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closed oriented hyperbolic 3-manifolds and for hyperbolic 3-
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suitable boundary components of a fundamental shadow link
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an important special case, we also write down a formula of
the adjoint twisted Reidemeister torsion for the double of
a hyperbolic 3-manifold with totally geodesic boundary in
terms of the edge lengths of a geometric ideal triangulation
of the manifold. These unexpected formulas were inspired by,
and played an important role in, the study of the asymptotic
expansion of quantum invariants [25].
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1. Introduction

We compute the adjoint twisted Reidemeister torsion (see Section 2.1) for closed

orientable hyperbolic 3-manifolds and for orientable hyperbolic 3-manifolds with toroidal
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boundary with a representation of the fundamental group into PSL(2; C) for which the
adjoint twisted Reidemeister torsion is defined.

To present the 3-manifolds, we use a 3-dimensional analogue of the pair-of-pants
decompositions for surfaces, known as the fundamental shadow link complements ([6],
see also Section 2.4). The fundamental shadow link complements form a universal family
of 3-manifolds with toroidal boundary in the sense that all orientable 3-manifolds with
empty or toroidal boundary can be obtained from one of them by doing a Dehn-filling
along suitable boundary components [6]. Then in Theorem 1.1, we obtain an explicit
formula of the adjoint twisted Reidemeister torsion of the fundamental shadow link
complements, which turns out to be a product of the square root of the determinant of
the values of the Gram matriz function (see Section 2.3) at the logarithmic holonomy
of the meridians. As a consequence, in the main result of this paper, Theorem 1.4, we
obtain an explicit formula of the adjoint twisted Reidemeister torsion of hyperbolic 3-
manifolds obtained by doing a Dehn-filling along suitable boundary components of a
fundamental shadow link complement. By [6,15], these manifolds contain most closed
and cusped orientable hyperbolic 3-manifolds in the sense explained in Remark 1.5

To the best of our knowledge, this is by far the only explicit formula of the adjoint
twisted Reidemeister torsion for most hyperbolic 3-manifolds. It is worth mentioning that
the 1-loop Conjecture [8] suggests another formula of this quantity for cusped hyperbolic
3-manifolds in terms of the shape parameters.

In a setting dual to that in Theorem 1.1 and Theorem 1.4, we in Theorem 1.6 com-
pute the adjoint twisted Reidemeister torsion of the double of a geometrically ideally
triangulated hyperbolic 3-manifold with totally geodesic boundary, in terms of the edge
lengths of the triangulation.

The relationship between the two intensively studied geometric quantities in our for-
mulas, the adjoint twisted Reidemeister torsion and the Gram matrix, is completely
unexpected, and is suggested by the asymptotic expansion of various quantum invari-
ants of 3-manifolds proposed by the authors in [25]. This is one of the few examples
where ideas from the study of quantum invariants shed light on a solution of purely
geometric problems. In return, these formulas also play an essential role in the study of
the asymptotic expansion of quantum invariants [25].

1.1. Fundamental shadow link complements

Theorem 1.1. Let M = #911(S2x SY)\ Lrgy, be the complement of a fundamental shadow
link Lpgy, with n components L1, ..., Ly, which is the orientable double of the union
of truncated tetrahedra Aq,...,Aq along pairs of the triangles of truncation (see Sec-
tion 2.4).

(1) Let m = (my,...,my) be the system of the meridians of a tubular neighborhood
of the components of Lpsr. For an m-regular PSL(2; C)-character [p] of M (see
Definition 2.5), let (u1,...,uy,) be the logarithmic holonomies of m in p. For each
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ke{l,...,d}, let Ly,,..., Ly, be the components of Lrgy, intersecting Ay, and let

Gr, =G (u%, e u;‘*) be the value of the Gram matriz function at ( e,
Then the adjoint twisted Reidemeister torsion of M with respect to m (see Defini-

tion 2.7) at [p] is

T(M m) +23d H v/ det Gy.

(2) In addition to the conditions of (1), let p = (p1,...,1n) be a system of simple
closed curves on OM, and let (wp,,...,u,,) be their logarithmic holonomies which
are functions of (u1,...,un) near [p). If [p] is p-regular, then the adjoint twisted
Reidemeister torsion of M with respect to pu at [p] is

Au,, ..
Tiarp0 ([o]) = £25 det (%—“’*) H V/det Gy,

where W is the Jacobian matriz of (uy,, . . ., uy, ) with respect to (u1, . .., uy)

evaluated at [p].

Remark 1.2. By (2.6) and the analyticity of both sides, the logarithmic holonomies of
the system of longitudes, and hence of any system of simple closed curves on OM, can
be explicitly written in terms of the (uq,...,u,). Therefore, the formula in (2) can be
written explicitly in terms of (uq,...,uy).

Remark 1.3. By [21,20], all the characters near that of the holonomy representation of
the complete hyperbolic structure of M are p-regular for any system of simple closed
curves g on OM.

1.2. Hyperbolic 3-manifolds

As a consequence of Theorem 1.1, we obtain in Theorem 1.4 a formula of the adjoint
twisted Reidemeister torsion for hyperbolic 3-manifolds with empty or toroidal boundary
obtained by doing a Dehn-filling along suitable boundary components of a fundamental
shadow link complement, with a technique assumption on the holonomy representation
of the hyperbolic structure. Recall from [6] that every orientable hyperbolic 3-manifolds
with empty or toroidal boundary can be obtained in this way, and from [15] and as
explained in Remark 1.5 for most closed and cusped hyperbolic 3-manifolds the technical
assumption is satisfied.

Let M be a fundamental shadow link complement as in Theorem 1.1. For m with
0<m<mn,let p=(u1,...,Hn) be a system of simple closed curves on M such that
i C T;, and let v = (Vma1, - - -, Vn) be a system of simple closed curves on M such that
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v; C T};. Let M, be the 3-manifold obtained from M by doing the Dehn-filling along .
Then v can be considered as a system of simple closed curves on OM,,. If m = n, then
v =0 and M, is a closed 3-manifold,

Theorem 1.4. Suppose M, is hyperbolic. Let [p,] be a v-reqular character of M,, and let
p be the restriction of p, on M. Let (u1,...,uy,) be the logarithmic holonomies of the
system of meridians m in [p] and for each k € {1,...,d}, let Ly, , ..., L, be the compo-

nents of Lpsy, intersecting Ay and let Gy = G(u%, ey uk@) be the value of the Gram

matriz function at (u%? .. ukﬁ) Let (upy, .. up,,) and (uy,, ..., w, ) respectively
be the logarithmic holonomies of p and v considered as functions of (u1, ..., u,) near [p).
Let (v1,...,7m) be a system of simple closed curves on OM that are isotopic to the core
curves of the solid tort filled in and let (u.,,...,uy,, ) be their logarithmic holonomies
n [p]. If [p] is in the distinguished component of the PSL(2; C)-character variety of M,
then the adjoint twisted Reidemeister torsion of M,, with respect to v at [p,] is

T, ) (o))

O(Upyy ey, U Y
_ 3d—2m 1o y Wit s Yoy s Wy,
=42 det < s ) H \/detGkH Rae

CyUp)

Bty e b 1 100 wr) . .
where — 6(’u”1‘ "Z:)l = is the Jacobian matriz of (uy, .. U,y s Uuyy ey s - - -5 Uny,)

with respect to (u1,...,u,) evaluated at [p).

In particular, if M, is closed, p, is the holonomy representation of the hyperbolic
structure and [p] is in the distinguished component of the PSL(2; C)-character variety of
M, then the adjoint twisted Reidemeister torsion of M, is

TOI'(MIJ,;AdpM) — 123d—2n det (a(uul’—uu’”> H ‘/det GkH 2 u’y .

8(u1,..

Remark 1.5. From [6,15], the manifolds M, in Theorem 1.4 cover most closed and cusped
orientable hyperbolic 3-manifolds in the sense that for each boundary component T; of
M, except for at most 114 simple closed curves p;, the complete hyperbolic metric on
M,, can be connected to the complete hyperbolic metric on M by a one-parameter fam-
ily of hyperbolic cone metrics on M. As a consequence, [p] lies in the distinguished
component of the PSL(2; C)-character variety of M satisfying the condition in Theo-
rem 1.4. We believe that this condition could be removed and the formula holds for all
the closed hyperbolic 3-manifolds and hyperbolic 3-manifolds with toroidal boundary
with a PSL(2; C)-representation for which the adjoint twisted Reidemeister torsion is
defined.
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1.8. Double of hyperbolic polyhedral 3-manifolds

Theorem 1.6. Let N be a hyperbolic polyhedral 3-manifold which is the union of truncated
tetrahedra Ay, ..., Ay along pairs of hexagonal faces, and let M be the double of N with

the

(1)

(2)

(3)

double of the edges ey, ..., e, Temoved (see Section 2.5).

Forie{1,...,n}, letl; be the lengths of e;. Let l be the system of the preferred lon-
gitudes of M with the logarithmic holonomies (211, ...,2l,). For each k € {1,...,d},
let e, , ..., ek, be the edges intersecting Ay, and let Gy, = G(lg,, ..., k) be the value
of the Gram matriz function at (li,,...,lk). Let p be the holonomy representation
of the hyperbolic cone metric on M obtained by doubling the hyperbolic polyhedral
metric of N. Then

T(Ml i23d H AV det Gk

Let m be the system of meridians of a tubular neighborhood of the double of the
edges, and let (61,...,0,) be the cone angles at the edges which are functions of the
lengths (I1,...,1,) of the edges of N. Then

a(0 d

_ no3d—n 1,

T(ar,m)([p]) = £i"2 det (8(11,7> |=| det Gy,

where M is the Jacobian matriz of (01,...,0,) with respect to (I1,...,1,)

evaluated at [p].

Suppose M is the double of a geometrically ideally triangulated hyperbolic 3-manifold
N with totally geodesic boundary (which is M with the removed double of edges filled
back). Let p and p respectively be the holomony representations of M and M. Let
(l1,...,1n) be the lengths of the edges of N and let (0y,...,60,) be the cone angles
considered as functions of (I1,...,1,). For each k € {1,...,d}, let ex,, ..., er, be the
edges intersecting Ay, and let Gy, = G(lg,, ..., k) be the value of the Gram matrix
function at (lg,, ..., lg;). Then

a1, ln

— _ Ay, ... d
Tor(M; Ad) = +i"23973" det ( AL ) Vdet G ,
or( 5) i e 1;[ e kH o h2

where %5771) is the Jacobian matriz of (61,...,6,) with respect to (Iy,...,1,)
evaluated at [p].

Remark 1.7. Since the cone angles (61, ..., 6,) are the sums of the dihedral angles which

by (2.7) can be explicitly written as functions of (I, ...,1l,), both of the formulas in (2)

and (3) can be written explicitly in terms of the edge lengths (I1,...,15).
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Remark 1.8. We believe that a similar formula of the adjoint twisted Reidemeister torsion
of a geometrically ideally triangulated cusped hyperbolic 3-manifold and of a geometri-
cally triangulated closed hyperbolic 3-manifold should also exist, respectively in terms
of the decorated edge lengths and the edge lengths.

1.4. Outline of the proof

The main tool in the computation is the Mayer-Vietoris formula stated in Theorem 2.2.
To use this formula, we in Sections 3 and 4 respectively compute the adjoint twisted
Reidemeister torsion of the pairs of pants and of the D-blocks, and in Section 5 compute
the Reidemeister torsion of the Mayer-Vietoris sequence. Then the results follow from
Theorem 2.2.

Acknowledgments The authors would like to thank Francis Bonahon, Giulio Belletti,
Yi Liu, Feng Luo, Tushar Pandey, Hongbin Sun, Zhizhang Xie and Seokbeom Yoon for
helpful discussions. The authors are also grateful to the referees’ invaluable suggestions,
both in the mathematics and in the writing. The second author is supported by NSF
Grants DMS-1812008 and DMS-2203334.

