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Motif-Driven Contrastive Learning of Graph
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Abstract—Pre-training Graph Neural Networks (GNN) via
self-supervised contrastive learning has recently drawn lots of
attention. However, most existing works focus on node-level
contrastive learning, which cannot capture global graph structure.
The key challenge to conduct subgraph-level contrastive learning
is to sample informative subgraphs that are semantically
meaningful. To solve it, we propose to learn graph motifs, which are
frequently-occurring subgraph patterns (e.g. functional groups
of molecules), for better subgraph sampling. Our framework
MotIf-driven Contrastive leaRning Of Graph representations
(MICRO-Graph) can: 1) use GNNs to extract motifs from large
graph datasets; 2) leverage learned motifs to sample informative
subgraphs for contrastive learning of GNN. We formulate
motif learning as a differentiable clustering problem, and adopt
EM-clustering to group similar and significant subgraphs into
several motifs. Guided by these learned motifs, a sampler is trained
to generate more informative subgraphs, and these subgraphs
are used to train GNNs through graph-to-subgraph contrastive
learning. By pre-training on the ogbg-molhiv dataset with
MICRO-Graph, the pre-trained GNN achieves 2.04% ROC-AUC
average performance enhancement on various downstream
benchmark datasets, which is significantly higher than other
state-of-the-art self-supervised learning baselines.

Index Terms—Data mining, graph neural network.

I. INTRODUCTION

GRAPH-STRUCTURED data, such as molecules and so-
cial networks, are ubiquitous in many research areas

and real-world applications. Recently, Graph Neural Networks
(GNNs) have shown great expressive power for learning graph
representations without explicit feature engineering[1],[2],[3],
[4]. To empower GNNs to capture graph structural and seman-
tic properties without human annotations, a line of works has
been proposed to pre-train GNNs with self-supervised learning
(SSL)[5],[6],[7],[8],[9],[10],[11],[12],[13]. The pre-trained
GNNs could generalize to downstream tasks within the same
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domain (e.g., all molecules in the chemical domain) and enhance
performance with fine-tuning.
Many GNN pre-training works could be categorized into
the contrastive learning framework, which forces views from
the same data instance (e.g., different crops from an image or
different nodes from a graph) to become closer and pushes views
from different instances apart. One key component in contrastive
learning is to generate informative and diverse views from each
data instance. For example, in computer vision, researchers use
various augmentation methods, including cropping, color distor-
tion, and Gaussian blurs, to generate image views[14]. However,
due to graph structure’s discrete nature, constructing informative
views of a graph is a challenging task. Most existing works[5],
[11],[12]utilize nodes as views for contrastive learning, which
lacks the ability to guide GNNs to capture the global informa-
tion of graphs during pre-training, and thus limits the perfor-
mance enhancement during fine-tuning on downstream tasks.
On the other hand, even though subgraphs are higher-level views
superior to nodes for capturing global information, sampling
informative subgraphs for contrastive learning is a non-trivial
task. Existing sampling techniques such as random walk and
k-hop neighbors are non-ideal because they only consider local
structures and overlook node features, resulting in node chains
or rings, which are not semantically meaningful a subgraph.
To study the characteristics of meaningful subgraphs, re-
searchers in the graph mining community have proposed to
uncover global properties of graphs through graph motifs, which
are defined as significant subgraph patterns that frequently oc-
cur[15]. For example, hydroxide (–OH), a functional group,
usually implies higher water solubility of small molecules,
andZif268, a protein structure, can mediate protein-protein
interactions in sequence-specific DNA-binding proteins.[16].
Due to motifs’ expressiveness, we propose to learn motifs from
a given graph dataset and leverage learned motifs to sample
informative subgraphs for GNN contrastive learning. However,
existing motif mining techniques cannot be used directly for
our purpose because they rely on discrete counting of subgraph
structures[15],[17],[18]. This limitation makes it hard to
generalize to large graph datasets with continuous and high-
dimensional node features, as is often the case in real applica-
tions.
In light of the significance and challenges of motif learn-

ing, we proposeMICRO-Graph:a framework for MotIf-driven
Contrastive leaRning OfGraph representations to: 1) use GNNs
to automatically extract graph motifs as prototypical subgraph
embeddings from large graph datasets; 2) leverage the learned
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Fig. 1. Given a graph dataset, we learn a motif embedding table storing proto-
typical embeddings of motifs. For a pair of input graphsG1andG2, we leverage
learned motifs to generate motif-like subgraphs and conduct graph-to-subgraph
contrastive learning.

graph motifs to generate informative motif-like subgraphs to
benefit contrastive learning of GNNs. The motif learning module
and the contrastive learning module are mutually reinforced to
train an expressive GNN that can extract meaningful motifs.
Fig.1illustrates of this idea.
For motif learning, we tackle the challenging discrete graph

motif mining problem by representing motifs as continuous em-
beddings, so the framework becomes differentiable. Specifically,
we encode sampled motif-like subgraphs via a GNN encoder and
get subgraph embeddings. Then, we treat graph motifs as a latent
variable and learn them by maximizing the graph likelihood
through an EM algorithm.
For contrastive learning, we tackle the challenge of informa-

tive subgraph generation by leveraging learned motifs as guid-
ance to generate motif-like subgraphs. Specifically, we partition
all nodes in a graph and induce subgraphs with a high probability
of belonging to a specific motif. As motifs represent the critical
graph properties by nature, the motif-like subgraphs are more
informative than graph nodes and randomly sampled subgraphs,
thus enhancing the contrastive learning to capture global graph
characteristics.
The pre-trained GNN usingMICRO-Graph on the ogbg-

molhiv molecule dataset can successfully learn meaningful
functional groups as motifs, including Benzene rings, nitro,
acetate, etc., which help interpret the model decisions. Mean-
while, fine-tuning this GNN on chemical property prediction
benchmarks yields 2.04% ROC-AUC average improvement over
non-pretrained GNNs and outperforms other state-of-the-art
GNN pre-training baselines. Extensive ablation studies show
the important role of motif learning.
We summarize the contributions of this paper as follows:
Utilize graph motifs to generate more informative sub-
graphs to improve contrastive GNN pre-training.
Turn the discrete and non-scalable motif learning problem
into differentiable so that we can extract significant motifs
from large graph datasets with rich features.

