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Abstract— The Spring-Loaded Inverted Pendulum (SLIP)
is one of the simplest models of robot locomotion. SLIP is
commonly used to predict the center of mass motion and derive
simple control laws for stable locomotion. However, the SLIP
model is not integrable, which means that no closed-form rela-
tion can be derived to understand how the design and control
parameters of the SLIP model affect stable locomotion. There
exist a number of different analytical approximations to the
SLIP model when considering small step lengths and symmetric
steps. In this paper, we present a novel approximation to the
SLIP model without relying on the small step length and the
symmetric step assumption. The model was found to accurately
predict the stability of the SLIP model for large and asymmetric
steps and was used to design a controller to stabilize the SLIP
model in a couple of steps.

I. INTRODUCTION

Modeling bipedal locomotion is a challenge because hu-
mans, animals, and robots have many degrees of freedom
and complex dynamics [1], [2]. The complexity of legged
dynamics motivates the development of heuristic models that
simplify the dynamics while accurately capturing the motion
of the center of mass. One such model is the Spring-Loaded
Inverted Pendulum (SLIP) proposed by Blickhan [3].

The SLIP is a point mass representing the center of mass
of the body and a spring representing the legs. The SLIP
has been widely used to predict the mechanics and control
aspects of not only human and animal locomotion [4]-[6],
but also robot locomotion [7]-[13]. For example, predictions
made using the SLIP model have been instrumental in
designing controllers for both simple robots [14] and robots
with many degrees of freedom and actuators [15]. Although
the predictive power of the SLIP model was appreciable
in these studies, the SLIP has non-integrable dynamics for
which a closed-form relation between the design and control
parameters cannot be analytically obtained.

The non-integrable nature of the SLIP model motivated
a number of efforts for finding approximate analytical solu-
tions for the SLIP model. Perhaps the most intuitive way
of achieving a reduced complexity analytical solution is
by neglecting the gravitational force and transforming the
stance dynamics into a central force problem where angular
momentum is conserved, see [16]. An alternative approach
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presented in [17] and later extended in [18], involves a
small step-length approximation as well as assuming that the
spring compression is negligible compared to the leg length.
These assumptions result in both the angular momentum and
the energy being conserved for symmetric steps and were
used to model walking and walking-to-running transitions
[19]. Recently, the authors in [20], [21] proposed a refined
perturbation-based SLIP model that uses the small-angle
approximation but obtains a more accurate albeit analytically
more complex approximation.

Although the small-step approximation can be used to
reasonably well approximate human walking with normal
speeds, [19], situations where large and asymmetric steps
are relevant exist, such as the fast walking of robots. It has
been previously shown that, at least in walking with rigid
legs, reducing the step length and increasing the stepping
frequency reduces collision energy loss at heel strike and
results in more efficient locomotion than increasing the
step length and reducing the stepping frequency [22], [23].
However, by modeling the leg as a mass-less spring, the
energy losses due to collision at heel strike can be minimized.
Also, humans do not use small steps to walk fast, and robots
may not need to use small and symmetric steps to walk fast.
The latter has been recently shown in [24], where taking large
steps, and using an optimal leg stiffness and precompression
policy, was shown to be a desirable approach to walking at
high speeds. Existing models that use a small step length
approximation have limited prediction power when it comes
to fast locomotion with large asymmetric steps [20]. Asym-
metric stepping is used in human and robot locomotion and
is crucial for acceleration and fast locomotion [25].

In this paper, we present a novel approximation to the
SLIP model which preserves accuracy for large step lengths
and asymmetric steps. The new model introduces a sine
wave approximation of the horizontal ground reaction force
and considers small vertical displacement during stance.
The model includes the effect of gravity and does not
invoke a small step length approximation. As a result, the
model accurately captures the exact SLIP dynamics for a
wide range of stepping conditions, which is important for
studying both human and robot locomotion at high speeds.
The approximate SLIP model was evaluated in terms of its
accuracy in predicting the velocities of the body compared
to the exact SLIP model. The approximate SLIP model was
then used to derive a stiffness control strategy that stabilizes
the SLIP model in a couple of steps. Finally, we show that
the analytical controller design using the approximate SLIP
model outperforms the controller that arises from using the



linearized SLIP model when both controllers are applied to
the exact SLIP model at race walking conditions.

The new model provides a template for legged locomotion
that can be used to investigate the relation between design
and control parameters that have been previously hidden in
the non-integrable dynamics of the exact SLIP model. The
new model can also be used to derive locomotion controllers
for robots, similar to the controller presented in this paper.

II. A NOVEL MODEL OF LOCOMOTION

In this section, we describe the spring-loaded inverted
pendulum model and derive a novel approximation of the
planar SLIP model.

