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ARTICLE INFO ABSTRACT

Editor: F. Gelis The rapidity-odd directed flows (v,) of identified hadrons are expected to follow the coalescence sum rule when
the created matter is initially in parton degrees of freedom and then hadronizes through quark coalescence.
A recent study has considered the v, of produced hadrons that do not contain u or d constituent quarks. It has
constructed multiple hadron sets with a small mass difference but given difference in electric charge Ag and
strangeness A.S between the two sides, where a nonzero and increasing Av; with Ag has been proposed to be
a consequence of electromagnetic fields. In this study, we examine the consequence of coalescence sum rule on
the Av, of the hadron sets in the absence of electromagnetic fields. We find that in general Av; # 0 for a hadron
set with nonzero Ag and/or AS due to potential v, differences between ii and d and between s and 5§ quarks. We
further propose methods to extract the coefficients for the Ag- and A.S-dependences of the direct flow difference,
where a nonzero constant term would indicate the breaking of the coalescence sum rule. The extraction methods
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are then demonstrated with transport model results.

1. Introduction

The properties of the quark-gluon plasma produced in relativistic
heavy ion collisions can be studied with the directed flow (v,) [1-4].
For example, v, is found to be a sensitive probe of the equation of state
of the produced matter [5,6], and v, of heavy flavors [7] is expected
to be sensitive to the strong electromagnetic field in the early stage of
noncentral heavy ion collisions.

The coalescence sum rule is often found to describe well the re-
lations of anisotropic flows of different hadron species in heavy ion
collisions at high energies [8-13]. For collisions where the dynamics
of anisotropic flows is dominated by parton interactions, quark coa-
lescence relates the hadron flow directly to the flows of the hadron’s
constituent quarks [8,14,15]. When the constituent quarks in a hadron
are comoving with each other and the quark coalescence probability is
small, the hadron elliptic flow v, follows the coalescence sum rule at
leading order [8,15,16]. The same formulation can be extended to the
directed flow. When we neglect the mass difference of the constituent
quarks [15], the coalescence sum rule is simply given by [8]
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ol (pf) = Y v, (py), with pff = Ny pr. ¢))

J

In the above, n=1 for v; and n =2 for v,, v, ;(pr) represents the flow
v, of constituent quark j at the quark transverse momentum pr, while
N,, is the number of constituent quarks (NCQ) of the hadron species
H. Furthermore, if the quark v,(py) is the same for each constituent
quark of hadron species H, Eq. (1) reduces to the most used form of the
NCQ scaling: v¥ (N, pr) = N, v,(py).-

It has been proposed [17] that the direct flows of hadrons whose
constituent quarks are all produced quarks can be properly combined
to better test the coalescence sum rule. In contrast to produced quarks,
hadrons containing u and/or d quarks get contributions from slowed-
down (or transported) u and d quarks in the incoming nuclei [18,19],
which complicate the flow analysis. Our study here has been moti-
vated by a recent study [20], which further considered the v, difference
of various combinations of hadron sets consisting of seven produced
hadron species: K~,¢,5,A, B, Q, and Q*. For example, one of the
combinations is vy[A] — (v;[¢]/2 + 2v,[p]/3). That study focused on
the dependence of the v, difference on the electric charge difference
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Table 1

Physics Letters B 849 (2024) 138479

List of several hadron sets, where the left side and right side have the same total number
of i and d quarks and the same total number of s and § quarks (after including the
weights). Ag, Ag,, and AS represent the difference in the electric charge, electric charge
from @ and d quarks, and strangeness number, respectively, between the two sides. Note
that sets 1 to 4 and set 5A are independent of each other, while set 5B is not independent

of them.