Achieve the best results on various chemical property pre-
diction tasks than existing GNN pre-training techniques,
and the learned motifs can facilitate researchers to interpret
model decisions and scientific discovery.

II. RELATEDWORK

Contrastive learning:is a widely-used SSL algorithm, which
achieves great results for visual representation learning[14],
[19],[20]. One key component in contrastive learning is to
generate informative and diverse views from each data in-
stance. In computer vision, researchers leveraged a pixel as
a local view to conduct local-to-local[21]or local-to-global
contrastive learning[22],[23], while recently, they have found
that randomly-cropped image snippets[14],[19]help a model to
better capture the relationships between image elements. This
motivates us to conduct contrastive learning of GNNs at the
subgraph level.
Contrastive learning for GNNs:has drawn much attention

recently. Existing works construct different contrastive views to
pre-train GNNs[5],[6],[11],[12],[13]For example, DGI[5]
performs node-to-graph contrastive learning to maximize the
mutual information between node representations and the pooled
global graph representation. GCC[7]conducts subgraph-to-
subgraph structure contrastive learning with contrastive views
generated by random walk sampling. Similar to the limitation
of using a pixel as a local view, GNNs trained via node-level
contrastive learning can only utilize local graph structure to
determine whether a node belongs to a graph, but they are
less effective at capturing whole-graph characteristics. On the
other hand, the subgraph-based contrastive learning methods
often rely on heuristic strategies like random walk[7],[13].
However, as these heuristic sampling strategies are random and
only consider graph structures but not features, the sampled sub-
graphs are likely non-meaningful. For example, using random
walks on molecules is likely to generate a chain graph, which
is less helpful for contrastive learning. To tackle this limita-
tion, we propose to leverage graph motifs, i.e., significant and
frequently-occurring subgraph patterns, to guide informative
subgraph generation for contrastive learning.
Motif-based GNN pre-training:Grover[24]proposes to use

motifs as self-supervision. The main difference is that they uti-
lize traditional software to extract discrete motifs and treat them
as node classification labels. Our work instead learns motifs
through joint pre-training, and we leverage the motifs, which
could encode richer graph semantics, to benefit contrastive learn-
ing. MGSSL[25]performs motif-based graph SSL. MGSSL
is similar to our work as both cover GNN SSL and leverage
motifs, but there are three major differences. First, MGSSL
conducts generative instead of contrastive pre-training, and the
pre-training loss is to predict the topology of a constructed motif
tree and predict masked node/edge attributes. Second, MGSSL
utilizes domain knowledge and the BRISC algorithm[26]to
generate motifs as a preprocessing procedure. The motif vocab-
ulary in MGSSL is thus pre-built, whereas our motifs are learned
by the GNN. Third, MGSSL can only be applied to molecules
but not other graphs. We will show that our method can be more
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generally applied to biology graphs. SAN[27]is a novel GNN
model with a Substructure Assembling Unit (SAU) to hierarchi-
cally assemble useful pieces of graph components to fabricate
discriminative substructures (motifs). To better discover motifs,
SAN introduces a Soft Sequence with Context Attention (SSCA)
module to deal with sampled unordered neighbor sequences.
SAN is similar to this work as both try to leverage motifs.
The difference is that we focus on SSL whereas SAN focuses
on supervised learning and GNN model design. PASCAL[28]
performs contrastive learning by generating subgraph views
based on motifs. These views can capture richer information than
node-level views and are structure-aware. The general idea is
similar to our work, but a difference is that our motifs are learned
as an intermediate step of the contrastive learning framework,
whereas the motifs in PASCAL are predefined, which are only
structure-based and do not consider node feature information.
Molecular graph pre-training:is another related research
topic. PanGu[29]pre-trains an asymmetric graph-to-sequence
conditional VAE to generate Self-Referencing Embedded
Strings (SELFIES). MolGPT[30]performs a generative pre-
training (GPT) of a transformer decoder on the SMILES strings.
Mole-BERT [31]introduces a pre-training framework with
Masked Atoms Modeling (MAM) and triplet masked contrastive
learning (TMCL). MAM pre-trains GNNs by predicting masked
discrete code representations of atom attributes. TMCL mod-
els the heterogeneous semantic similarity between molecules
for effective molecule retrieval. MoCL[32]leverages domain
knowledge at local and global levels to aid representation learn-
ing of molecular graphs. The local-level knowledge guides the
augmentation process while preserving graph semantics, and
the global-level knowledge captures similarity between graphs
to learn richer semantics. MPG[33]performs GNN pre-training
on molecules via replaced components detection, where each
molecule is split into sub-parts then shuffled and combined. The
model is trained to detect whether the combined parts belong
to the same molecule. D-SLA[34]conducts discrepancy-based
SSL by creating multiple perturbations of the given graph with
varying degrees of similarity, and trains the model to predict
whether a graph is perturbed. Denoising[35]pre-trains the en-
coder by predicting the noise added to atomic coordinates of the
3D geometry of molecule graphs. Similarly, GeoSSL[36]pre-
trains the encoder via distance denoising to model the dynamic
nature of the 3D geometry of molecule graphs. MEMO[37]
Performs multi-view contrastive learning by combining various
types of features including SMILES strings, 2D graphs, 3D
geometry, and molecule fingerprints. A comprehensive survey of
other methods can be found in[38]. Finally,[39]is an extended
abstract of this paper published at AAAI 2021 Undergraduate
Consortium, which covers the main idea of motif-driven con-
trastive learning.