A. Planar SLIP Model

Let us consider a point mass representing the center of
mass of the body and a mass-less spring representing the
legs, shown in Fig. 1.

We assume that the mass-less foot acts as an anchor point
during the stance phase and does not slip as the body vaults
over it. The stance phase begins with the heel strike event,
which is characterized by the foot coming to contact with the
ground and ends with the toe-off event. Toe-off occurs when
the spring leg releases all the energy it stores and reaches its
fully-extended uncompressed length. If the vertical velocity
of the body is positive at the toe-off point, the body takes off,
and the locomotion gait changes from walking to running.
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Fig. 1. SLIP model of robotic locomotion.

In the exact SLIP model, the spring leg is conservative
and as such can be modeled by a potential energy function,

1
V(xy) = Skl = v/ +y2)?, (1)

where (x,y) is the position of the point mass, /y is the leg
length, and k is the stiffness of the leg, see Fig. 1.

The stance dynamics of the exact SLIP model can be
expressed by the following two equations,

kl()x
\/x2+y2
L _ kloy
my = Fy(x’)’) —mg = \/TTyZ —ky —mg,

mi = Fy(x,y) = — kx, 2)

3)

where m denotes the mass while g denotes the gravitational
acceleration.

These equations capture the nonlinear stance dynamics of
locomotion for any step. These equations are non-integrable
[1], [26]. In the remainder of this paper, we derive an
approximation to these equations which retains the non-linear
dynamics of the SLIP model at large steps and is integrable
under some assumptions.

B. A Novel Approximation of the SLIP Model

In order to approximate the forces in the stance phase
equations (2) and (3), we make two assumptions:

Assumption 1: The spring leg of the approximate SLIP
model is conservative during stance, similar to the spring
leg of the exact SLIP model. This assumption implies that
there exists a scalar spring potential energy function for the
approximate SLIP model,

V="(xy). 4)

Assumption 2: The spring potential energy function of the
approximate SLIP model is separable; it can be approximated
by a product of two functions where one function depends
only on the horizontal position of the center of mass, while
the other function depends only on the vertical position of
the center of mass,

V(x,y) = Vi(x)Vy(y). (5)

Based on these assumptions, we compute the horizontal
and vertical forces in the approximate SLIP model,

) av,
Ay =~ LDy ) ®)

dx
ﬁ‘y(xvy) = _Vx(x) d‘?{)()y) :

(7

To approximate the horizontal force £ (x,y) in (6), we note
that the exact SLIP model has a near sinusoidal force profile
for constant height center of mass motion y =y, see Fig. 2.
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Fig. 2. Typical horizontal force of the exact SLIP model for constant height
center of mass motion y = j.

To approximate the vertical force Fy(x,y) in (7), we
note that the exact SLIP model has a linear vertical force-
deflection relation at mid-stance F(0,y) = k(lp —y). Based



on this linear relation, and the sinusoidal horizontal force
profile in Fig. 2, we make the following assumptions,

A~ T . X
Fi(wy) = —sin (22 )1, (), ®)
Xto Xto
Ey(x,y) = Va(x)k(lo — y), )
where xi, is the horizontal position of the mass at toe-off,

see Fig. 1.

Using (8) and (9), the computation of the potential energy
function is reduced to the determination of two functions,
Vi(x) and Vj(y). Based on Assumption 1, these two functions
must satisfy the following equation,

Ifx(x,y) _ 9Fy(x.y)

dy dx

along with the boundary conditions that relate the approxi-
mate SLIP model with the exact SLIP model,

(10)

(1)
(12)

V(thaYhs) = V(xh57})hs)7
V(xtoayto) = V(xtoayto) =0,

where V (xps, yhs) is the potential energy at heel strike while
V(xt0,¥10) = 0 is the potential energy at toe-off calculated
using the exact SLIP model (1).

Using (8)—(12), we obtain the potential energy function of
the approximate SLIP model,

V(x,y) = VeV (y), (13)
where
Vi(x) = cos (nxi) 41, (14)
to
o V(xh57)7hs) . _ E 2 2
V}'(y)_ cos (ﬂ%)%—l klO(y .Vhs)+2(y yhs)' (15)

The approximation presented here is somewhat similar to
the one employed by the authors in [25], where a Fourier
series approximation was used to achieve success in pre-
dicting the horizontal velocity at the toe-off for a set of
conditions. However, the model in [25] does not provide a
potential energy function V(x,y) and only considers vertical
heel strike configurations x,s = 0. Here, we consider arbitrary
heel strike configurations and allow for the construction of a
potential energy function, similar to the exact SLIP model.

