Local stability of the infection-free equilibrium E0

Theorem 3.1. The infection-free equilibrium E0 is locally asymptotically stable
when R0 < 1 and unstable when R0 > 1.

2350079-7
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Proof. The Jacobian matrix of system (1) at E0 is

J(E0) =





−λ 0 −β2T0 0 −β1T0 0

0 −d0 − a0 ηβ2T0 0 ηβ1T0 0

0 a0 (1 − η)β2T0 − δ 0 (1 − η)β1T0 0

0 0 0 −b 0 0

0 0 Nδ 0 −c 0

0 0 0 0 0 −δ1





.

The characteristic equation of J(E0) is

[(x + d0 + a0)(x + c)(x + δ) − (x + d0 + a0)(1 − η)β2T0(x + c)

− (x + d0 + a0)Nδ(1 − η)β1T0 − a0ηβ2T0(x + c)

− a0ηβ1T0Nδ](x + b)(x + δ1)(x + λ) = 0. (3)

There are three negative eigenvalues x1 = −λ, x2 = −δ1 and x3 = −b. First suppose
R0 < 1. We show that if x = a∗ + ib∗ is an eigenvalue, then the real part a∗ < 0.
By way of contradiction, suppose a∗ ≥ 0. We rewrite (3) as

1 =
(1 − η)β2T0

x + δ
+

Nδ(1 − η)β1T0

(x + c)(x + δ)
+

a0ηβ2T0

(x + δ)(x + d0 + a0)

+
a0ηβ1T0Nδ

(x + d0 + a0)(x + c)(x + δ)
. (4)

Then the modulus of the right-hand side of Eq. (4) satisfies

1 =
∣∣∣∣
(1 − η)β2T0

x + δ
+

Nδ(1 − η)β1T0

(x + c)(x + δ)
+

a0ηβ2T0

(x + δ)(x + d0 + a0)

+
a0ηβ1T0Nδ

(x + d0 + a0)(x + c)(x + δ)

∣∣∣∣

≤
∣∣∣∣
(1 − η)β2T0

x + δ

∣∣∣∣ +
∣∣∣∣
Nδ(1 − η)β1T0

(x + c)(x + δ)

∣∣∣∣ +
∣∣∣∣

a0ηβ2T0

(x + δ)(x + d0 + a0)

∣∣∣∣

+
∣∣∣∣

a0ηβ1T0Nδ

(x + d0 + a0)(x + c)(x + δ)

∣∣∣∣

=
∣∣∣∣
(1 − η)β2T0

x + δ

∣∣∣∣ +
∣∣∣∣
N(1 − η)β1T0

x + c

∣∣∣∣

∣∣∣∣
δ

x + δ

∣∣∣∣ +
∣∣∣∣
a0ηβ2T0

x + δ

∣∣∣∣

∣∣∣∣
1

x + d0 + a0

∣∣∣∣

+
∣∣∣∣

a0ηβ1T0N

x + d0 + a0

∣∣∣∣

∣∣∣∣
1

x + c

∣∣∣∣

∣∣∣∣
δ

x + δ

∣∣∣∣

≤ (1 − η)β2T0

δ
+

N(1 − η)β1T0

c
+

a0ηβ2T0

δ(d0 + a0)
+

a0ηβ1T0N

(d0 + a0)c

= R0.
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This leads to a contradiction with R0 < 1. Hence if R0 < 1, all roots of Eq. (3)
have negative real parts, indicating that E0 is locally asymptotically stable. Now,
let’s assume that R0 > 1. Note that the other three roots of (3) are the roots of
F (x) = 0 with

F (x) = x3 + t1x
2 + t2x + t3,

where

t1 = δ + c + d0 + a0 − (1 − η)β2T0,

t2 = δc + d0(δ + c) + a0(δ + c) − (c + d0 + a0)(1 − η)β2T0

−Nδ(1 − η)β1T0 − a0ηβ2T0,

t3 = d0δc + a0δc − c(d0 + a0)(1 − η)β2T0 − (d0 + a0)Nδ(1 − η)β1T0

− a0ηβ2T0c − a0ηβ1T0Nδ.

It is clear that F (0) = t3 = (d0 + a0)δc(1 − R0) < 0 and limx→∞ F (x) = ∞. Thus
F (x) has at least one positive zero. Accordingly, the characteristic equation (3) has
a positive eigenvalue and hence E0 is unstable.

3.2. Local stability of the immune-free equilibrium E1

Theorem 3.2. Suppose R0 > 1. Then the CTL immune-free and antibody-free
equilibrium E1 is locally asymptotically stable if max{Rc

1, R
a
1} < 1 and is unstable

if max{Rc
1, R

a
1} > 1.