III. METHOD

A. Motif-Driven Contrastive Learning Framework

The goal is to pre-train a GNN encoderENCθ(·)to capture
significant characteristics of graphs using SSL, whereθdenotes

the parameters of the encoder. The pre-trained GNN can en-
code graphs in the same domain tod-dimensional embeddings
capturing their fundamental semantic properties. They can be
generalized to various downstream graph tasks even with few
labeled data for fine-tuning.
To guide the GNN to capture global graph characteristics, we
use subgraph-level contrastive learning as the self-supervised
objective. The major challenge is to sample semantically-
informative subgraphs. We propose to learn graph motifs via a
differentiable update and leverage the learned motifs to sample
informative subgraphs to tackle it. Formally, we represent motifs
in a continuous embedding space as aK-slot Motif Embedding
TableM ={m1,...,mK}. Each slot stores a continuousd-
dimensional motif embedding, which is a prototypical repre-
sentation of subgraph embeddings. Guided by the learned motif
embeddingsM, we group nodes to form subgraphs with a high
probability of belonging to a specific motif. These motif-like
subgraphs are informative and can benefit contrastive learning.
To learn both the GNN encoderENCθand the Motif Em-

bedding TableM jointly, we propose a differentiable learning
frameworkMICRO-Graph, as is illustrated in Fig.2. We first
pass a batch of graphs into the GNN encoderENCθto get
their contextualized node embeddings. Then, we group nodes
to sample motif-like subgraphs, which are further pooled to
get subgraph embeddings. Afterward, we feed the subgraph
embeddings into the two learning modules. TheMotif-Learner
updates the motif embeddingsM by maximizing the likelihood
of these subgraphs, and theContrastive Learningmodule up-
dates GNN parametersθ. We introduce each module in detail in
the following sections.

B. Differentiable Motif Learning

We first introduce how to automatically learn motif embed-
dingsM, as well as leverage them to generate informative motif-
like subgraphs in a fully-differentiable manner. This contains
two coupled optimization problems: (1) given motif embeddings
M, how do we partition a graph into a set of subgraphs that
are most similar to the prototypical motifs; (2) given the set of
subgraphs, how can we updateM and get better prototypical
motifs?
We derive the probabilistic model by drawing an analogy to

the standard topic model, i.e., PLSA, where motif correspond
to topics. Given a graphG, we denote a partition of itsNnodes
{u1,...,uN}asPar, andPargroups nodes inGinto a set
of subgraphs, i.e.G[Par]={g1,...,gJ}. In order to model
the likelihood of generating these subgraphs from motifs, we
define a K-way categorical random variablezj∈{1,...,K}
withP(gj|zj=k)representing the probability ofgjgenerated
from thek-th motif. Hence, each subgraph can be generated with
probability:

P(gj|M,θ)=
K

k=1

P(gj|zj=k,M,θ)P(zj=k) (1)

For simplicity, we assume the prior probability of any subgraph
belongs to motifkis uniform, i.e.,P(zj=k)=

1
K.
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Fig. 2. Overall framework ofMICRO-Graph. A GNN trained with SSL to automatically extract motifs. The learned motifs are leveraged to generate informative
subgraphs for graph-to-subgraph contrastive learning.

We then write down the conditional likelihood of the whole
graphGgiven a partitionParas:

P(G|Par,M,θ)=
gj∈Par

K

k=1

P(gj|zj=k)P(zj=k)

(2)

Our first learning objective is to update the motif embedding
M to maximize the conditional likelihood in(2).Thisisa
standard clustering problem involving hidden variableszand
can be optimized via an EM algorithm.
The next problem is to find the optimal partitionParthat

maximizes the complete likelihoodP(G)as the marginalization
over all possible partitions. This task is challenging as the
partitionParis a combinatorial set and is hard to represent
as a latent variable. Furthermore, it is computationally intensive
to enumerate all possible subgraphs and calculateP(gj|zj=k),
as the space grows exponentially in the graph size. To alleviate
this issue, we propose to approximateP(gj|zj=k)by breaking
it down to the node level. Specifically, we define anotherK-way
categorical random variableclwithP(ul|cl=k)representing
the probability of nodeulbeing generated from thek-th motif,
which is analogous to the word distribution for each topic.
Assuming nodes within a subgraph are mutually independent,

we derive an approximated conditional likelihood:

P̂(G|Par,M,θ)

=
gj∈Par

K

k=1

N

l=1
ul∈gj

P(ul|cl=k)P(zj=k) (3)

In this way, if we can estimate the node-to-motif assign-
ment probabilityP(cl=k|ul)∝P(ul|cl=k), searching for
the optimal partition simply becomes a dynamic programming
problem that can be solved inO(NK)time (maximizing the
total product of values in aN×Kvalue matrix). By further
discretizingP(cl=k|ul), partition searching can be achieved
in linear time.
To summarize, motif learning involves solving two coupled

optimization problems sequentially, where we based on the cur-
rentM to optimize over partitions, and then optimizeM given
the the optimal partition we found. Note that the first objective

doesn’t optimize the motif embeddingsM, as the node-to-motif
probability is an approximation. The second objective only
optimizes the motif embeddingsM.