Set# Agy AS Aq

L (left side)

R (right side)

1 0 0 0
2 0 0 0 v, [A@ds))
3 0 0 0

4 0 1 /3 1ol¢(s9)]
5A 13 1 2/3

5B 73 1 2/3 v [A@ds)|

0,[K~(@@s)] + v, [A@@ds))

Lo[Q (ss9)1+ L0, [Q 59)]

S0l + So, [p@aad)]

o, [p@ad)] +0,[(s3)]
soip@ad)) + 50,[E (d59))
0, [(59)]

10,[1Q (s39)]

v, [K~(@s)]

L0,[¢(s9)] + 2o, [p(aad)]

Agq and the strangeness difference AS of the hadron set combinations.
A nonzero v; difference at nonzero Ag was considered as the breaking
of the coalescence sum rule and proposed to be a consequence of the
electromagnetic fields [20,21], especially if the v, difference increases
with Ag. The study also recognized the need for further investigation if
a systematic dependence of the v, difference on AS is observed [20].

In this study, we examine in detail the v, difference of various com-
binations of these seven hadron species. Note that the v; throughout
this study refers to the rapidity-odd directed flow, although v; contains
both rapidity-odd and rapidity-even components where the rapidity-
even directed flow originates from event-by-event fluctuations. In ad-
dition, since we only consider light quarks, which constituent masses
are not too different, we neglect the effect of different quark masses on
the coalescence sum rule [15] and thus start the analysis from Eq. (1).
The paper is organized as follows. In Sec. 2, we derive the coalescence
sum rule relationships between the v; difference of each hadron set
and the quark v;. In Sec. 3, we present two methods to extract the de-
pendences of the v, difference on the electric charge difference Ag and
the strangeness difference A.S, and in Sec. 4 we demonstrate the extrac-
tion methods with the numerical v; results from a multi-phase transport
(AMPT) model. Finally, we summarize in Sec. 5.

2. Coalescence sum rule relations for the v, difference of
a hadron set

In this study, we only consider produced hadrons whose constituent
quarks consist of @, d, s and 5 quarks. Table 1 lists several such hadron
sets, where for each combination the left side and the right side have
the same total number of i and d quarks and the same total number of s
and 5 quarks (after including the weighting factors). For a given hadron
set, let N[L and N’.R be the total number of constituent quarks of flavor
i in each hadron multiplied by the weighting factor of the hadron on
the left side and right side, respectively. We then write

AN;=N} - NER &)
as the difference of N; between the two sides. Then each hadron set in
Table 1 satisfies the following relations:

AN; +AN;=0, AN, +AN;=0. ()]

For example, set 5A has NX =2/3, N;s =1/3, Nb=NL=1/2, NR=
1,and N SR = 1. Similar to Eq. (2), we can define the differences of the
total electric charge in # and d quarks (g,,), the total strangeness .S,
and the total electric charge g, between the two sides as

Mg =ql —qf =ANg,
AS =5t —sR=2AN,,

1
AqEqL—qR=Aqud+§AS, @

respectively. The values of Ag,,;, AS, and Aq for each hadron set are
given in Table 1, where the left side and right side are shown with
the constituent quark content and the weighting factor of each hadron.
Because of Eq. (3), the mass difference (after including the weighting
factors) between the two sides is small for most of these hadron sets.
Note that sets 1, 2, and 3 each have identical constituent quark content
on the left and right sides and thus satisfy Ag,; = Ag=AS =0. On the
other hand, sets 4, 5A and 5B each have a nonzero charge difference
and/or a nonzero strangeness difference between the two sides. One
can show that the conditions of Eq. (3) lead to the following general
hadron set:

a, K +ayp+a3p+asA—(a; +3a;+2a4)E"

+a 9—+<a—1—ﬂ+2a ta,—a >Q+—O )
5 3 4 5 =Y

3 3

where g; are arbitrary constants; as a result, there are only five sets
of independent hadron sets! [20]. Sets 1 to 4 and 5A in Table 1 give
one example of the five independent sets; so do sets 1 to 4 and 5B.
However, sets 1, 5A, and 5B are not independent of each other, since
the v, difference between the two sides of set 5B can be written as that
of set 5A plus that of set 1. With sets 1 to 4 and 5A (or 5B) in Table 1,
one can construct all the hadron sets of earlier studies [20,21].

