
Phys. Lett. B 849 (2024) 138479

Available online 22 January 2024
0370-2693/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Physics Letters B
journal homepage: www.elsevier.com/locate/physletb

Letter
Coalescence sum rule and the electric charge- and strangeness-dependences 
of directed flow in heavy ion collisions
Kishora Nayak a,b, Shusu Shi b, Zi-Wei Lin c, ,∗

a Department of Physics, Panchayat College, Sambalpur University, Bargarh 768028, Odisha, India
b Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China
c Department of Physics, East Carolina University, Greenville, NC, 27858, USA

A R T I C L E I N F O A B S T R A C T
Editor: F. Gelis

Keywords:
Directed flow
Quark coalescence
Coalescence sum rule
Quark-gluon plasma

The rapidity-odd directed flows (𝑣1) of identified hadrons are expected to follow the coalescence sum rule when 
the created matter is initially in parton degrees of freedom and then hadronizes through quark coalescence. 
A recent study has considered the 𝑣1 of produced hadrons that do not contain 𝑢 or 𝑑 constituent quarks. It has 
constructed multiple hadron sets with a small mass difference but given difference in electric charge Δ𝑞 and 
strangeness Δ𝑆 between the two sides, where a nonzero and increasing Δ𝑣1 with Δ𝑞 has been proposed to be 
a consequence of electromagnetic fields. In this study, we examine the consequence of coalescence sum rule on 
the Δ𝑣1 of the hadron sets in the absence of electromagnetic fields. We find that in general Δ𝑣1 ≠ 0 for a hadron 
set with nonzero Δ𝑞 and/or Δ𝑆 due to potential 𝑣1 differences between 𝑢̄ and 𝑑 and between 𝑠 and 𝑠̄ quarks. We 
further propose methods to extract the coefficients for the Δ𝑞- and Δ𝑆-dependences of the direct flow difference, 
where a nonzero constant term would indicate the breaking of the coalescence sum rule. The extraction methods 
are then demonstrated with transport model results.

1. Introduction

The properties of the quark-gluon plasma produced in relativistic 
heavy ion collisions can be studied with the directed flow (𝑣1) [1–4]. 
For example, 𝑣1 is found to be a sensitive probe of the equation of state 
of the produced matter [5,6], and 𝑣1 of heavy flavors [7] is expected 
to be sensitive to the strong electromagnetic field in the early stage of 
noncentral heavy ion collisions.

The coalescence sum rule is often found to describe well the re-
lations of anisotropic flows of different hadron species in heavy ion 
collisions at high energies [8–13]. For collisions where the dynamics 
of anisotropic flows is dominated by parton interactions, quark coa-
lescence relates the hadron flow directly to the flows of the hadron’s 
constituent quarks [8,14,15]. When the constituent quarks in a hadron 
are comoving with each other and the quark coalescence probability is 
small, the hadron elliptic flow 𝑣2 follows the coalescence sum rule at 
leading order [8,15,16]. The same formulation can be extended to the 
directed flow. When we neglect the mass difference of the constituent 
quarks [15], the coalescence sum rule is simply given by [8]
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𝑣𝐻𝑛 (𝑝𝐻T ) =
∑
𝑗
𝑣𝑛,𝑗 (𝑝T), with 𝑝𝐻T =𝑁𝑐𝑞 𝑝T. (1)

In the above, 𝑛 = 1 for 𝑣1 and 𝑛 = 2 for 𝑣2, 𝑣𝑛,𝑗 (𝑝T) represents the flow 
𝑣𝑛 of constituent quark 𝑗 at the quark transverse momentum 𝑝T, while 
𝑁𝑐𝑞 is the number of constituent quarks (NCQ) of the hadron species 
𝐻 . Furthermore, if the quark 𝑣𝑛(𝑝T) is the same for each constituent 
quark of hadron species 𝐻 , Eq. (1) reduces to the most used form of the 
NCQ scaling: 𝑣𝐻𝑛 (𝑁𝑐𝑞 𝑝T) =𝑁𝑐𝑞 𝑣𝑛(𝑝T).