Proof. The characteristic equation at E1 is

(x + λ + β1V1 + β2I1)(x + d0 + a0)(x + δ)(x + c)(x − aV1 + δ1)

×
(

x − eI1

1 + αI1
+ b

)

= (x + λ)(x − aV1 + δ1)
(

x − eI1

1 + αI1
+ b

)

× [(x + d0 + a0)(1 − η)β2T1(x + c) + (1 − η)β1T1Nδ(x + d0 + a0)

+ a0ηβ2T1(x + c) + a0ηβ1T1Nδ]. (5)

There are two obvious eigenvalues: x4 = aV1 − δ1 and x5 = eI1
1+αI1

− b. Recall

I1 =
λc(R0 − 1)
β1Nδ + β2c

, V1 =
λNδ(R0 − 1)
β1Nδ + β2c

.

If max{Rc
1, R

a
1} > 1, then either Rc

1 > 1 or Ra
1 > 1. If Rc

1 > 1, then R0 − 1 >
(β1Nδ+β2c)b

λc(e−bα) . Thus I1 > b
e−bα , which gives x5 > 0. If Ra

1 > 1 then R0 − 1 >
(β1Nδ+β2c)δ1

λNδa . Thus V1 > δ1
a , which implies x4 > 0. Therefore, if max{Rc

1, R
a
1} > 1

2350079-9
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then J(E1) has a positive eigenvalue, which implies that E1 is unstable. Now assume
max{Rc

1, R
a
1} < 1. Then similarly we have V1 < δ1

a and I1 < b
e−bα . Therefore, the

two real eigenvalues x4 and x5 are negative. Subsequently, we demonstrate that
the remaining roots of Eq. (5) possess negative real parts. Otherwise, let us assume
that there exists a root x of (5) with a nonnegative real part. Dividing both sides
of (5) by (x+λ+β1V1 +β2I1)(x+d0 +a0)(x+δ)(x+c)(x−aV1 +δ1)(x− eI1

1+αI1
+b)

gives

1 =
x + λ

x + λ + β1V1 + β2I1
×

[
a0ηβ2T1

(x + d0 + a0)(x + δ)
+

a0ηβ1T1Nδ

(x + c)(x + d0 + a0)(x + δ)

+
(1 − η)β2T1

x + δ
+

(1 − η)β1T1Nδ

(x + c)(x + δ)

]
.

Denote the right-hand side by Λ1. In view of T1 = T∗

R0
, we have

|Λ1| =
∣∣∣∣

(x + λ)a0ηβ2T1

(x + λ + β1V1 + β2I1)(x + d0 + a0)(x + δ)

+
(x + λ)(1 − η)β1T1Nδ

(x + λ + β1V1 + β2I1)(x + c)(x + δ)
+

(x + λ)(1 − η)β2T1

(x + λ + β1V1 + β2I1)(x + δ)

+
(x + λ)a0ηβ1T1Nδ

(x + λ + β1V1 + β2I1)(x + c)(x + d0 + a0)(x + δ)

∣∣∣∣

≤
∣∣∣∣

(x + λ)a0ηβ2T1

(x + λ + β1V1 + β2I1)(x + d0 + a0)(x + δ)

∣∣∣∣

+
∣∣∣∣

(x + λ)(1 − η)β1T1Nδ

(x + λ + β1V1 + β2I1)(x + c)(x + δ)

∣∣∣∣ +
∣∣∣∣

(x + λ)(1 − η)β2T1

(x + λ + β1V1 + β2I1)(x + δ)

∣∣∣∣

+
∣∣∣∣

(x + λ)a0ηβ1T1Nδ

(x + λ + β1V1 + β2I1)(x + c)(x + d0 + a0)(x + δ)

∣∣∣∣

=
∣∣∣∣

x + λ

x + λ + β1V1 + β2I1

∣∣∣∣ ×
[∣∣∣∣

a0ηβ2T1

x + d0 + a0

∣∣∣∣

∣∣∣∣
1

x + δ

∣∣∣∣ +
∣∣∣∣
(1 − η)β1T1N

x + c

∣∣∣∣

∣∣∣∣
δ

x + δ

∣∣∣∣

+
∣∣∣∣
(1 − η)β2T1

x + δ

∣∣∣∣ +
∣∣∣∣

a0ηβ1T1N

x + d0 + a0

∣∣∣∣

∣∣∣∣
δ

x + δ

∣∣∣∣

∣∣∣∣
1

x + c

∣∣∣∣

]

<
a0ηβ2T1

(d0 + a0)δ
+

(1 − η)β1T1N

c
+

(1 − η)β2T1

δ
+

a0ηβ1T1N

(d0 + a0)c
=

R0

T ∗T1

= 1.

This leads to a contradiction. Thus all roots of (5) have negative real parts. This
proves that E1 is locally asymptotically stable when max{Rc

1, R
a
1} < 1.
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3.3. Local stability of the infected equilibrium E2

Theorem 3.3. Suppose Rc
1 > 1. Then the CTL immune-present and antibody-free

equilibrium E2 is locally asymptotically stable when Ra
1 < Rc

1 and unstable when
Ra

1 > Rc
1.