2. Preliminaries
2.1. Reidemeister torsions
Let C, be a finite chain complex
05Ci 3L 5,30 -0

of C-vector spaces, and for each Cj choose a basis c;. Let H, be the homology of C,,
and for each Hj choose a basis h; and a lift ﬁk C Cyg of hy. We also choose a basis by,
for each image 0(Cg41) and a lift Bk C Cg41 of bg. Then by U gk,l L l~1k form a new
basis of Cy. Let [by U Bk,l H] Hk; cx] be the determinant of the transition matrix from
the basis ¢ to the new basis by, LI f)k_l ( Hk Then the Reidemeister torsion of the chain
complex C, with the chosen bases {c;} and {hy} is defined by

d
Tor(Cu, {ex}, {hi}) = £ [[br Ubroy Ubys e V7 e Co /1), (2.1)
k=0

It is easy to check that Tor(Cy,{cr}, {hx}) depends only on the choices of {ci} and
{h;}, and does not depend on the choices of {by} and the lifts {bj,} and {hy}.

We recall the twisted Reidemeister torsion of a CW-complex following the conventions
in [22]. Let K be a finite CW-complex and let p : 71 (K) — SL(NNV; C) be a representation
of its fundamental group. Consider the twisted chain complex
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C*(K,P) = CN ®p C*(sz)

where C*(I? ; Z) is the simplicial complex of the universal covering of K and ®, means
the tensor product over Z modulo the relation

Ve (y-c) = (p(v)T~V)®c,

where T is the transpose, v € C¥, v € 7 (K) and c € C*(IN(; Z). The boundary operator
on C.(K;p) is defined by

I(vec)=v®ai(c)

for ve CN and ¢ € C.(K;Z). Let {ey,...,ex} be the standard basis of CV, and let
{c,...,ck} denote the set of k-cells of K. Then we call

ck:{ei®c’: | iE{1,...,N},s€{1,...,dk}}

the standard basis of Ci(K;p). Let H.(K;p) be the homology of the chain complex
C.(K; p) and let hy, be a basis of H,(K; p). Then the Reidemeister torsion of K twisted
by p with the basis {hy} is

Tor(K, {hx}; p) = Tor(C.(K; p), {c}, {hx}).

By [21], Tor(K,{hg};p) depends only on the conjugacy class of p. By for example
[23], the Reidemeister torsion is invariant under elementary expansions and elementary
collapses of CW-complexes; and by [19] it is invariant under subdivisions, hence defines
an invariant of PL-manifolds and of topological manifolds of dimension less than or equal
to 3.

A useful tool to compute the twisted Reidemeister torsion is the Mayer-Vietoris se-
quence. Suppose K is a finite CW-complex and Kj, Ko, ..., K, are its sub-complexes.
For {i,j} C {1,2,...,n}, let K;; = K; N K if it is non-empty. Assume

(1) KZKluKQU-"UKn, and
(2) K, NK;NKy =0 forall {4,5,k} C{1,...,n}.

For a representation p : m (K) — SL(N; C), let pi, and p;; respectively be the restriction
of p to m (Ky) and m (K ).

Lemma 2.1. The follow sequence of chain complexes

0= P  CulKiipiy) i>69(3»<(K1c;pk) = C.(K;p) =0 (2:2)
{i,j}C{l,‘..,n} k=1
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is exact, where € is the sum defined by

e(cy,...,Cp) :ch

and § is the alternating sum defined by

(de) =

Cjk =+ E Cgl-

I=k+1

||P1w

This short exact sequence can be found in for example [4, Proposition 15.2] for un-
twisted complexes, and the proof for the twisted case is similar. The short exact sequence
(2.2) induces the following long exact sequence H:

Om
c = Hpp1(Kip) =5 @ HulKijspi))

{i,j}c{1,...,n}

Om - €m

= D H (K pr) < Hin (K3 p) — .. (2.3)
k=1

and the twisted Reidemeister torsion of K can be computed by those of {Kj}, {K;;}
and H.

Theorem 2.2 (Mayer-Vietoris). ([21, Proposition 0.11]) Let h,, {hy .} and {h;;.} re-
spectively be bases of H. (K; p), Hi(Ky; pr) and H,(Kij; pij), and let h,, be the union of
h,, Ughg . and Ug jyhij « which is a basis of H. Then

:l: HZ:I Tor(Kk)hk?,*;pk)
H{i,j}c{l,...,n} Tor(Kij, hij; pij) - Tor(H, hy)

Tor(K, {h.};p) =

In [21, Proposition 0.11], Theorem 2.2 is proved for the union of two sub-complexes,
and the proof of the current form carries out in essentially the same way.

2.2. Adjoint twisted Reidemeister torsions

In this section we recall results of Porti [21] for the Reidemeister torsions of hyperbolic
3-manifolds twisted by the adjoint action Ad, = Ad o p of an irreducible PSL(2;C)-
representation p. Here Ad is the adjoint action of PSL(2; C) on its Lie algebra s[(2; C) &
C3.

For a closed orientable hyperbolic 3-manifold M with the holonomy representation p,
by the Weil local rigidity theorem and the Mostow rigidity theorem, Hy(M;Ad,) = 0
for all k. Then the adjoint twisted Reidemeister torsion
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Tor(M;Ad,) € C*/{£1}

is defined without making any additional choice.

Now suppose M is a compact, orientable 3-manifold with boundary consisting of n
disjoint tori 77 ..., T}, whose interior admits a complete hyperbolic structure with finite
volume. Let X(M) be the PSL(2; C)-character variety of M.

By [23,7,9], every irreducible component of X (M) has dimension greater than or equal
to n; and we denote by X"(M) = UXg(M) the union of the irreducible components
{Xi(M)} of X(M) that have dimension exact equal to n. If M is hyperbolic, then
X"™(M) is non-empty because it contains the distinguished component Xo(M) containing
the character of the holomony representation of the complete hyperbolic structure of M
[23,20]. The main reason that we consider the space X™(M) in this article instead of
Xo(M) is that: If M,, is a hyperbolic 3-manifold obtained by doing a Dehn-filling along
a system of simple closed curves g on M, then it is not clear whether the restriction of
the character of the holonomy representation of the hyperbolic structure on M, to M
always lies in Xo(M); but it always lies in X" (M) by a standard Mayer-Vietoris sequence
argument. This fact will be used in the proof of Theorem 1.6.

Below we recall two fundamental results (Theorem 2.3 and Theorem 2.8) of Porti [21].
Theorem 2.8 was originally proved for characters in Xo(M), but by essentially the same
argument can be generalized to characters in X"(X).

We denote by X'™'(M) the Zariski-open subset of X(M) consisting of the irreducible
characters.

Theorem 2.3. [21, Section 3.3.3] For a system of simple closed curves a = (a1, ..., qp)
on OM with a; C T;, i € {1,...,n}, and a character [p] in a Zariski open subset of
Xo(M)NXT(M), we have:

(i) For k # 1,2, Hi(M;Adp) = 0.

(i) Fori e {1,...,n}, up to scalar Ad,(m1(T;))" has a unique invariant vector I; € C3;
and

H, (M; Adp) = C”
with a basis
hip o = {L @], T, © o]}

where ([al]v ceey [an]) € H1<8M§ Z) = @?:1 Hl(Ti§ Z)
(iii) Let ([Th],. .., [Tn]) € @;_, Ha(Ti; Z) be the fundamental classes of Th, ..., T,. Then

Hy(M; Adp) = @) Ha(T3; Adp) = C"

=1
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with a basis
h?\/[ ={Li®Tl,... L [T}

Remark 2.4 (/21,20,14]). Important examples of the characters in Theorem 2.3 include
the character of the holonomy representation of the complete hyperbolic structure on
the interior of M, the restriction of the holonomy representation of the closed 3-manifold
M,, obtained from M by doing the hyperbolic Dehn-filling along the system of simple
closed curves g on M, and the holonomy representation of a hyperbolic structure on
the interior of M whose completion is a conical manifold with cone angles less than 27.

Definition 2.5. Let o = (aq,...,ap) be a system of simple closed curves on OM with
a; CT;, i €{l,...,n}. A character [p] in X"(M) N X" (M) is a-regular if condition
(ii) in Theorem 2.3 is satisfied.

Remark 2.6. We notice that Definition 2.5 does not only consider characters in the distin-
guished component Xo(M), but also considers characters in X" (M). By [21, Proposition
3.22], for characters in Xo(M), our definition of the a-regularity is equivalent to [21,
Définition 3.21].

It follows that for any system of simple closed curves o on dM, the a-regular char-
acters are smooth points of X(M); and the logarithmic holonomies of « form a local
parametrization of X(M) near each of the a-regular characters. Here for a PSL(2; C)-
character [p], the logarithmic holonomy of a; is defined up to sign as the logarithm of
the ratio of the eigenvalues of p([ay]).

Definition 2.7. The adjoint twisted Reidemeister torsion of M with respect to « is the
function

Tare) 2 X (M) N X7 (M) — C/{£1}
defined by
T(ar.a([p]) = Tor(M, {hiy o), hi}; Ady)
if p is a-regular, and by 0 if otherwise.

Theorem 2.8. [21, Theorem 4.1] Let M be a compact, orientable 3-manifold with bound-
ary consisting of n disjoint tori T ..., T, whose interior admits a complete hyperbolic
structure with finite volume. Let C(X™(M) NX“"(M)) be the ring of rational functions
over X"(M) N X" (M). Then

Hy(0M;Z) — C(X"(M)NX""(M))

« — T(M,a)
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up to sign defines a function which is a Z-multilinear homomorphism with respect to the
direct sum Hy(OM;Z) = @;_, H1(T}; Z) satisfying the following properties:

()

(i)

(iii)

For a system of simple closed curves o on OM, if the component Xy (M) contains
an a-regular character, then the support of T(arq) contains a Zariski-open subset
of Xp.(M) N X (M) consisting of all the a-regular characters in Xy (M).
(Change of Curves Formula). Let 8 = {f1,...,0n} and v = {71,...,va} be two
systems of simple closed curves on OM. Let (ug,,...,ug,) and (Uy,,... Uy, ) Te-
spectively be the logarithmic holonomies of the curves in B and «. Then we have
the equality of rational functions

8(Ug yeeesUB )
T =+4det | 22— 2T 2.4
(M5) ¢ (8(1‘% yeees Uy, ) () 24

on Xg(M) N X7T(M) for the component Xy (M) containing a ~y-regular charac-

O(ug; - ugy)

ter, where I is the Jocobian matriz of (ug,,...,ug,) with respect to
(Uyys o Uy, )

(Surgery Formula). For m with 0 < m < n, let p = (p1,...,m) be a system of
simple closed curves on OM such that p; C T;, and let v = (Vpy1,...,v5) be a

system of simple closed curves on OM such that v; C Tj. Let M,, be a hyperbolic
3-manifold obtained from M be doing the Dehn-filling along p. Then v can be
considered as a system of simple closed curves on OM,,. Let [p,] € X" ™™ (M) N
X*"(M,,) and let [p] € X™(M) N X7"(M) be the restriction of [p,] on M. Let
(Uyys- ooy Uy, ) be the logarithmic holonomies in p of the core curves yi,...,Vm of
the solid tori filled in. If p,, is v-regular, then p is p U v-regular, and

m

T(M”,u)([pu]) = iT(M,uUu)([p]) H

i=1

1

—_—. 2.5
4 sinh? % (25)

2.8. Gram matrix function and truncated hyperideal tetrahedra

Definition 2.9. Let Myy4(C) be the space of 4 x 4 matrices with complex entries. The
Gram matrix function

G : (C6 — M4X4(C)

is defined for z = (212, 213, 214, 223, 224, 234) bY

1 —coshz19 —coshzi3 —coshziy

G(2) — cosh z19 1 —cosh zo3 — cosh zo4
zZ) =

—cosh z13  — cosh zo3 1 — cosh z34

—coshzy4 —coshzoy —coshzsy 1
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T4

Hi

H2

€24

T3

Fig. 1. Gram matrix in the dihedral angles.

The values of G at different z recover the Gram matrices of a truncated hyperideal
tetrahedron in the dihedral angles and in the edge lengths. Recall from [1,11] that a
truncated hyperideal tetrahedron A in H? is a compact convex polyhedron that is dif-
feomorphic to a truncated tetrahedron in E?® with four hexagonal faces {Hy, Ho, Hs, Hy}
isometric to right-angled hyperbolic hexagons and four triangular faces {1, T, T3, T4}
isometric to hyperbolic triangles. We call the four triangular faces the triangles of trun-
cation, and call the intersection of two hexagonal faces an edge and the angle between
these two hexagonal faces the dihedral angle at this edge.

