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We compute the adjoint twisted Reidemeister torsion for 
closed oriented hyperbolic 3-manifolds and for hyperbolic 3-
manifolds with toroidal boundary. In our formula, we consider 
the manifold as obtained by doing a Dehn-filling along 
suitable boundary components of a fundamental shadow link 
complement, and the formula is in terms of the logarithmic 
holonomy of the meridians of the boundary components. As 
an important special case, we also write down a formula of 
the adjoint twisted Reidemeister torsion for the double of 
a hyperbolic 3-manifold with totally geodesic boundary in 
terms of the edge lengths of a geometric ideal triangulation 
of the manifold. These unexpected formulas were inspired by, 
and played an important role in, the study of the asymptotic 
expansion of quantum invariants [25].

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

We compute the adjoint twisted Reidemeister torsion (see Section 2.1) for closed 
orientable hyperbolic 3-manifolds and for orientable hyperbolic 3-manifolds with toroidal 
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boundary with a representation of the fundamental group into PSL(2; C) for which the 
adjoint twisted Reidemeister torsion is defined.

To present the 3-manifolds, we use a 3-dimensional analogue of the pair-of-pants 
decompositions for surfaces, known as the fundamental shadow link complements ([6], 
see also Section 2.4). The fundamental shadow link complements form a universal family 
of 3-manifolds with toroidal boundary in the sense that all orientable 3-manifolds with 
empty or toroidal boundary can be obtained from one of them by doing a Dehn-filling 
along suitable boundary components [6]. Then in Theorem 1.1, we obtain an explicit 
formula of the adjoint twisted Reidemeister torsion of the fundamental shadow link 
complements, which turns out to be a product of the square root of the determinant of 
the values of the Gram matrix function (see Section 2.3) at the logarithmic holonomy 
of the meridians. As a consequence, in the main result of this paper, Theorem 1.4, we 
obtain an explicit formula of the adjoint twisted Reidemeister torsion of hyperbolic 3-
manifolds obtained by doing a Dehn-filling along suitable boundary components of a 
fundamental shadow link complement. By [6,15], these manifolds contain most closed 
and cusped orientable hyperbolic 3-manifolds in the sense explained in Remark 1.5

To the best of our knowledge, this is by far the only explicit formula of the adjoint 
twisted Reidemeister torsion for most hyperbolic 3-manifolds. It is worth mentioning that 
the 1-loop Conjecture [8] suggests another formula of this quantity for cusped hyperbolic 
3-manifolds in terms of the shape parameters.

In a setting dual to that in Theorem 1.1 and Theorem 1.4, we in Theorem 1.6 com-
pute the adjoint twisted Reidemeister torsion of the double of a geometrically ideally 
triangulated hyperbolic 3-manifold with totally geodesic boundary, in terms of the edge 
lengths of the triangulation.

The relationship between the two intensively studied geometric quantities in our for-
mulas, the adjoint twisted Reidemeister torsion and the Gram matrix, is completely 
unexpected, and is suggested by the asymptotic expansion of various quantum invari-
ants of 3-manifolds proposed by the authors in [25]. This is one of the few examples 
where ideas from the study of quantum invariants shed light on a solution of purely 
geometric problems. In return, these formulas also play an essential role in the study of 
the asymptotic expansion of quantum invariants [25].

1.1. Fundamental shadow link complements

Theorem 1.1. Let M = #d+1(S2×S1)!LFSL be the complement of a fundamental shadow 
link LFSL with n components L1, . . . , Ln, which is the orientable double of the union 
of truncated tetrahedra ∆1, . . . , ∆d along pairs of the triangles of truncation (see Sec-
tion 2.4).

(1) Let m = (m1, . . . , mn) be the system of the meridians of a tubular neighborhood 
of the components of LFSL. For an m-regular PSL(2; C)-character [ρ] of M (see 
Definition 2.5), let (u1, . . . , un) be the logarithmic holonomies of m in ρ. For each 
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k ∈ {1, . . . , d}, let Lk1 , . . . , Lk6 be the components of LFSL intersecting ∆k, and let 
Gk = G

(
uk1
2 , . . . , uk6

2

)
be the value of the Gram matrix function at 

(
uk1
2 , . . . , uk6

2

)
. 

Then the adjoint twisted Reidemeister torsion of M with respect to m (see Defini-
tion 2.7) at [ρ] is

T(M,m)([ρ]) = ±23d
d∏

k=1

√
detGk.

(2) In addition to the conditions of (1), let µ = (µ1, . . . , µn) be a system of simple 
closed curves on ∂M , and let (uµ1 , . . . , uµn) be their logarithmic holonomies which 
are functions of (u1, . . . , un) near [ρ]. If [ρ] is µ-regular, then the adjoint twisted 
Reidemeister torsion of M with respect to µ at [ρ] is

T(M,µ)([ρ]) = ±23d det
(
∂(uµ1 , . . . , uµn)
∂(u1, . . . , un)

) d∏

k=1

√
detGk,

where ∂(uµ1 ,...,uµn )
∂(u1,...,un) is the Jacobian matrix of (uµ1 , . . . , uµn) with respect to (u1, . . . , un)

evaluated at [ρ].

Remark 1.2. By (2.6) and the analyticity of both sides, the logarithmic holonomies of 
the system of longitudes, and hence of any system of simple closed curves on ∂M , can 
be explicitly written in terms of the (u1, . . . , un). Therefore, the formula in (2) can be 
written explicitly in terms of (u1, . . . , un).

Remark 1.3. By [21,20], all the characters near that of the holonomy representation of 
the complete hyperbolic structure of M are µ-regular for any system of simple closed 
curves µ on ∂M .

1.2. Hyperbolic 3-manifolds

As a consequence of Theorem 1.1, we obtain in Theorem 1.4 a formula of the adjoint 
twisted Reidemeister torsion for hyperbolic 3-manifolds with empty or toroidal boundary 
obtained by doing a Dehn-filling along suitable boundary components of a fundamental 
shadow link complement, with a technique assumption on the holonomy representation 
of the hyperbolic structure. Recall from [6] that every orientable hyperbolic 3-manifolds 
with empty or toroidal boundary can be obtained in this way, and from [15] and as 
explained in Remark 1.5 for most closed and cusped hyperbolic 3-manifolds the technical 
assumption is satisfied.

Let M be a fundamental shadow link complement as in Theorem 1.1. For m with 
0 ! m ! n, let µ = (µ1, . . . , µm) be a system of simple closed curves on ∂M such that 
µi ⊂ Ti, and let ν = (νm+1, . . . , νn) be a system of simple closed curves on ∂M such that 
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νj ⊂ Tj . Let Mµ be the 3-manifold obtained from M by doing the Dehn-filling along µ. 
Then ν can be considered as a system of simple closed curves on ∂Mµ. If m = n, then 
ν = ∅ and Mµ is a closed 3-manifold,

Theorem 1.4. Suppose Mµ is hyperbolic. Let [ρµ] be a ν-regular character of Mµ and let 
ρ be the restriction of ρµ on M . Let (u1, . . . , un) be the logarithmic holonomies of the 
system of meridians m in [ρ] and for each k ∈ {1, . . . , d}, let Lk1 , . . . , Lk6 be the compo-
nents of LFSL intersecting ∆k and let Gk = G

(
uk1
2 , . . . , uk6

2

)
be the value of the Gram 

matrix function at 
(

uk1
2 , . . . , uk6

2

)
. Let (uµ1 , . . . , uµm) and (uνm+1 , . . . , uνn) respectively 

be the logarithmic holonomies of µ and ν considered as functions of (u1, . . . , un) near [ρ]. 
Let (γ1, . . . , γm) be a system of simple closed curves on ∂M that are isotopic to the core 
curves of the solid tori filled in and let (uγ1 , . . . , uγm) be their logarithmic holonomies 
in [ρ]. If [ρ] is in the distinguished component of the PSL(2; C)-character variety of M , 
then the adjoint twisted Reidemeister torsion of Mµ with respect to ν at [ρµ] is

T(Mµ,ν)([ρµ])

= ±23d−2m det
(
∂(uµ1 , . . . , uµm , uνm+1 , . . . , uνn)

∂(u1, . . . , un)

) d∏

k=1

√
detGk

m∏

i=1

1
sinh2 uγi

2
,

where 
∂(uµ1 ,...,uµm ,uνm+1 ,...,uνn )

∂(u1,...,un) is the Jacobian matrix of (uµ1 , . . . , uµm , uνm+1 , . . . , uνn)
with respect to (u1, . . . , un) evaluated at [ρ].

In particular, if Mµ is closed, ρµ is the holonomy representation of the hyperbolic 
structure and [ρ] is in the distinguished component of the PSL(2; C)-character variety of 
M , then the adjoint twisted Reidemeister torsion of Mµ is

Tor(Mµ; Adρµ) = ±23d−2n det
(
∂(uµ1 , . . . , uµn)
∂(u1, . . . , un)

) d∏

k=1

√
detGk

n∏

i=1

1
sinh2 uγi

2
.

Remark 1.5. From [6,15], the manifolds Mµ in Theorem 1.4 cover most closed and cusped 
orientable hyperbolic 3-manifolds in the sense that for each boundary component Ti of 
M , except for at most 114 simple closed curves µi, the complete hyperbolic metric on 
Mµ can be connected to the complete hyperbolic metric on M by a one-parameter fam-
ily of hyperbolic cone metrics on M . As a consequence, [ρ] lies in the distinguished 
component of the PSL(2; C)-character variety of M satisfying the condition in Theo-
rem 1.4. We believe that this condition could be removed and the formula holds for all 
the closed hyperbolic 3-manifolds and hyperbolic 3-manifolds with toroidal boundary 
with a PSL(2; C)-representation for which the adjoint twisted Reidemeister torsion is 
defined.
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1.3. Double of hyperbolic polyhedral 3-manifolds

Theorem 1.6. Let N be a hyperbolic polyhedral 3-manifold which is the union of truncated 
tetrahedra ∆1, . . . , ∆d along pairs of hexagonal faces, and let M be the double of N with 
the double of the edges e1, . . . , en removed (see Section 2.5).

(1) For i ∈ {1, . . . , n}, let li be the lengths of ei. Let l be the system of the preferred lon-
gitudes of M with the logarithmic holonomies (2l1, . . . , 2ln). For each k ∈ {1, . . . , d}, 
let ek1 , . . . , ek6 be the edges intersecting ∆k, and let Gk = G(lk1 , . . . , lk6) be the value 
of the Gram matrix function at (lk1 , . . . , lk6). Let ρ be the holonomy representation 
of the hyperbolic cone metric on M obtained by doubling the hyperbolic polyhedral 
metric of N . Then

T(M,l)([ρ]) = ±23d
d∏

k=1

√
detGk.

(2) Let m be the system of meridians of a tubular neighborhood of the double of the 
edges, and let (θ1, . . . , θn) be the cone angles at the edges which are functions of the 
lengths (l1, . . . , ln) of the edges of N . Then

T(M,m)([ρ]) = ±in23d−n det
(
∂(θ1, . . . , θn)
∂(l1, . . . , ln)

) d∏

k=1

√
detGk,

where ∂(θ1,...,θn)
∂(l1,...,ln) is the Jacobian matrix of (θ1, . . . , θn) with respect to (l1, . . . , ln)

evaluated at [ρ].
(3) Suppose M is the double of a geometrically ideally triangulated hyperbolic 3-manifold 

N with totally geodesic boundary (which is M with the removed double of edges filled 
back). Let ρ and ρ respectively be the holomony representations of M and M . Let 
(l1, . . . , ln) be the lengths of the edges of N and let (θ1, . . . , θn) be the cone angles 
considered as functions of (l1, . . . , ln). For each k ∈ {1, . . . , d}, let ek1 , . . . , ek6 be the 
edges intersecting ∆k and let Gk = G(lk1 , . . . , lk6) be the value of the Gram matrix 
function at (lk1 , . . . , lk6). Then

Tor(M ; Adρ) = ±in23d−3n det
(
∂(θ1, . . . , θn)
∂(l1, . . . , ln)

) d∏

k=1

√
detGk

n∏

i=1

1
sinh2 li

,

where ∂(θ1,...,θn)
∂(l1,...,ln) is the Jacobian matrix of (θ1, . . . , θn) with respect to (l1, . . . , ln)

evaluated at [ρ].

Remark 1.7. Since the cone angles (θ1, . . . , θn) are the sums of the dihedral angles which 
by (2.7) can be explicitly written as functions of (l1, . . . , ln), both of the formulas in (2) 
and (3) can be written explicitly in terms of the edge lengths (l1, . . . , ln).
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Remark 1.8. We believe that a similar formula of the adjoint twisted Reidemeister torsion 
of a geometrically ideally triangulated cusped hyperbolic 3-manifold and of a geometri-
cally triangulated closed hyperbolic 3-manifold should also exist, respectively in terms 
of the decorated edge lengths and the edge lengths.

1.4. Outline of the proof

The main tool in the computation is the Mayer-Vietoris formula stated in Theorem 2.2. 
To use this formula, we in Sections 3 and 4 respectively compute the adjoint twisted 
Reidemeister torsion of the pairs of pants and of the D-blocks, and in Section 5 compute 
the Reidemeister torsion of the Mayer-Vietoris sequence. Then the results follow from 
Theorem 2.2.

Acknowledgments The authors would like to thank Francis Bonahon, Giulio Belletti, 
Yi Liu, Feng Luo, Tushar Pandey, Hongbin Sun, Zhizhang Xie and Seokbeom Yoon for 
helpful discussions. The authors are also grateful to the referees’ invaluable suggestions, 
both in the mathematics and in the writing. The second author is supported by NSF 
Grants DMS-1812008 and DMS-2203334.