It has been proposed [17] that the direct flows of hadrons whose 
constituent quarks are all produced quarks can be properly combined 
to better test the coalescence sum rule. In contrast to produced quarks, 
hadrons containing 𝑢 and/or 𝑑 quarks get contributions from slowed-
down (or transported) 𝑢 and 𝑑 quarks in the incoming nuclei [18,19], 
which complicate the flow analysis. Our study here has been moti-
vated by a recent study [20], which further considered the 𝑣1 difference 
of various combinations of hadron sets consisting of seven produced 
hadron species: 𝐾−, 𝜙, 𝑝̄, Λ̄, Ξ̄+, Ω−, and Ω̄+. For example, one of the 
combinations is 𝑣1[Λ̄] − (𝑣1[𝜙]∕2 + 2𝑣1[𝑝̄]∕3). That study focused on 
the dependence of the 𝑣1 difference on the electric charge difference 
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Table 1
List of several hadron sets, where the left side and right side have the same total number 
of 𝑢̄ and 𝑑 quarks and the same total number of 𝑠 and 𝑠̄ quarks (after including the 
weights). Δ𝑞, Δ𝑞𝑢𝑑 and Δ𝑆 represent the difference in the electric charge, electric charge 
from 𝑢̄ and 𝑑 quarks, and strangeness number, respectively, between the two sides. Note 
that sets 1 to 4 and set 5A are independent of each other, while set 5B is not independent 
of them.
Set # Δ𝑞𝑢𝑑 Δ𝑆 Δ𝑞 L (left side) R (right side)
1 0 0 0 𝑣1[𝐾−(𝑢̄𝑠)] + 𝑣1[Λ(𝑢̄𝑑𝑠̄)] 𝑣1[𝑝̄(𝑢̄𝑢̄𝑑)] + 𝑣1[𝜙(𝑠𝑠̄)]
2 0 0 0 𝑣1

[
Λ(𝑢̄𝑑𝑠̄)

] 1
2 𝑣1[𝑝̄(𝑢̄𝑢̄𝑑)] +

1
2 𝑣1[Ξ

+
(𝑑𝑠̄𝑠̄)]

3 0 0 0 1
3 𝑣1[Ω

−(𝑠𝑠𝑠)] + 1
3 𝑣1[Ω

+
(𝑠̄𝑠̄𝑠̄)] 𝑣1[𝜙(𝑠𝑠̄)]

4 0 1 1/3 1
2 𝑣1[𝜙(𝑠𝑠̄)]

1
3 𝑣1[Ω

−(𝑠𝑠𝑠)]

5A 1/3 1 2/3 1
2 𝑣1[𝜙(𝑠𝑠̄)] +

1
3 𝑣1[𝑝̄(𝑢̄𝑢̄𝑑)] 𝑣1

[
𝐾−(𝑢̄𝑠)

]

5B 1/3 1 2/3 𝑣1
[
Λ(𝑢̄𝑑𝑠̄)

] 1
2 𝑣1[𝜙(𝑠𝑠̄)] +

2
3 𝑣1[𝑝̄(𝑢̄𝑢̄𝑑)]

Δ𝑞 and the strangeness difference Δ𝑆 of the hadron set combinations. 
A nonzero 𝑣1 difference at nonzero Δ𝑞 was considered as the breaking 
of the coalescence sum rule and proposed to be a consequence of the 
electromagnetic fields [20,21], especially if the 𝑣1 difference increases 
with Δ𝑞. The study also recognized the need for further investigation if 
a systematic dependence of the 𝑣1 difference on Δ𝑆 is observed [20].

In this study, we examine in detail the 𝑣1 difference of various com-
binations of these seven hadron species. Note that the 𝑣1 throughout 
this study refers to the rapidity-odd directed flow, although 𝑣1 contains 
both rapidity-odd and rapidity-even components where the rapidity-
even directed flow originates from event-by-event fluctuations. In ad-
dition, since we only consider light quarks, which constituent masses 
are not too different, we neglect the effect of different quark masses on 
the coalescence sum rule [15] and thus start the analysis from Eq. (1). 
The paper is organized as follows. In Sec. 2, we derive the coalescence 
sum rule relationships between the 𝑣1 difference of each hadron set 
and the quark 𝑣1. In Sec. 3, we present two methods to extract the de-
pendences of the 𝑣1 difference on the electric charge difference Δ𝑞 and 
the strangeness difference Δ𝑆 , and in Sec. 4 we demonstrate the extrac-
tion methods with the numerical 𝑣1 results from a multi-phase transport 
(AMPT) model. Finally, we summarize in Sec. 5.