III. APPROXIMATE ANALYTICAL SOLUTION

In this section, an approximate solution of the SLIP
dynamics is presented (Section III-A) based on the potential
energy function derived in the previous section. Subse-
quently, the accuracy of the analytical solution is assessed
with respect to the exact SLIP model (Section III-B).

A. Approximate Solution

In order to find a closed-form solution using the approxi-
mate SLIP dynamics, we make the following assumption:

Assumption 3: The position change of the center of mass
in the vertical direction is negligible compared to the position
change of the center of mass in the horizontal direction:

Y(1) % Yhs- (16)

This assumption is well suited to model fast locomotion.

Based on (16), we predict the horizontal velocity of the
center of mass as a function of the horizontal position using
the non-linear differential equation,

mx = _dvxi(X)Vy(Yhs)'

o a7)

Using i :x%, equation (17) separates variables and can

be integrated into the following kinetic energy relation,
L _

2m(x %) = Vy(¥ns) (Vx(xhs) Vx(x)) :

Finally, we substitute (14) and (15) into (18) to obtain the

horizontal velocity as a function of the horizontal position,

(18)

%(x)? :xﬁs—i-cx(k)(cos <7r);—i:) —cos (ﬂ:%)), (19)
where
qw—z‘WMM>_kQ“V@+my.em

o hs - Xh
mcos (n) +1  m  cos(mi)+1
Next, we proceed to find the vertical velocity as a function
of the horizontal position of the center of mass. To do that,
we consider the following equation,

dvy(y)

21)
dy  ly=yh (

my = —Vy(x)

—mg.

Using j = %x(x) equation (21) separates variables, but
cannot be integrated to express the vertical velocity y(x) in
terms of elementary functions. To express y(x) in terms of
elementary functions we make the following assumption:

Assumption 4: The horizontal velocity of the center of
mass does not change substantially during a single step,
%(x)? ~ 2. This assumption was used to derive approximate
formulas for fast walking [24]. According to (19), this
assumption is well suited to locomotion where the velocity
does not fluctuate much during the step, that is, when ¢, (k)
(20) is small compared to xﬁg

Using Assumptions 3 and 4, together with y = %xhs, we
integrate (21) to find the vertical velocity,

Y(x) = yps + ¢y (k) (sin (ni> —sin (n@) + l(x—xhs)>

Xto Xto Xto
— 5 (v —xny),s (22)
Xhs
where
Xo k
cy(k) = % . (Io = yhs)- (23)

Equations (19) and (22) can be further integrated, under
the assumptions stated above, to obtain x(¢) and y(x), but due
to the analytical complexity, these functions are not presented
here. Instead, in Section IV, we use (19) and (22) to analyze
the stability of the approximate SLIP model and derive a
controller for stable locomotion of the exact SLIP model.
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Fig. 3.

B. Approximation Error

In order to assess the accuracy of the predictions derived
in the previous section, we compare the approximate SLIP
model with the exact SLIP model.

We introduce two metrics to assess the error in our approx-
imation. The first metric is the work done by the horizontal
force since this quantity is computed when deriving the
horizontal velocity (19),

f;:: Fx(xayhs)dx

| X 100%.
;:: Fx(anhs)dx

AW (s, yns) = ‘ 1- (24)

The second metric is the vertical momentum, since this quan-
tity is computed when deriving the approximate expression
for the vertical velocity (22),

o B

Jan By d
where X,(x) is defined by (19) while x.(x) is derived by in-
tegrating (2) with y = yps. These metrics give insight into the
accuracy of the approximate SLIP model for predicting the
horizontal and vertical velocity at toe-off for different heel
strike positions, which is relevant to determining stability.

Figure 3 shows the errors defined by (24) and (25). It can
be noticed that the model is 100% accurate in determining
the heel strike velocity in the horizontal direction for the
next step because it preserves the energy in the horizontal
direction when y = yps. On the other hand, the error in
momentum (25) goes up to about 25%. It is important to
note, however, that the majority of high-error cases are in
the region with short step lengths and little initial leg pre-
compression, see Fig. 3b. In these cases, the horizontal forces
of the approximate and the exact SLIP models are both small
and while the relative error defined by (25) can be 25%, the
difference between the predictions remains small.

We have derived an approximate model for the spring-
loaded inverted pendulum template without relying on small-
angle approximation, and demonstrated its potential in pre-
dicting toe-off velocity. Next, we use the approximate SLIP
model to design a controller for stable locomotion.