2. Preliminaries

2.1. Reidemeister torsions

Let C∗ be a finite chain complex

0 → Cd
∂−→ Cd−1

∂−→ · · · ∂−→ C1
∂−→ C0 → 0

of C-vector spaces, and for each Ck choose a basis ck. Let H∗ be the homology of C∗, 
and for each Hk choose a basis hk and a lift h̃k ⊂ Ck of hk. We also choose a basis bk

for each image ∂(Ck+1) and a lift b̃k ⊂ Ck+1 of bk. Then bk ' b̃k−1 ' h̃k form a new 
basis of Ck. Let [bk ' b̃k−1 ' h̃k; ck] be the determinant of the transition matrix from 
the basis ck to the new basis bk ' b̃k−1 ' h̃k. Then the Reidemeister torsion of the chain 
complex C∗ with the chosen bases {ck} and {hk} is defined by

Tor(C∗, {ck}, {hk}) = ±
d∏

k=0
[bk ' b̃k−1 ' h̃k; ck](−1)k+1

∈ C∗/{±1}. (2.1)

It is easy to check that Tor(C∗, {ck}, {hk}) depends only on the choices of {ck} and 
{hk}, and does not depend on the choices of {bk} and the lifts {b̃k} and {h̃k}.

We recall the twisted Reidemeister torsion of a CW-complex following the conventions 
in [22]. Let K be a finite CW-complex and let ρ : π1(K) → SL(N ; C) be a representation 
of its fundamental group. Consider the twisted chain complex
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C∗(K; ρ) = CN ⊗ρ C∗(K̃;Z)

where C∗(K̃; Z) is the simplicial complex of the universal covering of K and ⊗ρ means 
the tensor product over Z modulo the relation

v ⊗ (γ · c) =
(
ρ(γ)T · v

)
⊗ c,

where T is the transpose, v ∈ CN , γ ∈ π1(K) and c ∈ C∗(K̃; Z). The boundary operator 
on C∗(K; ρ) is defined by

∂(v ⊗ c) = v ⊗ ∂(c)

for v ∈ CN and c ∈ C∗(K̃; Z). Let {e1, . . . , eN} be the standard basis of CN , and let 
{ck1 , . . . , ckdk} denote the set of k-cells of K. Then we call

ck =
{
ei ⊗ cks

∣∣ i ∈ {1, . . . , N}, s ∈ {1, . . . , dk}
}

the standard basis of Ck(K; ρ). Let H∗(K; ρ) be the homology of the chain complex 
C∗(K; ρ) and let hk be a basis of Hk(K; ρ). Then the Reidemeister torsion of K twisted 
by ρ with the basis {hk} is

Tor(K, {hk}; ρ) = Tor(C∗(K; ρ), {ck}, {hk}).

By [21], Tor(K, {hk}; ρ) depends only on the conjugacy class of ρ. By for example 
[23], the Reidemeister torsion is invariant under elementary expansions and elementary 
collapses of CW-complexes; and by [19] it is invariant under subdivisions, hence defines 
an invariant of PL-manifolds and of topological manifolds of dimension less than or equal 
to 3.

A useful tool to compute the twisted Reidemeister torsion is the Mayer-Vietoris se-
quence. Suppose K is a finite CW-complex and K1, K2, . . . , Kn are its sub-complexes. 
For {i, j} ⊂ {1, 2, . . . , n}, let Kij = Ki ∩Kj if it is non-empty. Assume

(1) K = K1 ∪K2 ∪ · · · ∪Kn, and
(2) Ki ∩Kj ∩Kk = ∅ for all {i, j, k} ⊂ {1, . . . , n}.

For a representation ρ : π1(K) → SL(N ; C), let ρk and ρij respectively be the restriction 
of ρ to π1(Kk) and π1(Kij).

Lemma 2.1. The follow sequence of chain complexes

0 →
⊕

{i,j}⊂{1,...,n}
C∗(Kij ; ρij) δ−→

n⊕

k=1
C∗(Kk; ρk) ε−→ C∗(K; ρ) → 0 (2.2)
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is exact, where ε is the sum defined by

ε(c1, . . . , cn) =
n∑

k=1
ck

and δ is the alternating sum defined by

(δc)k = −
k−1∑

j=1
cjk +

n∑

l=k+1
ckl.

This short exact sequence can be found in for example [4, Proposition 15.2] for un-
twisted complexes, and the proof for the twisted case is similar. The short exact sequence 
(2.2) induces the following long exact sequence H:

· · · → Hm+1(K; ρ) ∂m+1−−−→
⊕

{i,j}⊂{1,...,n}
Hm(Kij ; ρij)

δm−−→
n⊕

k=1
Hm(Kk; ρk) εm−−→ Hm(K; ρ) → . . . , (2.3)

and the twisted Reidemeister torsion of K can be computed by those of {Kk}, {Kij}
and H.

Theorem 2.2 (Mayer-Vietoris). ([21, Proposition 0.11]) Let h∗, {hk,∗} and {hij,∗} re-
spectively be bases of H∗(K; ρ), H∗(Kk; ρk) and H∗(Kij ; ρij), and let h∗∗ be the union of 
h∗, 'khk,∗ and '{i,j}hij,∗ which is a basis of H. Then

Tor(K, {h∗}; ρ) = ±
∏n

k=1 Tor(Kk,hk,∗; ρk)∏
{i,j}⊂{1,...,n} Tor(Kij ,hij,∗; ρij) · Tor(H,h∗∗)

.

In [21, Proposition 0.11], Theorem 2.2 is proved for the union of two sub-complexes, 
and the proof of the current form carries out in essentially the same way.

2.2. Adjoint twisted Reidemeister torsions

In this section we recall results of Porti [21] for the Reidemeister torsions of hyperbolic 
3-manifolds twisted by the adjoint action Adρ = Ad ◦ ρ of an irreducible PSL(2; C)-
representation ρ. Here Ad is the adjoint action of PSL(2; C) on its Lie algebra sl(2; C) ∼=
C3.

For a closed orientable hyperbolic 3-manifold M with the holonomy representation ρ, 
by the Weil local rigidity theorem and the Mostow rigidity theorem, Hk(M ; Adρ) = 0
for all k. Then the adjoint twisted Reidemeister torsion
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Tor(M ; Adρ) ∈ C∗/{±1}

is defined without making any additional choice.
Now suppose M is a compact, orientable 3-manifold with boundary consisting of n

disjoint tori T1 . . . , Tn whose interior admits a complete hyperbolic structure with finite 
volume. Let X(M) be the PSL(2; C)-character variety of M .

By [23,7,9], every irreducible component of X(M) has dimension greater than or equal 
to n; and we denote by Xn(M) = ∪Xk(M) the union of the irreducible components 
{Xk(M)} of X(M) that have dimension exact equal to n. If M is hyperbolic, then 
Xn(M) is non-empty because it contains the distinguished component X0(M) containing 
the character of the holomony representation of the complete hyperbolic structure of M
[23,20]. The main reason that we consider the space Xn(M) in this article instead of 
X0(M) is that: If Mµ is a hyperbolic 3-manifold obtained by doing a Dehn-filling along 
a system of simple closed curves µ on ∂M , then it is not clear whether the restriction of 
the character of the holonomy representation of the hyperbolic structure on Mµ to M
always lies in X0(M); but it always lies in Xn(M) by a standard Mayer-Vietoris sequence 
argument. This fact will be used in the proof of Theorem 1.6.

Below we recall two fundamental results (Theorem 2.3 and Theorem 2.8) of Porti [21]. 
Theorem 2.8 was originally proved for characters in X0(M), but by essentially the same 
argument can be generalized to characters in Xn(X).

We denote by Xirr(M) the Zariski-open subset of X(M) consisting of the irreducible 
characters.

Theorem 2.3. [21, Section 3.3.3] For a system of simple closed curves α = (α1, . . . , αn)
on ∂M with αi ⊂ Ti, i ∈ {1, . . . , n}, and a character [ρ] in a Zariski open subset of 
X0(M) ∩ Xirr(M), we have:

(i) For k -= 1, 2, Hk(M ; Adρ) = 0.
(ii) For i ∈ {1, . . . , n}, up to scalar Adρ(π1(Ti))T has a unique invariant vector Ii ∈ C3; 

and

H1(M ; Adρ) ∼= Cn

with a basis

h1
(M,α) = {I1 ⊗ [α1], . . . , In ⊗ [αn]}

where ([α1], . . . , [αn]) ∈ H1(∂M ; Z) ∼=
⊕n

i=1 H1(Ti; Z).
(iii) Let ([T1], . . . , [Tn]) ∈

⊕n
i=1 H2(Ti; Z) be the fundamental classes of T1, . . . , Tn. Then

H2(M ; Adρ) ∼=
n⊕

i=1
H2(Ti; Adρ) ∼= Cn
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with a basis

h2
M = {I1 ⊗ [T1], . . . , In ⊗ [Tn]}.

Remark 2.4 ([21,20,14]). Important examples of the characters in Theorem 2.3 include 
the character of the holonomy representation of the complete hyperbolic structure on 
the interior of M , the restriction of the holonomy representation of the closed 3-manifold 
Mµ obtained from M by doing the hyperbolic Dehn-filling along the system of simple 
closed curves µ on ∂M , and the holonomy representation of a hyperbolic structure on 
the interior of M whose completion is a conical manifold with cone angles less than 2π.

Definition 2.5. Let α = (α1, . . . , αn) be a system of simple closed curves on ∂M with 
αi ⊂ Ti, i ∈ {1, . . . , n}. A character [ρ] in Xn(M) ∩ Xirr(M) is α-regular if condition 
(ii) in Theorem 2.3 is satisfied.

Remark 2.6. We notice that Definition 2.5 does not only consider characters in the distin-
guished component X0(M), but also considers characters in Xn(M). By [21, Proposition 
3.22], for characters in X0(M), our definition of the α-regularity is equivalent to [21, 
Définition 3.21].

It follows that for any system of simple closed curves α on ∂M , the α-regular char-
acters are smooth points of X(M); and the logarithmic holonomies of α form a local 
parametrization of X(M) near each of the α-regular characters. Here for a PSL(2; C)-
character [ρ], the logarithmic holonomy of αi is defined up to sign as the logarithm of 
the ratio of the eigenvalues of ρ([αi]).

Definition 2.7. The adjoint twisted Reidemeister torsion of M with respect to α is the 
function

T(M,α) : Xn(M) ∩ Xirr(M) → C/{±1}

defined by

T(M,α)([ρ]) = Tor(M, {h1
(M,α),h2

M}; Adρ)

if ρ is α-regular, and by 0 if otherwise.

Theorem 2.8. [21, Theorem 4.1] Let M be a compact, orientable 3-manifold with bound-
ary consisting of n disjoint tori T1 . . . , Tn whose interior admits a complete hyperbolic 
structure with finite volume. Let C(Xn(M) ∩ Xirr(M)) be the ring of rational functions 
over Xn(M) ∩ Xirr(M). Then

H1(∂M ;Z) → C(Xn(M) ∩ Xirr(M))
α .→ T(M,α)
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up to sign defines a function which is a Z-multilinear homomorphism with respect to the 
direct sum H1(∂M ; Z) ∼=

⊕n
i=1 H1(Ti; Z) satisfying the following properties:

(i) For a system of simple closed curves α on ∂M , if the component Xk(M) contains 
an α-regular character, then the support of T(M,α) contains a Zariski-open subset 
of Xk(M) ∩ Xirr(M) consisting of all the α-regular characters in Xk(M).

(ii) (Change of Curves Formula). Let β = {β1, . . . , βn} and γ = {γ1, . . . , γn} be two 
systems of simple closed curves on ∂M . Let (uβ1 , . . . , uβn) and (uγ1 , . . . , uγn) re-
spectively be the logarithmic holonomies of the curves in β and γ. Then we have 
the equality of rational functions

T(M,β) = ± det
(
∂(uβ1 , . . . , uβn)
∂(uγ1 , . . . , uγn)

)
T(M,γ) (2.4)

on Xk(M) ∩ Xirr(M) for the component Xk(M) containing a γ-regular charac-
ter, where ∂(uβ1 ,...,uβn )

∂(uγ1 ,...,uγn ) is the Jocobian matrix of (uβ1 , . . . , uβn) with respect to 
(uγ1 , . . . , uγn).

(iii) (Surgery Formula). For m with 0 ! m ! n, let µ = (µ1, . . . , µm) be a system of 
simple closed curves on ∂M such that µi ⊂ Ti, and let ν = (νm+1, . . . , νn) be a 
system of simple closed curves on ∂M such that νj ⊂ Tj. Let Mµ be a hyperbolic 
3-manifold obtained from M be doing the Dehn-filling along µ. Then ν can be 
considered as a system of simple closed curves on ∂Mµ. Let [ρµ] ∈ Xn−m(Mµ) ∩
Xirr(Mµ) and let [ρ] ∈ Xn(M) ∩ Xirr(M) be the restriction of [ρµ] on M . Let 
(uγ1 , . . . , uγm) be the logarithmic holonomies in ρ of the core curves γ1, . . . , γm of 
the solid tori filled in. If ρµ is ν-regular, then ρ is µ ∪ ν-regular, and

T(Mµ,ν)([ρµ]) = ±T(M,µ∪ν)([ρ])
m∏

i=1

1
4 sinh2 uγi

2
. (2.5)

2.3. Gram matrix function and truncated hyperideal tetrahedra

Definition 2.9. Let M4×4(C) be the space of 4 × 4 matrices with complex entries. The
Gram matrix function

G : C6 → M4×4(C)

is defined for z = (z12, z13, z14, z23, z24, z34) by

G(z) =





1 − cosh z12 − cosh z13 − cosh z14
− cosh z12 1 − cosh z23 − cosh z24
− cosh z13 − cosh z23 1 − cosh z34
− cosh z14 − cosh z24 − cosh z34 1




.



12 K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470

Fig. 1. Gram matrix in the dihedral angles.