Par∗,θ∗=arg max
Par,θ

P̂(G|Par,M,θ) (4)

M ∗=argmax
M
P(G|Par∗,M,θ) (5)

Modeling and Learning for Graph Partition:We first intro-
duce how we model and optimize the graph partition problem in
(4)via an EM algorithm. We denote the probabilityP(cl=k|ul)
asql,k. We model it as the similarity between node and the motif
in the embedding space. We first generate node embeddinghlof
eachulvia the GNN encoder, i.e.{h1,...,hN}=ENCθ(G).

After that we projecth
(i)
l with a projection parameter matrixWh

to map the node embeddings into the motif embedding space.
We modelql,kas the pairwise cosine similarities between the
projected node embeddings and motif embeddings, followed by
a softmax normalization to turn the values into probabilities.

ql,k=
expφ(Whhl)

Tφ(mk)/τ

lexp (φ(Whhl)
Tφ(mk)/τ)

(6)

Here we useφ(x)=x/x2to denote L-2 normalization, and
τis a temperature hyper-parameter. Given a batch of graphs
G={G1,...,GB},weuseQ=[q

(1),...,q(B)]Tto denote the
corresponding node-to-motif probabilities for allNB nodes in
Bgraphs.
In the E-step, we would like to calculate the cluster assignment
P(cl=k|ul). However, directly calculate it via(6)could be
problematic, as there exists a degenerate solution in which all
embeddings collapse together and get assigned to the same
motif. Similar issues were observed in previous works when
researchers were performing representation learning and assign-
ment estimation together[40],[41],[49]. To avoid this issue,
we adopt the strategy used in[40]to deriveQ∗as an optimal
estimate ofQby solving a regularized optimization problem as
in(7)and discretize it by only keeping the maximum column
[40]:

max
Q̂∈Q
Tr(̂QQT)+

1

λ
H(̂Q), where (7)

Q={̂Q∈RNB,K+ |̂Q1K =
1N
N
,̂Q
T
1N =

1K
K
} (8)
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HereH(̂Q)=− l,kQ̂l,kloĝQl,kstands for entropy,1N and
1K are all one vectors to force the motif assignments to be
balanced. This constrained optimization problem can be solved
efficiently using a fast Sinkhorn-Knopp algorithm as shown
in[42].
Then we do the M-step usingQ∗instead ofP(cl=k|ul),we

derive the optimal partitionPar∗by maximizing(3), and the
objective becomes the following asq∗l,kis either zero or one.

Par∗=argmax
Par

gj∈Par

K

k=1

N

l=1
ul∈gj

q∗l,k (9)

If a subgraph contains nodes with different motif assignments,
the product will be zero. Therefore, one optimal solution is
simply grouping all the nodes belonging to the same motif as a
subgraph. Following this simple rule,(9)is actually a straight-
forward step, whereas(7)do most of the heavy lifting. One
concern of this simple procedure is that some learned motifs may
contain too many nodes. We thus add the balanced-assignment
regularization, this solution can nicely partition the graph into
multiple subgraphs that have a high probability of belonging to
a specific motif, which matches our design purpose. We also
add randomness to this derived partition. For each subgraph, we
randomly remove 10% nodes. These procedures allow us to get
diverse partitions and avoid bloated motifs.
Additionally, we update the GNN parametersθto maximize

the likelihood of generating the optimal partition. Given the cal-
culated assignmentQ∗in the E-step, the negative log-likelihood
loss for updatingθis the following:

Lnode−mot =−

N

l=1

q∗l·logql (10)

One potential improvement of this partition method is to add
another regularization term to include graph structural informa-
tion explicitly. Since in the current setting we don’t constrain
the nodes in sampled subgraphs to be connected, and the graph
structure information is only used implicitly by generating node
embeddings using GNN. This could result in an assignment that
relies too much on feature information but overlooks structural
information. To capture structural information more explicitly,
we include another, spectral clustering-based regularization term
Lregproposed by[43]:

Lreg =−
Tr(qTAq)

Tr(qTDq)
+

q̃Tq̃

q̃Tq̃F
−
IJ√
J F

(11)

where||·||F denotes the Frobenius norm,AandD are the
adjacency and degree matrix ofG, and̃qisqwith onlyJselected
columns, i.e. only the motifs we are producing corresponding
subgraphs. This regularization guides GNN to makêQcloser the
result of spectral clustering, and penalizes disconnected nodes
being assigned to the same motif, thereby balancing the usage
of feature and structural information in motif-like subgraph
generation. We experiment and discuss more about this extra
term in the ablation study SectionIV-E.
Modelling and Learning for Motif Embedding:We now in-

troduce how given the optimal partition we model and optimize

Algorithm 1:PyTorch code, Full Version in Appendix B,
available online.

the motif embeddings in(5). After we get the partitionPar∗

withJsubgraphs, we group and pool the node embeddings to
get subgraph embeddings{sj}

J
j=1. Similar to the node-to-motif

assignment, we estimate the probabilityP(zj=k|gj)=pj,k
as the normalized similarity between subgraph embeddings
projected viaWsand the motif embeddings:

pj,k=
exp(φ(Wssj)

Tφ(mk)/τ)

jexp(φ(Wssj)
Tφ(mk)/τ)

(12)

As we mentioned above, the objective in(12)now becomes
a standard clustering problem like the pLSA topic model. We
thus solve it with another standard EM algorithm. For E-step
of calculating the assignmentπj,k, we directly infer that with
our resultQ∗from the node level, because subgraph sampled
by our partition operation only contains nodes belonging to the
same motif. We thus setπj,k=Q

∗
l,k,∀ul∈gj. Based on this,

we update the motif embeddingsM by maximizing the data
likelihood as the following:

Lmot-sub=−
J

j=1

πj·logpj (13)

As all the modules that get the loss are differentiable, we can
accumulate all the losses together as(14)and use a gradient-
based optimizer to update both the GNN parametersθand motif
embeddingsM jointly.