For {i,5} C {1,2,3,4}, as in Fig. 1, if we let e;; be the edge adjacent to the hexagonal
faces H; and H;, and let a;; and [;; respectively be the dihedral angle at and the length
of e;;, then the Gram matriz in the dihedral angles of A is the matrix

1 —COSQj2 —COS(13 — COS 14

e COS (v19 1 —COSQip3 — COS Qloy

* 7 | —cosays  — cosag 1 — COS (34
—COS(ij4 —COSQgy — COS 34 1

For k,1 € {1,2,3,4}, let G¥ be the ki-th cofactor of G4. Then by the hyperbolic Law
of Cosine, we have

ki
Ga

coshl;; = (2.6)

where {k,1} = {1,2,3,4}~{4, 5}

For {i,5} C {1,2,3,4}, as in Fig. 2, if we let e;; be the edge connecting the triangles
of truncation T; and T}, and let /;; and «;; respectively be the length of and the dihedral
angle at e;;, then the Gram matriz in the edge lengths of A is the matrix
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w

e
Ha

(e]
oy
b

€12 Tl

T2

H3

€24

T4

Fig. 2. Gram matrix in the edge lengths.

1 —coshlis —coshlis —coshliy

G = —coshlis 1 —coshlys  —coshloy

—coshlis  —coshlog 1 —coshlsy
—coshlyy —coshloy —coshlisy 1

For k,l € {1,2,3,4}, let G be the ki-th cofactor of G;. Then by the hyperbolic Law of

Cosine, we have

kl
G1l

(2.7)

COS (55 =

where {k,1} ={1,2,3,4}~{4,j}.
We observe that, if z = (iaa, i3, iy, iaes, iaey, iasy), then for A in Fig. 1,

G(z) = Ga;
and if z = (112, 113, l14,123, 124, 134), then for A in Flg 2,
G(Z) = Gl.

Remark 2.10. The way of assigning the edges {e;;} in the latter case is to consider A as
a deeply truncated tetrahedron [16] that T3, ..., Ty are the faces and Hy, ..., Hy are the
faces of truncation. In this way, e;; is the edge adjacent to or connecting the i-th and
the j-th faces. For a general deeply truncated tetrahedron A, when two faces intersect
we let z;; = +iay;; and when two faces are disjoint we let z;; = £l;;, then G(z) coincides
with the Gram matrix of the deeply truncated tetrahedron A. See [2, Section 2.1] for

more details.
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Fig. 3. The handlebody on the right is obtained from the truncated tetrahedron on the left by identifying
the triangles on the top and the bottom by a horizontal reflection and the triangles on the left and the right
by a vertical reflection.

2.4. Fundamental shadow link complements

In this section we recall the construction and basic properties of the fundamental
shadow link complements. The building blocks for a fundamental shadow link comple-
ment are truncated tetrahedra as on the left of Fig. 3. If we take d building blocks
Aq,...,A; and glue them together along the triangles of truncation, then we obtain a
(possibly non-orientable) handlebody of genus d + 1 with a link on its boundary con-
sisting of the edges of the building blocks, such as the right of Fig. 3. By taking the
orientable double (the orientable double covering with the boundary quotient out by
the deck involution) of this handlebody, we obtain a link Lpsy, inside #41(52? x S1).
We call a link obtained this way a fundamental shadow link, and its complement
M = #‘“‘1(52 x SY\LrsL a fundamental shadow link complement. The fundamen-
tal shadow link complements form a universal family of 3-manifolds in the following
sense.

Theorem 2.11 (/6]). Any compact orientable 3-manifold with empty or toroidal boundary
can be obtained from a fundamental shadow link complement by doing an integral Dehn-
filling along suitable boundary components.

A hyperbolic cone metric on #971(5% x S!) with singular locus Lpsr, and with cone
angles 2a, . . ., 2ay, can be constructed as follows. For each k € {1,...,d}, let eg,, ..., ex,
be the edges of the building block Ay, and let 2ax, be the cone angle of the component of
L containing eg,. Suppose {ag,, ..., akG} form the set of dihedral angles of a truncated
hyperideal tetrahedron, by abuse of notation still denoted by Ajy. Then the hyperbolic
metric on M whose completion has singular locus Lrg;, with cone angles 2aq, ..., 2q,
at the components is obtained by glueing the truncated hyperideal tetrahedra Ag’s
together along isometries between pairs of the triangles of truncation, then taking the
orientable double. In this metric, the logarithmic holonomy of the meridian of a tubular
neighborhood of the i-th component of Lpgy, equals 2ia;. We also notice that when all
the truncated hyperideal tetrahedra have edge lengths equal to zero, i.e., are the regular
ideal hyperbolic octahedra, we obtain the complete hyperbolic structure on M.
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For the purpose of computing the adjoint twisted Reidemeister torsion, we need the
following alternative construction of the fundamental shadow link complements. The
idea is that, instead of gluing the truncated tetrahedra together along the triangles
of truncation first and then taking the orientable double, we take the double of each
tetrahedron first along the hexagonal faces and then glue the resulting pieces together
along the pairs of the double of the triangles of truncation. To be precise, for each Ag,
ke {l,...,d}, we let Dy be the union of Ay with its mirror image via the identity map
between the four hexagonal faces and with the six edges removed. In the language of [5],
Dy, is a D-block. The boundary of each Dy, is a union of four 3-puncture spheres (coming
from the double of the four triangles of truncation) and six cylinders (coming from the
boundary of a tubular neighborhood of the edges). We glue these D-blocks together via
orientation reversing homeomorphisms between pairs of 3-puncture spheres part of the
boundary, which send a triangle of truncation in one 3-puncture sphere to a triangle of
truncation in the other 3-puncture sphere. The quotient space is a fundamental shadow
link complement, and this construction could be considered as a 3-dimensional analog
of the pair of pants decomposition of surfaces.

We call the double of a truncated hyperideal tetrahedra a hyperbolic D-block. Then a
hyperbolic cone metric on M can alternatively be constructed as by gluing the hyperbolic
D-blocks together via orientation reversing isometries between the hyperbolic 3-puncture
spheres (double of the hyperbolic triangles of truncation with the three cone singularities
removed) which preserve the hyperbolic triangles.

2.5. Double of hyperbolic polyhedral 3-manifolds

Dual to the construction of a fundamental shadow link complement is the construction
of the double of a hyperbolic polyhedral 3-manifold. As defined in [17,18], a hyperbolic
polyhedral 3-manifold N is obtained from d truncated hyperideal tetrahedra Aq,..., Ay
glued together via isometries between pairs of the hexagonal faces. The cone angle at
an edge is the sum of the dihedral angles of the truncated hyperideal tetrahedra around
the edge. If all the cone angles are equal to 2w, then N admits a hyperbolic metric
with totally geodesic boundary and a geometric triangulation given by Aq,..., Ay. It is
proved in [18, Theorem 1.2 (b)] that hyperbolic polyhedral 3-manifolds are rigid in the
sense that they are up to isometry determined and infinitesimally determined by their
cone angles.

To construct the double of N, we can also take the double of each tetrahedron first
along the triangles of truncation and then glue the resulting pieces together. To be
precise, for each truncated tetrahedron Ay, k € {1,...,d}, we let Dy be the union of
Ay, with its mirror image via the identity map between the four triangles of truncation
and with the double of the six edges removed. This is dual to the D-block in Section 2.4,
hence we call it a dual D-block. The boundary of each Dy is a union of four 3-hole
spheres (coming from the double of the four hexagonal faces) and six cylinders (coming
from the double of the boundary of a tubular neighborhood of the edges). We then glue
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these dual D-blocks together via orientation reversing homeomorphisms between pairs
of 3-hole spheres, and the quotient space M is the double of N with the double of the
edges removed. If we fill the double of edges back in, topologically we get the double M
of N.

Geometrically, if we let each truncated tetrahedron Ay be a truncated hyperideal
tetrahedron, then the four 3-hole spheres are hyperbolic 3-hole spheres with geodesic
boundary. If we require the gluing map between these hyperbolic 3-hole spheres to be
isometries, then the quotient space is the double M of the hyperbolic polyhedral 3-
manifold N, and M is obtained from M by removing all the double of the edges.

For i € {1,...,n}, let I; be the length of the edge e; of the hyperbolic polyhedral
manifold N. Since M comes from doubling, we can choose a preferred longitude on the
boundary of a tubular neighborhood of the double of e; (by isotoping e; into Ay and
then doubling) whose logarithmic holonomy equals 2I;.

3. Adjoint twisted Reidemeister torsion of the pairs of pants

Let P be a pair of pants with oriented boundary components 1, v and 3. Then
m1(P) is a free group of rank 2 generated by [y1] and [y2]. By [10,12], the SL(2;C)-
character variety of P is homeomorphic to C? parametrized by the traces of the image
of [11], [12] and [v3]; and a representation p : w1 (P) — SL(2; C) is irreducible if and only
if

fe(Tep(nl), Tea([a]), Tep([ys])) # 0,

where fp is the polynomial
fe(r,y,2) = a® + 4 + 2° —ayz — 4.

The logarithmic holonomies of (v1,72,73) in a representation p : m (P) — SL(2;C)
are up to sign the complex numbers (u1, us, u3) satisfying

(T, Trp(a]), Tap((ys])) = (= 2cosh 5, ~2cosh 2

5 , —2 cosh %)

In this way, if pg : 1 (P) — PSL(2;C) is the holonomy representation of the complete
hyperbolic structure on P and py : w1 (P) — SL(2; C) is the lifting of py with

(Trﬁ()(h/l])’ TrﬁO([’YQD? Trﬁ()(h@])) = (727 -2, 72))

then the logarithmic holonomies of (v1,72,v3) in pg are (0,0,0). The Gram matriz of p
is defined as

1 —cosh 5*  —cosh %
G = | —cosh % 1 — cosh 5

—cosh %2 —cosh % 1
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Then

Fe (Tep([ml), Trp([v2]), Trp([ys])) = —4det G,

and p is irreducible if and only if det G # 0.

Since 71 (P) is a free group, every PSL(2; C)-representation of it lifts to an SL(2;C)-
representation. Hence the SL(2; C)-character variety of P is a branched cover of the
PSL(2; C)-character variety of P, and the latter is an irreducible algebraic variety. For a
representation p : w1 (P) — PSL(2; C), we defined the logarithmic holonomies (u1, uz, u3)
and the Gram matrix G of p as those of a lifting p: 71 (P) — SL(2; C) of p. Notice that
the logarithmic holonomies depend on the choice of the liftings of p, and a different
lifting will change G by multiplying some rows and the corresponding columns by —1
at the same time, which does not change its determinant. Therefore, the determinant of
the Gram matriz det G is independent of the choice of the liftings, and is a well defined
quantity of p.

For a representation p : m1(P) — PSL(2;C), let Ad, = Adop: m(P) — SL(3;C)
be its adjoint representation. Since both Ad and Sym? are 3-dimensional irreducible
representations of SL(2;C), they are equivalent by the Classification Theorem of finite
dimensional irreducible representations of SL(2; C). In the rest of this paper, we will use
the representation Sym? o 5 to do all the computations where p is a lifting of p to a
representation into SL(2; C); and to simplify the notation still denote it by Ad,. Notice
that composing with Sym?, the signs + in front of the matrices will disappear and hence
Sym? o p is independent of the choice of the lifting p.

In addition, assume for each ¢ € {1,2,3} that p([y;]) # £I. Then up to sign we can
canonically choose an invariant vector I; of Ad,([v:])T as follows. Since p([y;]) is not
the identity element in PSL(2;C), there is up to scalar a unique invariant vector of
Ad,([vi])*. To determine the scalar we consider the following Killing bilinear form  on
the Lie algebra s[(2;C) = C? defined by

a
K as |,
as

which is up to scalar the unique Ad-invariant bilinear form on s[(2; C). Then in the case

by

bQ] ) = —2a1b3 + asby — 2a3bq, (3'1)
b3

that p([y;]) is not a parabolic element, we let I; be up to sign the unique Ad,([v;])?-
invariant vector satisfying x(I;,I;) = 1.