2. Coalescence sum rule relations for the 𝒗𝟏 difference of 
a hadron set

In this study, we only consider produced hadrons whose constituent 
quarks consist of 𝑢̄, 𝑑, 𝑠 and 𝑠̄ quarks. Table 1 lists several such hadron 
sets, where for each combination the left side and the right side have 
the same total number of 𝑢̄ and 𝑑 quarks and the same total number of 𝑠
and 𝑠̄ quarks (after including the weighting factors). For a given hadron 
set, let 𝑁𝐿

𝑖 and 𝑁𝑅
𝑖 be the total number of constituent quarks of flavor 

𝑖 in each hadron multiplied by the weighting factor of the hadron on 
the left side and right side, respectively. We then write

Δ𝑁𝑖 ≡𝑁𝐿
𝑖 −𝑁𝑅

𝑖 (2)
as the difference of 𝑁𝑖 between the two sides. Then each hadron set in 
Table 1 satisfies the following relations:

Δ𝑁𝑢̄ +Δ𝑁𝑑 = 0, Δ𝑁𝑠 +Δ𝑁𝑠̄ = 0. (3)
For example, set 5A has 𝑁𝐿

𝑢̄ = 2∕3, 𝑁𝐿
𝑑
= 1∕3, 𝑁𝐿

𝑠 =𝑁𝐿
𝑠̄ = 1∕2, 𝑁𝑅

𝑢̄ =
1, and 𝑁𝑅

𝑠 = 1. Similar to Eq. (2), we can define the differences of the 
total electric charge in 𝑢̄ and 𝑑 quarks (𝑞𝑢𝑑 ), the total strangeness 𝑆 , 
and the total electric charge 𝑞, between the two sides as

Δ𝑞𝑢𝑑 ≡ 𝑞𝐿𝑢𝑑 − 𝑞𝑅𝑢𝑑 =Δ𝑁𝑑 ,

Δ𝑆 ≡ 𝑆𝐿 −𝑆𝑅 = 2Δ𝑁𝑠̄,

Δ𝑞 ≡ 𝑞𝐿 − 𝑞𝑅 =Δ𝑞𝑢𝑑 +
1
3Δ𝑆, (4)

respectively. The values of Δ𝑞𝑢𝑑 , Δ𝑆 , and Δ𝑞 for each hadron set are 
given in Table 1, where the left side and right side are shown with 
the constituent quark content and the weighting factor of each hadron. 
Because of Eq. (3), the mass difference (after including the weighting 
factors) between the two sides is small for most of these hadron sets. 
Note that sets 1, 2, and 3 each have identical constituent quark content 
on the left and right sides and thus satisfy Δ𝑞𝑢𝑑 =Δ𝑞 =Δ𝑆 = 0. On the 
other hand, sets 4, 5A and 5B each have a nonzero charge difference 
and/or a nonzero strangeness difference between the two sides. One 
can show that the conditions of Eq. (3) lead to the following general 
hadron set:

𝑎1𝐾− + 𝑎2 𝜙+ 𝑎3 𝑝̄+ 𝑎4 Λ̄ − (𝑎1 + 3𝑎3 + 2𝑎4) Ξ̄+

+𝑎5Ω− +
(
𝑎1
3 −

2𝑎2
3 + 2𝑎3 + 𝑎4 − 𝑎5

)
Ω̄+ = 0, (5)

where 𝑎𝑖 are arbitrary constants; as a result, there are only five sets 
of independent hadron sets1 [20]. Sets 1 to 4 and 5A in Table 1 give 
one example of the five independent sets; so do sets 1 to 4 and 5B. 
However, sets 1, 5A, and 5B are not independent of each other, since 
the 𝑣1 difference between the two sides of set 5B can be written as that 
of set 5A plus that of set 1. With sets 1 to 4 and 5A (or 5B) in Table 1, 
one can construct all the hadron sets of earlier studies [20,21].