Apy (X, hs) = |1 = x 100%, (25)
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IV. ANALYTICAL CONTROL DESIGN FOR STABLE
LOCOMOTION

Stability of the approximate spring-loaded inverted pen-
dulum model can be described by a two-dimensional re-
turn map, using the horizontal and vertical velocities. Al-
though the two-dimensional map can be reduced to a one-
dimensional map when there is no spring pre-compression
at heel strike [16] and the vertical position of the center of
mass at each heel strike is equal [1], here we consider the
general case where pre-compression at heel strike is allowed.

In the remainder of this section, we (i) investigate the sta-
bility properties of the approximate SLIP model (Section V-
A), (i) derive a controller using the approximate SLIP
model (Section IV-B), and (iii) show that the approximate
controller achieves steady-state locomotion when applied to
the exact SLIP model. We also compare the performance
of the proposed controller to the controller computed using
the exact nonlinear SLIP dynamics, and the controller that
uses the linearized SLIP dynamics. In the latter case, we
assume a small leg angle and small relative leg compression
since these assumptions are commonly employed in deriving
approximate SLIP dynamics [17], [21], [27], [28].

A. Steady-State Locomotion

In order to find the relation between the horizontal position
of the center of mass at heel strike xps and the horizontal
velocity change from heel strike to toe-off, we use (19) to
compute,

; ; k / 2
x(xt0)2 _xﬁs = Z (lO - x%s +y%s) 20.

An important point here is to note that, because 2 :xtzo + yﬁs,
symmetric steps defined by xps = —x;, result in no horizontal
velocity change between subsequent heel strikes.

By changing the heel strike position xps between a sym-
metric step xpg = —Xio and a fully asymmetric step xpg =0
(where the leg is vertical at heel strike), or by choosing
the stiffness of the leg k, it is only possible to accelerate
or keep constant horizontal velocity, but not possible to
decelerate in absence of collision losses or air resistance.
This is the case in the SLIP model if the vertical position of

(26)



the center of mass does not change between heel strike and
toe-off yhs = y1o. This type of walking may emulate the near
horizontal center of mass motion in cycling [24].

In the next section, we will introduce an additional control
parameter to alleviate the aforementioned limitation.

B. Acceleration and Deceleration

In order to enable the approximate SLIP model to both
accelerate and decelerate regardless of the position of the
body at heel strike xps € [—xt0,0], we assume that the stiffness
of the leg can be changed at mid-stance similar to the strategy
proposed by the authors in [29],

ke ki if xps<x<0
ky if 0<x<xo

Next, we split the horizontal velocity prediction (19) into

27

two separate parts and use (27) to compute x(x)> as a
function of both k; and k. Then by solving
X(x10) = X(xhs), (28)

an analytical condition for mid-step stiffness change is
derived to achieve steady-state horizontal velocity,

k2 1 Xhs
— = 7(1 —cos (ﬂ—))

kl 2 Xto
Figure 4 shows the above relation. We observe that (29)
(black line) separates the space of k/k; and xps/xo, to two
regions, one that results in horizontal acceleration (red) and
the other that results in horizontal deceleration (blue). The
result shows that mid-step stiffness change overcomes the
limitation of the SLIP model, as it can not only accelerate
but also decelerate, even if the vertical position of the center
of mass remains the same at heel strike and toe-off yps = yio.

(29)
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Fig. 4. Mid-step stiffness change for steady-state locomotion. The exact
SLIP model was simulated at top race-walking speed xps/+/glo = 1.2, yhs =
0, x10/lo = 0.6 [30] and using yns = y1o- The approximate relation (29) is
95% accurate when compared to the exact SLIP prediction.

Although the condition for steady-state horizontal velocity
depends on the ratio of stiffness values before and after mid-
step, this condition does not constrain the vertical velocity.
However, at least in walking, the vertical velocity of the
body cannot be arbitrary to prevent takeoff. Take-off will

not accrue if the vertical velocity is non-positive when the
leg is fully extended,

¥(x0) <0. (30)

Similar to finding the horizontal velocity as a function of
the mid-step stiffness change, the vertical velocity y(x) can
also be found by incorporating the mid-step stiffness change
(27) into (22). Then by using (29) and (30), we obtain the
leg stiffness at heel strike to avoid take-off at steady-state
walking,

_ Xhs XhsVhs

kl (lO th) < Xto Xto&
5 .
m . .
8 sin (E x—hs) L gin (ﬂx—hs) — Ths

2 xto T Xto Xto

€29

The initial stiffness k; that results in zero vertical velocity
at toe-off y(xy) = 0 is defined by the equality in (31).