We now apply the coalescence sum rule in Eq. (1) to evaluate the
difference between the v; from two sides of a given hadron set. Since
we neglect the mass difference of u/d /s constituent quarks, the quarks
coalescing to form a hadron have the same p;. If we only consider
quarks at a given py, then they will form mesons at p’T” =2pr and
(anti)baryons at p,llf = 3pr; this is why we have chosen the pr range
as [0,2] GeV/c for mesons and [0,3] GeV/c for (anti)baryons for the
analysis of the model calculations in Sec. 4. The difference between the
v, from two sides of a given hadron set is then given by

Av, EulL—uf:ZAN, Uis 6)
i

where v, ; represents the v, of quark flavor i with i € {i,d, 5,5} and we
have skipped the p; argument in the v;(pr) notations for brevity. Note
that although the above relation is written for a given quark pr, it still
applies when quarks are selected within a given py range, in which case
vy ; just represents the average v, of quark flavor i within that py range.
With Egs. (3)-(4), we further obtain

Ul,§ - Ul,s
Avy = vy 4=V 5)Aq,y + - AS

Vis—lrs Urd Vi
:(UI’J—Ul’ﬁ)Aq+< 52 - - 3 >AS. @)

1 We realized that there are only five independent hadron sets under the con-
straint of Eq. (3) in August 2021.
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v; observables such as those appearing in Egs. (6)-(7) are functions
of the hadron rapidity y. The rapidity-odd v, around mid-rapidity is
often fit with a linear function in rapidity, with the only parameter
being the slope (v’1 ). If we assume that the rapidity of a hadron formed
by quark coalescence is the same as that of the coalescing quarks (which
have the same rapidity due to the comoving requirement), we can then
take the derivative with respect to y and obtain

duv,

Ty =o' ®

AU’I = ZAN,- v
i

. / —
Li* with v =

The above just relates the difference of the v; slope parameters from

two sides of a hadron set to the quark v, slope parameters. We also
have

/ /
by Vs " Vs
Avy = (Ul,d' UW)Aqud + — AS

Ul]i_ull s U; J_Ullqﬂ
= (U’1 J—U’Lﬁ)Aq+ - e AS. 9

2 3

Therefore, the difference of the v, slope parameters of a hadron set
depends linearly on both Ag,; and AS, where the corresponding coef-
ficient is given by the difference of the quark-level v, slope parameters.
It is also clear that the interpretation of the coefficients is simpler if we
use Ag,, instead of Aq for the electric charge difference. When one as-
sumes that # and d quarks have the same v, slope and that s and 5
have the same v; slope [20], all the coefficients in Eq. (9) would be
zero. However, Au’l # 0 in general according to the coalescence sum
rule when Ag and/or AS is nonzero, which is the case for sets 4, 5A,
and 5B in Table 1.

3. Extracting coefficients for the Aq and AS dependences

Since there are five independent sets, e.g., sets 1 to 4 and 5A, one
will get five independent Au’l data points from the experimental mea-
surement (for a given event class of a given collision system). One can
then extract the Ag and AS coefficients, which reflect the quark-level
v, slope differences. One way to extract the coefficients is to simply fit
the five data points; this is the 5-set method. Alternatively, since sets
1 to 3 all have Ag,;, = Ag=AS =0, we can combine these three data
points into one and then fit three data points (the combined point plus
sets 4 and 5); this is the 3-set method.