We now apply the coalescence sum rule in Eq. (1) to evaluate the 
difference between the 𝑣1 from two sides of a given hadron set. Since 
we neglect the mass difference of 𝑢∕𝑑∕𝑠 constituent quarks, the quarks 
coalescing to form a hadron have the same 𝑝T. If we only consider 
quarks at a given 𝑝T, then they will form mesons at 𝑝𝑀T = 2𝑝T and 
(anti)baryons at 𝑝𝐵T = 3𝑝T; this is why we have chosen the 𝑝T range 
as [0, 2] GeV∕𝑐 for mesons and [0, 3] GeV∕𝑐 for (anti)baryons for the 
analysis of the model calculations in Sec. 4. The difference between the 
𝑣1 from two sides of a given hadron set is then given by

Δ𝑣1 ≡ 𝑣𝐿1 − 𝑣𝑅1 =
∑
𝑖
Δ𝑁𝑖 𝑣1,i , (6)

where 𝑣1,i represents the 𝑣1 of quark flavor 𝑖 with 𝑖 ∈ {𝑢̄, 𝑑, 𝑠, ̄𝑠} and we 
have skipped the 𝑝T argument in the 𝑣1(𝑝T) notations for brevity. Note 
that although the above relation is written for a given quark 𝑝T, it still 
applies when quarks are selected within a given 𝑝T range, in which case 
𝑣1,i just represents the average 𝑣1 of quark flavor 𝑖 within that 𝑝T range. 
With Eqs. (3)-(4), we further obtain

Δ𝑣1 = (𝑣1,𝑑 − 𝑣1,𝑢̄)Δ𝑞𝑢𝑑 +
(𝑣1,𝑠̄ − 𝑣1,𝑠

2

)
Δ𝑆

= (𝑣1,𝑑−𝑣1,𝑢̄)Δ𝑞+
(𝑣1,𝑠̄−𝑣1,𝑠

2 −
𝑣1,𝑑−𝑣1,𝑢̄

3

)
Δ𝑆. (7)

1 We realized that there are only five independent hadron sets under the con-
straint of Eq. (3) in August 2021.
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𝑣1 observables such as those appearing in Eqs. (6)-(7) are functions 
of the hadron rapidity 𝑦. The rapidity-odd 𝑣1 around mid-rapidity is 
often fit with a linear function in rapidity, with the only parameter 
being the slope (𝑣′1). If we assume that the rapidity of a hadron formed by quark coalescence is the same as that of the coalescing quarks (which 
have the same rapidity due to the comoving requirement), we can then 
take the derivative with respect to 𝑦 and obtain

Δ𝑣′1 =
∑
𝑖
Δ𝑁𝑖 𝑣′1,i , with 𝑣′1 ≡ 𝑑𝑣1

𝑑𝑦
|||𝑦=0. (8)

The above just relates the difference of the 𝑣1 slope parameters from 
two sides of a hadron set to the quark 𝑣1 slope parameters. We also 
have

Δ𝑣′1 = (𝑣′1,𝑑 − 𝑣′1,𝑢̄)Δ𝑞𝑢𝑑 +
(
𝑣′1,𝑠̄ − 𝑣′1,𝑠

2

)
Δ𝑆

= (𝑣′1,𝑑−𝑣
′
1,𝑢̄)Δ𝑞+

(
𝑣′1,𝑠̄−𝑣

′
1,𝑠

2 −
𝑣′1,𝑑−𝑣

′
1,𝑢̄

3

)
Δ𝑆. (9)

Therefore, the difference of the 𝑣1 slope parameters of a hadron set 
depends linearly on both Δ𝑞𝑢𝑑 and Δ𝑆 , where the corresponding coef-
ficient is given by the difference of the quark-level 𝑣1 slope parameters. 
It is also clear that the interpretation of the coefficients is simpler if we 
use Δ𝑞𝑢𝑑 instead of Δ𝑞 for the electric charge difference. When one as-
sumes that 𝑢̄ and 𝑑 quarks have the same 𝑣1 slope and that 𝑠 and 𝑠̄
have the same 𝑣1 slope [20], all the coefficients in Eq. (9) would be 
zero. However, Δ𝑣′1 ≠ 0 in general according to the coalescence sum 
rule when Δ𝑞 and/or Δ𝑆 is nonzero, which is the case for sets 4, 5A, 
and 5B in Table 1.