Definition 3.1. Let v = (71,72,73). An irreducible representation p : w1 (P) — PSL(2;C)
s y-regular if

hp ={I; ® [n1], 12 ® [12),Is ® [v3]}

is a basis of Hi(P; Ad,), where [;] is the homology class of v; in Hi(P;Z), i € {1,2,3}.
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Let X(P) be the PSL(2; C)-character variety of P. A character [p] € X(P) is y-regular
if p is a y-regular representation. Since m1(P) is a free group, an Euler characteristic
counting argument shows that if [p] is y-regular, then Hy(P;Ad,) = 0 for k # 1.

The main result of this section is the following

Proposition 3.2. Let p : m1(P) — PSL(2;C) be a vy-regular representation, and for i €
{1,2,3} let u; be up to sign the logarithmic holonomy of v; in p. Then

1

16 sinh %- sinh %2 sinh %2

Tor(P,hp;Ad,) = +

Remark 3.3. Proposition 3.2 could be proved from other results in the literature, which
is related to volume forms on the character variety, see [24,3,13]. We include a different
proof here for the readers’ convenience and as a warm up for the computations in the
next section.

To prove Proposition 3.2, we need the following lemma, where the explicit computation
of (1) and (2) will be used later.

Lemma 3.4. The set of y-regular characters contains a Zariski-open subset Z(P) of X(P)
consisting of the characters [p] satisfying the following two conditions:

(1)
det[Ila 127 13] 7é Oa

and

(2)

det Il — Adp([’}/g]_l)T . 117 12 - Adp([’yg,]_l)T . Ig, I3 — Adp([’}/g])T . Ig 7& 0.

Proof. Let us compute the determinants in conditions (1) and (2) first. We will do the
computations for the holonomy representation of a hyperbolic metric on P with cone
singularities around =1, 2 and 73 first. Then by analyticity the computation extends to
the other representations. We would like to mention here that these computations will
also hold the key to the proof of Proposition 3.2.

Let P be a hyperbolic 2-sphere with three cone singularities p;, ps and ps removed.
We let the cone angles at py, p2 and p3 respectively be 2a;, 2o and 2ag all of which are
less than 27, and let 71, v2 and 3 respectively be the simple loops around p;, pe and
ps. In this case we have u; = +2iq;.

Now p([vi])T is a rotation, hence has an eigenvector v; of eigenvalue €i* and an
eigenvector v; of eigenvalue e~ If
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(0,0,1) S
(031

S3

S1
(05) o3

Fig. 4. T in H3.
then an invariant vector of Ad,([y;])” has the form

ac
ad+be | . (3.2)
bd

Indeed, if we identify [a,b]” with the polynomial aX + bY and [c,d]T with ¢X + dY,
then the polynomial (aX + bY)(cX +dY) = acX? + (ad + bc) XY + bdY? is invariant
under (Sym? o 7([)))”

Now P is the double of a hyperbolic triangle T" with cone angles a1, as and ag. For
i =1,2,3, let e; be the edge of T opposite to p; and let s; be its lengths. To compute
its holonomy representation p, we isometrically embedded T into H? as follows. As in
Fig. 4, we place p; at (0,0, 1), the edge e in the zz-plane and T in the unit hemisphere
centered at (0,0,0) such that the y-coordinate of ps is negative. This could always be
done by replacing T' by its mirror image if necessary.

|

S cosh 3 sinh %
sinh & cosh % |

To simplify the notation, we for any z € C let

D, = [63 0
0 e

(VN

and for ¢ = 1,2, 3, let

Suppose for each i, v; goes counterclockwise around p;. Then by conjugating the
tangent framings at ps and p3 back to p; = (0,0,1) and conjugating the tangent vectors
of the axes of the rotations to %, we have
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p([n]) = £Daia, ,
p([2]) = iDiflll S3D2i0, S5 ' Digy = £82D"L ST Dain, S1D s S5 L,

a3

p([3]) = £52Dsia, S5 " = £D; . S3D; ! 77! Dosa, S1Ds0, S5 ' Dia,

Here we compute p([y2]) and p([y3]) in two ways for the purpose of computing different
things later. Since both D, and S; are symmetric matrices, we have

p([’yl])T = iD?iau
p([v2))" = £Dsa, 95 ' Data, SsDy,} = £55 ' D_ja, 51 Daia, S ' D74, o, (3.3)

7i0¢3

p([’yg])T = iS{lDQia:sSQ = j:DianglDiaz SlDQias S;lD;}QSgD;lll
Then
[Vi_v Vl_] =1,
[V, vy ] = Dia, S5 = S5 ' D_i0, 1, (3.4)

[V?TVV??] = Sgl = Di&ls{;IDiGQSl'

Using the first half of the second and third equations of (3.4), (3.2) and a direct compu-
tation, we have

0 —% l1 ginh g3 —% sinh s
L=|1|, IL= cosh s3 and I3 = cosh sg . (3.5)
0 —%e*io‘l sinh s3 —1sinh 9

Since k(I;,I;) = 1 for i € {1, 2,3}, they are the canonical invariant vectors. Therefore

det[Iy, I, I3] = —% sin o sinh s5 sinh s3. (3.6)

This computes the determinant in (1) for the holonomy representation of a hyperbolic
structure with cone singularities.

To compute the determinant in (2), we need the following auxiliary computations.
For real numbers x and y, we let

¥ — [cosh% sinh §

. and Y =
sinh §  cosh 3 ]

y i Y
cosh 5 sinh 3 ]
)

: 1 1
sinh § cosh §
and for a complex number z let D, be as before. We let

ac

L,=|ad+bc| if X 'DY=x+
bd

a c|.
b dl’
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and let
ac
z . —1 a c
I, = | ad+bc if D, XD,)Y=4=+ .
Y b d
bd
We notice that I3, and If,,, are independent of the signs =+ in front of the 2 x 2 matrices.

’ ’
Then using the hyperbolic trigonometric identities cosh z —cosh 2’ = 2sinh % sinh 5%
! ’
and sinh z —sinh 2z’ = 2 cosh % sinh 25* for any complex numbers z and 2" and a direct
computation, we have

’ ’
sinh 2£% cosh = 4 cosh 5%
. ! .
—2sinh 2£= sinh , (3.7)

’ ’
sinh % cosh z — cosh Z"’TZ

z—2z

IZ, — IZ, = sinhysinh

and

! ’
eV ( sinh Z';Z cosh z + cosh Z';z )
—2sinh 2£= sinh . (3.8)
’ ’
e_w(sinh Z'EZ cosh x — cosh Z'EZ )

S
rr. . —1I :Sinhysinhz :

wry wry

By the first half of the third equation of (3.3), we have
p([ys] ™))" = £595 ' D_s10,S>. (3.9)
By (3.9) and the first equation of (3.4), we have
Vi, vi]=1=55'DyS;
and
P[] ™) - vl vi] = 851 Dosiag 9.
Therefore, by (3.7)

I — Ad,([ys]™ )7 I, =10, — I 2os

5282 5282
—isin ag cosh sy + cos ag
= isinh so sin ag 2isin ag sinh s
—isin a3 cosh s — cos ag

By (3.9) and the second half of the second equation of (3.4), we have

[V;aVZ_] = S2_ID—ia351
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and
p(l] )T - [ve, va | = £55 ' D10, S1.
Therefore, by (3.7)

12 o Adp([’}/3]71)T . 12 _ I*iag, o 173ia3

8281 8281

—isin(2as) cosh sg + cos(2a3)
= isinh sy sin ag 2isin(2azs) sinh s9
—isin(2as) cosh sy — cos(2a3)

By the first half of the second equation of (3.3) and the second half of the third equation
of (3.4), we have

[vi,v3] = Dia, S5 ' Din, S
and
p([v2))T - [vi,v5] = £Dia, S5 ' Dsia, S1.

Therefore, by (3.8)

Is — Ady([2]) " Ts =152 o, — 16 s,
' (isin(2a2) cosh s3 + cos(2az))
= —isinh s; sin s —2isin(2as) sinh s3

e~ 11 (isin(2as) cosh s3 — cos(2a2))

We observe that the matrix

2i sin arg sinh so 2isin(2a3) sinh s —2isin(2az2) sinh s3

—isinascoshsy +cosas —isin(2as) cosh sy + cos(2a3) el (isin(2az) cosh s3 + cos(2a2))
—isinag coshsg —cosaz —isin(2a3) cosh sz — cos(2a3) e~ i1 (i sin(2az) cosh s3 — Cos(2a2))

0 2i O sinagsinh sy sin(2as3) sinh sz —sin(2az2) sinh s3

—-i 0 1 sinag cosh s2  sin(2as3) cosh sy — cos ay sin(2az) cosh s3 — sin aq cos(2a2)
—-i 0 -1 cos a3 cos(2as3) — sin a1 sin(2a2) cosh s3 + cos a1 cos(2a2)

Denoting the second matrix above by M, we have

det [Il —Ady([ya] ™7 Ty, To — Ady([ys] )" - T, T3 — Ady([r2])” - 13}
= — 4isinh? s1 sinh s sin ag sin? asg det M.

Computing the cofactors of M, we have M3 = — sin a;z sinh so, Ms3 = sin a3 cosh so and
M33 = 0. Then
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det M
= — sin ag sinh so( — cos oy sin(2az) cosh s3 — sin oy cos(2a))
— sin ag cosh s9 sin(2as) sinh s3

= — sinh s sin o sin ag,

where the last equality comes from the use of the hyperbolic Law of Sine that sinh s3 =

% to get a common factor sinh s, then the use of the hyperbolic Law of Cosine

that cosh sy = ‘WM and cosh sg = S8QutCOSM CO8 a3 4 change the quantity
1 sin ag sin a1 sin aip

into a function of the angles ay, as and «ag only, finally the use of the double angle

formulas to sin(2as), cos(2as) and sin(2a3) to get a function of {sin ay} and {cos oy}

only then followed by a simplification.

Therefore,

det [11 = Ady([s] ™" Tn, To = Ady (73] ™) - T, Ts — Ady([r2])” - Is] (3.10)

=4i sin oy sin ay sin® a3 sinh? S1 sinh? Sa.

This computes the determinant in (2) for the holonomy representation of a hyperbolic
structure.

For the other characters in X(P), we observe that for the holonomy representation p
of a hyperbolic structure with cone angles (21, 2, 2ai3), for any lifting p : m (P) —
SL(2; C) of p, we have

Trp([:]) = £2cos oy

for ¢ € {1,2,3}. Then by the trigonometry identity and the hyperbolic Law of Cosine,
we have

sinh s; = i\/( —det Ga (3.11)

1 —cos? a;)(1 — cos? ay,)

for {i,j,k} = {1,2,3}, where

1 —CcosSag —COSQy
Ga = | —cosas 1 — Cos a1
—CcosSagy —COSQ 1

is the Gram matrix in the angles of the hyperbolic triangle with angles (a1, s, as).
Therefore, the square of sinh s; is a rational functions in (Trp([v1]), Trp([v2]), Trp([y3]))-
Since X(P) is an irreducible algebraic variety, by the analyticity of the functions on the
right hand sides, (3.6) and (3.10) hold for the other characters [p] in X(P).

Since the square of the determinants in conditions (1) and (2) is rational functions
in the coordinates (Trp([y1]), Tro([y2]), Tro([ys])), the lifting of those characters form a
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v [Yagas]xe

Fig. 5. The 1-dimensional CW complexes.

Zariski-open subset of C3, and hence those characters themselves form a Zariski-open
subset of X(P).

Next we show that the representations satisfying (1) and (2) are ~-regular. We will
compute the homologies of P using its spine I', which is the 1-dimensional CW complex
on the left of Fig. 5 consisting of two 0-cells 1 and x; and three 1-cells aq, as and ag
all of which are oriented from z1 to xs.

Let {e1,es,e3} be the standard basis of C® and let the choice of representatives
T1,T2,a1,a2 and as in the universal covering of I" be as drawn on the right of Fig. 5.
Then Co(P;Ad,) = C°® with a natural basis {e; ® )} for i € {1,2,3} and k € {1,2};
C1(P;Ad,) = CY with a natural basis {e; ® ax} for i,k € {1,2,3}; and Ci(P;Ad,) =0
for kK #0 or 1.