For certain collision systems, the coalescence sum rule may not be
satisfied, e.g., if v, is not dominated by parton dynamics or the flows are
affected by other effects such as the electromagnetic field. Since Eq. (9)
based on the coalescence sum rule gives Av’l =0 for Ag,y; =AS =0
(and for Ag = AS =0), we use the following modified equations to fit
the 5-set or 3-set Au’l values:

AU'] =co+ ¢ Aqy +csAS (10)
=c5+c;Aq+c§AS. an

This way, a nonzero value of the new intercept term ¢, or c(’; would
mean the breaking of coalescence sum rule. According to Eq. (9), the
coalescence sum rule predicts the following:

co=c(’)‘=0,
ok _
Cg=¢g =V ;= Vg
’ ’
v, _—VU C
1,5 1,s * q
cg = 5 5= T g (12)

In the 3-set method, we combine the three Av’l points (from sets
1 to 3) into one point. Because these three data sets can have very
different statistical errors (e;) or hadron counts, we average the cen-
tral values of the three Av’l data points by using 1 /e[2 as the weight,
and we calculate the statistical error of the combined data point as
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1/4/1 /e% +1 /e% + l/eg. Let us denote the combined data point as

Av’l 13> We also denote the data point from sets 4 and 5 (5A or

/ / / —
5B) as Avy, and Avi s, 13 =
/! /! — . . .
co, AV} , =y + 5, AV| s =g +¢,/3 + cg. Therefore, the coefficients in

Eq. (1 0) for the 3-set method can be extracted as

respectively. Eq. (10) then leads to Av

_ ’ __ o ’
cO—AvM_3, ¢ = 3(AUL4 AUI,S)’

CS=—AU,1,173+AU;’4. 13)

Similarly, the coefficients in Eq. (11) for the 3-set method can be ex-
tracted as

* __ / — ’ ’
¢ =Av 5, c; =-3(Av] , — Av) 9),

* _ ’ ’ ’
g = —Avl’1_3 + ZAUL4 - AULS. (14

4. Tests with a transport model

We now use the AMPT model [22] as an example to demonstrate
the v, analysis and extraction of the Aq and AS coefficients. We use
the default version of the AMPT model to simulate mid-central (10-
50%) Au + Au collisions at m = 7.7, 14.5, 27, 54.4, and 200 GeV.
Note that the string melting version of the AMPT model with a dom-
inant parton phase does not provide a good description of direct flow
observables [19], although it well describes higher-order flows such as
elliptic flow and triangular flow. This failure of the string melting AMPT
model is related to its neglection of the nonzero longitudinal width of
the incoming nuclei at low to moderate collision energies, which af-
fects the tilt of the created dense matter and consequently the direct
flow pattern [23]. The focus of this study is the analytical dependences
of the v; difference on Ag and AS as well as the proper way to ex-
tract the corresponding coefficients. Therefore, we choose to use the
default AMPT model to demonstrate the extraction methods while leav-
ing quantitative investigation of the coefficients with the string melting
AMPT model to future studies. In the following, the event centrality is
determined from the multiplicity of charged hadrons within the pseu-
dorapidity range || < 1/2. For simplicity, we calculate v, with respect
to the reaction plane angle (Wyzp) as v; = (cos(¢p — ¥gp)), where ¢ is
the azimuthal angle of a hadron’s momentum [24,25].

As an example, Fig. 1 shows the rapidity dependence of v, for
hadron set 2, where U{‘ = v,[A] and vf = v,[p]/2 + v;[E*]/2. We then
fit their difference Av; (circles) within |y| < 1.5 at each energy with
a rapidity-odd linear function of y to obtain the slope difference Av’l.
Note that for hadron set 2 with Ag,; = Ag = AS =0, we expect Av’l =0
from Eq. (9). However, this is not the case for the default-AMPT model
results at low energies in Fig. 1.