3. Extracting coefficients for the 𝚫𝒒 and 𝚫𝑺 dependences

Since there are five independent sets, e.g., sets 1 to 4 and 5A, one 
will get five independent Δ𝑣′1 data points from the experimental mea-
surement (for a given event class of a given collision system). One can 
then extract the Δ𝑞 and Δ𝑆 coefficients, which reflect the quark-level 
𝑣1 slope differences. One way to extract the coefficients is to simply fit 
the five data points; this is the 5-set method. Alternatively, since sets 
1 to 3 all have Δ𝑞𝑢𝑑 = Δ𝑞 = Δ𝑆 = 0, we can combine these three data 
points into one and then fit three data points (the combined point plus 
sets 4 and 5); this is the 3-set method.

For certain collision systems, the coalescence sum rule may not be 
satisfied, e.g., if 𝑣1 is not dominated by parton dynamics or the flows are 
affected by other effects such as the electromagnetic field. Since Eq. (9)
based on the coalescence sum rule gives Δ𝑣′1 = 0 for Δ𝑞𝑢𝑑 = Δ𝑆 = 0
(and for Δ𝑞 = Δ𝑆 = 0), we use the following modified equations to fit 
the 5-set or 3-set Δ𝑣′1 values:

Δ𝑣′1 = 𝑐0 + 𝑐𝑞Δ𝑞𝑢𝑑 + 𝑐𝑆Δ𝑆 (10)
= 𝑐⋆0 + 𝑐⋆𝑞 Δ𝑞 + 𝑐⋆𝑆Δ𝑆. (11)

This way, a nonzero value of the new intercept term 𝑐0 or 𝑐⋆0 would 
mean the breaking of coalescence sum rule. According to Eq. (9), the 
coalescence sum rule predicts the following:

𝑐0 = 𝑐⋆0 = 0,

𝑐𝑞 = 𝑐⋆𝑞 = 𝑣′1,𝑑 − 𝑣′1,𝑢̄ ,

𝑐𝑆 =
𝑣′1,𝑠̄ − 𝑣′1,𝑠

2 , 𝑐⋆𝑆 = 𝑐𝑆 −
𝑐𝑞
3 . (12)

In the 3-set method, we combine the three Δ𝑣′1 points (from sets 
1 to 3) into one point. Because these three data sets can have very 
different statistical errors (𝑒𝑖) or hadron counts, we average the cen-
tral values of the three Δ𝑣′1 data points by using 1∕𝑒2𝑖 as the weight, 
and we calculate the statistical error of the combined data point as 

1∕
√

1∕𝑒21 + 1∕𝑒22 + 1∕𝑒23. Let us denote the combined data point as 
Δ𝑣′1,1−3; we also denote the data point from sets 4 and 5 (5A or 
5B) as Δ𝑣′1,4 and Δ𝑣′1,5, respectively. Eq. (10) then leads to Δ𝑣′1,1−3 =
𝑐0, Δ𝑣′1,4 = 𝑐0 + 𝑐𝑆 , Δ𝑣′1,5 = 𝑐0 + 𝑐𝑞∕3 + 𝑐𝑆 . Therefore, the coefficients in 
Eq. (10) for the 3-set method can be extracted as

𝑐0 =Δ𝑣′1,1−3 , 𝑐𝑞 = −3(Δ𝑣′1,4 −Δ𝑣′1,5),

𝑐𝑆 = −Δ𝑣′1,1−3 +Δ𝑣′1,4. (13)
Similarly, the coefficients in Eq. (11) for the 3-set method can be ex-
tracted as