Lmotif =λnLnode-mot +λsLmot-sub+λrLreg (14)

C. Motif-Guided Contrastive Learning

Based on the informative sampled motif-like subgraphs,
we can train the GNN encoder ENCθ(·)via contrastive
learning on the subgraph level. Specifically, we denote the graph
embeddings ofG={G1,...,GB}as{e1,...,eB}. For all

JB=
B
i=1Jisubgraphs sampled from this batch, we compute
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the graph-to-subgraph similarity matrixY∈RB×JB, where the
entry(i, j)is the cosine similarity between the corresponding
graph-subgraph pair, i.e.Yi,j=φ(Weei)

Tφ(sj), whereWeis
a projection parameter matrix. For each graphGi, subgraphs
sampled from it are considered as positive pairs to it, while
subgraphs from other graphs are considered as negative pairs.
Thus, the contrastive objective function is calculated as follows:

Lcontra=−
1

B

B

i=1gj∈Gi

log
exp(Yi,j/τ)

jexp(Yi,j/τ)
(15)

D. MICRO-Graph Joint Training

The whole framework ofMICRO-Graphcan be trained jointly
with a weighted sum of the two loss described above.

L=αLmotif +(1−α)Lcontra (16)

The training steps are shown in Algorithm1, where the motif
learning and contrastive learning modules mutually enhance
each other. Initially, motif embeddings are randomly initialized,
and the motif-like subgraphs are random. As training proceeds,
GNN can generate more representative subgraph embeddings
for motif learning, while more informative subgraphs can benefit
contrastive learning.

E. Time Complexity Analysis

We analyze the time complexity of our method and compare
it with other representative methods in the literature. As a batch
may involve graphs with different sizes, we analyze the time
complexity for a batch ofBinput graphs, in terms of the average
number of graph nodesN, the average number of graph edges
M, the total number of motifsK, the average number of motifs
(or views for baseline methods) selected from each graphk, and
the batch sizeB.
Our model contains three major modules, the GNN encoder,

the motif learning module, and the final contrastive learning
module. The GNN encoder and contrastive module are standard
modules and are used in most of the graph contrastive learning
works. As shown in[12], the time complexity of these parts is
linear in the number of edges, i.e.,O(BM). Our special part
that is different from other works is the motif learning module.
This module has three operations, computingQ, the Sinkhorn
algorithm for computingQ∗, and computingLreg. The time
complexity for computingQ isO(BNK).[42]shows that
the Sinkhorn algorithm has complexityO(BNK).[43]shows
that the computation ofLregis dominated by the numerator
of the first term, which isO(N2k+Nk2)for each graph.
Put these together and simplify, we get the final complexity
O(BNK+BN2k). As a comparison, common graph augmen-
tation methods considered by previous works can involve ran-
dom walk sampling, e.g., GCC, GraphCL, etc, which has com-
plexityO(BNrk), withrdenoting the walk length. Therefore,
whenKandrkare comparable, orNandrare comparable, our
method has comparable complexity to these random-walk-based
methods. In practice, this is often the case for molecule graphs
and biological protein graphs. Another example is sampling
by spectral clustering, which has time complexityO(BN3)

because of the Laplacian matrix computation, and it can be much
slower than our method.

IV. EXPERIMENTS

We evaluate the effectiveness of MICRO-Graphfrom two
perspectives: 1) whether the self-supervised framework can
learn better GNNs that generalize well on downstream graph
classification tasks; 2) whether the learned motifs are reasonable
and can genuinely benefit contrastive learning.

A. Dataset

We conduct experiments on different types of data, includ-
ing molecule graphs, biological graphs, and social graphs. For
molecule graphs, we focus on chemical property prediction
tasks, where large-scale unlabelled molecules are available, and
many downstream tasks are label-scarce. Specifically, we pre-
train GNNs usingMICRO-Graphon the ogbg-molhiv dataset
from Open Graph Benchmark (OGB)[44], which contains
40K molecules. We test our pre-trained model on smaller ogbg
molecule property prediction benchmarks. For a detailed de-
scription of the OGB datasets, please see Appendix G, available
online. We also consider four datasets that have been frequently
used by previous graph self-supervised learning papers[7],[11],
[13]. The NCI1 and DD biological graph datasets and the RDT-B
and IMDB-B social network datasets. NCI contains of com-
pounds screened for ability to suppress or inhibit the growth of a
panel of human tumor cell lines. DD contains graphs with protein
structures that can be classified into enzymes or non-enzyme.
RDT-B contains graphs corresponding to an online discussion
thread on Reddit. IMDB-B contains graphs with actor/actress
and genre information of different movies.

B. Baselines and Model Configuration

We consider eight GNN SSL methods as baselines. Note that
some methods had different experiment settings as this work,
e.g., a different pre-train dataset. Therefore, the performance
results on the same downstream task dataset can be slightly
different from those original papers.
InfoGraph:[11]maximizes the mutual information between

the representations of the whole graphs and the representations
of its substructures.
Context prediction:[12]predicts the surrounding structure of

each node, so nodes appearing in similar structural contexts will
be mapped to nearby representations.
GPT-GNN:[6]predicts masked edges and node attributes.
The edge prediction makes node representations to be close
when there are edges between them.
GROVER:[24]first uses professional software, e.g. RD-
Kit[45], to extract functional groups (motifs) from a dataset.
Then, it pretrains by predicting motif labels.
GraphCL:[13]performs contrastive learning with four types
of view augmentations: node dropping, edge perturbation, at-
tribute masking, and subgraph sampling. In our experiments,
we adopt the default setting, i.e., randomly choose two out of
four methods to construct views.
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TABLE I
TRANSFERFINE-TUNEPERFORMANCE(ROC-AUC)OFMICRO-GRAPHCOMPAREDWITHOTHERSELF-SUPERVISEDLEARNING(SSL) BASELINES ONMOLECULE