The values of G at different z recover the Gram matrices of a truncated hyperideal 
tetrahedron in the dihedral angles and in the edge lengths. Recall from [1,11] that a 
truncated hyperideal tetrahedron ∆ in H3 is a compact convex polyhedron that is dif-
feomorphic to a truncated tetrahedron in E3 with four hexagonal faces {H1, H2, H3, H4}
isometric to right-angled hyperbolic hexagons and four triangular faces {T1, T2, T3, T4}
isometric to hyperbolic triangles. We call the four triangular faces the triangles of trun-
cation, and call the intersection of two hexagonal faces an edge and the angle between 
these two hexagonal faces the dihedral angle at this edge.

For {i, j} ⊂ {1, 2, 3, 4}, as in Fig. 1, if we let eij be the edge adjacent to the hexagonal 
faces Hi and Hj , and let αij and lij respectively be the dihedral angle at and the length 
of eij , then the Gram matrix in the dihedral angles of ∆ is the matrix

Gα =





1 − cosα12 − cosα13 − cosα14
− cosα12 1 − cosα23 − cosα24
− cosα13 − cosα23 1 − cosα34
− cosα14 − cosα24 − cosα34 1




.

For k, l ∈ {1, 2, 3, 4}, let Gkl
α be the kl-th cofactor of Gα. Then by the hyperbolic Law 

of Cosine, we have

cosh lij = Gkl
α√

Gkk
α Gll

α

, (2.6)

where {k, l} = {1, 2, 3, 4}!{i, j}.
For {i, j} ⊂ {1, 2, 3, 4}, as in Fig. 2, if we let eij be the edge connecting the triangles 

of truncation Ti and Tj , and let lij and αij respectively be the length of and the dihedral 
angle at eij , then the Gram matrix in the edge lengths of ∆ is the matrix
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Fig. 2. Gram matrix in the edge lengths.

Gl =





1 − cosh l12 − cosh l13 − cosh l14
− cosh l12 1 − cosh l23 − cosh l24
− cosh l13 − cosh l23 1 − cosh l34
− cosh l14 − cosh l24 − cosh l34 1




.

For k, l ∈ {1, 2, 3, 4}, let Gkl
l be the kl-th cofactor of Gl. Then by the hyperbolic Law of 

Cosine, we have

cosαij = Gkl
l√

Gkk
l Gll

l

, (2.7)

where {k, l} = {1, 2, 3, 4}!{i, j}.
We observe that, if z = (iα12, iα13, iα14, iα23, iα24, iα34), then for ∆ in Fig. 1,

G(z) = Gα;

and if z = (l12, l13, l14, l23, l24, l34), then for ∆ in Fig. 2,

G(z) = Gl.

Remark 2.10. The way of assigning the edges {eij} in the latter case is to consider ∆ as 
a deeply truncated tetrahedron [16] that T1, . . . , T4 are the faces and H1, . . . , H4 are the 
faces of truncation. In this way, eij is the edge adjacent to or connecting the i-th and 
the j-th faces. For a general deeply truncated tetrahedron ∆, when two faces intersect 
we let zij = ±iαij and when two faces are disjoint we let zij = ±lij , then G(z) coincides 
with the Gram matrix of the deeply truncated tetrahedron ∆. See [2, Section 2.1] for 
more details.
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Fig. 3. The handlebody on the right is obtained from the truncated tetrahedron on the left by identifying 
the triangles on the top and the bottom by a horizontal reflection and the triangles on the left and the right 
by a vertical reflection.

2.4. Fundamental shadow link complements

In this section we recall the construction and basic properties of the fundamental 
shadow link complements. The building blocks for a fundamental shadow link comple-
ment are truncated tetrahedra as on the left of Fig. 3. If we take d building blocks 
∆1, . . . , ∆d and glue them together along the triangles of truncation, then we obtain a 
(possibly non-orientable) handlebody of genus d + 1 with a link on its boundary con-
sisting of the edges of the building blocks, such as the right of Fig. 3. By taking the 
orientable double (the orientable double covering with the boundary quotient out by 
the deck involution) of this handlebody, we obtain a link LFSL inside #d+1(S2 × S1). 
We call a link obtained this way a fundamental shadow link, and its complement 
M = #d+1(S2 × S1)!LFSL a fundamental shadow link complement. The fundamen-
tal shadow link complements form a universal family of 3-manifolds in the following 
sense.

Theorem 2.11 ([6]). Any compact orientable 3-manifold with empty or toroidal boundary 
can be obtained from a fundamental shadow link complement by doing an integral Dehn-
filling along suitable boundary components.

A hyperbolic cone metric on #d+1(S2 × S1) with singular locus LFSL and with cone 
angles 2α1, . . . , 2αn can be constructed as follows. For each k ∈ {1, . . . , d}, let ek1 , . . . , ek6

be the edges of the building block ∆k, and let 2αki be the cone angle of the component of 
L containing eki . Suppose {αk1 , . . . ,αk6

}
form the set of dihedral angles of a truncated 

hyperideal tetrahedron, by abuse of notation still denoted by ∆k. Then the hyperbolic 
metric on M whose completion has singular locus LFSL with cone angles 2α1, . . . , 2αn

at the components is obtained by glueing the truncated hyperideal tetrahedra ∆k’s 
together along isometries between pairs of the triangles of truncation, then taking the 
orientable double. In this metric, the logarithmic holonomy of the meridian of a tubular 
neighborhood of the i-th component of LFSL equals 2iαi. We also notice that when all 
the truncated hyperideal tetrahedra have edge lengths equal to zero, i.e., are the regular 
ideal hyperbolic octahedra, we obtain the complete hyperbolic structure on M .



K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470 15

For the purpose of computing the adjoint twisted Reidemeister torsion, we need the 
following alternative construction of the fundamental shadow link complements. The 
idea is that, instead of gluing the truncated tetrahedra together along the triangles 
of truncation first and then taking the orientable double, we take the double of each 
tetrahedron first along the hexagonal faces and then glue the resulting pieces together 
along the pairs of the double of the triangles of truncation. To be precise, for each ∆k, 
k ∈ {1, . . . , d}, we let Dk be the union of ∆k with its mirror image via the identity map 
between the four hexagonal faces and with the six edges removed. In the language of [5], 
Dk is a D-block. The boundary of each Dk is a union of four 3-puncture spheres (coming 
from the double of the four triangles of truncation) and six cylinders (coming from the 
boundary of a tubular neighborhood of the edges). We glue these D-blocks together via 
orientation reversing homeomorphisms between pairs of 3-puncture spheres part of the 
boundary, which send a triangle of truncation in one 3-puncture sphere to a triangle of 
truncation in the other 3-puncture sphere. The quotient space is a fundamental shadow 
link complement, and this construction could be considered as a 3-dimensional analog 
of the pair of pants decomposition of surfaces.

We call the double of a truncated hyperideal tetrahedra a hyperbolic D-block. Then a 
hyperbolic cone metric on M can alternatively be constructed as by gluing the hyperbolic 
D-blocks together via orientation reversing isometries between the hyperbolic 3-puncture 
spheres (double of the hyperbolic triangles of truncation with the three cone singularities 
removed) which preserve the hyperbolic triangles.

2.5. Double of hyperbolic polyhedral 3-manifolds

Dual to the construction of a fundamental shadow link complement is the construction 
of the double of a hyperbolic polyhedral 3-manifold. As defined in [17,18], a hyperbolic 
polyhedral 3-manifold N is obtained from d truncated hyperideal tetrahedra ∆1, . . . , ∆d

glued together via isometries between pairs of the hexagonal faces. The cone angle at 
an edge is the sum of the dihedral angles of the truncated hyperideal tetrahedra around 
the edge. If all the cone angles are equal to 2π, then N admits a hyperbolic metric 
with totally geodesic boundary and a geometric triangulation given by ∆1, . . . , ∆d. It is 
proved in [18, Theorem 1.2 (b)] that hyperbolic polyhedral 3-manifolds are rigid in the 
sense that they are up to isometry determined and infinitesimally determined by their 
cone angles.

To construct the double of N , we can also take the double of each tetrahedron first 
along the triangles of truncation and then glue the resulting pieces together. To be 
precise, for each truncated tetrahedron ∆k, k ∈ {1, . . . , d}, we let Dk be the union of 
∆k with its mirror image via the identity map between the four triangles of truncation 
and with the double of the six edges removed. This is dual to the D-block in Section 2.4, 
hence we call it a dual D-block. The boundary of each Dk is a union of four 3-hole 
spheres (coming from the double of the four hexagonal faces) and six cylinders (coming 
from the double of the boundary of a tubular neighborhood of the edges). We then glue 
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these dual D-blocks together via orientation reversing homeomorphisms between pairs 
of 3-hole spheres, and the quotient space M is the double of N with the double of the 
edges removed. If we fill the double of edges back in, topologically we get the double M
of N .

Geometrically, if we let each truncated tetrahedron ∆k be a truncated hyperideal 
tetrahedron, then the four 3-hole spheres are hyperbolic 3-hole spheres with geodesic 
boundary. If we require the gluing map between these hyperbolic 3-hole spheres to be 
isometries, then the quotient space is the double M of the hyperbolic polyhedral 3-
manifold N , and M is obtained from M by removing all the double of the edges.

For i ∈ {1, . . . , n}, let li be the length of the edge ei of the hyperbolic polyhedral 
manifold N . Since M comes from doubling, we can choose a preferred longitude on the 
boundary of a tubular neighborhood of the double of ei (by isotoping ei into ∆k and 
then doubling) whose logarithmic holonomy equals 2li.

3. Adjoint twisted Reidemeister torsion of the pairs of pants

Let P be a pair of pants with oriented boundary components γ1, γ2 and γ3. Then 
π1(P ) is a free group of rank 2 generated by [γ1] and [γ2]. By [10,12], the SL(2; C)-
character variety of P is homeomorphic to C3 parametrized by the traces of the image 
of [γ1], [γ2] and [γ3]; and a representation ρ̃ : π1(P ) → SL(2; C) is irreducible if and only 
if

fP
(
Trρ̃([γ1]),Trρ̃([γ2]),Trρ̃([γ3])

)
-= 0,

where fP is the polynomial

fP (x, y, z) = x2 + y2 + z2 − xyz − 4.

The logarithmic holonomies of (γ1, γ2, γ3) in a representation ρ̃ : π1(P ) → SL(2; C)
are up to sign the complex numbers (u1, u2, u3) satisfying

(
Trρ̃([γ1]),Trρ̃([γ2]),Trρ̃([γ3])

)
=

(
− 2 cosh u1

2 ,−2 cosh u2
2 ,−2 cosh u3

2
)
.

In this way, if ρ0 : π1(P ) → PSL(2; C) is the holonomy representation of the complete 
hyperbolic structure on P and ρ̃0 : π1(P ) → SL(2; C) is the lifting of ρ0 with

(
Trρ̃0([γ1]),Trρ̃0([γ2]),Trρ̃0([γ3])

)
= (−2,−2,−2),

then the logarithmic holonomies of (γ1, γ2, γ3) in ρ̃0 are (0, 0, 0). The Gram matrix of ρ̃
is defined as

G =




1 − cosh u3

2 − cosh u2
2

− cosh u3
2 1 − cosh u1

2
− cosh u2

2 − cosh u1
2 1



 .
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Then

fP
(
Trρ̃([γ1]),Trρ̃([γ2]),Trρ̃([γ3])

)
= −4 detG,

and ρ̃ is irreducible if and only if detG -= 0.
Since π1(P ) is a free group, every PSL(2; C)-representation of it lifts to an SL(2; C)-

representation. Hence the SL(2; C)-character variety of P is a branched cover of the 
PSL(2; C)-character variety of P , and the latter is an irreducible algebraic variety. For a 
representation ρ : π1(P ) → PSL(2; C), we defined the logarithmic holonomies (u1, u2, u3)
and the Gram matrix G of ρ as those of a lifting ρ̃ : π1(P ) → SL(2; C) of ρ. Notice that 
the logarithmic holonomies depend on the choice of the liftings of ρ, and a different 
lifting will change G by multiplying some rows and the corresponding columns by −1
at the same time, which does not change its determinant. Therefore, the determinant of 
the Gram matrix detG is independent of the choice of the liftings, and is a well defined 
quantity of ρ.

For a representation ρ : π1(P ) → PSL(2; C), let Adρ = Ad ◦ ρ : π1(P ) → SL(3; C)
be its adjoint representation. Since both Ad and Sym2 are 3-dimensional irreducible 
representations of SL(2; C), they are equivalent by the Classification Theorem of finite 
dimensional irreducible representations of SL(2; C). In the rest of this paper, we will use 
the representation Sym2 ◦ ρ̃ to do all the computations where ρ̃ is a lifting of ρ to a 
representation into SL(2; C); and to simplify the notation still denote it by Adρ. Notice 
that composing with Sym2, the signs ± in front of the matrices will disappear and hence 
Sym2 ◦ ρ̃ is independent of the choice of the lifting ρ̃.

In addition, assume for each i ∈ {1, 2, 3} that ρ([γi]) -= ±I. Then up to sign we can 
canonically choose an invariant vector Ii of Adρ([γi])T as follows. Since ρ([γi]) is not 
the identity element in PSL(2; C), there is up to scalar a unique invariant vector of 
Adρ([γi])T . To determine the scalar we consider the following Killing bilinear form κ on 
the Lie algebra sl(2; C) ∼= C3 defined by

κ

([
a1
a2
a3

]
,

[
b1
b2
b3

])
= −2a1b3 + a2b2 − 2a3b1, (3.1)

which is up to scalar the unique Ad-invariant bilinear form on sl(2; C). Then in the case 
that ρ([γi]) is not a parabolic element, we let Ii be up to sign the unique Adρ([γi])T -
invariant vector satisfying κ(Ii, Ii) = 1.

Definition 3.1. Let γ = (γ1, γ2, γ3). An irreducible representation ρ : π1(P ) → PSL(2; C)
is γ-regular if

hP = {I1 ⊗ [γ1], I2 ⊗ [γ2], I3 ⊗ [γ3]}

is a basis of H1(P ; Adρ), where [γi] is the homology class of γi in H1(P ; Z), i ∈ {1, 2, 3}.
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Let X(P ) be the PSL(2; C)-character variety of P . A character [ρ] ∈ X(P ) is γ-regular
if ρ is a γ-regular representation. Since π1(P ) is a free group, an Euler characteristic 
counting argument shows that if [ρ] is γ-regular, then Hk(P ; Adρ) = 0 for k -= 1.