Proof. The characteristic equation of J(E2) can be rewritten as

(x − aV2 + δ1)(x + λ + β1V2 + β2I2)(x + c)(x + d0 + a0)

×
[
(x + δ + ρZ2)x +

eZ2ρI2

(1 + αI2)2

]

= (x − aV2 + δ1)(x + λ)x[a0ηβ1T2Nδ + (x + d0 + a0)(1 − η)β1T2Nδ

+ (x + c)a0ηβ2T2 + (x + c)(x + d0 + a0)(1 − η)β2T2].

Therefore, there is an eigenvalue x6 = aV2 − δ1 and the others satisfy

(x + c)(x + λ + β1V2 + β2I2)(x + d0 + a0)
[
(x + δ + ρZ2)x +

eZ2ρI2

(1 + αI2)2

]

= (x + λ)x[a0ηβ1T2Nδ + (x + d0 + a0)(1 − η)β1T2Nδ + (x + c)a0ηβ2T2

+ (x + c)(x + d0 + a0)(1 − η)β2T2]. (6)

If Ra
1 > Rc

1 then from V2 = Nδb
c(e−bα) we can obtain V2 > δ1

a and hence x6 > 0. This
means that E2 is unstable if Ra

1 > Rc
1. Now assume that Ra

1 < Rc
1. Then similarly

we can obtain V2 < δ1
a so x6 is a negative eigenvalue. Now, we demonstrate that

all the remaining eigenvalues possess negative real parts. By way of contradiction,
suppose that x = a∗ + ib∗ is an eigenvalue with a∗ ≥ 0. We rewrite (6) as

1 =
x + λ

x + λ + β1V2 + β2I2





a0ηβ1T2Nδx

(x + d0 + a0)(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]

+
(1 − η)β1T2Nδx

(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]

+
a0ηβ2T2x

(x + d0 + a0)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

] +
(1 − η)β2T2x

(x + δ + ρZ2)x + eZ2ρI2
(1+αI2)2




 .

Denote the right-hand side by Λ2. If a∗ = b∗ = 0, then Λ2 = 0, a contradiction
to 1 = Λ2. So we assume a∗2 + b∗2 > 0. Using Z2 = δ

ρ (Rc
1 − 1) = δ

ρ ( T2
T∗ R0 − 1),
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we have

|Λ2| =

∣∣∣∣∣∣
a0ηβ1T2Nδx(x + λ)

(x + d0 + a0)(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

+
(1 − η)β1T2Nδx(x + λ)

(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

+
a0ηβ2T2x(x + λ)

(x + d0 + a0)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

+
(1 − η)β2T2x(x + λ)[

(x + δ + ρZ2)x + eZ2ρI2
(1+αI2)2

]
(x + λ + β1V2 + β2I2)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
a0ηβ1T2Nδx(x + λ)

(x + d0 + a0)(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1 − η)β1T2Nδx(x + λ)

(x + c)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
a0ηβ2T2x(x + λ)

(x + d0 + a0)
[
(x + δ + ρZ2)x + eZ2ρI2

(1+αI2)2

]
(x + λ + β1V2 + β2I2)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1 − η)β2T2x(x + λ)[

(x + δ + ρZ2)x + eZ2ρI2
(1+αI2)2

]
(x + λ + β1V2 + β2I2)

∣∣∣∣∣∣

=
∣∣∣∣

x + λ

x + λ + β1V2 + β2I2

∣∣∣∣ ×

∣∣∣∣∣
x

(x + δ + ρZ2)x + eZ2ρI2
(1+αI2)2

∣∣∣∣∣

×
{∣∣∣∣

a0ηβ1T2Nδ

(x + d0 + a0)(x + c)

∣∣∣∣ +
∣∣∣∣
(1 − η)β1T2Nδ

x + c

∣∣∣∣ +
∣∣∣∣

a0ηβ2T2

x + d0 + a0

∣∣∣∣

+ |(1 − η)β2T2|
}

=
∣∣∣∣

x + λ

x + λ + β1V2 + β2I2

∣∣∣∣ ×

∣∣∣∣∣
1

x + δ + ρZ2 + eZ2ρI2
(1+αI2)2x

∣∣∣∣∣

×
{∣∣∣∣

a0ηβ1T2Nδ

(x + d0 + a0)(x + c)

∣∣∣∣ +
∣∣∣∣
(1 − η)β1T2Nδ

x + c

∣∣∣∣ +
∣∣∣∣

a0ηβ2T2

x + d0 + a0

∣∣∣∣

+ |(1 − η)β2T2|
}
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≤ 1
δ + ρZ2

×
{∣∣∣∣

a0ηβ1T2Nδ

(x + d0 + a0)(x + c)