PROPERTYPREDICTIONBENCHMARKS

TABLE II
FEATUREEXTRACTIONPERFORMANCE(ROC-AUC)OFMICRO-GRAPHCOMPAREDWITHOTHERSELF-SUPERVISEDLEARNING(SSL) BASELINES ONMOLECULE

PROPERTYPREDICTIONBENCHMARKS

DGI:[5]maximizes the mutual information between local
node representations and global graph representations.
GCC: [7]conducts subgraph-to-subgraph structure con-
trastive learning with views generated by random walk.
MGSSL:[25]conducts generative pre-training by first con-
structing motif trees with the BRISC algorithms[26], and then
predicts the tree topology and masked attributes.
We use the state-of-the-art GNN model, Deeper Graph Con-

volutional Networks (DeeperGCNs) proposed in[46],asthe
base GNN encoder forMICRO-Graphand all baselines. We
use the same model architecture hyperparameters recommended
by the original DeeperGCN architecture for all experiments.
Details about hyperparameters and model configurations are in
Appendix H, available online.

C. Evaluation Results Under Different Protocols

We evaluate the effectiveness of pre-trained GNNs on three
types of datasets: molecule graphs, biological graphs, and social
graphs. We use two evaluation protocols: fine-tune evaluation
and feature extraction evaluation.
Fine-tune/Feature Extraction Evaluation on Molecule

Graphs:For the molecule dataset, we evaluate by following the
literature convention in[12]and mimic the real-world setting
with scarce data labels. We fine-tune the pre-trained GNN model
on a small labeled data portion on downstream tasks. We adopt
the same train-test and model selection procedure as in[4],[47],
[48], where we perform 10-fold cross-validation and report the
epoch with the best cross-validation performance averaged over

TABLE III
EMBEDDINGEXTRACTIONEVA L UAT I O N(AVERAGEACCURACY)OF

MICRO-GRAPHCOMPAREDWITHOTHERBASELINES ON BIOLOGICALGRAPHS
(NCI1ANDDD)ANDSOCIALGRAPHS(RDT-BANDIMDB-B)

the 10 folds. The evaluation metric we used is the ROC-AUC
score. We also compare our result to the non-pretrain (direct
supervised learning) setting. The evaluation results under the
transfer fine-tune setting is illustrated in TableI. Similarly, we
also show a feature extraction setting where a single-layer MLP
is trained on top of the extracted features. Results are shown in
TableII.
Feature Extraction Evaluation on Biological and Social
Graphs:For biological and social datasets, we evaluate fol-
lowing the literature convention in[13]. We pre-trained a GNN
first and then used fix it use it only as a feature extractor to
get graph representations. The generated representations are fed
into a down-stream SVM classifier for evaluation. The results
are shown in TableIII.
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Fig. 3. Five frequent motifs learned byMICRO-Graphon molecular graphs,
represented by their closest subgraphs.

Fig. 4. Five frequent motifs learned byMICRO-Graphon biological graphs
(DD), represented by their closest subgraphs.

Fig. 5. Five frequent motifs learned byMICRO-Graph on social graphs
(IMDB-B), represented by their closest subgraphs.

For both settings,MICRO-Graphoutperforms most of the
baselines on average performance and achieves the highest
results on most datasets. For the transfer fine-tune, we gain about
2.04%performance enhancement against the non-pretrain base-
line. The only baseline that slightly outperformsMICRO-Graph
is MGSSL (by 0.09 on average for fine-tune evaluation, and
0.33 on average for feature extraction evaluation). However,
MGSSL heavily relies on domain knowledge and only works
for molecule graphs.

D. Visualization and Analysis of Learned Motifs

We show learned motifs ofMICRO-Graphby collecting the
closest subgraphs, and we observe quite different motif patterns
for different graph types. For molecular graphs in Fig.3,the
learned motifs are similar to meaningful functional groups, such
as Benzene rings and acetate. This shows thatMICRO-Graph
can learn reasonable and meaningful motifs. A complete list of
the learned motifs is shown in Appendix C.1, available online.
For biological graphs in Fig.4, nodes represent amino acids,
and edges represent their spatial proximity. We observe grid-like
motifs, indicating a regular spatial arrangement of amino acids,
which potentially reflect functional regions of proteins. We also
observe star-like motifs, with a central amino acid connected
to multiple others. This motif is connected to the protein’s
tertiary structure, where the central node in the star-like motif
could be a highly interactive residue, such as an active site in
enzymes or a binding site in receptor proteins. For social graphs
in Fig.5, we observe interesting clique motifs and motifs with
one central node bridging two cliques. These patterns reveals
the community structure of a social network, where there are
tight-knit community where all members interact with each other

TABLE IV
AVERAGEFEATUREEXTRACTIONRESULTWITHDIFFERENTABLATIONS

and a hierarchical social structure with one popular individual
connecting two groups.