The main result of this section is the following

Proposition 3.2. Let ρ : π1(P ) → PSL(2; C) be a γ-regular representation, and for i ∈
{1, 2, 3} let ui be up to sign the logarithmic holonomy of γi in ρ. Then

Tor(P,hP ; Adρ) = ± 1
16 sinh u1

2 sinh u2
2 sinh u3

2
.

Remark 3.3. Proposition 3.2 could be proved from other results in the literature, which 
is related to volume forms on the character variety, see [24,3,13]. We include a different 
proof here for the readers’ convenience and as a warm up for the computations in the 
next section.

To prove Proposition 3.2, we need the following lemma, where the explicit computation 
of (1) and (2) will be used later.

Lemma 3.4. The set of γ-regular characters contains a Zariski-open subset Z(P ) of X(P )
consisting of the characters [ρ] satisfying the following two conditions:
(1)

det[I1, I2, I3] -= 0,

and
(2)

det
[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]
-= 0.

Proof. Let us compute the determinants in conditions (1) and (2) first. We will do the 
computations for the holonomy representation of a hyperbolic metric on P with cone 
singularities around γ1, γ2 and γ3 first. Then by analyticity the computation extends to 
the other representations. We would like to mention here that these computations will 
also hold the key to the proof of Proposition 3.2.

Let P be a hyperbolic 2-sphere with three cone singularities p1, p2 and p3 removed. 
We let the cone angles at p1, p2 and p3 respectively be 2α1, 2α2 and 2α3 all of which are 
less than 2π, and let γ1, γ2 and γ3 respectively be the simple loops around p1, p2 and 
p3. In this case we have ui = ±2iαi.

Now ρ([γi])T is a rotation, hence has an eigenvector v+
i of eigenvalue eiαi and an 

eigenvector v−
i of eigenvalue e−iαi . If

v+
i =

[
a

b

]
and v−

i =
[
c

d

]
,
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Fig. 4. T in H3.

then an invariant vector of Adρ([γi])T has the form



ac

ad + bc

bd



 . (3.2)

Indeed, if we identify [a, b]T with the polynomial aX + bY and [c, d]T with cX + dY , 
then the polynomial (aX + bY )(cX + dY ) = acX2 + (ad + bc)XY + bdY 2 is invariant 
under 

(
Sym2 ◦ ρ̃([γi])

)T .
Now P is the double of a hyperbolic triangle T with cone angles α1, α2 and α3. For 

i = 1, 2, 3, let ei be the edge of T opposite to pi and let si be its lengths. To compute 
its holonomy representation ρ, we isometrically embedded T into H3 as follows. As in 
Fig. 4, we place p1 at (0, 0, 1), the edge e2 in the xz-plane and T in the unit hemisphere 
centered at (0, 0, 0) such that the y-coordinate of p2 is negative. This could always be 
done by replacing T by its mirror image if necessary.

To simplify the notation, we for any z ∈ C let

Dz =
[
e

z
2 0
0 e−

z
2

]

and for i = 1, 2, 3, let

Si =
[

cosh si
2 sinh si

2
sinh si

2 cosh si
2

]
.

Suppose for each i, γi goes counterclockwise around pi. Then by conjugating the 
tangent framings at p2 and p3 back to p1 = (0, 0, 1) and conjugating the tangent vectors 
of the axes of the rotations to ∂

∂z , we have
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ρ([γ1]) = ±D2iα1 ,

ρ([γ2]) = ±D−1
iα1

S3D2iα2S
−1
3 Diα1 = ±S2D

−1
−iα3

S−1
1 D2iα2S1D−iα3S

−1
2 ,

ρ([γ3]) = ±S2D2iα3S
−1
2 = ±D−1

iα1
S3D

−1
iα2

S−1
1 D2iα3S1Diα2S

−1
3 Diα1 .

Here we compute ρ([γ2]) and ρ([γ3]) in two ways for the purpose of computing different 
things later. Since both Dz and Si are symmetric matrices, we have

ρ([γ1])T = ±D2iα1 ,

ρ([γ2])T = ±Diα1S
−1
3 D2iα2S3D

−1
iα1

= ±S−1
2 D−iα3S1D2iα2S

−1
1 D−1

−iα3
S2,

ρ([γ3])T = ±S−1
2 D2iα3S2 = ±Diα1S

−1
3 Diα2S1D2iα3S

−1
1 D−1

iα2
S3D

−1
iα1

.

(3.3)

Then

[v+
1 ,v−

1 ] = I,

[v+
2 ,v−

2 ] = Diα1S
−1
3 = S−1

2 D−iα3S1,

[v+
3 ,v−

3 ] = S−1
2 = Diα1S

−1
3 Diα2S1.

(3.4)

Using the first half of the second and third equations of (3.4), (3.2) and a direct compu-
tation, we have

I1 =




0
1
0



 , I2 =




−1

2e
iα1 sinh s3
cosh s3

−1
2e

−iα1 sinh s3



 and I3 =




−1

2 sinh s2
cosh s2

−1
2 sinh s2



 . (3.5)

Since κ(Ii, Ii) = 1 for i ∈ {1, 2, 3}, they are the canonical invariant vectors. Therefore

det[I1, I2, I3] = − i
2 sinα1 sinh s2 sinh s3. (3.6)

This computes the determinant in (1) for the holonomy representation of a hyperbolic 
structure with cone singularities.

To compute the determinant in (2), we need the following auxiliary computations. 
For real numbers x and y, we let

X =
[

cosh x
2 sinh x

2
sinh x

2 cosh x
2

]
and Y =

[
cosh y

2 sinh y
2

sinh y
2 cosh y

2

]
,

and for a complex number z let Dz be as before. We let

Izxy =




ac

ad + bc

bd



 if X−1DzY = ±
[
a c

b d

]
;
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and let

Izwxy =




ac

ad + bc

bd



 if DwX
−1DzY = ±

[
a c

b d

]
.

We notice that Izxy and Izwxy are independent of the signs ± in front of the 2 ×2 matrices. 
Then using the hyperbolic trigonometric identities cosh z−cosh z′ = 2 sinh z+z′

2 sinh z−z′

2
and sinh z−sinh z′ = 2 cosh z+z′

2 sinh z−z′

2 for any complex numbers z and z′ and a direct 
computation, we have

Izxy − Iz′

xy = sinh y sinh z − z′

2




sinh z+z′

2 cosh x + cosh z+z′

2
−2 sinh z+z′

2 sinh x

sinh z+z′

2 cosh x− cosh z+z′

2



 , (3.7)

and

Izwxy − Iz′

wxy = sinh y sinh z − z′

2




ew

(
sinh z+z′

2 cosh x + cosh z+z′

2
)

−2 sinh z+z′

2 sinh x

e−w
(
sinh z+z′

2 cosh x− cosh z+z′

2
)



 . (3.8)

By the first half of the third equation of (3.3), we have

ρ([γ3]−1)T = ±S−1
2 D−2iα3S2. (3.9)

By (3.9) and the first equation of (3.4), we have

[v+
1 ,v−

1 ] = I = S−1
2 D0S2

and

ρ([γ3]−1)T · [v+
1 ,v−

1 ] = ±S−1
2 D−2iα3S2.

Therefore, by (3.7)

I1 − Adρ([γ3]−1)T · I1 = I0
s2s2 − I−2iα3

s2s2

= i sinh s2 sinα3




−i sinα3 cosh s2 + cosα3

2i sinα3 sinh s2
−i sinα3 cosh s2 − cosα3



 .

By (3.9) and the second half of the second equation of (3.4), we have

[v+
2 ,v−

2 ] = S−1
2 D−iα3S1
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and

ρ([γ3]−1)T · [v+
2 ,v−

2 ] = ±S−1
2 D−3iα3S1.

Therefore, by (3.7)

I2 − Adρ([γ3]−1)T · I2 = I−iα3
s2s1 − I−3iα3

s2s1

= i sinh s1 sinα3




−i sin(2α3) cosh s2 + cos(2α3)

2i sin(2α3) sinh s2
−i sin(2α3) cosh s2 − cos(2α3)



 .

By the first half of the second equation of (3.3) and the second half of the third equation 
of (3.4), we have

[v+
3 ,v−

3 ] = Diα1S
−1
3 Diα2S1

and

ρ([γ2])T · [v+
3 ,v−

3 ] = ±Diα1S
−1
3 D3iα2S1.

Therefore, by (3.8)

I3 − Adρ([γ2])T · I3 = Iiα2
(iα1)s3s1 − I3iα2

(iα1)s3s1

= −i sinh s1 sinα2




eiα1

(
i sin(2α2) cosh s3 + cos(2α2)

)

−2i sin(2α2) sinh s3
e−iα1

(
i sin(2α2) cosh s3 − cos(2α2)

)



 .

We observe that the matrix



−i sinα3 cosh s2 + cosα3 −i sin(2α3) cosh s2 + cos(2α3) eiα1

(
i sin(2α2) cosh s3 + cos(2α2)

)

2i sinα3 sinh s2 2i sin(2α3) sinh s2 −2i sin(2α2) sinh s3
−i sinα3 cosh s2 − cosα3 −i sin(2α3) cosh s2 − cos(2α3) e−iα1

(
i sin(2α2) cosh s3 − cos(2α2)

)





=




−i 0 1
0 2i 0
−i 0 −1



 ·




sinα3 cosh s2 sin(2α3) cosh s2 − cosα1 sin(2α2) cosh s3 − sinα1 cos(2α2)
sinα3 sinh s2 sin(2α3) sinh s2 − sin(2α2) sinh s3

cosα3 cos(2α3) − sinα1 sin(2α2) cosh s3 + cosα1 cos(2α2)



 .

Denoting the second matrix above by M , we have

det
[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]

= − 4i sinh2 s1 sinh s2 sinα2 sin2 α3 detM.

Computing the cofactors of M , we have M13 = − sinα3 sinh s2, M23 = sinα3 cosh s2 and 
M33 = 0. Then
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detM
= − sinα3 sinh s2

(
− cosα1 sin(2α2) cosh s3 − sinα1 cos(2α2)

)

− sinα3 cosh s2 sin(2α2) sinh s3

= − sinh s2 sinα1 sinα3,

where the last equality comes from the use of the hyperbolic Law of Sine that sinh s3 =
sinh s2 sinα3

sinα2
to get a common factor sinh s2, then the use of the hyperbolic Law of Cosine 

that cosh s2 = cosα2+cosα1 cosα3
sinα1 sinα3

and cosh s3 = cosα3+cosα1 cosα2
sinα1 sinα2

to change the quantity 
into a function of the angles α1, α2 and α3 only, finally the use of the double angle 
formulas to sin(2α2), cos(2α2) and sin(2α3) to get a function of {sinαk} and {cosαk}
only then followed by a simplification.

Therefore,

det
[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]

=4i sinα1 sinα2 sin3 α3 sinh2 s1 sinh2 s2.
(3.10)

This computes the determinant in (2) for the holonomy representation of a hyperbolic 
structure.

For the other characters in X(P ), we observe that for the holonomy representation ρ
of a hyperbolic structure with cone angles (2α1, 2α2, 2α3), for any lifting ρ̃ : π1(P ) →
SL(2; C) of ρ, we have

Trρ̃([γi]) = ±2 cosαi

for i ∈ {1, 2, 3}. Then by the trigonometry identity and the hyperbolic Law of Cosine, 
we have

sinh si = ±

√
− detGα

(1 − cos2 αj)(1 − cos2 αk)
(3.11)

for {i, j, k} = {1, 2, 3}, where

Gα =




1 − cosα3 − cosα2

− cosα3 1 − cosα1
− cosα2 − cosα1 1





is the Gram matrix in the angles of the hyperbolic triangle with angles (α1, α2, α3). 
Therefore, the square of sinh si is a rational functions in (Trρ̃([γ1]), Trρ̃([γ2]), Trρ̃([γ3])). 
Since X(P ) is an irreducible algebraic variety, by the analyticity of the functions on the 
right hand sides, (3.6) and (3.10) hold for the other characters [ρ] in X(P ).

Since the square of the determinants in conditions (1) and (2) is rational functions 
in the coordinates (Trρ̃([γ1]), Trρ̃([γ2]), Trρ̃([γ3])), the lifting of those characters form a 
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Fig. 5. The 1-dimensional CW complexes.

Zariski-open subset of C3, and hence those characters themselves form a Zariski-open 
subset of X(P ).

Next we show that the representations satisfying (1) and (2) are γ-regular. We will 
compute the homologies of P using its spine Γ, which is the 1-dimensional CW complex 
on the left of Fig. 5 consisting of two 0-cells x1 and x1 and three 1-cells a1, a2 and a3
all of which are oriented from x1 to x2.

Let {e1, e2, e3} be the standard basis of C3 and let the choice of representatives 
x1, x2, a1, a2 and a3 in the universal covering of Γ be as drawn on the right of Fig. 5. 
Then C0(P ; Adρ) ∼= C6 with a natural basis {ei ⊗ xk} for i ∈ {1, 2, 3} and k ∈ {1, 2}; 
C1(P ; Adρ) ∼= C9 with a natural basis {ei ⊗ ak} for i, k ∈ {1, 2, 3}; and Ck(P ; Adρ) = 0
for k -= 0 or 1.