𝑐⋆0 =Δ𝑣′1,1−3 , 𝑐⋆𝑞 = −3(Δ𝑣′1,4 −Δ𝑣′1,5),

𝑐⋆𝑆 = −Δ𝑣′1,1−3 + 2Δ𝑣′1,4 −Δ𝑣′1,5. (14)

4. Tests with a transport model

We now use the AMPT model [22] as an example to demonstrate 
the 𝑣1 analysis and extraction of the Δ𝑞 and Δ𝑆 coefficients. We use 
the default version of the AMPT model to simulate mid-central (10-
50%) Au + Au collisions at √𝑠NN = 7.7, 14.5, 27, 54.4, and 200 GeV. 
Note that the string melting version of the AMPT model with a dom-
inant parton phase does not provide a good description of direct flow 
observables [19], although it well describes higher-order flows such as 
elliptic flow and triangular flow. This failure of the string melting AMPT 
model is related to its neglection of the nonzero longitudinal width of 
the incoming nuclei at low to moderate collision energies, which af-
fects the tilt of the created dense matter and consequently the direct 
flow pattern [23]. The focus of this study is the analytical dependences 
of the 𝑣1 difference on Δ𝑞 and Δ𝑆 as well as the proper way to ex-
tract the corresponding coefficients. Therefore, we choose to use the 
default AMPT model to demonstrate the extraction methods while leav-
ing quantitative investigation of the coefficients with the string melting 
AMPT model to future studies. In the following, the event centrality is 
determined from the multiplicity of charged hadrons within the pseu-
dorapidity range |𝜂| < 1∕2. For simplicity, we calculate 𝑣1 with respect 
to the reaction plane angle (Ψ𝑅𝑃 ) as 𝑣1 = ⟨cos(𝜙 − Ψ𝑅𝑃 )⟩, where 𝜙 is 
the azimuthal angle of a hadron’s momentum [24,25].

As an example, Fig. 1 shows the rapidity dependence of 𝑣1 for 
hadron set 2, where 𝑣𝐿1 = 𝑣1[Λ̄] and 𝑣𝑅1 = 𝑣1[𝑝̄]∕2 + 𝑣1[Ξ̄+]∕2. We then 
fit their difference Δ𝑣1 (circles) within |𝑦| < 1.5 at each energy with 
a rapidity-odd linear function of 𝑦 to obtain the slope difference Δ𝑣′1. Note that for hadron set 2 with Δ𝑞𝑢𝑑 =Δ𝑞 =Δ𝑆 = 0, we expect Δ𝑣′1 = 0
from Eq. (9). However, this is not the case for the default-AMPT model 
results at low energies in Fig. 1.

Fig. 2 shows the slope difference Δ𝑣′1 of each set at the five ener-
gies as functions of (a) Δ𝑆 , (b) Δ𝑞𝑢𝑑 , and (c) Δ𝑞. Since Δ𝑣′1 depends linearly on both Δ𝑞 and Δ𝑆 , one cannot determine the coefficient 𝑐𝑞
(or 𝑐𝑆 ) by simply performing a one-dimensional linear fit of the Δ𝑞 plot 
such as Fig. 2(c) (or the Δ𝑆 plot such as Fig. 2(a)) [21]. Note that a 
one-dimensional linear fit as a function of Δ𝑞 performed at the same 
Δ𝑆 value [20] would be better. Here, we propose to extract the 𝑐𝑞
and 𝑐𝑆 coefficients by describing the Δ𝑣′1 data with a two-dimensional plane (over the Δ𝑞-Δ𝑆 space). We can use the 5-set method by fitting 
five independent data points with the relation of Eq. (10). As a demon-
stration, Fig. 3(a) shows the fitting of five data points (from sets 1 to 4 
and set 5A) from the AMPT model at √𝑠NN = 14.5 GeV with the 5-set 
method. Alternatively, we can use the 3-set method, where we fit the 
combined data point for sets 1 to 3 and the data points from set 4 and 
set 5A (or 5B). This is demonstrated in Fig. 3(b), where the data point at 
Δ𝑞𝑢𝑑 = Δ𝑆 = 0 represents the average of the three corresponding data 
points shown in Fig. 3(a) (from the three hadrons sets with identical 
constituent quark content on the two sides). The resultant coefficients 
obtained from the 5-set method and the 3-set method are practically 
the same, as we can see from the almost identical planes in Fig. 3(a) 
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Fig. 1. Directed flows of hadron set 2 in Table 1: 𝑣1[Λ̄], 𝑣1[𝑝̄]∕2 + 𝑣1[Ξ̄+]∕2, and their difference as functions of rapidity from the default AMPT model for 10-50% 
central Au + Au collisions at √𝑠NN = 7.7, 14.5, 27, 54.4 and 200 GeV.