E. Ablation Study

Motif-Like Subgraph Sampling:Sampling subgraphs is a per-
vasive operation in graph learning. Simple approaches that often
show up in literature include random walk and k-hop neighbours.
The problem with these two sampling methods is that they
only use local graph structural information but not feature in-
formation. Thus, they cannot accurately generate semantically-
meaningful subgraphs when graph features are critical for
representing the subgraph and whole-graph properties. MICRO-
Graph leverages learned motifs to produce motif-like subgraphs.
To evaluate its effectiveness, we run our framework by replacing
motif-guided sampling with random walk and k-hop sampler,
with all other settings stay the same. We show the result in the
first block of TableIV. As we see, the performance of the same
framework with random walk and k-hop drops 5.64%and 4.99%
respectively. This shows the importance of generating motif-like
subgraphs. We also conduct ablation by removing the spectral
regularizerLreg, and the performance drops 1.82%.Afterre-
moving this regularization, the sampled subgraphs are prone to
contain disconnected nodes, which hinders the generalization
performance to real-world graphs.
Two examples of subgraphs generated by all four strategies
are shown in Fig.6. From the sampled subgraphs, we can see
that random walk is more likely to generate chains (as it just
randomly pick next-hop nodes, and thus have low probability
to sample a complete benzene ring, which is the most basic
component of molecule subgraph), while k-hop sampling is
more likely to generate half part of a Benzene ring (as it just
add in all the local neighborhood without selecting the im-
portant ones, and thus most subgraphs look similar). Neither
of these two heuristic approaches can successfully generate a
complete and clean functional group (such as benzene rings),
and the generated subgraphs are not very meaningful. On the
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Fig. 6. Comparison between different sampling strategies. Two examples are shown. In each example, the original graph is shown on the left. Samples produced
by four different sampling strategies are shown on the right. The top row shows the samples by our motif-guided segmenter.

Fig. 7. Average fine-tune result over three GNN architectures.

contrary, our motif-guided sampling can successfully generate
a complete benzene rings and other significant substructures.
This intuitively explains why the contrastive learning with our
motif-guided sampler works much better than the others. After
removing theLregterm in the joint loss, the samples can
still capture important nodes in the whole graph, but it will
overlook some structural information and are prone to get some
disconnected parts in a subgraph, which is not very realistic.
Graph-to-Subgraph Contrastive:In this paper, we mainly uti-

lize graph-to-subgraph (graph-sub) contrastive. Similar to image
crop pair in computer vision, subgraph-to-subgraph (sub-sub)
contrastive is also a promising alternative, which has already
been studied in GraphCL[13]with random walk. We do an
ablation study by conducting sub-sub contrastive learning utiliz-
ing our motif-like subgraphs with all other settings unchanged.
Results of this setting are worse than graph-sub learning, and
worse than the GraphCL baseline.
We hypothesize that the performance gap of sub-sub with

motif-like subgraphs is due to the false-negative of the current
graph partition procedure. By grouping nodes close to a limited
number of motifs, there is a high probability that two different
graphs have a similar subgraph structure, which would form a
false negative pair. To overcome this limitation, it is necessary
to incorporate more randomness and take the composition of
motifs as subgraph, which we leave these possibilities as future
directions.
One might also ask why the graph-sub setting is less sensitive

to false-negatives. For our model design, one key choice is to
first get all the contextualized node embeddings that encode the

whole graph characteristics. In this way, even if two subgraphs
from different graphs share a similar structure, their subgraph
embeddings can still encode different context information. To
test this hypothesis, we remove contextualized embedding by
re-encoding all the sampled subgraphs. As shown in the third
block, the result in this setting is extremely poor, worse than
all existing pre-training frameworks. This explains the impor-
tance of contextualized node embeddings for subgraph-level
contrastive learning and explains why our proposed graph-sub
setting works.
Number of Motifs:The number of motif slots,K,isan
essential hyperparameter in our motif learning framework. We
thus conduct an ablation study with three differentKvalues, i.e.,
5, 10, 20, 50, 100, 200, and 300. As illustrated in the last block
of TableIV, with differentKvalues,MICRO-Graphshows con-
sistent performance enhancement, while an intermediate value
20 gives the best result on average.
Our hypothesis is that the best K is dataset dependent, and
a moderate K is optimal for molecule datasets, as this will
create enough capacity for learning different motifs and does not
introduce too much redundancy. We found that the results from
50 to 300 are all within reasonable variance. We conclude that
as the number of motifs gets larger, model performance actually
does not differ much. When there are more than enough motif
slots, some slots will simply become redundant and correspond
to random subgraphs. We verify this by checking the similarities
between a motif embedding and its top 5 most similar subgraphs
when K is large, for some motifs all these 5 values are low (cosine
similarity<0.5), which means no subgraphs are considered
close to these motifs, and the motif slots are not really used.
Having a bigger K creates more of these unused motif slots. On
the other hand, for a very small K, e.g., K=5, the performance
is not good. We hypothesize the reason being too few motif slots
cannot capture all meaningful substructure patterns.
GNN Architectures:TheMICRO-Graphframework is ag-
nostic to the GNN architecture. We show this by trying three
different standard GNN architectures, i.e. GCN[1],GIN[4],
and DeeperGCN[46].AsweshowedinFig.7,MICRO-
Graphprovides a consistent performance enhancement for all
different GNNs, and a more expressive GNN like DeeperGCN
can provide a larger performance improvement.
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Fig. 8. Similarity between the whole graphG1and three subgraphsg1,g2,andg3, zoom in to each dimension. For each row,x-axis is the dimension slot 1 to
300, andy-axis is the similarity scores between corresponding dimensions of the whole graph representation and each subgraph representation. We indicate the
top 20 scores in orange. We can see that these three subgraphs have very different similarity score distributions, though summing over all 300 dimensions give
alike high scores.

V. CASESTUDY OFGRAPH-TO-SUBGRAPHCONTRASTIVE AND
THELEARNEDEMBEDDINGS

Another core component inMICRO-Graphis the graph-to-
subgraph contrastive learning based on motif-like subgraphs.
Though we have previously showed that such design can em-
pirically and intuitively help pre-traing better GNN, there’s still
some potential question about the combination of motif with
contrastive learning.