We choose x1 to be the base point of the fundamental group; and for {j, k} ⊂ {1, 2, 3}, 
let γaja

−1
k

be the curve starting from x1 traveling along aj to x2 then along −ak back to 
x1. In this way, we have [γa1a

−1
2

] = [γ1], [γa2a
−1
3

] = [γ2] and [γa1a
−1
3

] = [γ3]−1.
By condition (1), the vectors I1⊗(a1−a2), I2⊗(a2−a3) and I3⊗(a1−a3) are linearly 

independent in C1(P ; Adρ). Next we show that they lie in the kernel of ∂ : C1(P ; Adρ) →
C0(P ; Adρ). Indeed, for the image of I1 ⊗ (a1 − a2), we have

∂(I1 ⊗ (a1 − a2)) = I1 ⊗ ∂(a1 − a2)

= I1 ⊗
(
(x1 − [γa1a

−1
3

] · x2) − (x1 − [γa2a
−1
3

] · x2)
)

= I1 ⊗
(
[γ2] · x2 − [γ3]−1 · x2

)

=
(
Adρ([γ2])T · I1 − Adρ([γ3]−1)T · I1

)
⊗ x2

=
(
Adρ([γ2])TAdρ([γ1])T · I1 − Adρ([γ3]−1)T · I1

)
⊗ x2 = 0,

where the penultimate equality comes from Adρ([γ1])T · I1 = I1 and the last equation 
comes from γ1 · γ2 = γ−1

3 . For the image of the other two vectors, we have



K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470 25

∂(I2 ⊗ (a2 − a3)) = I2 ⊗ ∂(a2 − a3)

= I2 ⊗
(
(x1 − [γa2a

−1
3

] · x2) − (x1 − x2)
)

= I2 ⊗
(
x2 − [γ2] · x2

)

=
(
I2 − Adρ([γ2])T · I2

)
⊗ x2 = 0,

and

∂(I3 ⊗ (a1 − a3)) = I3 ⊗ ∂(a1 − a3)

= I3 ⊗
(
(x1 − [γa1a

−1
3

] · x2) − (x1 − x2)
)

= I3 ⊗
(
x2 − [γ3]−1 · x2

)

=
(
I3 − Adρ([γ3]−1)T · I3

)
⊗ x2 = 0,

where the last equalities respectively come from Adρ([γ2])T · I2 = I2 and Adρ([γ3]−1)T ·
I3 = I3. Therefore, I1⊗(a1−a2), I2⊗(a2−a3) and I3⊗(a1−a3) represent three linearly 
independent elements I1 ⊗ [γ1], I2 ⊗ [γ2] and I3 ⊗ [γ3] in H1(P ; Adρ). Later we will prove 
that they also span, and hence form a basis of H1(P ; Adρ).

Now we claim that {I1 ⊗ (a1 −a2), I2 ⊗ (a2 −a3), I3 ⊗ (a1 −a3)} joint with six vectors 
{I1 ⊗ a3, I2 ⊗ a3, I3 ⊗ a3, I1 ⊗ a1, I2 ⊗ a1, I3 ⊗ a2} form a basis of C1(P ; Adρ). Indeed, in 
the natural basis {ei ⊗ ak}, i, k ∈ {1, 2, 3}, the 9 × 9 matrix consisting of these vectors 
as the columns is obtained from the one consisting of {Ij ⊗ ak}, j, k ∈ {1, 2, 3}, as the 
columns by a sequence of elementary column operations of type I, III, and II with a 
factor −1. The latter matrix is a block matrix with three 3 × 3 blocks [I1, I2, I3] on the 
diagonal and 0′s elsewhere, hence by condition (1) is non-singular and has determinant 
det[I1, I2, I3]3. As a consequence, the former matrix is also non-singular and up to sign 
has determinant det[I1, I2, I3]3.

In the next step, we will study the image of the six vectors {I1⊗a3, I2⊗a3, I3⊗a3, I1⊗
a1, I2 ⊗ a1, I3 ⊗ a2} under the boundary map ∂, and show that they span C0(P ; Adρ). 
We have for j = 1, 2, 3,

∂(Ij ⊗ a3) = Ij ⊗ ∂a3 = Ij ⊗ (x1 − x2) = Ij ⊗ x1 − Ij ⊗ x2;

for k = 1, 2,

∂(Ik ⊗ a1) = Ik ⊗ ∂a1 = Ik ⊗ (x1 − [γa1a
−1
3

] · x2) = Ik ⊗ x1 −
(
Adρ([γ3]−1)T · Ik

)
⊗ x2;

and

∂(I3 ⊗ a2) = I3 ⊗ ∂a2 = I3 ⊗ (x1 − [γa2a
−1
3

] · x2) = I3 ⊗ x1 −
(
Adρ([γ2])T · I3

)
⊗ x2.



26 K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470

Therefore, in the natural basis {ei ⊗ xk}, i ∈ {1, 2, 3}, k ∈ {1, 2}, the 6 × 6 matrix 
consisting of {∂(I1 ⊗ a3), ∂(I2 ⊗ a3), ∂(I3 ⊗ a3), ∂(I1 ⊗ a1), ∂(I2 ⊗ a1), ∂(I3 ⊗ a2)} as the 
columns has four 3 × 3 blocks, where on the top it has two copies of [I1, I2, I3], on the 
bottom left is has [−I1, −I2, −I3] and on the bottom right

[
− Adρ([γ3]−1)T · I1, −Adρ([γ3]−1)T · I2, −Adρ([γ2])T · I3

]
.

This matrix is row equivalent to (by adding the top blocks to the bottom) the one with 
two copies of [I1, I2, I3] on the top, 0′s on the bottom left and

[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]

on the bottom right. The determinant of both of the 6 × 6 matrices is

det[I1, I2, I3] · det
[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]
.

By conditions (1) and (2), the product above is nonzero and hence {∂(I1 ⊗ a3), ∂(I2 ⊗
a3), ∂(I3 ⊗ a3), ∂(I1 ⊗ a1), ∂(I2 ⊗ a1), ∂(I3 ⊗ a2)} span C0(P ; Adρ). This implies that 
H0(P ; Adρ) = 0. Since there are no cells of dimension higher than or equal to 2, 
Hk(P ; Adρ) = 0 for k " 2.

Finally, since {∂(I1⊗a3), ∂(I2⊗a3), ∂(I3⊗a3), ∂(I1⊗a1), ∂(I2⊗a1), ∂(I3⊗a2)} span 
C0(P ; Adρ) ∼= C6, by dimension counting the kernel of ∂ : C1(P ; Adρ) → C0(P ; Adρ) has 
dimension at most 3. Hence I1⊗(a1−a2), I2⊗(a2−a3) and I3⊗(a1−a3) span the kernel 
of ∂. This shows that the elements they represent hP = {I1 ⊗ [γ1], I2 ⊗ [γ2], I3 ⊗ [γ3]}
form a basis of H1(P ; Adρ), and H1(P ; Adρ) ∼= C3. This completes the proof. !

Proof of Proposition 3.2. Since the adjoint twisted Reidemeister torsion is invariant un-
der subdivisions, elementary expansions and elementary collapses of CW-complexes by 
[19,23], we can do the computation using the spine Γ of P as on the left of Fig. 5.

The adjoint twisted Reidemeister torsion equals, up to sign, the determinant of the 
9 ×9 matrix consisting of {I1⊗(a1−a2), I2⊗(a2−a3), I3⊗(a1−a3), I1⊗a3, I2⊗a3, I3⊗
a3, I1⊗a1, I2⊗a1, I3⊗a2} as the columns divided by the determinant of the 6 ×6 matrix 
consisting of {∂(I1 ⊗ a3), ∂(I2 ⊗ a3), ∂(I3 ⊗ a3), ∂(I1 ⊗ a1), ∂(I2 ⊗ a1), ∂(I3 ⊗ a2)} as the 
columns.

By (3.6) and (3.10), for the holonomy representation of a hyperbolic structure we have

Tor(P,hP ; Adρ)

= ± det[I1, I2, I3] · det[I1, I2, I3] · det[I1, I2, I3]
det[I1, I2, I3] · det

[
I1 − Adρ([γ3]−1)T · I1, I2 − Adρ([γ3]−1)T · I2, I3 − Adρ([γ2])T · I3

]

= ± i
16 sinα1 sinα2 sinα3

= ± 1
16 sinh u1

2 sinh u2
2 sinh u3

2
,
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where the second equality comes from the hyperbolic Law of Sine that sinh s3
sinh s1

= sinα3
sinα1

.
Finally, by Lemma 3.4 and the analyticity, the result holds for all γ-regular characters 

in X(P ). !

4. Adjoint twisted Reidemeister torsion of the D-blocks

Let ∆ be a truncated tetrahedron with triangles of truncation T1, T2, T3, T4 and 
hexagonal faces H1, H2, H3, H4 such that Tk is opposite to Hk. Recall that an edge
is the intersection of two hexagonal faces; and we call the intersection of a triangle of 
truncation and a hexagonal face a short edge. Let D be the union of ∆ with its mirror 
image via the identity map between the four hexagonal faces H1, . . . , H4 and with the 
six edges removed. This is a D-block as defined in [5] and recalled in Section 2.4. For 
{j, k} ⊂ {1, 2, 3, 4} we let ejk be the edge adjacent to Hj and Hk. For {j, k} ⊂ {1, 2, 3, 4}, 
let γjk be a simple loop around ejk.

The fundamental group π1(D) is a free group of rank 3 generated by [γ12], [γ13] and 
[γ14]. By [12], the SL(2; C)-character variety of D is homeomorphic to a hypersurface in 
C7 parametrized by the traces of the image of [γ12], [γ13], [γ14], [γ12 · γ13], [γ12 · γ14], 
[γ13 ·γ14] and [γ12 ·γ13 ·γ14], which is a double branched cover of C6 parametrized by the 
first six components. A representation ρ̃ : π1(D) → SL(2; C) is not in the branch locus 
if and only if

fD
(
Trρ̃([γ12]),Trρ̃([γ13]),Trρ̃([γ14]),Trρ̃([γ12 · γ13]),Trρ̃([γ12 · γ14]),Trρ̃([γ13 · γ14])

)
-= 0,

where fD is the polynomial

fD(t1, t2, t3, t12, t13, t23) =
(
t12t3 + t13t2 + t23t1 − t1t2t3

)2

− 4
(
t21 + t22 + t23 + t212 + t213 + t223 − t1t2t12 − t1t3t13 − t2t3t23 + t12t13t23 − 4

)
.

The logarithmic holonomies of (γ12, γ13, γ14, γ23, γ24, γ34) in ρ̃ are up to sign the com-
plex numbers (u12, u13, u14, u23, u24, u34) satisfying
(
Trρ̃([γ12]),Trρ̃([γ13]),Trρ̃([γ14]),Trρ̃([γ23]),Trρ̃([γ24]),Trρ̃([γ34])

)

=
(
− 2 cosh u12

2 ,−2 cosh u13
2 ,−2 cosh u14

2 ,−2 cosh u23
2 ,−2 cosh u24

2 ,−2 cosh u34
2

)
.

In this way, if D is with the hyperbolic structure obtained by doubling the regular ideal 
octahedron, ρ0 : π1(D) → PSL(2; C) is the holonomy representation of this hyperbolic 
structure on D and ρ̃0 : π1(D) → SL(2; C) is the lifting of ρ0 with
(
Trρ̃0([γ12]),Trρ̃0([γ13]),Trρ̃0([γ14]),Trρ̃0([γ23]),Trρ̃0([γ24]),Trρ̃0([γ34])

)

=(−2,−2,−2,−2,−2,−2),

then the logarithmic holonomies of (γ12, . . . , γ34) in ρ̃0 are (0, . . . , 0). We notice that the 
complete hyperbolic structure on a fundamental shadow link complement is obtained by 



28 K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470

gluing such D-blocks together by isometries along the faces. Therefore, this hyperbolic 
structure can be considered as “the complete hyperbolic structure” on D.

The Gram matrix of a representation ρ̃ : π1(D) → SL(2; C) is the value of the Gram 
matrix function G defined in Definition 2.9 at 

(
u12
2 , . . . , u34

2
)
, i.e.,

G = G
(u12

2 ,
u13
2 ,

u14
2 ,

u23
2 ,

u24
2 ,

u34
2

)

=





1 − cosh u12
2 − cosh u13

2 − cosh u14
2

− cosh u12
2 1 − cosh u23

2 − cosh u24
2

− cosh u13
2 − cosh u23

2 1 − cosh u34
2

− cosh u14
2 − cosh u24

2 − cosh u34
2 1




.

By the trace identity of the matrices in SL(2; C), for {j, k} ⊂ {2, 3, 4},

Trρ̃([γjk]) = Trρ̃([γ1j · γ−1
1k )] = Trρ̃([γ1j ])Trρ̃([γ1k]) − Trρ̃([γ1j · γ1k]).

Then by a direct computation, we have

fD
(
Trρ̃([γ12]),Trρ̃([γ13]),Trρ̃([γ14]),Trρ̃([γ12 · γ13]),Trρ̃([γ12 · γ14]),Trρ̃([γ13 · γ14])

)

= 16 detG,

and ρ̃ is not in the branch locus of the double branched cover of the SL(2; C)-character 
variety of D over C6 if and only if detG -= 0.

Since π1(D) is a free group, every PSL(2; C)-representation of it lifts to SL(2; C)-
representation Hence the SL(2; C)-character variety of D is a branched cover of the 
PSL(2; C)-character variety of D, and the latter is an irreducible algebraic variety. 
For a representation ρ : π1(D) → PSL(2; C), we defined the logarithmic holonomies 
(u12, . . . , u34) and the Gram matrix G of ρ as those of a lifting ρ̃ : π1(D) → SL(2; C)
of ρ. Notice that the logarithmic holonomies depend on the choice of the liftings of ρ, 
and a different lifting will change G by multiplying some rows and the corresponding 
columns by −1 at the same time, which does not change its determinant. Therefore, the 
determinant of the Gram matrix detG is independent of the choice of the liftings, and 
is a well defined quantity of ρ.

Let ρ : π1(D) → PSL(2; C) be a representation, and let Adρ : π1(D) → SL(3; C)
be its adjoint representation. In addition, we assume for each {j, k} ⊂ {1, 2, 3, 4} that 
ρ([γjk]) -= ±I. Then in the case that ρ([γjk]) is not a parabolic element, we let Ijk be up 
to sign the unique invariant vector of Adρ([γjk])T with κ(Ijk, Ijk) = 1, where κ is the 
Killing bilinear form on sl(2; C) defined in (3.1).