We choose x1 to be the base point of the fundamental group; and for {j, ¥} C {1,2, 3},

let Yajart be the curve starting from x; traveling along a; to z2 then along —ay back to

1. In this way, we have [y, 1] =[], [74,071] = [72] and [y, 1] = [vs] L.

By condition (1), the vectors I} ® (a1 —as), Io ® (as —a3) and I3® (a; —a3) are linearly
independent in C;(P; Ad,). Next we show that they lie in the kernel of 0 : C;(P; Ad,) —
Co(P;Ad,). Indeed, for the image of Iy ® (a1 — as), we have

O ® (a1 — as)) =11 ® A(ay — a2)
— 11 ® (@1 = Dy 1]+ 72) = (21 = ] - 22))
=L@ (2] w2~ fral - 2
= (Ady(2])” T = Ady (3] ™) - 1) @

= (Adp([’Yz])TAdp([’Yl])T I = Ady([ya] T 11) ®x2 =0,

where the penultimate equality comes from Ad,([y1])? - Iy = I; and the last equation
comes from y; - y2 = 75 1 For the image of the other two vectors, we have



K.H. Wong, T. Yang / Advances in Mathematics 438 (2024) 109470 25

Iy ® (a2 —a3)) = I ® d(az — a3)
=L® ((3«”1 = Magazt] - 22) — (21 — 962))
=L® (172 — 2] 'l”2>

= (12— Ady (1) o) @ 7 = 0,
and
0I5 ® (a1 — as)) = I3 ® Aay — as)
=15 ® (@1~ [14,05] - 72) = (21 — 22))
=Ty @ (w2 [13] " -2

= (T3 — Ady(ls] )T T3) @2 = 0,

where the last equalities respectively come from Ad,([y2])? - I = I and Ad,([ys]~ )7 -
I3 = I5. Therefore, I} ® (a1 —a2), Iy ® (as — a3) and I3 ® (a; —a3) represent three linearly
independent elements I ® [y1], Io ® [72] and I3 ® [y3] in Hy(P; Ad,). Later we will prove
that they also span, and hence form a basis of Hy(P; Ad,).

Now we claim that {I} ® (a1 —az2),Is ® (ag —as3), I3 ® (a; — a3)} joint with six vectors
{Ii®as, I ®as, I3 ®asz, 11 ® a1, I, ® a1, I3 ® az} form a basis of C;(P; Ad,). Indeed, in
the natural basis {e; ® ai}, i,k € {1,2,3}, the 9 x 9 matrix consisting of these vectors
as the columns is obtained from the one consisting of {I; ® ax}, j, k € {1,2,3}, as the
columns by a sequence of elementary column operations of type I, III, and II with a
factor —1. The latter matrix is a block matrix with three 3 x 3 blocks [I, I, I5] on the
diagonal and 0's elsewhere, hence by condition (1) is non-singular and has determinant
det[Iy, I, I3]3. As a consequence, the former matrix is also non-singular and up to sign
has determinant det[Iy, I, I3]3.

In the next step, we will study the image of the six vectors {I) ®as, Io®a3, Is®a3, 11 ®
ai,Iy ® a1,I3 ® as} under the boundary map 0, and show that they span Co(P;Ad,).
We have for j =1,2,3,

0I;®a3)=1;®0a3 =1, @ (1 —22) =1; @1 — I; ® x;
for k=1,2,
Iy ®ar) =1, ®0a; =1} ® (x1 — [’Yalagl] cxo) =1, @z — (Adp([73]71)T ‘ Ik) ® x2;
and

6(13 & a2) =I3®0a =13 ® (331 — [%12(1;1] . 1‘2) =I3®x — (Adp([’}/g])T . Ig) & xa.
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Therefore, in the natural basis {e; ® zx}, i € {1,2,3}, k € {1,2}, the 6 x 6 matrix
consisting of {0(I1 ® a3), Iz ® as), (I3 ® a3), (11 ® a1),0(I2 ® a1),d(Is @ az)} as the
columns has four 3 x 3 blocks, where on the top it has two copies of [Iy,Is,1I3], on the
bottom left is has [—I;, —I5, —I3] and on the bottom right

[ = Ady (bl ™) T, =Ady(be] ™) Tz, ~Ady(Da])” - Ts].

This matrix is row equivalent to (by adding the top blocks to the bottom) the one with
two copies of [Iy,I5,I3] on the top, 0's on the bottom left and

[Il —Ady([ya] ™" Ty, Io — Ad,([ys] )" - T, T3 — Ad,y([r2])” - IS}
on the bottom right. The determinant of both of the 6 x 6 matrices is
det[Ty, T, Tg] - det [Ty — Ady(s] ™) - To, T = Ady([35] )T T, Ty — Ady([ra))” - Ts].

By conditions (1) and (2), the product above is nonzero and hence {9(I; ® a3), (12 ®
az),0(Is ® a3),0(I1 ® a1),0(I> ® a1),0(Is ® ag)} span Co(P;Ad,). This implies that
Ho(P;Ad,) = 0. Since there are no cells of dimension higher than or equal to 2,
Hy(P;Ad,) =0 for k > 2.

Finally, since {8(11 (X)Clg,)7 8(12 ®a3), 3(13 ® Clg), 8(11 X al), 8(12 ®a1), 8(13 ®CL2)} span
Co(P;Ad,) = CO, by dimension counting the kernel of 9 : C1(P; Ad,) — Co(P; Ad,) has
dimension at most 3. Hence I} ® (a1 —a2), Io® (a2 —a3) and I3 ® (a1 —ag3) span the kernel
of 9. This shows that the elements they represent hp = {Iy ® [11],I2 ® [2],I3 ® [73]}
form a basis of Hy(P; Ad,), and H; (P; Ad,) = C3. This completes the proof. 0O

Proof of Proposition 3.2. Since the adjoint twisted Reidemeister torsion is invariant un-
der subdivisions, elementary expansions and elementary collapses of CW-complexes by
[19,23], we can do the computation using the spine I' of P as on the left of Fig. 5.

The adjoint twisted Reidemeister torsion equals, up to sign, the determinant of the
9 x 9 matrix consisting of {I1 ® (a1 —a2),Ia® (a2 —a3),I3® (a1 —a3),I; ®as, [ ®asz, I3 ®
as, 1 ®ay,Is®a1,I3®as} as the columns divided by the determinant of the 6 x 6 matrix
consisting of {0(I1 ® a3), Iz ® a3), (I3 ® a3), (11 ® a1),0(I2 ® a1),d(Is @ az)} as the
columns.

By (3.6) and (3.10), for the holonomy representation of a hyperbolic structure we have

Tor(P,hp; Ad,)
det[Il, I, 13] . det[I1, I, 13} . det[Il, I, 13]

=+
det[Iy, I, T3] - det [11 — Ad,([y3]~1)T -1y, Io — Ad,([ys] )T - T2, I3 — Ad,([y2])7 .Is]

i

16 sin a1 sin a2 sin a3
1
16 sinh % sinh 42 sinh 4~
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where the second equality comes from the hyperbolic Law of Sine that Zig}ﬁ 38 = sinag
1 Sin ey

Finally, by Lemma 3.4 and the analyticity, the result holds for all -regular characters
in X(P). O

4. Adjoint twisted Reidemeister torsion of the D-blocks

Let A be a truncated tetrahedron with triangles of truncation Ty, To, T3, Ty and
hexagonal faces Hy, Hy, Hs, Hy such that T} is opposite to Hj. Recall that an edge
is the intersection of two hexagonal faces; and we call the intersection of a triangle of
truncation and a hexagonal face a short edge. Let D be the union of A with its mirror
image via the identity map between the four hexagonal faces Hy,..., Hs and with the
six edges removed. This is a D-block as defined in [5] and recalled in Section 2.4. For
{j, k} C {1,2,3,4} we let e, be the edge adjacent to H; and Hy. For {j,k} C {1,2,3,4},
let 7,5 be a simple loop around ejy.

The fundamental group (D) is a free group of rank 3 generated by [vy12], [y13] and
[114]- By [12], the SL(2; C)-character variety of D is homeomorphic to a hypersurface in
C” parametrized by the traces of the image of [y12], [y13], [V14], [Y12 - 713), [712 - Y145
[v13 - v14] and [y12 - Y13 - Y14], which is a double branched cover of C® parametrized by the
first six components. A representation p : w1 (D) — SL(2;C) is not in the branch locus
if and only if

fo(Trp([yz]), Trp([vis]), Tra([ya)), Tep([vaz - ms]), Teo([yaz - v14)), Trp([vis - 4l)) # 0,

where fp is the polynomial
2
Sp(t1, b2, ts, tia, trs, tag) = (tiats + tisty + tasty — titats)
— At + 13+ 15 + 5y + t]s + 135 — tatatin — titstis — totstos + tiotigtas — 4).

The logarithmic holonomies of (12, V13,714, V23, Y24, Y34) I p are up to sign the com-
plex numbers (ujg, u13, U14, Ug, Usg, Usg) satisfying

(Trp([y12]), Tep([y1s)), Tep([y1a]), Tep([v2s]), Tep([v2a]), Tep([v3a]))
U12 Uu13 U14 U23 U24 U34
= —2cosh —=, —2cosh —2, —2cosh —, —2 cosh —=, —2 cosh —, —2 h—).
( cos 5 cos 5 cos 5 cos 5 cos 5 cos >
In this way, if D is with the hyperbolic structure obtained by doubling the regular ideal

octahedron, pg : m (D) — PSL(2;C) is the holonomy representation of this hyperbolic
structure on D and pg : 71 (D) — SL(2; C) is the lifting of py with

(Trpo([y12]), Trpo([v13]), Trpo([v14]), Trpo([vas)), Tepo([v24]), Trpo([v34]))
=(-2,-2,-2,-2,-2,-2),

then the logarithmic holonomies of (y12,...,734) in py are (0,...,0). We notice that the
complete hyperbolic structure on a fundamental shadow link complement is obtained by
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gluing such D-blocks together by isometries along the faces. Therefore, this hyperbolic
structure can be considered as “the complete hyperbolic structure” on D.
The Gram matriz of a representation p: w1 (D) — SL(2; C) is the value of the Gram
us4

matrix function G defined in Definition 2.9 at (%, ceey %), ie.,
G=0G (U12 U1z U4 U23 U4 U34)
27272727272
1 —cosh #32 —cosh %3* — cosh “*
— cosh “J2 1 —cosh “22  — cosh “3*
—cosh “32  — cosh “3* 1 — cosh #54
—cosh %3*  —cosh “3*  —cosh “3* 1

By the trace identity of the matrices in SL(2; C), for {j,k} C {2,3,4},

Tep([yi]) = Tep(va; - )] = Tepl ) Tep(nnl) = Tea(lya - vil)-

Then by a direct computation, we have

Ip (Tep([mz2)), Tra([ys]), Tea([yaal), Tep([yz - ms]), Tep([viz - y1al), Tep([yas - 714]))
= 16det G,

and p is not in the branch locus of the double branched cover of the SL(2; C)-character
variety of D over C® if and only if det G # 0.

Since 71(D) is a free group, every PSL(2;C)-representation of it lifts to SL(2;C)-
representation Hence the SL(2;C)-character variety of D is a branched cover of the
PSL(2; C)-character variety of D, and the latter is an irreducible algebraic variety.
For a representation p : m (D) — PSL(2;C), we defined the logarithmic holonomies
(u12,...,ug4) and the Gram matrix G of p as those of a lifting p : w1 (D) — SL(2;C)
of p. Notice that the logarithmic holonomies depend on the choice of the liftings of p,
and a different lifting will change G by multiplying some rows and the corresponding
columns by —1 at the same time, which does not change its determinant. Therefore, the
determinant of the Gram matriz det G is independent of the choice of the liftings, and
is a well defined quantity of p.

Let p : m(D) — PSL(2;C) be a representation, and let Ad, : 7 (D) — SL(3;C)
be its adjoint representation. In addition, we assume for each {j,k} C {1,2,3,4} that
p([vjk]) # £1I. Then in the case that p([y,x]) is not a parabolic element, we let I;; be up
to sign the unique invariant vector of Ad,([v;x])T with s(Ljx,Ljx) = 1, where  is the
Killing bilinear form on s((2; C) defined in (3.1).