∣∣∣∣ +
∣∣∣∣
(1 − η)β1T2Nδ

x + c

∣∣∣∣ +
∣∣∣∣

a0ηβ2T2

x + d0 + a0

∣∣∣∣

+ |(1 − η)β2T2|
}

<
a0ηβ1T2Nδ

(d0 + a0)c(δ + ρZ2)
+

(1 − η)β1T2Nδ

c(δ + ρZ2)
+

a0ηβ2T2

(d0 + a0)(δ + ρZ2)
+

(1 − η)β2T2

δ + ρZ2

=
[
a0ηβ1T ∗N

(d0 + a0)c
+

(1 − η)β1T ∗N

c
+

a0ηβ2T ∗

(d0 + a0)δ
+

(1 − η)β2T ∗

δ

]
1

R0

= 1.

This leads to a contradiction. Thus E2 is locally asymptotically stable when
Ra

1 < Rc
1.

3.4. Local stability of the infected equilibrium E3

Theorem 3.4. Suppose Ra
1 > 1. Then the antibody-present and CTL immune-

free equilibrium E3 is locally asymptotically stable when Rc
2 < 1 and unstable when

Rc
2 > 1.

Proof. The characteristic equation at E3 is

(x + λ + β1V3 + β2I3)(x + d0 + a0)[qV3aA3 + x(x + c + qA3)](x + δ)

×
(

x − eI3

1 + αI3
+ b

)

= (x + λ)
(

x − eI3

1 + αI3
+ b

)
{(x + d0 + a0)(1 − η)β1T3Nδx + a0ηβ2T3

× [qV3aA3 + x(x + c + qA3)] + a0ηβ1T3Nδx + (1 − η)β2T3

× [qV3aA3 + x(x + c + qA3)](x + d0 + a0)}.

Thus there is an eigenvalue x7 = eI3
1+αI3

− b = eδ1(c+qA3)
Nδa+(c+qA3)δ1α − b and the others

satisfy

(x + λ + β1V3 + β2I3)(x + d0 + a0)[qV3aA3 + x(x + c + qA3)](x + δ)

= (x+ λ){(x + d0 + a0)(1− η)β1T3Nδx+ a0ηβ2T3[qV3aA3 + x(x + c + qA3)]

+ a0ηβ1T3Nδx + (1 − η)β2T3[qV3aA3 + x(x + c + qA3)](x + d0 + a0)}.
(7)
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With the help of system (1), we have

c + qA3 =
cR0

T ∗ T3 +
(1 − η)β2T3qA3

δ
+

a0ηβ2T3qA3

(d0 + a0)δ

=
T3

T ∗ (cR0 + R02qA3)

=
T3
T∗ R01c

1 − T3
T∗ R02

=
λNδaR01c

λNδa(1 − R02) + β1Nδδ1 + β2δ1(c + qA3)
,

which yields that

c + qA3 =

λNδa(R02 − 1) − β1Nδδ1

+
√

[λNδa(1 − R02) + β1Nδδ1]2 + 4β2δ1λNδaR01c

2β2δ1
.

We can obtain c + qA3 > Nδab
δ1(e−bα) if Rc

2 =
(e−bα)δ1c

Nδab R01+R02

1+
β1δ1(e−bα)+β2ba

λa(e−bα)

> 1. Therefore, x7 > 0

if Rc
2 > 1, which means that E3 is unstable if Rc

2 > 1. Suppose Rc
2 < 1. Then

x7 < 0. We establish that the remaining roots of Eq. (7) exhibit negative real
parts. Otherwise, suppose that (7) has a root x = a∗ + ib∗ with a∗ ≥ 0. Dividing
both sides of (7) by (x+λ+β1V3+β2I3)(x+d0+a0)[qV3aA3+x(x+c+qA3)](x+δ)
yields

1 =
x + λ

x + λ + β1V3 + β2I3

{
(1 − η)β1T3Nδx

[qV3aA3 + x(x + c + qA3)](x + δ)
+

(1 − η)β2T3

x + δ

+
a0ηβ1T3Nδx

(x + d0 + a0)[qV3aA3 + x(x + c + qA3)](x + δ)
+

a0ηβ2T3

(x + d0 + a0)(x + δ)

}
.