Fig. 2. The difference of the 𝑣1 slopes at mid-rapidity for each hadron set in Table 1 versus (a) Δ𝑆 , (b) Δ𝑞𝑢𝑑 , and (c) Δ𝑞 from the default AMPT model for 10-50%
central Au + Au collisions at several energies. Data points at the same horizontal value are often slightly shifted horizontally for better visibility.

Fig. 3. The fit plane to extract the Δ𝑣′1 dependences on Δ𝑞𝑢𝑑 and Δ𝑆 as shown in Eq. (10) using (a) the 5-set method and (b) the 3-set method. The data points, 
corresponding to sets 1 to 4 and set 5A in Table 1, come from the default AMPT model for mid-central (10-50%) Au + Au collisions at √𝑠NN = 14.5 GeV.

and (b). On the other hand, the 3-set method has an advantage in that 
the coefficients can be determined by Eq. (13) or Eq. (14) without the 
need to perform a fit.

In Fig. 4, we compare the coefficients extracted from the AMPT 
model results for semi-central Au + Au collisions versus the colliding 
energy. Fig. 4(a) compares 𝑐0, 𝑐𝑞 , 𝑐𝑆 in Eq. (10) (filled symbols) with 
𝑐⋆0 , 𝑐

⋆
𝑞 , 𝑐⋆𝑆 in Eq. (11) (open symbols) extracted with the 5-set method 

using sets 1 to 4 and 5A. We confirm the relations of Eqs. (13)-(14) in 

that fitting the data versus Δ𝑞𝑢𝑑 or Δ𝑞 does not affect the 𝑐0 and 𝑐𝑞 co-
efficients but gives different 𝑐𝑆 values. We also see that the coefficients 
here exhibit a clear energy dependence, especially at low energies. In 
particular, at 7.7 GeV the nonzero intercept 𝑐0 indicates the breaking 
of the coalescence sum rule; as a result, one cannot trust Eq. (12) and 
interpret the 𝑐𝑞 and 𝑐𝑆 coefficients as quark-level 𝑣′1 differences there.Although there are only five independent hadron sets for this study, 
they can be written in different combinations [20,21]. For example, one 
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Fig. 4. Comparisons of the coefficients extracted from AMPT results with the 5-set method as functions of colliding energy: (a) 𝑐0 , 𝑐𝑞 , 𝑐𝑆 compared with 𝑐⋆0 , 𝑐⋆𝑞 , 𝑐⋆𝑆
from sets 1 to 4 and 5A, (b) 𝑐0 , 𝑐𝑞 , 𝑐𝑆 values, and (c) 𝑐⋆0 , 𝑐⋆𝑞 , 𝑐⋆𝑆 values from sets 1 to 4 and 5A compared with those from sets 1 to 4 and 5B. Panel (b) also shows the 
coefficients from the 3-set method (black symbols).