Definition 4.1. Let γ = (γ12, γ13, γ14, γ23, γ24, γ34). An irreducible representation ρ :
π1(D) → PSL(2; C) is γ-regular if

hD =
{
Ijk ⊗ [γjk]}

∣∣ {j, k} ⊂ {1, 2, 3, 4}
}
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is a basis of H1(D; Adρ), where [γjk] is the homology class of γjk in H1(D; Z).

Let X(D) be the PSL(2; C)-character variety of D. A character [ρ] ∈ X(D) is γ-regular
if ρ is a γ-regular representation. Since π1(D) is a free group, an Euler characteristic 
counting argument shows that if [ρ] is γ-regular, then Hk(D; Adρ) = 0 for k -= 1.

The main result of this section is the following Proposition 4.2.

Proposition 4.2. Let ρ : π1(D) → PSL(2; C) be a γ-regular representation, and for 
{j, k} ⊂ {1, 2, 3, 4} let ujk be up to sign the logarithmic holonomy of γjk in ρ. Then

Tor(D,hD; Adρ) = ±

√
detG

(
u12
2 , u13

2 , u14
2 , u23

2 , u24
2 , u34

2

)

32 sinh u12
2 sinh u13

2 sinh u14
2 sinh u23

2 sinh u24
2 sinh u34

2
.

To prove Proposition 4.2, we need the following Lemma.

Lemma 4.3. The set of γ-regular characters contains a Zariski-open subset Z(D) of X(D)
consisting of the characters [ρ] satisfying the following two conditions:
(1)

det[I12, I13, I14] -= 0,
det[I12, I23, I24] -= 0,
det[I13, I23, I34] -= 0,
det[I14, I24, I34] -= 0,

and
(2)

det
[
I12 − Adρ([γ13])T · I12, I14 − Adρ([γ13])T · I14, I24 − Adρ([γ23])T · I24

]
-= 0.

Proof. Let us compute the determinants in conditions (1) and (2) first. Similar to the 
proof of Lemma 3.4 we will do the computations for the holonomy representation of a 
hyperbolic metric on D with cone singularities around the edges ejk’s first. Then by 
analyticity the computation extends to the other representations.

Now let ∆ be a truncated hyperideal tetrahedron and let D be the union of ∆ with its 
mirror image via the identity map between the four hexagonal faces H1, . . . , H4 and with 
the six edges e12, . . . , e34 removed. This is a hyperbolic D-block defined in Section 2.5. 
For {j, k} ⊂ {1, 2, 3, 4} we let ljk and αjk respectively be the length of and the dihedral 
angle at the edge ejk. We let sjk be the length of the short edge adjacent to Tj and Hk, 
and notice that sjk and skj are the lengths of different short edges.

Let ρ : π1(D) → PSL(2; C) be the holonomy representation of D and let Adρ :
π1(D) → SL(3; C) be its adjoint representation. For {j, k} ⊂ {1, 2, 3, 4}, let γjk be a 
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Fig. 6. ∆ in H3.

simple loop around ejk. Since ρ(γjk) is an elliptic element in PSL(2; C) which is not the 
identity matrix, Adρ([γjk])T has up to sign the canonical invariant vector Ijk.

To compute the holonomy representation ρ of D, we isometrically embedded ∆ into 
H3 as follows. As in Fig. 6, we place the intersection point of H1, H2 and T4 at (0, 0, 1), 
the edge e12 along the z-axis such that the intersection point of H1, H2 and T3 is above 
(0, 0, 1), the hexagonal face H1 in the xz-plane and T4 in the unit hemisphere centered 
at (0, 0, 0) such that the y-coordinate of all the interior points of ∆ are negative. This 
could always be done by using the mirror image of ∆ if necessary.

For any complex number z let

Dz =
[
e

z
2 0
0 e−

z
2

]
,

and for {j, k} ⊂ {1, 2, 3, 4} let

Sjk =
[

cosh sjk
2 sinh sjk

2
sinh sjk

2 cosh sjk
2

]
.

Suppose γ12, γ14, γ23 and γ24 go counterclockwise and γ13 goes clockwise around the 
corresponding edges observed from the perspective above T3. By conjugating the tangent 
framings back to p1 = (0, 0, 1) and conjugating the tangent vectors of the axes of the 
rotations to ∂

∂z , we have
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ρ([γ12]) = ±D2iα12 ,

ρ([γ13]) = ±S41D−2iα13S
−1
41 ,

ρ([γ14]) = ±Dl12S31D2iα14S
−1
31 D−1

l12
= ±S41Dl13S

−1
21 D−2iα14S21D

−1
l13

S−1
41 ,

ρ([γ23]) = ±D−1
iα12

S42D2iα23S
−1
42 Diα12 ,

ρ([γ24]) = ±D−1
iα12

S42Dl23S
−1
12 D−2iα24S12D

−1
l23

S−1
42 Diα12 .

Here we write ρ([γ14]) in two ways for the purpose of computing different things later. 
Since both Dz and Sjk are symmetric matrices, we have

ρ([γ12])T = ±D2iα12 ,

ρ([γ13])T = ±S−1
41 D−2iα13S41,

ρ([γ14])T = ±D−1
l12

S−1
31 D2iα14S31Dl12 = ±S−1

41 D−1
l13

S21D−2iα14S
−1
21 Dl13S41,

ρ([γ23])T = ±Diα12S
−1
42 D2iα23S42D

−1
iα12

,

ρ([γ24])T = ±Diα12S
−1
42 D−1

l23
S12D−2iα24S

−1
12 Dl23S42D

−1
iα12

.

(4.1)

Since ρ([γjk])T is a rotation of angle 2αjk, it has an eigenvector v+
jk with eigenvalue eiαjk

and an eigenvector v−
jk with eigenvalue e−iαjk . By (4.1) we have

[v+
12,v−

12] = I,

[v+
13,v−

13] = S−1
41 ,

[v+
14,v−

14] = D−1
l12

S−1
31 = S−1

41 D−1
l13

S21,

[v+
24,v−

24] = Diα12S
−1
42 D−1

l23
S12,

(4.2)

and by (3.2), the first half of the third equation of (4.2) and a direct computation we 
have

I12 =




0
1
0



 , I13 =




−1

2 sinh s41
cosh s41

−1
2 sinh s41



 and I14 =




−1

2e
−l12 sinh s31
cosh s31

−1
2e

l12 sinh s31



 . (4.3)

Since κ(I12, I12) = κ(I13, I13) = κ(I14, I14) = 1, they are the canonical invariant vectors. 
Therefore,

det[I12, I13, I14] = −1
2 sinh l12 sinh s31 sinh s41. (4.4)

Here we notice that by the hyperbolic Law of Sine for H1, the quantity
sinh l12 sinh s31 sinh s41 remains the same if we choose any edge and two adjacent short 
edges of H1, hence is an intrinsic quantity of H1.

For any i -= 1, applying an orientation preserving isometry φi of H3 we can place Hi

in H3 in the same way as H1; and the invariant vector Iij , i -= j, will be changed by 
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Adφi , which is a matrix in SL(3; C). Therefore, following the same computation as we 
did for (4.4), we have

det[I12, I23, I24] = 1
2 sinh l12 sinh s32 sinh s42,

det[I13, I23, I34] = −1
2 sinh l13 sinh s23 sinh s43,

det[I14, I24, I34] = 1
2 sinh l14 sinh s24 sinh s34.

(4.5)

This computes the determinants in (1) for the holonomy representation of a hyperbolic 
D-block.

To compute the determinant in (2), by the second equation of (4.1) and the first 
equation of (4.2), we have

[v+
12,v−

12] = I = S−1
41 D0S41

and

ρ([γ13])T · [v+
12,v−

12] = ±S−1
41 D−2iα13S41.

Therefore, by (3.7) and the notation therein,

I12 − Adρ([γ13])T · I12 = I0
s41s41 − I−2iα13

s41s41

= i sinh s41 sinα13




−i sinα13 cosh s41 + cosα13

2i sinα13 sinh s41
−i sinα13 cosh s41 − cosα13



 .

By the second equation of (4.1) again and the second half of the third equation of (4.2), 
we have

[v+
14,v−

14] = S−1
41 D−l13S21

and

ρ([γ13])T · [v+
14,v−

14] = ±S−1
41 D−l13−2iα13S21.

Therefore, by (3.7)

I14 − Adρ([γ13])T · I14

= I−l13
s41s21 − I−l13−2iα13

s41s21

= i sinh s21 sinα13




− sinh(l13 + iα13) cosh s41 + cosh(l13 + iα13)

2 sinh(l13 + iα13) sinh s41
− sinh(l13 + iα13) cosh s41 − cosh(l13 + iα13)



 .
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Finally, by the fourth equation of (4.1) and (4.2), we have

[v+
24,v−

24] = Diα12S
−1
42 D−l23S12

and

ρ([γ23])T · [v+
24,v−

24] = ±Diα12S
−1
42 D−l23+2iα23S12.

Therefore, by (3.8)

I24 − Adρ([γ23])T · I24

= I−l23
(iα12)s42s12 − I−l23+2iα23

(iα12)s42s12

= −i sinh s12 sinα23




eiα12

(
− sinh(l23 − iα23) cosh s42 + cosh(l23 − iα23)

)

2 sinh(l23 − iα23) sinh s42
e−iα12

(
− sinh(l23 − iα23) cosh s42 − cosh(l23 − iα23)

)



 .

Putting all together, we have

det
[
I12 − Adρ([γ13])T · I12, I14 − Adρ([γ13])T · I14, I24 − Adρ([γ23])T · I24

]

=i sin2 α13 sinα23 sinh s12 sinh s21 sinh s41 · det




−1 0 1
0 2 0
−1 0 −1



 · detM,

where M is the following matrix



i sinα13 cosh s41 sinh(l13 + iα13) cosh s41 cosα12 sinh(l23 − iα23) cosh s42 − i sinα12 cosh(l23 − iα23)
i sinα13 sinh s41 sinh(l13 + iα13) sinh s41 sinh(l23 − iα23) sinh s42

cosα13 cosh(l13 + iα13) −i sinα12 sinh(l23 − iα23) cosh s42 + cosα12 cosh(l23 − iα23)



 .

Computing the cofactors of Musing the hyperbolic angle sum formula, we have M13 =
− sinh l13 sinh s41, M23 = sinh l13 cosh s41 and M33 = 0. Then

detM = − sinh l13 sinh s41
(

cosα12 sinh(l23 − iα23) cosh s42 − i sinα12 cosh(l23 − iα23)
)

+ sinh l13 cosh s41 sinh(l23 − iα23) sinh s42

=sinα12 sinh l13 sinh l23 sinh s42
sinα13

,

where the last equality comes from the use of the hyperbolic Law of Sine that sinh s41 =
sinh s42 sinα23

sinα13
to get a common factor sinh s41, the use of the hyperbolic Law of Cosine in 

T4 to write cosh s41 and cosh s42 into trig-functions of the angles α12, α13 and α23 and 
the use of the angle sum formula to expand sinh(l23 − iα23) and cosh(l23 − iα23) into 
trig- and hyperbolic trig-functions of α23 and l23. Then after a final simplification, the 
imaginary part vanishes and the real part becomes the quantity above.
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Therefore,

det
[
I12 − Adρ([γ13])T · I12, I14 − Adρ([γ13])T · I14, I24 − Adρ([γ23])T · I24

]

=4i sinα12 sinα13 sinα23(sinh l13 sinh s21 sinh s41)(sinh l23 sinh s42 sinh s12).
(4.6)

This computes the determinant in (2) for the holonomy representation of a hyperbolic 
D-block.

For the other characters in X(D), we observe that for the holonomy representation ρ
of a hyperbolic D-block with cone angles (2α12, . . . , 2α34), for any lifting ρ̃ : π1(D) →
SL(2; C) of ρ, we have

Trρ̃([γjk]) = ±2 cosαjk

for {j, k} ⊂ {1, 2, 3, 4}. Notice that lij , ski and sli are the lengths of an edge and the two 
adjacent short edges around the face Hi, and all the determines in conditions (1) and 
(2) have factors products of the form sinh lij sinh ski sinh sli. We claim that

sinh lij sinh ski sinh sli = ±

√
− detGα

(1 − cos2 αij)(1 − cos2 αik)(1 − cos2 αil)
(4.7)

for {i, j, k, l} ⊂ {1, 2, 3, 4}, where Gα is the Gram matrix in the dihedral angles of the 
truncated hyperideal tetrahedron ∆ recalled in Section 2.3. As a consequence, the square 
of cosh lij sinh ski sinh sli is a rational function in (Trρ̃([γ12]), . . . , Trρ̃([γ34])). Indeed, to 
see (4.7), using the hyperbolic Law of Cosine to the face Hi, we have

sinh2 lij sinh2 ski sinh2 sli =
((cosh sji + cosh ski cosh sli

sinh ski sinh sli

)2
− 1

)
sinh2 ski sinh2 sli

= 2 cosh sji cosh ski cosh sli + cosh2 sji

+ cosh2 ski + cosh2 sli − 1;

and using the hyperbolic Law of Cosine to the triangles of truncation Tj, Tk and Tl, we 
have

cosh sji = cosαkl + cosαik cosαil

sinαik sinαil
,

cosh ski = cosαjl + cosαij cosαil

sinαij sinαil
,

and

cosh sli = cosαjk + cosαij cosαik

sinαij sinαik
.
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Fig. 7. The 1-dimensional CW complex.

Plugging these into the previous identity, we have (4.7). Since X(D) is an irreducible 
algebraic variety, by analyticity, (4.4), (4.5) and (4.6) hold for the other characters [ρ] in 
X(D).