Denote the right-hand side by Λ3. If a∗ = b∗ = 0, then according to c + qA3 =
T3
T∗ R01c

1− T3
T∗ R02

> 0, we can derive R02 < T∗

T3
. Therefore,

| Λ3 | =
λ

λ + β1V3 + β2I3

[
(1 − η)β2T3

δ
+

a0ηβ2T3

(d0 + a0)δ

]

=
λ

λ + β1V3 + β2I3

R02T3

T ∗

=
λ

λT∗

T3

R02T3

T ∗

= R02
T 2

3

T ∗2 <
T3

T ∗

< 1.
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This leads to a contradiction. Now assume a∗2 + b∗2 > 0. Then

| Λ3 | ≤
∣∣∣∣

x + λ

x + λ + β1V3 + β2I3

∣∣∣∣ ×
{∣∣∣∣

(1 − η)β1T3Nδx

[qV3aA3 + x(x + c + qA3)](x + δ)

∣∣∣∣

+
∣∣∣∣
(1 − η)β2T3

x + δ

∣∣∣∣ +
∣∣∣∣

a0ηβ1T3Nδx

(x + d0 + a0)[qV3aA3 + x(x + c + qA3)](x + δ)

∣∣∣∣

+
∣∣∣∣

a0ηβ2T3

(x + d0 + a0)(x + δ)

∣∣∣∣

}

<

[∣∣∣∣
(1 − η)β1T3Nδ

x + δ

∣∣∣∣ +
∣∣∣∣

a0ηβ1T3Nδ

(x + d0 + a0)(x + δ)

∣∣∣∣

]
×

∣∣∣∣
x

qV3aA3 + x(x + c + qA3)

∣∣∣∣

+
∣∣∣∣

a0ηβ2T3

(x + d0 + a0)(x + δ)

∣∣∣∣ +
∣∣∣∣
(1 − η)β2T3

x + δ

∣∣∣∣

=
[∣∣∣∣

(1 − η)β1T3Nδ

x + δ

∣∣∣∣ +
∣∣∣∣

a0ηβ1T3Nδ

(x + d0 + a0)(x + δ)

∣∣∣∣

]
×

∣∣∣∣∣
1

qV3aA3
x + x + c + qA3

∣∣∣∣∣

+
∣∣∣∣

a0ηβ2T3

(x + d0 + a0)(x + δ)

∣∣∣∣ +
∣∣∣∣
(1 − η)β2T3

x + δ

∣∣∣∣

≤
∣∣∣∣
(1 − η)β1T3Nδ

x + δ

∣∣∣∣ ×
∣∣∣∣

1
c + qA3

∣∣∣∣ +
∣∣∣∣

a0ηβ1T3Nδ

(x + d0 + a0)(x + δ)

∣∣∣∣ ×
∣∣∣∣

1
c + qA3

∣∣∣∣

+
∣∣∣∣

a0ηβ2T3

(x + d0 + a0)(x + δ)

∣∣∣∣ +
∣∣∣∣
(1 − η)β2T3

x + δ

∣∣∣∣

<
(1 − η)β1T3N

c + qA3
+

a0ηβ2T3

(d0 + a0)δ
+

a0ηβ1T3N

(d0 + a0)(c + qA3)
+

(1 − η)β2T3

δ

=
(1 − η)β1T ∗N

cR0 + R02qA3
+

a0ηβ2T ∗T3

(d0 + a0)δT ∗ +
a0ηβ1T ∗N

(d0 + a0)(cR0 + R02qA3)

+
(1 − η)β2T ∗T3

δT ∗

=
cR01

cR0 + R02qA3
+

R02T3

T ∗ =
cR01

cR0 + R02qA3
+

(c + qA3)R02

cR0 + R02qA3
= 1.

This also leads to a contradiction. Therefore, E3 is locally asymptotically stable
when Rc

2 < 1.

3.5. Local stability of the infected equilibrium E4

Theorem 3.5. Suppose Ra
1 > Rc

1 and Rc
2 > 1. Then the CTL and antibody immu-

nity coexistence equilibrium E4 is locally asymptotically stable.
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Proof. The characteristic equation at E4 is

(x + λ + β1V4 + β2I4)(x + d0 + a0)[qV4aA4 + x(x + c + qA4)]

×
[
(x + δ + ρZ4)x +

eZ4ρI4

(1 + αI4)2

]

= (x + λ){(x + d0 + a0)(1 − η)β1T4Nδx2 + a0ηβ2T4x[qV4aA4

+ x(x + c + qA4)] + a0ηβ1T4Nδx2 + (1 − η)β2T4x[qV4aA4

+ x(x + c + qA4)](x + d0 + a0)}. (8)

Let g = (x+ δ + ρZ4)x+ eZ4ρI4
(1+αI4)2 . We establish that all the roots of Eq. (8) exhibit

negative real parts. If this were not the case, there would exist a root x = a∗ + ib∗

with a nonnegative real part. Dividing both sides of (8) by (x+λ+β1V4 +β2I4)(x+
d0 + a0)[qV4aA4 + x(x + c + qA4)]g gives us

1 =
x + λ

x + λ + β1V4 + β2I4
×

{
a0ηβ2T4x

(x + d0 + a0)g
+

(1 − η)β2T4x

g

+
(1 − η)β1T4Nδx2

[qV4aA4 + x(x + c + qA4)]g
+

a0ηβ1T4Nδx2

(x + d0 + a0)[qV4aA4 + x(x + c + qA4)]g

}
.