can choose them as sets 1 to 4 and set 5B (instead of 5A). The corre-
sponding coefficients are shown in Fig. 4(b) for 𝑐0, 𝑐𝑞 , 𝑐𝑆 and in Fig. 4(c) 
for 𝑐⋆0 , 𝑐⋆𝑞 , 𝑐⋆𝑆 , in comparison with those extracted from sets 1 to 4 and 
set 5A. We see in Fig. 4(b) that the 𝑐𝑞 value depends on the choice 
of the five sets, while 𝑐0 and 𝑐𝑆 values do not. This is expected from 
Eq. (13), which shows that set 5 only affects the 𝑐𝑞 value. We also show 
in Fig. 4(b) the coefficients extracted with the 3-set method of Eq. (13)
for hadron sets 1 to 4 and set 5A; they are essentially the same as those 
extracted with the 5-set method. Note that, since hadron set 5B in Ta-
ble 1 is a combination of set 1 and set 5A, the difference in the 𝑐𝑞 value 
from using set 5B and that from using set 5A is given by (three times) 
the Δ𝑣′1 value of set 1, which is shown in Fig. 2 to be nonzero at low 
energies. In Fig. 4(c), we see that both the 𝑐⋆𝑞 and 𝑐⋆𝑆 values depend 
on the choice of using set 5A or 5B. This is consistent with the expec-
tations of Eq. (14), and the nonzero differences are again due to the 
nonzero Δ𝑣′1 of set 1 (which would be zero if the coalescence sum rule 
were exact). Therefore, getting different coefficient values from differ-
ent choices of five independent hadron sets, like a nonzero 𝑐0 value, 
indicates the breaking of the coalescence sum rule.

5. Conclusions

In this study, we start from the coalescence sum rule and de-
rive the relations between the rapidity-odd directed flows (𝑣1) of 
different hadron sets. Following earlier studies, we consider seven 
species of produced hadrons (those without 𝑢 or 𝑑 constituent quarks): 
𝐾−, 𝜙, 𝑝̄, Λ̄, Ξ̄+, Ω−, and Ω̄+, where the two sides of each hadron set 
have the same total number of 𝑢̄ and 𝑑 quarks and the same total 
number of 𝑠 and 𝑠̄ quarks after including the weighting factors. Earlier 
studies have proposed that a nonzero directed flow difference (Δ𝑣1) be-
tween the two sides of the hadron sets, especially a dependence on the 
electric charge difference Δ𝑞, means the breaking of the coalescence 
sum rule and would indicate the effect of the electromagnetic fields. 
Here we show that the coalescence sum rule only leads to zero Δ𝑣1 for 
a hadron set if its two sides have identical constituent quark content (or 
equivalently if Δ𝑞 =Δ𝑆 = 0). In general, Δ𝑣1 depends linearly on both 
Δ𝑆 and Δ𝑞, or on both Δ𝑆 and Δ𝑞𝑢𝑑 (the electric charge difference in 
𝑢̄ and 𝑑 constituent quarks). The same is true for Δ𝑣′1, the difference of the 𝑣1 slopes around mid-rapidity (𝑣′1). For Δ𝑣′1, the coefficient 𝑐𝑞 for 
its Δ𝑞𝑢𝑑 dependence reflects the 𝑑 and 𝑢̄ quark 𝑣′1 difference, while the coefficient 𝑐𝑆 for its Δ𝑆 dependence reflects half the 𝑠̄ and 𝑠 quark 𝑣′1difference.

Since there are only five independent such hadron sets, there will be 
five independent Δ𝑣′1 data points from the measurement of a given col-
lision system. We propose to fit the data points with a two-dimensional 
plane in the functional form of 𝑐0 + 𝑐𝑞Δ𝑞𝑢𝑑 + 𝑐𝑆Δ𝑆 to extract the three 
coefficients, where a nonzero intercept 𝑐0 indicates the breaking of the 
coalescence sum rule. In the 5-set method, one simply fits the five data 

points with this function. In the more elegant 3-set method, we com-
bine the data points from the three sets at Δ𝑞𝑢𝑑 =Δ𝑆 = 0 into one and 
then obtain the coefficients analytically. We have also used results from 
the default version of the AMPT model for mid-central Au + Au col-
lisions at various energies to demonstrate the extraction methods. The 
5-set method and the 3-set method are shown to extract essentially the 
same coefficients. In addition, we show that the extracted coefficients 
may depend on the choice of the five independent hadron sets, and get-
ting different coefficients from different choices indicates the breaking 
of the coalescence sum rule. This work provides the baseline relations 
for the 𝑣1 difference of various hadron sets from the coalescence sum 
rule. Further work is needed to consider the possible effect of the elec-
tromagnetic fields.
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