Fig. 2 shows the slope difference Av’l of each set at the five ener-
gies as functions of (a) AS, (b) Ag,,, and (c) Agq. Since Av’l depends
linearly on both Ag and AS, one cannot determine the coefficient ¢,
(or cg) by simply performing a one-dimensional linear fit of the Ag plot
such as Fig. 2(c) (or the AS plot such as Fig. 2(a)) [21]. Note that a
one-dimensional linear fit as a function of Ag performed at the same
AS value [20] would be better. Here, we propose to extract the ¢
and cg coefficients by describing the Av’l data with a two-dimensional
plane (over the Ag-AS space). We can use the 5-set method by fitting
five independent data points with the relation of Eq. (10). As a demon-
stration, Fig. 3(a) shows the fitting of five data points (from sets 1 to 4
and set 5A) from the AMPT model at \/@ = 14.5 GeV with the 5-set
method. Alternatively, we can use the 3-set method, where we fit the
combined data point for sets 1 to 3 and the data points from set 4 and
set 5A (or 5B). This is demonstrated in Fig. 3(b), where the data point at
Ag,; = AS =0 represents the average of the three corresponding data
points shown in Fig. 3(a) (from the three hadrons sets with identical
constituent quark content on the two sides). The resultant coefficients
obtained from the 5-set method and the 3-set method are practically
the same, as we can see from the almost identical planes in Fig. 3(a)
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Fig. 1. Directed flows of hadron set 2 in Table 1: v, [A], v, [p1/2+ v, [E*1/2, and their difference as functions of rapidity from the default AMPT model for 10-50%

central Au + Au collisions at 4/syy = 7.7, 14.5, 27, 54.4 and 200 GeV.
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Fig. 2. The difference of the v, slopes at mid-rapidity for each hadron set in Table 1 versus (a) AS, (b) Ag,,, and (c) Ag from the default AMPT model for 10-50%
central Au + Au collisions at several energies. Data points at the same horizontal value are often slightly shifted horizontally for better visibility.
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Fig. 3. The fit plane to extract the Au’l dependences on Ag,,; and AS as shown in Eq. (10) using (a) the 5-set method and (b) the 3-set method. The data points,
corresponding to sets 1 to 4 and set 5A in Table 1, come from the default AMPT model for mid-central (10-50%) Au + Au collisions at |/syy = 14.5 GeV.

and (b). On the other hand, the 3-set method has an advantage in that
the coefficients can be determined by Eq. (13) or Eq. (14) without the
need to perform a fit.

In Fig. 4, we compare the coefficients extracted from the AMPT
model results for semi-central Au + Au collisions versus the colliding
energy. Fig. 4(a) compares C0sCqsCs in Eq. (10) (filled symbols) with

cX c*,c§ in Eq. (11) (open symbols) extracted with the 5-set method

0>
using sets 1 to 4 and 5A. We confirm the relations of Egs. (13)-(14) in

that fitting the data versus Aq,, or Ag does not affect the ¢, and c, co-
efficients but gives different cg values. We also see that the coefficients
here exhibit a clear energy dependence, especially at low energies. In
particular, at 7.7 GeV the nonzero intercept c, indicates the breaking
of the coalescence sum rule; as a result, one cannot trust Eq. (12) and
interpret the ¢, and cg coefficients as quark-level u’] differences there.
Although there are only five independent hadron sets for this study,
they can be written in different combinations [20,21]. For example, one



K. Nayak, S. Shi and Z.-W. Lin

Physics Letters B 849 (2024) 138479

-0 Default-AMPT, 10-50% Au+Au T

0.2F — T T — T T
% F(a) I Sets(1-4) +I 5A (b) Cq Cq Cs I (c) ICO* ¢y ¢t I

'S 015 mc, ec, xC. T m o xSets(1-4)+5A L T, m e x Sets(1-4)+5A
£ 0 a ° O O ¥Sets(1-4) + 5B 'O O ¥ Sets(1-4)+58

8 O O %»(Sets(1-3)) + 4 + 5AT |

| " P | L
56 10 20 30 100 200 56

L L L L | L L
10 20 30 100 200 56 10 20 30 100 200

IS (GeV)

Fig. 4. Comparisons of the coefficients extracted from AMPT results with the 5-set method as functions of colliding energy: (a) ¢, ¢,,cs compared with ¢; ,c;, c