Definition 4.1. Let v = (V12,713, V14,723, V24, 734)- An irreducible representation p :
m1(D) — PSL(2; C) is ~-regular if

hp = {Ijk ® hjk]} ‘ {J?k} - {17273’4}}
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is a basis of Hi(D;Ad,), where [7y;i] is the homology class of ;i in Hi(D;Z).

Let X(D) be the PSL(2; C)-character variety of D. A character [p] € X(D) is «v-regular
if p is a y-regular representation. Since 71(D) is a free group, an Euler characteristic
counting argument shows that if [p] is v-regular, then Hy(D;Ad,) = 0 for k # 1.

The main result of this section is the following Proposition 4.2.

Proposition 4.2. Let p : m (D) — PSL(2;C) be a ~y-regular representation, and for
{j,k} € {1,2,3,4} let ujr be up to sign the logarithmic holonomy of v;i in p. Then

Tor(D,hp;Ad,) =+

32sinh “32 sinh “12 sinh “4 sinh #22 sinh %24 sinh 43¢
To prove Proposition 4.2, we need the following Lemma.

Lemma 4.3. The set of y-regular characters contains a Zariski-open subset Z(D) of X(D)
consisting of the characters [p] satisfying the following two conditions:

(1)

det[Iy2,I13,I14] #0
det[Iy2,Is3, Iay] # 0,
det[I13,I23,134] # 0
det[I14, Ioq, Ig4] # 0

and

@)
det [112 — Ad,([ys])" - Tz, Tia — Adp([mis])” - Tua, Toa — Ad,([yas))” - 124} # 0.

Proof. Let us compute the determinants in conditions (1) and (2) first. Similar to the
proof of Lemma 3.4 we will do the computations for the holonomy representation of a
hyperbolic metric on D with cone singularities around the edges ej;’s first. Then by
analyticity the computation extends to the other representations.

Now let A be a truncated hyperideal tetrahedron and let D be the union of A with its
mirror image via the identity map between the four hexagonal faces Hy, ..., H4 and with
the six edges eja,...,e3s removed. This is a hyperbolic D-block defined in Section 2.5.
For {j,k} C {1,2,3,4} we let [;;, and a;j respectively be the length of and the dihedral
angle at the edge ej,. We let s, be the length of the short edge adjacent to 7} and Hy,
and notice that sj; and sy; are the lengths of different short edges.

Let p : m (D) — PSL(2;C) be the holonomy representation of D and let Ad, :
m1 (D) — SL(3;C) be its adjoint representation. For {j,k} C {1,2,3,4}, let v, be a
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112

0,0,1)

Fig. 6. A in H?3.

simple loop around ej. Since p(v,x) is an elliptic element in PSL(2; C) which is not the
identity matrix, Ad,([v;x])” has up to sign the canonical invariant vector L.

To compute the holonomy representation p of D, we isometrically embedded A into
H? as follows. As in Fig. 6, we place the intersection point of Hy, Hy and Ty at (0,0, 1),
the edge e15 along the z-axis such that the intersection point of Hy, Hy and T3 is above
(0,0, 1), the hexagonal face H; in the zz-plane and T} in the unit hemisphere centered
at (0,0,0) such that the y-coordinate of all the interior points of A are negative. This
could always be done by using the mirror image of A if necessary.

For any complex number z let

and for {j,k} C {1,2,3,4} let

ik = [C?Sh :]7: sinh 217’; 1
sinh =3*  cosh =5~
Suppose Y12, Y14, Y23 and 724 go counterclockwise and ;3 goes clockwise around the
corresponding edges observed from the perspective above T3. By conjugating the tangent
framings back to p; = (0,0,1) and conjugating the tangent vectors of the axes of the
rotations to %, we have
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= 4541 D_910,5 511",

(Im2])

(Ims])

o([v14]) = iDlmSnguMSSllD_ = +5,1D;,,557" D_9i0,, 521 D; LS,
([723])

([v24])

l13

1
= :l: S42D21a23s42 Dla127

10(12

= S42Dl23512 D_ 210424512D 542 iago-

1o¢12

Here we write p([y14]) in two ways for the purpose of computing different things later.
Since both D, and S5 are symmetric matrices, we have

([712])

(Ins)" = £595' D_s1a,,5u1,
p([y1a))" = £D; 1S5 Daia,, S31 D1y, = £S5 Dy 521D 50, 591" Diyy San, (4.1)
([723))" = £Diay, Sin Daievs Saoa Dyt
([v24)" = £Dsa, S5 D) S12D 90, S15' Diy, Sa2 Dy

icgo”

icy?

Since p([v;x])T is a rotation of angle 2y, i‘t has an eigenvector v;-'k with eigenvalue el®i
and an eigenvector v with eigenvalue e™**s*. By (4.1) we have

[VT%V_Q] =1,

vz visl = Si', (4.2)
Vi vial = Dy, 531 = 541 I o1,

[V;m 2a) = D1a125421D 1512’

and by (3.2), the first half of the third equation of (4.2) and a direct computation we
have

0 —% sinh s41 —%e’ll? sinh s37
112 = 1 s 113 = cosh S41 and 114 = cosh S31 . (43)
—% sinh s47 —%ell? sinh s37

Since k(I12,I12) = k(I13,I13) = k(T14,114) = 1, they are the canonical invariant vectors.
Therefore,

1
det [112, 1137 114] = — 5 sinh 112 sinh S31 sinh S41- (44)

Here we notice that by the hyperbolic Law of Sine for H;, the quantity
sinh /15 sinh s37 sinh s41 remains the same if we choose any edge and two adjacent short
edges of Hq, hence is an intrinsic quantity of H;.

For any i # 1, applying an orientation preserving isometry ¢; of H? we can place H;
in H? in the same way as Hi; and the invariant vector I,;, i # j, will be changed by
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Ady,, which is a matrix in SL(3; C). Therefore, following the same computation as we
did for (4.4), we have

1
det [112, 123, 124] = 5 sinh 112 sinh S32 sinh 542,
1
det[Ilg, 123, 134] = — 5 sinh 113 sinh S23 sinh S43, (45)
1
det [114, 124, 134] = 5 sinh 114 sinh S24 sinh S34.

This computes the determinants in (1) for the holonomy representation of a hyperbolic
D-block.

To compute the determinant in (2), by the second equation of (4.1) and the first
equation of (4.2), we have

Vi vio) =1 =55 DoSu
and
p([ys)” - vz vial = 55" D sia,, Sar.

Therefore, by (3.7) and the notation therein,

T . __ 70 —2iai3
Li> - Adﬂ(hl?)]) Iip = IS41S41 - Is41$41
—isin a3 cosh s41 + cos a3
= isinh s47 sin a3 2isin 13 sinh sy

—isin 13 cosh s41 — cos a3

By the second equation of (4.1) again and the second half of the third equation of (4.2),
we have

[VT47V1_4] = S4_11D—l13‘921
and
p([713])T . [VT47V1_4] = iSAl_llD—hs—Qi(naSQl'
Therefore, by (3.7)

Ly — Ady([yas])” - Tua

— 1 hs  _1-lis—2ians
541821 S41821

—sinh(l13 4 ia3) cosh s41 + cosh(ly3 + ia3)
= isinh s97 sin a3 2 Sinh(llg + ialg) sinh s41
— Sinh(llg + i0413) cosh s41 — COSh(llg + iOqg)
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Finally, by the fourth equation of (4.1) and (4.2), we have
[v31:Vaa] = Dias 54_21D—123512
and
p([23])" - V31, Vau]l = £Dia1, S5 D—t55 421005 S12-
Therefore, by (3.8)

Iy — Ad,([y23])" - Iog

—la3 —l23+2iaa3

(iov12)542512 (ia12)s42812

6ia12( — Sinh(lg3 — iOé23) cosh s49 + COSh(ZQg — iOZQg))
= —isinh 512 sin Q23 2 Sinh(lgg — i0523) sinh S49
eiiam( — Sinh(l23 — i()égg) cosh s49 — COSh(l23 — iagg))

Putting all together, we have

det [112 — Ady([ys])” - T2, Tia — Adp([yis])” - Tuas Toa — Ady([y23]) " - 124}

-1 0 1
=isin? a3 sin o3 sinh s19 sinh soq sinh sy -det | 0 2 0 | - det M,
-1 0 -1

where M is the following matrix

isin a1 sinh sq41  sinh(l13 4 ia13) sinh s sinh(l23 — ica3) sinh s49

isinaig coshsqy  sinh(liz + ici3) coshsq1 cosaiz sinh(lasz — iags) cosh s42 — isin a2 cosh(lag — iaas)
Ccos 13 cosh(l13 + iai3) —isin a2 sinh(lag — iaeg) cosh s42 + cos a2 cosh(lag — i)

Computing the cofactors of Musing the hyperbolic angle sum formula, we have Mys =
—sinh l13 sinh 541, Ms3 = sinh l13 cosh s41 and M3z = 0. Then
det M = — sinh 113 sinh S41 (COS 12 Sinh(lggg — i0423) cosh S42 — isin 12 COSh(l23 — ia23)>

+ sinh I3 cosh s4; sinh(l23 — ica3) sinh s49

sin a1 sinh [13 sinh o3 sinh s49

sin a3 ’

where the last equality comes from the use of the hyperbolic Law of Sine that sinh s4; =

sinh s42 sin aiog
sin 13

Ty to write cosh s41 and cosh s45 into trig-functions of the angles a2, a3 and ags and

to get a common factor sinh s41, the use of the hyperbolic Law of Cosine in

the use of the angle sum formula to expand sinh(laog — ica3) and cosh(lyz — iang) into
trig- and hyperbolic trig-functions of ass and lo3. Then after a final simplification, the
imaginary part vanishes and the real part becomes the quantity above.
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Therefore,

det [112 — Ady([ys])” - iz, Tig — Adp([r13])” - Tia, Toa — Ady([res])” - 124]

=4isin a9 sin a3 sin gz (sinh [13 sinh $91 sinh s47)(sinh o5 sinh s49 sinh $15).

(4.6)

This computes the determinant in (2) for the holonomy representation of a hyperbolic
D-block.

For the other characters in X(D), we observe that for the holonomy representation p
of a hyperbolic D-block with cone angles (219, ..., 2a34), for any lifting p : 7 (D) —
SL(2; C) of p, we have

Trp([vjk]) = £2 cos aj
for {j,k} C {1,2,3,4}. Notice that l;;, sy; and s;; are the lengths of an edge and the two

adjacent short edges around the face H;, and all the determines in conditions (1) and
(2) have factors products of the form sinh l;; sinh sj; sinh s;;. We claim that

—det G4
(1 — cos? aj;)(1 — cos? ayg ) (1 — cos? ayyp)

sinh /;; sinh sy; sinh s;; = :I:\/ (4.7)

for {i,4,k,1} C {1,2,3,4}, where G, is the Gram matrix in the dihedral angles of the
truncated hyperideal tetrahedron A recalled in Section 2.3. As a consequence, the square
of cosh;; sinh sy, sinh s;; is a rational function in (Trp([v12]), ..., Trp([v34])). Indeed, to
see (4.7), using the hyperbolic Law of Cosine to the face H;, we have

cosh s;; + cosh sy; cosh sy;

2
sinh® I, sinh? sy sinh? s;; = <( ) - 1) sinh? sy; sinh? s;

sinh s; sinh s;;
=2 cosh s,; cosh sy; cosh 535 + cosh? 55

+ cosh? sy; + cosh? s;; — 1;

and using the hyperbolic Law of Cosine to the triangles of truncation T3, T} and 13, we
have

COS QU] + COS Qi1 COS Qyj;

cosh s;; = - - ,
SN vk SIN Qg
COS (5] + COS (v;5 COS ()
cosh s; = - - ,
Sin a5 SIn Qg
and
COS (k1 COS (v COS (i,
cosh s;; = .

sin o sin g
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' '
[Yala3'1]‘xz' a a ' X2
- - >'- - -
[ X1 '

a4

S A

[‘Ya4a_§1 1.x '

Fig. 7. The 1-dimensional CW complex.

Plugging these into the previous identity, we have (4.7). Since X(D) is an irreducible
algebraic variety, by analyticity, (4.4), (4.5) and (4.6) hold for the other characters [p] in
X(D).