Let the right-hand side be Λ4. If a∗ = b∗ = 0, then we have Λ4 = 0, which leads to
a contradiction. Now assume a∗2 + b∗2 > 0. Then we have

| Λ4 | ≤
∣∣∣∣

x + λ

x + λ + β1V4 + β2I4

∣∣∣∣ ×
{∣∣∣∣

(1 − η)β1T4Nδx2

[qV4aA4 + x(x + c + qA4)]g

∣∣∣∣

+
∣∣∣∣

a0ηβ2T4x

(x + d0 + a0)g

∣∣∣∣ +
∣∣∣∣

a0ηβ1T4Nδx2

(x + d0 + a0)[qV4aA4 + x(x + c + qA4)]g

∣∣∣∣

+
∣∣∣∣
(1 − η)β2T4x

g

∣∣∣∣

}

≤
{[

|(1 − η)β1T4Nδ| +
∣∣∣∣
a0ηβ1T4Nδ

x + d0 + a0

∣∣∣∣

]
×

∣∣∣∣
x

qV4aA4 + x(x + c + qA4)

∣∣∣∣

+
∣∣∣∣

a0ηβ2T4

x + d0 + a0

∣∣∣∣ + |(1 − η)β2T4|
}
×

∣∣∣∣∣
x

(x + δ + ρZ4)x + eZ4ρI4
(1+αI4)2

∣∣∣∣∣

=

{[
|(1 − η)β1T4Nδ| +

∣∣∣∣
a0ηβ1T4Nδ

x + d0 + a0

∣∣∣∣

]
×

∣∣∣∣∣
1

qV4aA4
x + x + c + qA4

∣∣∣∣∣

+
∣∣∣∣

a0ηβ2T4

x + d0 + a0

∣∣∣∣ + |(1 − η)β2T4|
}
×

∣∣∣∣∣
1

x + δ + ρZ4 + eZ4ρI4
(1+αI4)2x

∣∣∣∣∣
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≤
{[

|(1 − η)β1T4Nδ| +
∣∣∣∣
a0ηβ1T4Nδ

x + d0 + a0

∣∣∣∣

]
× 1

c + qA4
+

∣∣∣∣
a0ηβ2T4

x + d0 + a0

∣∣∣∣

+ |(1 − η)β2T4|
}
× 1

δ + ρZ4

<
(1 − η)β1T4Nδ

(c + qA4)(δ + ρZ4)
+

a0ηβ1T4Nδ

(d0 + a0)(δ + ρZ4)(c + qA4)
+

a0ηβ2T4

(d0 + a0)(δ + ρZ4)

+
(1 − η)β2T4

δ + ρZ4

=
[
a0ηβ1T ∗N

d0 + a0
+

a0ηβ2T ∗(c + qA4)
(d0 + a0)δ

+ (1 − η)β1T
∗N

+
(1 − η)β2T ∗(c + qA4)

δ

]
1

R0c + R02qA4

= 1.

This again leads to a contradiction. Thus E4 is locally asymptotically stable.

4. Sensitivity Analysis

To assess the impact of parameters on the reproduction numbers, we perform a
sensitivity analysis [28] on them. For this purpose, we employ the Latin hyper-
cube sampling (LHS) method and the partial rank correlation coefficients (PRCCs)
method. The used parameter values, taken from [2, 21, 29–32], are listed in Table 1.

To conduct the sensitivity analysis, we calculate the PRCCs between the four
reproduction numbers and each parameter, as shown in Fig. 1. The sign of the
PRCC denotes whether the input variable exhibits a positive or negative correlation
with the output variable [33]. Additionally, the magnitude of the PRCC indicates
the strength of the relationship between each input parameter and the output
variable. Specifically, a PRCC value greater than 0.4 indicates a strong correlation,
while a value between 0.2 and 0.4 suggests a moderate correlation. Conversely, a
PRCC value below 0.2 indicates a weak correlation [19].

Table 1. Parameter values.

Parameter Value Parameter Value

e 0.2 day−1 a 0.003 µL · day−1

N 2000 virions/cell b 0.1 day−1

β1 2.4 × 10−8 µL · day−1 δ 1 day−1

β2 1 × 10−6 µL · day−1 η 0.05
λ 0.01 day−1 c 23 day−1

a0 0.1 day−1 δ1 10 day−1

d0 0.001 day−1 α 0.01
T ∗ 106 cells/mm3 ρ 0.0024 µL · day−1
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Fig. 1. The sensitivity analyses of the four reproduction numbers: (a) R0, (b) Rc
1, (c) Ra

1 and
(d) Rc

2.