*
S

from sets 1 to 4 and 5A, (b) C0sCqs Cs values, and (c) co* s c;,cg values from sets 1 to 4 and 5A compared with those from sets 1 to 4 and 5B. Panel (b) also shows the

coefficients from the 3-set method (black symbols).

can choose them as sets 1 to 4 and set 5B (instead of 5A). The corre-
sponding coefficients are shown in Fig. 4(b) for ¢, ¢ Cs and in Fig. 4(c)
for c(;( ,c;, c;, in comparison with those extracted from sets 1 to 4 and
set 5A. We see in Fig. 4(b) that the ¢ value depends on the choice
of the five sets, while ¢, and cg values do not. This is expected from
Eq. (13), which shows that set 5 only affects the ¢ value. We also show
in Fig. 4(b) the coefficients extracted with the 3-set method of Eq. (13)
for hadron sets 1 to 4 and set 5A; they are essentially the same as those
extracted with the 5-set method. Note that, since hadron set 5B in Ta-
ble 1 is a combination of set 1 and set 5A, the difference in the ¢, value
from using set 5B and that from using set 5A is given by (three times)
the AU; value of set 1, which is shown in Fig. 2 to be nonzero at low
energies. In Fig. 4(c), we see that both the ¢* and c; values depend
on the choice of using set 5A or 5B. This is consistent with the expec-
tations of Eq. (14), and the nonzero differences are again due to the
nonzero AU; of set 1 (which would be zero if the coalescence sum rule
were exact). Therefore, getting different coefficient values from differ-
ent choices of five independent hadron sets, like a nonzero ¢, value,
indicates the breaking of the coalescence sum rule.

5. Conclusions

In this study, we start from the coalescence sum rule and de-
rive the relations between the rapidity-odd directed flows (v;) of
different hadron sets. Following earlier studies, we consider seven
species of produced hadrons (those without u or d constituent quarks):
K=, ¢,5,AEt,Q~, and QF, where the two sides of each hadron set
have the same total number of # and d quarks and the same total
number of s and § quarks after including the weighting factors. Earlier
studies have proposed that a nonzero directed flow difference (Av,) be-
tween the two sides of the hadron sets, especially a dependence on the
electric charge difference Ag, means the breaking of the coalescence
sum rule and would indicate the effect of the electromagnetic fields.
Here we show that the coalescence sum rule only leads to zero Av; for
a hadron set if its two sides have identical constituent quark content (or
equivalently if Ag = AS =0). In general, Av, depends linearly on both
AS and Ag, or on both AS and Ag,, (the electric charge difference in
i and d constituent quarks). The same is true for Av!, the difference of
the v, slopes around mid-rapidity (v’l ). For Av’l, the coefficient ¢, for
its Ag,, dependence reflects the d and # quark u’] difference, while the
coefficient cg for its AS dependence reflects half the 5 and s quark U’l
difference.

Since there are only five independent such hadron sets, there will be
five independent Au’l data points from the measurement of a given col-
lision system. We propose to fit the data points with a two-dimensional
plane in the functional form of ¢j + ¢,Aq,q + cgAS to extract the three
coefficients, where a nonzero intercept ¢ indicates the breaking of the
coalescence sum rule. In the 5-set method, one simply fits the five data

points with this function. In the more elegant 3-set method, we com-
bine the data points from the three sets at Ag,; = AS =0 into one and
then obtain the coefficients analytically. We have also used results from
the default version of the AMPT model for mid-central Au + Au col-
lisions at various energies to demonstrate the extraction methods. The
5-set method and the 3-set method are shown to extract essentially the
same coefficients. In addition, we show that the extracted coefficients
may depend on the choice of the five independent hadron sets, and get-
ting different coefficients from different choices indicates the breaking
of the coalescence sum rule. This work provides the baseline relations
for the v; difference of various hadron sets from the coalescence sum
rule. Further work is needed to consider the possible effect of the elec-
tromagnetic fields.
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