Since the square of the determinants in conditions (1) and (2) is rational functions in 
the coordinates (Trρ̃([γ12]), . . . , Trρ̃([γ34])), the lifting of those characters form a Zariski-
open subset of the SL(2; C) character variety of D, and hence those characters themselves 
form a Zariski-open subset of X(D).

Next we show that the representations satisfying (1) and (2) are γ-regular. We will 
compute the homologies of D using its spine Γ, which is the 1-dimensional CW complex 
consisting of two 0-cells x1 and x2 (one dual to each copy of ∆) and four 1-cells a1, a2, 
a3 and a4 (one dual to each hexagonal face Hj) all of which are oriented from x1 to x2.

Let {e1, e2, e3} be the standard basis of C3 and let the choice of representatives 
x1, x2, a1, a2, a3 and a4 in the universal covering of Γ as drawn in Fig. 7. Then 
C0(D; Adρ) ∼= C6 with a natural basis {ei ⊗ xk} for i ∈ {1, 2, 3} and k ∈ {1, 2}; 
C1(D; Adρ) ∼= C12 with a natural basis {ei ⊗ ak} for i ∈ {1, 2, 3} and k ∈ {1, 2, 3, 4}; 
and Ck(D; Adρ) = 0 for k -= 0 or 1.

We choose x1 to be the base point of the fundamental group; and for {j, k} ⊂ {1, 2, 3}, 
let γaja

−1
k

be the curve starting from x1 traveling along aj to x2 then along −ak back to 
x1. In this way, we have [γaka

−1
j

] = [γjk]±1. Checking the orientation carefully we have 
[γa1a

−1
2

] = [γ12], [γa2a
−1
3

] = [γ23] and [γa1a
−1
3

] = [γ13].
By condition (1), we see that the vectors {Ijk⊗(aj−ak)}, {j, k} ⊂ {1, 2, 3, 4}, are lin-

early independent in C1(D; Adρ). To show that they lie in the kernel of ∂ : C1(D; Adρ) →
C0(D; Adρ), we have
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∂(Ijk ⊗ (aj − ak)) = Ijk ⊗ ∂(aj − ak)

= Ijk ⊗
(
(x1 − [γaja

−1
3

] · x2) − (x1 − [γaka
−1
3

] · x2)
)

= Ijk ⊗
(
[γaka

−1
3

] · x2 − [γaja
−1
3

] · x2
)

=
(
Adρ([γaka

−1
3

])T · Ijk − Adρ([γaja
−1
3

])T · Ijk
)
⊗ x2

=
(
Adρ([γaka

−1
3

])TAdρ([γaja
−1
k

])T · Ijk − Adρ([γaja
−1
3

])T · Ijk
)
⊗ x2

= 0,

where the penultimate equality comes from Adρ([γaja
−1
k

])T · Ijk = Adρ([γjk]±1)T ·
Ijk = Ijk and the last equation comes from γaja

−1
k

· γaka
−1
3

= γaja
−1
3

. Therefore, 
{Ijk ⊗ (aj − ak)}, {j, k} ⊂ {1, 2, 3, 4}, represent six linearly independent elements 
{Ijk ⊗ [γjk]} in H1(D; Adρ). Later we will prove that they also span, and hence form a 
basis of H1(D; Adρ).

Now we claim that these six vectors {I12 ⊗ (a1 − a2), I13 ⊗ (a1 − a3), I14 ⊗ (a1 −
a4), I23 ⊗ (a2 − a3), I24 ⊗ (a2 − a4), I34 ⊗ (a3 − a4)} joint with the other six vectors 
{I13 ⊗ a3, I23 ⊗ a3, I34 ⊗ a3, I12 ⊗ a1, I14 ⊗ a1, I24 ⊗ a2} form a basis of C1(D; Adρ). 
Indeed, in the natural basis {ei ⊗ ak} for i ∈ {1, 2, 3} and k ∈ {1, 2, 3, 4}, the 12 × 12
matrix consisting of these vectors as the columns is obtained from the one consisting of 
{Ijk⊗ak}, k ∈ {1, 2, 3, 4} and j -= k, as the columns by a sequence of elementary column 
operations of type I, III, and II with a factor −1. The latter matrix is a block matrix 
with four 3 × 3 blocks [I12, I13, I14], [I12, I23, I24], [I13, I23, I34] and [I14, I24, I34] on the 
diagonal and 0′s elsewhere, hence has determinant

det[I12, I13, I14] · det[I12, I23, I24] · det[I13, I23, I34] · det[I14, I24, I34]

and by condition (1) is non-singular. As a consequence, the former matrix is also non-
singular and up to sign has the same determinant.

Next we will study the image of the six vectors {I13 ⊗ a3, I23 ⊗ a3, I34 ⊗ a3, I12 ⊗
a1, I14 ⊗ a1, I24 ⊗ a2} under the boundary map ∂, and show that they span C0(D; Adρ). 
We have for j = 1, 2, 4,

∂(Ij3 ⊗ a3) = Ij3 ⊗ ∂a3 = Ij3 ⊗ (x1 − x2) = Ij3 ⊗ x1 − Ij3 ⊗ x2;

for k = 2, 4,

∂(I1k ⊗ a1) = I1k ⊗ ∂a1 = I1k ⊗ (x1 − [γa1a
−1
3

] ·x2) = I1k ⊗x1 −
(
Adρ([γ13])T · I1k

)
⊗x2;

and

∂(I24 ⊗ a2) = I24 ⊗ ∂a2 = I24 ⊗ (x1 − [γa2a
−1
3

] · x2) = I24 ⊗ x1 −
(
Adρ([γ23])T · I24

)
⊗ x2.
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Therefore, in the natural basis {ei ⊗ xk}, i ∈ {1, 2, 3}, k ∈ {1, 2}, the 6 × 6 matrix 
consisting of {∂(I13 ⊗ a3), ∂(I23 ⊗ a3), ∂(I34 ⊗ a3), ∂(I12 ⊗ a1), ∂(I14 ⊗ a1), ∂(I24 ⊗ a2)}
as the columns has four 3 × 3 blocks, where on the top left it has [I13, I23, I34] and on 
the bottom left it has [−I13, −I23, −I34]; on the top right it has [I12, I14, I24] and on the 
bottom right it has

[
− Adρ([γ13])T · I12, −Adρ([γ13])T · I14, −Adρ([γ23])T · I24

]
.

This matrix is row equivalent to (by adding the top blocks to the bottom) the one with 
[I13, I23, I34] on the top left, 0′s on the bottom left and

[
I12 − Adρ([γ13])T · I12, I14 − Adρ([γ13])T · I14, I24 − Adρ([γ23])T · I24

]

on the bottom right. Hence the determinant of both of the 6 × 6 matrices are equal to

det[I13, I23, I34] ·det
[
I12−Adρ([γ13])T ·I12, I14−Adρ([γ13])T ·I14, I24−Adρ([γ23])T ·I24

]
.

By conditions (1) and (2), the product above is nonzero, and hence {∂(I13⊗a3), ∂(I23⊗
a3), ∂(I34 ⊗ a3), ∂(I12 ⊗ a1), ∂(I14 ⊗ a1), ∂(I24 ⊗ a2)} span C0(D; Adρ). This implies 
that H0(D; Adρ) = 0. Since there are no cells of dimension higher than or equal to 
2, Hk(D; Adρ) = 0 for k " 2.

Now since {∂(I13⊗a3), ∂(I23⊗a3), ∂(I34⊗a3), ∂(I12⊗a1), ∂(I14⊗a1), ∂(I24⊗a2)} span 
C0(D; Adρ) ∼= C6, by dimension counting the kernel of ∂ : C1(D; Adρ) → C0(D; Adρ)
has dimension at most 6. Hence {I12⊗(a1−a2), I13⊗(a1−a3), I14⊗(a1−a4), I23⊗(a2−
a3), I24 ⊗ (a2 − a4), I34 ⊗ (a3 − a4)} span the kernel of ∂. This shows that the elements 
they represent hD = {Ijk ⊗ [γjk]}, {j, k} ⊂ {1, 2, 3, 4}, form a basis of H1(D; Adρ), and 
H1(D; Adρ) ∼= C6. This completes the proof. !

Proof of Proposition 4.2. Since the adjoint twisted Reidemeister torsion is invariant un-
der subdivisions, elementary expansions and elementary collapses of CW-complexes by 
[19,23], we can do the computation using the spine Γ of D.

The adjoint twisted Reidemeistor torsion equals, up to sign, the determinant of the 
12 × 12 matrix consisting of {I12 ⊗ (a1 − a2), I13 ⊗ (a1 − a3), I14 ⊗ (a1 − a4), I23 ⊗ (a2 −
a3), I24 ⊗ (a2 − a4), I34 ⊗ (a3 − a4), I13 ⊗ a3, I23 ⊗ a3, I34 ⊗ a3, I12 ⊗ a1, I14 ⊗ a1, I24 ⊗ a2}
as the columns divided by the determinant of the 6 × 6 matrix consisting of {∂(I13 ⊗
a3), ∂(I23 ⊗ a3), ∂(I34 ⊗ a3), ∂(I12 ⊗ a1), ∂(I14 ⊗ a1), ∂(I24 ⊗ a2)} as the columns.

By (4.4), (4.5) and (4.6), we have for the holonomy representation of a hyperbolic 
D-block,
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Tor(D,hD; Adρ)

= ±
det[I12, I13, I14] · det[I12, I23, I24] · det[I13, I23, I34] · det[I14, I24, I34]

det[I13, I23, I34] · det
[
I12 − Adρ([γ13])T · I12, I14 − Adρ([γ13])T · I14, I24 − Adρ([γ23])T · I24

]

= ±
i sinh l14 sinh s24 sinh s34

32 sinα12 sinα13 sinα23

= ±
√

detGα

32 sinα12 sinα13 sinα14 sinα23 sinα24 sinα34

= ±

√
detG

(
u12
2 , u13

2 , u14
2 , u23

2 , u24
2 , u34

2

)

32 sinh u12
2 sinh u13

2 sinh u14
2 sinh u23

2 sinh u24
2 sinh u34

2
,

where the last equality comes from (4.7).
Finally, by Lemma 4.3 and the analyticity of the involved functions, the result holds 

for all γ-regular characters in X(D). !

5. Reidemeister torsion of the Mayer-Vietoris sequence

Let M be the complement of a fundamental shadow link with n components, and 
let ρ : π1(M) → PSL(2; C) be an irreducible representation. We insert a thickened 
pair of pants if necessary so that no D-block self-intersects. Suppose there are in total 
c thickened pairs of pants inserted, and the 3-dimensional objects (D-blocks and the 
thickened pairs of pants) intersect at p pairs of pants, then we have p = c + 2d. Order 
the c thickened pair of pants together with the d D-blocks by D1, . . . , Dc+d, and order 
the p pairs of pants by P1, . . . , Pp. Then by Lemma 2.1 there is the following short exact 
sequence of chain complexes

0 →
p⊕

j=1
C∗(Pj ; Adρ) δ−→

c+d⊕

k=1
C∗(Dk; Adρ) ε−→ C∗(M ; Adρ) → 0

with ε defined by the sum

ε(c1, . . . , cc+d) =
c+d∑

k=1
ck (5.1)

and δ defined by the alternating sum

(δc)k = −
∑

j

cj +
∑

l

cl, (5.2)

where j runs over the indices such that Pj = Dk′ ∩Dk for some k′ < k and l runs over 
the indices such that Pl = Dk ∩Dk′′ for some k < k′′.

For each i ∈ {1, . . . , n}, let Ti = ∂N(Li) be the boundary of a tubular neighborhood 
of the i-th component of LFSL, mi be the meridian of N(Li) and m = (m1, . . . , mn). 
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Suppose ρ is an m-regular representation whose restriction to each pair of pants Pj is 
γ-regular as defined in Definition 3.1, and to each D-block Dk is γ-regular as defined 
in Definition 4.1, then the induced Mayer-Vietoris exact sequence H has four nonzero 
terms, i.e.,

0 → H2(M ; Adρ) ∂−→
p⊕

j=1
H1(Pj ; Adρ) δ−→

c+d⊕

k=1
H1(Dk; Adρ) ε−→ H1(M ; Adρ) → 0. (5.3)

Let Ii be up to sign the unique invariant vector of Adρ([mi])T with κ(Ii, Ii) = 1. Then 
by a diagram chasing, H1(M ; Adρ) has a basis h1

(M,m) = {I1 ⊗ [m1], . . . , In ⊗ [mn]} and 
H1(M ; Adρ) has a basis h2

M = {I1 ⊗ [T1], . . . , In ⊗ [Tn]}.

Proposition 5.1. Let hPj be the basis of H1(Pj ; Adρ) in Definition 3.1 and let hDk be the 
basis of H1(Dk; Adρ) in Definition 4.1. Let h∗∗ be the union of h1

(M,m), h2
M , 'jhPj and 

'khDk . Then

Tor(H,h∗∗) = ±1. (5.4)

Proof. By [21, Proposition 3.22, Corollary 3.23], Lemma 3.4 and Lemma 4.3 and the fact 
that a thickened pair of pants is simple homotopic to a pair of pants, with the chosen 
bases h1

(M,m), h2
M , 'jhPj and 'khDk , we have

H2(M ; Adρ) ∼= Cn,
p⊕

j=1
H1(Pj ; Adρ) ∼= C3p,

c+d⊕

k=1
H1(Dk; Adρ) ∼= C3c+6d

and

H1(M ; Adρ) ∼= Cn.

In the rest of the proof, we will fix these isomorphisms and identify the linear maps 
∂, δ and ε with the left multiplications of the corresponding matrices. In particular, ∂
corresponds to a 3p × n matrix, δ corresponds to a (3c + 6d) × 3p square matrix and ε
corresponds to an n × (3c + 6d) matrix.

For C3 = H2(M ; Adρ), we choose the lifting base b̃2 to be h2
M . Then

[b̃2;h2
M ] = 1. (5.5)

For C2 =
⊕p

j=1 H1(Pj ; Adρ), we first order the vectors in b̃2 = h2
M by {u1, . . . , un}. 