A. Different Subgraphs From the Same Graph

One key question is that each graph can be partitioned into
subgraphs that belong to different motifs. Through graph-to-
subgraph contrastive learning, we force these subgraph embed-
dings to be similar to the whole graph embedding. However, will
these subgraph embeddings also be forced to be similar to each
other? If so, it contradicts to our principle of learning distinctive
motif semantics.
We investigate this question by a case study of a particular

graph in Fig.8, which is partitioned into three subgraphs that
belong to different motif slots. We show the similarity score
of these subgraph to the whole graph, and also the entry-wise
similarity of each hidden dimension of the 300-dimension em-
bedding. As we can see, all the three subgraphs can get relatively
high similarity score, compared to the overall distribution of
graph-to-subgraph similarity score shown in Fig.9.
One very interesting findings is that the maximum entry of

similar score for these three subgraphs are very different. Specif-
ically, this indicates that the 300-dimension embedding actually
encode multi-view semantic information. While doing cosine
similarity of subgraph to whole graph, different dimension could
be activated for different subgraphs. In other words, they are

Fig. 9. Distribution of similarity scores between the whole graphGand all
the subgraphs.

only similar to the projection of the whole graph representation
on different basis. Therefore, even the three subgraphs are all
similar to the whole graph, their embeddings do not collapse to
be the same, which maintains the diversity and distinctiveness
of the motifs.
To further justify our claim, we also show the pairwise cosine
similarity scores between these three subgraphs in Fig.10.We
find that their mutual similarity is not very low, indicating that
each subgraph embeddings could capture their own semantics.
To show that this claim is generalizable to the whole dataset, we
randomly select a batch of graph{G1,...,GB}, and get all their
subgraphs. We use Fig.11to show the pairwise similarity scores
between these subgraphs in order. we find that even though these
subgraphs are listed in order, (i.e.g1,...,g3are fromG1,g4,g5
are fromG2,g6,...g8are fromG3, and etc) similarity scores are
roughly uniform. In other words, this heat matrix is not strictly
block diagonal, indicating subgraphs from the same whole graph
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Fig. 10. Pairwise similarity scores between subgraphsg1,g2,andg3from the
same whole graph.

Fig. 11. Pairwise similarity scores between the first 30 subgraphs sampled
from{G1,...,GB}.

do not necessarily have high similarities among them. This again
justifies that our claim is true among the whole dataset.
Also, this study partially answers why graph-to-subgraph

contrastive works better than subgraph-to-subgraph contrastive
in our setting. Using subgraph-to-subgraph contrastive, two
subgraph in the same graph that have different motif assignments
will be forced to be similar, which contradicts to our assumption
to motif embedding. If we want to extend the current framework
to subgraph-to-subgraph contrastive, a better subgraph sampling
that considers composition of motif and more randomness is
required.

B. Performance Attribution: Contrastive Versus Generative

Methods covered in the experiment section fall into two cat-
egories, contrastive and generative, where the best performance
was achieved by the generative-based method, MGSSL, which
also uses predefined motifs. We attribute the performance gain
of MGSSL mostly to the predefined motifs. The conclusion is
drawn from comparing GROVER and GPT-GNN. GROVER
relies on predefined motifs for pre-training, where it extracts
motifs using professional molecular software and then pre-trains

by predicting motif occurrences in molecule graphs. In contrast,
GPT-GNN employs a generative SSL approach to generate
masked nodes, edges, and node features following a specific
order, without utilizing additional domain knowledge like pre-
defined motifs. Despite the relative simplicity of GROVER’s
pre-training objective, which resembles supervised learning
with predefined motifs as labels, it outperforms GPT-GNN
(72.5 vs. 72.18). For MGSSL, its strong performance is primarily
rooted in the utilization of predefined motifs, as its generative
SSL approach also relies on motifs rather than simple mask-
ing reconstruction of nodes, edges, and features. For MGSSL,
the generation process involves constructing motif trees and
the generation order is determined by either BFS or DFS on the
trees. This additional complexity in MGSSL is designed to ef-
fectively leverage domain knowledge. In conclusion, for model
pre-training on graph data with sufficient domain knowledge,
such as molecules, finding ways to incorporate domain knowl-
edge like predefined motifs with ML models holds promise and
warrants further investigation. However, for other graph data
with less domain knowledge, such as social graphs, contrastive
SSL remains a preferable choice. In support of this, both our
MICRO-Graph and GraphCL outperform GPT-GNN on IMDB
data, whereas MGSSL and GROVER cannot be applied in this
case.

VI. CONCLUSION

We proposeMICRO-Graphto pre-train a GNN via subgraph-
level contrastive learning. To tackle the challenge of informa-
tive subgraph sampling, we learn motifs during pre-training.
With MICRO-Graph, we learn meaningful motifs that align
with molecular functional groups. Fine-tuning the pre-trained
GNN on seven chemical property prediction benchmarks yields
2.04% average improvement over non-pretrained GNNs and
outperforms pre-training baselines.
Limitation and Future Work:The exploration of various
downstream tasks is essential in the context of general graph
contrastive learning. While our work primarily focuses on graph
classification tasks, more downstream tasks like node classi-
fication are not investigated in this work. We recognize the
potential of node classification as a promising avenue for future
research. A straightforward way to adapt our approach to node
classification is by transforming these problems into graph clas-
sification tasks, notably through the extraction of ego-graphs for
individual nodes. In fact, the IMDB-B dataset explored in this
work was constructed with ego-graphs, and our method shows
reasonable performance for both prediction and motif learning
on this dataset.
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