Since the square of the determinants in conditions (1) and (2) is rational functions in
the coordinates (Trp([y12]), - - ., Trp([vs4])), the lifting of those characters form a Zariski-
open subset of the SL(2; C) character variety of D, and hence those characters themselves
form a Zariski-open subset of X(D).

Next we show that the representations satisfying (1) and (2) are ~-regular. We will
compute the homologies of D using its spine I', which is the 1-dimensional CW complex
consisting of two 0-cells 21 and x5 (one dual to each copy of A) and four 1-cells ay, as,
a3 and a4 (one dual to each hexagonal face H;) all of which are oriented from x; to xs.

Let {e1,es,e3} be the standard basis of C? and let the choice of representatives
T1,T2,01,a2,a3 and a4 in the universal covering of I' as drawn in Fig. 7. Then
Co(D;Ad,) = C°® with a natural basis {e; ® z3} for i € {1,2,3} and k € {1,2};
C1(D;Ad,) = C!'? with a natural basis {e; ® ai} for i € {1,2,3} and k € {1,2,3,4};
and Cp(D;Ad,) =0 for k #0 or 1.

We choose 1 to be the base point of the fundamental group; and for {j, k} C {1,2, 3},
let Yajat be the curve starting from x; traveling along a; to x5 then along —ay back to
z1. In this way, we have [y, a;l] = [yjx]*!. Checking the orientation carefully we have
Varaz] = 2], Dayaz1] = (sl and [, ,1] = [m3]-

By condition (1), we see that the vectors {I;; ® (a; —ax)}, {j, k} C {1,2,3,4}, are lin-
early independent in C;(D; Ad,). To show that they lie in the kernel of 0 : C1(D; Ad,) —
Co(D;Ad,), we have
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Ik ® (aj — ax)) = Lk ® O(a; — a)
=Lt ® (01 = Mayy2] - @2) = (@1 = D] - 22))
=L ® ([’yakagl] 22 = [Va051] - xz)
= (Adp(Papas DT T = Ady ([ o))" - L) © 22

- (Adp(mka;l])TAdp(mja;l})T Lk = Adp([r,050])" - Ijk) ® 22

= O7
where the penultimate equality comes from Adp([’yajagl])T L = Adpy([v])™H)T -
Iz, = Ij; and the last equation comes from Yajar * Vapaz' = Vajaz' Therefore,

{Lix ® (a; —ax)}, {4, k} C {1,2,3,4}, represent six linearly independent elements
{Lix ® [vj&]} in Hi(D; Ad,). Later we will prove that they also span, and hence form a
basis of Hi(D;Ad,).

Now we claim that these six vectors {I;2 ® (a1 — a2),I13 ® (a1 — a3), 114 ® (a1 —
aq),Iag ® (a2 — a3z),I24 ® (a2 — a4),I34 ® (a3 — aq)} joint with the other six vectors
{Iis ® a3,I23 ® a3,I34 ® a3, T2 ® a1,T1a @ a1,T24 ® az} form a basis of Ci(D;Ad,).
Indeed, in the natural basis {e; ® a,} for i € {1,2,3} and k € {1,2,3,4}, the 12 x 12
matrix consisting of these vectors as the columns is obtained from the one consisting of
{Iir®ar}, k € {1,2,3,4} and j # k, as the columns by a sequence of elementary column
operations of type I, ITI, and II with a factor —1. The latter matrix is a block matrix
with four 3 x 3 blocks [I12, 113, I14], [T12, 123, Ia4], [I13, Iog, I4] and [I14,I24,I54] on the
diagonal and 0’s elsewhere, hence has determinant

det[I12, 113, I14] - det[Ty2, Iog, Ing] - det[I;3, Toz, I34] - det[T14, Ing, I34]
and by condition (1) is non-singular. As a consequence, the former matrix is also non-
singular and up to sign has the same determinant.
Next we will study the image of the six vectors {I13 ® a3, I3 ® a3, Iss ® as,I12 ®

ai,114 ®ai,I4 ® as} under the boundary map 0, and show that they span Co(D;Ad,).
We have for j =1,2,4,

8(Ij3 ® (l3) = Ij3 ® Bag = Ij3 ® (xl — {EQ) = Ij3 X r1 — Ijg X 9,
for k =2,4,

Oy ®ar) =Ly ®dar = Iip @ (21— [7,,41] - #2) = Lip @21 — (Adp([’}’ls])T ' Ilk) ® xa;

and

8(124 ®az) =y ®0ag = Iy @ (1 — [’yaw;l} cx9) =Ioy @1 — (Adp([fy%DT . 124) ® xo.
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Therefore, in the natural basis {e; ® zx}, i € {1,2,3}, k € {1,2}, the 6 x 6 matrix
consisting of {J(Iiz ® a3), 0(I2s ® as),0(I34 @ az),0(T12 ® a1),0(I14a ® a1),0(I24 ® a2)}
as the columns has four 3 x 3 blocks, where on the top left it has [I;3, Is3,I54] and on
the bottom left it has [—Iy3, —Ia3, —Is4]; on the top right it has [I12,I14,I24] and on the
bottom right it has

[—Adp([%s])T'Imv —Ad,([113])" - Tua, —Adp([y23])" - Toa|.

This matrix is row equivalent to (by adding the top blocks to the bottom) the one with
[I13, I3, I34] on the top left, 0’s on the bottom left and

[z~ Ady(Ps)™ - Tz, Tus = Ady(a])” - Tu Toa = Ady(s))” - L

on the bottom right. Hence the determinant of both of the 6 x 6 matrices are equal to

det (I3, I23, I34]-det [112 —Ady([ys])” Tha, Tia—Ady([y13])" - Tia, Toa — Ady([r2s]) " '124} .

By conditions (1) and (2), the product above is nonzero, and hence {9(I13®as3), I(I23®
az),0(Iss ® az),0(Ii2 ® a1),0(I14 ® a1),0(I24 ® az)} span Co(D;Ad,). This implies
that Ho(D;Ad,) = 0. Since there are no cells of dimension higher than or equal to
2, Hy(D;Ad,) =0 for k > 2.

Now since {9(I13®a3), 0(Ias®as), 0(Is4®asz), 0(I12®@a1), 0(I14®a1), 0(I24®az)} span
Co(D;Ad,) = C®, by dimension counting the kernel of 9 : Cy(D;Ad,) — Co(D;Ad,)
has dimension at most 6. Hence {I;2® (a1 —a2),I13® (a1 —a3), 114 ® (a1 —ay4), I3 ® (ag —
as),Izq ® (a2 — a4),134 ® (a3 — aq)} span the kernel of 9. This shows that the elements
they represent hp = {L;r ® [v;x]}, {J, k} C {1,2,3,4}, form a basis of H;(D;Ad,), and
H;(D; Ad,) = CS. This completes the proof. O

Proof of Proposition 4.2. Since the adjoint twisted Reidemeister torsion is invariant un-
der subdivisions, elementary expansions and elementary collapses of CW-complexes by
[19,23], we can do the computation using the spine T of D.

The adjoint twisted Reidemeistor torsion equals, up to sign, the determinant of the
12 x 12 matrix consisting of {I;2 ® (a1 — a2),I13 ® (a1 — a3),I14 ® (a1 — a4),I23 @ (a2 —
a3),Ios @ (a2 — a4),I34 ® (a3 — as), iz ®as, I3 ® a3, I3a ® a3, Iis @ a1, Tis @ a1, Ios ® as}
as the columns divided by the determinant of the 6 x 6 matrix consisting of {9(I3 ®

as),0(Ia3 ® a3), 0(Is4 ® a3), 0(I12 ® a1), 0(T14 ® a1),9(I24 ® az2)} as the columns.
By (4.4), (4.5) and (4.6), we have for the holonomy representation of a hyperbolic
D-block,
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Tor(D,hp; Ad,)
det[I12,113,I14] - det[I12, I3, In4] - det[I13, I23, I34] - det[I14, o4, I34)
det[I13, I23,I34] - det [112 — Ad,([v13]))T - T2, Tia — Ad,p([v13])T - T1a, Toa — Ad,p([y23])T - 124]

=+

isinh l14 sinh s94 sinh s34

32sin a12 sin a13 sin a23

det Go
32sin a12 sin 13 sin a14 sin «23 sin Q24 sin Q34
U2 Uiz U4 U233 U4 U3q
\/detG<2,2,2,2,2,2)

. P . P . . Py . P . P k)
32sinh “2# sinh % sinh % sinh % sinh “244 sinh “244

where the last equality comes from (4.7).
Finally, by Lemma 4.3 and the analyticity of the involved functions, the result holds
for all y-regular characters in X(D). O

5. Reidemeister torsion of the Mayer-Vietoris sequence

Let M be the complement of a fundamental shadow link with n components, and
let p : m (M) — PSL(2;C) be an irreducible representation. We insert a thickened
pair of pants if necessary so that no D-block self-intersects. Suppose there are in total
¢ thickened pairs of pants inserted, and the 3-dimensional objects (D-blocks and the
thickened pairs of pants) intersect at p pairs of pants, then we have p = ¢ + 2d. Order
the ¢ thickened pair of pants together with the d D-blocks by Dj, ..., D14, and order
the p pairs of pants by Pi, ..., P,. Then by Lemma 2.1 there is the following short exact
sequence of chain complexes

c+d
0— @c (Pj; Ad,) @C*(Dk;Adp) 5 C.(M;Ad,) —
k=1
with € defined by the sum
c+d
€(C1,. .. Copa) = D Ch (5.1)
k=1

and 0 defined by the alternating sum
—ZC]‘ +ZC1, (52)
j l

where j runs over the indices such that P; = Dy N Dy, for some k' < k and [ runs over
the indices such that P, = Dy, N Dy for some k < k”.

For each i € {1,...,n}, let T; = ON(L;) be the boundary of a tubular neighborhood
of the i-th component of Lggr,, m; be the meridian of N(L;) and m = (mq,...,my,).
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Suppose p is an m-regular representation whose restriction to each pair of pants P; is
~-regular as defined in Definition 3.1, and to each D-block Dy is «-regular as defined
in Definition 4.1, then the induced Mayer-Vietoris exact sequence H has four nonzero

terms, i.e.,
p c+d
0 — Ha(M;Ad,) @ H, (Pj; Ad,) @ H(Dy; Ad,) S Hy(M;Ad,) — 0. (5.3)
Jj=1 k=1

Let I; be up to sign the unique invariant vector of Ad,([m;])” with x(I;,I;) = 1. Then
by a diagram chasing, H;(M; Ad,) has a basis h%M,m) ={IL; ® [mi],...,1, ® [my]} and
H; (M; Ad,) has a basis h%, = {I; ® [T1],.... I, ® [T,,]}.

Proposition 5.1. Let hp, be the basis of Hi(Pj; Ad,) in Definition 3.1 and let hp, be the
basis of Hy(Dy; Adp) in Definition /.1. Let h,, be the union of h%M’m), h?w, Ujhp, and
Ughp,. Then

Tor(H, h,,) = £1. (5.4)

Proof. By [21, Proposition 3.22, Corollary 3.23], Lemma 3.4 and Lemma 4.3 and the fact
that a thickened pair of pants is simple homotopic to a pair of pants, with the chosen

bases h! h?vj, Ujhp, and Ughp, , we have

(M,m)»
H,(M; Ad,) = C",

p
D Hi(P;; Ady) = C¥,
j=1
ct+d
@D Hi(Di; Ad,) 2 €+
k=1

and
H,(M;Ad,) = C".

In the rest of the proof, we will fix these isomorphisms and identify the linear maps
0, 0 and e with the left multiplications of the corresponding matrices. In particular, 9
corresponds to a 3p X n matrix, d corresponds to a (3¢ + 6d) x 3p square matrix and e
corresponds to an n X (3¢ + 6d) matrix.