Then b2 = {∂(u1), . . . , ∂(un)}. We also order the vectors in 'jhPj by {v1, . . . , v3p}, 
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and choose the lifting basis b̃1 as follows. Since the sequence (5.3) is exact, δ has rank 
3c + 6d − n = 3p − n. Suppose a basis of the column space of δ consists of the columns 
{wj1 , . . . , wj3c+6d−n} of δ, then we let b̃1 = {vj1 , . . . , vj3p−n}. Next we compute det[b2 '
b̃1; 'jhPj ]. Recall that there is a one-to-one correspondence between {u1, . . . , un} and 
the boundary components {T1, . . . , Tk} of M and a one-to-one correspondence between 
{v1, . . . , v3p} and the boundary components of the disjoint union 'Pj of {Pj}. Then a 
diagram chasing shows that

∂(uk) =
nk∑

s=1
±vis ,

where nk is the number of the boundary components of 'Pj intersecting Tk, vi1 , . . . , vink

are the vectors corresponding to those boundary components of 'jPj and the signs ±
are determined as follows. Fix an orientation of the longitude lk of Tk, and suppose 
Pis = Dr ∩Dt and Dr comes immediately before Dt along lk in the chosen orientation. 
Then the sign in front of vis is + if r > t, and is − if otherwise. Since each boundary 
component of 'jPj intersects exactly one boundary component of M , each row of the 
n × 3p matrix ∂ has exactly one nonzero entry, which equals either 1 or −1. Therefore, 
rows j1, . . . , j3p−n of the matrix b2 ' b̃1 have exactly two nonzero entries, one from b2
and one from b̃1; and the other rows of b2 ' b̃1 have exactly one nonzero entry. Let M
be the (3p − n) × (3p − n) matrix consisting of the rows j1, . . . , j3p−n of the columns 
vj1 , . . . , vj3p−n of b2 ' b̃1, and let N be the n × n matrix obtained from b2 ' b̃1 by 
removing those rows and columns. Then each row of M and N contains exactly one 
nonzero entry, which equals 1 or −1, hence detM = ±1, detN = ±1 and det[b2 ' b̃1] =
± detM · detN = ±1. Therefore,

[b2 ' b̃1;'jhPj ] = ±1. (5.6)

For C1 =
⊕c+d

k=1 H1(Dk; Adρ), we have b1 = {δ(vj1), . . . , δ(vj3p−n)} = {wj1 , . . . ,
wj3c+6d−n}. We choose the lifting basis b̃0 as follows. Since each Pj is adjacent to two of 
{D1, . . . , Dc+d} without redundancy and each edge of Dk connects two of {P1, . . . , Pp}
without redundancy, by (5.2) each row of δ has exactly two nonzero entries each of 
which equals 1 or −1, and each column of δ has exactly two nonzero entries, one equals 
1 and the other equals −1. For t /∈ {j1, . . . , j3c+6d−n}, let xt ∈ C3c+6d be the vec-
tor obtained from the column wt of δ by replacing the entry −1 by 0. Then we let 
b̃0 =

{
xt | t ∈ {1, . . . , 3c + 6d}!{j1, . . . , j3c+6d−n}

}
. Now we claim that {xt} are lin-

early independent and ε(xt) -= 0 for each t so that b1 ' b̃0 form a basis of C1. Indeed, 
since each xt contains only one nonzero component, to prove the linear independence 
it suffices to prove that no two nonzero entries of {xt} are in the same row. Suppose 
otherwise that xt1 and xt2 have nonzero components in row k, then due to the fact 
that each row of δ has only two nonzero entries, the k-th component of all the columns
wj1 , . . . , wj3c+6d−n are 0. This contradicts the fact that {wj1 , . . . , wj3c+6d−n} is a basis of 
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the column space of δ since wt1 and wt2 have the k-th component equal to 1 and neither 
of them can be written as a linear combination of {wj1 , . . . , wj3c+6d−n}. Also, since each 
edge of Dk belongs to exactly one boundary component of M , by (5.1) ε(xt) has exactly 
one nonzero component which equals 1, hence is nonzero. This finishes the proof of the 
claim. Next, we compute det[b1 ' b̃0]. We observe that the matrix [b1 ' b̃0] satisfies the 
following three properties:

(I) It is nonsingular.
(II) Each column has either exactly one nonzero component which equals ±1; or has 

exactly two nonzero components, one equals 1 and the other equals −1.
(III) There is at least one column containing exactly one nonzero component.

We let t1, . . . , tn be the rows where some xt has nonzero components. Let M1 be the 
n × n matrix consisting of the rows t1, . . . , tn of the vectors {xt}, and let N1 be the 
(3c +6d −n) × (3c +6d −n) matrix obtained from b1 by removing those rows. Since each 
column of M1 contains exactly one 1 and no two 1′s are in the same row, detM1 = ±1. 
As a consequence, we have det[b1 ' b̃0] = ± detM1 · detN1 = ± detN1. We claim that 
N1 also satisfies the properties (I), (II) and (II). Indeed, (I) comes from the equality 
right above and (II) comes from the construction of N1. For (III), suppose otherwise 
that all the columns of N1 have one 1 and one −1, then all rows of N1 add up to zero 
and N1 is singular, which contradicts (I). Therefore, we can collect all the columns of 
N1 containing only one nonzero components, and let M2 be the square matrix consisting 
of the rows that contain those nonzero components, and let N2 be the square matrix 
consisting of the other columns with those rows removed. Then detN1 = detM2 ·detN2. 
Since detN1 -= 0, we have detM2 -= 0. This implies that no two nonzero components of 
M2 are in the same row. Together with the fact that all the columns of M2 have only
one nonzero entry ±1, we have detM2 = ±1. This implies that detN1 = ± detN2. By 
the same argument, we have that N2 satisfies properties (I), (II) and (III), and we can 
recursively construct smaller square matrices M3, N3, . . . , Mk, Nk, . . . that Mk consists of 
the rows containing those nonzero entries of the columns of Nk−1 containing exactly one 
nonzero entry and Nk consists of the other columns of Nk−1 with those rows removed, 
so that detMk = ±1, detNk−1 = ± detMk · detNk = ± detNk and Nk satisfies (I), 
(II) and (III). This algorithm stops at some k when all columns of Nk contain exactly 
one nonzero entry ±1, and we have det[b1 ' b̃0] = ± detN1 = · · · = ± detNk = ±1. 
Therefore,

[b1 ' b̃0;'khPk ] = ±1. (5.7)

For C0 = H1(M ; Adρ), we have b0 =
{
ε(xt) | t ∈ {1, . . . , 3c +6d}!{j1, . . . , j3c+6d−n}

}
. 

Since b1 ' b̃0 form a basis of C1 and b1 lies in the kernel of ε, b0 is a basis of C0. In 
the previous paragraph, we show that each ε(xt) contains exactly nonzero entry 1, hence 
det[b0] = ±1, which is the same as
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[b0;h1
(M,m)] = ±1. (5.8)

Therefore, by (5.5), (5.6), (5.7) and (5.8), we have

Tor(H;h∗∗) = [b̃2;h2
M ] · [b1 ' b̃0;'khPk ]

[b2 ' b̃1;'jhPj ] · [b0;h1
(M,m)]

= ±1. !

6. Proof of Theorems 1.1, 1.4 and 1.6

Proof of Theorem 1.1. For (1), let M be a fundamental shadow link complement. Recall 
that M is the union of D-blocks by orientation reversing homeomorphisms between the 
3-puncture spheres (which is homeomorphic to a pair of pants). For each pair of pants P
and i ∈ {1, 2, 3}, let γi be the simple closed curve around the puncture pi; and for each 
D-block D and {j, k} ⊂ {1, 2, 3, 4}, let γjk be the simple closed curve around the edge 
ejk. Then (γ1, γ2, γ3) is the restriction of the meridians m of M to P , and (γ12, . . . , γ34)
is the restriction of m to D. Let ρ : π1(M) → PSL(2; C) be an m-regular representation, 
and we will consider the following three cases:

Case I. The restriction of [ρ] to each pair of pants Pj is γ-regular as defined in Defi-
nition 3.1, and to each D-block Dk is γ-regular as defined in Definition 4.1.

Case II. [ρ] is not in Case I, and Trρ([mi]) -= ±2 for all i ∈ {1, . . . , n}.
Case III. Otherwise.

If [ρ] is in Case I, then by Theorem 2.2, Propositions 3.2, 4.2 and 5.1, we have

T(M,m)([ρ]) = Tor(M ; {h1
(M,m),h2

M}; Adρ) = ±23d
d∏

k=1

√
detGk.

This completes the proof of (1) for [ρ] in Case I.
Next we show that each [ρ] in Case II and Case III is in the closure of the set of 

characters in Case I in the classical (Hausdorff) topology, and the continuity of adjoint 
twisted Reidemeister torsion and the determinants of the Gram matrix functions will 
complete the proof.

For Case II, we first recall [22, Proposition 5.13] that, if ρ is m-regular and Trρ([mi]) -=
±2 for all i ∈ {1, . . . , n}, i.e., is in Case II, then the logarithmic holonomies (u1, . . . , un)
form a local coordinates of X(M) near [ρ]. Since the restriction of [ρ] to each Pj and Dk

will possibly identity the traces of certain curves in γ, we consider the following subsets 
of X(Pj) and X(Dk). For an equivalence relation ∼ on the index set IP = {1, 2, 3} with 
the set of equivalence classes IP , let

XIP
(P ) =

{
[ρ] ∈ X(P )

∣∣ for any lifting ρ̃ of ρ,Trρ̃([γa]) = ±Trρ̃([γb]) for a, b ∈ IP with a ∼ b
}
;
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and for an equivalence relation ∼ on the index set ID = {12, . . . , 34} with the set of 
equivalence classes ID, let

XID
(D) =

{
[ρ] ∈ X(D)

∣∣ for any lifting ρ̃ of ρ,Trρ̃([γc])
= ±Trρ̃([γd]) for c, d ∈ ID with c ∼ d

}
.

Then the restriction of [ρ] to each Pj is in XIP
(Pj) for some IP ; and the restriction of 

[ρ] to each Dk is in XID
(Dk) for some ID. Let

ZIP
(P ) = Z(P ) ∩ XIP

(P )

and let

ZID
(D) = Z(D) ∩ XID

(D).

Then by formulas (3.6), (3.10) and (3.11), for any quotient set IP , ZIP
(P ) is dense in 

XIP
(P ) in the classical topology; and by (4.4), (4.5), (4.6) and (4.7), for any quotient 

set ID, ZID
(D) is dense in XID

(D) in the classical topology. (Indeed, the numerators 
in the square root of the right hand side of both (3.11) and (4.7) have a constant term 
−1 which always stays under the identifications of the variables, hence the relevant 
analytic functions in the logarithmic holonomies never become the zero function.) As a 
consequence, any character in Case II is in the closure of the set of characters in Case I 
in the classical topology. This completes the proof of (1) for [ρ] in Case II.

For a character [ρ] in Case III, we show that it can be smoothly perturbed into Case 
I or Case II. Recall that the Killing form κ on sl(2; C) defines a non-degenerate bi-
linear form 〈 , 〉 : H1(M, Adρ) ×H1(M, Adρ) → C, and the basis h1

(M,m) of H1(M, Adρ)
gives an isomorphism between H1(M, Adρ) and H1(M, Adρ). For each i ∈ {1, . . . , n}, 
let vi be the element in H1(M, Adρ) dual to Ii ⊗ [mi] under this isomorphism, i.e., 
〈vi, Ij ⊗ [mj ]〉 = δij , the Kronecker symbol. Let I ⊂ {1, . . . , n} be the subset of the 
indices i such that Trρ([mi]) = ±2, and let

v =
∑

i∈I

vi.

We consider v as a Zariski-tangent vector of X(M) at [ρ]. Since [ρ] is m-regular, it is a 
smooth point of X(M). As a consequence, v can be realized as the tangent vector of a 
deformation [ρt], t ∈ [0, ε). Then [ρt] is the desired perturbation of [ρ], as for t -= 0,

Trρt([mi]) -= Trρ([mi]) = ±2

for i ∈ I, and

Trρt([mj ]) = Trρ([mj ]) -= ±2
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for j /∈ I. This shows that any representation in Case III is in the closure of the set of 
the representations in Cases I and II in the classical topology, and completes the proof 
of (1) for [ρ] in Case III.

(2) is a direct consequence of (1) and Theorem 2.8 (ii). !

Proof of Theorem 1.4. Let m be the system of meridians of M . If the restriction [ρ] of 
[ρµ] to M is m-regular, then the result follows directly from Theorem 1.1 and Theo-
rem 2.8 (iii).

If [ρ] is not m-regular, then by Theorem 2.8 (i) that m-regular characters are dense 
in the distinguished component of X(M), [ρ] is a limit point of m-regular characters. 
Then by the analyticity of the adjoint twisted Reidemeister torsion, the formula has a 
removable singularity at [ρ] and hence can be evaluated by taking the limit of the values 
at the nearby m-regular characters. !

Proof of Theorem 1.6. From Section 2.5, we see that M is homeomorphic to a funda-
mental shadow link complement with the meridians (as of the fundamental shadow link 
complement) the preferred longitude l. Let m = (m1, . . . , mn) be the simple closed 
curves around the edges, and let (γ1, . . . , γn) be the double of the edges. Then the 
holonomy representation ρ of the hyperbolic cone metric has the logarithmic holonomies 
ui = uγi = 2li and umi = 2iθi for i ∈ {1, . . . , n}. Since a truncated hyperideal tetrahe-
dron is determined and infinitesimally determined by its six edge lengths, ρ is l-regular; 
and by [18, Theorem 1.2 (b)], ρ is determined and infinitesimally determined by its 
cone angles (θ1, . . . , θn), hence is m-regular. Then (1) and (2) respectively follow from 
Theorem 1.1 (1) and (2), and (3) follows from Theorem 2.8 (iii). !
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