Based on these guidelines, we observe from Fig. 1(a) that the parameters with
the most significant influence on R0 are c, N , δ, and β2. Similarly, for the repro-
duction number Rc

1, the influences of c, N , and e are similar, while b exhibits the
highest significance, as depicted in Fig. 1(b). Figure 1(c) demonstrates that Ra

1

is greatly correlated with δ, c, and λ. Similarly, by referring to Fig. 1(d), we can
determine the relationships between Rc

2 and each parameter.

5. Numerical Simulations

Numerical simulations are performed in this section to illustrate and extend the
theoretical results for model (1).

5.1. Local stability

First, we choose N = 800, η = 0.4, e = 0.000011, a = 0.00002, α = 0.0001,
q = 0.1, and the remaining parameters are the same as those in Table 1. In this case,
R0 = 1.69, Rc

1 = 0.19, and Ra
1 = 0.79. By Theorem 3.2, the CTL immune-free and
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Fig. 2. Solutions of system (1) converge to the CTL immune-free and antibody-free equilibrium
when R0 > 1 and max{Rc

1, Ra
1} < 1. Initial condition is: (T (0), L(0), I(0), Z(0), V (0), A(0)) =

(106, 20, 30, 30, 50, 30).

antibody-free equilibrium E1 = (547135, 17904, 4501, 0, 156748, 0) is locally asymp-
totically stable. See Fig. 2.

Next, we choose e = 0.2, b = 0.8, a = 0.00002, q = 0.1, and the remaining
parameters are the same as those in Table 1. In this case, R0 = 2.74, Rc

1 = 2.73,
and Ra

1 = 0.68. By Theorem 3.3, the CTL immune-present and antibody-free equi-
librium E2 = (998765, 6, 4, 867, 362, 0) is locally asymptotically stable. See Fig. 3.

We now change e, b, a, and δ1 to e = 0.0003, b = 0.1, a = 0.001, and δ1 = 1.
The other values are the same as those for Fig. 3. We obtain that R0 = 2.74, Ra

1 =
2.69, and Rc

2 = 0.97. By Theorem 3.4, the antibody-present and CTL immune-free
equilibrium E3 = (952425, 235, 475, 0, 999, 9280) is locally asymptotically stable.
See Fig. 4.
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Fig. 3. Solutions of system (1) converge to the CTL immune-present and antibody-free equi-
librium when Rc

1 > 1 and Ra
1 < Rc

1. Initial condition is: (T (0), L(0), I(0), Z(0), V (0), A(0)) =
(106, 20, 30, 30, 50, 30).

Furthermore, with e = 0.2, b = 0.8, a = 0.004, and the other parameter values
being the same as those for Fig. 4, we have R0 = 2.74, Rc

2 = 2.25, Rc
1 = 2.68,

and Ra
1 = 2.74. By Theorem 3.5, the CTL and antibody immunity coexistence

equilibrium E4 = (999002, 4, 4, 598, 249, 91) is locally asymptotically stable. See
Fig. 5.

5.2. Effect of e and a on the dynamics of system (1)

By conducting the sensitivity analysis (as shown in Fig. 1), we can qualitatively
discern the positive and negative effects of parameters on the four reproduction
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Fig. 4. Solutions of system (1) converge to the antibody-present and CTL immune-free equi-
librium when Ra

1 > 1 and Rc
2 < 1. Initial condition is: (T (0), L(0), I(0), Z(0), V (0), A(0)) =

(106, 20, 30, 30, 50, 30).

numbers, as well as quantitatively evaluate the magnitude of these effects. Nev-
ertheless, the influence of sensitive parameters on the dynamic behavior of the
population remains uncertain. To address this, we will examine the influence of
the sensitive parameters e and a on the dynamics of system (1) through numerical
simulations.

First, we observe that though the activation of CTL immune response alone
may not be sufficient to eradicate the virus, the size of uninfected cells increases
with enhanced CTL activity. Additionally, as the parameter e increases, the levels
of latent cells, infected cells, and viruses reach lower stabilized levels (see Fig. 6).
On the other hand, neutralizing antibodies specifically bind to viruses, leading to
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Fig. 5. Solutions of system (1) converge to the CTL and antibody immune coexistence equi-
librium when Rc

2 > 1 and Ra
1 > Rc

1. Initial condition is: (T (0), L(0), I(0), Z(0), V (0), A(0)) =
(106, 20, 30, 30, 50, 30).

a significant reduction in the viral population as the parameter a increases (see
Fig. 7). These findings indicate that both CTL immunity and antibody immunity
play crucial roles in increasing the population of uninfected cells and decreasing the
numbers of latent cells, infected cells, and viruses.

Moreover, Fig. 6 illustrates the competitive nature of adaptive immune res-
ponses, where the antibody immune response diminishes to zero when the CTL
immune response is at a high level. This suggests that there is a competitive rela-
tionship between the two immune responses, with the CTL immune response exert-
ing a stronger influence. Consequently, the CTL immune response is indispensable
in shaping the dynamics of viral infection.
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Fig. 6. The effect of e on the dynamics of the model with the same values for the other parameters
and initial condition as those for Fig. 5.