For C3 = Hy(M; Ad,), we choose the lifting base b, to be h%,. Then

[bo; 3] = 1. (5-5)

For Cy = ?:1 H,(Pj; Ad,), we first order the vectors in by = hZ, by {ui,...,u,}.
Then by = {0(u1),...,0(u,)}. We also order the vectors in Ushp, by {vi,...,vsp},
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and choose the lifting basis by as follows. Since the sequence (5.3) is exact, ¢ has rank
3c+ 6d —n = 3p — n. Suppose a basis of the column space of § consists of the columns
{Wjs s Wia6a_, } Of 6, then we let by = {Vjiss Vs, . }- Next we compute det[by LI
l~)1; Ujhp,]. Recall that there is a one-to-one correspondence between {u,...,u,} and
the boundary components {Ti,...,T} of M and a one-to-one correspondence between
{v1,...,v3p} and the boundary components of the disjoint union LIP; of {P;}. Then a
diagram chasing shows that

Nk
= E :I:Vis ,
s=1

where ny, is the number of the boundary components of LIP; intersecting T}, v;,, . . . s Vi,
are the vectors corresponding to those boundary components of LI;P; and the signs +
are determined as follows. Fix an orientation of the longitude [ of Tk, and suppose
P;,, = D, N D; and D, comes immediately before D; along [; in the chosen orientation.
Then the sign in front of v;, is + if » > ¢, and is — if otherwise. Since each boundary
component of LI; P; intersects exactly one boundary component of M, each row of the
n X 3p matrix 0 has exactly one nonzero entry, which equals either 1 or —1. Therefore,
TOWS J1,. .., jgp » of the matrix by U b1 have exactly two nonzero entries, one from by
and one from b1, and the other rows of bs LI b1 have exactly one nonzero entry. Let M
be the (3p — n) X (3p — n) matrix consisting of the rows ji,..., jsp—n of the columns
ViiseesVis,_, of by U b1, and let N be the n X n matrix obtained from by LI b1 by
removing those rows and columns. Then each row of M and N contains exactly one
nonzero entry, which equals 1 or —1, hence det M = +1, det N = £1 and det[by U Bl] =
+det M - det N = 1. Therefore,

[bg U Bl; Ujhpj] = =+1. (56)

For C; = @;r] Hi(Dy; Ad,), we have by = {3(v;,),...,0(vj,, )} = {Wj.,...,
Wisoioa_nf- We choose the lifting basis by as follows. Since each P; is adjacent to two of
{D1,...,Dcyq} without redundancy and each edge of Dy, connects two of {Py,...,P,}
without redundancy, by (5.2) each row of § has exactly two nonzero entries each of
which equals 1 or —1, and each column of § has exactly two nonzero entries, one equals
1 and the other equals —1. For t & {j1,...,J3c16d-n}, let x;, € C3¢T6 be the vec-
tor obtained from the column w, of § by replacing the entry —1 by 0. Then we let
l~)0 = {xt |t e {1,...,3c+ 6d}~{j1,... ,j3c+6d_n}}. Now we claim that {x;} are lin-
early independent and e(x;) # 0 for each ¢ so that by U Eo form a basis of Cy. Indeed,
since each x; contains only one nonzero component, to prove the linear independence
it suffices to prove that no two nonzero entries of {x;} are in the same row. Suppose
otherwise that x;, and x;, have nonzero components in row k, then due to the fact
that each row of d has only two nonzero entries, the k-th component of all the columns
Wiy, .-

s Wiy 6a_n are 0. This contradicts the fact that {w; ,...,wj, ., .} is a basis of
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the column space of § since wy, and wy, have the k-th component equal to 1 and neither

of them can be written as a linear combination of {w;,, .. }. Also, since each

<y Wisered—n
edge of Dy, belongs to exactly one boundary component of M, by (5.1) e(x;) has exactly
one nonzero component which equals 1, hence is nonzero. This finishes the proof of the
claim. Next, we compute det[by LI bg]. We observe that the matrix [b; Lbg] satisfies the

following three properties:

(I) It is nonsingular.
(II) Each column has either exactly one nonzero component which equals +1; or has
exactly two nonzero components, one equals 1 and the other equals —1.
(III) There is at least one column containing exactly one nonzero component.

We let t1,...,t, be the rows where some x; has nonzero components. Let M; be the
n X n matrix consisting of the rows t,...,t, of the vectors {x;}, and let N7 be the
(3¢+6d—n) x (3¢c+6d —n) matrix obtained from by by removing those rows. Since each
column of M; contains exactly one 1 and no two 1’s are in the same row, det M; = +1.
As a consequence, we have det[by U BO] = +det M - det Ny = £det N;. We claim that
N; also satisfies the properties (I), (II) and (II). Indeed, (I) comes from the equality
right above and (IT) comes from the construction of Nj. For (III), suppose otherwise
that all the columns of N7 have one 1 and one —1, then all rows of N; add up to zero
and N; is singular, which contradicts (I). Therefore, we can collect all the columns of
N containing only one nonzero components, and let Ms be the square matrix consisting
of the rows that contain those nonzero components, and let Ny be the square matrix
consisting of the other columns with those rows removed. Then det N; = det M5 - det Ns.
Since det N7 # 0, we have det My # 0. This implies that no two nonzero components of
Ms are in the same row. Together with the fact that all the columns of My have only
one nonzero entry +1, we have det My = +1. This implies that det Ny = +det N»>. By
the same argument, we have that N, satisfies properties (I), (II) and (III), and we can
recursively construct smaller square matrices M3, N3, ..., My, N, ... that M}, consists of
the rows containing those nonzero entries of the columns of N;_; containing exactly one
nonzero entry and Vi consists of the other columns of Ni_; with those rows removed,
so that det M}, = +1, det Nj_; = tdet M, - det N, = £det Ny and Ny satisfies (1),
(IT) and (III). This algorithm stops at some k when all columns of Nj contain exactly
one nonzero entry +1, and we have det[by U go] = +detN; = -+ = £det N, = 1.
Therefore,

[by Ubg; Lzhp,] = £1. (5.7)

For Cy = Hy(M; Ad,), we have by = {e(x;) |t € {1,...,3c+6d}{j1,. ... i3c+6d—n}}-
Since by L BO form a basis of C; and b; lies in the kernel of €, by is a basis of Cy. In
the previous paragraph, we show that each e(x;) contains exactly nonzero entry 1, hence
det[bg] = £1, which is the same as
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[bos hipsmy] = 1. (5.8)
Therefore, by (5.5), (5.6), (5.7) and (5.8), we have

by;h2,] - [by U bg; Lyh
Tor(H:h,.) = — 2zl b1 Uboiihe] ) o

by Uby;Lhp ] - [boshiy, )]

6. Proof of Theorems 1.1, 1.4 and 1.6

Proof of Theorem 1.1. For (1), let M be a fundamental shadow link complement. Recall
that M is the union of D-blocks by orientation reversing homeomorphisms between the
3-puncture spheres (which is homeomorphic to a pair of pants). For each pair of pants P
and i € {1,2,3}, let v; be the simple closed curve around the puncture p;; and for each
D-block D and {j,k} C {1,2,3,4}, let v be the simple closed curve around the edge
ejx. Then (y1,72,73) is the restriction of the meridians m of M to P, and (y12,...,734)
is the restriction of m to D. Let p : 1 (M) — PSL(2; C) be an m-regular representation,
and we will consider the following three cases:

Case I. The restriction of [p] to each pair of pants P; is v-regular as defined in Defi-
nition 3.1, and to each D-block Dy, is v-regular as defined in Definition 4.1.
Case II. [p] is not in Case I, and Trp([m;]) # £2 for all i € {1,...,n}.
Case III. Otherwise.

If [p] is in Case I, then by Theorem 2.2, Propositions 3.2, 4.2 and 5.1, we have

d
Tar,m) ([P]) = Tor(M; {h{y; ), b3 }; Ad,) = £2¢ H Vdet Gy
k=1

This completes the proof of (1) for [p] in Case I.

Next we show that each [p] in Case II and Case III is in the closure of the set of
characters in Case I in the classical (Hausdorff) topology, and the continuity of adjoint
twisted Reidemeister torsion and the determinants of the Gram matrix functions will
complete the proof.

For Case II, we first recall [22, Proposition 5.13] that, if p is m-regular and Trp([m;]) #
+2 for alli € {1,...,n}, i.e., is in Case II, then the logarithmic holonomies (u,...,u,)
form a local coordinates of X (M) near [p]. Since the restriction of [p] to each P; and Dy,
will possibly identity the traces of certain curves in «, we consider the following subsets
of X(P;) and X(Dy,). For an equivalence relation ~ on the index set Ip = {1,2,3} with
the set of equivalence classes Ip, let

X (P) = {lp] € X(P) | for any lifting p of p, Trp([va]) = £Trp([v]) for a,b € Ip with a ~ b};
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and for an equivalence relation ~ on the index set Ip = {12,...,34} with the set of
equivalence classes Ip, let

X1(D) = {[p] € X(D) | for any lifting p of p, Trp([ve])
= +Trp([va]) for ¢,d € Ip with ¢ ~ d}.

Then the restriction of [p] to each P; is in X7(P;) for some Ip; and the restriction of
[p] to each Dy is in Xy—(Dy) for some Ip. Let

ZE(P) =Z(P)n XE(P)
and let
ZE(D) =Z(D)nN XE(D).

Then by formulas (3.6), (3.10) and (3.11), for any quotient set Ip, Z-(P) is dense in
X7-(P) in the classical topology; and by (4.4), (4.5), (4.6) and (4.7), for any quotient
set Ip, Z7;(D) is dense in X7(D) in the classical topology. (Indeed, the numerators
in the square root of the right hand side of both (3.11) and (4.7) have a constant term
—1 which always stays under the identifications of the variables, hence the relevant
analytic functions in the logarithmic holonomies never become the zero function.) As a
consequence, any character in Case II is in the closure of the set of characters in Case I
in the classical topology. This completes the proof of (1) for [p] in Case II.

For a character [p] in Case III, we show that it can be smoothly perturbed into Case
I or Case II. Recall that the Killing form s on s[(2;C) defines a non-degenerate bi-
linear form (, ) : Hy (M, Ad,) x H'(M, Ad,) — C, and the basis h(,, . of Hi(M, Ad))
gives an isomorphism between H;(M, Ad,) and H'(M, Ad,). For each i € {1,...,n},
let v; be the element in H'(M, Ad,) dual to I; ® [m;] under this isomorphism, i.e.,
(vi,I; ® [m;]) = 6;;, the Kronecker symbol. Let I C {1,...,n} be the subset of the
indices ¢ such that Trp([m;]) = +2, and let

VvV = E V.

We consider v as a Zariski-tangent vector of X(M) at [p]. Since [p] is m-regular, it is a
smooth point of X(M). As a consequence, v can be realized as the tangent vector of a
deformation [p], t € [0, €). Then [p4] is the desired perturbation of [p], as for ¢ # 0,

Trpy([mi]) # Tep(fmy]) = 2

for i € I, and

Trpi([my]) = Trp(Im;]) # +2
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for j ¢ I. This shows that any representation in Case III is in the closure of the set of
the representations in Cases I and II in the classical topology, and completes the proof
of (1) for [p] in Case III.

(2) is a direct consequence of (1) and Theorem 2.8 (ii). O

Proof of Theorem 1.4. Let m be the system of meridians of M. If the restriction [p] of
[pu] to M is m-regular, then the result follows directly from Theorem 1.1 and Theo-
rem 2.8 (iii).

If [p] is not m-regular, then by Theorem 2.8 (i) that m-regular characters are dense
in the distinguished component of X(M), [p] is a limit point of m-regular characters.
Then by the analyticity of the adjoint twisted Reidemeister torsion, the formula has a
removable singularity at [p] and hence can be evaluated by taking the limit of the values
at the nearby m-regular characters. 0O

Proof of Theorem 1.6. From Section 2.5, we see that M is homeomorphic to a funda-
mental shadow link complement with the meridians (as of the fundamental shadow link
complement) the preferred longitude . Let m = (my,...,m,) be the simple closed
curves around the edges, and let (v1,...,7,) be the double of the edges. Then the
holonomy representation p of the hyperbolic cone metric has the logarithmic holonomies
Uu; = Uy, = 2l; and w,,, = 2i0, for ¢ € {1,...,n}. Since a truncated hyperideal tetrahe-
dron is determined and infinitesimally determined by its six edge lengths, p is l-regular;
and by [18, Theorem 1.2 (b)], p is determined and infinitesimally determined by its
cone angles (61,...,60,), hence is m-regular. Then (1) and (2) respectively follow from
Theorem 1.1 (1) and (2), and (3) follows from Theorem 2.8 (iii). O
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