In what follows, we introduce a controller for stable
walking using the analytical relations defined in this section.
C. Controller

Using the analytical relations, (29) and (31), we define the
following stiffness control policies,

(32)
(33)

kip =k — Gy)‘]hsn
kay = ko + Gx (xdes - xhsn)»

where kj, and k», are the stiffness values for the current
step (denoted with n), k; and kp, are the stiffness values
defined by (29) and (31) with x2 = I3 —x2, Gx and Gy are
the feedback gains, while Xpg, and ypg, are the horizontal and
vertical velocities at the heel strike of the current step. In this
controller, feedback is used to avoid take off ypg = Yges =0
and achieve a desired forward velocity Xps = Xdes-

In addition to (32) and (33), we use a stepping policy to
define the desired foot placement of the SLIP model for the
current step, based on the foot placement at the previous
step,

Xhsn = Xhsn—1 — 2v(xhsnfl +xton71)7 (34)

where A € [0, 1] controls how fast the steps converge to the
steady-state symmetric step at heel strike.

In the next section, we use this controller to generate stable
locomotion of the exact SLIP model in a simulation study.

V. EVALUATION

A simulation study was performed where the proposed
approximate controller was tested on the exact SLIP dynam-
ics. The task was to accelerate to race-walking velocities and
achieve zero vertical velocity at toe-off without taking off.
In this study, consistent with fast-walking, an instantaneous
double-support phase was considered between consecutive
steps similar to the model used in [24]. In addition, there
are no collision losses at heel strike since foot mass and leg
inertia were deemed negligible.

The controller, defined by the feedback control law for
the leg stiffness (32), (33) and the stepping policy (34), was
evaluated by comparing it to two different controllers (i)
the exact SLIP controller derived using the nonlinear SLIP
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Stable walking of the exact SLIP model at high speed and with large step length. (a) Center of mass trajectory for the proposed controller.

(b) Dimensionless horizontal velocity at each heel strike. (¢) Dimensionless vertical velocity at each heel strike. (d) Foot placement control. (e) Mid-step
stiffness change ratio. (The stiffness change at mid-stance was limited by k, < 2k; for the exact SLIP and k, < k; for the other two controllers.)

dynamics and (ii) the approximate SLIP controller derived
using the linearized SLIP dynamics. The linearized SLIP
dynamics was derived assuming negligible leg compression
and small step length.

(i) The exact SLIP controller was implemented using
the exact SLIP dynamics and an optimization program that
minimized the error between the desired and the actual
horizontal velocities while constraining the takeoff vertical
velocity to zero at every step. (ii) The linearized SLIP
controller was implemented using the control laws defined
by (32)—(34) where the steady-state stiffness values, k; and
ky, were computed using the linearized SLIP dynamics and
an optimization program that minimized the error between
the desired and the actual horizontal velocities while con-
straining the takeoff vertical velocity to zero at every step.
(iii) The proposed SLIP controller was implemented using
the control laws defined by (32)—(34).

The results are presented in Fig. 5 where the center of
mass trajectory (Fig. 5a) is shown along with the heel strike
horizontal and vertical velocities (Fig. 5bc), and the control
parameters; the position of the center of mass at heel strike
(Fig. 5d) and the ratio between the stiffness at heel strike
and mid-stance (Fig. 5e). In all simulations, the model was
started from a near-vertical configuration with velocities that
results in the body taking off within one step without the
controller. When the controllers were applied, no take-off
accrued, and near-zero vertical velocity was achieved. The
linearized SLIP controller took longer to converge, requiring

high gains, and was challenging to tune (Fig. 5 green)
compared to the proposed SLIP controller. The proposed
SLIP controller resulted in steady-state walking at race-
walking speeds (t/+/gly = 1.2) (Fig. 5 red) similar to the
exact SLIP controller (Fig. 5 blue).

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have defined a novel approximation for
the SLIP model, which resulted in simplified dynamics that
capture the non-linear behavior of the SLIP model. Based
on the analytical solutions obtained, a closed-form mid-step
stiffness change policy was derived for steady-state walking,
see (29) and Fig. 4. Finally, numerical simulations were
performed to demonstrate that the proposed control policy
can be used for stable and fast locomotion with large steps
when applied to the exact SLIP dynamics.

One shortcoming of the proposed approximation is the loss
of accuracy for relatively high vertical velocities since the
vertical position was assumed nearly constant during the mo-
tion, see Assumption 3 in Section III-A. Another shortcoming
of the proposed model is that it does not consider double
support, and thus it is not well suited to model locomotion
with finite double support [31], for example, slow walking,
as opposed to locomotion with instantaneous or no double
support such as fast walking and running. In future work, we
aim to extend our model to 3D SLIP and derive controllers
that can potentially compensate for large perturbations and
transition smoothly between gaits.
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