Overall, these results shed light on the intricate interactions between the immune
responses and the viral dynamics, emphasizing the significance of both CTL and
antibody immunities in controlling the infection.

5.3. Effect of β2 on viruses and infected cells

To examine the impact of cell-to-cell transmission, numerical simulations are con-
ducted to assess its contribution throughout the infection process. Initially, we set
β2 to zero to compare HIV infection in the absence of cell-to-cell transmission with
infection involving both transmission routes (β2 = 0 and β2 = 1 × 10−6). The
results clearly indicate that cell-to-cell transmission plays a favorable role in HIV
transmission (refer to Fig. 8).
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Fig. 7. The effect of a on the dynamics of the model with the same values for the other parameters
and initial condition as those for Fig. 5.
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Subsequently, we increased β2 to examine the variations in peak levels of infected
cells and viruses, as well as the time required to reach these peak levels (β2 =
1 × 10−6, β2 = 1 × 10−5, and β2 = 1 × 10−4). Our findings reveal that as β2

increases, infected cells and viruses reach their peak levels more rapidly. Moreover,
the peak levels themselves also become higher with increasing β2. This finding
underscores the significance of considering cell-to-cell transmission in the study of
HIV infection dynamics, emphasizing its importance and suggesting that it should
not be overlooked.

6. Discussion and Conclusion

Several previous HIV infection models have primarily focused on the cell-free infec-
tion mode, often neglecting latent infection [5, 6]. Furthermore, the consideration
of adaptive immune responses has predominantly focused on either CTLs or anti-
bodies, with few studies exploring the coexistence of both immune responses [2, 17].
The novelty of this research lies in the construction of a mathematical model that
encompasses two distinct modes of infection, two types of immune responses, and
latent infection. The model also incorporates a saturated CTL immune response,
thereby introducing additional intricacies to the analysis.

The mathematical model presented in this study has been rigorously analyzed,
ensuring that the solutions are nonnegative and bounded. We show that this model
has five possible equilibria: infection-free equilibrium E0, CTL immune-free and
antibody-free equilibrium E1, CTL immune-present and antibody-free equilibrium
E2, antibody-present and CTL immune-free equilibrium E3, and CTL and antibody
immune coexistence equilibrium E4. In addition, the existence of these equilibria is
determined by four threshold parameters, which are the basic reproduction number
R0 and the immune reproduction numbers Rc

1, Ra
1 , and Rc

2. They also characterize
the local characteristics of the model.

As we know, the basic reproductive number of the system plays a key role in
predicting whether the infection will persist. By the explicit expression of R0, it
consists of the contributions of the two transmission routes. Figure 1(a) shows that
β2 has a strong positive correlation with R0. And Fig. 8 shows that cell-to-cell
transmission is beneficial for HIV transmission and the time to reach the peak level
of virus is shorter. Therefore, it is crucial to consider the transmission of the virus
through the cell-to-cell route as a fundamental factor in the study of HIV infection.

Antiretroviral drugs have the ability to inhibit infection, resulting in a reduc-
tion in the values of β1 and β2, which can potentially lower the basic reproduction
number to below 1. Immune therapy, on the other hand, can enhance the activation
of both CTL and antibody responses, leading to an increase in the values of e and
a, respectively. While the activation of immune responses may not have a direct
impact on the basic reproduction number R0, it can indirectly decrease its value
by enhancing the clearance of infected cells and viruses (as depicted in Fig. 1(a)).
Moreover, this can also influence other immune-related reproduction numbers and
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contribute to the stability of the corresponding equilibria (as shown in Figs. 1(b)–
1(d)). The impact of CTL stimulation on reducing the concentration of infected
cells and increasing the level of uninfected cells is more pronounced, as observed in
Figs. 6 and 7. Similarly, a higher rate of antibody immunity generation can signifi-
cantly decrease the number of viruses. Notably, the last graph in Fig. 6 suggests a
competitive relationship between CTL and antibody immune responses.

In this paper, our focus was primarily on analyzing the local dynamics of Eq. (1).
Exploring the global dynamics poses a very challenging task, which we consider as
a future work. Additionally, there are several extensions that can be made to the
model. For instance, incorporating time delays that account for the integration of
viral DNA into host cell DNA and incorporating logistic growth dynamics in the
viral infection process can provide a more realistic description of the dynamic evolu-
tion of viruses and normal cells [19, 34, 35]. This paper only considers the immune
response caused by the virus and does not take into account the effects of drug
treatment on infected individuals. The model can also consider the impact of treat-
ment strategies, e.g. combined antiretroviral treatment strategies, optimal control
strategies while calculating the associated costs using optimal control theory [36].
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